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Abstract

Generalized Probabilistic Bisection for Stochastic Root-Finding

by

Sergio Rodŕıguez Hernández

This thesis studies the stochastic root-finding problem, which consists of estimating

the point x∗ that solves the equation h(x∗) = 0, where the function h : (0, 1) → R

is learned via a stochastic simulator (oracle). Instead of focusing on modeling h(·),

we develop statistical methodologies that directly infer x∗ following a fully Bayesian

approach. To do so, we investigate procedures that generalize the Probabilistic Bisection

Algorithm (PBA) first introduced in Horstein (1963). The PBA is a one-dimensional

stochastic root-finding routine which builds an explicit Bayesian representation (i.e., a

posterior density) for x∗ based on the history of noisy function evaluations and sampling

locations. The PBA starts by assuming that x∗ is the realized value of an absolutely

continuous random variable, X∗ ∼ g0, with prior density g0. Then, it recursively updates

a posterior, gn, leveraging the information provided by the signs (positive/negative) of

the noisy function evaluations — which inform the direction where x∗ is located with

respect to a given location, x—. Due to observational noise, the oracle responses are

correct only with probability p(x). Waeber et al. (2013) showed that sampling at the

median of gn is an optimal sampling strategy and established exponential convergence

of the posterior gn to a Dirac mass at the true x∗ under the very restrictive assumption

that the probability of correct response p(x) is known and constant for all x; however, in

the most general and practical settings the latter condition no longer holds and the only

way to implement the PBA is to estimate p(·).

In the first part of this thesis, we state the Generalized PBA (G-PBA), where the
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above assumption is relaxed to the case where the sampling distribution of the oracle is

unknown and location-dependent. Namely, as in standard PBA, we rely on a knowledge

state to approximate the posterior of the root location. To implement the corresponding

Bayesian updating, we also carry out inference of p(·). To this end we utilize batched

querying in combination with a variety of frequentist and Bayesian estimators based on

majority vote, as well as the underlying functional responses, if available. For guiding

sampling selection we propose two families of sampling policies: batched Information Di-

rected Sampling and Randomized Quantile Sampling, which is a reminiscent of Thompson

Sampling and a generalization of the median sampling as in classical PBA. The latter

leads to the first main conclusion: the G-PBA is able to efficiently learn p(·) and X∗

simultaneously.

In the second part of this thesis, we propose to leverage the spatial structure of a

typical oracle by constructing a non-parametric statistical surrogate for p(·) based on

binomial regression. The latter leads to the second main conclusion: surrogate modeling

allows to determine the batch size for querying the oracle adaptively as a function of the

estimated predictive uncertainty of p(·).

In the last part of this thesis, we present extensive numerical experiments in order

to evaluate our sampling strategies (information-based or randomized). In particular

we demonstrate the efficiency of randomized quantile sampling for balancing the ex-

ploration/exploitation component; moreover, we show that spatial surrogate modeling

results in significant gains relative to the local estimators, as quantified by the improved

quality of the resulting root estimates (namely lower absolute residuals, narrower credible

intervals and dramatically higher probability coverage). Our work is motivated by the

root-finding sub-routine in pricing of Bermudan financial derivatives, illustrated in the

last section of this thesis.
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Chapter 1

Introduction

1.1 Motivation

This thesis studies the problem of estimating the root of a function when the function

is expressed implicitly through a stochastic simulation known as stochastic root-finding

problem (SRFP).

Our interest in studying SRFPs is motivated by the root-finding sub-routine for pric-

ing a Bermudan Put option [39]. Namely, a stochastic simulation approach (known in

the literature as the Longstaff-Schwartz paradigm [38]) recursively builds noisy simula-

tions of the timing-value function; defined as the difference between the value function

and the reward function for any given initial price x and fixed time t ≥ 0 [6]. This is

obtained by generating forward paths of the state process and computing corresponding

path-wise random reward. The realization, Z(x), is the path-wise timing value h(x), that

is, the difference between future and immediate reward over the given trajectory, which

is furthermore unbiased for the true h(x). It is well-known that there is a unique exercise

boundary, say x∗, so that the timing-value is zero, i.e., h(x∗) = 0 and one should exercise

as soon as x drops below x∗, since the conditional expectation of tomorrow’s reward-to-go
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Section 1.1 Motivation

is less than the immediate reward (frequently, a priori structure implies that the stopping

set (0, x∗) is a half-line, i.e., h(·) has a unique root x∗). However, since the timing-value

function h(·) is learned with noise that arises intrinsically due to the randomness in the

simulation, finding x∗ effectively reduces to a SRFP.

Stochastic root-finding indeed ubiquitously in a wide range of applications. Some

relevant applications of SRFPs include, for instance, the quantile estimation problem in

Bio-assay experiments [18]; quality and reliability improvement [33]; sensitivity experi-

ments [41]; and adaptive control and signal processing [12, 24, 5].

Data generating mechanism and experimental design. Throughout this thesis

we work with a black-box view of a simulation model, where the inputs and outputs of a

simulation model are observed, but the internal variables and specific functions implied

by the simulation are not. In particular, we assume a data generating process of the form

Z(x) = h(x) + ε(x), x ∈ (0, 1); (1.1)

where Z(x) is the simulation output, h(x) is a real-valued function and ε(x) is an additive

noise component whose distribution depends upon the sampling location x (simulation

input) but it is independent of previous evaluations. In addition, we assume that the

search space is bounded, so we can scale the search region to be the interval (0, 1).

We remark that the nature of the data generating mechanism (1.1) differs from

the classical regression/machine-learning paradigm, where it is assumed that a data set

(xi, Zi(xi))
N
i=1 is available before inference about unknown parameters is performed. In

general, we are interested in settings where simulation evaluation is expensive and data

collection is restricted to a limited a sampling budget N and hence experimental design

(ED) becomes critical.

The goal of ED is to efficiently learn the root x∗ of the function h, interpreted as

optimizing the simulation budget of calling (1.1) by judiciously selecting the points x1:n :=

2



Section 1.1 Motivation

(x1, . . . , xn) at which to observe Z1:n := (Z1(x1), . . . , Zn(xn)), and in turn construct an

estimator x̂n whose performance1 improves as more information is available. The latter

problem falls under the rubric of Bayesian design of experiments [11], in general; and

design and analysis of simulation experiments (DASE) [36], in particular. Importantly,

notice the distinction between sampling locations xn and the estimators x̂n, which in

general need not to be the same (in contrast to deterministic root-finding algorithms

where xn coincides with the estimated root x̂n).

Roughly speaking, there exist two approaches to conduct an experiment, a sequential

(adaptive) design or a passive (non-adaptive) design. In a passive design the querying

locations x1:n are chosen prior to the experiment, whereas in a sequential design new

sampling points xn+1 are selected based on the previous x1:n and Z1:n. As pointed out

in [32], the optimal election of, xn+1, depends intimately on the distributional properties

of the simulation outputs Z(·) and, naturally, no information is available before the

actual experiment is conducted. Thus, the root estimates induced by a passive design

(e.g., sampling uniformly over the input space) may exhibit poor optimality properties,

whereas a sequential approach may be a more suitable choice to learn the root. In

fact, as we show in our numeric examples presented in Chapter 4, sequential strategies

outperform their non-adaptive counterpart as measured by their corresponding accuracy

and uncertainty reduction about the root location.

The primary focus of the work presented below is thus to develop statistical procedures

to infer the point x∗ that solves h(x∗) = 0, by efficiently selecting the locations x1:n

at which to observe simulation outputs Z1:n and in turn produce a high-fidelity point

estimator x̂n for the unknown root location x∗. To that end, we assume the existence

and uniqueness of the root x∗ on (0, 1) so, without loss of generality, we furthermore

1For example, in our numeric examples presented in Chapter 4 we use several performance metrics to
measure the quality of the root estimates: absolute residuals, length of confidence intervals and coverage.
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Section 1.1 Motivation

suppose that the function h(·) in the metamodel (1.1) is positive to the left of x∗ and

negative for all x > x∗ (e.g., is non-increasing on (0, 1)).

Overview of Stochastic Root-Finding Methods. Numeric schemes for solving

SRFPs can be classified broadly into two main groups: stochastic approximation and

sample-path methods [43].

The stochastic approximation (SA) algorithm was introduced in the seminal paper

of Robbins and Monro [50]. The SA paradigm closely resembles the Newton-Raphson

deterministic root-finding regime for non-linear root-finding: start at a initial point x1

close from x∗ is known to be located (usually the region at which the underlying function

h is monotonic is known a priori), and then evaluate (1.1) selecting new points using the

rule

xn+1 := xn − bnZn,

for all n ∈ N until convergence criteria are satisfied; where (bn)n≥1 is a deterministic

sequence of constants. The SA strategy is in fact fully asymptotically efficient, i.e.,

xn → x∗ in probability as n→ +∞ under regularity conditions on the tunning sequence

(bn) [32].

As mentioned in Waeber [57], one of the main drawbacks of the SA-type methods is

that they only provide a point estimate x̂n for x∗ (which under the SA setting is equal to

the sampling location xn) without specifying any further probabilistic guarantees on the

accuracy of this estimate, for example, a confidence interval for the true x∗, which is one

of the main tools necessary to determine a stopping rule when sampling budget is small.

Another approach that implements the actual functional evaluations (1.1) consists of

sample-path (SP) schemes [25, 54]. As mentioned in [43], the SP method is conceptually

very simple and intuitive: substitute the unknown function h in (1.1) by a determin-

istic function obtained by observing “realizations” of an unbiased estimator Zm for h

4



Section 1.1 Motivation

(for example, the average function evaluations Z̄m(·) := m−1
∑m

j=1 Zj(·)), and then solve

the resulting problem as a deterministic root-finding problem (DRFP). In this sense, a

practical and viable strategy is thus to learn h(·) directly by regressing the batched re-

sponses Z̄1:n := (Z̄m(x1), . . . , Z̄m(xn)) on the history of sampling locations x1:n, i.e., build

a surrogate ĥ and then take x̂ = ĥ−1(0) to be the root of ĥ(·), obtained via a standard

deterministic root-finding method (say Newton’s method if ĥ′ is also available). In these

scenarios, the practitioner is actually faced with an SRFP, but chooses, albeit implic-

itly, to solve it as a DRFP. Surrogate modeling offers an opportunity to import the

vast machinery of emulation/meta-modeling construction which is an extensive topic in

the design of simulation experiments [36], as well as in the simulation optimization and

computer experiment literatures [9]. Within this context, root-finding is equivalent to

contour-estimation, i.e., learning the boundary of {x : h(x) > 0}, see [47, 4, 23].

Some of the drawbacks of response surface modeling (RSM) described above is that

a “good” representation for h usually does not lead to tractable models for x̂. For

example, consider a Gaussian process (GP) prior for h. A GP is a collection of random

variables, any finite number of which have a joint Gaussian distribution [48]. Then, the

marginal distribution h∗(x) is also Gaussian for any fixed x, however there is no closed-

form expression for the distribution of h−1
∗ (0). A viable choice to overcome the latter

limitation is for example build a bootstrapped empirical density for the root location

based on iteratively estimating the root location as more data is available. Nevertheless,

the latter heuristic ignores the dependency on the surrogate election as well as on the

numeric error due to replacing the original problem of estimating the root x∗ with the

RSM approach as we show in our numeric examples presented in Chapter 4.

The above limitation points to the second alternative of modeling x∗ itself, with h as

a background latent object. In this framework, statistical inference is conducted directly

on the root, considering x∗ as an unknown parameter to be inferred via the realized

5



Section 1.2 Probabilistic Bisection for Stochastic Root-Finding

data Z1:n obtained after sampling (1.1) at n locations x1:n. A natural strategy towards

constructing an estimator x̂n for x∗ given Z1:n, is to follow a fully Bayesian approach:

update knowledge about x∗ based on prior information about the shape of the underlying

function h (e.g., h is non-increasing) and the evidence provided by the responses Z1:n —

whose statistical properties are governed by the distribution of the random component

ε(·) in (1.1).

1.2 Probabilistic Bisection for Stochastic Root-Finding

One promising Bayesian alternative which accounts for both the estimation and design

component is the Probabilistic Bisection Algorithm (PBA), recently applied to solve one-

dimensional SRFPs by Waeber et al [57].

The PBA leverages the classical bisection search in a noise-free setting: iteratively

halve the search region and then select a subinterval in which a root must lie for further

processing. In the stochastic case, however, the PBA accounts for noise in the oracle

responses by considering x∗ as the realization of an absolutely continuous random variable

X∗ ∼ g0 with prior density g0 supported on (0, 1). The PBA then works with the sign

of the noisy function evaluations,

Y (xn) := sign{Z(xn)}; (1.2)

which provide information as to whether x∗ lies to the left or to the right of a given point

xn, in order to subsequently update a posterior density for X∗,

gn(X∗) := p(X∗|Y1:n, x1:n), (1.3)

that is, the conditional pdf of the root location X∗ given the history of oracle responses

Y1:n := (Y1(x1), . . . , Yn(xn)), sampling locations x1:n and prior g0.

6



Section 1.2 Probabilistic Bisection for Stochastic Root-Finding

The posterior (1.3) then serves the twin purposes of guiding the election of the next

sampling location xn+1 at which to query (1.2), as well as to provide an estimator x̂n for

X∗ (e.g., the posterior median or mean of gn).

Notice that due to the noise term ε(xn) in the simulation outputs Z(xn), then the

responses Y (xn) := sign{Z(xn)} translate into potentially inaccurate oracle directions.

To account for noise in (1.2) the PBA considers the probability of correct sign,

p(xn;x∗) := P(Y (xn) = sign{xn − x∗}), xn, x
∗ ∈ (0, 1); (1.4)

(henceforth referred as oracle specificity or accuracy), which is then used to update

knowledge about X∗ by re-weighting the current gn proportionally to p(xn) ≡ p(xn;x∗).

Figure 1.1 shows an example of a realization of the classical PBA updating gn (i.e., when

p(xn) is known) captured at stages n = 0, 1, 10, implementing a linear function,

h1(x) = x∗ − x, x ∈ (0, 1),

which is henceforth our running example with root at x∗ = 1/3. Figure 1.1 illustrates

three fundamental components of the PBA:

• At each step the value of p(·) is required to update from gn to gn+1. The top panel

of the second column in Figure 1.1 shows that the updating takes the prior g0

and then “re-calibrates” knowledge based on whether a positive/negative response

Y (x1) is observed and the corresponding probability p(x1) of that direction being

correct after updating at x1.

• The PBA is able to account for noise in oracle directions Y (·) by assigning non-

zero probability gn(·) at regions where X∗ is believed to be based on the history

of responses Y1:n. For instance, notice that after n = 10 most of the mass of gn is

concentrated around the true x∗ as illustrated in the top right panel the Figure 1.1.
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Section 1.2 Probabilistic Bisection for Stochastic Root-Finding

• If one were to blindly apply deterministic bisection search for the stochastic case;

a single wrong direction will divert the search path almost surely, as it is the case

in the positive response observed rightwards x∗ as seen on the bottom right panel

of Figure 1.1.
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Figure 1.1: Knowledge updating using PBA with known p(x) at stages n ∈ {0, 1, 10} using the linear

test function h1(x) := x∗ − x with x∗ = 1/3.

Classical PBA with constant and known oracle properties. Under the as-

sumption that the oracle accuracy is known and constant (i.e., p(xn) ≡ p,∀xn), Waeber

at al. established exponential convergence of the posterior gn to a Dirac mass at the true

x∗ when the next location is given by xn+1 = median(gn). While, in practice, these con-

ditions are not typically going to be satisfied (as in our Bermudan Put example outlined

in Section 1.1), such explicit performance guarantees are highly desirable and have not

been available via RSM approaches.
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Section 1.3 Generalized PBA for Stochastic Root-Finding

In a realistic context, the oracle specificity (1.4) is unknown and spatially varying

in xn (since it intrinsically depends on h(xn) as well as on the statistical properties of

ε(xn) in (1.1)). Without further assumptions, the only way to employ PBA is to estimate

p(xn). This was already noted in [57, 19] where a hypothesis-testing-inspired procedure

was used to learn p(xn) en route to learning X∗. Specifically, they employed a Test of

Power One (TPO) [55], which relies on repeated sampling of (1.2) to effectively boost

p(xn) to a fixed accuracy level p̃(xn). However, such boosting can be very expensive in

the regime where p(xn) = 0.5 + δ for small δ > 0. This highlights the second challenge

with PBA: in the context of root-finding and (1.1), for xn close to x∗ we have p(xn) ' 0.5

which implies that the oracle is uninformative in the neighborhood of the root. A näıve

implementation of PBA leads to sampling too close to x∗ and is not asymptotically

convergent in the sense of the posterior collapsing to a Dirac mass at x∗.

1.3 Generalized PBA for Stochastic Root-Finding

In this thesis, we resolve the inherent challenges in the classical probabilistic bisection

scheme by providing a practically-minded extension of PBA. We construct a class of

algorithms, which we term generalized PBA (G-PBA) that can:

(P1) efficiently learn oracle properties;

(P2) aggregate collected information to construct a sequential design; and

(P3) update knowledge about the root location as new information becomes available.

To do so, similar to [57] we rely on batched sampling to learn p(·); however in contrast

to the latter TPO strategy that evaluates the oracle a random amount of times in order

to avoid estimating p(·) explicitly, we work with a fixed batch size a ≥ 1. We demonstrate

through the numeric examples presented in Chapter 4, fixed batching is more efficient,

9
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in particular by providing better control over the size of each batch, as well as allowing

the user to control the number of design points to be explored.

Estimating oracle properties. For (P1) we propose a collection of inference

methods which leverage the fundamental assumption of the PBA for SRFPs, that the

distribution of the noise component ε(·) is symmetrical. The latter allows for the re-

parametrization of p(x) as:

p(x) = max{θ(x), 1− θ(x)}, ∀x ∈ (0, 1); (1.5)

where

θ(x) := P(Y (x) = +1) (1.6)

is the probability of observing a single positive response at x. Consequently, we will

translate our inference problem of learning (1.5) into learning (1.6), to finally obtain

plug-in estimators of the form

p̂(x) = max{θ̂(x), 1− θ̂(x)}

for p(x). Naturally, the information that is used to find θ̂(x) is

B(x) :=
a∑
j=1

1{Yj(x)=+1}, (1.7)

which counts the number of positive responses observed at x after evaluating (1.2) a-

times.

In this thesis, we present two inference paradigms which intrinsically are built upon

the binomial response (1.7) and whose differences reside in whether spatial correlation

across sampling locations and corresponding binomial responses is leveraged or not.

The first class of estimators which do not borrow information across sampling loca-

tions is presented in Chapter 2, henceforth also referred as local estimators. An example

of such estimators is the majority proportion estimator

p̄(x) := max{B̄(x), 1− B̄(x)},
10
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where θ(x) is estimated via the binomial proportion B̄(x) := B(x)/a.

A key characteristic of the estimator p̄(x) is the majority-vote property, that is, if a

positive sign is observed majoritively at x (i.e., B(x) > da/2e), then the probability of

an accurate oracle response p(x) > 1/2 with high confidence. In Chapter 2 we analyze

the statistical properties of p̄(x) such as bias and consistency.

Within the same class of local estimators, we furthermore introduce a Bayesian fam-

ily of statistical procedures, p̂L (x), based on a posterior density π(p|p̄(x)) for p given

the majority proportion p̄(x) and a prior distribution for p ∼ π0. With π(p|p̄(x)) in

closed-form we propose a collection of optimal Bayes estimators based on several loss

functions L .

In Chapter 3, we present a second estimation paradigm which is able to borrow

information across sampling locations. To do so, we deploy spatial surrogate models

which rely on a classical binomial (logistic) regression approach: it is assumed that the

locations xi’s are related to θ(xi) via the canonical Bernoulli link function

log

(
θ(xi)

1− θ(xi)

)
= ϕ(xi), i = 1, . . . , n;

and where x 7→ ϕ(x) is a surrogate model to be trained from the data (xi, Bi(xi))
n
i=1

for n < N . Specifically, we seek non-parametric regression approaches which are able to

refine the regression curve in regions where more data points are placed (namely close

to the root), and simultaneously give a good global fit. In particular, we implement two

families of surrogates:

(A) a Gaussian random field (GRF) modeling approach (also known as Gaussian process

modeling, [48]) that takes ϕ as a latent Gaussian process and outputs the posterior

distribution p(ϕ∗|Dn) conditional on the data Dn := (B1:n, a1:n, x1:n); and

(B) a linear additive model that assumes that ϕ is an element of a linear space spanned

11
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by a collection of basis functions, i.e., ϕ(x) =
∑p

j=1 βjφj(x), with the coefficients

β := (β1, . . . , βp).

Both modeling schemes (A) and (B) are mathematical approximations (metamodels)

capable of modeling the relation x 7→ θ(x). Metamodels are particularly useful since

they can be built upon available observations and updated when new data is assimilated.

They can also be used to guide simulator evaluations more efficiently [51]. Given the

fitted surrogate ϕ̂n, the estimate for p(·) is a plug-in estimate of the form:

p̂n(·) := max{θ̂n(·), 1− θ̂n(·)}; where θ̂n(·) := [1 + e−ϕ̂n(·)]−1. (1.8)

Binomial Gaussian Processes and Adaptive Querying. In the context of inferring θ(x)

a fundamental question is to optimally determine optimally the amount of replication

a(x) at each location x where the batched response B(x) is observed. The answer to this

question is primarily driven by two concepts: (i) accuracy, as measured by successfully

predicting p(x) at values of x which are close from the root x∗; and (ii) allowing the

algorithm to explore the search region in a way that maximize computational efficiency.

