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ABSTRACT OF THE DISSERTATION 

 

Towards Minimally Invasive Cancer Detections through  

Label-free Surface Enhanced Raman Spectroscopy of  

Individual Small Extracellular Vesicles 

 

by 

 

Zirui Liu 

Doctor of Philosophy in Materials Science and Engineering 

University of California, Los Angeles, 2022 

Professor Ya-Hong Xie, Chair 

Cancer is one of the leading causes of premature death worldwide. Currently, when 

diagnosed at advanced stages, the five-year survival rates of cancers remain low even with 

tremendous amounts of medical resources dedicated to the treatments. To enhance the survival 

rates and reduce the cancer-caused socioeconomic burdens, population-based cancer screening is 

desired. Such screening requires the detection techniques to be accurate, patient friendly, and easy 

to operate at low costs. Over the past decade, cell-released small extracellular vesicles (sEVs, sized 

⌀ 30−150 nm) have been attracting increasingly amounts of attention as a source of biomarkers 

for minimally invasive cancer detections. While existing stably in the bodily fluids, sEVs reflect 
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their cells of origins, including cancer cells, through the encapsulated cargos such as DNA/RNA 

and proteins. Therefore, it is possible to detect cancers by investigating the sEVs captured in the 

bodily fluids. This thesis aims to explore the potential clinical applicability of analyzing individual 

sEVs by surface-enhanced Raman spectroscopy (SERS) for minimally invasive cancer detections. 

To objectively examine the SERS spectral features collected from sEVs, customized machine 

learning algorithm is utilized. Further, the combination between SERS and machine learning is 

named as “SERS Identification of Molecules” or “SIM”. 

The thesis work begins with understanding the heterogeneity of sEVs, namely sEV 

subpopulations, from the single-vesicle level by SIM. Currently, sEVs, even from the same cell of 

origin, are recognized to be heterogeneous which can be further sub-fractionated. Size discrepancy 

is one of the most popularly used criteria for separating the vesicular subpopulations. In Chapter 

2, SIM was employed to spectrally detect and analyze individual sEVs from cell lines isolated 

based on their size discrepancies, forming subpopulations. The results suggested that sEVs in 

different size groups carried different chemical compositions, which could be reflected by the 

distinguishable SERS spectral features.  

Chapter 3 & 4 include the explorations of the clinical applicability of SIM in the sEV-based 

minimally invasive cancer detections. In the first case, SIM was applied to analyze sEVs derived 

from the saliva, blood, and tissue samples between gastric cancer (GC) patients and non-GC 

participants (n = 15 each). The algorithm prediction accuracies were reportedly 90, 85, and 72%. 

“Leave-a-pair-of-samples out” validation was further performed to test the clinical potential. The 

area under the curve of each receiver operating characteristic curve was 0.96, 0.91, and 0.65 in 

tissue, blood, and saliva, respectively. In addition, by comparing the SERS fingerprints of 

individual vesicles, a possible way of tracing the biogenesis pathways of patient-specific sEVs 
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from tissue to blood to saliva was provided. The second case involved SIM in analyzing sEVs 

derived from bronchoalveolar fluid (BAL) for non-small cell lung cancer (NSCLC) detection. 

BAL samples were collected from NSCLC patients and non-cancer participants (n = 10 each). 

Analyzing the SERS spectra collected from the BAL-derived sEVs revealed the SERS spectral 

distinguishability between the patient and the control group in general. In addition, the sEV spectra 

collected from patients with early and late-stage NSCLC were also distinct. Blind test to examine 

the clinical usage of SIM was perform (n = 6 each for the machine learning model developing and 

n = 4 for the testing). Under such setup, the model correctly predicted diagnostic results from all 

the eight individuals in the testing set. Collectively the results obtained from the two cancer case 

studies indicate the clinical potential of the minimally invasive cancer detections via SIM 

analyzing sEVs derived from bodily fluids.  
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Chapter 1. Introduction 

 

1.1. Motivation of the thesis 

Cancer happens where some of the cells grow uncontrollably with the potential of 

spreading across the entire body. It is notorious as being the second leading cause of death 

worldwide. In 2020, estimated 19.3 million new cases and 10.0 million deaths occurred. Cancer in 

general causes medical, social, and economic burdens globally. One key for improving the cancer 

survival rate lies in the early detections of the incidences. Early detections of cancers depend on 

reliable screening techniques that are minimally invasive to the patients. In addition, such 

techniques need to be low cost and rather easy to operate to be applicable to the general public. 

Clinically available screening techniques currently include but not limited to computed 

tomography (CT), endoscopy, genomic tests, and liquid biopsies (e.g., blood tests, saliva tests, and 

urine tests) based on biomarkers. With the development of the field, extracellular vesicles (EVs), 

especially small extracellular vesicles (sEVs) have attracted increasing amounts of attention as a 

potential new source of biomarkers for liquid biopsies of cancer. 

sEVs are cell released vesicles, ⌀ 30–150 nm, that participate in the circulation. Research 

has shown that sEVs play important roles in cell-cell communications through cargo transportation 

such as proteins, DNAs, and RNAs. They are capable of regulating the recipient cells while 

representing their cells of origins. The stable existences in bodily fluids grant the potentials for 

them being biomarkers for cancer liquid biopsy. By detecting those sEVs, opportunities exist for 

non-invasive detections of cancers.  
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Surface-enhanced Raman spectroscopy (SERS) uses surface plasmon to boost the signal 

from the inelastic scattering between laser light and the matter, also known as Raman scattering. 

It has proven to be able to provide the spectroscopic information about the compositions and/or 

structures of molecules through detecting the collective of Raman active chemical bonds. Because 

of its high specificity, SERS becomes progressively attractive in bio-sensing including disease 

detections. Particular for sEVs, with the sensitivity at the single molecule level, SERS obsesses 

the capability of detecting single vesicles. Works have been shown SERS detecting cancer by 

distinguishing sEVs from different sources (e.g., normal tissue vs. cancer cells). While developing 

rapidly, the field is still relatively new comparing to those clinically available techniques for cancer 

screenings mentioned above. Research interests remain in presenting the potential clinical value 

of SERS on cancer screening via measuring sEVs. In addition, insights about the biogenesis and 

the metabolism of the sEVs from the spectroscopic perspectives are yet to be fully revealed.  

The main objective of this thesis is to explore the clinical applicability of SERS for 

minimally invasive cancer detections via analyzing single sEVs. To achieve this, the combination 

of a gold nanopyramid SERS substrate that our group developed previously, and machine learning 

was utilized. Through the studies of samples from human donors, both the promising features and 

the potential areas for improvements are provided. The following of this chapter presents the 

background introductions of the entire thesis. Chapter 1.2 provides the overview of the cancer 

caused burdens worldwide and a brief review about different techniques for cancer screenings. 

Chapter 1.3 gives the introduction of sEVs from the perspectives of structure, biogenesis, isolation, 

and analysis. Chapter 1.4 contains the introduction of SERS and SERS based bio-sensing. Chapter 

1.5 includes the information about the gold nanopyramid substrate and the introduction of machine 

learning that was involved in this thesis. Chapter 1.6 offers the outline of this dissertation.  
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1.2. Overview of Cancer Caused Burdens and Cancer Screening 

Cancer continues ranking as one of the leading causes of death and imposing challenges 

for life expectancy improvements across almost every country around the world.1 In general, the 

rapid increasing of the incidence and the mortality rate of cancer as a result of aging and population 

growth reflects a strong tie with the socioeconomic development. According to International 

Agency for Research on Cancer (IARC), by 2040, the cancer caused burden is estimated to grow 

to 27.5 million new cases with 16.3 million deaths.2 Figure 1.1 shows the comparison between the 

national ranking of cancer as the cause of premature death and the human development index 

across the countries worldwide, indicating the positive correlation between cancer as one of the 

top causes of premature death and the degree of socioeconomic growth.3  
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Figure 1.1. Rankings of cancer as a cause of premature death (< age 70) across the countries 

globally, a); Human Development Index associated with different regions worldwide 

 

Breaking down the total incidence and death cases attributed to cancer in 2020 (shown in 

Figure 1.2, according to the world health organization, WHO) by income reveals that while high-

income population accounts for 40.6% of the cancer incidences, it only accounts for 29% of the 

total mortality. The situation is worse in the low-and-middle income population which accounts 
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for 70% of the death cases. In general, cancer causes tremendous social and economic burdens 

particularly because when diagnosed at the advanced stages, the 5-year survival rates remain low 

even with large amount of medical resource spent at high costs.  One key to relief the burden and 

increase the patient survival rate of cancer lies in the early detection of the disease. For example, 

in the cases of stomach cancers, the 5-year survival rate remains low (below 20-25%) if diagnosed 

at advanced stages. However, for patients diagnosed of GC at early stages, five-year survival rates 

of 95% or higher have been observed. Considering the cancer caused burden to the entire society, 

population-based early detection programs are desired. Such early detection of cancer depends on 

fast and reliable screening methods with reasonable amount of operating costs.  
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Figure 1.2. Break-down of the total cancer cases according to the income levels, a); Break-down 

of the total cancer caused death cases according to the income levels 

 

Currently, there are several cancer screening methods available for various types of cancers. 

For breast cancer, mammography has been utilized to generate the picture of the breast for 
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screening and it is reported to lower the breast cancer caused deaths among women ages of 40-74, 

especially those from 50 to 69.4, 5 For lung cancer, the most lethal type of cancer, low-dose helical 

CT scan has been shown to reduce the death cases among people at high risks, for example, heavy 

smokers.6, 7 For cancers related to the digestive system such as stomach and colorectal cancers, 

endoscopy together with other techniques such as stool and/or blood tests are used as screening 

methods which are proven to improve the survival rates of the patients.8, 9 The techniques 

mentioned here are popular ones but do not exhaust all the screening methods that currently 

available since the screening methods are cancer type specific.  In addition to the detection methods, 

one successful example of the primary prevention program of cervical cancer is based on 

population human papillomavirus (HPV) tests and HPV vaccines.10, 11 Emerging works also have 

been focusing on the improvements of the available techniques or developing novel screening 

methods such as cancer genomic tests and multicancer biomarkers tests in blood.12-14 Apart from 

the promising aspects of the current cancer screening methods, challenges, such as delayed 

treatments caused by false negative results and overdiagnosis/overtreatments caused by false 

positive results, still remain. Moreover, some of the procedures could be uncomfortable and/or 

have side effects during the processes. Therefore, research interests on improving the current 

techniques or developing novel methods for cancer screening have been attracting increasingly 

amount of attention. In recent years, extracellular vesicles (EVs), especially small extracellular 

vesicles (sEVs) have been regarded as a potential new type of biomarkers for minimally invasive 

cancer detections based on liquid biopsy.  

 

1.3. Introduction of small extracellular vesicles (sEVs)  
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Small extracellular vesicles (sEVs), currently also known as exosomes, are cell released 

nanoscale vesicles sizing from ~30-150 nm in diameters.15 The vesicles consist of a lipid bilayer 

membrane encapsulating the contents such as proteins, DNAs, and RNAs.15, 16 They play crucial 

roles in intracellular communications by their biological contents carried, also known as cargos.15-

17 The membrane contains two layers of lipid molecules which serve as the protection of inner 

cargos during the trafficking. A lipid molecule has a hydrophobic tail and a hydrophilic head. 

When closely aligned form a bilayer structure, the membrane prevents the substances exchange 

between the encapsulated contents and the microenvironment while allowing the vesicle to move 

freely during the circulation. A sample schematic of sEV is shown in Figure 1.3. The reason why 

sEVs reflect their parental cells lies in their biogenesis. In general, the biogenesis of sEVs starts 

with the invagination of the cell plasma membrane to incorporate surface proteins and soluble 

proteins, forming endosomes.18 Then the endosomes are sorted to load the cargos that are inside 

the cell.19 After sorting, the endosomes eventually generate multivesicular endosomes (MVBs) by 

the invagination of the endosomal membrane which is also referred to as to the double invagination 

of the plasma membrane.20 sEVs are released from the cell when the MVBs fuse to the cell 

membrane. Figure 1.4 exhibits the schematic of the sEV biogenesis. Such process is different from 

the simple budding of the membrane. The uptake mechanism of sEVs by the recipient cells are yet 

to be fully established, especially from the vesicular function perspective. But such process could 

be modeled as fusing with the cell plasma membrane, similar to virus-cell interactions.21  
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Figure 1.3. Schematic of the structure of a small extracellular vesicle 

 

Figure 1.4. Schematic of sEV biogenesis 

 

Based on the biogenesis of sEVs, works have shown that sEVs reflect their parental cells. 

Such fact grants the potential of sEVs being as biomarkers for disease detections.22 Particularly 

for cancer, proteomic analysis has shown that sEVs were released from different cancer cells with 

unique cargos reflecting the parental cells.23 More importantly, they are detectable in multiple 
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types of bodily fluids such as blood, saliva, and urine, making the cancer-derived sEVs potential 

biomarkers for liquid biopsy based minimally invasive cancer detections. The fact that it is capable 

of obtaining sEVs in a non-invasive fashion makes monitoring of the conditions possible via the 

cancer-derived sEVs at different time points. Further studies recognize that sEVs released, 

including the cancer derived ones, are heterogeneous from the same cell type or even the same 

individual cell. Such heterogeneity can be defined from multiple aspects, such as size, density, and 

the biochemical compositions.24 Figure 1.5 provides an example illustration about the sEV 

heterogeneity associated with cancers. Such realization leads to the research on the subpopulation 

of the sEVs for further understanding the group. Currently, it is challenging for the analytical 

techniques to detect and analyze sEVs directly from the bodily fluids. Isolation and purification of 

the vesicles are often required following the raw sample harvesting from the patients before the 

downstream analysis of the contents.  
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Figure 1.5. Schematic of the sEV heterogeneity associated with cancer 

 

1.4. Introduction of Surface-Enhanced Raman Spectroscopy (SERS) 

Surface-enhanced Raman spectroscopy originates from Raman spectroscopy, rooted at 

Raman scattering.25 When light interacts with matters, most of the photons are scattered elastically, 

meaning that the scattered photon has the same energy with the incident photon. On the other hand, 

a small portion of the photons scatter inelastically, indicating an energy difference between the 
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incident and the scattered photon. As such, an energy transfer happens between the photon and the 

matter based on the conservation of energy, leading to the matter either gain or lose energy. In 

general, such inelastic scattering is called Raman scattering. Specifically, when the matter gains 

energy during the process, it is called Stokes scattering. If the matter loses energy, it is called Anti-

Stokes scattering. The transferred energy is corresponding to the vibrational energy of the 

substance. The shift in energy offers the information about the vibrational modes of the matter. 

