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Abstract 

4
He accumulated in fluids is a well established geochemical tracer used to study crustal fluid dynamics.  Direct fluid samples are 

not always available; therefore, we have adapted a method to extract rare gases from matrix fluids of whole rocks by diffusion.  Helium 

was measured on matrix fluids extracted from sandstones and mudstones recovered during San Andreas Fault Observatory at Depth 

(SAFOD) drilling.  Samples were typically collected as subcores or from drillcore fragments.  

Helium was measured 4-6 times on each sample, and indicate a bulk 4He diffusion coefficient of 3.5±1.3x10-8 cm2s-1 at 21oC, 

compared to diffusion coefficients of 1.2x10-18 cm2s-1 (21oC) to 3.0x10-15 cm2s-1 (150oC) in the sands and clays (Solomon et al. 1996).  

Correcting the diffusion coefficient of 4Hewater for matrix porosity (~3%) and tortuosity (~6-13) produces an effective diffusion 

coefficient of 1x10-8 cm2s-1 (21 ºC) and 1x10-7 (120 ºC), effectively  isolating matrix pore fluid 4He from the 4He contained in the rock 

matrix. Model calculations indicate that less than 6% of He initially dissolved in pore fluids was lost during the sampling process. 

Complete and quantitative extraction of the pore fluids provide minimum in situ porosity values for sandstones 2.8±0.4% (s.d., n=4) 

and mudstones 3.1±0.8% (s.d., n=4).   

2 
 



I. Introduction 

The mechanisms and rates of fluid transport in rock are an important control on  a) basic fluid transport in the Earth’s crust 

(Fyfe, 1978; Torgersen, 1989) , b) radioactive waste disposal  ( i.e. Olanrewaju, 2009) or carbon dioxide storage in deep geological 

formations (e.g. Orr, 2009 and references therein), and c) understanding fluid processes in fault zones (Sano et al., 1986; Kulongoski 

et al., 2003; Kulongoski et al., 2005; Kennedy and van Soest, 2007; Suer et al., 2008).  Below melting temperatures, fluid flow 

represents the most common form of chemical transport in the crust (Fyfe, 1978; NRC, 1990), thus pore fluid chemistry and 

geochemical tracers are essential in constraining sources, sinks and timescales for fluid flow. These processes can be evaluated in situ 

only on the short- time and space scales.  Long timescale quantification of fluid flow typically requires geochemical tracer techniques 

and collection of in situ fluids.  Traditionally, geochemical measurements are performed on fluid-only samples collected from wells or 

bailers in boreholes.  However, direct fluid samples are not always available, may be of poor quality because of contamination or 

don’t provide adequate spatial resolution.   

The San Andreas Fault Observatory at Depth (SAFOD) drilling project was undertaken to investigate the physical, chemical 

and hydrologic processes controlling faulting and earthquake generation within a seismically active, major plate-bounding fault 

(Zoback, 2006).  Geophysical logs from the SAFOD drill hole show several sharp transitions in resistivity across the damage zone 

(3200-3400 m-MD) (Hickman,  2007), which could be a result of weak and highly fractured rocks and/or changes in pore fluid 

pressure (Mishina, 2009).  To trace the origin and transport of fluids within the San Andreas Fault, we exploit the low natural 
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abundance, chemical inertness, and distinct isotopic signature of noble gases to provide insight into source and timescales of fluids in 

the different crustal environments that comprise the SAF.  For the SAFOD drilling project, the drilling plan did not (generally) expect 

enough fluid inflow throughout scheduled drilling phases to enable fluid-only sampling.  Furthermore, slow flow and drilling costs 

suggested that devoting time to allow the drill hole to infill with fluids might have been prohibitively expensive.  Within these 

constraints, we used whole rock samples to collect matrix pore fluid samples from SAFOD solid phase drill cores adapting a 

methodology pioneered by the Institute for Environmental Physics at the University of Heidelberg, Germany (Osenbrück et al., 1998; 

Lippmann et al., 2002; Rübel et al., 2002).  Upon recovery and suitable containment, the relaxation of the rock (released from e.g. 

2km of lithostatic pressure) allowed the matrix pore fluids to be extracted.  This paper demonstrates an effective method to extract 

matrix pore fluids and helium from drill core samples and represents the first attempt to extract pore fluids from altered sedimentary 

rocks from an actively creeping fault zone undergoing repeated or continuous fluid-rock interaction at 120ºC in situ temperature.    

a. Geological Setting: The SAFOD drill site 

The SAFOD drill site is located near Parkfield, CA, the fault, separates the North American Plate in the northeast from the 

Pacific Plate in the southwest.  SAFOD phases 1 and 2 (conducted in 2004 and 2005, respectively) included drilling the main hole 

