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Abstract Resistance gene H26, derived from Aegilops
tauschii Coss., is one of the most effective R genes against
the Hessian fly [Mayetiola destructor (Say)], an important
pest of wheat (Triticum aestivum L.). Using a limited num-
ber of PCR-based molecular markers a previous study
mapped H26 to the wheat chromosomal deletion bin 3DL3-
0.81-1.00. The objectives of this study were to saturate the
chromosomal region harboring H26 with newly developed
PCR-based markers and to investigate the collinearity of
this wheat chromosomal region with rice (Oryza sativa L.)
and Brachypodium distachyon genome. A population of
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96 F, individuals segregating at the H26 gene locus was
used for saturation mapping. All wheat ESTs assigned to
the deletion bin 3DL3-0.81-1.00 were used to design STS
(sequence tagged site) primers. The wheat ESTs mapped
near H26 were further used to BLAST rice and B. distach-
yon genomic sequences for comparative mapping. To date,
26 newly developed STS markers have been mapped to the
chromosomal region spanning the H26 locus. Two of them
were mapped 1.0 cM away from the H26 locus. Compara-
tive analysis identified genomic regions on rice chromo-
some 1 and Brachypodium Super contig 13 which are
collinear with the genomic region spanning the H26 locus
within the distal region of 3DL. The newly developed STS
markers closely linked to H26 will be useful for mapped-
based cloning of H26 and marker-assisted selection of this
gene in wheat breeding. The results will also enhance
understanding of this chromosomal region which contains
several other Hessian fly resistance genes.

Introduction

Hessian fly [Mayetiola destructor (Say)] is one of the most
destructive insects in common wheat (Triticum aestivum
L.) and durum wheat (Triticum turgidum L. var. durum) in
the world (Berzonsky et al. 2003). Larval attack of the
seedling causes plant death or stunting of growth while lar-
val attack of the plant during stem elongation causes broken
stems and shriveled seeds. Both result in significant eco-
nomic losses. Chemical control is rarely used because tim-
ing of application is difficult and few effective insecticides
are available. The most common cultural control practices
are to delay fall seeding and to destroy the volunteer wheat.
Biological control with parasites provides little protection
for the current crop. The use of resistant cultivars is the
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most effective and economical approach (Berzonsky et al.
2003).

To date, 32 Hessian fly resistance genes have been
identified in common and durum wheat and their relatives,
designated H1 through H32 (Williams et al. 2003; Liu et al.
2005; Sardesai et al. 2005; Mclntosh et al. 2008). Deploy-
ment of some of the resistance genes has provided effective
control of the insect in North America. However, wide use
of resistant cultivars leads to the emergence of new virulent
genotypes of Hessian fly (Gallun et al. 1961). Co-evolution
of Hessian fly and its hosts, including wheat and its rela-
tives, generates genetic variations of Hessian fly and then
results in various biotypes (Kudagamage etal. 1990;
Ratcliffe et al. 1994). One resistance gene usually confers
resistance to one or a few biotypes of Hessian fly.

Sixteen biotypes of Hessian fly have been identified
according to their virulence to four differentials, H3 (in
‘Monon’), H5 (in ‘Magnum’), H6 (in ‘Caldwell’), and
H7HS8 (‘Seneca’) (Ratcliffe and Hatchett 1997). The 16 bio-
types are designated Great Plains (GP), and A through O.
The biotype L is virulent to all four differentials, while GP
is avirulent to all of them. However, more biotypes, includ-
ing vH9 and vH13, have been found (Formusoh et al. 1996;
Zantoko and Shukle 1997), and more will be found in
future. Some of them may have overcome the resistance
from these four genes or other resistant genes. Although H9
and H13 confer resistance to the most virulent biotype L of
the 16 biotypes, they do not confer resistance to the biotype
vH9 and vH13, respectively. The complexity of the interac-
tion between Hessian fly and resistance genes in wheat and
its relatives, and variability of Hessian fly in the virulence
necessitate the deployment of newly identified resistant
genes.

