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ARTICLE

Microbial and metabolic succession on common
building materials under high humidity conditions
Simon Lax1,9, Cesar Cardona 2, Dan Zhao3, Valerie J. Winton 4, Gabriel Goodney 5, Peng Gao4,

Neil Gottel6, Erica M. Hartmann7, Chris Henry8, Paul M. Thomas 4, Scott T. Kelley5, Brent Stephens3 &

Jack A. Gilbert 6

Despite considerable efforts to characterize the microbial ecology of the built environment,

the metabolic mechanisms underpinning microbial colonization and successional dynamics

remain unclear, particularly at high moisture conditions. Here, we applied bacterial/viral

particle counting, qPCR, amplicon sequencing of the genes encoding 16S and ITS rRNA, and

metabolomics to longitudinally characterize the ecological dynamics of four common building

materials maintained at high humidity. We varied the natural inoculum provided to each

material and wet half of the samples to simulate a potable water leak. Wetted materials had

higher growth rates and lower alpha diversity compared to non-wetted materials, and wetting

described the majority of the variance in bacterial, fungal, and metabolite structure. Inocu-

lation location was weakly associated with bacterial and fungal beta diversity. Material type

influenced bacterial and viral particle abundance and bacterial and metabolic (but not fungal)

diversity. Metabolites indicative of microbial activity were identified, and they too differed by

material.
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The microbiology of the built environment (BE) comprises
bacteria, archaea, fungi, viruses and protists, all of which
maintain growth potentials under varying physicochemical

regimes. Many recent studies of this ecosystem have applied
molecular sequencing techniques to characterize microbial com-
munity dynamics and their relationship to occupant density,
material type, location, and environmental conditions1–5. How-
ever, most of these studies have investigated communities
sampled from relatively dry materials on which microbes are
likely biologically inactive unless they experience liquid water or
high relative humidity3 (RH). It is widely accepted that fungal
growth can occur at RH > 75–80% and material decay can occur
at RH > 95%, depending on material6,7.

Dampness is a fairly common occurrence in buildings, with
approximately half of all homes in the U.S. having experienced
dampness or mold8. Building material dampness can originate
from many sources, including bulk liquid entry from floods,
extreme weather events, and plumbing system problems; rain or
snow entry through leaks in building envelopes and roofing
systems; and high water vapor content resulting from moisture
migration through building materials or condensation of warm
humid air on cold surfaces9. Dampness and the presence of
visible mold have been consistently associated with adverse
human health outcomes, including respiratory and allergic
effects10–13. These associations may result from a combination of
exposure to specific microbial agents14, varied gene expression
and metabolism15, and the release of fungal metabolites including
mycotoxins16 and microbial volatile organic compounds17.

Although fungal growth on building materials has been studied
for decades18–21, only a limited number of studies have used
molecular techniques to investigate bacterial and fungal growth,
microbial community dynamics, and metabolic activity on com-
mon buildings materials exposed to liquid water and/or high
humidity conditions22. Therefore, we characterized the bacterial
and fungal concentration and diversity, as well as the production
of microbial metabolites, on samples of four common building
materials incubated at constant ~94% relative humidity: oriented
strand board (OSB), medium density fiberboard (MDF), gypsum
wallboard, and mold-resistant (i.e., mold-free, or “MF”) gypsum
wallboard. The materials were selected to represent a relatively
wide variety of common building and furniture material types
that were also likely to experience high variability in microbial
growth. We varied the BE source of inoculation and wet half of
the samples to assess how indoor microbial sources and the
presence of liquid water influence community structure and
metabolite profiles of these materials over time. We used several
techniques to quantify microbial growth, microbial community
composition, and functional metabolism including: bacterial- and
viral-like particle counts, image processing of visible mold
growth, qPCR, amplicon sequencing of 16S and ITS rRNA
marker genes, and metabolomics. Results from these different
methods were integrated via co-occurrence network approaches,
which provided insights into microbial community organization
and environmental interaction. Improved understanding of how
bacterial and fungal metabolism is shaped by environmental
properties (e.g., the presence of water, surface material compo-
sition) and inoculating source (e.g., building location, occupancy
patterns) could have important implications for building design,
construction, and management, and potentially for occupant
health, such that determining the microbial dynamics in these
high RH environments should be an important research priority.

Results
Experimental setup. Multiple sampling strategies were tested,
including repeated sampling of the same coupons at each time

point and sampling new coupons at each time point (Supple-
mentary Fig. 1). After statistical verification of these two
approaches, all samples of the same type were combined as
technical replicates (Supplementary Tables 2 and 3). Microbial
datasets were later rarefied to an even sequencing depth: 1000
reads for bacteria and 10,000 reads for fungi. Unfortunately,
rarefaction removed all bacterial samples from MDF materials,
which had very low read counts. After rarefying the data, a
comparison of the control (lab-inoculated) and noncontrol
(residence-inoculated) samples reflected that control samples
looked very similar in bacterial and fungi diversity to noncontrol
samples (Mantel ≥ 0.49 and ≥0.43 for Location 1 and Location 2
respectively, all with p < 1E-05), perhaps because air could still
transmit through the nonhermetic foil cover and microbes from
the interior of the wood (not killed with the sterilization) could
have found their way to the surface. It is also possible that the
coupon itself could remain an important reservoir of microbial
communities that contribute to the microbial diversity of the
samples. Based on these results, the covered laboratory location
was treated similarly to the other two locations. For more details
see the section “Methods”.

Visible growth, particulate counts and qPCR. Visible microbial
growth occurred much faster and covered a far greater percentage
of the surface area on wet coupons than on nonwetted coupons
(Fig. 1a). OSB and MDF had the greatest coverage and fastest
growth: all wet OSB and MDF coupons reached at least 50%
visible microbial coverage by day 20, while nonwetted coupons of
these types reached <25% coverage. No growth was ever visible
on the mold-resistant gypsum coupons. Epifluorescence micro-
scopy revealed that counts of bacterial-like particles (BLP) and
viral-like particles (VLPs) calculated on samples 0–15 days post
incubation were strongly correlated (R2= 0.65, p= 2.8e−23)
(Fig. 1b), with VLP counts statistically lower than BLP counts in
all samples (ANOVA ≤ 10−4) and in both wet and nonwet con-
ditions (two-sided nonparametric t test p ≤ 0.035) (Fig. 1c). This
is in keeping with previous research that found very low VLP:BLP
ratios on built surfaces23 and indoor aerosol samples24. In our
dataset, the mean log(VLP)-log(BLP) ratio was 0.86 (SD= 0.07,
N= 96), with a minimum of 0.61 and a maximum of 1.02.

While BLP (only estimated for day 0 to day 15 samples) and
bacterial qPCR agree that wetted samples had higher counts than
nonwetted samples, with a 4 and 99-fold median cell count
increase respectively, cell counts inferred from these two methods
drastically differ between material types and over time. Most
notably, MF-gypsum had the highest BLP counts but also the
lowest 16S rRNA qPCR median cell counts (44 to 97-fold lower
than other materials). Moreover, the BLP cell counts were
essentially constant over time, while qPCR counts steadily
increased, with 30 days post incubation being 209-fold greater
than the 394 cells median count per μL at day 0. To further
confirm the differences, we calculated the overall correlation
between paired bacterial qPCR and BLP counts and the results
were not significant, emphasizing different biases for each
method.

For fungal qPCR we observed MF-gypsum had the lowest
abundance, while all other materials had a range of 37- to 239-
fold increase over MF-gypsum. Wetted samples revealed a 72-fold
increase in qPCR median read abundance over nonwetted
samples. Also, the qPCR read abundance increased steadily over
time, in such a way that day 30 was 750-fold greater than the five
cells median count per μL at day 0.