Given the vibrational energy states are unique to the molecules which depend on the chemical 

bonding strengths, such information obtained from Raman scattering holds high specificity about 

the matter. Therefore, Raman spectroscopy is used to provide structural fingerprints of those 

molecules that are detectable. Figure 1.6 shows the energy diagrams, illustrating different types of 

light-matter interactions. Despite the promising features of detecting molecules, the chance of 

Raman scattering is extremely low (roughly 10-6).26 To boost the signal from the Raman 

spectroscopy and make the system more sensitive, surface-enhanced Raman spectroscopy (SERS) 

was developed utilizing the localized surface plasmons resonance (LSPR) generated by the 

metallic nanostructures.  
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Figure 1.6. Energy diagrams for different interactions between light and matter 

LSPR is triggered when the collective oscillation frequency of the valence electrons in a 

metallic nanoparticle/nanostructure matches the frequency of the incident light.27 As a result, the 

electric field near the surface of the nanostructure is enhanced, illustrated in Figure 1.7. The place 

where the electric field is mostly enhanced is called the “hotspot”.28 It should be noted at the 

enhancement dissipates quickly away from the hotspot (within few hundred nanometers to the 

most). SERS overcomes the low signal issue in Raman spectroscopy and pushes the detection limit 

to even the single molecule level. With the inherent molecular specificity and high detection 

sensitivity, SERS has been utilized to identify molecules in various areas of research including 

biomedicines such as disease detections. Particular for EVs and sEVs, emerging works have been 

published showing the potential of SERS analyzing the vesicles. Penders et al. (2021) developed 

a Raman trapping technique of single EVs to establish the breast cancer cell-derived EVs as 

biomarkers.29 Kruglik et al. (2019) advanced a Raman tweezer to be able to analyze sEVs at 100nm 

diameters.30 Shin et al. (2020) combined SERS of sEVs and deep learning for early-stage lung 

cancer detection with area under the curve (AUC) > 0.9.31 Dong et al. (2020) reported that SERS 
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spectral variation of protein phosphorylation inside the vesicles could serve as the indicator for 

detecting four types of cancers.32 To prevent vesicle solution druing during the measurements, 

Rojalin et al. (2020) developed a porous scaffold SERS platform, resulting a clear spectral 

distinguishability between cancer patients and healthy individuals.33 In addition to detect the 

spectral features directly, Banaei et al. (2021) modified SERS substrate for vesicle immobilization 

allows quantitative analysis via variations of the SERS indicator intensities.34 Our group 

previously developed a SERS substrate based on gold nanopyramids which has been shown to 

have the single molecule sensitivity.35 SERS measurements of the following works in this thesis 

is based on such substrate.  

 

Figure 1.7. Schematic of LSPR, a); Illustration of the electric field enhancements, b) 

 

1.5. Introduction of the SERS Gold Nanopyramids and Machine Learning for Analyzing sEVs 

The SERS substrate developed previously by our group consists of an array of gold 

nanopyramids. Figure 1.8 illustrates the detailed structure of the substrate. The distance between 

the neighboring nanopyramids is 250nm. Based on the simulation, the hotspots of our gold 

nanopyramid located at the centers of the ladders with the hotspot size of 150-200 nm. The design 
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of the substrate makes it a strong candidate for sEV analysis because of two characteristics. First, 

the neighboring distance of adjacent nanopyramids is large enough to allow vesicles to fall in 

between, being close to the hotspots without stacking. Second, the hotspot size is comparable to 

the sizes of the sEVs, making it possible to extract the information from the entire vesicle.  

 

Figure 1.8. SEM images of the gold nanopyramid substrate with 160,000× magnification, a); and 

60,000× magnification, b) 

The substrate has been applied for sEV studies and demonstrated the single vesicle 

sensitivity through a correlative study between SERS and SEM.36 To correlate between SEM 

visualization and Raman signature measurements, serial-dilution experiments was conducted, in 

which unaltered sEV preparation or samples diluted 3- or 10-times were utilized. Such study was 

led by Dr. Zhongbo Yan, a former member of our group, and Dr. Suman Dutta, a former member 

of Dr. Gal Bitan’s group at UCLA David Geffen School of Medicine. Raman spectra were 

collected across a 10 × 10-pixel area at each concentration and visualized the same hybrid 

substrates by SEM (Figure 1.9). The Raman mapping results of the three samples showed a density 

change consistent with the change of the sample concentration. To analyze the spectral data 
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collected from the sEVs to establish the objective distinguishability for cancer detection, a data 

analysis mechanism is required. Machine learning has shown tremendous promise in meeting this 

challenge.  

 

Figure 1.9. SERS and SEM mapping of sEVs adsorbed on the the hybrid substrate. (A−C) Raman 

mapping of the same undiluted (A), 3-times diluted (B), or 10-times diluted (C) sEV preparation. 

(D) Pixel assignment for the Raman signature of sEVs. The red, yellow, and blue pixels represent 
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the presence of 1012, 1509, and 1613 cm−1 peaks in the Raman spectrum, respectively. The black 

pixels are those in which all three peaks were detected. Only black pixels were considered as 

containing sEVs. (E) Comparison of the sEV density obtained through Raman mapping and SEM 

at three different exosom concentrations. (F) A representative 9 × 9- μm SEM micrograph of sEVs 

attached to the graphene-covered surface at 35,000× magnification. The yellow circles mark the 

presence of sEVs within this region. 

 

Machine learning is a branch of artificial intelligence (AI) that has been attracting 

increasing attention and has experienced a great acceleration in development pace over the past 

decade. It has been applied to assist with disease diagnosis and big data analysis in preventative 

biomedical settings. With respect to SERS data collected from sEVs in the form of spectra, 

machine learning is an indispensable tool to provide objective determination regarding the 

similarities and differences among large numbers of Raman spectra collected from sEVs. In 

addition, machine learning is capable of further grouping the spectra from different individual 

sEVs based on their spectral features, enabling the study of sEV subpopulations. Combining the 

gold nanopyramid SERS substrate with machine learning, the entire platform is named as “SERS 

Identification of Molecules” or “SIM”  

 

1.6. Outline of the Thesis 

The following four chapters of this thesis goes from the studies of understanding sEV 

subpopulations isolated based their size discrepancies to the applications of SIM on two types of 
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cancers, exploring the potential clinical applicability of the minimally invasive cancer detection 

based on SERS detecting sEVs in the bodily fluids.  

Chapter 2 describes an experimental study of SIM analyzing individual sEVs isolated 

based on their size discrepancies forming subpopulations. Also, it elaborates the validation the 

origins of the SERS spectral features identified from sEVs via a comparative analysis between 

SERS and mass spectrometry (MS). The results suggest that there exists a correlation between sEV 

size-based subpopulations and their biomolecular compositions from the perspective of individual 

vesicles. Such findings highlight the possibility that the biogenesis and respective biological 

functionalities of the various sEV subpopulations, as distinguished by the vesicle-size 

discrepancies, may be inherently different.  

Chapter 3 includes the results from experimental studies of SIM analyzing sEVs from 

stomach tissue, blood, and saliva from human donors for minimally invasive detection of gastric 

cancer. It illustrates the potential value of SIM as a platform for gastric cancer population screening 

based on liquid biopsy of sEVs and discusses the challenges as well. One example could be found 

at the less than desired accuracy caused by low cancer-derived sEV counts in bodily fluids. In 

addition, through comparing the SERS fingerprints of individual vesicles, a possible way of tracing 

the biogenesis pathways of patient-specific sEVs from tissue to blood to saliva was provided. 

Chapter 4 illustrates the experimental studies of SIM examining sEVs isolated from 

bronchoalveolar lavage fluid (BAL) for non-smaller cell lung cancer (NSCLC) detection. The 

selection of BAL is to harvest sEVs mostly from the lung, in the consideration of the low-cancer-

derived-sEV-count challenge mentioned above. It also elaborates a blind test based on the spectra 

collected from different donors to preliminarily test the applicability of SIM in the clinical usage.  
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Chapter 5 gives the summary of the thesis by providing the major outcomes and findings 

in this work together with potential directions for future research that can be built on the presented 

results.  
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Chapter 2. Understanding sEVs Subpopulations from Single-Vesicle Level 

 

2.1. Introduction 

Increasing evidence recognizes that sEVs are heterogeneous even from the same type of 

cell of origin, leading to the interest in understanding the biological relevance of specific sEV 

subpopulations.1-3 Such heterogeneity is defined from both the perspectives of physical properties 

such as size and density as well as chemical compositions. Particularly related to the sEV based 

disease detections such as cancer, understanding the vesicular subpopulations facilitates the better 

sorting and targeting of the subgroup of sEVs with the higher values in diagnosis. Published studies 

have shown the variations of surface markers and/or specific cargo molecules among the groups 

of sEV subpopulations. Such investigations of sEV subpopulations have been focusing on the 

different vesicle groups isolated based on various physical properties.4-7 Further understanding the 

heterogeneity of sEVs at the single-vesicle level attracts research interest as it provides an 

alternative or complementary perspective comparing to the population-based analysis. One 

question yet to be fully answered is that whether there is a correlation between the physical 

property based sEV sub-fractionations and their chemical content differences. In order to explore 

such correlation, it requires an sEV subpopulation isolation technique that is based on the physical 

properties and a vesicle characterization method that is based on chemical compositions. 

Currently, there exist several isolation and sub-fractionation of sEVs techniques that are 

based on their biophysical properties, e.g., their size or density using techniques such as 

ultracentrifugation and size exclusion chromatography (SEC). Each of these techniques have their 

advantages and space for improvements.8-10 Ultracentrifugation, is the first and remains most 
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widely used method for the isolation of sEVs.11, 12 It consists of a sequence of centrifugation steps 

to selectively deplete free floating protein complexes, cellular debris, organelles and larger 

microvesicles with the highest centrifugal force of around 100,000 x g used to pellet sEVs. Major 

limitations to the approach include vesicle loss, prolonged processing time (~5-8hrs), and the 

frequently required large starting volume of the analytes.13, 14 In addition, it is challenging for 

conventional ultracentrifugation to effectively isolate sEV subpopulations as all EVs are 

collectively isolated  in a pellet, a process that has been shown to cause EV aggregations.15-17 

Recent studies have led to improvements with ultracentrifugation including by combining  density 

gradient ultracentrifugation and iso-osmotic gradient ultracentrifugation, methods that have been 

shown to resolve subpopulations of EVs in a more gentle manner.18, 19 Other types of isolation 

techniques have been developed to improve sEV sub-fractionation, including ultrafiltration and 

size-based chromatography (SEC).20 Ultrafiltration is frequently used as a size-based sEVs 

isolation techniques. The working principle is that sEV subpopulations can be isolated based on 

the differences in their sizes and molecular weights by using a sub-micrometer sized filter 

membrane.21, 22 In addition to enabling the isolation of EV subpopulations, ultrafiltration has a 

relatively low processing time and cost. To overcome the challenge of low vesicle isolation yields 

and potential bias for the isolated EV subpopulations, ongoing studies based on ultrafiltration aim 

to improve EV purification by reducing membrane clogging during the isolation process.23, 24  

SEC is recognized as a method that can gently fractionate an EV sample within a solution 

of mobile phase running through a porous filtration matrix fixed within a column as the stationary 

phase, resulting a differential size elution.25 Using this approach, larger particles elute before 

smaller ones, ultimately a sized-based separation of  sEV subpopulations. In addition to the 

relatively rapid processing time and low cost, SEC possesses the advantage of preserving the 
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structure and size of sEVs after their fractionation.26-30 Therefore, SEC is increasingly regarded as 

a promising method for sEV subpopulation isolation for downstream biochemical analyses. While 

it certainly has limitations at the current stage, work has been done to improve the scalability and 

throughput, overcoming the main challenges in SEC-based sEV isolation.31  

Other methods aimed at sEV subpopulation isolation are increasingly being developed. 

Among these the one deserving special mention is acoustofluidics, that represents a combination 

of microfluidics and acoustics, providing a nanostructure-based microfluidic sEV isolation 

platform.32-34 In addition to tremendous effort in improving  the isolation of sEV subpopulations, 

with respect to throughput and size resolutions, emerging works on downstream characterizations 

based on biochemical content have also been reported. Collectively the field is evolving to explore 

and further establish the underlying basis for the biogenesis and function of sEV subpopulations.  

 Approaches commonly used for the biomolecular characterization of sEV cargo content 

often involves proteomic and genomic techniques. In proteomics studies, the Western blot is still 

regarded as a gold standard for protein detection and analyses in biological samples and has been 

widely applied in various sEVs and sEV subpopulation studies. In order to utilize Western blot-

based proteomics, protein samples need to first be fragmented and subsequently denatured to 

prevent their degradation. In addition, the Western blot is inherently a bulk-based detection method. 

Typical experiments require more than 106 sEVs for one analysis.35 Therefore, distinctive features 

associated with individual types of sEVs are at the risk of being lost during the procedure. Works 

are in progress to improve the subpopulation detection via Western blot.36  

In addition to the Western blot, enzyme linked immunosorbent essay (ELISA) is another popular 

proteomic-based characterization method for identifying unique markers on the surface of sEVs 

(e.g., CD63 & CD9). As an antibody-based technique, ELISA provides marker information with 
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high specificity.37-39 The process normally requires the determination of the target surface marker 

prior to the analysis. Reported works show the potential of improving the capability of 

multicomplex for EV subpopulation analysis together with reducing the non-specific cross-

reactvity.40  

Flow cytometry with fluorescently labelled antibodies has been increasingly attracting 

interest  because it has single vesicle sensitivity and is capable of providing biochemical 

information with the specific binding between antibody and antigen displayed on sEVs.41, 42 

Studies with next generation cytometers have attempted to improve the limit of detection of 

conventional systems, which ranges from around 100nm to 300nm, in order to improve the study 

of vesicles with smaller sizes such as sEVs.43-45 Vesicle-flow cytometry offers a powerful approach 

for analyzing vesicle subpopulations via detecting the target surface markers on the vesicle 

samples. 46, 47 Moreover, flow cytometry is capable of running in a “label-free” format to determine 

the size and concentration of the EVs. 

Genomic studies of EV cargo often make use of unbiased sequencing and polymerase chain 

reaction (PCR) to analyze their oligonucleotide content.48 These approaches provide an alternative 

to  surface marker-based characterization techniques with the capability of providing molecular 

content information for the vesicles.49, 50 Based on the principles, next generation sequencing was 

introduced to improve the multicomplex of the sequencing with less operating time. Also, 

emerging works have been focused on increasing the detection limit to the single vesicle level51, 52  

 This chapter presents the combined use of the SERS gold nanopyramid substrate along 

with the customized machine learning program to analyze the spectral signatures collected from 

individual sEVs isolated based on their size. To this end, a well-defined HEK293 cell line and its 

HRAS transgenic variant cell line were used as parental cells to derive vesicles of interest.  The 
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sEVs were isolated from the conditioned cell culture medium using a combination of cushioned-

ultracentrifugation, which served to gently concentrate the sEVs that were next fractionated by 

size using SEC.18 To firmly establish this approach, the SERS data with mass spectrometry (MS) 

data obtained from the same samples of sEVs were compared. Results of the study reveal that the 

SERS spectral signatures correlate with the biomolecular composition of sEVs. The findings are 

supported by SERS spectra that were analyzed using linear discriminant analysis (LDA). SERS 

spectral signatures collected from vesicles in different size groups revealed clearly distinguishable 

differences with small overlaps, suggesting that some of the sEVs in different size-based groups 

shared common biomolecular composition. This was achieved despite the non-zero spectral 

feature variations within each of the subpopulations, likely caused by an inherent biological 

variability among individual EVs. Collectively, results of the study lay the foundation for future 

investigations into the relationship between sEV size and their biomolecular composition at the 

single EV level. 