The latter idea has been already posed for the problem of design of GP surrogates

in the face of heteroscedastic simulation experiments. Namely, Binois et al. [8] study

the conditions under which the new element should be a replicate versus explore a single

response. Analogous to the latter approach, we utilize the Binomial GP surrogate (A) to

adaptively determine the batch size an+1 as a function of the sampling location xn+1 in

order to address the replication/exploration trade-off (which becomes critical at locations

close from the root location).

In this context, in Chapter 3 we present an approximated adaptive replication scheme

where an+1 is computed as a function of the estimated predictive variance at xn+1. Intu-

itively, this approach will employ a larger batch size at locations where the posterior un-

certainty of the latent is large and a smaller batch size for locations where θ(·) has already

12
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been learned sufficiently well. We again contrast this adaptive replication regime with

TPO, in which querying ignores previous information leading to oversampling, whereas

in our approach the replication size can be as small as an+1 = 1 for locations where the

predictive variability of θ(·) is sufficiently small.

Sampling policies. A sampling policy η is a rule which maps states to actions.

In the context of SRFP actions effectively correspond to selecting sampling locations

xn+1. As in standard PBA, we work in the sequential paradigm for (P2), selecting

xn+1 based on a Bayesian perspective. Namely, to generalize the ideas of PBA to the

setting of unknown p(·) we introduce a knowledge state. The state of a system can be

described as consisting of all the information needed to make a decision, compute the

objective (contributions and rewards), and compute the transition to the next state [45].

The knowledge (or belief) state fn captures our distribution of belief about X∗ that we

do not know perfectly. The underlying philosophy is a Bayesian formulation of SRFP,

translating the task of learning the root X∗ into the language of “beliefs” encapsulated by

fn and used to quantify (posterior) uncertainty about X∗. Intuitively, fn is a “surrogate”

to the true posterior gn that is no longer attainable due to unknown p(·). The knowledge

state fn is then used for the dual purposes of providing an estimate x̂n of X∗, and for

guiding the sequential design.

We propose a collection of sampling strategies which blend the estimation procedures

p̂ developed for (P1) with the concept of information directed sampling and quantile-

sampling strategies. We also show the effectiveness of randomization for both schemes

which turns out to be crucial in preventing uncontrolled error propagation in constructing

the knowledge state. In Chapter 2 and Chapter 3 we compare respectively the perfor-

mance of such policies using local and spatial modeling for inferring p(·).

Knowledge Updating. The main challenge under the G-PBA paradigm where

we have unknown and location-dependent oracle accuracy, is that estimation for p(·)
13
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and knowledge updating about X∗ must be performed simultaneously. Towards address-

ing (P3), in Chapter 2 we explicitly construct an updating mechanism

fn+a := Ψ(fn, xn+1; p̂n+1, an+1)

capable of blending both estimation and knowledge state updating about X∗.

To obtain the knowledge transition function Ψ(·) we extend the classical PBA Bayesian

updating regime to construct a batched version which relies on sampling an+1 replica-

tions at xn+1 and observing the total number of positive responses B(xn+1) in order to

construct p̂n+1. Given an+1 and p̂n+1 knowledge updating occurs necessarily from fn to

fn+a. This knowledge updating mechanism given by Ψ(·) represents some of the main

contributions of this thesis and are presented in Chapter 2.

1.3.1 Summary of Contributions and Related Literature

Our G-PBA schemes are generic in that they make minimal assumptions about the

underlying (1.1), and can be employed across a wide spectrum of SRFP’s. To illustrate

this robustness we use G-PBA on our motivating example above to learn the critical

exercise threshold in the context of Regression Monte Carlo for Optimal Stopping. In that

case, the behavior of (1.1) is highly non-standard, expressing strongly heteroskedastic and

non-Gaussian characteristics, to which standard statistical learning procedures for ĥ are

very sensitive [39]. In contrast, the G-PBA is rather agnostic with respect to the usual

homoscedasticity and Gaussianity assumptions, not least thanks to the batching sub-

steps which allow for the Central Limit Theorem (CLT) to smooth statistical anomalies.

To provide further context for this thesis, let us recapitulate our contributions relative

to existing methods. Our contributions can be traced along several directions.

First, compared to PBA, we work with unknown and location-dependent oracle accu-

racy p(x), which requires a complete re-imagining of the algorithm, focusing on practical
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solutions that work well in non-asymptotic settings, where we are constrained by the bud-

get of T available oracle calls. In particular, we contrast our strategies with the proposals

in [57, 19] that employ the TPO approach to learn p(x), as we will show, while TPO

enjoys nice theoretical properties and is a viable alternative in terms of its asymptotic

behavior, it performs poorly for a small sampling budget T .

Second, compared to simulation optimization, we develop a root-finding procedure

which is built around the notion of constructing an explicit posterior density for the root,

and hence, primarily operates with the knowledge state rather than a surrogate for h(·).

This allows us to obtain and monitor the (pseudo-) credible bands for X∗ which give

sequential quantification of the learning performed by PBA. Thusly, we contribute to the

greater stochastic root-finding toolkit.

Finally, our sequential updating and sampling strategies can be linked to the literature

on active learning since they are based on the posterior uncertainty quantification of

X∗ rather than an h-based statistic — grounding our method in a purely information-

theoretic paradigm. In that sense, we make use of an acquisition function [11] which

maps previously assimilated information that is condensed by the surrogate.
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Chapter 2

Generalized Probabilistic Bisection

2.1 Introduction

A complete solution to the SRFP using the PBA was provided by [59] under the key

assumption that the oracle specificity (1.4) is a known and x-independent constant, i.e.,

p(x) ≡ p,∀x ∈ (0, 1) . Namely, Waeber et al. derived the equations for the posterior

density

gn(X∗) := p(X∗|y1:n, x1:n) (2.1)

and then established that sampling at the posterior median, xn+1 := G−1
n (0.5) for all

n = 1, 2, . . ., is an optimal policy. More precisely, they proved that this sampling

rule minimizes the expected Kullback-Leibler (KL) distance for its utility function, and

most importantly achieves exponential convergence for the estimate x̂n ≡ xn towards

x∗, i.e., |x̂n − x∗| = O(e−αn) with an explicit expression for α > 0. This justifies its

name, as the PBA manages to effectively reduce the interval containing x∗ by α% at

each stage. This result is truly impressive both given the noisy oracle replies and thanks

to the simplicity of the sampling rule. This assumption of spatial oracle stationarity

would tend to be met in applications where the transition between regions in h is abrupt.
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As an example, if a city’s water supply were contaminated with a dangerous chemical

we would want to localize the extent of contamination as quickly as possible, and if the

chemical did not dissolve well in water but instead tended to stay concentrated, we would

face a situation with such abrupt transition between contaminated and uncontaminated

water [45]. Moreover, PBA exemplifies the Bayesian setup: xn+1 is selected based on the

information summarized by gn, which also yields the point estimate x̂n.

Some partial results extending to the case where p(x) is non-constant (but still known)

were given in [58]. The crucial assumption that oracle properties, specifically p(x) is

known, is hard to justify in the context of unknown response h(·). For example, when

the noise component in (1.1) is ε(x) ∼ N(0, σ2(x)), then p(x) = Φ (|h(x)|/σ(x)), where

Φ(·) is the cumulative distribution function (CDF) of a standard Gaussian, and therefore

knowledge of p(·) is equivalent to knowing the signal-to-noise ratio — a rather unlikely

proposition. At the same time, the known-p assumption is critical to the performance:

as we discuss below without further modifications the PBA might fail completely in the

context of unknown p(x). More sophisticated sampling strategies are needed to resolve

this tension between exploitation and exploration.

To generalize the ideas of PBA to the setting of (1.1) we introduce a knowledge state,

fn, that is recursively updated and used for acquiring new samples. The underlying phi-

losophy is a Bayesian formulation of SRFP, translating the task of learning the root into

the language of “beliefs” encapsulated by fn and used to quantify (posterior) uncertainty

about X∗. Intuitively, fn is a “surrogate” to the true posterior (2.1) that is no longer

attainable due to unknown p(·).

A key ingredient of our approach is the use of replications : repeatedly evaluating the

oracle a ∈ N times at a fixed sampling location x. In this sense, a is the “sample size”

(aka batch size), that is, some measure of simulation effort that is usually well-defined de-

pending on the context. In the context of terminating simulations, for example, a usually
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refers to the number of times the simulation is called in computing the estimator p̂(x).

In non-terminating simulations, a usually refers to the “length of time” the simulation is

executed when computing the estimator p̂(x) [43].

Replications (henceforth also referred as batched sampling) allows us to obtain a

point estimate p̂(x) for p(x) based on counting the total number of positive responses

B(x) observed at x as in (1.7), which is then used to update knowledge from fn to fn+a.

Replicates decouple the problems of learning X∗ and of learning p(·); they also boost the

signal-to-noise ratio which allows faster convergence at the macro-level. Our resulting

G-PBA framework learns in parallel X∗ and p(·) and is summarized in Algorithm 1.

input : Total query budget T ; batch size a and prior distribution f0 on the root.

for n← 0, 1, . . . , N − 1 do

Generate next sampling point xn+1;

Obtain the estimate p̂(xn+1) using the binomial response B(xn+1);

Update knowledge state to fn+a := Ψ (fn, xn+1, B(xn+1); p̂(xn+1), a);

end

return Root estimate x̂N ; Knowledge state fT .

Algorithm 1: Generalized PBA.

In order to implement Algorithm 1, the G-PBA must specify:

(GPBA-I) statistical procedure p̂(xn+1) for estimating p(xn+1) at xn+1.

(GPBA-II) the mechanism to update knowledge states Ψ : fn → fn+1;

(GPBA-III) the rule η for selecting xn+1 = η(fn) given fn;

All three of the steps (GPBA-I), (GPBA-II) and (GPBA-III) require novel analysis, and

are a part of the main contributions of this thesis.

(GPBA-I) Statistical procedure for estimating p(·). All three steps above

require knowledge of p(x), so proper inference of the latter is central to the G-PBA
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performance. The symmetrical noise distribution assumption in (1.1) implies that the

oracle is “democratic”: p(x) ≥ 0.5∀x, and thus there is an implicit majority-vote property

in p(x), whereby the estimate is based on the majoritatively observed sign of the binomial

response B(x). This introduces a fundamental bias which becomes especially significant

when sampling close to X∗ (|h(x)| is small and p(x) ' 0.5).

In Section 2.2 we investigate three types of p-estimators: frequentist based on majority

proportion; Bayesian based on the posterior density of p given B(·); and a collection of

boosted estimators which directly aggregate oracle responses to construct a subsidiary

signal whose specificity is enhanced thanks to batching.

A fundamental property of the statistical procedures developed under this setting,

is that p(x) is inferred based solely on the information collected at x via the summary

statistic B(x). In this thesis, we refer to the latter paradigm as local estimation as no

information across sampling locations in leveraged for constructing the estimator p̂(x) at

location x.

(GPBA-II) Knowledge Updating Procedure. To update fn we then plug-in

an estimated p̂(x) into a knowledge state transition function of the form

fn+a := Ψ (fn, xn+1, B(xn+1); p̂(xn+1), a) , n = 0, 1, . . . , N − 1 and a ∈ N, (2.2)

where the sufficient statistic B(xn+1) is defined in (1.7). The map (2.2) is the analogue

of Bayesian updating when p(x) is known . Note that the knowledge transition Ψ(·; p̂, a)

function is similarly batched, allowing us to make full use (while maintaining compu-

tational efficiency) of the sampled replicates. This aspect is fully addressed in Section

2.2.

(GPBA-III) Sampling Policies. Third, to select the locations xn+1 at each

n = 0, . . . , N − 1 we introduce several sequential sampling policies η. The first fam-

ily of Information Directed Sampling uses an information gain function I(x, fn; p(x), a)
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to quantify the learning rate for X∗ if a new query batch is done at x. Notice that the

acquisition function x 7→ I(x, fn; p(x), a) depends on either the knowledge state fn and

the nuisance parameter p(x) for each x for fixed batch size a. It is motivated by the

optimality property of standard PBA in terms of maximizing the KL relative entropy

between gn and gn+1.

The second family of Quantile Sampling is motivated by the other aspect of PBA,

namely of sampling at the median of the knowledge state. Letting Fn be the CDF

of fn, we therefore propose to use the quantiles of fn for selecting the next xn+1, i.e.,

xn+1 := F−1
n (q), where q ∈ (0, 1).

Another important computational adjustment that we entertain is an additional de-

gree of randomization which serves to (a) alleviate the issue of error accumulation arising

from uncertainty in estimating p(xn) and (b) enforce exploration of the state space in

order to accelerate convergence to the true X∗. Our experiments demonstrate the value

of such randomized sampling policies and can be viewed as analogues of similar stochastic

searches in Bayesian optimization (such as Thompson sampling [53]). Full analysis of

these designs is in Section 2.3.

Wall-clock and macro time. Note that due to batching G-PBA will have two

different time scales: macro-iterations n = 1, . . . , N corresponding to the query locations

x1:n, where N is the total number of sampling points for a fixed batch size a; and wall-

clock time, T = a × N , which counts the total number of oracle queries and hence the

overall computational expense.

Estimating the root X∗. The final ingredient is the rule x̂n to construct an estimate

of the root based on fn. In analogy to the classical PBA setting, in this thesis we utilize

the posterior median (which we find is generally more robust than say the mean, as fn
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is often skewed or multi-modal),

x̂n := median(fn). (2.3)

2.2 Knowledge States

Consider a real-valued continuous response function h : (0, 1) → R. For concreteness

we have re-scale the (bounded) input space to the unit interval. The function h is noisily

sampled via the stochastic simulator (1.1). Let X∗ be the random root location and

x∗ its realized value at which h(x∗) = 0. To learn x∗, the PBA works with the signs

Y (x) := signZ(x), which due to the stochastic nature of the responses (1.1), are correct

with probability p(x).

Assuming that p(x) is known, the next Lemma provides the analytical one-step up-

dating equations for the posterior gn of X∗ defined in (2.1).

Lemma 2.2.1 (Updating formula for posterior density of the root location X∗). [59] Let

x ∈ (0, 1), Gn be the CDF of gn and p(x) as in (1.4). Define

γn(x; p(x)) := p(x)[1−Gn(x)] + [1− p(x)]Gn(x), (2.4)

Given a prior g0 on X∗ we have the recursion:

gn+1(u) =
1

γn(x; p(x))

[
p(x)1{u≥x} + (1− p(x))1{u<x}

]
gn(u), (2.5a)

if a negative sign is observed at x, i.e., Yn(x) = +1; and

gn+1(u) =
1

1− γn(x; p(x))

[
(1− p(x))1{u≥x} + p(x)1{u<x}

]
gn(u), (2.5b)

otherwise, for all n = 0, 1, . . ..

Remark 1. If no prior knowledge about the root location X∗ is provided, then a sensible

choice is a vague prior g0 = Unif(0, 1). The latter is also computationally convenient, since
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(2.5) then implies that gn will be piecewise constant ∀n, with discontinuities precisely at

the sampled x1:n. Therefore, storage and updating of gn becomes an O(n) operation in

this setup.

2.2.1 Batched Querying

Abstractly, the updating (2.5) constitutes a knowledge transition function Ψ : gn 7→

gn+1, which takes as inputs the current knowledge state gn, the oracle response Yn(x)

and its specificity p(x) when queried at the point x ∈ (0, 1). To learn p(x), we employ

batched queries, keeping the sampling location x unchanged for a ≥ 2 steps. Considering

the resulting i.i.d. sequence of oracle responses (Yj(x))aj=1, the knowledge state gn can be

recursively computed by using the update (2.5) a-times to obtain gn+a. Because p(x) is

the same across those updates, we can simply consider the total number of positive oracle

responses observed at x, B(x), yielding an aggregated knowledge transition function from

gn to gn+a.

Remark 2. The summary statistic B(x) defined in (1.7) intrinsically depends on the

sampling location x, as well as on the batch size a. However, in order to ease our

notation we omit the dependency of B(x) on a, unless necessary.

Theorem 2.2.2 (Batched Bayesian knowledge transition function). Let gn be the current

knowledge state about X∗ and p(·) the probability of a correct oracle response. The

batched Bayesian updating, Ψ, which maps gn to gn+a := Ψ(gn(u), x, B(x); p(x), a) is

given by

gn+a(u) =

 c−1
n (x)

[
p(x)B(x)(1− p(x))a−B(x)

]
· gn(u) if 0 < x < u < 1,

c−1
n (x)

[
(1− p(x))B(x)p(x)a−B(x)

]
· gn(u) if 0 < u ≤ x < 1;

(2.6)

for all x ∈ (0, 1) with normalizing constant

cn(x) :=
[
(1− p(x))B(x)p(x)a−B(x)

]
Gn(x)+

[
p(x)B(x)(1− p(x))a−B(x)

]
(1−Gn(x)). (2.7)
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Proof. We will show that the updating equations (2.6) hold for any a ∈ N via mathe-

matical induction. To do so, let x be a fixed sampling location in the support of gn, and

B ∈ {0, 1, . . . , a} to be the total number of observed positive signs after querying the

oracle a ≥ 1 times at x, and Yj ∈ {−1,+1} the j-th oracle response observed at x for

j = 1, . . . , a (dropping the dependency on x and a in B and the Yj’s). Re-expressing the

knowledge transition function (2.6) using indicator functions as (and disregarding the

normalizing constant cn(x) in (2.7)):

gn+a(u) ∝

[
a∑
j=0

pj(1− p)a−j1{B=j}

]
gn(u)1{u≥x} +

[
a∑
j=0

(1− p)jpa−j1{B=j}

]
gn(u)1{u<x},

with p ≡ p(x), we will prove that (2.6) holds for any a and fixed n. For a = 1 we have

{B = 1} = {Y1 = +1} and {B = 0} = {Y1 = −1} and (2.6) corresponds to the updating

in (2.5). We now concentrate on the case u > x and inductively suppose Equation (2.6)

holds for a; we now establish it for a+ 1:

gn+(a+1)(u) ∝
[
(1− p)1{Ya+1=−1} + p · 1{Ya+1=+1}

]
gn+a(u)

=
[
(1− p)1{Ya+1=−1} + p · 1{Ya+1=+1}

]
×

[
a∑
j=0

pj(1− p)a−j1{B=j}

]
gn(u)

=: (A1 + A2)gn(u).

We now have

A1 =
a∑

j′=0

pj
′+1(1− p)a−j′1{B=j′,Ya+1=+1} =

a+1∑
j=0

pj(1− p)a+1−j1{B=j−1,Ya+1=+1}.

Similarly we obtain A2 =
∑a+1

j=0 p
j(1− p)(a+1)−j1{B=j,Ya+1=−1}, which implies that

A1 + A2 =
a+1∑
j=0

pj(1− p)(a+1)−j
[
1{B=j,Ya+1=−1} + 1{B=j−1,Ya+1=+1}

]
=

a+1∑
j=0

pi(1− p)(a+1)−j1{Ba+1=j}.

Analogous argument works for u < x.
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Hence, if we furthermore define the right scaling-factor

ρ(x,B(x); p(x), a) := p(x)B(x)(1− p(x))a−B(x), (2.8)

then the ratio

R(a)(gn, x, B(x); p(x)) := ρ(x,B(x); p(x), a)/cn(x) (2.9)

completely specifies Ψ in (2.6): given the total number of positive responses B(x) ∈

{0, 1, . . . , a}, the new posterior gn+a(u) is recovered by scaling the values of gn(u) for

x ≤ u by the factor ρ from (2.8) divided by the normalizing constant cn(x) from (2.7).

Hence, if B(x) > ba/2c, i.e., there is favorable evidence that x∗ is rightwards of x, then

the mass of gn+a is shifted to the right of x. In the case where p(x) ∈ {0, 1}, (2.8) is

defined by ρ(x,B(x); a, p(x)) := p(x), which effectively reduces the support of gn+a by

placing zero mass on one of the intervals that have x as an end-point.

Approximate Knowledge State fn. For our G-PBA algorithms, neither (2.5)

nor (2.6) are feasible, since they require the unknown p(x). Nevertheless, to mimic the

Bayesian updating paradigm we introduce an approximate knowledge state fn which

follows the transition function in (2.6) by plugging-in an appropriate estimate p̂(x), i.e.,

fn+a := Ψ(fn, x, B(x); p̂(x), a); a ≥ 2 and x ∈ (0, 1), (2.10)

for n = 0, . . . , N − 1 and where Ψ(·; p̂, a) is computed via Theorem 2.2.2, for fixed a and

statistical procedure p̂. Note that because (2.10) is necessarily an approximation, fn does

not match the true posterior gn.