(MH) to a vertical depth of ~1.7 km followed by an angled descent intersecting the trace of the San Andreas Fault at ~2.7 km vertical 

depth, or ~4 km measured depth (MD) along the borehole.  SAFOD MH was drilled in 2004 to a depth of 3051 m (Phase 1) and 

deepened to  3987 m in 2005 (Phase 2).  Spot cores were obtained from1462-1469m, 3056-3067m MD during Phase 1 and from 3990-
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3993 m MD during Phase 2.  Phase 3 recovered cores from 3141-3153 m MD, 3186-3198 m MD, 3294-3313 m MD in 2007.  Figure 1 

highlights the drillhole lithology as well as our sample depths in context of geophysical log data. The bulk mineralogy of the SAFOD 

drill cuttings show an arkosic rock sequence from 1920-2550 m, separated by a clay-rich zone at 2550-2680 m MD and a fine-grained 

sequence at 2680-3150 m MD. A lithologic change occurs at ~ 3150 m MD, where arenites are replaced by fine-grained siltstone and 

shale fragments. The section at 3150-3550 m MD is characterized by a fine-grained quartz-feldspar rich mudrock (siltstone and 

shales) with interbedded sandstones (Bradbury et al., 2007).  The relative locations of depths corresponding to the Pacific Plate, SAF 

damage zone, and the North American Plate are based on geophysical logs from Zoback et al. (in press). 

Other studies have been performed on fluids collected in the study area (Kennedy et al., 1997).  Fluid samples from springs, 

seeps and wells associated with the San Andreas Fault have been analyzed to investigate whether fluid movements play a role in the 

San Andreas Fault dynamics (Kennedy et al., 1997).  SAFOD drilling hiatuses in 2004 and 2005  allowed some direct fluid sampling 

but the inflow zones (depths) were not well constrained and the number of samples obtained does not allow adequate examination of 

SAF fluid processes (Thordsen et al., 2005).   

Erzinger et al. (2004) and Wiersberg and Erzinger (2007) applied real-time mud gas analyses during drilling, a well known 

monitoring technique from oil and gas drilling, to gain information on crustal fluids and gases encountered in the SAFOD hole.  The 

mud logging method takes advantage of gas release via mechanical crushing of rocks during drilling and provides initial qualitative 
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information about the gas content of the drilled section.  However, it does not provide a (high resolution) quantitative measure of fluid 

composition (e.g. concentration of dissolved gases) (Erzinger et al., 2004). 

To fill this gap in knowledge about the fluid composition in the SAFOD fault zone, this project collected 2.54cm subcore rock 

samples from the primary project drillcore recovered and extracted matrix pore fluids contained within the subcore samples.  In this 

manner, we were able to collect a suite of samples across the seismogenic zone, measure noble gases and to define fault zone 

processes with gradients in helium isotope concentration.  Here we describe in detail the methodology for this sampling and extraction 

procedure and use the method to detail the tortuosity of the rocks sampled as controls on porefluid transport.   

II. Methods 

a. Onsite sampling 

 We adapted a methodology pioneered by the Institute for Environmental Physics at the University of Heidelberg, Germany  

(Osenbrück, 1996; Lippmann, 1997; Osenbrück et al., 1998; Rübel, 1999; Rübel et al., 2002). SAFOD scientific drillcores (~10 cm 

diameter) in Aluminum (Al) liners were recovered to the surface as soon as possible after coring.  The ends of the core segments were 

then subcored using a 2.54cm hollow stem rock drill with de-ionized water (DI) as drilling fluid. This procedure avoids sampling 

material on the outside of the core that may have degassed already (see Fig 2.9 and Fig. 2.10 of Osenbrück 1996) or has been 

contaminated with drilling fluids during recovery of core in the borehole.  On other occasions, similarly-sized loose rock fragments 

were obtained from inside the core barrel where sub coring was not possible due to the brittle nature of rock type (i.e. in siltstone or 
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shale).  See Fig. 1 for sample depths.  The subcore sample was immediately dried with a paper towel and placed into a stainless steel 

high vacuum container and sealed (figure 2a).  The air inside the container was pumped with a rotary pump for 30 seconds and the 

container was then filled with research grade (Nitrogen) N2 to a pressure of about100 mbar.  The container was again evacuated for 30 

seconds and filled with N2 to 100mbars. Finally the sample container was evacuated for 45 seconds before it was closed off.  The 

sample was then stored at room or elevated temperature (120oC, in situ temperature, see below) to allow for quantitative dewatering, 

head space degassing and collection of pore fluid gases. The drill core samples analyzed for this study are marked in Fig. 1 and 

summarized in Table 1. 

b.  Tests of field sampling procedure 

In order to quantify the amount of fluid lost during the drying, pumping and purging process in the field (discussed in section 

IIa), we replicated the field procedure on re-saturated shaley siltstone and sandstone samples in the lab.  Each rock sample was dried 

in an oven at 120oC to constant weight, and was submerged in (Carbon dioxide gas) pCO2 ~ 1000 mbar for two days to replace air 

within the sample pore spaces and fractures.  Then the sample was placed in degassed DI water for two days to re-saturate all 

accessible pore spaces and fractures before it underwent the same evacuation process as in the field procedure.  The sample weight 

was measured before and after the evacuation process to determine the amount of pore fluid lost during the sampling process in the 

field. Results are listed in Table 2.  Then the sample was dried again at 120°C to constant weight in the oven.  The mass of DI water 
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taken up during re-saturation (re-saturated, wet weight – dry weight) allows us to calculate the porosity (porosity2,  listed in Table 2) 

of the sample at low pressure (i.e. 1 bar compared to lithospheric pressure at depths). 

c) Noble gas isotopic analyses 

Samples were secured in specially designed soft plastic storage boxes as checked luggage on airplanes. Upon arrival at Lamont 

Doherty Earth Observatory (LDEO), we applied two different storage schemes to the samples. Two sample containers were held at 

room temperature for 985 days and were measured six and seven times until the matrix porefluids were completely degassed. 