 

2.2. Experimental Procedures 

2.2.1. sEV isolation and nanoparticle tracking analysis (NTA)  

sEVs were isolated from conditioned cell culture medium by first performing Cushioned-

Ultracentrifugation,18 followed by Size Exclusion Chromatography using IZON 35 nm qEV 

columns. Briefly, HEK293 cells carrying a doxycycline-inducible transgene, expressing 

mNeonGreen or HRAS-mNeonGreen fusion protein, were cultured in Pro293a Chemically 

Defined Medium (Lonza) supplemented with 1% Penicillin/Streptomycin (Gibco), 1% GlutaMAX 

(Gibco), and 1% fetal bovine serum (Gibco). Cells were cultured in 225 cm2 cell culture flask 
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(Corning) until they reached 90% confluency. The cells were then washed twice with phosphate 

buffered saline (PBS) (Corning) and cultured in serum-free Pro293a Chemically Defined Medium 

(Lonza) supplemented with 1% Penicillin/Streptomycin (Gibco), 1% GlutaMAX (Gibco), and 1 

ug/mL of Doxycycline (Sigma Aldrich). The conditioned media was collected after 48 hours.  

For sEV isolation, the conditioned media was first centrifuged at 400 x g for 10 min at 4°C 

to pellet debris and dead cells, then centrifuged at 2000 x g for 20 min at 4°C to pellet large vesicles 

and leftover debris. The supernatant was filtered (0.2 μm) and centrifuged on 2 mL of a 60% 

iodixanol cushion (Stem Cell Technologies) at 100,000 x g for 3 hours (Type 50.2 Ti, Beckman 

Coulter). The resulting concentrated cushion was extracted with an extra 1 mL and further purified 

by loading onto a 35 nm qEV column (IZON), with PBS as the diluting buffer. Afterwards, 13 

distinct fractions were collected. Particles in fractions 7, 8, and 9 were subjected to size and 

concentration measurement by Nanosight LM14 (Malvern Instruments, Westborough, MA) 

performed using a 488 nm detection wavelength. The analysis settings were optimized and 

standardized for each sample. Samples were diluted in either 1:100 or 1:200 PBS and measured in 

triplicates. The detection threshold was set at 3, and 3 videos (1 min long each) were captured to 

give the mean, mode, median, and estimated concentration for each sample. Data were analyzed 

using the NTA 3.3 software.  

2.2.2. Immunoblotting  

Each fraction of the IZON SEC purified sEVs (37.5 μL) was mixed with 12.5 μL of 4x 

Laemmli buffer (Bio-Rad) and heated at 95°C for 5 minutes. Samples were then loaded on a 4-20% 

SDS-PAGE gel and transferred onto a PVDF membrane (Bio-Rad). The membranes were blocked 

with 5% non-fat milk dissolved in PBS for one hour, and then were probed with the following 

primary antibodies: anti-CD81 (1:500, Santa Cruz Biotechnology) and anti-CD63 (1:500, BD 
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Biosciences). After 4 washed in PBS containing 0.1% Tween (PBST), the membranes were 

incubated with HRP-conjugated secondary antibodies: anti-Mouse IgG-HRP (1:1000, Santa Cruz 

Biotechnology) for 1hr and washed with PBST. Signals were visualized after incubation with 

Amersham ECL Prime substrate and imaged using an ImageQuant LAS 4000. 

2.2.3. Transmission electron microscopy (TEM)  

sEV morphology was assessed by loading 5 μL of a sample onto a glow-discharged 300 

mesh Formvar-coated copper grid. The particles were left to settle for 2 minutes, and then wicked 

of excess moisture with filter paper. The grids were then washed 3 times with 1% uranyl acetate 

(UA), after which the grid was left to rest on a drop of 1% UA for 1 minute. Excess UA was wicked 

off with filter paper. Grids were imaged at 120kV using a Tecnai 12 Transmission Electron 

Microscope (FEI) at the EM-Lab at the University of California Berkeley. 

2.2.4. Scanning electron microscopy (SEM)  

SEM used in this study was Nova 230. The working distance was ~5.0mm. The 

acceleration voltage was 10 kilovolts. The images were taken at the magnification between 

45,000× and 55,000×. The electron detector used was TLD (through the lens) detector to obtain 

the signal from the secondary electrons. 

2.2.5. SERS substrate fabrication  

A single layer of self-assembled polystyrene (PS) balls (⌀ 500 nm) was generated on a 

surface of DI water using the Langmuir–Blodgett patterning. As shown in Figure 2.1, the layer 

was then transferred to a 4” (001) silicon wafer with a layer of 50 nm SiO2 deposited on top. The 

PS balls were later removed using chloroform after a deposition of 50nm Cr. The exposed SiO2 

were etched using reactive ion etching to selectively expose Si. Next, the exposed silicon was 
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etched using KOH. Inverted nanopyramids with sidewalls at 57.5-degree angles were created 

because of different etching rates along the [001] and [111] directions of silicon. The model was 

finished by removing the residual Cr and SiO2 using 48% HF solution. Then, 200 nm of gold film 

was deposited onto the pitted surface by electron beam deposition and bonded to a carrier wafer 

using epoxy before lifting off.  

 

Figure 2.10. Schematic of SERS gold-pyramid substrate fabrication 

2.2.6. Raman spectroscopy  

First, 5 µL of each sEV sample solution was dropped onto the SERS substrate using a 

micropipette and dried. Raman measurements were performed using the Reinshaw inVia Raman 

spectrometer at room temperature. The laser excitation wavelength was 785 nm. The power used 

was 5 mW. 500x optical microscope was used for focusing the laser beam, resulting a ~1 µm laser 

spot diameter. Before measuring sEVs, the system was calibrated using the 520 cm-1 peak of 

silicon. The exposure time was 0.5 s to avoid sample overheating. For collecting SERS spectra 

from multiple sEVs, a Raman mapping measurement was performed over a 1.2 mm × 1.2 mm 

square with respect to the center of each sample droplet. One spectrum was collected from each of 
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the data spots and the step width was 5 µm to avoid collecting multiple spectra from one data spot, 

thus over-fitting in spectral analysis.  

2.2.7. MS-based proteomics analysis 

HEK293+HRAS sEV samples were first lysed using 5% SDS. Protein solutions were 

denatured with 10 mM DTT for 15 mins at 37 °C and alkylated with 50 mM iodoacetamide in the 

dark for 15 mins at room temperature. Afterward, the sample was added a final concentration of 

2.5% phosphoric acid and then six volumes of binding buffer (90% methanol; 100 mM 

triethylammonium bicarbonate, TEAB; pH 7.1). After mixing, the protein solution was loaded to 

an S-Trap filter (ProtiFi), spun at 10000g for 1 min and then the filter was washed with 150 μL of 

binding buffer for 3 times. Finally, 1 μg of Lys-C and sequencing-grade trypsin and 20 μL of 

digestion buffer (50 mM TEAB) were added into the filter and the sample was digested at 37 °C 

for 16 h. To elute the peptides, 40 μL of 50 mM TEAB, 40 μL of 0.2% formic acid in H2O, and 40 

μL of 80% acetonitrile in H2O were added sequentially. The peptide solutions were pooled and 

quantified BCA protein assay (Thermo Fisher Scientific). The peptides were dried with SpeedVac 

and stored at −80 °C until LC-MS/MS analysis. 

The sEV peptides were reconstituted in 12 μL of 0.1% TFA with 2% ACN containing 0.01% 

DDM to reach a final concentration of 0.1 μg/μL, and 5 μL of the resulting sample was analyzed 

by LC-MS/MS using an Orbitrap Fusion Lumos Mass Spectrometer (Thermo Scientific) 

connected to a nanoACQUITY UPLC system (Waters) (buffer A: 0.1% FA with 3% ACN and 

buffer B: 0.1% FA in 90% ACN). Peptides were separated on an analytical column (75 μm i.d. × 

20 cm) packed using 1.9-μm ReproSil C18 and with a column heater set at 48 °C, using an LC 

gradient (buffer A: 0.1% FA with 3% ACN and buffer B: 0.1% FA in 90% ACN): 2-6% buffer B 

in 1 min, 6-30% buffer B in 84 min, 30-60% buffer B in 9 min, 60-90% buffer B in 1 min, and 
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finally 90% buffer B for 5 min at 200 nL/min. Data were acquired in a data-dependent acquisition 

mode and the peptides were isolated using a quadrupole system (the isolation window was 0.7). 

Ionized peptides with a mass range of 350-1650 m/z were scanned at 60,000 resolutions with 

maximum injection time (IT) of 50 ms and 100% automatic gain control (AGC) target (4E5). 

Precursor ions with intensities > 1E4 were selected for fragmentation by higher-energy collisional 

dissociation (HCD) at 30% collision energy and scanned in an orbitrap with a 100% AGC (5E4) 

and an IT of 300 ms. 

The raw MS/MS data were processed with MSFragger via FragPipe.53, 54 The MS/MS 

spectra were searched against a human UniProt database (fasta file dated July 31, 2021, with 

34,386 sequences which contain 17,193 decoys) and (initial) fragment mass tolerances were set to 

20 ppm. A peptide search was performed with full tryptic digestion (Trypsin) and allowed a 

maximum of two missed cleavages. Carbamidomethyl (C) was set as a fixed modification; 

acetylation (protein N-term), and oxidation (M) were set as variable modifications. For match-

between-run (MBR) analysis, 10 ppm m/z tolerance, 1.5 mins RT tolerance and 0.05 MBR ions 

FDR were used for analysis. The final reports were then generated (peptide-spectrum match (PSM), 

ion, peptide, and protein) and filtered at each level (1% protein FDR plus 1% PSM/ion/peptide-

level FDR). The intensities of each protein/peptide were extracted from FragPipe outputs. 

2.2.8. SERS spectral data analysis  

For spectral analysis, algorithms were adopted from the open-source libraries of Numpy, 

Pandas, Sklearn, and Scipy. To generate the simulated spectra based on MS, the relative 

abundances of top 90 proteins were obtained using MS. Using web-scraping of the Uniprot online 

database, the amino acid sequence of each of the proteins was obtained. Combining MS data, the 

relative abundance of the amino acids was obtained. Further, SERS spectra of each of the 20 amino 
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acids (purchased from Sigma Aldrich) were measured and averaged 75 spectra with the best signal-

to-noise ratios were obtained. All the Raman spectra were obtained under the same settings; hence 

the signal-to-noise ratios were used as an indicator of SERS activity. Combining the signal-to-

noise ratios and the MS derived relative abundance, 20 independent coefficients for the 20 amino 

acids were obtained respectively. These coefficients were used to obtain a linear combination of 

the 20 SERS spectra, which was the final simulated SERS spectrum. To generate the fitted 

spectrum, machine learning, specifically Adaboost, was used. The dataset included 20 average 

SERS spectrum of amino acids as data instances, and 1117 points of Raman shift as the features. 

The fitting coefficients from Adaboost were then compared with the normalized relative-

abundance ratios obtained from MS. Since the data has 1117 dimensions corresponding to the 

1117 data points on the Raman shift axis, to visualize the clusters of spectra, Linear Discriminant 

Analysis (LDA) was used for the dimensionality reduction and supervised clustering. The 1117 

dimensions were reduced to 1 dimension in the case of a binary cluster system (for e.g., HEK293 

vs HEK293+HRAS), and 2 dimensions for (for e.g., IZON SEC fractions 7, 8, 9).  The LDA model 

was trained on the following dataset – 1117 Raman shifts as features, and each SERS spectrum as 

a data instance. The trained model was used to transform the existing data set to a reduced 

dimension dataset for the purpose of visualization. The transformed data was plotted in 2 

dimensions, and the results are presented in two dimensional plots.  

2.3. Results and Discussion 

2.3.1. Sample characterizations 

sEVs were first isolated from conditioned cell culture mediums of HEK293 and 

HEK293+HRAS cells using cushioned-ultracentrifugation to concentrate the EVs. Subsequently, 

sEVs were sub-fractionated based on their size using SEC with qEV Izon columns. Purified sEV 
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resided mainly within three fractions: 7, 8 and 9 (F7, F8, F9 in short). Figure 2.2 exhibits the NTA 

characterizations of the purified vesicles. Each of the fractions displayed a different particle size 

distribution. It verified that the vesicles fractionated by SEC from the respective conditioned 

medium of HEK293 and HEK293+HRAS cells, eluted in different fractions indicating size 

differences in the sEV subpopulations. The TEM images of the vesicles are shown in Figure 2.3a. 

The lipid bilayer of the particles can be clearly observed, and the average sizes fell within the range 

of sEVs. In addition, western blot analyses confirmed the presence of CD81 positive sEVs derived 

from the cultured HEK293 and HEK293+HRAS cells respectively, shown in Figure 2.3b&c. 

IZON SEC fraction 7, 8, and 9 for sEVs produced by either cell type demonstrated robust CD81 

immunoreactivity and were thus selected for further study.  
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Figure 2.11. NTA characterizations of the isolated sEVs 

Data in Figures 2.3d&e illustrates representative SEM images of the SERS substrates 

before (2d) and after (2e) the introduction of sEV samples. The nano-pyramids are clearly visible 

in images taken for both conditions. Findings shown in Figure 2.3e show the interaction between 



38 
 

the substrate and the sEVs. Furthermore, dendrites visualized on top of the nano-pyramids were 

attributed to phosphate buffered saline (PBS) crystals that had formed during the drying process 

of the sample solution. On the top right portion of Figure 2.3e, is an example of PBS crystals 

covering the nano-pyramids. The charging effect observed on the SERS substrate caused by PBS 

crystallization prevented the acquisition of super resolution SEM images of the structures.  

 

Figure 2.12. Overview of the vesicle samples and the SERS substrate; a) Cryo-EM image of the 

sEV; b) Western blot of HEK293 derived vesicles; c) Western blot of HEK293+HRAS derived 
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vesicles; d) SEM image of the SERS substrate; e) SEM image of the SERS substrate after sample 

introduction 

2.3.2. Validating the spectral origin of SERS via a comparison with Mass Spectrometry (MS)  

The use of Raman/SERS is recognized as a powerful tool in determining the compositional 

“fingerprint” of biological substances. Therefore, based on the physical principles of Raman/SERS, 

it can be inferred that SERS spectra from the collective of Raman-active chemical bonds inside 

sEVs could serve to resolve the biomolecular composition of individual vesicles. The working 

hypothesis was tested by correlating the sEV SERS spectral data to their proteomic analysis by 

classical mass spectrometry (MS). The primary sEV samples used for this application were from 

cultured HEK293+HRAS fraction 8. This fraction was chosen as it contained the most abundant 

amount of sEVs as detected by NTA. For SERS mappings, the substrate did not render background 

peaks and spectra were collected from the each of the SERS mappings by filtering out the spectra 

with pure noise.  It should be noted that the Raman laser spot size during the measurements was 

larger than the vesicle diameters and that vesicles were invisible due to the instrumental limitation. 