The gene H26, derived from Ae. tauschii (Cox and
Hatchett 1994), confers resistance to Hessian fly popula-
tions that are currently difficult or impossible to control
with other available H genes (Cox and Hatchett 1994;
Wang et al. 2006; Xu et al. 2006). H26 is one of only two
genes that are highly effective against a Hessian fly popula-
tion recently detected in Oklahoma (Ming-Shun Chen, per-
sonal communication). However, H26 has not been
commercially deployed. H26 was previously assigned to
chromosome 4D using monosomic analysis (Cox and
Hatchett 1994). Recently, this gene was mapped to the
deletion bin 3DL3-0.81-1.00 on chromosome 3D using
molecular markers (Wang etal. 2006). Because fewer
molecular markers have been assigned to this distal dele-
tion bin on 3DL than the homologous regions on chromo-
somes 3A and 3B (Somers et al. 2004), H26 locus was only
loosely mapped with a few SSR markers and closely linked
PCR-based markers have not been identified.

Wheat EST (expressed sequence tag) sequences can be
used to develop user-friendly molecular markers such as
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STS (sequence tagged site) and SSR (simple sequence
repeat) (Peng and Capitan 2005; Zhang etal. 2005;
Perugini etal. 2008). There are 1,050,314 wheat ESTs
available (http://www.ncbi.nlm.nih.gov/sites/entrez). A total
of 16,000 of the ESTs were mapped to wheat deletion bins
(Qi et al. 2004). These deletion-mapped ESTs are particu-
larly useful for developing PCR-based DNA markers for
saturation and fine mapping of a chromosomal interval har-
boring the genes of interest and gene cloning. So far, 120
wheat ESTs have been mapped to 3DL3-0.81-1.0 (http://
wheat.pw.usda.gov/cgi-bin/westsql/map_locus.cgi) and
they are excellent resource for developing new PCR-based
markers for saturation mapping of the genes within this
chromosomal interval.

In addition to wheat EST, genomic sequence informa-
tion from model species, such as rice (Oryza sativa L.)
whose genome has been sequenced, has been used for
molecular mapping and gene isolation through comparative
analysis in wheat (Liu and Anderson 2003; Distelfeld et al.
2004; Francki et al. 2004). However, due to the many dis-
ruptions in collinearity between rice and the genomes of
wheat and barley, Brachypodium distachyon has been pro-
posed as another model species of cereals. The bacterial
artificial chromosome (BAC) libraries (Foote et al. 2004;
Huo et al. 2006, 2008; Hasterok et al. 2006), ESTs (Vogel
et al. 2006), and partial assembled genomic sequences have
become available in B. distachyon. Limited data suggested
that Brachypodium is likely more closely related to wheat
than rice (Vogel et al. 2006; Bossolini et al. 2007). Thus,
the genomic sequences and ESTs of Brachypodium could
be another invaluable resource for molecular mapping and
gene cloning in wheat.

The objectives of this study were to saturate the chromo-
somal region harboring the H26 locus using newly devel-
oped PCR-based STS (sequence tagged site) markers,
which will facilitate not only deploying the H26 gene in
wheat cultivars but also the genomic study of this chromo-
somal interval; and to determine the collinearity of this
wheat genomic region with rice and Brachypodium
genome.

Materials and methods
Plant materials and STS marker analysis

The mapping population of 96 F, individuals derived from
the cross between the resistant synthetic hexaploid wheat
(SHW) line SW8 (Langdon/Ae. tauschii Clae 25) and the
susceptible SHW line SW11 (Langdon/Ae. tauschii H-80-
114-1) (Wang et al. 2006) was used for saturation mapping
in the present study. DNA was extracted from the preserved
(—80°C) young leaf tissues of the population as described
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by Dellaporta et al. (1983). One hundred and twenty wheat
ESTs, assigned to the chromosomal bin 3DL3-0.81-1.0
where H26 resides (http://wheat.pw.usda.gov/cgi-bin/westsql/
map_locus.cgi), were used to design primers with the com-
puter program Primer3 (http://frodo.wi.mit.edu/cgi-bin/
primer3/primer3_www.cgi) (Rozen and Skaletsky 2000) to
detect STS marker loci near the H26 locus. The primers of
the STS markers mapped to this chromosomal region are
listed in Table 1. Four SSR markers (Xcfd223, Xgwm3,
Xcfd211, and Xbarc71) that linked to H26 locus (Wang
et al. 2006) were used as the anchors in this study and their
primer sequences were obtained from the GrainGenes
Database (http://wheat.pw.usda.gov/GG2/index.shtml).