2.2.2 Frequentist and Bayesian Estimators for p(·)

The task in this section is to perform statistical inference on the unknown (nuisance)

parameter p(x) required to implement Bayesian updating about X∗, by using the batched

i.i.d. responses (Yj(x))aj=1 observed at x ∈ (0, 1). As mentioned above, we thus leverage
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the symmetry of the noise component ε in the underlying noise component (1.1) so p(x)

is re-parametrized via

p(x) = max{θ(x), 1− θ(x)}; where θ(x) := P(Y (x) = +1) (2.11)

is the marginal probability of observing a positive sign at location x. For the remainder

of the section we consider a single (macro)-iteration of the overall G-PBA, treating the

sampling location x as fixed and suppressed from the notation. To estimate p we construct

an estimator for θ and then plug into (2.11).

From a frequentist perspective, we recall that the binomial proportion B/a is an

UMVUE for θ and B ∼ Bin(a, θ) [10]. This yields the majority proportion estimator p̄

obtained by replacing θ by B/a in (2.11):

p̄ ≡ p̄(B) := max {B/a, 1−B/a} . (2.12)

In Lemma 2.2.3, we show that Ep[p̄] > p is necessarily biased high as soon as p > 1/2.

Lemma 2.2.3 (Bias of Majority proportion estimator p̄). We have that the bias of of the

majority proportion estimator p̄ given p is

Biasp(p̄) := EBp [p̄− p] = Pθ(B ≤ da/2e− 1)− 2pPθ(Ba−1 ≤ da/2e− 2) > 0, a ≥ 3 (2.13)

Proof. For brevity, we drop the dependency on x.

EBp [p̄(B)] := EBp [max{B/a, 1−B/a}]

=
1

a

{
EBθ [B1{B≥da/2e}] + EBθ [(a−B)1{B<da/2e}]

}
=

1

a

{
EBθ [B] + aPθ[B < da/2e]− 2EBθ [B1{B<da/2e}]

}
= p+ Pθ(B < da/2e)− 2

a
EBθ
[
B1{B<da/2e}

]
. (2.14)

The last term is equal to

Eθ
[
B1{B<da/2e}

]
=

da/2e−1∑
i=1

i

(
a

i

)
pi(1− p)a−i (2.15)
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= ap

da/2e−1∑
i=1

(
a− 1

i− 1

)
pi−1(1− p)(a−1)−(i−1)

= apPθ(Ba−1 ≤ da/2e − 2), Ba−1 ∼ Bin(a− 1, θ).

Substituting the latter quantity into (2.14) and using Biasp(p̄(B)) := p−Eθ[p̄(B)] yields

(2.13).

Intuitively, the bias in (2.12) is due to the possibility that the majority vote points

in the wrong direction.

An alternative estimation procedure is to assign a prior for p and then construct a

posterior based on the evidence (likelihood) provided by the batched responses p̄. Using

(2.12) yields the respective conditional likelihood of p̄ as:

Lemma 2.2.4 (Likelihood function of majority proportion). Let x be a fixed sampling

location at which the oracle is queried a ≥ 2 times and B be the total number of

positive responses observed at x. Then, the likelihood function of the majority proportion

estimator, p̄(B) := max{B/a, 1−B/a}, in p is given by

Pp(p̄(B) = j/a) =

 Bin(j; a, p) + Bin(j; a, 1− p), j = 0, 1, . . . , (da/2e − 1);

Bin(a/2; a, p), j = da/2e;
(2.16)

where dae is the ceiling function, and Bin(j; a, θ) is the probability mass function (pmf)

of a binomial random variable in a ≥ 1 independent trials and success probability θ

evaluated at j = 0, . . . , da/2e.

Proof. GivenB ∼ Bin(a, θ(x)) and θ(x) := P(Y (x) = +1) = p(x)1{x∗≤x}+(1−p(x))1{x∗>x}

for x ∈ (0, 1), we have

Pp(p̄(B) = j/a) := Pp(max{B/a, 1−B/a} = j/a)

= Pθ(B = j) + Pθ(B = a− j)
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=

(
a

j

)
θj(1− θ)a−j +

(
a

a− j

)
θa−j(1− θ)j, ∀j = 0, 1, . . . , da/2e − 1;

which is the sum of two binomial densities. Finally, if j = a/2 then Pp(p̄(B) = 1/2) =

Pθ(B = a/2) which is a single binomial density.

Assuming a vague prior p ∼ Unif(1/2, 1) (recall that by construction p is known to

be p ≥ 1/2) we then obtain explicitly the posterior density π(p|p̄).

Theorem 2.2.5 (Posterior density of p given majority proportion p̄). Suppose that p has

prior density π0(p) = 2·1{p∈[1/2,1]}. Then, for a ≥ 2, the posterior density of p conditioning

on the majority proportion (2.11) is given by

π(p|j/a) ∝

 pj(1− p)a−j + (1− p)jpa−j, if j = 0, 1, . . . , (da/2e − 1);

pa/2(1− p)a/2, if j = da/2e.
(2.17)

Proof.

π(p|p̄(B) = j/a) ∝ Pp(B = j)π0(p)

∝
(
a

j

)
[pj(1− p)a−j + (1− p)jpa−j]1(1/2,1)(p), if j = 0, 1, . . . , (da/2e − 1);

with the normalizing constant β1 =
∫ 1

1/2
[pj(1− p)a−j + (1− p)jpa−j] dp which can be

expressed in terms of the Beta function.

Remark 3. Other priors (e.g. location-dependent) for p can be entertained. The Uniform

choice is convenient both as a vague prior, and due to it matching the conjugate Beta-

binomial updates.

Figure 2.1 shows the theoretical expected posterior density, π̂(p;x, a) := EBθ [π(p|p̄(B))],

obtained after averaging the posterior (2.17) with respect to B(x) ∼ Bin(a, θ(x)) for batch

size values a ∈ {50, 100, 250, 500} and locations x > x∗ so that p(x) ∈ {0.5, 0.60, 0.70},

implementing the test function h1(x) = x∗ − x presented in Section 4.1 which corre-

sponds to a decreasing linear function with root at x∗ = 1/3 defined for x ∈ (0, 1). It
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namely shows that posterior is unimodal around the true p(x); furthermore the posterior

predictably tightens as a increases locating most of the posterior mass around the true

p(x)-value.

p(x)=0.5 p(x)=0.6 p(x)=0.7

0.5 1 0.5 1 0.5 1

0

5

10
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20

25

p
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 π(
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B
))

  a
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Figure 2.1: Expected posterior pdf π̂(p;x) obtained with respect to B(x) ∼ Bin(a, θ(x)) for locations x

so that p(x) ∈ {0.50, 0.60, 0.70} (columns) and batch size a ∈ {50, 100, 250, 500} (lines).

With π(·|p̄(B)) in closed-form, we can obtain a variety of estimators p̂L (p̄) by mini-

mizing the Bayesian posterior expected loss for a given loss function L (p, p̂). Namely,

(i) posterior mode based on L0(p, p̂) := 1{|p̂−p|>ε,ε>0} (taking ε ↓ 0 as π(p|·) is uni-

modal),

p̂L0(p̄) = mode π(p|p̄); (2.18)

(ii) posterior median based on the L1 loss L1(p, p̂) := |p− p̂|:

p̂L1(p̄) = median π(p|p̄), (2.19)

(iii) and posterior mean based on the L2 loss L2(p, p̂) := (p− p̂)2:

p̂L2(p̄) = mean π(p|p̄) (2.20)

Remark 4. Practically, (2.18) and (2.19) have to be computed numerically, whereas (2.20)

is computed in closed form as stated in Corollary 2.2.6.
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Corollary 2.2.6. The posterior mean p̂L2(j/a) := EpB[p|p̄(B) = j/a] is computed consid-

ering two cases:

(i) If j = 0, 1, . . . , (da/2e − 1)/a, then

p̂L2(j/a) := β−1
1

{
B(j + 2, a− j + 1)(1−

∫ 1/2

0

Beta(p; j + 2, a− j + 1))dp

+ B(a− j + 2, j + 1)(1−
∫ 1/2

0

Beta(p; (a− j + 2, j + 1)dp

}
.

(ii) If j = a/2, then

p̂L2(j/a) =

{
B(a/2 + 2, a/2 + 1)(1−

∫ 1/2

0
Beta(p; a/2 + 2, a/2 + 1))dp

}
B(a/2 + 1, a/2 + 1)[1−

∫ 1/2

0
Beta(p; a/2 + 1, a/2 + 1)dp]

;

where B(a, b) :=
∫ 1

0
ua−1(1 − u)b−1du is the Beta function defined for a, b > 0; and

Beta(u; a, b) is the pdf of a Beta random variable evaluated at u ∈ (0, 1).

Remark 5. The above Bayes estimators depend on four different parameters: the sam-

pling location x, realized number of positive responses at x summarized via the majority

proportion p̄(B(x)); the batch size a and the loss function L . Whenever necessary we

denote such dependency explicitly by p̂L (p̄(B(x))).

The left panel of Figure 2.2 shows the theoretical expected bias Biasp(p̂(x)) :=

EBθ,x[p(x) − p̂(B(x))] corresponding to the estimators (2.12), (2.18), (2.19) and (2.20);

for a = 250 and p ∈ (0.5, 1). Note that as p ↓ 0.5, all procedures overestimate the

true p, highlighting the difficulty to estimate p(x) when x ' x∗. Of course, this issue

is mitigated as batch size a increases. The procedures which best approximate p when

p ' 1/2 are the posterior mode, p̂L0 , and the empirical majority proportion p̄. However,

as the true p increases, p̂L0 underestimates p (the bias increases), whereas the bias in

the empirical majority proportion decays uniformly. Conversely, both the posterior mean

p̂L2 and median p̂L1 overestimate when p(x) ↓ 1/2 and underestimate it when p(x) ↑ 1.
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Figure 2.2: Left: Expected bias of p̂-estimators with respect to the number of positive responses B ∼

Bin(a, θ). Right: Expected right scaling factor R̂(a)(f0, x, p̂) computed given f0 = Unif(0, 1) and several

locations x > x∗ so that p(x) ∈ (0.50, 0.70) (x-axis). Both panels are for a = 250.

2.2.3 Bias in Knowledge States

Recall that the key component about the update fn+a (obtained via the knowl-

edge transition function Ψ) is given by the right-scaling factor (2.9) since it condenses

all information needed in order to recover fn+a given fn. The average scaling fac-

tor integrated against the pmf of B is R̂(a)(f0, x; p̂) := EBθ,x[R(a)(f0, x;B, p̂(B))], where

B(x) ∼ Bin(a, θ(x)). The right panel of Figure 2.2 shows the expected right-scaling factor

obtained given a Uniform prior f0 over (0, 1) and updating locations x1 > x∗ labeled via

their p(x1) (x-axis). Since x1 > x∗, the right-scaling factor is expected to be close to zero

when p(x1) � 0.5 (since the updated f1 would have fewer mass to the right of x1) and

conversely R̂(a)(f0, x1) ↑ 1 as p(x1) ↓ 0.5 (i.e., x1 approaches the root x∗). We observe

that in the latter setting, all four statistical procedures for p̂ tend to overestimate the

true right-scaling factor (the expected difference R− R̂ is negative), meaning that there

is “overconfidence” that x∗ is located to the right of x1 even though in fact p(x1) ∼= 1/2.

In particular, the two statistical procedures which seem to best resemble the true right-

scaling factor when x1 ' x∗ are the posterior mode, as well as the empirical majority

proportion. Conversely, when the updating location x1 is such that p(x1) > 1/2, we see
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that all procedures provide an accurate description of the updated knowledge state at

time n = 1, especially for large values of a.
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Figure 2.3: True and approximated knowledge states with the empirical proportion estimator p̄ using

three sampling locations x1:3 = (0.5, 0.4, 0.2) and a = 10, using the linear function (4.1) with x∗ = 1/3.

The approximated posterior fn+a differs relative to the true posterior gn+a due to the

fact that fn utilizes the estimated p̂(xn+1) whereas gn uses the true p(xn+1). Figure 2.3

uses the majority proportion estimator p̄ to illustrate how the bias in p̄ induces over/under

confidence when comparing the knowledge state fn+a vis-a-vis the ground truth gn+a.

Starting with a f0, g0 ∼ Unif(0, 1) prior, we compare the true posterior gn+a and its

approximation fn+a for n ∈ {1, 2, 3} and a = 10, updated using the (arbitrary) locations

x1 = 0.5, x2 = 0.4 and x3 = 0.2 our running example (4.1). Note that the first two

sampling locations x1:2 are to the right of x∗ = 1/3, whereas x3 is leftwards of x∗.

2.2.4 Aggregation of responses

An alternative strategy for updating the knowledge state is to build a subsidiary

statistic from the i.i.d. (Yj(x))aj=1’s, whose specificity is boosted thanks to the batching.

In other words, instead of using the a-step update Ψ(·; p, a) with p, we utilize a 1-step

update Ψ(·; P, 1) with an adjusted probability of correct response P. In this case, we

consider majority-vote statistic M (x) := 1{B(x)>da/2e} [37]. Then
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PM (p) := Pp(M (x) = 1{x>x∗}) =
a∑

j=da/2e

(
a

j

)
pj(1− p)a−j. (2.21)

Substituting an estimate p̂ in (2.21) then yields PM (p̂) =
∑a

j=da/2e
(
a
j

)
p̂j(1− p̂)a−j, and

the boosted update rule

fn+K = Ψ
(
fn, xn+1,M (xn+1); PM (p̂(xn+1)), 1

)
. (2.22)

Note that since M only uses limited information about B, it is not sufficient for learning

p. Consequently, the resulting knowledge state is not directly comparable to the full

Bayesian posterior gn; the hope is that through majority boosting we filter “noise” in B

and hence mitigate the bias in p̂.

Aggregation of Functional Responses. Assuming that the functional responses (1.1)

are available, another possibility for updating the knowledge state fn is to use the actual

functional values (Zj(x))aj=1 via the signal

S (x) := 1{∑a
j=1 Zj(x)>0}. (2.23)

By the CLT PS (h(x), σ(x)) := Ph,σ(S (x) = 1{x<x∗}) ' Φ(
√
a|h(x)|/σ(x)), where σ2(x)

is the location-dependent variance of ε(x). Observe that PS (h(x), σ(x)) no longer de-

pends on p(x) but on the signal-to-noise ratio h(x)/σ(x). A natural estimator for PS is

then

PS (ĥa, σ̂a) = Φ(
√
a|ĥa(x)|/σ̂a(x)); (2.24)

where ĥa := 1
a

∑a
j=1 Zj and σ̂2

a := 1
a−1

∑a
j=1(Zj − ĥa)2 are the sample mean and variance

obtained for a ≥ 2, respectively . Using the functional responses, the updated fn+a is

thus computed using S via

fn+a = Ψ
(
fn, xn+1,S (xn+1); PS (ĥa(xn+1), σ̂a(xn+1)), 1

)
. (2.25)
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Table 2.1: Schemes for knowledge state updating fn+a based on query batches of a at location x.

Update Scheme Sufficient Statistic Parameters

p-estimate (2.10) using p̄ or p̂L (p̄) B =
∑a
j=1 1{Yj=+1} p

Majority Boosting (2.22) with PM (p̂) M = 1{B>da/2e} p

Functional Aggregation (2.25) with PS (ĥa, σ̂a) S = 1{
∑a

j=1 Zj>0} h/σ

TPO Strategy. A different aggregation of Zj’s relies on hypothesis testing, specifi-

cally statistical tests of power one (TPO) [55]. The key idea is to use an adaptive number

of replicates aα(x) so as to boost the probability of correct response to level pα, without

explicitly estimating p(x) [57]. Let S(x) :=
∑a

j=1 Zj(x) and

aα(x) := min{k ∈ N : |Sk(x)| ≥ ck(α)}; (2.26)

where (ck(α))k∈N is defined in terms of the distribution of ε(x) and the significance

parameter α ∈ (0, 1). The adaptive batch size is aα and the resulting output is the

aggregated signal which is viewed as a test statistic for inference about the positiv-

ity of the drift of the random walk S·(x). The construction of c·(α) guarantees that

p̃(x) = P(Z̃(x) = sign(x∗ − x)) ≥ 1 − α/2. To obtain the curved boundary c·(α) re-

quires knowledge of the distribution of Z(x). For example, if Z(x) ∼ N(h(x), σ2) then

ck(α) = σ((n+ 1)[log(n+ 1)− 2 logα])1/2.

Table 2.2 shows the average hitting time Ep[aα(x)] as well as its estimated standard

deviation (in parentheses) for different p(x) (rows) and α (columns) combinations. It

illustrates that the expected batch size grows exponentially as p(x) ↓ 1/2, which might

be counterproductive in cases where the sampling budget is small. Indeed, instead of

trying other locations, TPO will stubbornly sample the same x thousands of times.
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Table 2.2: Average hitting time E[aα(x)] and corresponding standard deviation (in parentheses) to learn

p(x) using the TPO rule (2.26) with α ∈ {0.05, 0.10, 0.20, 0.40} for the h1 function in (4.1) with x∗ = 1/3.

Results are based on 1,000 macro runs.

p(x) E[a0.05(x)] E[a0.1(x)] E[a0.2(x)] E[a0.4(x)]

0.52 4951 (3209) 4352 (3151) 3563 (2983) 2715 (2843)

0.55 692 (483) 594 (457) 456 (403) 362 (388)

0.60 159 (113) 133 (103) 105 (95) 79 (81)

0.70 34 (24) 29 (20) 23 (18) 18 (17)

2.3 Sampling Policies

Sampling is the process of selecting querying locations so that the knowledge about

the root X∗ can be improved. In the context of the SRFP, the challenge is that sampling

close to the root yields uninformative oracle responses. More specifically, since x → x∗

implies p(x) ↓ 1/2, the knowledge obtained from sampling in a vicinity of x∗ is minimal

and the updated state fn+1 will change very little with relative to fn. To resolve this

challenge we investigate two classes of sampling policies that enforce exploration and take

advantage of the full probabilistic description of the root X∗ via the knowledge state fn:

1. Information Directed Sampling (IDS): Firstly, we borrow the idea of Expected Im-

provement (EI), popularized in Bayesian optimization. EI constructs a one-step

information gain criterion and sets xn+1 as the corresponding greedy maximizer.

Examples of EI functions include Efficient Global Optimization (EGO) [31], Step-

wise Uncertainty Reduction (SUR) [14], Expected Quantile Improvement (EQI)

[44], and Integrated Mean Squared Error (IMSE) [22]. Here again we contrast the

function-view strategy of emulation, which quantifies the learning of h(·), with the

root-view strategy that quantifies learning of X∗. For the former, despite some

progress on building EI measures for the level-sets and graph of h(·) [14, 3], these
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metrics remain complex. In our view this is a fundamental conceptual hurdle aris-

ing from the mismatch between the large model space for h, and the much simpler

derived quantity, i.e., the root x∗, to be learned. Moreover, to our knowledge, exist-

ing emulators for h have few tools to take advantage of the specific structure that

arises in root-finding, first and foremost the fact that there is a unique x∗. In our

running example of a GP emulator introduced in Chapter 1, it is very challenging

to control the behavior of the level-set; see for example the ongoing efforts to build

tractable monotone GP models [49]. By explicitly targeting X∗ we seek the most

direct path to developing effective rules for the sequential design x1:n.

2. Posterior Quantile Sampling: Secondly, we propose another class of sampling poli-

cies which do not make explicit use of a data acquisition function such as the

strategies above, but rather use solely the state variable fn (and perhaps additional

randomization) in order to select new samples. Namely, sampling locations are

quantiles of fn, i.e., xn+1 := F−1
n (qn), where Fn(·) is the CDF of fn and qn ∈ (0, 1)

are the sampling quantiles, which can either be randomized or fixed. For instance,

qn ≡ 1/2 ∀n ≥ 1 corresponds to the classic PBA median-sampling strategy. At

the other extreme, taking qn ∼ Unif(0, 1) – which closely resembles Thompson

Sampling [53]; new locations are chosen according to the current likelihood of X∗.

Both deterministic and randomized versions of each class are analyzed in Section 2.3.1

and Section 2.3.2, respectively.

2.3.1 Information Directed Sampling

This sampling strategy is driven by the notion of an acquisition function which quanti-

fies expected information gain from a new oracle query. A common information-theoretic

approach is to maximize the KL divergence between the current knowledge state fn and
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its expected update fn+1 conditional on sampling at a given x. In the context of PBA

for stochastic root-finding, the relative entropy between fn and fn+1 can be interpreted

as the mutual information between oracle Y (·) and X∗. As mentioned above, this idea is

similar to entropy-maximizing EI strategies (see e.g. [27]) and leverages the explicit form

of KL-divergence when p(x) is known.

Lemma 2.3.1 (Expected KL divergence between gn and gn+1). [28] Let

D(gn+1; gn) :=

∫ 1

0

log2

(
gn+1(u)

gn(u)

)
· gn(u)du (2.27)

be the KL divergence of gn and gn+1 (obtained when gn is updated at a given location

x). The expected KL divergence I(x, gn; p(x)) := EYp [D(gn+1; gn)|gn, x, p(x)] (averaging

against the pdf of Yn+1(x) ∈ {−1, 1}) between gn+1 and gn is given by

I(x, gn; p(x)) := −γn(x; p(x)) log γn(x; p(x))− [1− γn(x; p(x))] log[1− γn(x; p(x))]

+ p(x) log p(x) + (1− p(x)) log(1− p(x)), (2.28)

where γn(x; p(x)) and p(x) are given by (2.4) and (1.4), respectively.