Subsequent samples were stored in an oven at in-situ temperature of 120oC (Williams et al., 2004) after the first or second isotope 

analyses to speed the gas release from the matrix pore fluids.  

 The full suite of noble gas isotopes (3,4He, 20, 21, 22Ne, 36, 38, 40Ar, 84,86Kr, and 129,131, 132, 134, 136Xe) were determined mass 

spectrometrically using the LDEO facilities and standard procedures (e.g. Stute et al., 1995). Briefly, gases were extracted from the 

sampling container after the rock had relaxed over various time periods.  . The gas from the sample container was transferred for 30 

min through a capillary and a stainless steel trap at ethanol-dry-ice temperature and a 3Å molecular sieve trap at room temperature 

into an expansion volume (1000cc) by using water vapor from the sample as a carrier gas. A known fraction of dry gas was split off 

and chemically active gases were removed in a Ti/Zr getter at 800oC.  The remaining noble gases were then transferred onto a trap 

filled with activated charcoal at 13K.  After quantitative adsorption, the individual gases were desorbed from the charcoal by stepwise 

heating and (after exposure to additional getters) transferred into a static sector field mass spectrometer with extended geometry (MAP 
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215-50, Mass Analyzer Products, Manchester). 3He was measured by pulse counting on an electron multiplier, all the other isotopes 

were analyzed on a Faraday cup. The overall procedure was calibrated by measuring known quantities of atmospheric air.  The 

precision of isotope ratio determinations are ~2% for 3He/4He ratios.  The reproducibility of abundance measurements was estimated 

from air standard measurements to be 2% for He and Ne. 

d) Modeling methods  

 Diffusion coefficients were determined by fitting the cumulative He concentrations with simple analytical and numerical 

solutions of the diffusion equation for spherical or cylindrical shapes (Crank, 1975). Samples experiencing two different temperatures 

over time require a numerical solution.  For numerical solutions of the diffusion equation, we used the rock sample’s actual surface 

geometry as the diffusion boundary.  The sample geometry was determined by a 3D scan via a portable Minolta Vivid 910 laser 

surface scanner (courtesy of W. Harcourt-Smith, American Museum of Natural History, NY). As in the analytical solutions, the initial 

concentration was assumed to be a uniform value and the boundary concentration to zero. The sample geometry was discretized with a 

3D finite difference grid with a typical grid box size of 42 mm3 ( (3.5 to 4.0mm)3 grid over a 25mm diameter rock sample). The 

diffusion equation was solved with a simple forward finite difference numerical scheme (Bear and Verruijt, 1987). 

e) Porosity determination 

During each noble gas analysis, the sample water released by the relaxed rock was used as a carrier of gases contained in the 

container headspace and collected in a dry ice cooled trap.  After completion of each extraction (30min), the condensed water vapor 
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was transferred into a removable water trap cooled to liquid nitrogen temperature and quantified by differential weighing.    Following 

the final extraction, the sample container was vented and each rock subcore sample was weighed immediately before being baked at 

120oC in an oven.  Each sample’s weight was monitored over three days until the weight stayed constant indicating that all mobile 

water had been removed from the rock sample.  The cumulative water content for each sample was determined by adding the amount 

of transferred water vapor from the sum of extractions for isotopic analyses and the remaining water removed during the bake-out in 

the oven, as determined by differential weighing of the sample before and after baking.  The total water content is representative of the 

volume of void space in our rock samples. The bulk volume of sample was determined by measuring the displacement of DI water of 

the samples wrapped in a thin layer of adhesive plastic to avoid filling pore spaces with DI-water. The combination of measurements 

allows for the determination of bulk density and water content (porosity1) of the samples (see Table 2). The total water content of each 

sample determined by this process is also used to calculate total helium concentration in the total fluid (i.e. cubic centimeters of 

helium at standard temperature and pressure per gram of water, ccSTP He/g water). 

III. Results 

a. Sampling procedure 

There are two potential sources of helium contamination that can alter the helium isotope ratios.  First, the sampling process in 

the field required research grade (RG) nitrogen gas to flush out atmospheric gases from the sample container headspace.  Our helium 

blank contribution from the RG nitrogen gas used in the field was less than 0.01 %.  The second potential source of helium 
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contamination is residuals of air in the containers during sampling which was estimated from other noble gases and air-like ratios.  