Bulked segregant analysis was performed to identify
marker loci closely linked to H26. Two bulks of DNA were
prepared by pooling equal amounts of DNA from eight
homozygous resistant and eight homozygous susceptible F,
individuals, respectively. The STSs were amplified at opti-
mized PCR conditions. The annealing temperature for PCR
was determined based on the melting temperature (7,,) of
the primer pair. It was calculated by subtracting 5 from the
T,, of the primer with lower T, value (Innis and Gelfand
1990) and was adjusted based on the relative intensity of tar-
get band among the all amplified ones for a primer pair
(Table 1). The SSRs were amplified as described by Roder
et al. (1998). PCR products were separated on 6% non-dena-
turing polyacrylamide gels in 0.5 XTBE buffer at 120 W for
1 h. The gels were scanned with a Typhoon 9410 variable
mode imager (Molecular Dynamics, Ithaca, NY, USA) after
staining with GelRed (Sigma, St. Louis, MO, USA).

Linkage of molecular markers with H26 in the mapping
population was analyzed using MAPMAKER 2.0 (Lander
et al. 1987) for Macintosh at LOD 6.0 with the Kosambi
mapping function (Kosambi 1944).

Comparative analysis

For comparative analysis with the rice or Brachypodium
genome, tentative consensus (TC) or EST sequences were
subjected to BLASTn searches of the rice genomic
sequences in the Gramene database (Ware et al. 2002; http://
www.gramene.org/Multi/blastview) or to search of Brac-
hypodium super contigs (http://www.brachypodium.org).
For BLASTn searches, the threshold limits for significant
hits were at least 80% nucleotide identity for at least 60
bases. We set e-value <e™’ in order to include maximum
number of EST or TC hits with lowest e-value. When
several significant hits were found, only the best hit was
adopted.

To search wheat TCs corresponding to rice PAC
AP003238, which is hit by the EST of the closet STS
marker (Xrwgs2)-H26, the sequence of the rice PAC was
subjected to BLASTn (Altschul et al. 1997) against wheat

EST clusters (TIGR gene indices). A significant match for a
TC was declared on the basis of e-value of <e >! which was
used to reduce the similarity among the significant TCs.
The TC sequences were obtained from the Annotator
Search of DFCI (http://compbio.dfci.harvard.edu/tgi/cgi-
bin/tgi/tc_ann.pl?gudb=wheat). The TC sequences were
then subjected to tBLASTx (Ware et al. 2002; http://blast.
ncbi.nlm.nih.gov/Blast.cgi?PAGE=Translations&PROGR
AM=tblastx&BLAST_PROGRAMS=tblastx&PAGE_
TYPE=BlastSearch& SHOW_DEFAULTS=on&LINK_
LOC=blasthome) searches of the NCBI nucleotide collec-
tion (nr/nt) to identify the putative corresponding protein. A
significant match for a protein was declared on the basis of
a minimum 80% amino acid identity for at least 50 amino
acid residues of the protein sequence and an e-value of
<e~’. The hit with the lowest e-value was considered the
putative protein of a TC when several matches were found.
The known genes within the rice genomic region AP003238
were obtained through TIGR v5 in Gramene (http://www.
gramene.org/Oryza_sativa_japonica/index.html).

Results

More than 500 STS primer pairs were designed based on
the sequences of the 120 wheat ESTs assigned to the dele-
tion bin 3DL3-0.81-1.00. These primer pairs were then
tested for polymorphisms between the two parents of the
mapping population. Fifty-one pairs of primers were found
to amplify polymorphic bands between two parents
(Fig. 1). Bulked segregant analysis identified 24 STS
co-dominant markers linked to H26 and they were mapped
to the deletion bin 3DL3-0.81-1.00 (Table 1; Fig. 1). Thus,
20% of the ESTs within this chromosomal interval were
converted to STS markers.

In order to exploit the genomic sequences of the model
species, rice and Brachypodium, the collinearities of the
wheat genomic region harboring the H26 locus with rice
and Brachypodium genomes were studied to develop addi-
tional markers for wheat. We designed 48 and 46 pairs of
STS primers from the sequences of the rice and Brachypo-
dium genomic regions which are collinear with the wheat
genomic region harboring H26, respectively. One STS
marker (Xrwgs17) developed from rice and one (Xrwgsi0)
from Brachypodium genomic sequences were mapped to
the H26 region (Table 2). A total of 26 STS markers were
mapped to the distal region of 3DL that resides within the
deletion bin 3DL3-0.81-1.00 (Fig. 2).

