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ABSTRACT OF THE DISSERTATION

Essays on Nonparametric and Semiparametric Models and Continuous Time Models
by
Yun Wang

Doctor of Philosophy, Graduate Program in Economics
University of California, Riverside, June 2012
Dr. Aman Ullah , Chairperson

My dissertation consists of six essays which contribute new theoretical results
to two econometrics frontiers: nonparametrics and finite sample econometrics. Chapters
2 to 3 discuss the estimation and inference of the nonparametric and semiparametric
models. In chapter 2 an efficient two-step estimator is developed in single nonparametric
regression model with a general parametric error covariance. By fully utilizing the infor-
mation incorporated in the error covariance into estimation, the newly developed method
is more efficient compared to the conventional local linear estimator (LLLS) and some
other two-step estimator. The corresponding asymptotic theorems are derived. Monte
Carlo study shows the relative efficiency gain of the newly proposed estimator. Chapter
3 systematically develops a new set of results for seemingly unrelated regression (SUR)
analysis within nonparametric and semiparametric framework. We study the properties
of LLLS and local linear weighted least squares (LLWLS) estimators, provide an effi-
cient two-step estimation for the system and establish the asymptotic theorems under
both unconditional and conditional error variance-covariance cases. The procedures of
estimation for various nonparametric and semiparametric SUR models are proposed. In

addition, two nonparametric goodness-of-fit measures for the system are given. Chapter

vii



4 applies the estimation method developed in chapter 2 and 3 to an empirical analysis
on return to public capital in U.S.

Chapters 5 to 6 study the finite sample properties of the mean reversion pa-
rameter estimator in continuous time models. In chapter 5 we approximate the bias
of % for the Lévy-based Ornstein-Uhlenbeck (OU) process, and propose bias corrected
estimators of k. In chapter 6 the exact distribution of the MLE is investigated un-
der different scenarios: known or unknown drift term, fixed or random start-up value,
and zero or positive k. The numerical calculations demonstrate the remarkably reliable
performance of the proposed exact approach.

In chapter 7 we study the efficiency of the coefficient of determination based on
final prediction error (RQF pp) and compare it with conventional goodness-of-fit measures
(R?, R?) in linear regression models with both normal and non-normal disturbances. The
efficiency results show that R% pp has practical use in empirical analysis, for examples,

panel data analysis and time series analysis.
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Chapter 1

Introduction

In recent decades, nonparametric econometrics is a booming frontier in econo-
metrics analysis. In contrast to traditional parametric econometrics, nonparametric
analysis does not require any functional form for underlying regression model, but it is
driven by real data. This feature brings to nonparametric analysis an important prop-
erty of avoiding the unforgiving consequences of parametric misspecification. In other
words, nonparametric analysis can lean closer to the reality than parametric analysis
does, which encourage me developing new theory within this field. Another field my dis-
sertation focuses on is finite sample econometrics. The use of the asymptotic theory has
been popular and well developed in econometric analysis over the past decades. How-
ever, asymptotic properties hinge upon an infinite large sample, which generally is not
practical in extensive studies, such as economics, psychology, engineering, and sociology
and so on. And notice that using asymptotic theory for small or even moderately large
samples may cause unpleasant misleading results. Another undesired drawback for the
use of asymptotic theory lies in that under some circumstances, various estimators have

identical asymptotic distributions. Hence, it is impossible to provide clear preference of



one estimator over the other. As a powerful tool to overcome the above shortcomings,
finite sample theory becomes one of most important frontiers in modern econometric
analysis, which motivates my interest in developing finite sample theory in popularly
used econometrics models.

My dissertation mainly covers the following topics: (1) estimation and asymp-
totic theory in single nonparametric models and a system of multiple equations in non-
parametric and semiparametric models; (2) moments approximations and exact distri-
bution of the mean reversion parameter estimator in continuous time models; (3) finite
sample properties on coefficient of dertermination based on final prediction errors. The
contributions of my work would be twofold. First, it would contribute to theoretical
methods. Second, my dissertation research would benefit extensive empirical studies,
as it could provide methodological approach to help analyze practical real-world ques-
tions. To illustrate the practical use of the newly developed methods, we also conduct
an empirical study to address the public capital puzzle.