There is a non-zero probability that occasional ones could be derived from more than one vesicle. 

Nonetheless, the data indicated that statistically the measurements were based on single vesicles. 

SERS mappings covered 1.2mm × 1.2mm area which was representatively large considering the 

size of the sample droplet. The 5 µm separation between the two nearest data spots was to avoid 

collecting multiple spectra from one vesicle sample which caused data over fitting issue. The 

spectra collected was observed to be distributed randomly rather than closely concentrated. Also, 

the spot checks via SEM also indicated that vesicles did not show tendency of self-clustering.  

Following the collection of mass spectrometry (MS) data, which revealed the amino acid 

frequency in the sEVs (Table 2.1), it was further verified how the data correlated to the natural 
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abundance of the 20 amino acids within proteins that commonly occur in human tissues. 

Subsequently, the SERS spectra for all 20 amino acids were measured and presented in Figure 2.4.  

Each presented spectra file consists of the average of 75 spectra collected from the corresponding 

amino acid sample. Given the fact that different substances display uniquely different Raman 

interaction cross-sections, the relative SERS responses of all 20 amino acids by comparing the 

signal-to-noise ratios (SNR) of the SERS spectra were determined next, shown in the middle 

column of Table 2.1. In making sure to consider the relative natural amino acid abundance and 

relative SERS activities, a simulated spectrum which mirrors the results of the proteomics analysis 

of the sEVs was generated. In addition, a fitted spectrum of an averaged spectrum measured from 

51 different sEVs derived from fraction 8 sEVs produced by HEK293+HRAS cells was generated, 

solely considering the relative SERS activities of the 20 amino acids measured. Figure 2.5a 

displays a comparison between the simulated spectrum derived from MS data and averaged 

measurements of SERS spectrum derived from the vesicles. The qualitative matching rate for the 

data was 89% from the perspective of their peak locations. As shown in Figure 2.5b, the reported 

qualitative matching rate corresponded to 89% of the fitted spectrum and measured spectrum. 

Similarly, the matching rate increased to 94% when comparing the simulated and fitted spectrum, 

as shown in Figure 2.5c. By comparing the “assigned” relative amino acid abundances derived 

from the fitted spectrum to the experimentally MS-derived abundances of amino acids, the 

averaged deviation corresponded to 9% (Figure 2.5d). When comparing results derived from SERS 

and proteomics analyses, a high consistency was observed, demonstrating that SERS spectra 

collected from individual sEVs faithfully reflected the biomolecular composition of the sEVs.  
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Figure 2.13. Spectra of the 20 amino acids, each averaged from 75 individual spectra 

It is noted that the SERS spectral quality from the vesicle measurements were not as high 

comparing to that of the amino acids. This could be interpreted from the perspective that laser 

beam diffracted by PBS crystals during the SERS measurements. PBS was introduced in the 

vesicle sample solution to avoid osmotic discrepancies inside and outside of the vesicles, 

preventing bursting. Crystals were formed during drying that laying on top of the substrate 

(suggested by the SEM imaging). Amino acids were suspended in DI water followed immediately 

by drying and measurements. Works are in progress for reducing the influence of PBS crystals 

during the measurements. Nonetheless, the data suggested that the spectral features could be 

extracted from the SERS spectra of the vesicles for comparison and further analyses. There existed 

the mismatches in the comparative data, especially those derived from peak intensities recorded 

from simulated and fitted-measured comparisons. Such mismatches could legitimately be 

attributed to the presence of lipids and/or other elements (e.g., RNA & DNA) present in the 

vesicles which are not expected to be located in the simulated spectrum only from amino acids. 
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Furthermore, it is widely recognized that biomolecular substances can display different responses 

(interaction cross-sections) when tested by SERS and MS. Such non-linear fluctuations could in 

part explain the observed mismatches between results recorded by the use of the two methods, 

especially in the peak intensities. Nonetheless, the comparisons helped validate the utility of SERS 

spectra in determining the biomolecular compositions of sEVs with less than 10% deviation 

between the measured and the “assigned” amino acid abundance. The findings therefore help to 

pave the way for future studies aimed at further resolving the link between sEV sizes and their 

biomolecular composition.  

Table 2.1. Coefficients assignments of the 20 amino acids for generating the simulated spectrum 
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Figure 2.14. Comparison between the SERS data and MS data; a) peak location comparison 

between the averaged spectrum from the spectra measured from 68 vesicles (HEK293+HRAS F8) 

and the simulated spectrum; b) peak location comparison between the fitted spectrum and 

averaged measured spectrum; c) peak location comparison between the fitted spectrum and the 

simulated spectrum; d) comparison of the coefficients assigned for the 20 amino acids between the 

fitted and simulated spectra 

2.3.3. SERS Analyzing Individual sEVs Isolated Based on Size Discrepancies  

Data was collected using sEVs that had been isolated into three different sized groups 

(fraction 7-9) based on their elution prolife from the SEC column shown in Figure 2.2b&c. The 
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number of spectra collected by SERS from HEK293-derived fractions 7, 8, and 9 consisted of 59, 

115, and 47 respectively. Similarly, the number of HEK293+HRAS derived vesicles interrogated 

by SERS consisted of 65, 68, 31 data spots respectively. The assessment of biochemical contents 

in vesicles was carried out by comparing the spectral overlaps among the SERS spectra collected 

from individual sEVs. Results were projected onto a two-dimensional map using the LDA 

algorithm, as shown in Figure 2.6. Each dot displayed in the plot represents a SERS spectrum 

recorded from an individual vesicle. The spectral variations between the two types of vesicles were 

measured by their Euclidean distances. In this case, the spectral difference was revealed by the 

magnitude of the distance between the data dots. As shown in Figure 2.6a, the LDA map 

comparing the SERS spectra collected from HEK293-derived sEVs exhibited some level of 

internal spectral difference within each of the size groups. These data reveal the magnitude of 

differences in the biochemical content among individual vesicles. Importantly, when comparing 

the LDA maps between vesicles of the three size groups, no significant overlap was detected, 

suggesting that the external spectral differences among the three groups were larger than the 

spectral differences among individual sEVs within each group. The data demonstrate that size-

based fractionations of a bulk preparation of HEK293 cell-derived EVs resulted in the purification 

of homogeneous classes of sEVs with a defined and non-overlapping biomolecular composition 

as determined by SERS analysis. Furthermore, a similar pattern emerged when analyzing the SERS 

spectral features of HEK293+HRAS cell-derived vesicles using the LDA algorithm, shown in 

Figure 2.6b. In general, based on the LDA maps, less than 16% of the vesicle spectra were found 

“common” between different size-distribution groups.  

Interestingly, the data demonstrate that sEV groups with distinct size distributions can be 

differentiated based on their biomolecular composition through their SERS spectral signature. The 
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data suggesting the existences of “common” vesicles present across different size groups likely 

derive from limitations associated with SEC to fully resolve sEVs exclusively according to distinct 

sizes. Indeed, the data demonstrate the existence of vesicles, which are similarly sized, that elute 

across different fractions eluting from the SEC column. These observations highlight limitations 

associated with the use of current SEC methodologies for the isolation of distinct sEV 

subpopulations. Given the situation, the single-vesicle SERS platform offers an opportunity to 

further characterize the variation in biomolecular composition among individual sEVs within a 

subpopulation of vesicles isolated within a SEC sub-fraction. The methodology thus addresses a 

gap in the field of sEV biology that is limited to bulk and/or specific marker-based analysis.  

Lastly, to evaluate the distribution of individual sEVs within the comparison of HEK293- 

and HEK293+HRAS-derived vesicles, an LDA map by pooling the SERS spectra contributed by 

all three size groups of both cell types was produced, shown in Figure 2.6c. This approach revealed 

an overlap between the two clusters, suggesting that the HRAS transgene expressed in 

HEK293+HRAS cells caused the releases of vesicles with both similar and different biomolecular 

composition compared to those released by HEK293 cells. By retrieving the spectral sources of 

the dots produced from the HEK293+HRAS sEV group that had LD scores within the range of 

those produced from the HEK293 sEV group, a comparison noting the distribution of the 

individual vesicles (Figure 2.6d) was generated. Using this approach, it was noted that the 

overlapping rates increased from 6.2% to 12.9% across fractions F7 to F9 in the HRAS group. 

This finding suggests that the biological perturbations caused HRAS expression in HEK293 cells 

results in altering the biomolecular composition of a defined population of sEVs released by the 

cells. However, a substantial portion of the sEVs shared similar biomolecular compositions with 

the ones released by HEK293 control cells. Interestingly, when considering that SERS spectral 
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signatures are rooted in the biomolecular composition of the vesicles, data demonstrate that sEVs 

in larger size groups produced by HRAS-cells shared less biomolecular similarity with vesicles of 

similar size released by the control HEK293 cells than those sEVs with smaller sizes.  

Comparing to other published works of analyzing EVs using SERS including but not 

limited to the ones mentioned previously55-60, this study focused on the subpopulations of the sEVs 

isolated based on size distributions. Also, the study attempted to provide experimental data 

indications that the origins of the SERS spectral features are from the biomolecules of the vesicles 

by linking the results between SERS and MS. Collectively, results of this study support the value 

of the single-vesicle based SERS platform to explore the biomolecular composition of individual 

sEVs with different sizes and/or released by different parental cells. Currently, such information 

is yet to be established and recognized by the community. The fact that our platform is capable of 

distinguishing vesicles released by two types of cells with only one gene alternation underscores 

the potential of this system for disease screening, diagnosis and monitoring. A limitation of this 

single vesicle analysis system includes the low throughput capacity for sEV scanning by SERS. 

Current work in our laboratory aims to improve both the areal density available to the vesicles 

when introduced to the substrate and the efficiency of the SERS measurement process. 

Nonetheless, the results illustrate the value of the SERS platform as a sensitive sEV detecting 

technique that can differentiate nano-sized vesicles based on their biomolecular composition at the 

single vesicle level. The approach overcomes the current challenges associated with population 

averaging in the study of bulk EV biology. The technology could therefore not only benefit sEV-

based disease diagnosis/screening, but also facilitate further studies investigating the biogenesis 

and activity of sub-fractionation of vesicles released by the same and/or different parental cells.  
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Figure 2.15. LDA analysis results of SERS signatures obtained from sEVs of different size groups; 

a) LDA of the spectral signatures obtained from vesicles of HEK293 fractions 7, 8, 9 respectively; 

b) LDA of the spectral signatures obtained from vesicles of HEK293+HRAS fractions 7, 8, 9 

respectively; c) Polling the SERS signature from the vesicles of the three size fractions from the 

HEK293 and HEK293+HRAS respectively; d) The SERS signature overlapping rate of each 

fraction from the HRAS group 

 

2.4. Conclusion 
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 Findings from this study validate the use of SERS for investigating the biomolecular 

composition of small extracellular vesicles (sEVs) produced by cultured cells. In using this 

approach, the work attempted to uncover a strong correlation between the sEV size and their 

biomolecular composition. Specifically, 16% or less vesicles in each of the individual size groups 

displayed an overlapping biomolecular composition with sEVs of different size groups. The <10% 

deviation of data derived from sEV analysis by SERS and mass spectrometry supports the 

robustness of SERS as a method to fingerprint the biomolecular composition of sEVs. Future 

studies using SERS will allow to further understand the biogenesis, diversity and functional 

consequences of vesicles released by cultured cells and those in more complex biofluids. 
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Chapter 3. SIM on sEVs for Gastric Cancer Detection 

 

3.1. Introduction  

 Gastric cancer (GC) is the fifth-most popular type of malignant tumor and the fourth-most 

deadly worldwide with over one million new cases, leading to 768,793 deaths in 2020.1 Majority 

of the gastric cancers (~90%) are adenocarcinoma which happen at the mucosa layer of the 

stomach. Although the occurrence and mortality of GC have been on the decline, the five-year 

survival rate continues to be low.2 However, for patients diagnosed of GC at early stages, five-year 

survival rates of 95% or higher have been observed3, 4 demonstrating the overwhelming importance 

of early diagnosis and population screening. Early GC diagnosis requires reliable, cheap, and easy-

to-operate screening methods that are yet to be available.5 Currently, screening methods such as 

barium-meal gastric photofluorography and upper endoscopy followed by biopsy are able to 

support good population GC screening programs in some countries like South Korea. However 

such techniques can be costly and time-consuming.6, 7 These procedures have also been shown to 

be associated with false negative rates, risks related with the rather invasive procedures, and other 

side effects.8-10 Recently  extracellular vesicles, especially sEVs, have become potential sources 

of biomarkers for cancer detections with easy access and minimal invasiveness.11-14 

sEVs play crucial roles in cell-to-cell communications via the encapsulated cargos which 

also reflect their parental cells.15-18 The stable existences in bodily fluids grant the potentials for 

them being biomarkers for cancer liquid biopsy.19-21 By detecting those sEVs, opportunities exist 

for non-invasive cancer detection.22, 23 For cancer patients, there co-exist sEVs from both normal 

and cancerous cells, each with their own characteristic biochemical cargo contents, forming 

different subtypes.24, 25 One key challenge facing  the vesicular liquid biopsy is a technique capable 
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of examining individual sEVs thereby distinguish the sub-populations that belongs uniquely to 

abnormal cells 26-28  

 This chapter describes experimental studies on exploring the clinical applicability of SIM 

for minimally invasive GC detections via detecting sEVs. SERS gold nanopyramid platform was 

applied to spectrally measure vesicles. Instead of using disease-specific SERS tags or focusing on 

particular spectral features comparisons, the biochemical compositions of the collective Raman 

active bonds were extracted from individual vesicles directly in the form of SERS spectra. The 

study aims to examine if these SERS spectra can be used as the sEV “fingerprints” for GC 

detections. For machine learning, an algorithm was customized to help correct the mislabeling 

issue in the clinical samples by sub-fractioning the vesicles measured. The results from SIM 

analysis of cell-lines derived sEVs illustrated the existences of vesicles that were common to both 

the GC and the normal stomach tissues in addition to the characteristic ones. For clinical samples, 

vesicles were isolated from the tissue, blood, and saliva of donors from the GC patient and the 

non-GC control group by an acoustofluidic platform (AFS) developed previously by our 

collaborators at the Duke University laboratory.29 The unique capabilities of AFS including high 

efficiency and low processing time enable a better vesicle recovery rate and quality.29 The 

accuracies in identify GC versus control were 90%, 85%, and 72% in tissue, blood, and saliva 

respectively. “Leave-a-pair-of-samples out” analysis was performed to mimic the potential clinic 

applications of the platform. The result showed ROCs with AUCs being 0.96, 0.91, and 0.65 

respectively in tissue, blood, and saliva cases respectively. Additionally, 9 patients’ unique sEV 

types were found existing across all three sample environments, opening a possibility for tracing 

the biogenesis of the GC patient-specific sEVs. The methodology involved in this study is 

amenable for non-invasive detection of diseases other than GC with further validation.  
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3.2. Experimental Procedures 

3.2.1. Cell cultures  

Three cell-lines, AGS (ATCC, CRL-1739), NCI-N87 (ATCC, CRL-5822), Hs 738.St/Int 

(ATCC, CRL-7869), were used in this study. In this study, all the fetal bovine serum (FBS; ATCC, 

30-2020) were pre-treated to remove the sEVs. To prepare the complete culture medium for these 

three different cell lines, F-12K Medium (ATCC, 30-2004), RPMI-1640 Medium (ATCC, 30-

2001), and Dulbecco’s Modified Eagle’s Medium (ATCC, 30-2002) were supplemented with 10% 

of pre-treated FBS and 1% of penicillin-streptomycin (P/S; ATCC, 30-2300) for AGS, NCI-N87, 

and Hs 738.St/Int, respectively.  