The genetic map of partial 3DL, which spans a genetic
distance of 42.5 cM with 30 molecular markers, was con-
structed in the population. This linkage map represents an
average density of one marker per 1.4 cM. All markers
were mapped at LOD > 6.0. Two co-segregating STS
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Table 1 STS markers developed from wheat ESTs, rice genomic sequences, and Brachypodium genomic sequences

STS marker PCR primers Annealing EST accession/
temperature (°C)* genomic group®

Xrwgsl GCTGTCGCACAAGCAATAAA 55 BE404125
CGGCCCGTACAGAAGTGTAT

Xrwgs2 TTTTGAACAACAATTGATCT 48 BES590549
ATGAGCCGGTGGTG

Xrwgs3 TGACTTATCCCGAGTGACCAG 55 BF485004
TGCTATCTTTGCTTGTGCTACAG

Xrwgs4 ATGGCTACCCACTGGACAAG 55 BE443397
CTCTGATTTCGCCAGGAAAG

Xrwgs5 GTTCTCGGCATCAATCACCT 55 BG262734
AGAGCTATGCCCATGGTGAC

Xrwgs6 AAGGACGACGTCAAGCTCAT 55 BE591925
AGGATTGGAACAACGTCCAG

Xrwgs7 CCGAGGACGTCGAGAAAAAC 57 BE444335
CCGAGGACGTCGAGAAAAAC

Xrwgs8 TGCTCCCAAAGCTCTCATCT 55 BE498661
TGGAGCTTTGAGCAGGTTTT

Xrwgs9 CCATTTGGCACAATGACTTG 55 BE405038
GCTGTGGAAGCATCTTGTGA

Xrwgs10 CCTAACTGAGGTCCCACCAA 55 Brachypodium
GCAAAGGACTTGATGCCTGT Super contig 13

Xrwgsll GGAGAGTCGCAGGATCCA 55 BE403428
TCTCTGCCCAGTCCAACTTT

Xrwgsli2 CGTATCGGCGACAAGGTAAT 55 BE426418
ACTGGAAGAAGCCCCAGTCT

Xrwgsl3 ACAACCAGGGACTGATCGAC 55 BM138635
CACCACCAGGAACAGGAAGT

Xrwgsl14 CATGACGGAGAGAGATGCAA 55 PSR1205
CAACTCCCAGTTTGCTGACA

Xrwgsl5 GAGGCCATCAAGTCCAAGTT 55 BE426763
TGGGTTCGTGAAGAAAAAGC

Xrwgs16 ATGCATGCTAATTAGCTAGT 47 BG608151
TGTTCCCTTGTACAAGTAGA

Xrwgsl7 TCTCTGAGGGGAAGCAAGAA 55 Rice chromosome
CTCCTCCCATTCCCCATATC 1L distal end

Xrwgsl8 TGAAGCAATCAGCAATTGGA 55 BE490274
CCTCGTAACTGAAGCCTGGA

Xrwgs19 TTGGTAATTTTTCGGCTTGC 55 BE444864
CTGTTTACGGCAATGGGATT

Xrwgs20 ACCGACATCACCCATGTCTT 55 BE605103
CTGCAATTGAAAGCCTCGTT

Xrwgs21 GGAGAAGCATCACAAGCACA 55 BE446756
TCCTTCATCTTGTGCGACCT

Xrwgs22 ACAATGGCTAGCTATGGAGATGT 55 BE444579
CGTTCACGCACGAGTAAAAC

Xrwgs23 CTCAAGGACCTGCTGGAGAC 55 BE489841
ATCTAGAGGCGCGACAAAAA
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Table 1 continued

STS marker PCR primers Annealing EST accession/
temperature (°C)* genomic group®

Xrwgs24 TGATGGATGAGTACTATGTTGGTGA 56 BE637789
CGGTGACGCTGGTACAAAAT

Xrwgs25 TCGACTTCAGGAGCCACTTT 55 BM137927
CACGTTCAGGAACTGCTTCA

Xrwgs26 TGAACGGTATACAAGTGCGAGT 55 BE591864
ATTCTGTCCTTCTCGGCAAA

% Annealing temperature was determined based on melting temperature (7,,) of a primer pair (Innis and Gelfand 1990) and the relative intensity

of the target band amplified by the primer pair

b Wheat EST accessions were obtained from website: http:/wheat.pw.usda.gov/cgi-bin/westsql/map_locus.cgi, accessed 2 Jan 2009

Fig. 1 Four examples of STS
primers that generated polymor-
phic bands as co-dominant
markers between two parents. P1
and P2 are the parents SW8 and
SW11, S and R are homozygous
susceptible and resistant F,
plants, respectively

Xrwgs23

PIP2S S R R R RPIP2

markers, Xrwgsll and Xrwgsi2, have distances of 1 cM
from the H26 locus. Another marker, XrwgslI0, is 3.2 cM
proximal to H26. Several STS markers, such as Xrwgs4,
Xrwgs5, and Xrwgs6, were co-segregating in the mapping
population (Fig. 2). However, they were developed from
different ESTs or TCs.