An interest in the estimation of nonparametric regression relationship by ex-
ploring the information in the error covariance has been growing recently. The intuition
behind is analogous to the efficient estimators in linear parametric models. As we know,
in order to obtain a best linear unbiased estimator (BLUE) in classical linear parametric
models, zero conditional mean, uncorrelated relationship, and homoskedasiticity of dis-
turbances are among assumptions to be satisfied. If we suppose that variance-covariance
matrix of disturbances Q # 21, we can apply Aitken’s generalized least-squares to pre-
multiple the original variables by a matrix P such that E(Pee' P') = PQP" = I, then a
BLUE will yield since the usual assumptions of the least-squares model can be satisfied
after this transformation (Zellner, 1962). To obtain more efficient estimators in non-

parametric regression analysis, the information enclosed in variance-covariance matrix



of disturbances is worth consideration. In the second chapter, we propose a two-step
estimator of nonparametric regression function with general parametric error covariance
and demonstrate it is more efficient than the usual local linear estimator and some
other two-step estimator in literature. This chapter studies the multivariate case for
single nonparametric regression, and establish the asymptotic theorem for both mean
and slope estimators. A small set of Monte Carlo studies shows the relative efficiency
gain of the newly proposed estimator in comparison with LLLS and some other two-
step estimator in nonparametric regression with either AR(2) errors or heteroskedastic
errors. The theoretical results can be widely applied to a general single nonparametric
regression analysis.

Along the line of chapter 2, chapter 3 systematically develops a new set of
results for seemingly unrelated regression (SUR) analysis within nonparametric and
semiparametric framework. It is well known that the SUR models have been extensively
studied in parametric framework and widely used in substantial empirical economic
analysis, such as, the wage determinations for different industries, a system of consumer
demand equations, and capital asset pricing models, and so on. However, it hasn’t been
well developed within nonparametric framework. In chapter 3, we study the properties
of LLLS and local linear weighted least squares (LLWLS) estimators in nonparametric
SUR. To obtain a more efficient estimation, we develop a two-step estimator for the
system and establish the corresponding asymptotic theorems under both unconditional
and conditional error variance-covariance cases. The procedures of estimation for var-
ious nonparametric and semiparametric SUR models are proposed, such as, the NP
SUR model with error components, partially linear semiparametric model, model with
nonparametric autocorrelated errors, additive nonparametric model, varying coeflicient

model, and the model with endogeneity. In addition, two nonparametric goodness-of-fit



measures for the system are given. To examine the finite sample properties, a small
set of Monte Carlo simulations is conducted to compare the newly developed two-step
estimator with LLLS, LLWLS estimators, and a class of two-step estimator as well.

To illustrate the practical use of the newly developed methods in chapter 2 and
3, an empirical analysis on return to public capital in U.S. is presented in chapter 4. A
panel data for the U.S. 48 contiguous states over the period of 1970-1986 is employed to
revisit the public capital puzzle. Is public-sector capital productive? What’s the role for
public-sector in affecting private economic performance? The debates on these questions
have been receiving extensive attention from economists. Under parametric framework,
empirical studies reach contrary results by either assuming a particular model specifica-
tion for the underlying production function or employing various parametric estimation
methods. Within the parametric framework constant elasticities of the specified models
are assumed across all the states and all the years. The question arises naturally is
whether or not the estimates of returns to inputs can be trusted under above settings.
As we know, nonparametric method is not only free from the unforgiving misspecifica-
tion issue, but also provides local estimates so that variety of the estimates of returns
to inputs can be observed across all the states and all the years. Upon these properties,
nonparametric method would give more precise analysis to address the issue. In this
empirical analysis, there are some interesting findings: First, the average returns of pub-
lic capital on states’ private economic growth are statistically significant and positive.
In other words, the public capital has positive spill-over effects on average across states,
and even though its spill-over effects are smaller than private sector capital stock but still
non-negligible. Second, in general, the returns to the public capital are positive. How-
ever, a few states, for instances, Wyoming, South Dakota, North Dakota, New Mexico,

Montana, have negative returns to the public capital, which are consistent with some



recent studies under nonparametric framework. Third, the mean returns to the public
capital across all the 48 states changes over the period of 1970-1986. The returns to
public capital increased sharply during recessions, started decreasing when the economy
stepped into recovering, and fluctuated in small magnitudes during normal time. The
reason behind this may be in that when the economy is in recession the private sector
becomes weak, so that public sector capital plays a more effective role than normal
time. The private sector may gain more benefits from the government investments on
the public capital during recessions than the other times.