All the cell lines were thawed in a 37 ℃ water bath for 1 min and then transferred into a 

centrifuge tube containing 9.0 mL complete culture medium and spun at 125 x g in a centrifuge 

(Rotor F-35-6-30, 5430, Eppendorf, Germany) for 5 minutes to remove the dead cells. The cell 

pellets were resuspended with the complete culture medium and dispensed into a 75 cm2 culture 

flask (T-75 flask; MSPP-90076, VWR, USA). Cells were cultured at 37 ℃ in a humidified 

incubator (MCO-19AIC, SANYO, USA) with 5% CO2 and 95% air. Media were collected and 

changed every 2 - 3 days.  

The cells were harvested when the flask reaches over 90% confluency and stored in liquid 

nitrogen vapor. The medium was aspirated from the cell culture flask and collected for the study. 

The flasks were rinsed with 10 mL Dulbecco's Phosphate Buffered Saline (D-PBS; ATCC, 30-

2200), 2 -3 mL of Trypsin-EDTA solution (ATCC, 30-2101) were added to remove all traces of 

serum that contains trypsin inhibitor for 5 minutes. Then 6 - 8 mL of complete growth mediums 

were used to resuspend the cells, the cell suspension was transferred to a centrifuge tube and spun 

at 125 x g for 5 minutes. The cell pallets were collected and added into a cryovial (5000-1020, 
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Thermo Fisher Scientific, USA) contains complete culture medium with 5% (v/v) 

Dimethylsulfoxide (DMSO; ATCC, 4-X) after aspirating out the supernatant medium. The cryovial 

was placed into a CoolCell (43200, Corning, USA) to freeze down to -80℃. After 2-3 days, store 

the cells in a liqiud nitrogen tank at vapor phase. 

3.2.2. Tissue, plasma, and saliva samples  

For each donor, tissue, plasma, and saliva samples were collected respectively at the 

Samsung Medical Center in Korea. Tissue samples were collected from surgical resection during 

operation (GC patients) or tissue biopsy during endoscopic examination (non-GC control 

individuals). The collected tissues were stored at -80°C until use Plasma samples were collected 

using EDTA (Ethylenediaminetetraacetic acid) tubes following the conventional clinical practice 

and stored at -80°C until use.30, 31 Unstimulated whole saliva collected was performed as described 

previously.32 From each subject, 5 mL whole saliva was collected and centrifuged at 2,600×g for 

15 min at 4oC. SUPERase-In RNase inhibitor was added to the supernatant at 20 U/mL to stabilize 

salivary exRNA. The cell-free saliva supernatants were stored at -80°C until use. 

3.2.3. SERS substrate fabrication  

 The fabrication process of the SERS substrate used in this study follows the same pattern 

as the one described in section 2.2.5 of this thesis. 

3.2.4. Ultracentrifugation  

Cell culture supernatants were first centrifuged at 300 g at 4 °C for 10 min and then at 

2,000 g at 4°C for 15 min to remove contaminating cells and apoptotic bodies respectively. The 

supernatants were then further centrifuged at 12,000 g at 4 °C for 45 min to remove cell debris. 

The clear supernatant was then filtered using 0.22-μm pore filters, followed by ultracentrifugation 
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at 110,000 g at 4 °C for 70 mins. The resulting pellets were re-suspended in pre-chilled PBS and 

again ultra-centrifuged at 110,000 g and 4 °C for 70 min. The final pellet of sEVs was re-suspended, 

in 50–100 μL. 

3.2.5. Acoustofluidic platform (AFS) sEV isolations  

The detailed protocol of sEV isolations through AFS in this study was developed by our 

collaborators, Prof. Tony Huang’s group at Duke University, and had been described in the 

previous publications.29, 34 

3.2.6. Nanoparticle tracking analysis (NTA)  

The sample and PBS (Thermofisher, USA) sheath flow were independently controlled by 

a syringe pump (neMESYS, CETONI GmbH, Germany). Powered by a variable DC power supply 

(TP1505D, Tekpower, USA), a Peltier cooling system (TEC1-12730, Hebei IT, China) was used 

for avoiding excessive heat generation from the SAW device during sEV separation. An upright 

microscope (BX51WI, Olympus, Japan) combined with a CCD camera (CoolSNAP HQ2, 

Photometrics, USA) combined with a CCD camera (CoolSNAP HQ2, Photometrics, USA) were 

used for monitoring separation process. The sEV separation SAW device was powered by a 

function generator (E4422B, Agilent, USA) and an amplifier (100A250A, Amplifier Research, 

USA). After separation, collected samples were analyzed by a Nanoparticle Tracking Analysis 

(NTA, Nanosight LM10, Malvern, England) system for getting the size distribution data. 

3.2.7. Transmission electron microscopy (TEM)  

TEM validation follows our previous procedure.34 4% paraformaldehyde (Sigma-Aldrich, 

St. Louis, MO) was used for fixing the isolated samples. 100 µL droplet of fixed sample was 

covered by a 300-meshcopper grid supportfilm (Electron Microscopy Sciences, Hatfield, PA) for 

absorption. Grids were washed by distilled water and then stained by uranyleacetate solution 
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(Electron Microscopy Sciences). Grids were washed by distilled water again and dried in room 

temperature. An electron microscope (FEI, Hillsboro, OR) was used for observation. 

3.2.8. Scanning electron microscopy (SEM)  

SEM was used to characterize the SERS substrate. Imaging was performed using Nova 230 

with accelerating voltage 10 kV. The detector used was in “through the lens” mode to detect 

secondary electrons, and the images were magnified at ×50,000 to ×55,000.  

3.2.9. Raman spectroscopy  

Before the Raman test, 5 µL of each sEV sample solution was deposited on the SERS 

substrate and dried. Raman measurements were performed using the Reinshaw inVia Raman 

spectrometer at room temperature. The laser excitation wavelength was 785 nm. The power used 

was 5 mW. Before measuring sEVs, the system was calibrated using the 520 cm-1 peak of silicon. 

Mappings performed at step width 5 µm to collect vesicle spectra across the sample droplet. The 

exposure time was 0.2 s to avoid sample overheating. For generating SERS intensity maps, a fine 

mapping was performed at step width 0.1 µm to collect characteristic spectra from the sEV sample 

after a vesicle was spotted. Again, the exposure time was 0.2 s to avoid sample overheating.  

3.2.10. Machine learning analysis  

Approximately 50 to 70 different sEVs are obtained for each sample to produce spectra 

which have 1023 Raman shifts in the range from 553 to 1581 cm-1 (biological information rich 

region). Preprocessing steps are applied to alleviate the spectral signature fluctuations caused by 

sample variations, SERS platform heterogeneity and instrument fluctuation. Particularly, 

fluorescence background subtraction and noise reduction are performed by batch processing based 

on asymmetric least square fitting and Savitzky-Golay filtering, followed by min-max 

normalization that proportionally compresses the original intensity range to [0, 1]. No initial 
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feature selections or dimension reduction was performed prior to classification. To reveal the 

spectral differences among the three cell line groups, linear discriminant analysis (LDA) is used 

to reduce the dimensionality for visualization. For machine learning model development, 

predictive model establishment by supervised learning or classification is the core for the proposed 

technology. It requires appropriate complexity of the classifier to prevent both underfitting and 

overfitting for the purpose of generalizing the characteristic signature effectively. Conventional 

but powerful algorithm support vector machine (SVM) for classification tasks was used. 

Unsupervised learning or clustering analysis is performed by Hierarchical clustering analysis with 

customized distance metrics, it investigates the intrinsic similarities among the analytes SERS 

signature and serves as an auxiliary to classification. Randomly 80% of spectra from each of the 

groups (patient vs. control) were selected for the model training and the rest 20% were left out for 

cross-validations. 20 rounds of cross-validations were performed, with each round running 

independent to avoid overfitting. The prediction accuracy is the ratio between the number of 

correct predictions and the total number of predictions, following the equation eq.1. All the 

analyses are realized with Python. 

Accuracy = True positive + True negative
True positive + True negative + False positive + False negative

(eq.3.1) 

 

3.3. Results and Discussion 

3.3.1. Experimental flow of SIM measuring sEVs for minimally invasive GC detections 

The schematic of the experimental process flow here is shown in Figure 3.1. Briefly, the 

experimental process can be described as three categories, sEV isolation followed by SERS spectra 

collections and data analysis. To begin with, vesicles were extracted from three types of samples 
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(tissue, blood, and saliva) from human donors by AFS. After isolations, the sEV analytes were 

dispersed onto SERS substrate for measurements. Each sample droplet was 5 µL. After collecting 

SERS fingerprints, the machine learning algorithm (SVM) was employed to establish the 

distinguishability. Randomly selected 80% of the spectral data from each of the groups were used 

as the training set for building-up the machine learning model and the rest of 20% of the spectra 

in each group were left-out for testing the model’s predictability on cancer/control. The prediction 

results obtained from the testing phase were then compared with the true sample identification to 

calculate the accuracy. “Leave-a-pair-of-samples out” validation was performed to test the clinical 

applicability. Additionally, the SERS fingerprints from the patients’ unique sEVs were extracted 

from tissue, blood, and saliva respectively followed by a cross-comparison for studying the 

possibility of tracing the vesicles through their SERS signatures. 

 

Figure 3.16. Schematic of SERS and machine learning for analyzing sEVs isolated from human 

samples 
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3.3.2. Sample characterizations 

Figure 3.2a shows the SEM image of the SERS gold nanopyramid substrate. The isolated 

sEV samples were characterized using NTA and TEM for verifications. Figure 3.2b shows the 

interaction between the sEV samples and the SERS substrate after the sample droplet had been 

introduced, suggesting that intact vesicles lying in between the nano-pyramids. Figure 3.2c 

exhibits the TEM image of the vesicle samples where the sizes fall into the category of sEVs and 

Figure 3.2d shows the NTA result of the size distribution of the vesicle samples. The substrate 

itself was Raman inactive, and SERS spectra were collected from the areas with Raman spectral 

responses on the gold nano-pyramid array. Since the sEVs ⌀ 30–150 nm, it was impossible to 

observe these vesicles directly under an optical microscope equipped on a conventional Raman 

spectroscopy system. To verify, SERS mappings with a super-fine grid on areas were performed 

at areas with Raman signals. The step width for each point in the mapping was set to be 100 nm, 

the lower limit of the instrument. Since the Raman laser is a Gaussian Beam, a heat mapping based 

on the particular peak intensity fluctuations across a small area could be generated using such fine 

grid mapping. Three Raman intensity heat maps were plotted with respect to the Raman peak 

positions representing phospholipids (1270 cm-1), nucleic acid (1341 cm-1), and protein (1123 cm-

1). As shown in Figure 3.2e, the three heat maps were spherical, the shape of a vesicle, with the 

comparable sizes, suggesting the co-existing of the three substances essential to an sEV. The three 

SERS intensity maps in Figure 3.2e show the raw shape of a single sEV. But their sizes are larger 

than the actual vesicle. This is a result of convolution between a tightly focused laser beam of ~ 1 

um diameter and a much smaller (~100 nm) hotspot (the source of the Raman signal).33, 35 The 

resulting diameter of the heatmap is limited by the larger of the two, in this case that of the 

excitation laser beam for Raman excitation of 1 um. Nonetheless, the three SERS intensity maps 
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show the shape of an sEV with comparable sizes consistently, suggesting the co-existing of the 

three substances, improving the rigor of the result. SERS mapping shows that the average spacing 

between sEVs is larger than 5 µm, much larger than the size of sEVs and the laser spot size. It 

needs to be pointed out that because of the instrumentational limitation, specifically the Raman 

laser spot size being larger than the vesicular diameters, it is challenging to precisely mapping out 

the morphology of an individual sEV. However, SERS signal intensity is quadratically dependent 

on the local electromagnetic field intensity, making the signal from one single plasmonic hotpot 

dominant.36, 37 When utilizing our SERS platform, the hotspot size matches the size range of sEVs 

(~100nm).33, 35, 38 Such feature allows the SERS signal from single sEVs to be collected one at a 

time. It should be noted that while the majority of the SERS spectra were derived from single sEVs, 

there is a non-zero probability that occasional ones could be derived from more than one vesicle. 
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Figure 3.17. a) SEM image of the SERS gold nanopyramids platform; b) SEM image of the SERS 

substrate after sample solution introduction. c) TEM image of isolated sEVs suspended in PBS; d) 

NTA result of the isolated vesicles; e) SERS intensity maps generated with respect to nucleic acid, 

lipid, and protein respectively from the same data spot 

3.3.3. SIM analyzing sEVs from cell-lines  

Before working on the patient samples, cell-lines derived sEVs by ultracentrifugation were 

used to establish the capability of SIM to detect and analyze single sEVs. More importantly, 
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analyzing vesicles from cell-lines provides the information of single sEVs heterogeneities given 

the purest forms of parental cells. Such knowledge laid the foundation and set the expectations for 

the further studies with clinical samples. Two gastric cancer cell-lines (CRL-1739 & CRL-5822) 

and one normal stomach tissue cell-line (CRL-7869) were involved. sEVs from each of the cell-

lines were isolated from the culture medium using ultracentrifugation before dropped onto the gold 

nano-pyramid substrate. Within each sample, SERS measured vesicles one at a time, generating 

one spectrum per vesicle. For CRL-1739, CRL-5822, and CRL-7869 derived sEVs, 115, 106, and 

86 vesicles were measured by SERS respectively. After spectra collection, linear discriminant 

analysis (LDA) was applied firstly to study the distinguishability of SIM on the three groups. 