To evaluate the local collinearity of the deletion bin
3DL3-0.81-1.00 with rice genome we blasted the rice
genome using 24 ESTs or corresponding TCs from which
the mapped STS markers were developed. Fifteen of the
ESTs or TCs hit the distal region of rice chromosome 1,
two hit chromosome 3, one hit chromosomes 8 and 10,
whereas five of the ESTs or TCs did not hit any rice geno-
mic region under the significance threshold (Table 2). In
general, there is good collinearity between the distal region
of wheat 3DL and rice chromosome 1. However, wheat
EST BE426418 detected a locus close to the one that EST
BE444864 corresponded to in rice (Fig. 3).

To determine the collinearity between the deletion bin
3DL3-0.81-1.00 and Brachypodium genomic region(s), the
24 mapped ESTs or corresponding TCs were used as que-
ries to BLAST against Brachypodium genomic sequences.
Fifteen of the ESTs or corresponding TCs hit the Brachypo-
dium Super contig 13 (Table 2). Two TCs (TC265775 and
TC252434) hit the Super contig 3 and one (TC276760) hit
the Super contig 2. Six of them did not hit any Brachypo-
dium contig under the significance threshold (at least 60
bases, and an e-value of <e~’) (Table 2). Fourteen of the 15
ESTs or TCs and the marker XrwgsI0 are perfectly collin-

Xrwgs8 Xrwgs12 Xrwgsll

SSRRRRPIP2ZSS RRRR PIP2SS RRRR

ear between the distal region of 42.5 cM (from marker
Xrwgsl-Xrwgs26) of wheat chromosome 3DL and Super13
contig of Brachypodium genome, but, as was seen in rice,
EST BE426418 identified a locus close to the one that EST
BE444864 corresponded to (Fig. 3).

Since the STS marker XrgwslI2 derived from the EST
BE426418 is 1 cM from H26 locus we blasted rice genomic
sequences using BE426418 as a query (Table 3). The rice
genomic sequence collinear with BE426418 is derived from
the PAC AP003238. Within this rice genomic region 14
known genes were found (Table 3). Among them are genes for
a membrane attach component, lipase, DNA binding, Leucine
rich repeat (LRR), and fungal lignin peroxidase (Table 3).

To search for putative genes corresponding to the wheat
TCs that were hit by the rice PAC AP003238 we blasted the
wheat EST clusters with AP003238 (Table 4). Twelve sig-
nificant TCs were identified. Using tBLASTx, we blasted
the NCBI nucleotide collection (nr/nt) with these TC
sequences and obtained eleven predicted proteins, includ-
ing one integral membrane protein-2B and one similar to
ETS domain (DNA-binding domain). However, functions
for rest of the predicted proteins are unknown (Table 4).

Discussion
Hessian fly resistance gene H26 was previously mapped

to the 3DL distal region 3DL3-0.81-1 (Wang et al. 2006).
Because this chromosomal interval has fewer PCR-based
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Table 2 STS markers, their corresponding ESTs and TCs, and similarity to the Brachypodium and rice genomic sequences

Marker EST accession/ TC accession Brachypodium Rice
genomic region

Contig® e-Value Chromosome e-Value
Xrwgsl BE404125 TC236858 Super 13 2.0e—77 1 5.9e—123
Xrwgs2 BE590549 TC265775 Super 3 8.0e—10 Ns®
Xrwgs3 BF485004 TC263479 Super 13 1.0e—130 1 2.4e—291
Xrwgs4 BE443397 TC252434 Super 3 4.0e—96 10 1.7e—168
Xrwgs5 BG262734 NA® Super 13 7.0e—37 1 8.8e—42
Xrwgs6 BE591925 TC272750 Super 13 4.0e—-27 1 4.9e—34
Xrwgs7 BE444335 TC241376 Super 13 2.0e—16 1 1.5e—08
Xrwgs8 BE498661 TC253823 NS NS
Xrwgs9 BE405038 NA NS NS
Xrwgs10 Brachypodium NA