Bacterial, fungal and metabolite diversity. The bacterial and
fungal communities in our study tended to decrease in diversity
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over time, as measured by the Shannon Index (Shannon H′),
which incorporates both the richness and evenness of the com-
munity. Given that our data were rarified to an even depth before
analysis, this decrease in diversity is indicative of the increasing
relative abundance of certain community members, and suggests
the preferential proliferation of certain taxa in the inoculating
community. In our bacterial dataset, wetted samples experienced
faster declines in diversity than nonwetted samples, and were
significantly lower in diversity at the end of the study than
nonwetted samples (Fig. 2a), suggesting that certain bacterial taxa
grew quickly in the wet environment and became dominant
within the community. In our ITS dataset, we also observed a
faster decline in diversity in wetted samples, although wetted
samples were significantly more diverse than nonwetted samples
by the end of the study (Fig. 2b). The decrease in fungal diversity
in wetted samples was not monotonic, with an initially steep
decline and a subsequent increase. This may reflect fast growth by
a small number of taxa that quickly dominated the community,
followed by the growth of other taxa with slower growth rates.
Similar patterns occurred within the diversity changes for each
individual material (Supplementary Figure 2) with the exception
of a lack of bacterial growth for wet MDF samples and reduced
bacterial growth on dry OSB after the study was half way com-
pleted. In contrast, we observed no significant changes in the
metabolic diversity over time for either wetted or nonwetted
samples (Fig. 2c).

Microbial compositional changes. Across all samples, the
diversity of bacteria within the community was significantly
correlated to the diversity of fungi (Pearson ρ= 0.28, p= 0.0003)
(Fig. 3a). Interestingly, neither bacterial nor fungal diversity was
significantly correlated to the metabolite diversity. We observed
striking changes in the relative abundance of certain bacterial
(Fig. 3b) and fungal (Fig. 3c) genera over time, which were largely
dependent on wetting condition. In the bacterial dataset, Bacillus
almost immediately came to dominate wet samples, with an
average relative abundance as high as 50% after 10 days, even
though it represented a negligible part of the community at the
start of sampling. Bacillus abundance also increased in nonwetted

samples, although to a much smaller extent. A similar pattern was
observed for the genera Pseudomonas and Erwinia, which also
represented a very small fraction of community diversity at the
start of sampling but quickly increased in abundance in wet (but
not nonwetted) samples. Interestingly, a large percentage of reads
from early time point samples, both wet and nonwet, were of
chloroplast origin. In wet samples, the number of chloroplast
reads quickly declined as bacterial genera proliferated. In non-
wetted samples, chloroplast read abundance remained high, and
dominated the sequencing effort to such an extent that discarding
those reads would have dropped the majority of nonwetted
samples below the rarefaction depth. While these likely represent
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residual DNA signatures from the plant material used to con-
struct each coupon, we have chosen to keep them in the analysis.
Supplementary Fig. 3A shows how chloroplast sequence abun-
dance varies by wetted condition and material type.

The majority of reads in the ITS dataset that could be
taxonomically assigned to a genus belonged to one of two genera:
Eurotium and Penicillium. Eurotium abundance was negligible at
the beginning of community succession but quickly flourished in
nonwetted samples, becoming the most abundant known genus
in those samples within 10 days (Fig. 3c). By contrast, Eurotium
was not abundant in wet samples. Penicillium abundance was,
on average, consistently higher in wet samples than in nonwetted
samples, and its abundance was significantly anticorrelated to
Eurotium relative abundance (Pearson ρ=−0.12, p= 0.033).
These taxa-specific changes were mirrored by community-level
differentiation, where wet vs. nonwetted coupons of the same
material and inoculating location became significantly more
dissimilar (Bray−Curtis, Spearman’s correlation, p < 0.01) in both
their bacterial and fungal community structure over time (Fig. 3d).
Supplementary Fig. 3B shows how this dynamic varies by
material type.

Factors associated with microbial and metabolite diversity. We
used ANOSIM to determine the factors significantly correlated
with differences in the microbial communities across our three
datasets. Bray−Curtis dissimilarity was calculated for the bac-
terial, fungal, and metabolite datasets, and ANOSIM was used to
determine whether distances between samples of the same
metadata factor (i.e. wetting condition, inoculating location, and
material) were significantly lower than distances between samples
of different types (Supplementary Fig. 4). In our bacterial dataset,
wetting condition, location, and material each had a significant
impact on bacterial community structure (all p < 0.0001 based on
105 randomized permutations), with wetting having the most
pronounced effect (R= 0.418). Generally, nonwetted samples
tended to be more similar to each other than wet samples were
to each other, which is likely due to the dominance of a
single chloroplast OTU. Material had a less pronounced effect
(R= 0.247) and location had the least evident effect on bacterial
community structure (R= 0.133).

Interestingly, fungal community structure was not significantly
described by variance in material, while location had a relatively
weak (R= 0.129) though highly significant (p < 0.0001) associa-
tion, suggesting that variations in fungal communities that settle
on materials (which have been shown to be driven largely by
outdoor fungal communities25) influence community structure
upon experiencing wetting and high RH conditions. Wetting
condition was by far the most influential factor influencing fungal
community structure (R= 0.564, p < 0.0001), and in contrast to
the bacterial data, wet samples were much more similar to each
other than were nonwetted samples. Metabolite diversity within
the community was also affected by wetting condition (R= 0.276,
p < 0.0001), with nonwetted samples more similar to each other
than wet samples. Material also played a significant role in
metabolite diversity (R= 0.231, p < 0.0001), and mold-free
gypsum samples were particularly metabolically similar, likely
due to the lack of fungal growth and the underlying chemical
composition of the material. Inoculating location had no
significant effect on the diversity of metabolites despite having
a significant effect on both the bacterial and fungal community
membership. We visualized sample similarity using nonmetric
multidimensional scaling (NMDS) ordination based on Bray
−Curtis dissimilarity (Fig. 4). We converted material, location,
and wetting condition into binary variables (1= yes, 0= no),
which were fit onto the ordination, keeping only the significant
vectors (R2 values for each vector and their significance is
presented in Supplementary Table 1). Visually, both bacterial and
fungal beta diversity were more differentiated by wetting
condition, while metabolites were visually differentiated by both
wetting condition and surface material, likely due to the
underlying chemistry of the material and then the subsequent
metabolic activity of the microbes when coupons were wetted.

Bacterial and fungal network co-occurrence. SparCC26, an
algorithm developed to quantify correlations on compositional
microbial abundance data (data that has been subject to rarefac-
tion), and applied with correlation threshold >0.4, uncovered co-
occurrence patterns between taxa from each kingdom. In the
bacterial network (Supplementary Fig. 5) three co-occurrence
clusters were identified, the Bacillus cluster, Pseudomonas cluster,
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and a cluster comprising chloroplasts and mitochondria. As
expected these groups correspond with the most abundant taxa. On
all wet materials and on all samples of gypsum (both wet and
nonwet), 95% of associations between Bacillus and Pseudomonas
were negative correlations (Supplementary Figs. 6 and 7). On
nonwetted OSB, MDF and MF-Gypsum there were no negative
correlations between Pseudomonas and Bacillus. Interestingly, there
is a dramatic increase in the absolute number of significant co-
occurrence relationships between bacterial OTUs in wet (74) vs.
nonwetted samples (48), which is a 54% increase in the number of
edges, suggesting that the wetting event has made the environment
more suitable for microbial growth interactions. In the fungal
correlation network, Penicillium OTUs co-occurred with many
unknown fungal genera, while OTUs corresponding to Aspergillus
and its subset, Eurotium, maintained monophyletic clusters (Sup-
plementary Fig. 8). As with the bacterial co-occurrence networks,
fungal OTUs associated with wet coupons had negative correlations
among each other, although the number was much smaller than for
bacteria. Only seven fungal OTUs were negatively correlated on wet
materials, mainly between unknown genera and an abundant
Penicillium OTU (Supplementary Fig. 9). Strikingly, unlike bacteria,
the absolute number of significant co-occurrence relationships
between fungal OTUs declined in wet (555) vs. nonwetted samples
(1133), suggesting an inverse co-abundance response between
bacteria and fungi during growth.