Chapters 5-7 are developed within the finite sample framework in which we
derive and evaluate our moment approximations and exact distribution of the mean
reversion parameter estimator (k) in continuous time models (also known as diffusion
processes). The mean reversion parameter (k) measures the persistence in the stochastic
processes and 1 — k measures the speed of mean reversion. The smaller value of mean
reversion, the higher persistence in the stochastic process, which means the process is
more likely to remain in the same state from one observation to the next. In practice, this
parameter is of important implications for asset pricing, risk management and forecast.
It has been shown in the literature that mean reversion parameter suffers the most
serious bias problem among all the parameters in diffusion processes. The difficulty in
the estimation of k is related to the finite sample bias problem well documented in the
discrete time literature (see, for instance, Kendall (1954)).

More specifically, chapter 5 considers the bias of the mean reversion estimator
(R) in the continuous time Lévy processes. In recent years, it has been reported strong
evidence of infinite activity jumps in financial variables (see, for example, Ait-Sahalia
and Jacod (2008)). It is known that the continuous time Lévy processes not only can

capture the infinite activity jumps, but also allow a general form of errors. Due to these



features, the Lévy processes have become increasingly popular and various Lévy models
have been developed in the asset pricing literature (see for example, Barndorff-Nielsen
(1998), Madan, Carr and Chang (1999), Carr and Wu (2003)). Although an exten-
sive literature has developed methods for estimating the parameters in continuous time
diffusion models and for approximating the estimation bias, the effect of nonnormality
on the estimation has not been studied. The bias of K is approximated and the bias
expressions are obtained for the Lévy-based Ornstein-Uhlenbeck (OU) process. The
approximate bias of K under normality is also derived as a special case. The bias expres-
sions indicate that both the skewness and the kurtosis of the Lévy measure affect the
bias when the time span is not very large and the sampling frequency is not very high.
The initial condition, the long term mean (u), and the volatility parameter (o) also
enter the bias expressions. Bias corrected estimators of x are proposed. Monte Carlo
studies are conducted to examine the performance of the bias corrected estimators.

It has been documented in literature that the maximum likelihood estimator
(MLE) of k tends to over estimate the true value. On one hand, the true distribution
of MLE can be severely skewed in finite samples and the asymptotic results in general
may provide misleading results. Its asymptotic distribution, on the other hand, depends
on how the data are sampled (under expanding, infill, or mixed domain) as well as how
we spell out the initial condition. This poses a tremendous challenge to practitioners in
terms of estimation and inference. In chapter 6, we investigate the exact distribution
of the MLE under different scenarios: known or unknown drift term, fixed or random
start-up value, and zero or positive x. In particular, we employ numerical integration
via analytical evaluation of a joint characteristic function. The numerical calculations
demonstrate the remarkably reliable performance of the newly proposed exact approach.

Chapter 7 studies the efficiency properties of the coefficient of determination



(R%J pp) based on final prediction error and compares it with conventional goodness-of-fit
measures (R%, R2) in linear regression models with both normal and non-normal dis-
turbances. The literature has shown that using R-square based on final prediction error
as a model selection criterion is perfectly consistent with using AIC and is closest with
the criterion BIC than other conventional R-squares. However, there is no theoretical
proof on its efficiency properties. Motivated by its good performance and lack of theo-
retical studies in the literature, I developed this chapter. My theoretical results show it
is a useful tool as a model selection and goodness-of-fit measure in both cross-sectional
analysis and time series analysis.

Chapter 8 concludes the thesis. The mathematical derivations are provided in

the appendix.



Chapter 2

Single Equation Nonparametric
Estimation with Non-Scalar

Covariance *

2.1 Introduction

As is well known, in order to obtain a best linear unbiased estimator (BLUE)
in classical linear parametric models, zero conditional mean, uncorrelated relationship,
and homoskedasiticity of disturbances are among assumptions to be satisfied. If we
suppose that variance-covariance matrix of disturbances Q # 21, we can apply Aitken’s
generalized least-squares to premultiple the original variables by a matrix P such that
E(PselP/) = PQP' = I, then a BLUE will yield since the usual assumptions of the least-
squares model can be satisfied after this transformation (Zellner, 1962). The intuition
behind local linear generalized least squares (LLGLS) estimator is the same as Aitken’s

generalized least-squares. To consider the contemporaneous correlated disturbances in

*This chapter is a joint work with Dr. Liangjun Su and Dr. Aman Ullah.



nonparametric regression model, the standard procedure is to apply Aitken’s generalized
least-squares to obtain LLGLS by premultiplying a matrix P such that E(PaalP/) =
PQP' = I on both sides of the weighted equation (Das, 2005). In this spirit, in order to
gain the efficiency of estimators, the information enclosed in variance-covariance matrix
of disturbances is worth consideration.