A greedy IDS strategy then myopically maximizes the information gain (2.28). As

shown in [59], this myopic sampling rule is in fact optimal for the global problem of

reducing the expected posterior entropy of gN when p(·) is a known constant. This

approach has also been adopted in [28] for similar problems appearing in computer vision

or, more recently in [52] for on-line optimization problems.

In analogy to the Information Directed Sampling (IDS) criterion (2.28), we introduce

the batched expected KL divergence between gn and gn+a := Ψ(gn, x, B(x); p(x), a) for a

given batch amount a ≥ 1:

Theorem 2.3.2. Let x ∈ (0, 1) be an arbitrary updating location and gn the current

knowledge state. The batched information criterion, that is, the expected KL divergence
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I(x, gn; p(x), a) := EBp [D(gn+1; gn)|gn, x, p(x), a] (averaging with respect the pdf of B(x))

between gn+a and gn is given by

I(x, gn; p(x), a) := E
[
log2

(
(1− p(x))Bp(x)a−B

cn(x,B)

)]
Gn(x) (2.29a)

+ E

[
log2

(
p(x)B̃(1− p(x))a−B̃

cn(x, B̃)

)]
(1−Gn(x)) (2.29b)

where (2.29a) and (2.29b) are taken with respect to B ∼ Bin(a, 1 − θ(x)) and B̃ ∼

Bin(a, θ(x)), respectively; and cn(x,B) is the normalizing constant of the updating (2.6)

and Gn is the CDF of gn.

Proof of (2.29). The expected KL divergence between the current state gn and the up-

dated state gn+a := Ψ(gn, x, B; p(x), a) at x is obtained by averaging the KL diver-

gence of gn+a with respect to gn, D(gn+a; gn), with respect to all possible values of

Bn+1 ∈ {0, 1, . . . , a}:

I(x, gn; p(x), a) := EBp
[∫ 1

0

log2

(
gn(u|B, x, a)

gn(u)

)
gn(u)du

]
Since Pp(B = j|a, x, u) := Bin(j; a, 1−θ(x))1{u≤x}+Bin(j; a, θ(x))1{u>x} and for 0 < u < x

we have that gn(u|B, x, a) := [(1−p(x))Bp(x)a−B]gn(u)/cn(x,B) (similarly for x < u < 1)

so we end up with

I(x, gn; p(x), a) =

∫ x

0

E
[
log2

(
(1− p(x))Bp(x)a−B

cn(x,B)

)]
gn(u)du

+

∫ 1

x

E

[
log2

(
p(x)B̃(1− p(x))a−B̃

cn(x, B̃)

)]
gn(u)du

which simplifies to (2.29).

Given the acquisition function (2.29), the next sampling location is its greedy maxi-

mizer

xn+1 := arg sup
x∈(0,1)

I(x, fn; p(x), a).
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In order to further illustrate the relationship between the knowledge state gn and

the batched information-criterion I(·, gn; p(·), a), Figure 2.4 shows the knowledge state

updating using a replication amount of a = 100 for n = 0, . . . , 9 starting with g0 ≡

Unif(0, 1) prior on X∗, and implementing our running example h1 with root at x∗ =

1/3. The dotted vertical lines correspond to the maximizer xn+1 of the information

criterion. We notice that sampling at xn+1 with constant batch size a = 100 makes

gn to concentrate rapidly around the true root x∗, as well as the batched information

criterion has typically 2 major maxima, along with a global minimum at x∗ (sampling

at the root provides no knowledge about its location). Moreover, the third column of

Figure 2.4 shows the information criterion x 7→ I(x, g9; p(x), a10) for different replication

values a10 ∈ {1, 10, 5, 100, 250} given g9 (obtained after updating g0 with a = 100 at ten

sampling locations). It can be seen that as the batch size increases, the information gain

increases, as well as that the maximizer (dotted lines) of the associated information value

does not change significantly across the different replication values (which is in part due

to the posterior g9 is already concentrated in the region where xn+1 is selected, as seen

on the top plot in the third column).

To implement the IDS approach, two modifications are necessary. First, similar to

Section 2.2, given the majority response p̄(x) we can obtain a posteriori plug-in version

of (2.28) by replacing p(x) by its estimate p̂(x), as well as the true posterior gn by its

approximation fn, that is, I(x, fn; p̂, a). Second, the maximization over x can only be

done ad hoc, since under the current estimation paradigm computing the information

gain I can only be applied after querying the oracle a-times at x. As a work-around,

we carry out the optimization over a discrete candidate set SM(fn) := x̃
(n)
1:M : one picks

M ≥ 2, candidate locations x̃
(n)
1:M using fn, queries the oracle a-times at each x̃

(n)
i and
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Figure 2.4: Data acquisition procedure using the batched information criterion I(·, gn; p(·), a) starting

with a Uniform prior g0 and using the linear test function (4.1) with x∗ = 1/3. The first row shows the

true Bayesian updating gn for n ∈ {0, 1, 9} and the second row depicts the corresponding information

gain function along with its maximizer xn+1 (vertical dotted lines). The right-bottom plot, shows

the information criterion for several replication sizes a10 ∈ {1, 10, 50, 100, 250} with the corresponding

maximizers of the information criterion x10 (vertical dotted lines) given the updated knowledge state g9

obtained updating g0 with fixed size of a = 100 during at ten locations.

finally updates fn at the maximizer of this criterion:

xIDS

n+1 := arg max
x̃i∈SM (fn)

I(x̃i, fn; p̂(x̃i), a) (2.30)

To construct candidate sets SM(fn) we rely on the quantiles of fn:

Deterministic IDS: The test locations x̃
(n)
1:M are fixed posterior quantiles of fn, i.e.,

x̃
(n)
i := F−1

n (qi). (2.31)

Randomized IDS: The test locations are randomly chosen posterior quantiles of fn:

x̃
(n)
i = F−1

n (qi,n), qi,n ∼ Unif(0, 1). (2.32)

Note that at each iteration n, a total of a×M queries are made (a at each x̃i), of which

only a are used for actual updating to fn+1. Therefore, after N updates used for fN ,
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total wall-clock time is T = N ×a×M . To minimize this inefficiency in our experiments

we use M = 2, so that (2.30) is reduced to comparing information gain at two chosen

locations x̃
(n)
1:2 .

2.3.2 Posterior Quantile Sampling

The message of classical PBA is that one should sample at the median of the knowl-

edge state gn. However, this no longer holds when the p(x) depends on the location x

since p(x) → 1/2 as x → x∗. In fact, we show in our numeric examples that the per-

formance of this policy does as bad as sampling uniformly over the input space in terms

of uncertainty minimization. Intuitively, sampling at the median is not suitable since

after a few iterations the median is located too close to the root and therefore minimal

information gain is obtained (this was already pointed out in [57]).

Thus, other posterior quantiles are explored, taking xn+1 = F−1
n (qn). On the one

hand, quantile sampling places samples where most of the posterior mass of fn is located

(which after a few iterations will be concentrated around x∗), allowing to gradually focus

on the neighborhood of x∗. On the other hand, quantile sampling is based solely on the

knowledge state variable fn and can be used a priori without yet having an estimate of

p(xn+1).

Systematic Quantile Sampling. Locations are selected by systematically iterat-

ing over M ≥ 2 posterior quantiles q̌0:M−1, fixed a priori. Then, in the n-th iteration, the

next design point is

xSQS

n+1 = F−1
n (q̌(n mod M)). (2.33)

We remark that the precise ordering of q̌n’s will affect the results of Syst-Q. To balance

the trade-off between exploration and exploitation we look at quantiles that are away

from the median qn = 0.5. Considering the shape of (2.28), a sensible rule is to consider
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the quartiles of fn, i.e., q̌ ∈ {0.25, 0.75}.

Randomized Quantile Sampling. The next design point is a randomly chosen

quantile of the posterior distribution fn:

xRQS

n+1 = F−1
n (Un+1), where Un+1 ∼ Unif(0, 1). (2.34)

The policy (2.34) can be interpreted as sampling at a location Xn ∼ fn, i.e., sampling

based on the posterior distribution of X∗.

2.3.3 Batch size a

An essential tuning parameter in Algorithm 1 is the batch size a ≥ 1 needed to learn

p(x) at each updating location x. Recall that the total number of learning iterations

is N := bT/ac. Therefore, for a fixed budget T , the batch size a controls the balance

between the learning of X∗ and p(·). When a is small (thus N large), the algorithm is

exploring many sampling locations to learn X∗. When a is large, the algorithm exploits

the oracle in order to estimate p(x) locally with high accuracy. As a result, for large values

of a the estimated p̂(x1:n) is likely to be close to p(x1:n) and therefore fN resembles the

true posterior gN . Consequently, the probabilistic representation about X∗ would be

excellent (measured, for instance, in terms of the fn-coverage). However this would come

at the cost of sampling at very few sampling locations x1:N , and the resulting limited

knowledge about X∗ would lead to potentially larger residuals |x̂N − X∗|. In contrast,

for a small, the estimated p̂(x1:n) is highly biased and fn will significantly differ from

the true posterior gn causing fn to collapse to regions where X∗ may not be located. As

we show in our numerical examples, the latter case turns out to be more problematic.

In particular we observe that moderately large a ∈ [100, 500]’s are necessary to obtain a

reasonable fN ; otherwise the bias accumulates quickly.
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Chapter 3

Blending Spatial Modeling and

Probabilistic Bisection

3.1 Introduction

The Generalized PBA (G-PBA) that we developed in Chapter 2 extends the classical

PBA by using the observed data to construct a point estimate for p(x) as well as to

simultaneously learn the root location X∗. The proposed estimators p̂(xn+1) under the

G-PBA paradigm were constructed locally at xn+1 and did not use information from

previous locations x1:n. As such, they were robust to arbitrary specification of p(·) and

could be viewed as making minimal assumptions about the oracle.

Surrogate modeling. In this Chapter, we build a spatial G-PBA by modeling

the entire oracle accuracy x 7→ p(x) using a surrogate. The surrogate relies on tow

main premises: (i) the fundamental assumption of symmetrical noise in the oracle re-

sponses (1.1), which allows to translate estimating oracle specificity p(·) to learning the

probability of a positive response θ(·) (as expressed in Equation (2.11)) and (ii) the

smoothness of x 7→ θ(x), implying that p(x) and p(x′) should be similar when x and
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x′ are deemed close to each other. The spatial structure is natural in the root-finding

context and provides two key benefits. On the one hand, it improves estimation of a

given p(x) through leveraging the knowledge acquired at previous sampling locations

x1:n. On the other hand, it enables better sampling strategies by furnishing a prediction

p̂(x) at arbitrary x, specifically unsampled ones. In contrast, in G-PBA, p̂(xn+1) was

only available a posteriori after sampling at xn+1.

Our strategy blends the root-centric framework of PBA and the function-centric

paradigm of response surface modeling (RSM). Indeed, a further alternative for solv-

ing the SRFP would be to learn the entire θ(·) and then take x̂ = θ−1(0.5) since

h(x∗) = 0 ⇒ θ(x∗) = 0.5 = P(ε(x∗) > 0). Thus, stochastic root-finding can be re-

cast as a (localized) learning task, namely contour-finding for θ(·) at the level h = 0.5.

Strategies similar to Bayesian optimization can then be employed to efficiently target

this objective during sequential design. Nevertheless, several challenges are encountered

with such an approach that are circumvented in PBA. First, a major feature of PBA is

a full uncertainty quantification around x̂: the algorithm provides the entire posterior

distribution fn of X∗ conditional on the data. Typical RSM models return only point

estimates (or pointwise credible intervals) of θ(x); the latter are difficult to “invert” into

uncertainty about θ−1(0.5) [3]. Second, existing design approaches for contour-learning

are developed only for simple models (e.g. with zero or constant observation noise), and

their performance in a complex stochastic setting like ours is poorly known. In contrast,

the PBA explicitly targets the goal of reducing uncertainty of X∗. PBA moreover ex-

ploits the structural knowledge of a unique root to speed up estimation, an option that is

not available in contour-finding. Third, contour-finding usually assumes continuous re-

sponse, and nontrivial modifications (essentially “logistic” contour-finding) are necessary

to handle binary Yn ∈ {−1, 1}. In contrast, PBA intrinsically is designed for binomial

responses.
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Given the above discussion, we design a hybrid algorithm that borrows the best of

both worlds. We leverage the smoothness of h that implies spatial dependence in θ(·)

and hence accelerates learning the oracle. At the same time, we employ the paradigm of

PBA to construct the knowledge state fn (a pseudo-posterior of X∗) that is the primary

driver of sampling decisions and uncertainty quantification. For the RSM component, we

rely on two key concepts. First, we investigate non-parametric architectures that have

the flexibility to consistently learn the entire response θ(·) and to handle non-uniform

experiment designs. Specifically, we consider Gaussian Process (GP) models, as well

as splines, kernel and polynomial regression. Second, we apply batched sampling that

significantly lowers the computational overhead of surrogate construction and improves

the learning of θ(·). On the latter point, our work has independent interest in terms of

applications of GPs. To this end, we provide several new results that to our knowledge

are not available in existing literature. This include look-ahead variance formula for

logistic GP, and novel active learning heuristics for logistic GPs.

Statistical modeling framework. To infer the oracle properties, we employ logis-

tic regression which represents the probability of observing a positive response θ(x) =

E[1Zn(x)>0] via a latent process ϕ(x) := logit(θ(x)). We remark that other link functions

can be used but as we show in the sections below, the canonical Bernoulli link (i.e., logit

link) is used to derive adaptive replication schemes when GPs are considered for ϕ(·).

To achieve maximum flexibility, especially critical in our setup where the quality of the

entire x 7→ θ(x) is needed for good performance, we consider non-parametric models for

ϕ(·). Specifically, we seek regression approaches which are able to refine the regression

curve in regions where more inputs are placed (namely close to the root), but at the same

time give a good global fit. Two appropriate examples we investigate are Kernel logistic

regression (KLR) and Spline logistic regression (SLR). KLR behaves similarly to Support

Vector Machines: data inputs are mapped to a space spanned by positive definite kernel
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functions, and it also happens that the loss function optimized to obtain the estimated

regression curve in KLR is similar to the one in SVM for the two-class problem [62].

SLR uses the well-known cubic splines set of basis functions which are piecewise cubic

polynomials defined over a pre-specified set of knot locations.

The rest this Chapter is organized as follows. In Section 3.2 we describe the model

methodology used to provide an spatial estimate for p(·). Section 3.2.2, describes an

adaptive batching/replication scheme in order to determine the number of replicates

an+1 given an estimated surrogate model. In Section 3.3, we describe how surrogate

modeling is blended with the G-PBA and state the Spatial G-PBA in order to obtain an

enhanced version of G-PBA sampling policies.

3.2 Knowledge States

In this Section we extend the estimation procedures used in the G-PBA setting de-

veloped in Chapter 2 by introducing a surrogate model on p(·) which is built upon the

history of batched responses. Recall that for learning the oracle, the G-PBA produces a

local estimate p̂(xn) depending exclusively on the information observed at xn via the use

of replications. Thus, the oracle is called an ≥ 1 times at the fixed sampling location xn

with the responses aggregated based on the total number Bn ∈ {0, 1, . . . , an} of positive

signs observed at xn:

Bn(xn) :=
an∑
j=1

1{Yj(xn)=+1}. (3.1)

Remark 6. In contrast to the notation used in Chapter 2 we add the subscript n to the

binomial batched response Bn(·). Moreover, the response Bn(·) depends intrinsically also

on the replication amount an as well as on the sampling location xn.

In analogy to the idea employed for the local estimators, we translate the problem of
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learning p(x) into learning

θ(x) := P(Y (x) = +1), (3.2)

the probability of observing a positive oracle response; and then produce a plug-in esti-

mator for p(·) based on the fitted surrogate θ̂n:

p̂n(x) := max{θ̂n(xn), 1− θ̂n(x)}, ∀x ∈ (0, 1).

To obtain θ̂n(·) we borrow information from previous sampling locations by regress-

ing B1:n := (B1(x1), . . . , Bn(xn)) against the locations x1:n, linking xn to θ(xi) via the

canonical Bernoulli link function:

log

(
θ(xi)

1− θ(xi)

)
= ϕ(xi), i = 1, . . . , n, (3.3)

based on a surrogate model x 7→ ϕ(x).

Under this setting, we consider two families for ϕ(·):

(A) Gaussian random field (GRF) modeling approach (also known as Gaussian process

modeling, [48]) that takes ϕ as a latent Gaussian process (GP) and outputs the

posterior distribution p(ϕ∗|Dn) conditional on the data Dn := (B1:n, a1:n, x1:n);

(B) a linear additive model that assumes that ϕ is an element of a linear space spanned

by a collection of basis functions, i.e., ϕ(x) =
∑p

j=1 βjφj(x), with the coefficients

β := (β1, . . . , βp) fitted by, for example, penalized MLE.

Both modeling schemes (A) and (B) are mathematical approximations (metamodels)

capable to model the relation x 7→ θ(x). Metamodels are practically useful since they can

be built upon available observations and updated when new data is assimilated. They

can also be used to guide simulator evaluations more efficiently [51].

In line with the Bayesian updating procedure that introduced in Section 2.2 in Chap-

ter 2, we carry out knowledge updating via the knowledge transition function Ψ:

fTn+an+1 = Ψ(fTn , xn+1, Bn+1; an+1, p̂n+1); (3.4)
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which maps the current knowledge state variable fTn to fTn+an+1 for a fixed batch size

an+1 ≥ 1 and sampling location xn+1. Here, Tn :=
∑n

i=1 ai is the total number of oracle

evaluations (i.e., wall-clock time) and the batch size an+1 is not necessarily fixed along

sampling locations. In fact, note that thanks to the surrogate θ̂n the batch size an+1 may

be determined adaptively depending on the sampling location xn+1 at which the current

state is updated.

Below we introduce the surrogate families (A) and (B).

3.2.1 Binomial Gaussian Processes

GPs can conveniently be used to specify prior distributions for Bayesian inference

in the regression context. In this case, the responses are seen as a realization of a ran-

dom process whose finite dimensional distribution (fdd) follows a Multivariate Normal

(MVN) distribution and whose spatial dependency is described by a (stationary) co-

variance function. In the case of regression with Gaussian noise, inference can be done

simply in closed form, since the posterior corresponds also to a GP for a given election

of covariance kernel.

Binomial Gaussian processes (B-GPs) (aka GP classification) arise naturally in the

context latent variable regression. In this case, it is assumed that the binary responses

are the realized value of a latent GP in which only the its sign (positive/negative) is

observed. Since the data likelihood no longer corresponds to a Gaussian one, exact infer-

ence is analytically intractable and therefore approximations to the predictive posterior

must be conducted. One route summarized in [42] is based on approximating the non-

Gaussian posterior with a tractable Gaussian distribution. Some of the most common

instances of such schemes are the Laplace Approximation [60] and Expectation Propa-

gation [40]. Applications of such methods include: sequence annotation [1] or prostate
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cancer prediction [15]. Moreover, GPs are advantageous for addressing the sequential

design component in order to manage the sample budget for calling the oracle Z(x). In

another related application, binomial GPs were used for learning an approximate glob-

ally optimal closed-loop policy in the context of approximated dynamic programming

(ADP) [17]. Finally, the GP paradigm also facilitates computing the number of repli-

cates an+1 at location xn+1 so that the predictive uncertainty at this new location is

reduced compared to the current estimate before the new sample is acquired [34, 8]. In

fact, we use the latter ideas (in conjunction with the LA for binomial GPs) to give an

approximate procedure for determining the number of replicates an+1 in order to reduce

the predictive variance of the latent GP. We now assume that the surrogate ϕ in (3.3) is

drawn from a GP prior, ϕ ∼ GP(0, κϑ(·, ·)), characterized by a covariance kernel function

κϑ(·, ·) and parameterized by a vector of hyperparameters ϑ ≡ (τ 2, l). For instance, one

the most commonly used kernel is the 5/2-Matérn family,

κϑ(xi, xj) := τ 2
[
1 +
√

5r/l + 5r2/(3l2)
]
e−
√

5r/l r := |xi − xj|; (3.5)

where τ 2 ≥ 0 is the intrinsic GP variance, and l > 0 is the length-scale, which governs

how fast the correlation decreases as the distance r between inputs increases.

Binomial GPs as latent variable models. For fixed hyper-parameter ϑ, the

joint distribution of the vector ϕ1:n := (ϕ1(x1), . . . , ϕn(xn)) is a MVN

ϕ1:n ∼ N(0,Kn), (3.6)

where E[ϕ1:n|x1:n] = 0 is the mean vector and Kn ≡ Cov(ϕ1:n|x1:n) is the covariance

matrix with entries κϑ(xi, xj) := Cov(ϕi, ϕj|xi,j) for all i, j = 1, . . . , n. Inference of θ(·)

is conducted in two stages. First, we compute the posterior distribution of the vector

ϕ1:n given the training data Dn,

p(ϕ1:n|Dn) ∝ p(B1:n|ϕ1:n, a1:n)p(ϕ1:n); (3.7)
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which is proportional to the binomial data likelihood p(B1:n|ϕ1:n, a1:n) times the MVN

prior p(ϕ1:n) given by (3.6). Second, the posterior predictive distribution ϕ∗ ≡ ϕ∗(x) at

a location x ∈ (0, 1) is

p(ϕ∗|Dn) :=

∫
p(ϕ∗, ϕ̃1:n|Dn, x)dϕ̃1:n, (3.8)

which is calculated by marginalizing the distribution of ϕ∗ over the joint posterior distri-

bution of (ϕ1:n, ϕ∗) given by (3.7). Finally, the predicted θ̂GP (x) is produced by averaging

the inverse link function with respect to (3.8); i.e.,

θ̂GPn (x) :=

∫
(1 + e−ϕ∗)−1 · p(ϕ∗|Dn)dϕ∗.