To better understand the co-associations between bacteria and
fungi, 16S and ITS OTUs were co-correlated in a single network.
A random walk-based method uncovered four distinct modules
within the network, with a modularity of 0.45 (Fig. 5a). In general,
the taxa present in each sample tended to cluster within
an individual network module (median sample association to

module= 0.88). We correlated various metadata factors to module
membership (Fig. 5b) and observed that wetting condition had a
significant impact on which samples dominated each module:
modules 1 and 3 were associated with wet samples, while modules
2 and 4 were associated with nonwetted samples (Fig. 5c). Location
1 samples dominated module 3, while Location 2 samples
dominated module 1 (Fig. 5d). Overall, wetting condition appears
to be the most important factor driving community succession,
resulting in two different community structures even when the
source community is identical. We also visualized the nodes that
were assigned to the genera previously discussed in Fig. 3. Nodes in
the bacterial genera Bacillus, Pseudomonas, and Erwinia, as well as
the fungal genus Penicillium, were nearly exclusively clustered in
the two wet-associated modules (1 and 3), while chloroplast reads
and Eurotium nodes all clustered within the nonwetted modules
(2 and 4; Fig. 5e).

Metabolite network co-occurrence. A co-occurrence network
correlation was calculated for the sample metabolite profiles
(Fig. 6). As these data are not compositional, we built this net-
work using significantly positive Spearman correlations between
nodes and included only the 1000 most abundant metabolites in
the dataset. This resulted in a network with 149,316 edges
(density= 0.30) when the significance threshold (alpha) was set
to 0.001. Using the same module discovery method described
above, we uncovered seven distinct modules (modularity= 0.32),
excluding 12 metabolites around the periphery of the network
that clustered into modules of <5 nodes. Three modules (3, 4,
and 7) were significantly correlated with wet samples, while
modules 1, 2, 5, and 6 were associated with nonwetted samples.
There was almost no correlation between network modules and
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inoculating locations, further suggesting that while location (and
hence the primary inoculating microbes) may influence com-
munity taxonomic diversity, it does not appear to strongly affect
metabolic diversity during growth. The abundance of metabolites
in module 7 were anticorrelated with all other modules, but
specifically with module 2 (corr=−0.87, p < 0.001). Module 7 is
dominated by wet samples at later time points, suggesting that
community succession in wet environments may converge to a
common metabolic profile.

Metabolite features can predict sample type. Random Forest
analysis was employed to determine metabolites associated with
various sample types. Models classifying whether a sample had
been wetted had an average accuracy of 98% (error ratio= 25,
with expected random error 0.5), and wetted samples were never
misclassified as a nonwetted sample in any of the ten model
iterations. Models classifying samples based on material were
similarly successful, with an average accuracy of 97% (error ratio
= 25, with expected random error 0.75). Metabolomics models
were much less successful at predicting the inoculating location,
with a mean success of 72% (error ratio= 2.36 with expected
random error 0.67). We sought to gain insight into the chemical
composition of metabolites that comprise the signatures observed
in these models. Feature importance scores were assigned to
compounds based on their relative contributions to predicting
sample type. For both the wetting- and material-dependent
groups, we selected the 100 highest-scoring metabolite features
for further examination and identification (Supplementary
Fig. 10). Ninety-eight of the 100 top-scoring metabolites that
differentiated wetted and nonwetted samples were enriched in
wetted samples. None of these compounds were automatically
identified by mzCloud, so the metabolites were analyzed via
external database searches, and compound classes were desig-
nated based on fragmentation spectra. A diverse set of compound
families was observed, including compounds likely to be carbo-
hydrates and glycoconjugates, fatty acids, prenol lipids, sterol

lipids, polyketides, and glycerolipids, as well as several pyridine
derivatives including a form of vitamin B6, indicative of microbial
activity and growth and compounds associated with the surface
materials.

Metabolites that were highly enriched in wet vs. nonwetted
conditions underwent additional manual analysis for confident
structural identification. One of these metabolites was identified
as Nigragillin (C13H22N2O, accurate mass= 222.1723), which is a
fungal alkaloid first identified in Aspergillus niger27. Nigragillin
abundance was significantly enriched in wet MDF and OSB
samples (505- and 280-fold, respectively) compared to nonwetted
samples. However, no significant differences in nigragillin were
observed for gypsum or MF-gypsum. In both wet MDF and OSB
the nigragillin concentration increases over time (Supplementary
Fig. 11). Another high-scoring metabolite showed MS/MS
fragmentation consistent with Fumigaclavine C (C23H30N2O2,
accurate mass= 366.2291), which is a fungal alkaloid first
identified in Aspergillus fumigatus28. Fumigaclavine C was
enriched in wet samples of gypsum, MDF, and OSB (23-, 26-,
and 13-fold increase in comparison to nonwetted samples,
respectively), with equivalent abundance in mold-free gypsum
regardless of wetting. While the concentration of Fumigaclavine
C remained flat or increased slowly in most materials, wet
gypsum showed a dramatic increase in abundance at 15 and
20 days post incubation (Supplementary Fig. 11).

Metabolites that were predictive of material type (OSB, MDF,
Gypsum and MF-Gypsum) were also further analyzed to
determine how these materials influence the chemical composi-
tion of metabolites. Of these metabolites, 80% eluted with a
retention time of >7 min, indicating a skew toward more
hydrophobic compounds. This suggests that hydrophobic com-
pounds are more diverse between the materials and therefore
could have greater influence on microbial metabolism than the
ubiquitous hydrophilic components. Two of these metabolites
were identified by MzCloud search: glucose-phosphate, which
was about tenfold less abundant in MF-gypsum compared to all
other materials, and scopoletin, a metabolite produced by plants
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that has antimicrobial activity29–31, which was about 60-fold
more abundant in MDF samples than in other materials and
could be influencing the reduced bacterial growth on this material
(Supplementary Fig. 11). Thiabendazole and azoxystrobin, known
antifungal compounds32,33, were highly overrepresented on MF-
Gypsum, 333- and 595-fold respectively more abundant than the
average content for the other three materials, and as such are
likely some of the active compounds in MF-Gypsum.

Microbe−metabolite co-occurrences. The abundances of
Nigragillin and Fumigaclavine C were each significantly positively
correlated with a fungal OTU annotated to the phylum Asco-
mycota (corr= 0.66, FDR p= 0.0004), which contains species
known to produce these two alkaloids. Both Nigragillin and
Fumigaclavine C have been reported to display antibacterial
activity34,35. Interestingly, Nigragillin was negatively correlated
with the abundance of Bacillus and Pseudomonas OTUs; this
could suggest fungal competition for space and resources36

against bacteria, and in the specific case of MDF, when Nigragillin
abundance was greatest no bacterial growth was detected
(Supplementary Figs. 2 and 11). The abundance of glucose-
phosphate was significantly correlated to the proportion of a
dominant Enterobacteriaceae OTU, a genus which is known to
synthesize it37 (corr= 0.72, FDR p= 0.000002). Thiabendazole
was positively correlated with Penicillium abundance (corr=
0.80, FDR p < 10−9). As thiabendazole is prevalent and persistent
in the natural environment, this correlation may indicate the
presence of thiabendazole-resistant Penicillium strains colonizing
the material from the built environment38.

Co-occurrence networks were constructed between the bacter-
ial OTUs and metabolites (SparCC correlation of >0.4; Supple-
mentary Fig. 12) to explore further specific microbe−metabolite
associations and possible mechanistic interactions. Significant
correlations were observed between Bacillus OTUs and a number
of different lipid classes which have been previously implicated in
either formation or disruption of biofilms39–42. In addition,
azoxystrobin as well as several lipids were positively correlated
with Bacillus and negatively correlated with Pseudomonas,
whereas scopoletin was positively correlated with Pseudomonas
and negatively correlated with Bacillus (Supplementary Fig. 13).
These additional antagonistic compound interactions between
Bacillus and Pseudomonas could represent either competitive
interactions between these organisms or different adaptation to
the different materials and wetting conditions.