Most of the air contamination is based on Ar, Kr and Xe values, all of which are also likely naturally present in the pore fluids and 

thus this estimate suggests a maximum helium contribution of less than 3% from air during the sampling process.  Most samples have 

less than 1% air contribution to helium as listed in Table 1.  TW4 is the only sample with a considerably higher air contribution 

(2.91%).  20Ne concentrations were used to check for possible degassing of the pore fluids during the sampling process. Pore fluid 

20Ne concentrations (2.6x10-7 ± 1.7x10-7 (s.d., n=8) ccSTP/g) are consistent with average air saturated Ne values in fresh water and sea 

water (1.4x10-7 to 2.2 x10-7ccSTP/g summarized by Kipfer et al. (Kipfer et al., 2002)  suggesting that pore fluids extracted from 

samples with 2.5 cm radius or similar thickness have not degassed during the sampling procedure. 

b. Isotope analysis 

The reconstructed total helium isotope ratios in matrix pore fluids recovered are 0.373Ra ± 0.006 (s.d., n = 4) from the Pacific 

Plate and 0.945Ra ± 0.007 (s.d., n = 4) from the North American Plate (Ra=1.384x10-6), see Table 1.  Figures 3 and 4 show the 

cumulative 4He concentration as a function of time, using the total extractable water content and cumulative 4He removed over time.  

The sample always held at room temperature (Figure 3) took more than 900 days for complete degassing, while the sample stored at 

120ºC (in situ temperature; Fig. 4) reached complete degassing in less than 400 days.  Helium isotope ratios of each measurement are 

used as an additional degassing indicator.  The last three helium concentration measurements in Fig. 4 are two orders of magnitude 

lower than previous analyses of the same sample and contribute less than 1% to the cumulative helium concentration.  The higher 
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helium isotope ratios observed for the corresponding measurements (marked by ‘x’ in Fig. 4) are due to atmospheric helium 

accumulation in the sample container through tiny leaks, corresponding to less than 3% of individual measurements and less than 

0.01% of the cumulative helium concentration.   

c. Helium diffusion coefficients 

Cumulative 4He concentrations as a function of time are used to determine the effective helium diffusion coefficient in the pore 

fluid matrix within the rock sample.  Figures 5 and 6 represent normalized cumulative helium concentration as a function of time in 

days for samples held at room temperature for over 900 days.  The following solutions (Crank 1975) are used to determine analytical 

solutions of the diffusion coefficients. The solution assumes a uniform initial concentrations of He in the rock sample and a C=0 

boundary condition for a spherical (equation 1) and infinite cylindrical geometry (equation 2) of the samples. 
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where Mt is the summed quantity of diffusing substance which has left the object at time t, M is the total quantity of substance 

diffused out of the body after infinite time, D is the bulk diffusion coefficient, r is the sample radius, and n are the roots of Bessel 

function of the first kind of order zero.   
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The solutions to equations 1 and 2 are also plotted in figure 5. The dashed red and the dotted green lines represent the solutions 

to equations 1 (spherical boundary, D1(sphere) = 3.5±1.3 x 10-8 cm2s-1) and equation 2 (cylindrical boundary, D2(cylinder)=1.5±1.3 

x10-8 cm2s-1), respectively.  The gray region represents the uncertainty in diffusion coefficients in equation 1 based on the data fit.   

Numerical results represented by solid lines in figure 6 correspond to diffusion coefficients of D4= 6.0x10-8  2.0x10-8 cm2s-1 

(upper limit) and D3=3.0x10-8  1.0x10-8 cm2s-1(best fit).  

For samples held at room temperature for 225 days and then held at 120ºC for over 700 days, the normalized cumulative helium 

concentration versus time is shown in Fig. 6.  Due to the change in storage temperature, which we cannot take into account in the 

analytical solution, we need to rely on the numerical solutions to determine diffusion rates.  As shown in Fig.6, the numerical 

solutions indicate a diffusion coefficient of 1.5x10-7 cm2s-1 at 120ºC, a five to ten fold increase compared to diffusion rates at room 

temperature. 

d. Porosity and density determinations 

.  Table 2 lists density and porosity data for all samples of this study.  Our method allows quantitative determination of the pore 

fluid mass present in the sample at depths, thus enabling us to calculate the minimum porosity (listed as porosity1 in table 2) of each 

individual sample because some void space could be unsaturated and some water could be lost by towel drying and pumping of the 

drill core subsample.  Based on our re-saturation experiments in the lab (listed in Table 2), towel drying of each sample followed by 
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evacuation and flushing process in individual sample vacuum containers led to water loss of up to 4.6% in sandstone (Pacific Plate) 

samples and up to 9% in siltstone (North American Plate) samples.   

We observe average porosity1 (based on mass of pore water at depth) values of 2.80.4 % (s.d., n=4) and average bulk density 

values of 2.10.3 gmL-1 s.d., n=4) in the samples from the Pacific Plate.  The North American Plate samples have similar average 

porosity1 values of 3.10.8% (s.d., n=4) and average bulk density of 2.10.2 gmL-1 (s.d., n=4).   One shale sample from ~3400 m 

(MD) has a porosity1of 6.1%, but this sample was obtained from the core catcher and shows obvious drilling marks.  We cannot be 

sure of the original sample depth and the amount of time it was exposed in the borehole and remove this sample from further 

discussion.  