Remark 7. Following the classical inference paradigm for binomial regression we assume

that θ(ϕ(xi)) is related to the random variable ϕ(xi) via the canonical logistic link func-

tion (3.3). Although other link functions can be entertained (such as the probit link), we

use the logistic one since this link is used to obtain closed-form expressions for adaptive

replication (see Lemma 3.2.1 in Section 3.2.2).

The main challenge in computing the joint posterior (3.7) is that the MVN prior

over ϕ1:n does not correspond to a conjugate prior for the Binomial likelihood, so either

analytic approximations of integrals or solutions based on MCMC sampling are required.

A commonly used method is to approximate the non-Gaussian posterior p(ϕ1:n|Dn) with

a Gaussian one via Laplace Approximation (LA).

Laplace Approximation. The Laplace method is constructed from the second

order Taylor expansion of the score function, Ļ(ϕ1:n) := log p(ϕ1:n|Dn), around its mode:

ϕ̂n = arg max
ϕn

p(ϕn|Dn).

In Appendix A.1 we show that this method yields a MVN approximation:

p(·|Dn) ' q(·|Dn, ϕ̂n) = N(·; ϕ̂n, (K−1
n + Ŵn)−1), (3.9)
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where

ϕ̂n := (ϕ̂1;n, . . . , ϕ̂n;n) (3.10)

is found numerically via Newton-Raphson using the training data Dn; and Ŵn is the

Fisher Information matrix of the binomial (negative) log-likelihood. Importantly, if the

canonical link is used, then the i-th entry of Ŵn corresponds to the variance of the

binomial response Bi at xi:

Lemma 3.2.1. Under the Bernoulli link function (3.3), the Hessian matrix Wn(ϕ1:n) =

−∆l(ϕ1:n) (in the latent GP values ϕ1:n) of negative the log-binomial likelihood, l(ϕ1:n) :=

log p(B1:n|a1:n, ϕ1:n), is given by

wij(ϕj) =

 aiθ(ϕi)(1− θ(ϕi)), i = j,

0 i 6= j, for i, j = 1, . . . , n.
(3.11)

Hence, we have that Ŵn = diag(ŵ1;n, . . . , ŵn;n); where ŵi;n := aiθ(ϕ̂i;n)(1 − θ(ϕ̂i;n))

are the entries (3.11) evaluated at the estimated posterior mode (3.10). Having found

the joint (3.9), the (approximated) predictive posterior density ϕ∗ ∼ N(mn(x), s2
n(x)) is

also Gaussian with mean mn(x) ≡ mn(x; ϕ̂n) and posterior variance s2
n(x) ≡ s2

n(x; ϕ̂n):

mn(x) := KT
nK

−1
n ϕ̂n; (3.12a)

s2
n(x) := κTn (Kn + Ŵ−1

n )−1κn, (3.12b)

where κn := (κ(x, x1), . . . , κ(x, xn))T is the n × 1 vector of covariances between ϕ∗ and

ϕ1:n. The resulting point estimate for θ(x) is thus

θ̂n(x) :=

∫
(1 + e−ϕ∗)−1N(ϕ∗;mn(x), s2

n(x))dϕ∗, x ∈ (0, 1). (3.13)

Numerically, θ̂n(x) is obtained by approximating (3.13) via a quadrature method. In

particular we use integrate() which is part of the core distribution of R and relies on

the Gauss-Kronrod quadrature method [46].
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Section 3.2 Knowledge States

Hyper-parameter estimation. The above model specification is valid for fixed

hyperparameters ϑ. To optimize the latter, we consider a maximum a posteriori estimate

(MAP), ϑ̂ := arg maxϑ{log q(Dn|ϑ) + log q0(ϑ)} based on a prior q0(·). In order to obtain

ϑ̂ we use the package GPstuff [56], which uses interleaved numerical optimization: at

iteration m given ϑ̂(m), evaluate the covariance matrixKn(ϑ̂(m)) = (κϑ̂(m)(xi, xj))
n
i,j=1 and

so estimate the mode ϕ̂
(m)
n ; then fix ϕ̂

(m)
n and find ϑ̂(m+1) = arg maxϑ log q(Dn|ϑ, ϕ̂(m)

n ) +

log q0(ϑ), where q0(·) is the prior and q(Dn|ϑ, ϕ̂(m)
n ) is the data marginal log-likelihood,

log q(Dn|ϑ, ϕ̂n) = −1

2
ϕ̂TnKn(ϑ)−1ϕ̂n+log p(B1:n|a1:n, ϕ̂n)−1

2
log{|Kn(ϑ)|·|Kn(ϑ)−1+Ŵn|},

which is available in closed-form [48].

3.2.2 Adaptive Batching using the Posterior GP Variance

The posterior variance sn of the surrogate quantifies the quality of learning the la-

tent GP. It can be used to guide sampling decisions via the associated information gain

regarding ϕ(·). This is achieved by considering the look-ahead sn+1(·) conditional on

sampling at xn+1. First, we show that for binomial GPs the posterior predictive variance

does depend on Bn+1(xn+1) (i.e., the binomial response collected a posteriori at location

xn+1). Specifically, Equation (3.14) expresses the fact that s2
n+1(xn+1) depends on the

entire ϕ̂n+1 (computed based on Dn+1).

Theorem 3.2.2. The look-ahead variance s2
n+1(xn+1) evaluated at a new location xn+1

under the Laplace approximation (3.12a) and (3.12b) is given by

s2
n+1(xn+1) =

(
1

s2
n(xn+1; ϕ̂1:n,n+1)

+
1

[an+1 · θ(ϕ̂n+1,n+1)(1− θ(ϕ̂n+1,n+1))]−1

)−1

. (3.14)

To estimate s2
n+1(xn+1) using only information available at time n, we approximate

the denominator of the first term in (3.14) via s2
n(xn+1; ϕ̂n) ' s2

n(xn+1; ϕ̂1:n;n+1), that is,

using the estimated posterior mode at time n. Furthermore, the local binomial variance in
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Section 3.2 Knowledge States

the second term of (3.14) is approximated by an+1θ̂n(xn+1)(1− θ̂n(xn+1)), where θ̂n(xn+1)

is obtained using (3.13).

Corollary 3.2.3. The posterior variance s2
n+1 at step n+ 1 is approximated by

s2
n+1(xn+1) '

(
1

s2
n(xn+1; ϕ̂n)

+
1

an+1θ̂n(xn+1)(1− θ̂n(xn+1))

)−1

, (3.15)

where s2
n(xn+1; ϕ̂n) is the look-ahead variance from (3.12b) and θ̂n(xn+1) is from (3.13).

The look-ahead (approximate) variance sn+1 forms the basis of numerous expected

improvements (EI) design heuristics that quantify the gain from sampling at xn+1, see

for example [31, 14, 44, 22]. For plain GPs, EI has been extended to the case of batched

samples in Kamińsky [34] and Binois et al [7]. Here we adapt these concepts to the

setting of binomial GPs by quantifying the reduction in posterior variance of ϕ(xn+1)

at a new location xn+1. We continue to utilize LA and the logistic link function. The

idea of adaptive replication is to reduce the predictive variance s2
n+1(xn+1) ≤ νn below a

threshold value νn. Using the variance decomposition formula in the RHS of (3.15) and

solving for an+1 we have that:

aνn+1 ≥
1

θ̂n(xn+1)(1− θ̂n(xn+1))
·
(

1

νn
− 1

s2
n(xn+1)

)
.

We therefore consider the following adaptive replication scheme:

âνn+1 := aν0 · 1{s2n(xn+1)<νn} +
1

θ̂n(xn+1)(1− θ̂n(xn+1))

(
1

νn
− 1

s2
n(xn+1)

)
· 1{s2n(xn+1)≥νn}.

(3.16)

Remark 8. We focus on the predictive uncertainty in the latent process ϕ as a measure to

determine an+1 – as opposed to the predictive variance of the random variable θ(ϕ(xn+1)).

Focusing on the uncertainty of the latent GP, is a common strategy in sequential design

(especially when the data likelihood is Gaussian), see for example [2, 13]. Another com-

mon measure for constructing sequential designs is the posterior predictive entropy [35]

(which is the preferred uncertainty measure in the active learning framework).
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3.2.3 Maximum Likelihood Binomial Regression

An alternative approach is to fit a linear surrogate of the form ϕ(x) := βTφ(x) for a

given set of p basis functions H = span(φj : j = 1, . . . , p). The coefficients β ∈ Rp can

be found by optimizing the penalized binomial log-likelihood criterion

min
βT

n∑
i=1

{
Bi

p∑
j=1

βjφj(xi) + ai log

(
1 + exp(

p∑
j=1

βjφj(xi))

)}
+

1

2
λJ (

p∑
j=1

βjφj); (3.17)

where J (ϕ) is a penalty functional. The above specification includes the classical logistic

regression model when the basis H is monomial and λ = 0.

Kernel Logistic Regression (KLR). One choice is the family of positive definite

kernel functions φj(·) := κlj(·; ξj), where each basis element κlj(·, ξj) is indexed by a

location parameter ξj and a scale parameter lj. The corresponding space of functions H

is a Reproducing Kernel Hilbert Space (RKHS) with penalty function J (ϕ) = ||ϕ||22 =

βTΦβ, where Φij = φj(xi). A popular choice is the Gaussian radial kernel :

κl(x; ξ) := exp

(
−|x− ξ|

2

l2

)
. (3.18)

Spline Logistic Regression (SLR). Another commonly used functional space H is

the B-spline basis where the φj’s are piecewise continuous functions defined in terms of

a set of knots. Namely, an order-P spline with knots (ξj)
p
j=1 is a piecewise-polynomial

of order P , and has continuous derivatives up to order P − 2. The B-spline family takes

P = 4 and can be represented in terms of p > 0 basis functions: φ1(x) = 1, φ2(x) = x,

and for j = 2, . . . , p, φj+1(x) = dj(x)− dj−1(x), where

dj(x) :=
(x− ξj)3

+ − (x− ξp)3
+

ξp − ξj
, j = 2, . . . , p. (3.19)

The basis coefficients β are fitted by penalizing the curvature of ϕ(·) using J (ϕ) =

||ϕ′′||22 [20].
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Section 3.3 Sampling Policies

3.3 Sampling Policies

We recall that a sampling policy η is a rule which maps knowledge states to actions,

namely selecting sampling locations xn+1. A collection of sampling policies are considered

based on the surrogate state fTn and the fitted p̂n(·). The sampling decision to be made

at step n + 1 concerns the new site xn+1 and the respective number of replicates an+1.

In the spatial modeling paradigm, we consider two complementary ideas which blend the

surrogate models for ϕ with the information about X∗ contained in fn:

(i) first select an+1 and then xn+1; or

(ii) choose xn+1 and then determine the respective an+1.

Approach (i) utilizes fixed batching an+1 ≥ 1 and selects the new site to query using an

information-theoretic criterion. Namely, we use the batched expected Kullback-Leibler

(KL) divergence between the knowledge state at Tn and Tn + an+1 as in (2.29). To

implement this strategy, requires knowledge of the entire x 7→ p(x). This was one of the

main challenges in the original G-PBA in Section 2.3, where IDS was applied ad hoc

after estimating p(x̃i) at a set of M ≥ 2 candidate locations x̃1:M . However, under our

spatial modeling setting, one can utilize the surrogate p̂n and compute the maximizer of

the batched spatial IDS criterion conditional on sampling an+1 ≥ 1 times at xn+1. Then,

xn+1 is chosen greedily as the maximizer of I(·, fn, p̂n(·), an+1), that is,

xsIDS

n+1 := arg max
x∈(0,1)

I(x, fn; p̂n(x), an+1). (3.20)

Practically, a numeric optimization routine is needed to find (3.20). In our experi-

ments below we utilize the R package NLopt which implements several global constrained

optimization routines [29]. In particular, we use a gradient-free deterministic-search al-

gorithm for global optimization named DIRECT (DIviding RECTangles) [30].
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Section 3.4 Spatial Generalized PBA

For approach (ii) two different schemes are considered. Firstly, pick xn+1 using the

RQS strategy as in Eq. (2.34). The RQS policy can be interpreted as sampling at a

location Xn ∼ fn, i.e., sampling based on the posterior distribution of X∗. Furthermore,

as discussed in Section 2.3, this policy tends to sample close to the mean of fn but will

also occasionally explore at the latter tails, capturing the trade-off between exploitation

and exploration.

An attractive feature of this policy is that it relies solely on fn so no estimation of

the nuisance parameter is needed to recover xRQS

n+1, however, under this spatial setting fn

is computed via the surrogate model p̂n.

Conditional on xn+1, an+1 is then picked to control the surrogate uncertainty at xn+1

according to the adaptive replication scheme (3.16).

Adaptive One-Step IDS policy. Secondly, note that (3.20) requires specifying

the replication amount an+1, thus adaptive batching is not feasible for the Spatial-IDS

procedure as written. To combine the adaptive replication scheme (3.16) with the IDS

strategy, we use an ad hoc heuristic which first maximizes I using a = 1 to get xn+1 and

then obtains the actual aνn+1. Namely let

xAda-sIDS

n+1 = arg max
x∈(0,1)

I(x; fn, p̂n(x), 1). (3.21)

3.4 Spatial Generalized PBA

Algorithm 2 specifies the main ingredients for blending surrogate modeling with prob-

abilistic bisection. To initialize it, we use N0×a0 = T0 � T function evaluations to build

ϕ̂N0 , picking equidistant (i.e. space-filling) sites x1:N0 in (0, 1) and a0 ≥ 1 replications per

site. The corresponding fT0 is constructed via (2.6). Note that we first non-sequentially

construct the surrogate ϕ̂N0 using all T0 queries, and only then compute fT0 . Also note

that the surrogate re-fitting step in Algorithm 2 is optional (i.e. user-controlled), since
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Section 3.4 Spatial Generalized PBA

re-fitting can be expensive. In principle, re-fitting could be stopped entirely once n is

large enough, which allows to keep the overhead cost of predicting θn(x) fixed, rather

than increasing in n.

PBA parameters: Prior f0; T0 and a0 ≥ 1. Set N0 := T0/a0;

Surrogate initialization: Regress B1:N0 on locations x1:N0 to obtain the

surrogate model θ̂N0 ;

Update knowledge state starting from f0 to fT0 given θ̂N0 , B1:N0 and x1:N0 ;

n← N0, Tn ← T0, Dn ← (B1:N0 , a1:N0);

while Tn < T do

Using fn generate next sampling location xn+1 and batch size an+1;

Query oracle an+1 times at xn+1 to observe Bn+1(xn+1);

if (OPTIONAL) then

Re-fit surrogate for θ̂n+1 based on Dn+1 = (Dn, Bn+1, an+1);

else

θ̂n+1 ← θ̂n;

Update knowledge state at xn+1 fn+1 ← Ψ(fn, xn+1, Bn+1; p̂n+1, an+1) using

p̂n+1 = max{θ̂n+1(xn+1), 1− θ̂n+1(xn+1)};

Update Tn ← Tn + an+1 and n← n+ 1;

end

return Knowledge state fN and estimator for the root location

x̂N = median(fN);

Algorithm 2: Spatial Generalized-PBA.
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Chapter 4

Numeric Examples

In this Chapter a series of numerical results are presented based on Monte-Carlo (MC)

replications, that is, we repeatedly apply our algorithms fixing the components that the

user must pick. In particular, to empirically assess our generalized PBAs (introduced in

Chapter 2 and Chapter 3), we mix and match the sampling policy η (information-directed

or randomized based), estimation method p̂ for the oracle accuracy (local or spatial) and

batch size a (either fixed or adaptive). We consider several metrics to quantify the

quality of the root estimates induced by (η, p̂, a): absolute residuals, credible intervals

and its corresponding coverage, as well as the KL divergence between the approximated

knowledge state fn and the true posterior root density gn.

Furthermore, to focus exclusively on evaluating the sampling component of the G-

PBA, the proposed policies η are benchmarked with respect to other schemes that adopt

the true posterior density gn (and hence the ground-truth oracle accuracy), such as the

information-directed and Uniform sampling strategies, which correspond to the best and

worst case scenarios, respectively, as well as the true RQS sampling scheme.

Our numeric examples are based on three test functions, that is, we specify the actual

functional form of the unknown h(·) in the stochastic simulator (1.1). They illustrate dif-
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ferent aspects and difficulties typically encountered in SRFPs, such as heteroscedasticity

or zero curvature at the root location. A real-life challenging example is analyzed, which

consists of estimating the optimal exercise price of a Bermudan Put financial derivative.

This Chapter is organized as follows. In Section 4.1 we state the overall experimental

configuration. In particular, we define our three synthetic examples and the performance

evaluation metrics. In Section 4.2 and Section 4.3, we present the numeric results for

the Local and Spatial G-PBAs, respectively. Finally, in Section 4.5 we apply G-PBA in

order to solve the Optimal Stopping Problem in the context of pricing a Bermudan Put

financial derivative.

4.1 Experimental Setup

Synthetic Examples. In analogy to [57], we utilize the following three test functions

defined for all x ∈ (0, 1), cf. Figure 4.1:

1. The linear function,

h1(x) = X∗ − x, σ1(x) = 0.2; (4.1)

2. the exponential function,

h2(x) = exp{2(X∗ − x)} − 1, σ2(x) = 0.2 · 1{x<X∗} + 1 · 1{x>X∗}; (4.2)

3. and the cubic function,

h3(x) = (X∗ − x)3, σ3(x) = 0.025. (4.3)

Example (4.1) consists of a linear function whose slope is constant and different from

zero at points close to the root X∗, indicating that most of the stochastic root-finding

procedures should work well. The curvature of (4.2) creates an asymmetry in sampling: a

measurement leftwards of X∗ yields a correct response with higher probability relative to
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a measurement to the right of the root. Notice that the variance of the noise component

σ2(x) also depends on the sampling location x, where σ2(x) is lower for locations leftwards

x∗ and significantly higher for x > x∗. Consequently, fn is expected to be skewed. Finally,

example (4.3) represents a difficult root-finding setting due to h′3(X∗) = 0, which implies

that p(x) ' 1/2 for x in the vicinity of X∗.

In all cases the noise term is assumed to be zero-mean Gaussian, ε(x) ∼ N(0, σ2
i (x)),

implying that the function evaluations Z(x) in (1.1) are normal random variables with

mean E[Z(x)] = hi(x) and variance Var(Z(x)) = σ2
i (x).

h1(x) = X∗−x h2(x) = e2(X∗−x)−1 h3(x) = (X∗ − x)3

h
i (x)

θ
i (x)

logit(θ
i (x))

0 X* 0.50 0.75 1 0 X* 0.50 0.75 1 0 X* 0.50 0.75 1

−0.5
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Figure 4.1: Synthetic test functions (4.1), (4.2) and (4.3).

Performance Evaluation Metrics. To evaluate the quality of the approximated

knowledge state fn for fixed (η, p̂, a), the following four performance metrics are used:

1. Absolute residuals : to determine the accuracy of the estimator x̂n := median(fn)
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we consider the L1-residuals,

rηa(fn) := |x̂ηn,a − x∗|; (4.4)

2. credible intervals : to evaluate the degree of uncertainty associated with the un-

known root location X∗ via the length of a symmetric (1 − α)% credible interval

(CI) between the α/2 and (1− α/2) percentiles of fn:

lηa,1−α(fn) := F−1
n (1− α/2)− F−1

n (α/2); (4.5)

3. coverage: to measure the accuracy of the above CI defined as

ca,1−α(fn) := Pr
{
x∗ ∈ [F−1

n (α/2), F−1
n (1− α/2)]

}
, (4.6)

where the averaging in Pr{·} is across MC runs of the algorithm. If c1−α(fn) �

(1 − α) the coverage test indicates that fn prematurely collapses or equivalently

overstates its confidence about X∗. Namely, small CI length la,1−α relative to

residuals r will lead to low coverage c. For both the coverage and the length of the

credible interval we use α = 0.05; and finally

4. KL divergence: to compare fn to the true posterior gn based on the sequence of the

chosen locations xη1:n, we use the KL divergence denoted D(fn; gn). Namely, since

both fn and gn are updated at the same set of knots x̃η1:n (sorted in increasing order),

we may write gn(x) :=
∑n

j=1 g(x̃j−1)1x∈[x̃j−1,x̃j) and fn(x) :=
∑n

j=1 f(x̃j−1)1x∈[x̃j−1,x̃j),

with x̃0 := 0 and x̃n := 1. We then obtain:

Dη
a(fn; gn) :=

∫ 1

0

log

(
fn(x)

gn(x)

)
fn(x)dx

=
n∑
j=1

∫ x̃j

x̃j−1

log

(
fn(x)

gn(x)

)
fn(x)dx

=
n∑
j=1

log

(
f(x̃j)

g(x̃j)

)
f(x̃j)(x̃j − x̃j−1). (4.7)
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We make the usual convention that log(f(x)/g(x))f(x) = 0 if f(x) = 0 (including

when g(x) = 0), as well as log(f(x)/g(x))f(x) = +∞ if g(x) = 0 and f(x) > 0 [16].