Super contig 13

Xrwgsll BE403428 TC255189 NS 3 5.9e—29
Xrwgsi2 BE426418 NA Super 13 9.0e—14 1 2.0e—13
Xrwgsl3 BM138635 TC247552 Super 13 9.0e—91 1 1.7e—133
Xrwgsl4 PSR1205 NA NS NS
Xrwgsl5 BE426763 TC270760 Super 2 1.0e—33 1 3.1e—82
Xrwgsl6 BG608151 TC257542 NS 8 1.5e—10
Xrwgsl7 Rice chromosome 1L NA
Xrwgsl8 BE490274 TC238164 Super 13 2.0e—38 1 1.3e—32
Xrwgsl9 BE444864 NA Super 13 2.0e—40 1 8.0e—90
Xrwgs20 BE605103 TC251323 NS 3 2.4e—227
Xrwgs21 BE446756 TC244950 Super 13 2.0e—28 1 2.0e—59
Xrwgs22 BE444579 TC268986 Super 13 2.0e—32 1 5.7e—43
Xrwgs23 BE489841 TC233450 Super 13 5.0e—58 1 4.2e—-223
Xrwgs24 BE637789 TC233150 Super 13 8.0e—76 1 5.0e—84
Xrwgs25 BM137927 NA Super 13 4.0e—60 1 1.7e—50
Xrwgs26 BE591864 NA Super 13 1.0e—20 NS

# These sequence data were produced by the US Department of Energy Joint Genome Institute http://www.jgi.doe.gov/ (with consent of the Brac-
hypodium Genome Sequencing Project co-directors Drs. John Vogel, Michael Bevan, and David Garvin)

® Not significant based on the criteria (at least 60 bases, and an e-value of <e™7)

¢ A TC was not available

markers than other regions according to the consensus
genetic map (Somers etal. 2004) the H26 locus was
roughly mapped with only eight SSR markers and one
TRAP marker in the previous mapping endeavor (Wang
et al. 2006). The molecular markers tightly linked to H26
have not been identified previously. Through saturation
mapping in the present study we successfully developed
26 new STS markers and mapped them onto this region.
Two of the STS markers (Xrwgsll and Xrwgsl2) are
1 cM away from H26 locus. Another marker, Xrwgsl0, is
3.2 cM proximal to H26. Since H26 conditions resistance
to multiple biotypes of Hessian fly, including vH13 (Cox
and Hatchett 1994; Wang et al. 2006; Xu et al. 2000),
these three STS markers will be useful for marker-
assisted selection in wheat breeding and germplasm
development.

@ Springer

In addition to H26, several other economically and
genetically important genes reside within the 3DL distal
region 3DL3-0.81-1, including H24 (Ma et al. 1993) and
H32 (Sardesai et al. 2005) for resistance to Hessian fly,
Lr24 for resistance to leaf rust (Puccinia triticina Erikss)
(Boyko et al. 1999), RI for red kernel color (Nelson et al.
1995), Chi2 for hybrid chlorosis (Koba and Tsunewaki
1978; Erayman et al. 2004), and the genes for Esterase-5
(Devos and Gale 1993) and f-(1-3)-Glucanase (Li et al.
2001). Thus, the 26 newly developed STS markers in our
study will facilitate the genetic study of a number of impor-
tant traits or genes in this region.

The homoeologous group 3 of wheat is considered to be
collinear to chromosome 1 of rice (Ahn et al. 1993; Kurata
etal. 1994; Munkvold et al. 2004; Dilbirligi et al. 2006),
but detailed studies on the microcollinearity particularly
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between 3DL and rice chromosome 1 have not been
reported. The results from our study showed that 15 of the
24 ESTs mapped to the deletion bin 3DL3-0.81-1 (63%)
had homology to the sequences on rice chromosome 1, sug-
gesting collinearity between the distal region of 3DL and
the distal region on the long arm of rice chromosome 1.
This result also agrees with the study by Munkvold et al.
(2004) in which the distal half of group 3 chromosomes
(3L3-0.81-1) has better homology with rice chromosome 1
than the proximal half.