The re-saturation experiment also provides a measure of porosity of each sample under ambient pressure of 1 bar, which are also 

listed in table 2 as porosity2 (see section IIIc for definition).  Porosity2 values (6.6 ± 1.6 % (1 s.d.) for sandstones from the Pacific 

Plate, and 5.8 ± 2.8 % (1 s.d.) for North American siltstones) are also indistinguishable within error for samples from the North 

American and Pacific Plates, but they are consistently higher than porosity1 values due to newly formed fractures during drilling and 

retrieval of the drill core to much lower pressures. 

IV. Discussion  

a. Sampling procedure 
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 This procedure was pioneered in Heidelberg by Osenbrück (1996).  The Heidelberg study used larger sample size and 70 

seconds of pumping (compared to 30-45 seconds of pumping and purging with N2 used in this study) to evacuate each sample 

container before sealing the sample.  They observed complete degassing of noble gases within one month, which translated into 20-30 

% loss of noble gases during the sampling procedure.  Given the calculated diffusion coefficients described in section III-c and 

assuming He loss due to diffusion at room temperature, we estimate a 4 to 6% loss of helium during sampling (this study) compared to 

20-30 % loss reported by Osenbrück (1996). 

 Laboratory tests showed that repeated pumping and purging with research grade N2 (this study) is effective in removing 

>99.99% of the air (based on Ar, Kr and Xe analysis of each extraction) within the container (replaced with high purity N2 at low 

pressure).  0.01% air contamination would affect the helium isotope ratio (R/Ra) by less than 1%, which is within the analytical 

uncertainty and therefore has no impact on the helium isotope data interpretation of these samples. 

b. Helium isotope concentrations and ratios 

Table l lists helium isotope ratios and helium abundance data derived by three different methods applied to samples from similar 

depths of the SAFOD drill hole.  The pore fluid diffusion method is described in this study.  The mudgas (Wiersberg and Erzinger 

2007) samples are released from mechanical crushing of rocks during drilling and have relatively larger error bars due to atmospheric 

contamination.  Lawrence Berkeley National Laboratory (LBNL) data (Table 1) are derived from fluid samples collected (4-6 months) 

after drilling and during drilling hiatuses. The bore hole walls were cased with cement to a depth of 3050 m (MD) before fluid was 
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allowed to collect in the depth interval between 3050 m to 3065 m (MD) and subsequently sampled in 2005 (samples 05WPT1, 

05WPT2, and SAF206 retrieved from 3051-3064 m MD).  After the bore hole was deepened and cased to a measured depth of 3990 m 

(MD), fluids accumulated for several months before further fluid sampling in 2006 (samples SAF205 and SAF202 retrieved from 

3261m and 3726m MD, see table 1). Under these conditions, the fluid is expected to fill the well from the bottom (uncased section) of 

the borehole.  

Matrix pore fluid helium concentrations are constant on both plates (Pacific Plate: 1.9±0.5 x10-5 ccSTPg-1 (s.d., n=4), North 

American Plate:  1.4±0.1 x10-5 ccSTPg-1 (s.d., n=4)). The helium concentrations of fluid samples collected from open intervals of the 

bore hole was calculated from F(4He) and F(40Ar) data (measured at LBNL; F(Ng)=[Ng]/[
36Ar]) and Ar concentration data obtained 

from individual fluid sample splits (listed in Table 1).   The direct fluid sample concentrations also yield similar average helium 

concentrations on both plates (Pacific Plate: 5±2 x10-5 ccSTPg-1 (1 s.d., n=3), North American Plate:  6±3 x10-5 ccSTPg-1 (1 s.d., n=2)) 

although they are at least two times larger than the matrix pore fluid helium content (see Fig. 7a).  If the 20Ne concentration data are a 

good indicator of the robustness of this (pore fluid extraction) method, then the higher 4He abundance in well fluids could  likely be 

due to fracture fluids tapping into a different (older) reservoir compared to local fluids contained in matrix pore fluids. However, the 

consistent 3He/4He ratios observed in well fluids and pore fluids would suggest that the fluids contained in fractures and pore spaces 

are in equilibrium.  However, we do not have enough information to further evaluate this possibility. 
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In general, gas abundances in well fluids are measured from the sample container head space on a gas chromatograph (GC).  The 

helium concentrations in the well fluid samples recovered during SAFOD drilling project were very small (very close to the GC 

detection limit).  The well fluid [He] data listed in table 1 are calculated based on 40Ar abundance data from the sample container head 

space measured on a GC (United States Geological Survey, Menlo Park, CA) and 4He/36Ar and 40Ar/36Ar ratios from split fluid 

samples measured on a mass spectrometer (at Lawrence Berkeley National Laboratory, Berkeley, CA) (Thordsen et al. 2005)  .  Thus, 

we are completely confident in the well fluid helium abundance data presented in table 1. 