Figure 3.3a showed that the SERS spectra from three group could be distinguished, with the variety 

of the sEVs within each of the sample groups revealed by SIM. Inherently, LDA is a technique 

used to separate different groups of data. In order to directly and objectively compare the SERS 

fingerprints of individual sEVs for determining the common and characteristic vesicles among the 

three groups, a machine learning-based (SVM) SERS spectral feature comparison mechanism was 

introduced. Figure 3.3b exhibited the results of comparing the SERS fingerprints of individual 

vesicles across the three cell-line groups. Internal spectral variations existed within each of the 

sEV types, but the spectral differences across different vesicle types outweighed the internal 

spectral variations as measured by the Euclidean distance between nearest neighbors. The results 

of analyzing three cell-lines illustrated the existences of sEV populations common to both gastric 

cancer tissue and the normal stomach tissue released groups even in the cell-line forms. Such 

observation further indicated the existences of sEV populations common to both GC/non-GC 

groups in the clinical bodily fluids. When analyzing single vesicles, it is necessary to sort out the 

common populations before an accurate detection could possibly be made. 
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Figure 3.18. a) LDA result distinguishing the SERS spectra of the sEVs derived from cell-lines as 

three groups; b) Statistical results of SERS signatures comparisons among individual vesicles 

3.3.4. SIM Analyzing Clinical Samples for GC Detection  

Next, SIM platform was applied to analyzing the tissue, blood, and saliva derived sEVs 

from gastric cancer patients and non-gastric cancer controls (n = 15 for each of the groups). To 

address the low vesicle concentration issue, AFS that developed previously at the Duke University 

laboratory was employed for better vesicle recoveries during the isolation from the human samples 

to avoid the well-known vesicle loss during the ultracentrifugation isolation.34 On average, 60 

different data spots were measured by SERS for each of the sample droplets. Compared to cell-

lines as the sEV extracting sources, two key factors were expected that could raise the complexities 

when studying vesicles from the human bodies. First, samples from human bodies, especially the 

bodily fluids, have lower vesicle concentrations comparing to cell culture media. Second, the 

populations of the vesicles that are common to both patient and the control group are expected to 

be more in the bodily fluids because the normal cells inside a patient’s body secret the same/similar 
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types of vesicles as the ones inside a non-cancer control person, leading to the mislabeling problem 

in machine learning and further to damaging the detection accuracy. The LDA results of the clinical 

samples are shown in Figure 3.4. The y-axes are LD1 scores and the Gaussian like curves record 

the spectra distributions according to the LD1 scores. Spectral data from sEV samples in saliva 

and blood were observed to show overlapping between the GC and the non-GC groups from LD1 

equals -2 to 2. On the other hand, such overlapping was hardly observed in the tissue sEV samples. 

Such results indicated that some of the vesicles in saliva and blood shared similar/common SERS 

spectral features between GC and non-GC, further inferring the existences of normal sEVs inside 

patients’ bloods and saliva. Such observations verified our hypothesis, given that the biochemical 

compositions of the vesicles could reflect their parental cells.  In addition, the LDA results 

suggested that the mislabeling issue was inevitable, thus requiring relabeling before the SVM 

classification model training, especially in blood and saliva samples.  
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Figure 3.19. LDA results comparing the SERS spectra of sEVs in tissue, blood, and saliva 

respectively 

To address the mislabeling problem in machine learning, a relabeling process was involved 

before training through sub-fractioning of individual sEVs from patients based on their 

biochemical compositions reflected on the SERS fingerprints. As shown in Figure 3.5, first the 

SERS fingerprints of individual sEVs between the patient and the control group were compared, 

extracting the sEV types that uniquely existed in the patient group (PP). Such process was done 

by cross-comparing the spectral features of the individual spectra between the GC and the non-GC 

group. The spectra in the GC group that shared common spectral features with the ones in the non-

GC group were regarded as the normal sEVs inside the patients’ bodies, given the vesicles could 

reflect their parental cells. They were further separated from those spectra found only in the GC 

group (PP). Then, only the SERS signatures from the PP group were labeled as “gastric cancer” 
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and others were labeled as “control” for the machine learning model training. Such process was 

referred as “relabeling” and helped correcting the mislabeling issue mentioned previously.  

 

Figure 3.20. Schematics of conventional data labeling in machine learning and the data relabeling 

process used in this study 

Cross-validation of randomly selected 20% of the SERS spectra of sEVs from each of the 

two groups was done to study the detection accuracy. The selected 20% was intentionally left-out 

during the training for avoiding the information leak during the training, improving the rigor. For 

analyzing the SERS fingerprints collected from sEVs of tissue, blood, and saliva, both non-

relabeling and relabeling methods were involved and the detection accuracies are exhibited in 

Table 3.1. Each of the results was an average of 20 rounds of cross-validations (σ2 ≤ 0.000541). In 

general, tissue derived sEVs held the highest accuracy of distinguishing followed by the blood 

derived and saliva derived vesicles. With relabeling, the detection accuracies were improved for 

sEVs collected from blood and saliva but no significant changed regarding the samples from tissue. 

For the machine learning model training and cross-validation, the training data set and the 

validation data set selected have no overlap. Such procedure avoids the pitfall of information leak, 
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i.e., the machine learning program has been given some clue about the identity of the samples used 

for cross-validation leading to a falsely high accuracy of detection. The relabeling help correcting 

the mislabeling issue due to the inevitable existence of normal vesicles in the samples of the cancer 

patients. To further explore the potential of our analysis in the clinical applications, “leave-a-pair-

of-samples out” validations using the relabeled spectra were performed. In such validation, SERS 

spectra from a randomly selected GC patient and a randomly selected control individual were 

intentionally excluded from the training set and used as the test set. The random pairing and 

“leaving-out” continued but would not include samples that had been selected before. One round 

ended when every sample had been “left-out” once. To test statistical fluctuations, ten rounds for 

each of the tissue, blood, and saliva samples were performed. Figure 3.6 shows the resulted ROCs. 

The averaged AUCs were reportedly to be 0.96, 0.91, and 0.65 in tissue, blood, and saliva 

respectively. It needs to be pointed out that “leave-a-pair-of-samples out” cannot completely 

substitute the actual clinical blind test. But, to our understanding, such validation offers the chance 

to test the platform’s clinical applicability by providing a scenario closer to the blind test than 

normal cross-validation. The result suggests that apart from tissue samples, blood holds a greater 

potential than saliva as a source for sEV based gastric cancer liquid biopsy though involving the 

minimal invasiveness of puncture.  

Table 3.1. SERS spectral distinguishability considering sEVs from different sources 

 Tissue sEVs Blood sEVs Saliva sEVs 

 non-relabeld relabeled non-relabeld relabeld non-relabeled relabeld 

Accuracy 90% 89% 72% 85% 58% 72% 
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The GC/non-GC distinction results show that there existed improvements in detection 

accuracies with relabeling in saliva and blood samples but no significant change in the tissue 

samples.  This observation could be explained as the reflection of the different relative population 

of the GC-specific sEVs. The sEV populations derived from the patients’ tissues contain the 

highest concentration of the patient-characteristic vesicles. Such concentration drops when those 

sEVs circulate in the bodily fluids where they are joined by vesicles released by other (non-GC) 

organs. It should be pointed out that such single sEVs detection mechanism has its fundamental 

limitation on the throughput which is inversely proportional to the required number of sEVs to be 

examined per patient sample in order for making accurate diagnosis. Nonetheless, this study 

reveals the feasibility of non-invasive gastric cancer detection/screening through analyzing the 

composition information of the collective Raman active bonds inside single sEVs isolated from 

blood and saliva using SIM. SERS measurements provided molecular fingerprints from single 

vesicles and machine learning algorithm offered the ability to distinguish among the various sub-

fractions of the sEVs with objectivity and rigor. Despite the complexity of the microenvironments 

inside human bodies, the SIM platform has been shown to be capable of reaching the detection 

accuracy of 90%, 85%, and 72.0% with the reportedly AUCs of 0.96, 0.91, and 0.65 in the “leave-

a-pair-of-samples out” validations in tissue, blood, and saliva respectively. The difference in 

detection accuracy makes intuitive sense considering the difference in the relative concentration 

of GC-specific sEVs in these three sources. Needless to say, blood and saliva are the more non-

invasive sources of sEVs thus with higher promise for clinical practice. Effort is in progress to 

further optimize the machine learning algorithm with the goal of improving the detection accuracy.  

With the development of the field, emerging works related to the innovations and the 

applications of SERS substrates for cancer detections via extracellular vesicles have been 
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published. Shin et al. (2020) reported a combination of SERS and deep learning for early stage 

lung cancer detection via sEVs derived in blood with AUC > 0.9.39 To achieve such detection, 

spectral features from the test set were classified based on the degrees of similarities to the training 

set.39 In our present study, comparable AUC in “leave-a-pair-of-samples out” validation with the 

blood sample was observed, but such score dropped with the saliva samples. From the clinical and 

practical perspectives, the observation of detection accuracy discrepancies in blood and saliva 

could serve as an indication for biofluid selections in the liquid biopsy based gastric cancer 

detections. Dong et al. (2020) focused on one specific vesicular contents and reported that the 

variations of the SERS signal intensity of protein phosphorylation inside sEV between control and 

patients could serve as the indicator for detecting prostate, liver, lung, and colon cancers.40 

Carmicheal et al. (2019) utilized SERS gold nanoparticles and machine learning for pancreatic 

cancer detection.41 sEVs from serum were measured by SERS from 20 (n = 10 for from 

cancer/control) individuals and machine learning algorithm prediction results indicated the 

diagnostic potential and the bio-variability dragging the effectiveness due to the diverse origins of 

the serum vesicles.41 Rojalin et al. (2020) reported a porous scaffold SERS platform that could 

prevent vesicles from drying during the SERS measurements with PCA indicating clear 

separations of the SERS spectra of extracellular vesicles (sEV and larger ones) collected from two 

control individuals, two ovarian cancer patients, and two endometrial cancer patients.42 In addition, 

the dragging of detection accuracy by trypsinization of clinical vesicles was illustrated.42 Apart 

from analyzing the spectral features directly, modified SERS substrate for vesicle immobilization 

allows quantitative analysis of the captured sEV populations between the cancer and the control 

group through the comparison of intensities of the SERS indicator as demonstrated by Banaei et 

al. (2021).43 In this presented study, the single-vesicle based analysis enables identification and 
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discrimination among different subtypes of sEVs within the same sample group. The relabeling 

process for enhancing the detection accuracy cannot be done without the signatures from each of 

the individual vesicles. In addition, the identification of single vesicle offers the feasibility of 

tracing the trafficking pathways of the patients’ sEVs from the cancer tissues to the bodily fluids 

based on their SERS fingerprints. It opens a new possibility for the further understanding of the 

sEV biogenesis, specifically the pathway of sEV trafficking from the point of secretion to entering 

body fluids. 



81 
 

 

Figure 3.21. ROC curves of the “leave-a-pair-of-samples out” validations for tissue sEVs a), blood 

sEVs b), and saliva sEVs c) 

3.3.5. Tracking sEVs uniquely belonged to the patient group  

After illustrating the gastric cancer detectability of SIM through analyzing the SERS 

signatures of single sEVs, vesicles that uniquely belonged to the patients (PP) in tissue, blood, and 

saliva attracted interests for further analysis. The goal was to study the feasibility of using SIM to 

track single sEVs inside the body based on their SERS fingerprints, given the published works 
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shown different vesicle phenotypes existed in different parts of the human body.44, 45 Shown in 

Figure 3.7a, after extracted the PP group from tissue, blood, and saliva respectively as mentioned 

(PT, PB, and PS), the SERS spectral comparison was introduced to identify the common vesicles 

existed across tissue, blood, and saliva. 9 vesicle types were identified, existing across all three 

conditions. Figure 3.7b exhibited the superimposed SERS spectra together with the averaged 

spectrum for each of the sEV type identified. Within the 9 sEV types, the result of studying the 

source of each individual vesicles was shown in Figure 3.7c, suggesting the population of patient 

unique sEVs dropping from tissue to blood/saliva which was consistent with the current 

understanding about cancerous sEVs circulation. The results of tracking vesicles uniquely 

belonged to the patient group through their SERS signatures opened a new possibility for tracing 

vesicle circulations from the tissue of origin to the bodily fluids. In addition, such tracking studies 

shed light on the impact of the sample of origin on the diagnostic accuracy and practicality: tissue 

being the most invasive source but contains the highest concentration of disease specific sEVs, 

whereas saliva being the least invasive but contains less of the disease specific vesicles. 

The identification of 9 types of the patients’ unique sEVs existed across tissue, blood, and 

saliva illustrates the feasibility of using SIM for tracking patients’ vesicles. But is was not observed 

that one or more of the nine identified vesicle types existed across all patients. The 9 types of sEVs 

being not shared among all cancer patients could possibly be due to the small sample size, currently 

limited by SIM throughput. Using the commercially available Raman spectrometer (In Via by 

Renishaw) designed for research instead of medical laboratories, the routinely achievable 

throughput is approximately 15-20 vesicles per hour. It should be pointed out that this throughput 

is by no means intrinsic to SERS analysis of biological samples. Several areas of the spectrometer 

could be automated to conceivably improve the Raman mapping throughput by orders of 
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magnitude. With significantly increased sample size per patient/healthy control, the probability of 

mislabeling (identifying an sEV type to be cancer simply because such a vesicle happened to be 

absent from the limited size of healthy control samples) will decrease significantly. Nonetheless, 

our study has shown a promising pathway for the development of an evidence-based procedure 

factoring in clinical considerations. With necessary clinical trials for validating, the methodology 

involved in this study is amenable for non-invasive detection of diseases other than GC and further 

understanding and tracing of the biogenesis pathway of the sEVs. 