Practically, to compute the average KL divergence we consider only finite values.

Monte-Carlo Iterations. Performance metrics (4.5), (4.6), (4.4), and (4.7) are

estimated using a total of MC = 100 Monte-Carlo macro-iterations for each combination

in (η, p̂, a) and a total number of simulation outputs T = 20,000. In order to make all

methods comparable, we fix X∗(i) ∼ Unif(0, 1) so each estimation scheme is applied using

the same root value X∗(i) during the i-th MC iteration, i = 1, . . . ,MC.

4.2 Empirical Performance of Local G-PBA

4.2.1 Parameter configuration

Sampling policies η. The sequential policies introduced in Section 2.3 are imple-

mented as follows:

• Deterministic IDS (Det-IDS): which learns the batched information criterion (2.30)

at M = 2 test locations x̃1:M = (F−1
n (0.25), F−1

n (0.75)) (i.e., at the 25-th and 75-th

quantiles x̃i of fn) and chooses greedily the point xn+1 at which I(x̃i; fn, p̂(x̃i), a)

is maximal;

• Randomized IDS (Rand-IDS): maximizes the batched IDS criterion (2.30) among

M = 2 random quantiles of fn as in (2.32).

• Randomized Quantile Sampling (RQS): xn+1 ∼ fn as in (2.34).

• Systematic Quantile Sampling (SQS): chooses the next sampling location iterat-

ing over M = 2 pre-specified quantiles of fn, viz. q̌0:1 = (0.25, 0.75), that are

systematically rotated using (2.33).

61
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Local estimators for p(·). The frequentist and Bayesian procedures based on the

majority proportion statistic p̄, as well as the estimators based on aggregation of responses

are considered:

• the empirical majority proportion p̄ from (2.12);

• the posterior mode p̂L0 (2.18), posterior median p̂L1 (2.19), and posterior mean

p̂L2 (2.20); and

• the procedures which aggregate oracle signs PM (p̄) (2.21) (combined with empirical

proportion p̄), as well as functional responses PS (ĥa, σ̂a) (2.24).

Batch size a. For the local estimation procedures specified above, the batch size

remains fixed at a ∈ {100, 250}.

Finally, we also compare out G-PBAs to the TPO policy that follows the classical PBA

sampling strategy, i.e., xn+1 = F−1
n (1/2), and performs a random number of oracle calls

aα(xn+1) based on (2.26). In order to compute the curved boundary aα for the numeric

examples we present, we plug in the true oracle sample variance σ2
i (x) and truncate sam-

pling if it does not terminate by final clock-time T : ã(x) := min{T −
∑n−1

j=1 aα(xj), aα(x)}

with the resulting Z-based estimator PSã
(ĥã(x), σ̂ã(x)). We consider two boosting levels

α ∈ {0.05, 0.4}.

In summary, the Local G-PBA space (η, p̂, a) consists of 4 sampling policies η, 6

estimation methods for p̂, and 2 batch sizes a, plus two versions of the TPO procedure,

for a total of 6× 4× 2 + 2 = 50 combinations.

4.2.2 Results

We use the linear test function (4.1) as our running example to illustrate the empirical

performance of the G-PBA.
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Figure 4.2 compares the performance of different (η, p̂, a) schemes as a function of

wall-clock budget T . In terms of estimating p(·), the best method is unsurprisingly the

CLT approximation PS (ĥa, σ̂a), which directly leverages the functional responses Z(·).

This quantifies the intuition that the Zs carry more information than the sign-based

oracle responses in (1.2). As a consequence, using PS leads to lower residuals and better

coverage. Specifically, it provides better recovery of the correct posterior distribution (due

to smaller updating errors), which is moreover confirmed by the minimal KL divergence

associated to this scheme. Among the estimators that rely only on signs of the function

evaluations, two good choices are the posterior mode p̂L0 and the empirical proportion p̄.

Both of these maintain a good balance between uncertainty reduction and low absolute

residuals. Recall that these procedures were shown to be conservative in over-estimating

p(x) and hence better at controlling the bias in the updating of fn, cf. Section 2.2.3. This

is important in the latter stages as p(·) ' 1/2.

In terms of the sampling strategies, the Rand-IDS and Rand-Q policies with batch

size a = 250 perform best for minimizing residuals. We observe that all methods struggle

with coverage, indicating that fT prematurely collapses due to “overconfidence” induced

by the bias in p̂, cf. Section 2.2.3 (which is reflected on the significantly large KL average

divergence related to these methods). This effect is naturally mitigated by a larger batch

size a at the cost of sampling at fewer locations. Moreover, coverage metrics for IDS

methods are higher, primarily driven by the fact that they use fewer macro-iterations

(since N IDS = T/(a ·M)) and hence are less affected by the bias. However, this effect

is not useful in practice since the IDS methods also have much wider CI’s, i.e., they

are conservative about X∗. We observe that Syst-Q is consistently worse than Rand-Q:

they both generate similar absolute residuals, but the CI/coverage of Rand-Q is larger,

indicating that it is better in approximating the true posterior gn. Both Randomized

strategies (2.32) and (2.34) perform dramatically better than the Deterministic counter-
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part (2.31) and (2.33) for all p̂ in terms of minimizing both the absolute residuals and

the length of the 95% CI.
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Figure 4.2: Average Monte-Carlo performance statistics applied to the linear test function h1 using Local

G-PBA.

Furthermore, Figure 4.2 indicates that the learning rate of the sampling schemes

changes over iterations: the randomized methods yield a more rapid reduction in absolute

residuals for T small (i.e., during the first few steps), while the systematic methods enjoy

a better asymptotic improvement. This suggests a hybrid heuristic of randomizing the

first few macro-iterations (exploring with Rand-Q), and then more aggressively selecting

points to maximize entropy reduction (exploiting with Syst-IDS). When local estimators

are deployed learning is then sub-exponential (i.e., sub-linear on the log-scale), which
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occurs due to p(·) ' 0.5 around the root, and necessarily slows down information gains.

Indeed, exponential convergence is only feasible when p(·) is bounded away from 1/2.

Interestingly, Figure 4.2 suggests that the CI of fT decreases linearly in T , which is

inconsistent with the above slow learning rate of X∗ and subsequently ruins coverage, as

the mass of the knowledge state fT no longer includes the true X∗. It shows that the

Rand-IDS method is best able to suppress this.

Table 4.1 lists the final summary statistics at T = 20, 000 for the considered com-

binations (η, p̂, a) utilizing the linear test function h1. We observe that even for this

straightforward setting, a small batch size (in this case a = 100) is insufficient, leading

to a situation whereby absolute residuals are very large and the average 95% CI length is

small, so that fT is collapsing prematurely. On the other hand, for a = 250, the average

absolute residuals, as well as the average 95% CI length are significantly small across

all η and p̂, indicating that the associated posterior fT is placing most of its mass near

the actual root value x∗. If a = 250, then it can also be observed that there is a good

balance between residuals and length of CI. In particular, Det-IDS and RQS behaves well

in combination with the CLT estimator.

Additionally, Table 4.1 confirms the estimation method which best resembles the

actual root posterior gn, as measured by the average KL divergence (last column), is the

majority proportion p̄ as well as the posterior mode p̂L0 .

Finally, the last two rows of Table 4.1 summarize the performance of TPO-PBA.

This policy leads to very large batch sizes, and in this case study used just Nα = 6 and

Nα = 9 (median) sampling locations with α = 0.05 and α = 0.40, respectively. As a

result, TPO-PBA is not able to learn X∗, leading to average residuals and length of CI

significantly larger in comparison to our G-PBA policies. Notice, however, that the KL

divergence with respect to the true posterior gn is minimized in contrast to all the other

G-PBA local estimation methods, which is due to the fact that p̃(xi) is close to the the
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true p(xi) for the insufficient number of updating points that were selected by this policy.

Table 4.1: MC summary metrics for the test function h1 obtained at T = 20, 000 using the Local G-PBA.

TPO policy is included in the last two rows.

η p̂
r̂ηa(fT ) (10−2) l̂ηa,0.95(fT ) (10−2) ĉηa,0.95(fT ) D̂η

a,0.95(fT ; gT )

a=100 a=250 a=100 a=250 a=100 a=250 a=100 a=250

Det-IDS

p̄ 0.3692 0.2996 0.0196 0.0773 0.01 0.05 26.58 7.85

p̂L0 0.4377 0.3576 0.0769 0.2068 0.03 0.13 21.78 6.40

p̂L1 0.4150 0.3281 0.0223 0.1378 0.01 0.11 26.02 8.15

p̂L2 0.3585 0.3022 0.0010 0.0452 0.00 0.05 28.80 9.35

PM 0.3817 0.3631 0.0159 0.3588 0.02 0.23 26.61 10.25

PS 0.2435 0.1928 0.0519 0.3496 0.02 0.38 22.76 10.30

Rand-IDS

p̄ 0.4509 0.3121 0.0016 0.0420 0.00 0.05 24.45 8.06

p̂L0 0.4285 0.3003 0.0312 0.1535 0.01 0.12 22.09 6.55

p̂L1 0.3722 0.2959 0.0005 0.0972 0.00 0.11 26.34 7.54

p̂L2 0.4285 0.3575 0.0206 0.1124 0.01 0.07 27.65 8.11

PM 0.3608 0.4313 0.0384 0.2861 0.02 0.21 24.62 11.10

PS 0.2238 0.2292 0.0343 0.2732 0.04 0.23 25.05 10.60

RQS

p̄ 0.4422 0.2528 0.0000 0.0038 0.00 0.01 31.74 19.59

p̂L0 0.4099 0.2735 0.0384 0.0202 0.01 0.03 32.60 17.63

p̂L1 0.3997 0.2783 0.0000 0.0106 0.00 0.01 33.55 20.25

p̂L2 0.4466 0.2833 0.0000 0.0006 0.00 0.00 32.17 21.22

PM 0.3113 0.2510 0.0000 0.0515 0.00 0.04 45.95 20.22

PS 0.2154 0.1516 0.0001 0.0463 0.00 0.09 41.18 18.44

SQS

p̄ 0.3829 0.2701 0.0017 0.0075 0.00 0.00 33.64 19.65

p̂L0 0.3931 0.2812 0.0000 0.0097 0.00 0.00 33.59 16.41

p̂L1 0.4171 0.2583 0.0000 0.0342 0.00 0.02 32.42 20.20

p̂L2 0.4012 0.2811 0.0000 0.0077 0.00 0.01 33.86 20.60

PS 0.2186 0.1600 0.0000 0.0234 0.00 0.05 42.13 19.23

PM 0.3630 0.2556 0.0014 0.0589 0.00 0.06 42.73 20.26

TPO
p̃0.05 16.5302 95.9121 0.736 3.5501

p̃0.40 25.6349 32.2533 0.711 2.0963

Sensitivity Analysis for the Exponential and Cubic Test Functions. Perfor-

mance evaluation metrics (Tables only and not including the TPO policy) for the other

test cases (4.2)–(4.3) appear in Table 4.2 and Table 4.3, respectively. Here we discuss

the main take-aways.
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Table 4.2: Summary metrics for the test function h2 obtained at T = 20, 000 using the Local G-PBA.

η p̂
r̂ηa(fT ) (10−2) l̂ηa,0.95(fT ) (10−2) ĉηa,0.95(fT ) D̂η

a,0.95(fT ; gT )

a=100 a=250 a=100 a=250 a=100 a=250 a=100 a=250

Det-IDS

p̄ 0.6848 0.4418 0.0211 0.1158 0.02 0.07 27.40 8.85

p̂L0 0.6570 0.5756 0.0090 0.3639 0.01 0.18 24.10 6.99

p̂L1 0.7829 0.4628 0.0071 0.1454 0.01 0.09 27.29 9.38

p̂L2 0.7154 0.4275 0.0015 0.1175 0.00 0.06 29.55 11.41

PM 0.6233 0.5598 0.0368 0.5376 0.02 0.20 26.15 10.49

PS 0.4499 0.3621 0.0059 0.2086 0.01 0.20 24.76 10.70

Rand-IDS

p̄ 0.6448 0.5433 0.0129 0.0797 0.00 0.06 26.39 8.07

p̂L0 0.8779 0.5755 0.1166 0.2452 0.03 0.13 20.53 6.95

p̂L1 0.6653 0.4946 0.0208 0.0413 0.01 0.05 23.87 8.73

p̂L2 0.7814 0.6714 0.0005 0.1299 0.00 0.07 27.28 8.58

PM 0.6400 0.5222 0.0074 0.4183 0.00 0.18 29.02 11.53

PS 0.4616 0.3857 0.0386 0.5275 0.04 0.37 20.14 9.48

RQS

p̄ 0.7075 0.4846 0.0428 0.0649 0.02 0.07 27.88 12.36

p̂L0 0.8442 0.4686 0.0477 0.0527 0.02 0.06 24.43 10.71

p̂L1 0.7498 0.4775 0.0016 0.1313 0.00 0.06 29.67 11.64

p̂L2 0.6312 0.5135 0.0032 0.0810 0.00 0.04 31.81 12.84

PM 0.4965 0.3578 0.0080 0.1317 0.00 0.08 37.70 17.15

PS 0.3955 0.3037 0.0391 0.1492 0.02 0.17 27.29 12.64

SQS

p̄ 0.6663 0.4772 0.0198 0.0061 0.00 0.00 30.50 12.44

p̂L0 0.7279 0.4610 0.0026 0.1400 0.00 0.11 26.87 9.31

p̂L1 0.5923 0.4225 0.0434 0.0649 0.01 0.03 30.41 12.89

p̂L2 0.7567 0.5441 0.0000 0.1141 0.00 0.04 32.32 14.16

PM 0.5071 0.4422 0.0001 0.0544 0.00 0.04 42.44 18.80

PS 0.3734 0.3439 0.0265 0.1344 0.01 0.05 32.14 14.52

Among policies, Rand-Q works best for h2 and Syst-Q for h3 although the differences

are not significant. As before, the functional response estimator PS (ĥa, σ̂a) performs

best for root-finding, yielding lowest estimation error and highest coverage. This confirms

the value of using the actual functional responses, in contrast to only its sign. Due to

the more difficult setting, a larger batch size a = 250 is needed, representing a total of

N = 80 sampling locations for the Q-based policies, and N IDS = 40 for the IDS policies,

respectively. Tables 4.2 and 4.3 show the complete failure of PBA when only local

information is leveraged if a is too small (a = 100 in the Tables) whereby fT collapses,
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severely underestimating the posterior uncertainty and leading to almost zero coverage

(as depicted in the third column of the Tables).

Table 4.3: Summary metrics for the test function h3 obtained at T = 20, 000 using the Local G-PBA.

η p̂
r̂ηa(fT ) (10−2) l̂ηa,0.95(fT ) (10−2) ĉηa,0.95(fT ) D̂η

a,0.95(fT ; gT )

a=100 a=250 a=100 a=250 a=100 a=250 a=100 a=250

Det-IDS

p̄ 5.3257 4.8835 0.0187 0.4446 0.00 0.03 33.34 11.93

p̂L0 5.7587 5.3403 0.0001 0.3862 0.00 0.01 27.94 10.01

p̂L1 5.7173 4.7734 0.0329 0.3032 0.00 0.03 33.16 13.76

p̂L2 5.3107 5.0278 0.0004 0.4157 0.00 0.01 35.90 13.22

PM 5.2335 4.8161 0.0284 1.2347 0.00 0.09 28.49 11.02

PS 4.2913 4.2176 0.2149 1.9549 0.01 0.09 25.03 10.12

Rand-IDS

p̄ 5.2108 4.9102 0.0013 0.1877 0.00 0.00 34.35 12.70

p̂L0 4.7761 4.8908 0.1397 0.6496 0.01 0.04 29.34 10.55

p̂L1 5.5064 4.6287 0.1649 0.0345 0.01 0.00 31.40 13.39

p̂L2 5.2753 4.9914 0.0001 0.7631 0.00 0.02 32.01 13.50

PM 5.3876 4.7527 0.5744 1.5573 0.01 0.10 29.44 12.22

PS 4.4133 4.4046 0.4867 2.8545 0.03 0.11 19.62 9.09

RQS

p̄ 5.1556 4.7262 0.0000 0.2978 0.00 0.01 37.77 15.16

p̂L0 5.3406 4.7325 0.0001 0.7267 0.00 0.02 31.77 12.68

p̂L1 5.2306 4.6381 0.0213 0.2493 0.00 0.01 36.03 14.32

p̂L2 4.8320 4.4068 0.0000 0.3840 0.00 0.02 38.97 17.72

PM 5.7807 4.1977 0.0000 0.2915 0.00 0.02 41.69 17.41

PS 4.6983 3.8401 0.1229 1.3473 0.01 0.07 27.60 11.38

SQS

p̄ 4.7741 4.3860 0.0048 0.0839 0.00 0.01 39.94 16.62

p̂L0 5.5714 4.2043 0.0005 0.5547 0.00 0.04 33.53 13.81

p̂L1 4.8444 4.5924 0.0017 0.0875 0.00 0.00 40.46 16.96

p̂L2 6.0304 4.7480 0.0000 0.1208 0.00 0.02 38.45 19.03

PM 5.6644 4.9692 0.0000 0.1565 0.00 0.01 46.61 19.99

PS 4.4417 4.1947 0.0010 0.5957 0.00 0.03 33.02 14.68

If only the batched response sign (1.2) at each sampling location is used to learn X∗,

then there is no clear “winner” among the proposed methods. We observe that the IDS

policies are less accurate (higher r̂) but also have higher coverage. Similarly, the empirical

p̄ and posterior median p̂L1 are best for maximizing accuracy while the posterior mode

p̂L0 is best for maximizing coverage. This is consistent with previous discussion that p̂L0

minimizes bias in learning p(x) ' 1/2 and is, therefore a more “conservative” approach
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that slows down error propagation in fn. The majority boosting approach with PM also

works quite well.

We observe that in these more challenging settings, all methods suffer from model mis-

specification which cause fT to deviate from the true posterior and lead to poor statistical

coverage with respect to the true root. This premature posterior collapse ranges from

extremely severe (r̂ � l̂ so the residuals are much larger than the estimated uncertainty

aboutX∗), to moderate (coverage ĉ0.95 ∈ [0.2, 0.5]). As we will show in Section 4.3, spatial

modeling of the oracle accuracy would guarantee asymptotic consistency in the sense of

matching the preset coverage levels. For now our results confirm the strong sensitivity of

PBA to properly estimating oracle properties and the discrepancy between the generally

low residuals obtained (i.e. good root estimate) and the mediocre quantification of root

uncertainty.

4.3 Empirical Performance of Spatial G-PBA

We now proceed to evaluate the performance of the Spatial G-PBA stated in Algo-

rithm 2 that are presented in Chapter 3.

4.3.1 Parameter configuration

Sampling Policies η. We consider the three schemes that leverage spatial infor-

mation:

• Spatial-IDS (sIDS) (3.20);

• Spatial-RQS (sRQS) (2.34); and

• the one-step sIDS (3.21) combined with the adaptive replication scheme aνn+1.
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Surrogates for p(·). The configuration of the non-parametric models (introduced

in Section 3.2.1 and Section 3.2.3) is given as follows:

• B-GP. For the binomial GP (B-GP) we use the 5/2-Matérn covariance kernel (3.5).

The hyper-parameters ϑ = (τ 2, l) are estimated via a Bayesian MAP estimation

procedure, placing a square root uniform prior (i.e., q0(
√
τ 2) ∝ 1) on τ 2 and a

Student-t prior on the length scale parameter l (both default priors for binomial

GPs in GPstuff). Although parameter estimation can be expensive, the B-GP is re-

fitted and updated every Tn = an simulation outputs; that is, the hyper-parameters

ϑ̂ are re-fitted and the posterior mode ϕ̂n is re-computed every time a new pair of

sampling location/binomial response is observed, such that the surrogate is able to

assimilate acquired information.

• KLR. Kernel Logistic Regression (KLR) is implemented with the Gaussian kernel

basis function (3.18) using a fixed length scale parameter l ≡ 1 and centering φj

at each sampling location ξj ≡ xj, j = 1, . . . , n (implying that we use as many

kernel functions as sampling points to learn ϕ). Since we would like to induce a

surrogate model ϕ̂ that closely resembles the local estimators p̂(·), we use a (small)

fixed value λ = 0.01 as the penalty parameter for optimizing (3.17). Numerically,

we implement KLR as stated in Algorithm 1 of [62].

• SLR: We consider a smoothing spline logistic regression (SLR) model where the

penalty coefficient λ̂ (aka smoothing parameter) is estimated via Generalized Cross-

Validation [20] jointly with the spline basis coefficients. In this case, the spline knots

ξj are placed at percentiles of the sampling locations x1:n. Thus, as the mass of fn

concentrates around x∗ (and hence sampling locations x1:n concentrate around the

root), more knots ξj’s are also placed near X∗, making the surrogate more localized

in regions where the variability of the binomial responses Bn is maximal.
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• LR. Polynomial logistic regression with ϕ(x) = β0 +
∑5

j=1 βjx
5, a quintic poly-

nomial and zero penalty λ = 0 (to enforce surrogate flexibility). We implement

both the SLR and LR surrogates using the gam() routine from the mgcv package

in R [61].
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Figure 4.3: Left : B-GP and SLR surrogates trained on a fixed data set obtained using the sIDS policy

(first row) and the sRQS policy (second row) after T = 20, 000 iterations and batch size a0 = 100.