Discussion
As expected, wetted materials had higher bacterial and fungal
growth rates and were dominated by a few particular microbes,
most notably the bacterial genera Bacillus, Erwinia, and Pseudo-
monas and the fungal genera Eurotium and Penicillium. This
dominance led to an overall lower alpha diversity compared to
nonwetted coupons. Wetting condition and material type
described the majority of the variance in bacterial, fungal and
metabolite structure. Interestingly, each wetted material showed
its own unique microbe−metabolite dynamics.

Gypsum and MF-gypsum were mostly colonized by Bacillus,
with gypsum being a less selective environment, which allowed
for several bacterial species to thrive on the same coupon
simultaneously, each of them with high relative abundance and
apparently sharing both the physical space and resources. In
contrast, MF-gypsum prevented most fungal growth and allowed
Bacillus to dominate with little competition. MDF selected for
fungal growth primarily, which allowed for the rapid accumula-
tion of the antibacterial chemical, nigragillin, which is known to
be made by the Aspergillus fungi. On OSB material, nigragillin

and fumigaclavine C, a second fungal-synthesized antibacterial
metabolite, may play important roles in microbial growth
dynamics. Nigragillin, Fumigaclavine C, and Aspergillus relative
abundance each gradually increases over time, whereas the
abundance of Pseudomonas declines after the antibacterial
metabolites reach peak abundance (Supplementary Fig. 11).
These observations bolster our hypothesis that production of
antibacterial metabolites by Aspergillus may inhibit the pro-
liferation of surrounding bacteria. Also, there is a human health
risk associated with the proliferation of the Aspergillus fungi in
the BE. While the most common species identified in our data
was Aspergillus penicillioides, a common indoor fungus in damp
buildings with known associations to allergies and asthma43,44,
other Aspergillus species are known to be able to produce
mycotoxins (including aflatoxins), molecules that have been
associated with cancer and immunosuppression on humans17. Of
course, our correlation-based analyses do not definitively estab-
lish interactions between taxa or the origins of individual meta-
bolites. Still, we believe these insights will be useful in generating
testable hypotheses for future, more specifically targeted studies.

Traditional wood-based building materials contain natural
polymers such as cellulose and lignin that are susceptible to
degradation by fungal colonization19,21. With some fungi having
been shown to produce mycotoxins including aflatoxins that
could affect human health17,45, building materials such as mold-
resistant gypsum have been developed, which contain antifungal
compounds intended to discourage fungal growth. We were
particularly interested to examine the microbial communities on
these surfaces and as expected, found that fungal growth was
diminished on MF-gypsum compared to other materials. How-
ever, it appeared that the scarcity of fungal colonies made way for
bacterial species to flourish with less competition; on nonwetted
materials we observed MF-gypsum bacterial particle counts
greater than on the other three materials, and on wetted materials
while the MF-gypsum bacterial counts were second to MDF, the
abundance level between nonwetted and wetted coupons, unlike
MDF, remained minimally changed. This raises the potential that
pathogenic bacteria colonization could occur on MF-gypsum and
if wetted could grow and lead to negative health outcomes. In
terms of metabolite production, thiabendazole and azoxystrobin
were some of the antifungal compounds found in high abundance
and overall a similar subset of compounds accounted for most of
the metabolite abundance on this material, indicating lower
metabolic diversity when the colonization is dominated by bac-
terial growth. We also detected a correlation between thia-
bendazole and Penicillium, which suggested the persistence of
thiabendazole-resistant fungal strains.

Additionally, certain lipid metabolites (indicative of biofilm
formation) showed significant positive correlation with both
Bacillus and Pseudomonas OTUs, and these lipids were negatively
correlated with the abundance of chloroplast OTUs, indicating
that when bacteria and metabolites indicative of biofilm forma-
tion are detected in greater abundance, we see a proportional
reduction in plant-associated signal. Similar to the lipids, meta-
bolites annotated to organic molecules and vitamins were also
negatively correlated with the chloroplast OTUs, which suggests
that bacterial growth, indicated by increased proportion of 16S,
cellular counts and associated metabolites, tends to swamp out
the background material-chloroplast signal. We hypothesize that
this may be because these molecules are being produced by
bacteria colonizing and forming biofilms on the woody material.
When the relative abundance of the bacteria increases, it reduces
our ability to detect chloroplast sequences (based on a given
sequencing depth); as such this negative correlation is likely due
to the increased abundance of the microbes that mediate the
production of these metabolites, reducing the detection frequency
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of specific chloroplast OTUs, and not due to some mechanistic
relationship between the wood and these molecules.

Pseudomonads and Bacillus are often the main contributors to
biofilm formation on material surfaces in the built environ-
ment46–48. Biofilms are complex extracellular matrices formed by
bacteria through the excretion of lipopeptide biosurfactants, to
provide attachment to a surface to support colocalization with a
nutrient source and protection from dehydration and chemical
activity. Some of these lipopeptide biosurfactants produced by
Pseudomonas and Bacillus species have been shown to have lytic
or growth-inhibitory activity against many microorganisms such
as bacteria, viruses, mycoplasmas, and fungi48. Powers et al.47

demonstrated that Pseudomonas protegens produces antibiotics
that inhibit biofilm formation and sporulation in Bacillus subtilis.
They also found that Pseudomonas putida secretes an unknown
inhibitory compound that prevented biofilm-associated gene
expression. In our study we demonstrate a number of compounds
known to have potential biofilm inhibitory qualities that also co-
correlate with either Pseudomonas or Bacillus abundance, sug-
gesting potential competitive activity between these organisms.
While Pseudomonas–Bacillus interactions have been shown to be
competitive, interspecies interactions within the genus Bacillus
are also important in the formation of biofilms, lipids like
hydroxy fatty acids and mono-acyl-glycerophosphocholines could
be building blocks or residual products of the biofilm
creation39,40,49.

The simultaneous collection of environmental, metabolomic
and microbial profiles reveals insights into the chemical signals
that may govern BE microbial communities under high humidity
conditions, and provides evidence that these taxa compete for
space and resources. Here we show that wetting condition can
profoundly alter both fungal and bacterial community succession,
and that the taxa which dominate samples after wetting or
exposure to high humidity are not abundant in nonwetted
materials and have little relation to the skin-associated taxa which
dominate samples of indoor environments. After wetting, the
microbial community undergoes a successional trajectory that
can result in convergence of metabolic diversity even when
taxonomic diversity remains variable. We further show that while
material choice significantly influences bacterial diversity, the
same is not true of fungal diversity. In summary, BE microbial
ecology once seen as a wasteland50 could rather be seen as a
desert environment mostly formed with smaller assemblages that
can rapidly become an active ecologically dynamic community if
water, in liquid or vapor form, is added. When a material
experiences high moisture conditions, both fungal and bacterial
growth rapidly accelerate and the metabolites associated with
their adaptation to different surface materials and competition for
resources demonstrate ready-made eco-evolutionary adaptation
to this sporadic availability of a crucial resource; this phenom-
enon is very similar to what has been observed in real desert soil
microbiomes51, as well as in very different ecosystems, such as
sediments exposed to oil pollution52.

Methods
Test materials. Four building materials were used in this study: OSB, MDF,
regular gypsum wallboard, and mold-resistant (i.e., mold-free, or “MF”) gypsum
wallboard. All samples were purchased new from a home improvement store in
Chicago, IL. The building materials were cut into 5 cm × 5 cm coupons for testing.
The coupons were sterilized by UV irradiation for 20 min followed by surface
cleaning with a 70% ethanol solution. This approach likely did not render the
coupons DNA free but certainly nonviable.