 

Figure 3.22. a) Schematic of tracking patients’ unique sEVs; b) Superimposed SERS spectra (red) 

and the corresponding average spectrum (blue) of the patients’ unique sEVs existed across tissue, 

blood, and saliva. Horizontal-axis: Raman shift (ranging from 553 to 1581 cm-1). Vertical-axis: 

Normalized intensity 0-1; c) Distribution of all the individual sEVs of the 9 types presented in b)  

3.3.6. Effort in improving SIM throughput through automation of the SERS measurements 



84 
 

 Based on the challenges recognized in the presented study, the throughput plays an 

important role in the applications of SIM in clinical studies to measure greater number cancer-

derived vesicles, in the reasonable amount of working time, for enhancing the accuracy and the 

robustness of pre-clinical and clinical studies. To increase the throughput of SIM, a script to 

automate the SERS measurements was involved. The detailed developments of the script is led by 

Tieyi Li of our group. Here, it is worth defining the throughput specially of being the absolute 

number of vesicles measured within a given amount of time (e.g., a day). With the increasing 

number of vesicles scanned, the chance of measuring higher number of cancer-derived sEVs also 

increases. Other methods such increasing the chances of “hitting” cancer-derived vesicles are a 

separate topic which grants different studies. Discussion onwards carries the effort of increasing 

the absolute number of vesicles scanned within a given period of time. The automation process is 

designed to be capable of running the SERS measurements automatically without the need for the 

attendance from the operator in the middle of the measurements. Two benefits are attributed to the 

automation. First, comparing the manual setups for SERS measurements, the script performs faster 

which increases the efficiency of measurements. Second, by running automatically, it opens the 

possibility of overnight running to improving the machine utilization rate without causing the extra 

burdens to the operator. A preliminary test to compare the throughputs between taking the 

measurements manually and applying the automation process was done. The result shown in 

Figure 3.8 suggests an almost 9× boost in the number of vesicles measured within a day. Further 

works include optimizing the automation script for enhancing the robustness during the running 

as the current proof-of-concept version suffers from random systematic errors occasionally during 

the running.  
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Figure 3.23. Throughput comparison between manual SERS session and automatic SERS session 

3.4. Conclusion 

 In this study, gold nanopyramid platform was applied for SERS measurements of sEVs, 

exploring the feasibility of non-invasive gastric cancer detection. It demonstrates the feasibility of 

non-invasive gastric cancer detection/screening through analyzing single sEVs isolated from blood 

and saliva by SIM, a combination of single vesicle SERS and machine learning. The data obtained 

from vesicles derived from tissues served as the references for the possible tracking of patient 

unique vesicles. The distinguishing accuracy of sEVs between gastric cancer patients and non-

gastric cancer controls is 90%, 85%, and 72% with the AUC in the “leave-a-pair-of-samples out” 

validation to be 0.96, 0.91, 0.65 in tissue, blood, and saliva respectively. 9 vesicle types were 

identified, existing across all three conditions. The methodology developed in this study has the 

potential to be applied for the detection of other cancers using individual sEVs with further studies 

for verification. 
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Chapter 4. SIM on sEVs for Non-Small Cell Lung Cancer Detection 

 

4.1. Introduction 

Lung cancer is the second most common and the most lethal type of cancer worldwide 

according to American Cancer Society. In 2020, 2.2 million new cases occurred with almost 1.8 

million new deaths. A simple but sensitive liquid biopsy platform has the potential to make cancer 

screening more accessible to a wider variety of patients.1, 2 This is a great unmet clinical need for 

early detection diagnostics, particularly for lung cancer.3, 4 Lung cancer is the single deadliest 

cancer regardless of gender or ethnicity; however, when caught in early stages, survival rates 

greatly improve.5 The current 5-year survival rate of lung cancer is about 22%, which is 

significantly lower than other leading cancers: colorectal cancer–65%; breast cancer–92%; and 

prostate cancer–98%.6, 7 American Cancer Society also lists non-small cell lung cancer (NSCLC) 

as accounting for almost 85% of all lung cancers. Lung cancer is mostly asymptotic in its early 

stages, which generally means that when symptoms present and a low-dose CT scan (LDCT) is 

ordered, the Quality Adjusted Life Expectancy (QALE) is 3.6 years.8 Using the Surveillance, 

Epidemiology, and End Results (SEER)-Medicare database and drug costs, the societal burden of 

treating a Stage IV patient is at least twice as much as a Stage I lung cancer patient. Private 

insurance costs are extrapolated to mirror similar proportionality.9, 10 From a purely healthcare 

economics perspective, this results in higher insurance premiums across the risk pool. But, more 

importantly, from a humanitarian perspective, the treatment options become dismal as the disease 

progresses, with most late-stage diagnoses resulting in a poor prognosis. sEV detection via liquid 

biopsy has the potential to transform the diagnostic and treatment paradigms for lung cancer by 

making lung cancer screening more accessible to unscreened high-risk populations.11, 12  
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The current standard of care for screening lung cancer is the LDCT scan. However, 93% 

of the U.S. Preventive Services Task Force’s recommended 15 million high-risk populations are 

not being screened, even before the COVID-19 pandemic paused routine screenings.13, 14 The 

National Lung Screening Trial demonstrated a 20% decrease in mortality by using LDCT as a 

screening modality.14 However, less than 7% of the at-risk population actually receive the LDCT 

according to the United States Preventive Services Task Force and the American Lung 

Association. Simpler screening could overcome resource limitations, reduce the need for annual 

radiation exposure associated with even a LDCT (approximately 20x conventional X-Ray), detect 

lung cancer earlier and improve patient outcomes. 

With the well-known limitations of imaging technologies in cancer diagnostics, alternative 

non-invasive biomarkers are needed.15, 16 Clinical partners have remarked that the problem is not 

the presence of nodules (which can be detected via a static snapshot with LDCT); the problem is 

nodules which are increasing in size over time (which require more innovative detection 

technologies). Longitudinal monitoring via liquid biopsy complements imaging capabilities and 

can also track minimal residual disease.17, 18 The LDCT is a complex protocol requiring extensive 

equipment capital expenditure, nurses, and trained radiologists to interpret the results. Going 

global, screening becomes even more impractical and inaccessible in undeveloped regions, with 

lung cancer still claiming almost 1.8 million lives every year.  

This chapter includes the experimental studies of SIM spectrally measuring the sEVs 

collected from bronchoalveolar lavage (BAL) for exploring the feasibility of NSCLC detection via 

SERS measurements of BAL sEVs. BAL derived sEVs have been used for cargo/content-based 

analysis (e.g., protein and RNA/DNA expressions discrepancies) between the NSCLC patients and 

non-cancer control individuals in the format of bulk study.19-22 Those works indicate that the BAL 
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derived sEVs hold the potential as the source for NSCLC detection but little has been done from 

the single-vesicle perspective. Although expected to have low sEV concentration due to its nature 

of procuring,23, 24 BAL is directly from the lungs so there is less likelihood of vesicles from other 

organs based on the current understanding of the sEV biogenesis.25-27 These purer, lung-derived 

sEVs allowed us to focus on precise sEV populations with less contamination.  The assay 

successfully distinguished NSCLC from controls after a machine learning (ML) algorithm 

processed the SERS spectral output. To elucidate the distinguishability between the cancer group 

and the non-cancer control group, both cross-validation and blind tests were performed. The results 

further demonstrate the sensitivity of the SERS platform in detecting sEVs in a low vesicle 

concentration environment. As a pilot study, this work presents that the SERS spectral features 

collected from the sEVs in the bronchial washes hold the potential for NSCLC detection. At the 

same time, the methods used in this study are feasible for analyzing sEVs in other biofluids (e.g., 

saliva, urine, or blood) for disease detection.  

 

4.2. Experimental Procedures 

4.2.1. Demographics of BAL sample donors 

The participant ages ranged from 20 to 80 and included an equal ratio of males to females 

with 20% identifying as Hispanic. To complete the study in a timely manner, smoking history was 

kept as a variable and still obtained almost half smokers v. nonsmokers. It was ensured that the 

disease samples (n = 10) were representative of diagnoses across all NSCLC stages, from Stage I 

to Stage IV. The control set (n = 10) was not NSCLC diagnosed. 

4.2.2. sEV isolation 
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Bronchoalveolar lavage fluid samples were stored in the freezer (-20 °C) upon arrival. The 

isolation process involved size-exclusion chromatography (SEC) using columns purchased from 

IZON Science. The samples were thawed at room temperature before isolation. A sterile syringe 

filter (Millex-GP Filter, 0.22 µm) was used to remove the remaining tissue or precipitates in the 

samples before loading samples into an IZON column (qEV10/35nm) for sEV separation. Sample 

load volume was set up at 10 mL and phosphate-buffered saline (1x PBS) was used as the medium 

buffer in the equilibration, elution, and flush process. For detailed information, please refer to the 

vendor’s manual. Isolated sEVs were stored in vials and kept in the -20 °C freezer for future use. 

4.2.3. 4.2.3 SERS substrate fabrication 

SERS platforms were fabricated according to the same method as previously described.28 

First, a single layer of self-assembled polystyrene (PS) balls (⌀ 500 nm) was generated on a surface 

of DI water using the Langmuir–Blodgett patterning. The layer was then transferred to a 4” (001) 

silicon dioxide wafer with a top oxide layer thickness of 50nm. Next, a layer of 50nm of Cr was 

deposited using electron beam deposition followed by the removal of PS balls using chloroform. 

The exposed SiO2 were etched using reactive ion etching to selectively expose Si. Next, the 

exposed silicon was etched using KOH. Inverted nanopyramids with sidewalls at 57.5-degree 

angles were created because of different etching rates along the [001] and [111] directions of 

silicon. The model was finished by removing the residual Cr and SiO2 using 48% HF solution. 

Then, 200 nm of gold film was deposited onto the pitted surface by electron beam deposition and 

bonded to a carrier wafer using epoxy before lifting off.   

4.2.4. Raman spectroscopy 

After sEV isolation, 5 µL of each sEV sample solution was transferred onto the SERS 

substrate using a micropipette. A Reinshaw inVia Raman spectrometer was used for measurements 
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in this study. All measurements were performed at room temperature. The laser excitation 

wavelength was 785 nm. The power used was 5 mW. Before usage, the system was first calibrated 

using the 520 cm-1 peak of silicon. The exposure time was 0.2 s to avoid sample overheating. For 

collecting SERS spectra from multiple sEVs, a Raman mapping measurement was performed over 

a 1.2 mm × 1.2 mm square with respect to the center of each sample droplet. The step width was 

5 µm to avoid double collecting.  

4.2.5. Scanning electron microscopy (SEM)  

SEM used in this study was Nova 230. The acceleration voltage was 10 kilovolts. The 

working distance was ~5.0mm. The images were taken at the magnification between 45,000× and 

55,000× (see Figure 2). The electron detector used was TLD (through the lens detector) to obtain 

the signal from the secondary electrons. 

4.2.6. Transmission electron microscopy (TEM) 

 The TEM operations utilized in this study was assisted by Dr. Wong Hoi Hui at the Electron 

Imaging Center for Nanomachines, California NanoSystems Institute 

4.2.7. SERS Spectral Analysis 

On average, 30 different sEVs are obtained for each sample to produce spectra which have 

1023 Raman shifts in the range from 553 to 1581 cm-1 (biological information rich region). 

Preprocessing steps are applied to alleviate the spectral signature fluctuations caused by sample 

variations, SERS platform heterogeneity and instrument fluctuation. Particularly, fluorescence 

background subtraction and noise reduction are performed by batch processing based on 

asymmetric least square fitting and Savitzky-Golay filtering, followed by min-max normalization 

that proportionally compresses the original intensity range to [0, 1]. To reveal the spectral 

differences among the three cell line groups, standard linear discriminant analysis (LDA) is used 
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to reduce the dimensionality for better visualization on a 2-dimensional plot. For machine learning 

model development, predictive model establishment by supervised learning or classification is the 

core for the proposed technology. It requires appropriate complexity of the classifier to prevent 

both underfitting and overfitting for the purpose of generalizing the characteristic signature 

effectively. Support vector machine (SVM) was used for classification tasks. Unsupervised 

learning or clustering analysis is performed by Hierarchical clustering analysis with customized 

distance metrics, it investigates the intrinsic similarities among the analytes SERS signature and 

serves as an auxiliary to classification. Repeated leave samples out cross validations are then 

applied to optimize the model settings, followed by blind tests for evaluating the clinical 

applicability. 

 

4.3. Results and Discussion 

4.3.1. Experimental flow 

The experimental flow of this study is shown in Figure 4.1. A twenty-participant UCLA 

Institutional Review Board (IRB) approved study was performed that leveraged the availability of 

excess bronchoalveolar lavage (BAL) fluid in samples taken from patients suspected of lung 

cancer. sEVs were then isolated using size-exclusion chromatography (SEC). The isolated sEV 

solutions were transferred onto the SERS gold nanopyramid substrate before measurements. 5 µL 

of each of the sample droplets was used for SERS measurements. SERS spectra from individual 

sEVs were then collected. On average, spectra from 30 individual sEVs were collected from each 

of the samples. Following confirmed clinical diagnosis, the SERS spectra from the collected sEVs 

were used to train a customized algorithm to recognize spectral “fingerprints” associated with 

patients diagnosed as having non-small cell lung cancer/adenocarcinoma (hereafter, NSCLC) or 
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patients identified as not having NSCLC. An intermediate researcher then provided additional 

samples to the data scientist without revealing the clinical diagnosis for use as a test set.  

 

 

Figure 4.24. Experimental flow of single-vesicle SERS analysis of sEVs from BAL 

4.3.2. Sample characterizations 

Figure 4.2 exhibits an overview of the sEV samples and the SERS gold nanopyramid 

substrate used in this study. The transmission electron microscope (TEM) image of the vesicle is 

shown in Figure 4.2a. The image was taken in the Cryo-EM mode which clearly resolved the lipid 

membrane of the vesicle. In addition, the image validated the vesicle sizes fell in the range of 

sEVs. The scanning electron microscope (SEM) images of the SERS substrate before and after 

sample introduction have been shown in the Figure 4.2b and Figure 4.2c respectively. Figure 4.2b 

shows the gold nanopyramids array and Figure 4.2c indicates that the vesicles lie in between 

individual nano-pyramids. The lower quality of resolution in Figure 4.2c comparing to Figure 4.2b 
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could be attributed to the charging effect caused by the phosphate buffer solution (PBS) crystals 

lying on top of the substrate.  

 

Figure 4.25. a) cryo-EM image of sEVs; b) SEM image of the SERS gold nanopyramid substrate; 

c) SEM image of the SERS gold nanopyramid substrate after sample introduction 

4.3.3. Linear discriminant analysis (LDA) on SERS signatures 

LDA was used to reveal the distinguishability between the spectra collected in the NSCLC 

patient group and the non-NSCLC control group. Such analysis renders the spectral 

distinguishability before projecting onto a 2D map for better visualization. A 2D rendering is 

necessary given the complexity of SERS output. Each SERS spectrum is treated as a point in the 

1100-dimensional space corresponding to the 1100 wavenumbers of each SERS spectrum (1 sEV 

= 1100 vectors per spectrum). Next, these “points” are grouped into clusters based on their 

Euclidian distance from one another. Figure 4.3a exhibits the LDA analysis plot on the SERS 

spectra collected from sEVs between the cancer and the control group. Each plotted dot 

represented a single SERS spectrum collected from a single sEV. The spectral differences were 

measured by the Euclidian distances that separated the dots. Cumulatively, the dots self-clustered 

according to their origin, indicating spectral distinguishability. Zooming in to the cancer cluster, 

the spectra collected in NSCLC patients with early and late-stage cancer were compared. The LDA 
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plot shown in Figure 4.3b also elucidated the spectral distinguishability between the early and late-

stage patient groups. Collectively the LDA graphs illustrate the potential of using SERS spectra of 

individual sEVs derived from BAL for detecting NSCLC. Obtained results indicate the spectral 

distinguishability between both the control and cancer groups, and also between the early and late-

stage NSCLC groups. 