Right : posterior IQRs (shaded regions) of fn, using B-GP and SLR using the sIDS policy (first row)

and the sRQS policy (second row) measured in wall-clock time Tn. The corresponding root-estimates

x̂n= median(fn) (lines) are also shown. All plots are constructed using the linear test function (4.1).

To illustrate the above surrogates performance for h1, Figure 4.3 shows the comparison

of the fitted models using a fixed data set DηN := (Bη
1:N , a1:N) obtained created with

two different η: the sIDS (first row) and the sRQS policies (second row), using the

true posterior gn and fixed batch size a = 100 and T = 20,000 (therefore N = 200
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total training locations). The Figure depicts three fundamental features of our proposed

spatial G-PBA: (i) the IDS strategy minimizes the posterior X∗-uncertainty across all

surrogates (represented by different colors in the plot), in contrast to the RQS policy, as

seen on the narrower IQR confidence bands depicted in the second column of the plot;

(ii) the design of the IDS strategy brackets the true X∗, gradually squeezing the posterior

fn towards the root; and (iii) the spatial surrogates succeed in learning the true

θ1(x) := Φ

(
−1/3− x

0.20

)
,

especially close to the root X∗, cf. the left panels of the Figure. As a result, root

estimation is significantly improved and leads to reliable posterior IQRs, as depicted on

the right panels of Figure 4.3.

Adaptive Replication aνn+1. Recall that the batching scheme (3.16) has two

parameters: the minimum replication amount, aν0, and variance thresholding sequence,

(νn)n≥1. In our experiments we use as minimum replication value

aν0 := 1, (4.8)

in order to favor exploration in regions where the spatial surrogate ϕ already learned p(·)

sufficiently well quantified in terms of the predictive posterior GP variance (3.12b). For

the variance thresholding sequence νn we use the following two variants:

ν
(100)
n := 0.1/n when a0 = 100 and ν

(250)
n := 0.05/n when a0 = 250. (4.9)

This choice is linked to the fact that when the initial number of train locations N0 is

small, the predictive posterior GP variance s2
n will be larger and so we take the thresholds

νn larger, as well.
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Figure 4.4: First row : estimated predictive variance s2n(xn+1) relative to the thresholding variance

sequence ν
(100)
n = 0.1/n (first column) and ν

(250)
n = 0.05/n (second column), when the initial batch

size for building the B-GP is a0 = 100, 250, respectively. Second row : adaptive replication amount

n 7→ aνn+1(xn+1) (y-axis) in macro-time n (x-axis) selecting xn+1 using the one-step IDS criterion (3.21).

Figure 4.4 depicts the realized replication amounts n 7→ aνn+1(xn+1) using the one-step

sIDS policy (3.21) applied to our running example (4.1) (during initialization, n ≤ N0 :=

T0/a0, an ≡ a0 is fixed). We observe that aνn+1 generally slowly decreases as n rises,

although the local behavior can be quite “spiky”: sometimes a large batch is required to

bring s2
n(xn+1) below νn, see top panels of Figure 4.4.

Remark 9. To avoid excessive batching which could occasionally arise in our implementa-

tion, we bound aνn+1 (e.g., in Figure 4.4 the maximum batch size was restricted to 1000).

On the other hand, bounding the replication size also makes it possible to manage the

overall sampling budget in order to enforce exploration.

73



Section 4.3 Empirical Performance of Spatial G-PBA

Initial batch size a0. A key feature of Algorithm 2 is the surrogate initialization

stage. In this phase, N0 ≥ 1 equally spaced points, x1:N0 , are used to learn the surrogate

model non-sequentially. In our experiments all surrogates are initialized using T0 := 5,000

(i.e., 25% of total sampling budget) oracle evaluations with a0 ∈ {100, 250}, which results

in N0 := T0/a0 ∈ {25, 10} initial training locations.

4.3.2 Results

Table 4.4: Evaluation metrics for h1 after T = 20, 000 iterations using the Spatial G-PBA. The last two

rows correspond to adaptive sampling schemes depending on the thresholding sequences νn as in (4.9).

η p̂
r̂ηa(fT ) (10−2) l̂ηa,0.95(fT ) (10−2) ĉηa,0.95(fT ) (10−2) D̂η

a(fT ; gT )

a0=100 a0=250 a0=100 a0=250 a0=100 a0=250 a0=100 a0=250

sIDS

B-GP 0.2241 0.1874 0.8931 0.9215 0.88 0.98 0.62 0.39

KLR 0.2106 0.2037 0.8998 0.9496 0.95 0.96 0.57 0.38

SLR 0.1864 0.1954 0.8669 0.8810 0.87 0.89 0.64 0.59

LR 0.1956 0.1709 0.8852 0.8708 0.94 0.98 0.56 0.38

sRQS

B-GP 0.2230 0.1985 1.2683 1.3497 0.95 0.99 0.61 0.48

KLR 0.2152 0.1734 1.2052 1.3843 0.99 0.99 0.51 0.41

SLR 0.1935 0.2181 1.2027 1.2302 1.00 0.96 0.57 0.60

LR 0.1840 0.2012 1.2543 1.3174 0.96 0.97 0.56 0.50

sIDS (νn)
B-GP

0.2016 0.2060 0.9730 1.0051 0.97 0.96 0.34 0.33

sRQS (νn) 0.3025 0.2398 1.4612 1.5013 0.99 1.00 0.16 0.22

Table 4.4 demonstrates that surrogate modeling substantially improves root estima-

tion relative to the original G-PBA, using our running example (4.1). Indeed, we obtain

significantly lower residuals (roughly half as big), narrower CI, and maintain a dramati-

cally larger probability coverage across all sampling policies η and batch sizes a, relative

to the Local G-PBAs, indicating that fn is in fact concentrating around to the true root

value. Importantly, we can see that spatial modeling leads to a very significant reduc-

tion in the average KL divergence between fT and gT , D̂η
a(fT ; gT ), primarily due to the

lower bias in the estimation of p(·) with respect to the local estimators. We note that
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D̂η
a(fT ; gT ) is consistently low across all surrogate models, indicating that the goodness-

of-fit for θ(·) is not overly sensitive to the choice of the surrogate type. Table 4.4 conveys

the following main conclusions:

• In terms of the sampling policies, sIDS outperforms sRQS since average residuals

and CI length are lower while preserving a high coverage probability.

• As mentioned above, all surrogate models yield high goodness-of-fit for θ(·), as

seen by the low KL divergence across all policies η and replication sizes a0. In

particular, we observe that polynomial logistic regression (LR) offers the best choice

as it minimizes the average residuals and length of CI, as well as it matches the

nominal ĉηa ≈ 0.95, confirming that fT is close to the true posterior gT across all η.

• For the replication regime an, we note a preference for a = 250 (with a total of

N = 80 design sites) since this value tends to yield better learning rates about p(·)

(and therefore about X∗) compared to a = 100, as measured by the average KL

divergence.

Adaptive replication analysis for h1. Figure 4.5 shows the kernel density esti-

mate for the random variable that denotes the total the number of sampling locations Nν
T

selected using the sIDS policy across MC = 100 Monte-Carlo iterations for each thresh-

olding sequences νn as in (4.9) (recall that due to adaptive batching the total number of

sampling locations is random and determined by νn), applied to the test function (4.1).

The vertical lines on the leftmost panel of Figure 4.5 show that the median number of

total design points is 320 and 175 for the thresholding sequence ν
(100)
n and ν

(250)
n , respec-

tively. The latter gives us more insight about the effect of νn on efficiently exploring the

search space: the more restrictive (smaller) the thresholding sequence is, the larger the

replication size aνn is, as confirmed by the overall shape of the estimated distribution of
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NT in the left panel of the Figure. Moreover, another important feature of the adaptive

replication scheme (3.16), is that the replication size aνn decreases proportionally to the

absolute distance between the estimated root x̂n and the actual root location X∗, as

depicted by the box-plot of the distribution of aνn constructed along 10 ranks of absolute

distance between x̂N and X∗ using all MC iterations data. Finally, the right plot of the

Figure confirms that the replication size decreases as more samples are placed around

x∗, which is measured by the median replication size (solid line) computed across all MC

runs (shaded lines) for both thresholding sequences (colors).
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Figure 4.5: Left : Kernel density estimate of the distribution of the total number of design points N .

Middle: Distribution of the replication size across 10 absolute residuals ranks. Right : median replication

size in macro-time n. All plots corresponds to the linear test function h1.

Empirical results for the exponential and cubic test functions. Tables 4.5

and 4.6 show the performance metrics for the test functions h2 and h3, respectively. As

for h1, we observe a large improvement in performance, especially in terms of the coverage

probability ĉ, which was improved from ĉηa ≈ 0 to the actual nominal CI coverage value,

see the fifth column of Table 2 and Table 3, respectively. The latter implies that meaning

the algorithm succeeds in providing a CI for x∗. In terms of sampling policies we note

that sIDS outperforms sRQS, judging by their average absolute residuals and length of

CI for both h2 and h3. Furthermore, polynomial logistic regression (LR) continues to be
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the best surrogate choice combined with fixed batch of an = 100 (i.e., using a total of

NT = 200 design points) implying a preference for exploration in these harder problems.

We note that B-GP performs worse especially for h2, possibly due to the non-smooth

behavior in θ2 at the root (cf. Figure 4.1). Because B-GP assumes smooth response

surface, it fails to properly capture such “cusp” that calls for a spatially non-stationary

covariance structure.

Table 4.5: Evaluation metrics for h2 after T = 20, 000 iterations using the Spatial G-PBA. The last two

rows correspond to adaptive sampling schemes depending on the thresholding sequences νn as in (4.9).

η p̂
r̂ηa(fT ) (10−2) l̂ηa,0.95(fT ) (10−2) ĉηa,0.95(fT ) (10−2) D̂η

a(fT ; gT )

a0=100 a0=250 a0=100 a0=250 a0=100 a0=250 a0=100 a0=250

sIDS

B-GP 0.5330 0.4439 1.1043 1.1666 0.45 0.53 1.61 1.41

KLR 0.4537 0.4098 0.7974 0.8751 0.46 0.44 3.23 2.79

SLR 0.4352 0.4076 1.0995 1.2555 0.67 0.80 1.21 0.86

LR 0.3814 0.4128 1.0641 1.1795 0.60 0.56 2.08 1.61

sRQS

B-GP 0.4817 0.5162 1.4630 1.6117 0.70 0.73 1.35 1.42

KLR 0.4602 0.5440 1.0787 1.3580 0.57 0.60 2.68 1.91

SLR 0.3956 0.4250 1.6651 1.7434 0.82 0.83 0.93 0.86

LR 0.4653 0.5143 1.7161 1.5902 0.79 0.67 1.40 1.34

sIDS (νn)
B-GP

0.5095 0.4883 1.3638 1.2129 0.49 0.52 1.62 1.83

sRQS (νn) 0.5586 0.5088 1.6736 1.7562 0.74 0.77 1.00 0.97

Table 4.6: Evaluation metrics for h3 after T = 20, 000 iterations using the Spatial G-PBA. The last two

rows correspond to adaptive sampling schemes depending on the thresholding sequences νn as in (4.9).

η p̂
r̂ηa(fT ) (10−2) l̂ηa,0.95(fT ) (10−2) ĉηa,0.95(fT ) (10−2) D̂η

a(fT ; gT )

a0=100 a0=250 a0=100 a0=250 a0=100 a0=250 a0=100 a0=250

sIDS

B-GP 4.3661 4.2959 8.2188 9.7472 0.57 0.64 1.87 1.57

KLR 4.3403 4.5771 13.0221 12.0456 0.76 0.76 1.32 1.36

SLR 4.4470 4.6160 7.3444 7.7896 0.49 0.46 2.35 2.23

LR 3.7645 3.6936 10.6028 10.5738 0.71 0.70 1.52 1.39

sRQS

B-GP 4.1913 4.0209 10.7298 10.8774 0.67 0.67 1.70 1.45

KLR 3.9131 3.7121 14.2680 14.0897 0.81 0.84 1.17 0.98

SLR 4.0451 4.1825 10.3663 10.2469 0.69 0.68 1.79 2.03

LR 3.6513 4.1276 12.9502 11.5623 0.80 0.66 1.27 1.31

sIDS (νn)
B-GP

4.1540 4.2334 11.1918 11.3152 0.68 0.67 1.11 1.11

sRQS (νn) 4.1874 4.0915 11.6808 12.9052 0.67 0.76 1.39 1.05
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4.4 Evaluating the Quality of the Design

Baseline Policies. To focus on the sampling aspect of G-PBA, we examine more

closely the designs x
(a,η)
1:n obtained from implementing the policy η (sIDS and sRQS strate-

gies), batch size a, and knowledge state fn. We then compute the resulting exact pos-

terior g
(a,η)
n and evaluate the corresponding absolute residual |median(ga,ηn ) − x ∗ | and

length of (1 − α)%-CI. For this analysis we consider a fixed batch size of a = 250. The

sIDS, sRQS, and one-step sIDS strategies are benchmarked against the following baseline

schemes which utilize the true p(x), and therefore the actual posterior density gn:

xn+1 := arg max
x∈(0,1)

I(x, gn; p(x), a) (IDS)

xn+1 := G−1
n (Un+1), Un+1 ∼ Unif(0, 1) (RQS)

xn+1 ∼ Unif(0, 1). (Unif)

Remark 10. The sampling strategy (IDS) is optimal in the sense of maximizing the

expected KL distance between gn and gn+a, and hence we use it as an upper bound on

performance; (Unif) is a passive policy used as a lower bound.

To make the above baseline policies comparable with the Spatial G-PBA strategies,

we implement batched sampling using the transition function (2.6) and a = 250. We also

match the initialization step, employing N0 = T0/a0 equidistant locations x1:N0 (with

T0 = 5, 000) to construct gT0 , from which (IDS), (RQS) and (Unif) are implemented.

Figure 4.6 compares the baseline strategies (dashed lines) against the Spatial G-PBA

using B-GP surrogate (solid lines), applied to our running example (4.1). As expected,

we observe that sIDS sampling policy better approximates the true IDS policy. Interest-

ingly, if fixed batch is used, randomized and information-directed policies have asymptotic

similar performance, as measured by the average residuals and CI length (in contrast to

adaptive batching). Notice also that both Spatial G-PBA policies, dramatically outper-
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form the (Unif) baseline strategy.
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Figure 4.6: Average absolute residuals (y-axis on left panel) and average length of 95% CI (y-axis on

right panel) evaluated in wall-clock time (x-axis) obtained utilizing the sampling points generated by

the G-PBA policies and evaluate them into the updating model that uses the true p(·) with a0 = 250.

4.5 Case Study: Root-Finding for Optimal Stopping

4.5.1 Introduction

Let us briefly recall a generic discrete-time optimal stopping problem on a finite

horizon. Let X ≡ X1:T̃ be a real-valued Markov process generating an information fil-

tration G = σ(X1:t). Set S to be the collection of all G-stopping times smaller than

some given horizon T̃ < ∞, and H(t, x) the (bounded) reward function for stopping

at time t = 0, 1, . . . , T̃ . The Optimal Stopping Problem (OSP) consists of maximizing

the expected reward H(τ,Xτ ) over τ ∈ S. Towards solving the OSP, define the value

function V (t, x) := supτ≥t,τ∈S E [H(τ,Xτ )|Xt = x] for any 0 ≤ t ≤ T̃ . Standard dy-

namic programming arguments imply that V (t, x) = H(t, x) + max{h(x; t), 0} where the

function

h(x; t) := E
[
V (t+ 1, Xt+1) |Xt = x

]
−H(t, x), (4.10)

79



Section 4.5 Case Study: Root-Finding for Optimal Stopping

is the timing value. It follows that the stopping decision at a given (t, x) is equivalent

to comparing V (t, x) and H(t, x): St := {x : τ ∗(t, x) = t} = {x : V (t, x) = H(t, x)} =

{h(x; t) ≤ 0}. Thus, it is optimal to stop immediately if and only if the conditional

expectation of tomorrow’s reward-to-go is less than the immediate reward. Frequently,

a priori structure implies that the stopping set St above is a half-line, i.e., h(·; t) has a

unique root x∗. Consequently, solving the OSP at stage t is equivalent to a root-finding

problem for h(·; t).

A stochastic simulation approach (known in the literature as the Longstaff-Schwartz

paradigm) recursively builds noisy simulators for h(t, x) over t = T̃ − 1, T̃ − 2, . . .. This

is obtained by generating forward paths xt:T̃ of the state process and computing corre-

sponding path-wise stopping times τ ≡ τ(t + 1, xt:T̃ ) (which rely on St+1:T̃ and hence

are recursively known). The realization zt(xt) := H(τ, xτ ) − H(t, xt) is the pathwise

timing value, i.e., the difference between future and immediate reward over the given

trajectory. By construction, E[Zt(xt)] = h(xt; t) which matches the structure of our

PBA oracle (1.1). The random component ε(x; t) arises intrinsically from the random-

ness in the trajectory xt:T̃ . Therefore, the PBA approach offers a novel algorithm to

solve one-dimensional optimal stopping problems. Notably, it essentially bypasses stan-

dard value-function approximation methods, and allows to directly quantify accuracy of

estimated policy Ŝt = [0, x̂].

4.5.2 G-PBA for Optimal Stopping

As an illustration, we revisit the popular example of a Bermudan Put option within a

discretized Black-Scholes model: the reward function is H(t, x) := e−rt(KPut−x)+, (Xt)

is a log-normal random walk and r > 0 is the interest rate. It is well-known that there

is a unique exercise boundary x∗(t) ≤ KPut, and one should exercise as soon as X drops
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below this boundary: St = [0, x∗(t)].

For the practical implementation of the OSP problem introduced above, we take the

parameters KPut = 40, r = 0.06, T̃ = 1 and restrict to the domain (25, 40) (which is

based on some mild domain knowledge, as very low stock prices are known to definitely

trigger exercise). Thus, we consider the following oracle (with t fixed):

ZPut(x) := h(x; t) + ε(x; t), x ∈ [25, 40]; (4.11)

where the latent function h(·; t) is the timing value and x is the stock price at date t.
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Figure 4.7: Bermudan Put oracle distribution: the fitted mean response ĥ (blue line), median q̂0.50Z (x)

(black line) and empirical quantiles (at 1%, 10%, 25%, 75%, 90% and 99% levels, different shaded areas).

The root estimate ĥ−1(0; t) ' 35.125 (dashed vertical line) is obtained using Newton-Raphson on the

off-line surrogate ĥ.

Figure 4.7 shows an estimate ĥ(·; t) of (4.10), as well as the distribution of ε(·; t).

The plot was obtained by fitting an off-line smoothing spline model to 500 pointwise

estimates ĥ(xi; t) (equidistant in (25, 40)), each obtained from 20,000 oracle calls, i.e., a

total of T = 107 function evaluations. A deterministic root finding procedure (Newton-

Raphson) was run to estimate x∗ ' 35.1249 (vertical dashed line) based on the latter ĥ.

This estimate of the root is used as the ground truth in the sequel, although notably it

comes without any standard error, being based on a point estimate of h(·; t).
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This case-study (4.11) violates the basic PBA assumption of a symmetric noise dis-

tribution. Instead, Figure 4.7 demonstrates that ε(x) is right-skewed and heavy-tailed

and, in particular, p(x∗) < 0.5. Because PBA in fact searches for the point x∗med

such that p(x∗med) = 0.5, direct use of (4.11) will return the root x∗med of the median

q̂0.50
Z (x) := F̂−1

Z (0.50;x) (black line in the Figure) rather than the root x∗.

Pre-averaging oracle responses. To resolve the skewness issue, we use a pre-

averaging procedure that considers the sign of an average of ζ > 1 oracle evaluations,

Ȳ Put
ζ (x) := sign{Z̄ζ(x)}, Z̄ζ(x) := ζ−1

∑ζ
l=1 Zl(x). (4.12)

The G-PBA now works with (4.12) and to estimate the corresponding probability of

correct response

pPutζ (x) := P(Ȳ Put
ζ (x) = sign{x∗ − x}), (4.13)

a batch of ã ≥ 1 oracle evaluations in required, considering the signal

BPut
ζ (x) :=

ã∑
j=1

1{Ȳ Putζ,j (x)=+1}.

Denoting by a, the total number of oracle queries at x, we have ã = a/ζ for the effec-

tive number of replicates to query Ȳ Put
ζ (x). Note that pre-averaging is not needed for

functional response aggregation.

The principal role of ζ is to alleviate the skewness of ε(·) from (4.11). Pre-averaging

also has the side effect of boosting the signal-to-noise ratio, and hence, boosting the

probability of observing correct oracle responses pPutζ similar to the majority-vote esti-

mator in (2.21). Overall, the choice of ζ is governed by the above aim of making ε(·)

symmetric, as well as the trade-off between sampling many locations to find x∗ vis-a-vis

proper probabilistic updating of fn. Our analysis suggests that if the Local G-PBAs are

to be used, then take ζ as small as feasible and keep the effective number of replications

ã relatively large. Conversely, if spatial modeling is used, one then can substantially
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increase the pre-averaging value, and then use an effective number of replicates ã as low

as ã = 1 so that statistical anomalies are alleviated while enforcing exploration.