Although the result from this study showed good conser-
vation in the deletion bin 3DL3-0.81-1.00 in terms of the
homology with rice chromosome 1 disruptions in the

collinearity between 3DL3-0.81-1.00 and rice chromosome
1 were observed. For example, the local inversion and dis-
tant translocation were observed for wheat in this study
(Fig. 3). These rearrangements were also reported by
Munkvold et al. (2004). Yet, the difference between 3DL3-
0.81-1.00 and corresponding region on rice chromosome 1
is still too large to efficiently develop STS markers for
wheat chromosome 3D using rice genomic sequence based
on the collinearity. We designed 48 pairs of STS primers,
but only one was mapped to the collinear region on 3DL
(Table 2; Fig. 2). Therefore, a cautious approach should be
taken when utilizing the rice genomic sequence for fine
mapping in wheat.
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Wheat 3DL Rice
Genetic Map chromosome 1
cM, EST/Marker bp
11 BE404125 - 39,336,428
3.2
11 BF485004
3.2
|| BE591925
1.0 | BG262763
|| BE444335
12.1
I 40,938,735
T 41,186,962
11 BE426418 T 41,319,282
2.6
11 BM138635
T 41,692,732
4.2
11 BE426763
1 42,242,029
4.8
42,496,001
H- 42,592,239
Xrwgs17 42,610,080
26 42,634,004
11 BE490274 42,639,638
1.6
11 BE444864 T 42,942,943
3.7 | 43,066,877
) 1 43,186,825
0.5 -+ BE446756 43,344,721
1.0 BE444579
0.5 | BE489841
0.5 + BE637789
10 1l BM137927

Fig. 3 Collinearity of the H26 region of wheat (left) with correspond-
ing genomic region of rice chromosome 1 (right). Physical locations
corresponding to the EST markers on the genetic map of 3DL are indi-
cated as base pairs on the genomic region of rice. Genetic distances
between the markers were indicated as cM to the left of the genetic
map. The STS marker Xrwgs!7 was developed directly from the rice
genomic sequence

Due to the limited degree of collinearity observed in
wheat-rice comparative studies, B. distachyon has been
proposed as a new model grass to study genomics of large-
genome cereals (Draper etal. 2001). However, little is
known about the collinearity between wheat and Brachypo-
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dium at the chromosome level. In the comparative mapping
of Lr34 orthologous regions (Bossolini et al. 2007), six of
11 wheat markers detected the collinearity between Brac-
hypodium and wheat chromosome 7A, and six of 11 mark-
ers revealed the collinearity between Brachypodium and
wheat chromosome 7D. The results from our study revealed
that 15 of 24 (63%) wheat ESTs evaluated had similar
sequences as rice chromosome 1. Fourteen of the 15 ESTs
and one marker are collinear between the distal region of
wheat 3DL and Brachypodium Super contig 13 (Table 2).
This points to the utility of B. distachyon as a model for the
understanding of the large and complex genomes of wheat.

On the other hand, the collinearity between wheat 3DL3-
0.81-1.00 and Brachypodium Super contig 13 is not perfect.
The discrepancies between wheat 3DL3-0.81-1.00 and
Brachypodium Super contig 13 limit the development of
STS markers for wheat chromosome 3D from the genomic
sequences of the Brachypodium Super contig 13 based on
the collinearity. We designed 46 pairs of STS primers with
Brachypodium Super contig 13 sequences based on the col-
linearity, but only one was mapped to wheat chromosome
3D (Table 2; Fig. 2). Therefore, as seen with rice, cautions
need to be taken when employing the Brachypodium geno-
mic sequence for molecular mapping and gene cloning in
wheat.

Brachypodium was reported to be more closely related to
wheat than to rice (Vogel et al. 2006; Bossolini et al. 2007).
The genomic regions of Brachypodium and rice corre-
sponding to the wheat 3DL3-0.81-1.00 were found to be
similar instead in this study. Both Brachypodium and rice
had 63% of evaluated ESTs collinear with wheat (Table 2).
The wheat EST BE426418 detected a locus close to the
ones that EST BE444864 corresponded to in both rice and
Brachypodium (Fig. 3). These results indicate complexity
of the collinearity of wheat genomes with Brachypodium
genome. Therefore, local comparative mapping is sug-
gested before using Brachypodium genomic sequences for
fine mapping or gene cloning in wheat.