Inoculation. The material coupons were naturally inoculated by passive settling for
about 50 days each at one of three locations: two private residences (Location 1 and
Location 2) and in a laboratory where they were subsequently incubated (control).
The control coupons were kept covered by aluminum foil and kept in the

laboratory for the same duration to minimize natural inoculation by deposition.
These control samples were initially treated as a unique location in our analyses
and can be thought of as lab-inoculated (albeit with minimal environmental
influence) rather than residence-inoculated. Each set of test coupons included 44
coupons for each type of building material (i.e., 176 coupons in total) to allow for
multiple subsequent sampling strategies. One set of test coupons was placed inside
a sixth floor apartment unit with two adult occupants and a medium-sized dog
located in downtown Chicago, IL (Location 1). The other set of materials was
placed inside a two-story single-family residence without any pets near the main
campus of Illinois Institute of Technology, approximately 8 km south of the
downtown residence (Location 2). During the inoculation periods, built environ-
ment metadata53 were collected in each residence, including temperature (T) and
relative humidity (RH) using Onset HOBO U12 data loggers and occupant pre-
sence within the immediate vicinity of the samples using Onset UX90 data loggers.
The UX90 occupancy sensors were placed on the floor next to the samples, facing
up, to record movements within the sensor’s field of vision as an indicator of how
often occupants were in close proximity to the surfaces, which may have affected
natural inoculation through direct human shedding. Coupons at a third location
(the Built Environment Research Laboratory at the Illinois Institute of Technology)
were covered with aluminum foil to minimize natural inoculation, serving as a
control group.

Wetting and incubation. After inoculation, half of each set of materials (i.e., 22
coupons each) from each location, as well as 22 coupons from the control group,
were submerged in tap water in separate pans for ~12 h to simulate the process of
wetting of building materials by potable water. The other half of each set of
materials (i.e., the other 22 coupons each) from each location and the other 22
coupons from the control group were not submerged in water. Next, just about 10
min after the submersion, to encourage fungal growth on all of the building
materials, all of the coupons were placed in trays (each tray contained all 22
coupons of one type of material from one location or control group) and were
incubated at room temperature (24 ± 2.7 °C) inside a static airtight chamber (0.9
m × 1.2 m × 0.4 m). Salt solutions (potassium nitrate) were used to maintain con-
stant high RH near ~94% for the duration of the experiment. Constant high RH
may not accurately reflect realistic building conditions but was used to encourage
growth and has been used in many prior investigates7,20. Temperature and RH in
the chamber were also recorded using Onset HOBO U12 data loggers.

Sampling procedures. The building material coupons were sampled for offline
biological and chemical analysis every 5 days at seven different sampling time
points. The initial samples (day 0) were taken just after retrieving the samples from
the field inoculation and represent nonwetted, naturally inoculated samples pre-
viously held at normal indoor environmental conditions. The remaining sampling
time points occurred every ~5 days. At each time point, a new coupon of each
material from each condition that had never been swabbed before was swabbed,
while duplicates of previously unswabbed samples were also swabbed periodically
(at 0, 10, 20, and 30 days) for comparison. Two samples were also swabbed at every
time point to investigate whether repeatedly swabbing the surfaces impacted the
results. Duplicates of both previously swabbed and previously unswabbed samples
were also included to investigate whether or not natural inoculation and sub-
sequent growth was evenly distributed across multiple coupons. Supplementary
Fig. 1 illustrates the experimental setup and Supplementary Fig. 14 shows coupons’
photographs at day 25 and day 30 for each one of the three locations. Details of
swabbing procedure at each time point are described below.

First, sampling reagents were prepared as follows. Phosphate-buffered saline
(PBS) was used for microbial samples that were to be analyzed for DNA and
formaldehyde was used for microbial samples that were to be analyzed by
microscopy. For PBS, 500 μL 1× PBS was added to 1.7 mL microtubes for each
sample to be collected. For formaldehyde, 100 μL 4% paraformaldehyde was added
to 1.7 mL microtubes for each sample. Microcentrifuge tubes were filled with
ethanol solution (200 μL 50% EtOH) to preserve samples for surface chemistry/
metabolomics analysis.

For subsequent DNA sequencing and analysis, the entire surface of the test
coupons was swabbed using two BD Screw Cap SWUBETM Polyester swabs for 20
s. The same researcher swabbed every time, intentionally applying approximately
the same pressure and swabbing in the same pattern to keep the swabbing process
consistent. Although polyester swabs have been shown to be less efficient in
recovering microbial biomass from surfaces than some other materials such as
nylon54, they were used in a consistent manner and have been shown to perform
well vs. roller samplers and electrostatic wipes when controlling for the actual area
sampled55. Swabs also allowed for minimal disturbance on our small surface area
coupons compared to other sampling approaches. One of the double swabs was
placed into the tube with PBS and frozen for shipping for subsequent sequencing.
The tip of the other of the double swabs was placed into microtubes and the swab
tips were vortexed for 10 s. One hundred microliters of sample buffer was removed
added to the tube containing 100 μL 4% paraformaldehyde for fixation. These fixed
samples were stored in a refrigerator at 4 °C and then sent to the San Diego State
University team for running numerical counts of cells and virus particles using
microscopy. Negative controls (swabs taken immediately after sterilization) were
not included in this study.
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For surface and microbial chemistry analysis (i.e., metabolomics), another test
coupon was swabbed using a cotton-tipped applicator that is dipped in ethanol56.
The end of the swabs were cut directly into pre-prepared collection tubes, stored at
4 °C for 2–3 h, and then stored at −20 °C overnight. Swabs were then removed with
clean forceps the next morning, then re-sealed into the microcentrifuge tubes and
sent to the Northwestern University team on ice at −20 °C or lower. Overhead
photos of each tray of coupons were also taken at each time point for image
analysis using ImageJ to calculate the percentage of visible microbial growth
coverage20.

Viral-like particle and bacterial microscopy counts. Epifluorescence microscopy
was used to ensure that all samples contained bacteria and virus-like particles and
to estimate their abundance. One hundred microliters of the paraformaldehyde-
fixed samples was resuspended into 5 mL of sterile 0.02 μm filtered water. Each
suspended sample was then filtered onto a 0.02 μm Whatman Anodisc filter
membrane57. The filters were stained with 1× SYBR Gold and incubated for 10 min
in the dark. Each filter was washed and mounted onto slides to be observed.
Visualization was performed using a QImaging Retiga EXi Fast Cooled Mono 12-
bit microscope and Image-Pro Plus software was used to collect digital images and
estimate VLP and bacterial abundances. We did not estimate fungal cell counts
because of the difficulty in counting multicellular hyphae.

Metabolomics analysis. Samples were analyzed by high-performance liquid
chromatography and high-resolution mass spectrometry and tandem mass spec-
trometry (HPLC-MS/MS). Specifically, the system consisted of a Thermo Q-
Exactive in line with an electrospray source and an Agilent 1200 series HPLC stack
including a binary pump, degasser, and autosampler, outfitted with a column
(Waters XBridge BEH Shield RP18, 100 × 2.1 mm, 5 µm particle size with matching
guard). The mobile phase A was H2O with 0.1% formic acid; B was acetonitrile
with 0.1% formic acid. The gradient was as follows: 0–0.5 min, 98% A; 5 min, 80%
A; 10–10.5 min, 5% A; 10.6–15 min, 98% A, with a flow rate of 400 μL/min. The
capillary of the ESI source was set to 275 °C, with sheath gas at 40 arbitrary units
and the spray voltage at 4.0 kV. In positive polarity mode, MS1 data were collected
at a resolution of 35,000. The precursor ions were subsequently fragmented using
the higher energy collisional dissociation (HCD) cell set to 30% normalized col-
lision energy in MS2 at a resolution power of 17,500. Data were processed with
Compound Discoverer 2.0 (Thermo Fisher) with MS/MS metabolite identifications
made by comparing experimental MS/MS spectra with library spectra from
MZCloud (lower cutoff score of 90% match).