However, the pore fluid helium isotope ratios (Fig. 7b) suggest two distinct sources of fluids in the Pacific Plate 

(R/Ra=0.373±0.006 (1 s.d., n=4)) and the North American Plate (R/Ra=0.945±0.007 (n=4)).  These ratios are remarkably consistent 

with direct fluid data (LBNL data, table 1) as well as mud gas data (Wiersberg and Erzinger 2007), suggesting isotopic equilibrium on 

each side of the SAF.   However the pore fluid data are three times more precise as indicated by the error bars in Fig. 7b compared to 

mud gas samples associated with the SAF (samples labeled as Wiersberg et al., table 1).    

c. Helium diffusivity 

Helium diffusion coefficients calculated with cylindrical and spherical boundary conditions are the same within one sigma error.  

As seen in Fig. 5, the numerical model (for D3=3x10-8   1.0x10-8 cm2s-1 and D4=6x10-8  2.0x10-8 cm2s-1) mimics the analytical 

solutions (D1sphere and D2cylinder) closely and provides the same diffusion coefficients (within error) for samples held at room 

temperature.  D4 in Fig. 5 is likely higher due to newly formed fractures in each sample under low pressure that provides a connected 

17 
 



path for fluid flow out of the rock matrix. We observe an approximate five- to ten-fold increase in the diffusion coefficient of helium 

at 120ºC relative to 21ºC (1.1x10-8 cm2s-1 at 21C and 1.5x10-7 cm2s-1 at 120C) allowing for faster sample degassing.  Helium 

diffusion coefficients measured in the solid phase of sands and clays are 1.2 x 10-18 cm2s-1 at 21C and 3.0x10-15 cm2s-1 at 150C 

(Solomon et al., 1996).  Diffusion coefficients calculated in this study are several orders of magnitude larger and characterize helium 

derived from matrix pore fluids. Fig. 5 also shows the theoretical cumulative helium concentration over 1000 days for an estimate of a 

solid phase diffusivity of Ds=1.0x10-15 cm2s-1 in comparison to SAF4 and SAF5 data, as well as analytical and numerical diffusion 

curves.  The stark contrast between our data and the solid phase scenario illustrates that noble gases collected in this fashion represent 

matrix pore fluid noble gases and not solid phase noble gases. 

d. Porosity and density 

In order to constrain helium concentrations, this method relies on accurate determination of matrix pore water mass, which is 

accomplished by quantitative extraction of matrix pore fluids from each rock sample.  The extracted water vapor is released from 

connected pore spaces filled with fluid and thus corresponds to the minimum porosity of each sample.  Porosity and density data of 

each sample are compared to geophysical logs obtained from the same depth in table 2.  Density results of individual hand samples 

(Pacific Plate:  2.10.3 gmL-1 (s.d., n=4), North American Plate: 2.10.2 gmL-1 (s.d., n=4)) are consistent to neutron density logs 

(Pacific Plate: 1.90.4 gmL-1 (s.d., n=4)).  The minimum in situ porosity (porosity1) values (Pacific Plate:  2.8±0.4 % (s.d., n=4) and 

18 
 



North American Plate:  3.1±0.8 % (s.d., n=4)) obtained in this study are lower than the field normalized compensated neutron porosity 

log (SAFOD Main Hole downhole logging data phase 2 (2005), 2812-3043m (DOI:   10.1594/GFZ.SDDB.1126 ); 2975-3387m (DOI:  

10.1594/GFZ.SDDB.1127);  3387-3799m (DOI:  10.1594/GFZ.SDDB.1128) by at least a factor of two.  Porosity2 values listed in 

Table 2 and derived from the re-saturated weight in individual rock samples with DI water are much closer to the geophysical logging 

porosity values.  However, the higher values in porosity2 are due to a combination of complete saturation of void spaces within the 

rock matrix with DI water and newly formed fractures due to lower pressure that enhance the void space in the rock matrix allowing 

more water to be absorbed by each rock.  Thus far, the porosity values (porosity1 in Table 2) obtained from this study are a minimum 

representation of porosity at depth.  Based on the density and porosity data found in this study, individual sandstone and siltstone 

samples are indistinguishable from each other (see Table 2 and figure 1).  

e. Tortuosity  

Rock samples in an active fault zone (i.e. the San Andreas Fault) are altered by multiple fracture formation and fluid-rock 

interaction events that result into continuous evolution of connected pore spaces and fractures thereby affecting tortuosity in the rock 

matrix.   A comprehensive list of theoretically derived tortuosity values, for a variety of unconsolidated sediments with porosities 

ranging from 30-100%, is summarized by Boudreau (1997).  Tortuosity in low porosity, consolidated rocks is not well constrained.  

Diffusion coefficients of helium in pure water are Dg=6.9x10-5 cm2s-1 at 21ºC (Jahne et al., 1987) and 17.8x10- 5 cm2s-1 at 120ºC 

(Solomon et al., 1996). However, the observed diffusion coefficients of gases in pore fluids are also influenced by the porosity and 
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tortuosity.  Since this method provides porosity (p) and effective diffusivity (De, 1x10-8 cm2s-1 to 6x10- 8 cm2s-1), and diffusion 

coefficients of helium (Dg) in water is known, we use the relationship described in equation 3 (Van Brakel, 1975) to determine 

tortuosity () for samples with low porosity values of ~3%.   