The majority of the cloned resistance genes, including
those for disease and insect resistance, encode proteins with
a nucleotide-binding site (NBS) domain and a LRR domain
(Hammond-Kosack and Jones 1997). NBS domains have
been shown to bind and hydrolyze ATP in plants and ani-
mals, and ATP binding appears to be essential for signal
transduction. The LRR domain is a key determinant of pro-
tein—protein interactions (Ellis et al. 2000). For examples,
the Xanthomosnas resistance gene, Xal, in rice (Yoshimura
etal. 1998) and the nematode resistance gene, Cre3, in
wheat (Lagudah et al. 1997) have been shown to be NBS-
LRR-like genes. NBS-LRR-like genes can be viable candi-
dates for genes conditioning resistance to pest. In the present
study, three genes with DNA binding, or ATP binding, or
LRR were found within the rice PAC AP003238. Since the
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Table 3 Genes within the rice PAC AP003238

Gene

Description

InterPro

NP_001045455.1

NP_001045456.1
NP_001045457.1

NP_001045458.1

NP_001045459.1

NP_001045460.1
Q5JN43_ORYSJ

NP_001045461.1

NP_001045462.1

NP_001045463.1
NP_001045464.1

NP_001045465.1

NP_001045466.1

NP_001045467.1

MAC/Perforin domain containing
protein, expressed

Expressed protein

MUTL protein homolog 1, putative, expressed

Serine/arginine repetitive matrix protein 1,
putative, expressed

Abscisic stress ripening protein 1, putative, expressed

Abscisic stress ripening protein 2, putative, expressed

Pentatricopeptide repeat protein PPR1106-17,
putative, expressed

Phosphatidylserine decarboxylase, putative,
expressed

Expressed protein

Expressed protein

Expressed protein

tRNA uridine 5-carboxymethylaminomethyl
modification enzyme gidA, putative, expressed

ATP binding protein, putative, expressed

Copine-4, putative, expressed

Membrane attack complex component/
perforin/complement C9

Lipase, active site

DNA mismatch repair protein/
ATP-binding region, ATPase-like
Pistil-specific extensin-like protein/
RNA recognition motif, RNP-1/HMG-I
and HMG-Y, DNA-binding
ABA/WDS-induced protein
ABA/WDS-induced protein

Pentatricopeptide repeat

Phosphatidylserine decarboxylase-related/C2
calcium/lipid-binding region, CaLB/Calcium-binding
EF-hand/Phosphatidylserine decarboxylase

Histone H5/Pollen allergen Poa pIX/Phl pVI,
C-terminal/Antifreeze protein, type I

Protein of unknown function/Glycyl-tRNA
synthetase, alpha2 dimer

FAD-dependent pyridine nucleotide-disulfide
oxidoreductase/Glucose-inhibited division protein/
Fumarate reductase/succinate dehydrogenase
flavoprotein, N-terminal/Pyridine
nucleotide-disulfide oxidoreductase, class I

Serine/threonine protein kinase/Leucine rich repeat,
N-terminal/Tyrosine protein kinase/
Protein kinase, core/Leucine-rich repeat,
typical subtype

Zinc finger, RING-type/Fungal lignin
peroxidase/Copine/von Willebrand factor, type A

Table 4 Wheat TCs and their predicted proteins

Wheat TC Protein e-Value Length (No. of amino Identity
acid residues) (%)
TC236864 Unknown (Zea mays) 9.0e—108 166 95
TC236865 Unknown (Zea mays) 2.0e—88 111 91
TC236866 Unknown (Hordeum vulgare) 2.0e—61 67 86
TC236867 Integral membrane protein -2B 0.0e+00 224 97
(Taeniopygia guttata)
TC237661 Unknown (Hordeum vulgare) 2.0e—69 87 98
TC237663 Similar to ETS domain-containing protein 4.0e—122 166 98
EIK-4 (Gallus gallus)
TC238164 Unknown (Oryza sativa japonica) 1.0e—97 199 80
TC238349 Unknown (Oryza sativa japonica) 9.0e—49 50 92
TC238351 Unknown (Zea mays) 1.0e—63 116 87
TC239719 Protein coding (Danio rerio) 0.0e+00 522 99
TC244941 Unknown (Oryza sativa japonica) 5.0e—125 207 91
TC244950 Unknown (Oryza sativa japonica) 3.0e—14 54 NS
TC255809 Unknown (Oryza sativa japonica) 0.0e+00 303 82
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H26 is 1 cM from the marker XrwgsI2 derived from the
wheat EST BE426418, and the AP003238 is the corre-
sponding PAC of the wheat EST BE426418 in rice, these
three genes could be candidate genes for resistance to
Hessian fly. On the wheat side, one gene corresponding to
TC237663 that was hit by the rice PAC AP003238, was
found to have DNA-binding site (ETS domain) (Table 4).
However, fine mapping as well as efforts toward cloning are
needed to confirm these results.
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