For the metabolites that were selected for more in-depth characterization,
classification of structure or substructure was performed by searching databases
such as the Dictionary of Natural Products, the LIPID MAPS Structure Database,
and GNPS (Global Natural Products Social Molecular Networking). Predicted
structures resulting from a matched intact mass (≤10 ppm error) were
subsequently validated through manual analysis of fragmentation mass spectra.

Metabolite differential abundances (fold calculations) were calculated from
Compound Discoverer median peak areas for each compound including all three
sampled locations.

DNA extraction and sequencing. To perform DNA extraction, the Qiagen
DNeasy Powersoil HTP kit was used with a modified protocol optimized for low-
biomass samples. Swab tips were inserted into each well of the bead plate, and then
cut off using a sterilized wire cutter. The manufacturer’s protocol was then fol-
lowed, with the following modifications: before cell lysis, the bead plates (con-
taining beads, bead solution, swabs, and the C1 solution) were heated for 20 min at
60 °C in a water bath. Additionally, the protocol steps using solutions C2 and C3
were combined into a single step, by adding 150 μL each of C2 and C3 together to
the lysed sample in the 1 mL plate.

The DNA obtained from the DNA extraction was used for both high-
throughput 16S/ITS sequencing, and qPCR. The 16S sequencing targeted the V4
region of the bacterial 16S rRNA gene, using the primer pairs 515F/806R. The ITS
sequencing targeted the highly variable fungal internal transcribed spacer region 1
located between the 5.8S and 18S rRNA genes, using the ITS1f and ITS2 primer
pairs58. Both primer sets used the same reaction mix and thermocycler
instructions: Reaction mix: 9.5 μL of molecular biology grade H2O, 12.5 μL of
Accustart II PCR Toughmix, 1 μL each of forward and reverse primers at 5 μM, and
1 μL of sample DNA for a total reaction volume of 25 μL.

To make both the 16S and ITS amplicons, the following PCR program was
used: Initial denaturing step at 94 °C for 3 min, followed by 35 cycles of: 94 °C for
45 s, 50 °C for 60 s, and 72 °C for 90 s, followed by a final extension step of 72 °C for
10 min. The resulting amplicons were quantified using the Picogreen dsDNA
binding fluorescent dye on a Tecan Infinity M200 Pro plate reader and pooled to
70 ng DNA per sample using the Eppendorf epMotion 5075 liquid handling robot.
Primers and PCR reagents were removed using Agencourt AMPure beads, and
then the clean amplicon pool was sequenced at Argonne National Laboratory’s
Environmental Sample Preparation and Sequencing Facility, following the Earth
Microbiome Protocol59. Sequencing was performed on an Illumina Miseq using V3
chemistry, generating 2 × 150 nt reads. For the fungal sequencing, 2 × 250 nt reads
were generated by using additional cycles.

In addition to our BLP counts, we employed qPCR to estimate bacterial
abundance. We view these approaches as complementary as they are subject to
different sources of bias. In microscopy, error comes from swabbing and
preparation, while in qPCR, error can originate from DNA extraction, the PCR
reaction, PCR primers not binding equally to all sequences, and 16S copy number.
qPCR was performed using a Roche LightCycler 480 II. The 515F/806R primer pair
was used again for amplification, using a mix of 10 μL LightCycler 480 SYBR Green
I Master mix, 6 μL of molecular biology grade H2O, 1 μL of 515F primer (10 μM), 1
μL of 806R primer (10 μM), and 2 μL of template DNA for a total of 20 μL per
reaction. The following thermocycler conditions were used: (1) 95 °C for 5 min, (2)
95 °C for 10 s, (3) 45 °C for 45 s, (4) Measure fluorescence, with steps 2 through 4
repeated 50 times. To determine the copy number of the 16S gene (and therefore
the number of organisms per swab), a standard curve was generated using a serial
dilution of a plasmid containing the Escherichia coli 16S rRNA gene.

For fungal qPCR, each 20 μl reaction contained 1 μL each of the forward ITS1f
(CTTGGTCATTTAGAGGAAGTAA) and reverse ITS2 (GCTGCGTTCTTCATC
GATGC) primers at 10 μM, 10μl of the mastermix, 6 μl of DNA-free water, and 2 μl
of the target DNA extraction. The target was amplified using the following
conditions: Initial denaturing step for 15 min at 95 °C, following by 45 cycles of a
95 °C denaturing step for 1 min, an annealing step at 53 °C for 30 s, and an
extension step of 72 °C for 1 min. The amount of amplified DNA was quantified
after each extension step. A standard curve was constructed using the Zymo Femto
Kit, which contains serially diluted DNA from Saccharomyces cerevisiae TMY18.
Using this curve, the copy number per μl for each extraction was determined.

Forward reads were quality-trimmed and processed for OTU clustering using
the open reference method implemented in the QIIME pipeline60. The sequence
identity cutoff was set at 97%, and taxonomy was assigned to the high-quality (<1%
incorrect bases) candidate OTUs using the parallel_assign_taxonomy_rdp.py script
of the QIIME software.

Treatment of technical replicates. We used Mantel test to determine whether the
bacterial communities on replicate coupons (coupons on the same tray sampled at
the same time) significantly resembled each other and preserved patterns of beta
diversity. We began by calculating the Bray−Curtis dissimilarity between each pair
of samples taken from the same material type using the beta_diversity.py function
from the software QIIME 1.9.1 60, producing dissimilarity matrices for each
sampling type. Then the Mantel test and false discovery rate adjustment was
performed using the mantel and p.adjust functions in the Vegan and stats R
packages. For all comparisons between the sampling types, the Mantel statistic
(which measures the stress in the fit of the two matrices) was significantly high
(Mantel ≥0.67 for fungi and ≥0.5 bacteria (all p < 1E-05) (Supplementary Tables 2
(Fungi) and 3 (Bacteria)). Based on the highly significant resemblance between
material types, we treated all samples of the same type as technical replicates,
meaning that all combinations of material, location, wetting condition, and time
point had either 2 (time point 0), 3 (time points 1, 3, and 5), or 4 (time points 2, 4,
and 6) replicates.

Rarefaction and statistical analyses. After sequencing and sample merging,
bacterial and fungi OTU tables were rarefied to 1000 and 10,000 reads respectively
for statistical analyses. Rarefaction and statistical analyses were performed using R.

Random forest analyses. Random forest models were implemented using the
randomForest R package. Samples from time point 0 were removed from the
dataset. Models were built with 1000 trees and tenfold cross validation. For each of
the ten models for each metadata criterion, a randomly drawn 70% of samples
(100 samples) were used for model training and the remaining 30% (44 samples)
were used for validation.

NMDS. We visualized sample similarity using NMDS ordination based on Bray
−Curtis dissimilarity. Metadata vectors were fit onto the ordination using the envfit
command in the Vegan R package. We converted material, location, and wetting
condition into dummy variables (1= yes, 0= no) and, in the case of the bacterial
and fungal datasets; also fit vectors of relative abundance for the common genera
described in Fig. 3. We assessed significance of each of the vectors using 105

permutations, and removed nonsignificant vectors from the figure. The R2 values
for each vector and their significance are presented in Supplementary Table 1.

Co-occurrence networks. Traditional correlation networks are unsuited to
genomic survey data as these data are relative, rather than absolute, measures of
community composition. Since the relative abundances of all taxa within each
sample must sum to 1, the fractions are not independent and will often exhibit
negative correlations to each other regardless of the true correlation in absolute
abundance. To avoid these compositional effects, we generated our networks using
SparCC26, a correlation metric based on log-ratio transformed data that is speci-
fically suited to compositional genomic surveys. Pseudo-p values for each corre-
lation were generated through comparison from 100 to 1000 bootstraps of the
permuted OTU table.

For the same kingdom and microbe−metabolite networks only samples where
either bacteria or fungi and metabolites were found in detectable levels after
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rarefaction were used (N= 83, N= 91 respectively). Additionally, only bacterial
OTUs with >9 reads, fungi OTUs with >99 reads, and metabolites with >5,000,000
abundance in the rarified dataset were used for a total number of 630 bacterial
OTUs, 352 fungi OTUs and 426 metabolites. Figures were generated using
CAVNet R package61 and only displayed the higher correlation threshold (positive
or negative) greater than 0.4.