De 
Dg

 2 p
            (3)   

Using this method, we obtained tortuosity values of 6 to 13, which are consistent with studies on shales (Kastube et al., 1991) and 

clay-enriched sand and siltstones (Salem, 2005).   

V. Conclusions: 

The method presented in this paper is effective in completely extracting pore fluid content of sedimentary rocks.  It provides a 

viable measure of dissolved gases in matrix pore fluids consistent with established mud gas and direct-sampling fluid methods and 

allows for both noble gas abundance and isotope analyses. The field procedure minimizes noble gas loss by limiting sampling time to 

2-5 hours after core recovery.  This procedure, however, requires quick onsite decision making about sampling requirements and 

sampling frequency, which may not be desirable or possible at all times.  Because the entire pore fluid helium content and the 

complete pore fluid mass were determined, additional properties such as in situ porosity (~3%) and tortousity (6-13) were also 

calculated. 
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Figure 1:  Geophysical log data from SAFOD Phase 2 Highlighted colors correspond to rock type and are based on SAFOD hole drill cuttings as a 
function of measured depths.  Neutron porosity (blue) and bulk density (black) are based on geophysical logs.(DOI:  10.1594/GFZ.SDDB.1126-1128) 
Sample locations indicated by triangles (matrix pore fluids, this study), squares (fluid samples, this study), and diamonds (mudgas samples, Wiersberg 
et al.) on top.  Porosity1 (purple x) and porosity2 (red +) values obtained from individual samples are also plotted with respect to the % scale.  Depths 
labeled as Pacific Plate, SAF damage zone, and North American Plate are based on geophysical logs by Zoback et al., EOS, in press.



 
(a)     (b) 
 
Figure 2:  Field sampling apparatus.  (a)  Stainless steel vacuum sample container next to a subcore 
sample.  (b) Field set-up diagram for evacuating and flushing sample with research grade N2 before 
sample is sealed. 
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Figure 3:  Helium isotope data for SAF 4 (arkosic sandstone, 3059.3-m MD) held at 21C over six 
measurements and 1000 days.  Blue circles represent cumulative helium concentration in extracted matrix 
pore water over time, while red squares correspond to 3He/4He isotope ratio (ratios, R are normalized to air, 
Ra =1.384x10-6) plotted on the right axis.  1 error bars for helium concentrations are smaller than the size 
of the blue symbols. 
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Figure 4: Helium isotope data for SAF 6 (arkosic sandstone, 3064.2-m MD) held at 21C over two 
measurements totalling 224 days and then held at 120C for four measurementrs totaling 775 days.  Blue 
circles represent cumulative helium concentration in extracted pore water over time, while red squares 
correspond to 3He/4He isotope ratio corresponding to R/Ra axis on the right.  The last three data points 
show negligible contribution to the cumulative helium concentration.  However, the 3He/4He has increased 
to above 1Ra, which corresponds to less than 3% blank contribution from tiny leaks in the container to 
individual analyses.  The last three measurements combined have ~0.3 % of the total cumulative helium 
concentration.  (The absolute amount of gas in the last three measurements combined is less than 3x10-7 
ccSTPg-1).  1 error bars are smaller than the size of the symbols. 
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Figure 5: Cumulative helium concentrations normalized to total helium concentration of each sample.  
Blue markers correspond to SAF 4 (arkosic sandstone, 3059.3-m MD) and SAF 5 (arkosic sandstone, 
3056.3-m MD) where both samples were kept at 21C over six measurements (1000 days). 1 error bars 
are smaller than the size of the symbols.  Green dotted line represents the analytical solution bounded by 
cylindrical geometry with a diffusion coefficient of Dcylinder = 1.5x10-8 cm2s-1.  Red dashed line represents 
the analytical solution bounded by spherical geometry corresponding to diffusion coefficient of Dsphere = 
3.5x10-8 cm2s-1 (1.3x10-8 cm2s-1, grey shaded region). Numerical fits for D3= 3.0x10-8 cm2s-1 (solid orange 
curve, 1.0x10-8 cm2s-1) and D4 = 6.0x10-8 cm2s-1 (solid red curve, 2.0x10-8 cm2s-1) superimposed on data 
and analytical solutions as described in Figure 5.  Black dashed line corresponds to theoretical diffusion 
with Ds=1x10-15 cm2s-1 (Solomon et al. 1996) corresponding to diffusion of helium from solid rock matrix. 
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Figure 6:  Blue markers correspond to cumulative, normalized helium concentrations for samples-SAF6 
(arkosic sandstone, 3064.2-m MD)  and SAF8 (arkosic sandstone, 3054.4-m MD) both kept at 21C over 
two measurements for 224 days and then kept at 120C over four to five measurement for 775 days. Red 
dashed line is the  analytical solution bounded by spherical geometry corresponding to diffusion coefficient 
of D(21C) = 1.1x10-8 cm2s-1 (0.4x10-8 cm2s-1, grey shaded region).  Numerical fits of D1(21C) = 2.5x10-8 
cm2s-1 (solid orange curve), D2(21C) = 1.5x10-8 cm2s-1 are superimposed on data and analytical solutions 
as described by D3(120C) = 1.5x10-7 cm2s-1 (solid brown curve).  
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Figure 7:  (a) (top panel) Direct fluid sample helium concentrations (red bars, this study) compared to 
matrix pore fluid samples (blue bars, this study) from similar depths.   
(b) (bottom panel) He isotopic ratios (vertical axis, R normalized to air) obtained from three different 
sample types from nearby locations. Blue bars represent fluid data (this study), red bars correspond to pore 
fluid data (this study), and yellow bars are based on mudgas data from Wiersberg et al.  Two distinct and 
reproducible isotopic signals are present in the Pacific Plate versus the North American Plate separated by 
the San Andreas Fault.  
 