 

Figure 4.26. a) LDA analysis results of SERS spectra collected from sEVs between NSCLC patients 

and controls; b) between early stage and late stage NSCLC patients 

 

Figure 4.27. a) Schematic of SERS spectra relabeling; b) SVM model training and blind testing 
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4.3.4. Model training and blind test using support vector machine (SVM) 

To explore the clinical applicability of the SIM platform, a blind test was performed. SVM 

was used to provide the machine learning (ML) model training and testing. SERS spectra collected 

from 6 donors in each of the patient and the control group (total n = 12) were used as the training 

set and the SERS spectra collected from the rest of the 8 individuals (4 patients and 4 controls) 

were left out as the test set. Here the operator for SVM analysis of the SERS spectra was kept 

“blind” to the diagnosis results until testing concluded. Figure 4.4 shows the schematics of model 

training and testing.  

That cancer cells secrete cancer-cell specific sEVs leads to a natural conclusion that the 

anticipated composition of sEV populations isolated from biofluids will include disease specific 

sEVs. However, the disease population is known to be mixed with normal sEV populations in the 

biofluids. Given this co-existence of healthy and unhealthy sEV populations, ML training based 

on SERS spectra collected from individual sEVs would cause a mislabeling issue that impedes 

model accuracy. To overcome this, the spectral features collected from sEVs was relabeled based 

on their spectral similarities as shown in Figure 4.4a. The relabeling process was through a spectral 

feature comparison between the spectra from NSCLC patients and the controls. The “common” 

spectra, indicating the existences of the normal sEVs, in the patient group are relabeled as control. 

It should be pointed out that the limited control data size makes it challenging to parse all the 

normal spectra in the patient group. However, the principles behind this process help partially 

correct the mislabeling issue and significantly improve model accuracy. 

Figure 4.4b shows the ML schematic for model training and blind testing based on 

relabeled data. The classification model was built on the training set of 12 individuals, 6 from each 

group. Then, the model was applied to predict every donor in the test set whether the person was 
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likely to be a NSCLC patient or a control. The predicted result was then compared with the actual 

clinical diagnosis. The SVM model correctly predicted all the diagnosis results of the 8 individuals 

in the test set based on SERS spectra collected from the BAL derived sEVs. As a proof-of-concept, 

obtained results suggest the clinical applicability of the SERS platform to analyze sEVs for 

NSCLC detection. This ML platform would benefit greatly from samples with a higher sEV count 

(the recent bronchoalveolar lavage study had an average sEV count of 30 with a median of 22) on 

the vesicle concentrations of the sample biofluids. Future studies involve improving the throughput 

on both sample sizes and sEV count per sample. Nonetheless, this study clearly illustrates the 

potential of using label-free single-vesicle SERS to detect and predict NSCLC based on sEV 

subpopulations. The methodology involved in this work has the potential for disease detection 

other than NSCLC with specific validations. 

 

4.4. Conclusion 

BAL-based liquid biopsy is not a true “noninvasive” approach with certain invasiveness, 

but BAL has the advantage of sEV purity with most sEVs likely secreted from lung cells as 

opposed to sEVs from other organs. The reason that BAL was used in this work is to conclusively 

establish the biomarker value of lung-derived sEVs thereby laying the foundation for subsequent 

studies aimed at noninvasive biofluids such as blood, saliva, and urine. The fact that the platform 

is capable of detecting sEVs from BAL with its inherent low vesicle concentration suggests an 

acceptable detection limit considering the vesicle counts obtained. This work successfully 

demonstrated that anomalous sEVs are detectable using the platform’s nanotechnology protocols 

with clinical samples from lung cancer patients, and not detectable in the control group. This BAL 

pilot study allowed us to intentionally stress-test the platform and still achieve positive results 
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which bodes well for further studies using biofluids with known higher vesicle concentrations. The 

inherent non-destructive biochemical analysis of single vesicles via SERS makes this biosensing 

platform powerful when carefully combined with the appropriate ML algorithms.  
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Chapter 5. Summary and Future Works 

 

5.1.  Summary  

The presented dissertation describes the works towards the minimally invasive cancer 

detections through analyzing individual sEVs in bodily fluids using SERS. Utilizing SIM, which 

combines single vesicle SERS and machine learning, this thesis goes from analyzing sEVs and 

their subpopulations to the applications of SIM exploring the potential clinical applicability for 

minimally invasive cancer detections via detecting sEVs in bodily fluids. The following of this 

section gives a summary of the presented works.  

Chapter 2 includes the experimental studies of SIM examining individual sEVs isolated 

based on their size discrepancies. The biomolecular composition of each vesicle examined was 

reflected by its corresponding SERS spectral features (biomolecular “fingerprints”) with their roots 

in the composition of their collective Raman-active bonds. Origins of the SERS spectral features 

were validated through a comparative analysis between SERS and mass spectrometry (MS). SERS 

fingerprinting of individual vesicles was effective to overcome the challenge posed by EV 

population averaging, opening the possibility of analyzing the variations in biomolecular 

composition between the vesicles of similar and/or different sizes. The obtained data suggested 

that each of the size-based subpopulation of sEVs contained particles with predominantly similar 

SERS spectral features. Over 84% of the vesicles residing within in a particular group that were 

clearly distinguishable from that of the other EV sub-populations despite some features of spectral 

variations within each sub-population. The results indicate that there exists a correlation between 

sEV size-based subpopulations and their biomolecular composition from the perspective of 
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individual vesicles. They further shed light on the possibility that the sEVs with different sizes 

might inherently contain different cargoes. Such observations potentially contribute to the future 

developments of sEV sorting and sub-fractionation based on their biochemical compositions. 

Chapter 3 illustrates the application of SIM for minimally invasive gastric cancer detection 

via spectrally analyzing sEVs in different bodily fluids. Based on the results described in Chapter 

2, the working hypothesis here is that the composition information of the collective Raman active 

bonds inside individual sEVs of human donors obtained by SERS hold the potential for non-

invasive gastric cancer detections. The complexity when working with samples from the human 

donors comes from the fact that there co-exist sEVs from both the normal tissues and cancer cells 

inside the patients’ bodily fluids such as blood and saliva. At the same time, currently it is 

challenging for the isolation methods to separate the two groups. Such co-existence causes 

“mislabeling” during the machine learning analysis which would reduce the distinguishing 

accuracy. Here, a machine learning was customized to help overcome or at least partially correct 

such issue, boosting the detection accuracy. The spectra from the patients were relabeled before 

machine training and classifier developments based on their spectral similarities to those from the 

control individuals. The spectra from patients that shared high similarities to the ones from the 

control group were relabeled as “control” while the unique ones from the patient groups retained 

their labels of “cancer”. sEVs from the tissue, blood, and saliva of GC patients and non-GC 

participants were collected (n = 15 each) and analyzed. The algorithm prediction accuracies were 

reportedly 90%, 85%, and 72%. “Leave-a-pair-of-samples out” validation was further performed 

to test the clinical potential. The area under the curve (AUC) of each the receiver operating 

characteristic (ROC) curve was 0.96, 0.91, and 0.65 in tissue, blood, and saliva respectively. In 

addition, through comparing the SERS fingerprints of individual vesicles, a possible way of tracing 
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the biogenesis pathways of patient-specific sEVs from tissue to blood to saliva was provided based 

on searching for the patient-unique sEVs spectra existing across tissue, blood and saliva. Through 

the experiments, areas for further improvements were also proposed. First, for single-vesicle SERS, 

the efficiency of the measurements needed to be further improved from the technical perspective. 

Raman machine automation offers a potential solution with further optimizations as the process 

could run unattended, offering the opportunity of overnight running. Secondly, the chance of 

hitting cancer-derived sEVs need to be improved to increase the detection accuracy especially 

when working with the bodily fluids as the source of sEV extraction.  

Chapter 4 contains the experimental studies of SIM on non-small cell lung cancer detection 

(NSCLC) via analyzing sEVs from bronchoalveolar lavage (BAL). The reason for choosing BAL 

as the source of vesicle isolation is that BAL is directly from lung with the expectation that most 

of the vesicles come from normal lung tissue or NSCLC depending on the situation of the donor. 

Such biofluid contains less population of sEVs from other parts of the body which presents less of 

the challenge included in Chapter 3 even though the collecting of such biofluid is not completely 

in the fashion of non-invasive detections. LDA plots showed the spectral distinguishability 

between the sEVs collected from the cancer patients and non-cancer controls. In additions, the 

spectra collected from the vesicles from early stage and late-stage patients were also revealed to 

be distinguishable. As a-proof-of-concept-study such results indicate the potential of SIM for 

precision cancer detections with the need for further validations. Moreover, a blind test blind based 

on the collected spectra was perform the explore the potential clinical applicability of SIM. Such 

blind test was conducted in the circumstance that the data analysis operator was kept from the 

diagnostic results of the donors. Also, the spectra from the “test” set were completely kept from 

the machine learning training process to mimic the real clinical test. Such process was to test 
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whether the model developed with the limited training sample size had the potential to be applied 

for testing unknown samples, a natural question in the development of a cancer screening method. 

In this pilot study, the machine learning model correctly predicted the diagnostic results of all the 

samples in the “test” group. Given the limited sample size of n = 10 in each of the cancer and non-

cancer group, further validations with increasing number of donors are needed despite the 

promising results. In addition, BAL is known to have low concentrations of sEVs due to its nature 

of collecting. Therefore, concentrating of vesicles onto the gold nanopyramid is also desired prior 

to the SERS measurements and calls for the need of further technical developments. 

 

5.2. Directions of Future Works 

5.2.1. Improvement of the effective throughput of SIM detecting sEVs 

 As a single-vesicle based technology, SIM has the potential to reveal the subtle 

compositional difference among individual vesicles, providing a complementary perspective to the 

population/bulk detection methods. However, there is often a tradeoff between detection 

sensitivity and throughput. One of the major challenges with any single-vesicle based technology 

is the throughput and SIM is not an exception. Without decent throughput, it is almost impossible 

to further validate the indications obtained from the current results with large number of patient 

samples (e.g., > 50 or even > 100 individuals) to further push SIM towards clinical applications. 

Raman measurement automation presents a feasible aspect for such improvement from 

increasing the number of vesicles detected per sample and enabling the measurement processes to 

run 24/7. However, current implementations of the Raman automation mainly come from the in-

house design of a script to mimic the maneuvers of the OS of the Raman system which might be 
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vulnerable to unexpected systematic errors. Future works could potentially involve the 

collaborations with the Raman system developer to establish a built-in function of the auto runs 

that would be robust to operate without the risk of being interrupted by systematic errors.  

With the effort on Raman measurement automation, it is possible to increase the absolute 

number of sEVs measured per sample by at least 10x (e.g., ~500 vesicles measured with the help 

from overnight runs). However, given the fact that the concentration of the target sEV varies across 

different types of bodily fluids, even such throughput boost thanks to the automatic measurements 

might still not be enough to catch even one target sEV from cancer. For example, if the population 

of the cancer-derived sEVs in certain bodily fluids accounts for less than 0.2% of the total vesicular 

population, it might not be enough just to scan 500 vesicles per sample. Therefore, though boosting 

the absolute number of measured vesicles is an important aspect, it is just one side of the story. It 

is crucial to increase the chance of “hitting” the interested cancer-derived sEVs during the 

measurements. If successful, not only the throughput of SIM would be significantly boosted, but 

it also pushes the applicability of SIM for the detection of cancer at the earliest stage where the 

cancer tissues just start growing and only small population of cancer sEVs are released.  

One of the potential methods to achieve such goal is through surface functionalization that 

attaches antibodies to the surface of the gold nanopyramid substrates. Those antibodies need to be 

selective to serve the purpose of immobilizing the vesicles of interest and others could be washed 

off. It should be noted that such process is not designed to capture sEVs from cancers as currently 

there is not a well-established cancer biomarker for sEVs. The process serves to reduce the number 

of sEVs from other parts of the body. Taking gastric cancer detection as an example, the goal 

through functionalization is to be able to focus on sEVs only from stomach, shown in Figure 5.1. 
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Figure 5.28. Schematic of targeting the sEVs of interest for improving the effective throughput of 

SIM by surface functionalization of the gold nanopyramid substrate 

Vesicles from other parts of the body will be washed off. In this way, most of the vesicles analyze 

by SIM will be coming from stomach, given the non-zero probability of residual staying after the 

wash. To achieve this, the selection of antibody is the key. Based on the latest effort of searching, 

anti-CLDN 18 and especially its isoform anti-CLDN18.2 are the two candidates for the gastric 

cancer detection case. CLDN18 protein is a cell surface protein that has a significant higher 

expression level across the stomach cells comparing to other types of cells. Given the 

understanding of the sEV biogenesis, it is expected that sEVs from the stomach cells also carry 

higher levels of CLDN18 protein. Future works involve validating this expectation. CLDN18.2 

has an expression strictly confined to differentiated epithelial cells of the gastric mucosa where 

~90% of the gastric cancers happen. A preliminary experiment has done using anti-CLDN18 to 

functionalize the gold nanopyramid substrate followed by applying the sEVs extracted from saliva. 

Here samples come from 4 different donors in each of cancer and non-cancer group. ~200 vesicles 

were measured for each of the samples, benefited from the Raman automation. As shown in Figure 
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5.2 the AUC of the ROC is 0.93, comparing to the results presented in Chapter 3 of 0.65. The 

results show preliminary success but require further validations and optimization as future works. 

First, validation is needed using increasing number of samples. Second, the protocol used in the 

functionalization mentioned above was adopted from the one published by ThermoFisher 

Scientific without any optimization. Since the protocol of the surface functionalization plays an 

equally important role as antibody selection, future works could involve the protocol optimization 

with the step-by-step characterizations.  

 

Figure 5.29. ROC curve of distinguishing sEVs from cancer patients and non-cancer individuals 

(n = 4 for each group). Gold nanopyramid functionalized by anti-CLDN18 

5.2.2. Exploring the metabolism and/or function differences among sEV subpopulations 
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 As the results obtained by SIM indicate the possibility that the sEV subpopulations isolated 

by size discrepancies carry distinctively various cargos, a natural question to ask is whether such 

variation will lead to functional or metabolic differences.1, 2 The rationale of such question is also 

supported by a realization that the fraction of sEVs that carry potentially functional RNAs is at 

only percent level.3-5 Data from SIM echoes such observation. As shown in Figure 5.3 by locating 

the unique peaks of the 4 types of nucleobases in each of the spectra collected from sEVs of 5 

different cell-lines, the fraction of sEVs carrying all the 4 types, the prerequisite of RNAs, is only 

at the percent level in every cell-line.  

 

Figure 5.30. Distribution of sEVs containing various types of nucleic acids from five different cell-

lines 



116 
 

It is reasonable to question whether those vesicles containing functional RNAs function 

the same or differently as others, thus worth further investigating the functional differences among 

different sEV subpopulations. To establish the correlation between various sEV subpopulations 

and their functions, SIM involves the monitoring the sEVs released by the recipient cells, at the 

single vesicle level, before and after the uptakes of sEVs subpopulations with different sizes. Such 

work could contribute to the further establishment of the knowledge base about sEV cargo 

deliveries. One of the fields that could potentially be benefited from the work is sEV based 

medicine delivery for disease treatments since it might serve as a guidance for choosing the best 

group of sEVs for the cargo transit. 
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