For the network encompassing both bacteria and fungi, the OTUs reads
threshold remained the same but only samples with both 16S and ITS data were
kept (N= 153) producing a new subset of bacterial and fungi OTUs, 590 and 581
OTUs respectively. This dataset produced a co-occurrence network with 1171
nodes. Only positive correlations with a pseudo-p < 0.05 were included, resulting in
a network with 33,509 edges (density= 0.052). The network was ordinated using
the Fruchterman−Reingold Algorithm (edge-weighted, force-directed) in the
igraph R package, with node size based on the log read count of each OTU across
all samples (with ITS counts first divided by 10 to equalize rarefaction depth
between datasets). We used the Walktrap method62 to uncover dense subgraphs
(modules) within the network, which may correspond to distinct community
structures. We chose Walktrap (which is based on random walks within the
network) as our method of community inference due to its computational
tractability and its accuracy at uncovering subgraphs regardless of network size63.
We used random walks of four steps, which resulted in four distinct modules with a
network modularity of 0.45.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The raw data from this project have been loaded to the QIITA database64 with study
number 11950 as well as the European Nucleotid Archive from EMBL-EBI with study
code PRJEB29658. OTU tables for the 16S and ITS datasets, the metabomomics dataset,
the VLP and BLP counts, and the associated mapping files via FigShare at https://doi.org/
10.6084/m9.figshare.7865015.v2.

Code availability
The code used for the analyses will be made available upon e-mail request to the authors.

Received: 21 September 2018 Accepted: 27 March 2019

References
1. Lax, S. et al. Bacterial colonization and succession in a newly opened hospital.

Sci. Transl. Med. 9, eaah6500 (2017).
2. Adams, R. I. et al. Ten questions concerning the microbiomes of buildings.

Build. Environ. 109, 224–234 (2016).
3. Chase, J. et al. Geography and location are the primary drivers of office

microbiome composition. MSystems 1, e00022-16 (2016).
4. Stephens, B. What have we learned about the microbiomes of indoor

environments? MSystems 1, e00083-16 (2016).
5. Lax, S. et al. Longitudinal analysis of microbial interaction between humans

and the indoor environment. Science 345, 1048–1052 (2014).
6. Viitanen, H. et al. Moisture and bio-deterioration risk of building materials

and structures. J. Build. Phys. 33, 201–224 (2010).
7. Johansson, P. et al. Laboratory study to determine the critical moisture level

for mould growth on building materials. Int. Biodeterior. Biodegrad. 73, 23–32
(2012).

8. LBNL Indoor Environment Group. IAQ Report—Prevalence of Building
Dampness. 2019. https://iaqscience.lbl.gov/dampness-prevalence.

9. LBNL Indoor Environment Group. IAQ Report—Nature and Causes of
Building Dampness. 2019. https://iaqscience.lbl.gov/dampness-nature.

10. Mendell, M. J. et al. Respiratory and allergic health effects of dampness, mold,
and dampness-related agents: a review of the epidemiologic evidence. Environ.
Health Perspect. 119, 748 (2011).

11. Quansah, R. et al. Residential dampness and molds and the risk of developing
asthma: a systematic review and meta-analysis. PLoS ONE 7, e47526 (2012).

12. Fisk, W. J., Eliseevaina, E. A. & Mendell, M. J. Association of residential
dampness and mold with respiratory tract infections and bronchitis: a meta-
analysis. Environ. Health 9, 72 (2010).

13. Jaakkola, M. S. et al. Association of indoor dampness and molds with rhinitis
risk: a systematic review and meta-analysis. J. Allergy Clin. Immunol. 132,
1099–1110 (2013).

14. Institute of Medicine (US) Committee on Damp Indoor Spaces and Health.
Damp Indoor Spaces and Health (National Academies Press (US), Washington
(DC), 2004). https://www.ncbi.nlm.nih.gov/books/NBK215643/: https://doi.
org/10.17226/11011

15. Hegarty, B., Dannemiller, K. C. & Peccia, J. Gene expression of indoor fungal
communities under damp building conditions: implications for human health.
Indoor Air 28, 548–558 (2018).

16. Miller, J. D. & McMullin, D. R. Fungal secondary metabolites as harmful
indoor air contaminants: 10 years on. Appl. Microbiol. Biotechnol. 98,
9953–9966 (2014).

17. Roze, L. V., Hong, S.-Y. & Linz, J. E. Aflatoxin biosynthesis: current frontiers.
Annu. Rev. Food Sci. Technol. 4, 293–311 (2013).

18. Hyvärinen, A. et al. Fungi and actinobacteria in moisture-damaged building
materials—concentrations and diversity. Int. Biodeterior. Biodegrad. 49, 27–37
(2002).

19. Gravesen, S. et al. Microfungal contamination of damp buildings—examples
of risk constructions and risk materials. Environ. Health Perspect. 107(Suppl
3), 505 (1999).

20. Hoang, C. P. et al. Resistance of green building materials to fungal growth. Int.
Biodeterior. Biodegrad. 64, 104–113 (2010).

21. Pasanen, A.-L. et al. Occurrence and moisture requirements of microbial
growth in building materials. Int. Biodetrior. Biodegrad. 30, 273–283 (1992).

22. Coombs, K. et al. Fungal microbiomes associated with green and non-green
building materials. Int. Biodeterior. Biodegrad. 125, 251–257 (2017).

23. Gibbons, S. M. et al. Ecological succession and viability of human-associated
microbiota on restroom surfaces. Appl. Environ. Microbiol. 81, 765–773
(2015).

24. Prussin, A. J., Garcia, E. B. & Marr, L. C. Total concentrations of virus and
bacteria in indoor and outdoor air. Environ. Sci. Technol. Lett. 2, 84–88 (2015).

25. Adams, R. I. et al. Dispersal in microbes: fungi in indoor air are dominated by
outdoor air and show dispersal limitation at short distances. ISME J 7, 1262
(2013).

26. Friedman, J. & Alm, E. J. Inferring correlation networks from genomic survey
data. PLoS Comput. Biol. 8, e1002687 (2012).

27. Isogai, A. et al. Isolation and identification of Nigragillin as a insecticidal
metabolite produced by a Aspergillus niger. Agric. Biol. Chem. 39, 739–740
(1975).

28. Cole, R. J. et al. Mycotoxins produced by Aspergillus fumigatus species
isolated from molded silage. J. Agric. Food Chem. 25, 826–830 (1977).

29. Lerat, S. et al. Streptomyces scabiei and its toxin thaxtomin A induce
scopoletin biosynthesis in tobacco and Arabidopsis thaliana. Plant Cell Rep.
28, 1895–1903 (2009).

30. Gnonlonfin, G. J. B., Sanni, A. & Brimer, L. Review scopoletin–a coumarin
phytoalexin with medicinal properties. Crit. Rev. Plant Sci. 31, 47–56 (2012).

31. Nascimento, M. S., et al. Phenolic extractives and natural resistance of wood.
In: (ed. Chamy, R.) Biodegradation—Life of Science (InTech, London 2013).

32. Clausen, C. A. & Yang, V. Protecting wood from mould, decay, and termites
with multi-component biocide systems. Int. Biodeterior. Biodegrad. 59, 20–24
(2007).

33. Balba, H. Review of strobilurin fungicide chemicals. J. Environ. Sci. Health
Part B 42, 441–451 (2007).

34. Magdy, W. et al. Nigragillin, Nigerazine B and five Naphtho-γ-pyrones from
Aspergillus japonicus isolated from hot desert soil. Nat. Prod. J 7, 216–223
(2017).

35. Pinheiro, E. A. A. et al. Antibacterial activity of alkaloids produced by
endophytic fungus Aspergillus sp. EJC08 isolated from medical plant Bauhinia
guianensis. Nat. Prod. Res. 27, 1633–1638 (2013).