 
 

31 
 



Sample ID Sample Depth 
(MD, m) 

4He  [x10-5 

ccSTPg-1] (1σ, s.d.) R/Ra (1σ, s.d.) 
Air 4He 

contribution 
(%) 

20Ne  [x10-7 

ccSTPg-1] (1σ, s.d.) Source 

                
SAF 8 3054.4 2.55 0.03 0.370 0.012 0.11 3.28 0.07 
SAF 5 3056.3 1.67 0.02 0.374 0.008 0.14 5.91 0.12 
SAF 4 3059.3 1.64 0.02 0.380 0.007 0.00 2.51 0.05 
SAF 6 3064.2 1.68 0.02 0.366 0.014 0.60 3.24 0.06 

              
Mean   1.88 0.44 0.373 0.006   3.73 1.50 

              
TW  3 3986.8 1.37 0.02 0.936 0.034 0.45 0.59τ 0.01 
TW  5 3987.6 1.22 0.02 0.942 0.031 0.61 1.96 0.04 
TW  1 3989.0 1.39 0.02 0.952 0.037 0.00 2.80 0.06 
TW  4 3989.6 1.47 0.02 0.948 0.031 2.91 0.71τ 0.01 

              
Mean   1.36 0.10 0.945 0.007   1.51 1.06 

1 

                    
  3051.0    0.354 0.021     
  3943.0    0.870 0.110     

2 

                    
CA05WPT1 3051.1 4.80 0.10 0.328 0.157   
CA05WPT2 3056.2 6.52 0.13 0.354 0.155   
05SAF206 3064.8 3.00 0.06 0.347 0.157   

              
Mean   4.77 1.76 0.343 0.014   

              
06SAF205 3261.4 3.81 0.08 0.900 0.024   
06SAF202 3726.2 7.96 0.16 0.828 0.025   

            
Mean   5.89 0.06 0.864 0.051   

N/A 3 

Table 1: Sample recovery depths (measured depths, M.D.) along borehole. Helium and neon abundance and helium isotope ratios (normalized to air) of pore fluids obtained from 
diffusion (Source 1: this study), mud-gas samples (Source 2: Wiersberg et al.) released during drilling and well samples (Source 3:  measured at LBNL, this study) all obtained 
from SAFOD drill holes.  3: fluid samples accumulated in borehole in between drilling, R/Ra values measured at LBNL and [He] calculated based on F(4He) and F(40Ar) values 
and Ar concentrations (Thordsen et al. 2005). τSome degassing may have occurred in these samples.
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Table 2: Density and porosity values of drill subcore samples used in this study compared to geophysical data from the same depths (MD, m).  Porosity1 is based 
the mass of water extracted during noble gas measurements and subsequent sample drying at 120ºC.  Porosity2 is based on mass of water used to re-saturate hand 
sample after complete extraction of noble gases and drying.  % water loss refers to the amount of water lost during experimental pumping and flushing with high 
purity N2 after each individual sample was re-saturated with degassed DI water.  Neutron density and neutron porosity data are from geophysical logs (available 
from International Continental Scientific Drilling Program--DOI:  10.1594/GFZ.SDDB.1126-1128). # Field normalized compensated neutron porosity. 
 
    Hand sample Geophysical Log 

Sample ID Sample 
Depth(m) 

Density 
(gmL-1) 

Porosity1  
(%) 

H2O loss 
(%) 

Porosity2  
(%) 

Neutron 
Density  
(gmL-1) 

Neutron  
Porosity# (%) 

SAF 8 3054.4 2.5 3.0 2.6 5.8 1.6 5.9 
SAF 5 3056.3 2.0 2.3 4.2 5.3 2.1 5.9 
SAF 4 3059.3 1.9 2.6 4.6 6.2 1.5 7.7 
SAF 6 3064.2 2.0 3.3 3.6 8.9 2.2 19.4 
TW  3 3986.8 2.3 4.2 9.0 8.9 N/A N/A 
TW  5 3987.6 2.0 2.2 7.5 2.5 N/A N/A 
TW  1 3989.0 2.3 3.1 6.0 7.2 N/A N/A 
TW  4 3989.6 1.8 2.9 4.0 4.5 N/A N/A 

 
 
 
 
 