Lastly, since our earlier analysis assumed a decreasing response, the sign of ZPut(x)

is flipped in the sequel.

Baseline root estimation using a RSM approach. As mentioned in Chapter 1,

Section 1.1, a practical and viable alternative to find the root of an unknown noisily

sampled function, h(·), is to use a response surface modeling (RSM) approach so that

a regression/surrogate model ĥ(·) is fitted on h(·) in order to subsequently estimate the

root via a deterministic root finding (DRF) routine (Newton-Raphson) on ĥ(·).
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Figure 4.8: Empirical distribution of root estimates, where each point is obtained using a deterministic-

root procedure. The final root estimate (blue line) is given by the median of the estimated density, and

a 95% CI is provided by the difference between the 2.5% and 97.5% empirical quantiles (red dashed

lines). The ground-truth root is given by ĥ−1(0; t) ' 35.125 (dashed vertical line).

To illustrate the RSM setting, we consider the OSP simulator (4.11) and we build a

GP regression model with a Matérn covariance kernel (3.5); regressing the pre-averaged

responses Z̄Put
1:n := (Z̄Put

1 (x1), . . . , Z̄Put
n (xn)) (with Z̄i(xi) := a−1

∑a
j=1 Zj(xi) for x ∈

(25, 40) and a = 500), on the history of sampling locations x1:n. Fixing the total number

of simulation outputs to T = 20,000 and initializing the GP over 10 equally spaced

sampling locations on (25, 40), the corresponding estimate of the root will be given by
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x̂n := ĥ−1
n (0), where ĥn(·) is the posterior predictive GP mean [48]. Numerically, x̂n is

obtained using uniroot() routine in R which employs Newton-Raphson. Furthermore, for

this example, the next querying location is also the current root estimate, xn+1 := ĥ−1
n (0),

so sampling concentrates at regions close from where x∗ is believed to lie. In the case

that at any given iteration a unique root is not found (due to multiple crossings in

GP predictive mean), we then consider the median of all previous locations, xn+1 =

median(x1:n) as new querying location instead. After all T function evaluations are

depleted, a final root estimate under the RSM scheme is provided by the median of the

history of root estimates, i.e., x̂N := median(x̂1:N).

Figure 4.8 shows the empirical kernel density constructed on x̂1:n. An uncertainty

measure for the root x∗ can be obtained using a 95% CI via the estimated quantiles

(red dashed lines in the Figure). Although this empirical approach can be used as a

first order approximation, it relies heavily on the election of the surrogate model ĥ(·).

Repeating the RSM procedure for MC = 100 iterations, we observe that the average

absolute residuals are 0.5466, as well as the average length of CI given by 2.5064. In

particular, the probability coverage is 31%, indicating that this particular approach fails

to provide a reliable estimator for the root uncertainty due to the large mismatch with

the nominal coverage of 95%. We now proceed to apply Spatial G-PBA towards solving

the OSP problem.

4.5.3 Results

For the numeric evaluation of the Bermudan Put example described in Section 4.5,

we employ the inference methods that showed optimal behavior in terms of minimizing

overall root uncertainty. In particular, we apply our Local G-PBA using the estimator

PS (which relies on functional aggregation of oracle responses), as well as all spatial
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surrogates ϕ as described in Section 4.3.1.

Furthermore, we continue to use a total simulation budget1 of T = 20, 000. To

learn the exercise boundary, x∗, we implement the pre-averaged simulator (4.12) using

ζ := 25, i.e., each oracle response will consist upon ζ = 25 averaged function evaluations

as in (4.12).

Spatial G-PBA for OSP. Algorithm 2 is implemented as follows. We use a ≡ 500

total number of oracle calls per sampling location, and hence the effective replication size

for learning (4.13) is reduced to ã := a/ζ = 20. To initialize all spatial surrogates we use

N0 locations placed equidistantly on the input space (25, 40), and we continue to deploy

25% of the total simulation budget T , implying that total number of design points used

to train the initial surrogate, ϕ̂N0 , is

N0 := (0.25× T )/a = 10.

Finally, the remaining (NT −N0) design points are chosen applying the sIDS and sRQS

strategies combined with the B-GP, KLR, SLR and LR surrogate models.

Adaptive batching is implemented with a minimum replication amount of aν0 :=1. The

latter is due to the fact that a large pre-averaging value is needed in order to alleviate

the skewness of ZPut(x), and therefore we will keep the replication size as low as possible

in order to incentivize exploration – especially at regions where θζ(·) has been learned

sufficiently well. As variance thresholding sequence we use νPutn := 0.50/n, where the

effective number of replicates under this scheme is given by ãνn+1= min{aνn+1, a/ζ} for

n = n0, n0 + 1, . . . (we bound aνn+1 so that the maximum number of function evaluation

is still no more than a = 500 per querying location).

1Due to the non-standard noise component and very low signal-to-noise ratio, this is a difficult root-
finding problem, comparable to test case h3; in particular the simulation budget is quite low.
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Table 4.7: Average Monte-Carlo performance statistics after T = 20, 000 simulation outputs. The Local

G-PBA policy RQS is presented in the last row of the table coupled with the functional aggregation

procedure PS .

η p̂ r̂ηa(fT ) l̂ηa,0.95(fT ) ĉηa,0.95(fT ) (in %)

sIDS

B-GP 0.3210 0.8903 69.00

KLR 0.3598 0.6351 53.33

SLR 0.3158 0.9878 77.00

LR 0.2753 1.0687 88.50

sRQS

B-GP 0.2988 1.4064 86.00

KLR 0.3121 0.8209 62.00

SLR 0.3180 1.2005 74.50

LR 0.2913 1.4039 90.50

sIDS (νn)
B-GP

0.2225 0.6944 80.00

sRQS (νn) 0.3011 1.1121 76.47

Rand-Q PS 0.271 2.0880 97.00

Table 4.7 shows the average residuals, length of CI, and coverage probability of the

Spatial G-PBA schemes compared against the baseline root location x̂∗ ' 35.1249. This

time, adaptive replication with the one-step sIDS policy (3.21) is the best-performing

scheme. One reason could be that it allows for more sampling locations (median number

of sampling locations was median(NT ) = 55, as opposed to 40 for the fixed an schemes).

Among the rest, sIDS policy coupled with the quintic polynomial logistic regression model

(LR) performs sufficiently well, consistent with our findings in the earlier synthetic exper-

iments. Relative to the non-spatial G-PBA (which implements functional aggregation via

the estimator PS and the Rand-Q sampling policy given by (2.24) and (2.34), respec-

tively) two important improvements are noted: (i) much better coverage probabilities,

indicating the gains in learning p(·) and hence maintaining a reliable knowledge state;

(ii) lower residuals (below 0.25 while they were about 0.35).
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Chapter 5

Conclusions

We have developed a collection of numerical schemes that aim to solve the Stochastic

Root-Finding Problem (SRFP). To do so, we generalized the probabilistic bisection al-

gorithm (PBA) to the setting where the statistical properties of the oracle responses are

unknown and location-dependent.

The main ingredients of our generalized PBA (G-PBA) paradigm can be summarized

in three different components:

(C1) The explicit construction of estimators for the oracle accuracy p(·) (i.e., the proba-

bility of observing a correct response) by using batched sampling at each querying

location;

(C2) the introduction of novel sampling strategies that are capable of maximizing the

information about the root location at each stage; and

(C3) the explicit construction of a knowledge state variable, which condenses our beliefs

about the root location, and serves the dual purposes of estimating the root and

selecting the next location at which to query the oracle.
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The above three components constitute the main contributions of this work, and

naturally extend the classical PBA for SRFPs presented in Waeber et al. [58].

Below we outline in detail the main conclusions with regard to (C1), (C2), and (C3).

For (C1), we introduced a family of estimators for p(·) that do not use information

from previous locations. As such, we demonstrated their robustness to arbitrary speci-

fication of p(·). Through our extensive numeric examples, we showed that they can be

viewed as making minimal assumptions about the oracle. Additionally, we documented

the significant advantage of using functional responses (via functional aggregation) rel-

ative to utilizing just the signs of the responses. Otherwise, we concluded that the

empirical majority proportion or a conservative Bayes-like are good choices.

Moreover, we presented a structured extension of the above statistical local proce-

dures. In particular, we used spatial surrogate modeling for p(·) in order to incorporate

knowledge acquired from previous sampling locations. This was achieved by regressing

the observed (batched) responses on the previously seen sampling locations. We then

demonstrated that such blend of a regression-type paradigm with G-PBA, improved the

accuracy in the root estimation. Namely, absolute residuals actually decay faster than

their corresponding local G-PBA methods and, most importantly, the probability cover-

age is improved from zero to the actual nominal values, relative to the methods which

only use local information.

For (C2), one take-away is the advantage of Randomized Quantile sampling (RQS)

against Information Gain approaches. Namely, we observed that selecting locations ran-

domizing according to fn, minimized the need to construct a high-fidelity estimator

for p(·) during the design construction, and hence made more efficient use of oracle

queries. Our RQS design coupled with G-PBA, mimics the success of Thompson sam-

pling in other learning contexts, since it is an efficient heuristic for balancing the explo-

ration/exploitation trade-off, as well as it improves the learning rate in the early stages by
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better exploring the posterior of X∗. Nevertheless,if Spatial G-PBA is used, we showed

that the spatial structure yields two key benefits in terms of sampling policies. Firstly,

given the surrogate, the Information Gain approaches, namely the IDS criterion, I can

be predicted for any x, allowing direct optimization of next querying site selection like

in standard PBA. Secondly, Binomial GPs allows adaptive batching schemes to auto-

matically fine-tune exploration by reducing replication amounts in regions where p(·) is

already learned well. Our numeric experiments confirmed the advantages of Spatial G-

PBA relative to the our Local G-PBA, with the new algorithm inducing more accurate

root estimates and better quantifying the posterior uncertainty about the root.

Looking ahead, one motivation for considering PBA in the context of SRFP is its

Bayesian flavor that allows in particular to apply informative priors f0 as a way to warm-

start the root search. This offers one way to lift PBA, which is intrinsically limited to one-

dimensional setting, to higher-dimensions. The analogue of SRFP in two-dimensions is

noisy (zero-)contour-finding, which can be viewed as a collection of root-finding problems

in the first coordinate x1, indexed by the second coordinate x2. Assuming the zero-

contour is smooth one may then try to solve for a few x∗(x2) and then “connect the

dots” through interpolation (or a further surrogate model). Such searches can be made

efficient with G-PBA by using fN(·;x2) as a basis for an informative prior f0(·;x′2) at a

new x′2. We leave such investigations to future research.
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Additional Results

A.1 Binomial GPs and Laplace Approximation

Binomial log-likelihood Gradient and Hessian. The number of positive re-

sponses Bi :=
∑ai

j=1 1{Zi>0} after ai ≥ 1 replicates at location xi, follows a binomial

distribution Bi|ai, ϕi,
iid∼ Bin(ai, θ(ϕi)) with log-likelihood function (in the latent value

ϕi):

log p(B1:n|ϕ1:n, a1:n) =
n∑
j=1

{
log

(
ai
Bi

)
+Bi log θ(ϕi) + (ai −Bi) log[1− θ(ϕi)]

}
.

Using the Bernoulli link function θ(ϕi) = (1 + e−ϕi)−1 which implies that θ′(ϕi) :=

θ(ϕi)[1− θ(ϕi)], the corresponding gradient vector un(ϕ1:n) := ∇l(ϕ1:n) is given by

ui(ϕi) = Bi
θ′(ϕi)

θ(ϕi)
− (ai −Bi)

θ′(ϕi)

1− θ(ϕi)
(A.1)

= Bi[1− θ(ϕi)] + (Bi − ai)θ(ϕi)

= Bi − aiθ(ϕi), i = 1, . . . , n. (A.2)

Differentiating un again yields the n×nHessian matrixWn(ϕ1:n) = −∆ log p(B1:n|ϕ1:n, K1:n)

as specified in (3.11).
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Normal Approximation to the Joint Posterior Distribution. By Bayes’ rule

the posterior p(ϕ1:n|Dn) is proportional to the binomial likelihood p(B1:n|ϕ1:n, a1:n, x1:n)

times the zero-mean GP prior p(ϕ1:n|x1:n). Taking the log of the unnormalized joint

posterior we obtain

L (ϕ1:n) ∝ log p(B1:n|ϕ1:n, a1:n, x1:n) + log p(ϕ1:n|x1:n)

:= log p(B1:n|ϕ1:n, a1:n, x1:n)− 1

2
ϕT1:nK

−1
n ϕ1:n −

1

2
log |Kn| −

n

2
log 2π. (A.3)

Denote by ϕ̂n := arg maxϕn L (ϕn) = arg maxϕn p(ϕn|Dn). Expanding L (·) around ϕ̂n

gives L (ϕn) = L (ϕ̂n) + 1
2
(ϕn − ϕ̂n)T [∆L (ϕ̂n)](ϕn − ϕ̂n) + · · · ; where the linear term

in the expansion is zero because the log-posterior density has zero derivative at its mode.

As discussed in [21], the remainder terms of higher order fade in importance relative to

the quadratic term when ϕn is close to ϕ̂n and the sample size n is large.

Taking first and second partial derivatives of L (ϕ1:n) with respect to ϕ1:n and com-

bining with (A.2)-(3.11) we obtain:

∇L (ϕ1:n) = un(ϕ1:n)−K−1
n ϕ1:n, (A.4)

∆L (ϕ1:n) = −Wn(ϕ1:n)−K−1
n ; (A.5)

At the mode of L (ϕ1:n) we have

∇L (ϕ̂n) = 0 ⇒ ϕ̂n = Knun(ϕ̂n) (A.6)

as a self-consistent equation for ϕ̂n. Next, the Hessian of the score function ∆L (ϕn)

is interpreted as the inverse covariance matrix, leading to the Gaussian approximation

q(·|Dn) to the true posterior p(·|Dn)

q(·|Dn) ≡ N(·; ϕ̂n, (K−1
n +Wn(ϕ̂n))−1), (A.7)

that is, q(·|Dn, ϕ̂n) is a Gaussian distribution with mean ϕ̂n and covariance matrix Σn ≡

(K−1
n +Wn(ϕ̂n))−1.
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Since un(ϕ∗n) is a non-linear function in ϕn, ∇L (ϕ∗n) = 0 cannot be solved directly.

In order to solve (A.6), a numeric approximation, ϕ̂n, for ϕ∗n is obtained using an iterative

updating procedure based on classical Newton-Raphson search.

Predictive distribution. The approximated predictive pdf ϕ∗ := ϕ∗(x) at a test

location x ∈ (0, 1) is Gaussian ϕ∗ ∼ N(mn(x; ϕ̂n), s2
n(x; ϕ̂n)) with the mean mn(x; ϕ̂n)

given by:

mn(x; ϕ̂n) :=

∫
E[ϕ(x)|ϕ̃1:n]p(ϕ̃1:n|Dn)dϕ̃1:n

= κTnK
−1
n

∫
ϕ̃1:np(ϕ̃1:n|Dn)dϕ̃1:n

= κTnK
−1
n E[ϕ1:n|Dn] ' κTnK−1

n ϕ̂n; (A.8)

where κTn ≡ (κ(x1, x), . . . , κ(xn, x)), matching (3.12a). Likewise, the approximated pre-

dictive variance, sn(x; ϕ̂n) ≡ Var(ϕ(x)|Dn, ϕ̂n, x), is given by (cf. (3.12b)):

sn(x; ϕ̂n) := E[Var(ϕ(x)|ϕ1:n, x1:n)|Dn] + Var(E[ϕ(x)|ϕ1:n, x1:n, x]|Dn)

= E[τ 2 − κTnK−1
n κn|Dn] + Var(κTnκ−1

n ϕ1:n|Dn)

= τ 2 − κTnK−1
n κn + κTnK

−1
n Var(ϕ1:n|Dn)K−1

n κn

' τ 2 − κTnK−1
n κn + κTnK

−1
n (K−1

n +Wn(ϕ̂n))−1K−1
n κn

= τ 2 − κTn (Kn +Wn(ϕ̂n)−1)−1κn,

where the last line is true via the matrix inversion lemma applied to (Kn+Wn(ϕ̂n)−1)−1:

κTn (Kn +Wn(ϕ̂n)−1)−1κn = κTn{K−1
n −K−1

n (K−1
n +Wn(ϕ̂n))−1K−1

n }κn

= κTnK
−1
n − κTn (x)K−1

n (K−1
n +Wn(ϕ̂n))−1K−1

n κn;
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A.2 Predictive Variance Decomposition for Binomial

GPs

Theorem 3.2.2. Set

ϕ̂n+1 ≡ (ϕ̂1;n+1, . . . , ϕ̂n+1;n+1)

to be the (n + 1)-dimensional estimated mode based on training data Dn+1 obtained at

locations x1:n+1; and let

Ŵn+1;n+1 := diag{ŵ1;n+1, . . . , ŵn+1;n+1}, ŵi ≡ wi(ϕ̂i;n+1)

be the Hessian matrix (3.11) evaluated at elements of the estimated posterior ϕ̂n+1. Then,

we have that the covariance matrix Σn+1 ≡ (Kn+1 +Ŵn+1)−1) of the joint approximated

posterior (A.7) can be partitioned as:

Σn+1 =

 Σ1:n;n+1 κ∗n

(κ∗n)T τ 2 + ŵ−1
n+1;n+1

 ; (A.9)

where κ∗n := (κ(x1, xn+1), . . . , κ(xn, xn+1))T is a n × 1 column vector of covariances of

ϕ1:n against ϕn+1, and τ 2 = κ(xn+1, xn+1) is a non-negative scalar. Applying the Matrix

Inversion Theorem [26], the inverse of (A.9) is given by:

Σ−1
n+1 =

 Σ−1
1:n;n+1 + (Σ−1

1:n;n+1κ
∗
n)(Σ−1

n;n+1κ
∗
n)Ta−1 −Σ−1

1:n;n+1κ
∗
na
−1

−(Σ−1
1:n;n+1κ

∗
n)Ta−1 a−1


=

 Σ−1
n;n+1 0

0 0

+ a−1

 (Σ−1
n;n+1κ

∗
n)(Σ−1

n;n+1κ
∗
n)T −Σ−1

n;n+1κ
∗
n

−(Σ−1
n;n+1κ

∗
n)T 1

 ,

where the scalar is a = ŵ−1
n+1 + s2

n(xn+1; ϕ̂n;n+1), since

a := [(τ 2 + ŵ−1
n+1;n+1)− (κ∗n)TΣ−1

n;n+1κ
∗
n]

= [ŵ−1
n+1;n+1 + (τ 2 − (κ∗n)TΣ−1

n;n+1κ
∗
n)]
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= [ŵ−1
n+1 + s2

n(xn+1; ϕ̂1:n,n+1)].

Substituting the expression for Σ−1
n+1 obtained above in the predictive variance formula

(3.12b), we have that the posterior predictive variance at time n+ 1 and given the data

set Dn+1 is:

s2
n+1(xn+1; ϕ̂n+1) := τ 2 − (κ∗n)TΣ−1

n+1κ
∗
n, κ∗n ≡ (κ(x1, xn+1), . . . , κ(xn, xn+1))

= τ 2 − uT


 Σ−1

1:n;n+1 0

0 0

+ a−1

 vvT −v

−vT 1


u

= τ 2 − uT

 Σ−1
n;n+1 0

0 0

u
− a−1uT

 vvT −v

−vT 1

u
=
[
τ 2 − (κ∗n)TΣ−1

n;n+1κ
∗
n

]
− a−1[b2 − bτ 2 − τ 2b+ τ 4], b1×1 ≡ (κ∗n)Tv

= s2
n(xn+1)− a−1(τ 2 − b)2;

where we set vn×1 ≡ Σ−1
1:n;n+1κ

∗
n and let u(n+1)×1 ≡ (κ∗n τ

2)T be the concatenation of the

vector κ∗n and the scalar τ 2. Simplifying the expression above, we then obtain that the

posterior predictive variance at time n+ 1 can be expressed by:

s2
n+1(xn+1; ϕ̂n+1) := s2

n(xn+1; ϕ̂1:n;n+1)− a−1(τ 2 − (κ∗n)TΣ−1
1:n;n+1κ

∗
n)2

= s2
n(xn+1; ϕ̂1:n;n+1)− a−1(s2

n(xn+1; ϕ̂1:n;n+1))2

= s2
n(xn+1; ϕ̂1:n;n+1)(1− s2

n(xn+1; ϕ̂1:n;n+1)

ŵ−1
n+1;n+1 + s2

n(xn+1; ϕ̂1:n;n+1)
)

=
s2
n(xn+1; ϕ̂1:n;n+1)ŵ−1

n+1;n+1

w−1
n+1;n+1 + s2

n(xn+1; ϕ̂1:n;n+1)

=

(
1

s2
n(xn+1; ϕ̂1:n;n+1)

+
1

ŵ−1
n+1;n+1

)−1

.
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Finally, we notice that

ŵn+1;n+1 := Kn+1θ(ϕ̂n+1;n+1)(1− θ(ϕ̂n+1;n+1))

= Kn+1 · vn+1(θ(ϕ̂n+1,n+1))

which leads to (3.14).
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