36. Mille‐Lindblom, C., Fischer, H. & Tranvik, L. J. Antagonism between bacteria
and fungi: substrate competition and a possible tradeoff between fungal
growth and tolerance towards bacteria. Oikos 113, 233–242 (2006).

37. Herter, T. et al. Glucose-1-phosphatase (AgpE) from Enterobacter cloacae
displays enhanced phytase activity. Appl. Microbiol. Biotechnol. 70, 60–64
(2006).

38. Holmes, G. J. & Eckert, J. W. Sensitivity of Penicillium digitatum and P.
italicum to postharvest citrus fungicides in California. Phytopathology 89,
716–721 (1999).

39. Diomande, S. E. et al. Role of fatty acids in Bacillus environmental adaptation.
Front. Microbiol. 6, 813 (2015).

40. Dubois-Brissonnet, F., Trotier, E. & Briandet, R. The biofilm lifestyle involves
an increase in bacterial membrane saturated fatty acids. Front. Microbiol. 7,
1673 (2016).

41. Kong, N.-N. et al. Flavonoids from the halophyte Apocynum venetum and
their antifouling activities against marine biofilm-derived bacteria. Nat. Prod.
Res. 28, 928–931 (2014).

42. Jensen, P. Ø. et al. Formation of hydroxyl radicals contributes to the
bactericidal activity of ciprofloxacin against Pseudomonas aeruginosa biofilms.
Pathog. Dis. 70, 440–443 (2014).

43. Edwards, M. R. et al. The microbiology of asthma. Nat. Rev. Microbiol. 10, 459
(2012).

44. Hay, D. B., Hart, B. J. & Douglas, A. E. Evidence refuting the contribution of
the fungus Aspergillus penicillioides to the allergenicity of the house dust mite

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-09764-z ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:1767 | https://doi.org/10.1038/s41467-019-09764-z | www.nature.com/naturecommunications 11

https://doi.org/10.6084/m9.figshare.7865015.v2
https://doi.org/10.6084/m9.figshare.7865015.v2
https://iaqscience.lbl.gov/dampness-prevalence
https://iaqscience.lbl.gov/dampness-nature
https://www.ncbi.nlm.nih.gov/books/NBK215643/
https://doi.org/10.17226/11011
https://doi.org/10.17226/11011
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Dermatophagoides pteronyssinus. Int. Arch. Allergy Immunol. 97, 86–88
(1992).

45. Rand, T. G. et al. Inflammation-associated gene expression in RAW 264.7
macrophages induced by toxins from fungi common on damp building
materials. Toxicol. Vitr. 43, 16–20 (2017).

46. Ronan, E. et al. Interspecies interaction extends bacterial survival at solid–air
interfaces. Biofouling 29, 1087–1096 (2013).

47. Powers, M. J. et al. Inhibition of cell differentiation in Bacillus subtilis by
Pseudomonas protegens. J. Bacteriol. 197, 2129–2138 (2015).

48. Raaijmakers, J. M. et al. Natural functions of lipopeptides from Bacillus and
Pseudomonas: more than surfactants and antibiotics. FEMS Microbiol. Rev.
34, 1037–1062 (2010).

49. Shank, E. A. et al. Interspecies interactions that result in Bacillus subtilis
forming biofilms are mediated mainly by members of its own genus.
Proc. Natl Acad. Sci. USA 108, E1236–E1243 (2011).

50. Gibbons, S. M. The built environment is a microbial wasteland. MSystems 1,
e00033-16 (2016).

51. Neilson, J. W. et al. Significant impacts of increasing aridity on the arid
soil microbiome. MSystems 2, e00195-16 (2017).

52. Handley, K. M. et al. Metabolic and spatio-taxonomic response of
uncultivated seafloor bacteria following the Deepwater Horizon oil spill.
ISME J 11, 2569 (2017).

53. Ramos, T. & Stephens, B. Tools to improve built environment data collection for
indoor microbial ecology investigations. Build. Environ. 81, 243–257 (2014).

54. Rose, L. et al. Swab materials and Bacillus anthracis spore recovery from
nonporous surfaces. Emerg. Infect. Dis. 10, 1023 (2004).

55. Lutz, J. K. et al. Comparative performance of contact plates, electrostatic
wipes, swabs and a novel sampling device for the detection of S taphylococcus
aureus on environmental surfaces. J. Appl. Microbiol. 115, 171–178 (2013).

56. Petras, D. et al. Mass spectrometry-based visualization of molecules associated
with human habitats. Anal. Chem. 88, 10775–10784 (2016).

57. Thurber, R. V. et al. Laboratory procedures to generate viral metagenomes.
Nat. Protoc. 4, 470 (2009).

58. Walters, W. et al. Improved bacterial 16S rRNA gene (V4 and V4-5) and
fungal internal transcribed spacer marker gene primers for microbial
community surveys. mSystems 1, e00009-15 (2015).

59. Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of
millions of sequences per sample. Proc. Natl. Acad. Sci. USA 108(Suppl 1),
4516–4522 (2011).

60. Caporaso, J. G. et al. QIIME allows analysis of high-throughput community
sequencing data. Nat. Methods 7, 335 (2010).

61. Cardona, C. CAVNet: Creation Analysis and Visualization of Networks
Package. Bitbucket. https://bitbucket.org/cesarcardonau/cavnet (2017)

62. Pons, P. and Latapy, M. Computing Communities in Large Networks Using
Random Walks. In: (eds. Yolum, Güngör, T., Gürgen, F., Özturan C.)
Computer and Information Sciences - ISCIS 2005. ISCIS 2005. Lecture Notes in
Computer Science, vol 3733 (Springer, Berlin, Heidelberg, 2005).

63. Yang, Z., Algesheimer, R. & Claudio, J. T. A comparative analysis of
community detection algorithms on artificial networks. Sci. Rep. 6, 30750
(2016).

64. Gonzalez, A. et al. Qiita: rapid, web-enabled microbiome meta-analysis.
Nat. Methods 15, 796–798 (2018).

Acknowledgements
The authors wish to thank the Sloan Foundation for financial support of the study.

Author contributions
J.A.G., B.S., S.T.K. and P.M.T. conceived of the study. S.L., C.C., D.Z., V.J.W., G.G., P.G.,
N.G., E.M.H. and C.H. collected and analyzed data. S.L., C.C., V.J.W., B.S. and J.A.G.
wrote the paper. All authors edited and approved the paper.

Additional information
Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-
019-09764-z.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

Journal peer review information: Nature Communications thanks the anonymous
reviewers for their contribution to the peer review of this work. Peer reviewer reports are
available.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2019

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-09764-z

12 NATURE COMMUNICATIONS |         (2019) 10:1767 | https://doi.org/10.1038/s41467-019-09764-z | www.nature.com/naturecommunications

https://bitbucket.org/cesarcardonau/cavnet
https://doi.org/10.1038/s41467-019-09764-z
https://doi.org/10.1038/s41467-019-09764-z
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Microbial and metabolic succession on common building materials under high humidity conditions
	Results
	Experimental setup
	Visible growth, particulate counts and qPCR
	Bacterial, fungal and metabolite diversity
	Microbial compositional changes
	Factors associated with microbial and metabolite diversity
	Bacterial and fungal network co-occurrence
	Metabolite network co-occurrence
	Metabolite features can predict sample type
	Microbe−metabolite co-occurrences

	Discussion
	Methods
	Test materials
	Inoculation
	Wetting and incubation
	Sampling procedures
	Viral-like particle and bacterial microscopy counts
	Metabolomics analysis
	DNA extraction and sequencing
	Treatment of technical replicates
	Rarefaction and statistical analyses
	Random forest analyses
	NMDS
	Co-occurrence networks
	Reporting summary

	References
	References
	References
	Acknowledgements
	Author contributions
	Competing interests
	ACKNOWLEDGEMENTS