Recently more and more interests are growing in the estimation of nonparamet-
ric regression relationship by exploring the information in the error covariance. Since
conventional local linear least square estimator (LLE) fully ignores the information in
the error covariance structure, it is not efficient when the error terms are not inde-
pendently identically distributed. Ruckstuhl, Welsh and Carroll (2000) considered a
semiparametric model as Y;; = a; + m(Xy;) + €5, i = 1,...n, j = 1,...J, where oy
and ¢;; are independent random variables with zero mean and variances o2 > 0, 02 > 0
respectively. Considering the structure of variance component, they obtained a two-step
estimator which is more asymptotic efficient than the pooled estimator that ignored the
dependence in their semiparametric model. The idea of their two-step estimator is to
multiply both sides of the model by the square-root of the inverse covariance matrix
to transform the original disturbances to be indepent and identically distributed. Fol-
lowing the basic intuition of Ruckstuhl, Welsh and Carroll (2000) and employing the
covariance structure, Su and Ullah (2007) developed a class of two-step estimators in
which the regressors were allowed to be a random vector, and two different bandwidth
sequences were used in the two steps. In addition, Su and Ullah (2007) also considered
a more efficient estimation of the first order derivatives of the nonparametric regression
mean. Xiao, Linton, Carroll and Mammen (2003) proposed a kernel-based procedure
for local polynomial estimation in Nonparametric regression with autocorrelated errors,

which was more efficient than the estimator obtained by ignoring the correlation struc-



ture entirely. The intuition behind the procedure proposed by Xiao et al. (2003) is
to transform their original model to have uncorrelated disturbances. Unlike Xiao et
al. (2003) investigated a stationary case, Linton and Mammen (2008) considered both
stationary case and unit root case in disturbances. However, the intuition behind the
procedure of Linton and Mammen (2008) was still familiar, that is, they employed a
dynamic transformation to make the error term white noise. In addition, when esti-
mating nonparametric function for panel data with measurement error, Lin and Carroll
(2000) computed separate regressions at each time period and averaged the weighted
resulting estimates, which improved efficiency over a single measurement error analy-
sis by pooling all the panel data. Different with the papers mentioned before where
the errors exhibited a parametric correlation structure, Su and Ullah (2006) provided a
three-step procedure to let the errors enter the model nonparametrically, and then their
baisc model was constructed as Y; = my (Xy) + mo (Ui—1, ..., Ui—p) + &4

The case considered by Martins-Filho and Yao (2009, MY hereafter) is rela-
tively more general than the above. For nonparametric regression with general para-
metric error covariance, they have proposed a two-step estimator of nonparametric re-
gression function and demonstrated it is more efficient than the traditional local linear
estimator (LLE). Intuitively MY gains the relative efficiency of their estimator over the
LLE because the former applies the information in the off-diagonal elements of the error
covariance whereas the latter fully ignores the information in the error covariance struc-
ture. Nevertheless, MY did not fully explore the information in the diagonal elements
of the error covariance. Consequently, if these diagonal elements are not identical across
observations (say when the error term is an AR process or heteroskedastic of known
form), then their estimator can be further improved.

In this chapter, we propose a modified estimator of MY. We demonstrate clearly

10



that the full use of the error covariance structure can result in an asymptotically more
efficient estimator than MY’s estimator. The relative efficiency of our estimator over
MY’s is verified through simulations where the error terms in the nonparametric re-
gression follow an AR(2) process or a heteroskedastic structure. In addition, we extend
MY’s estimator to the multivariate case, and also establish the asymptotic theorems for
the slope estimators which are not studied by MY. To illustrate the applicability of our
asymptotic results to popular nonparametric models, we study the asymptotic properties
of our two-step estimators for seemingly unrelated regression and clustered/panel data
models. Also, the practical use of the newly proposed method is demonstrated within a
nonparametric panel regression model with random effects in a real data setting.

The chapter is structured as follows. We introduce the MY’s estimator in
Section 2 and demonstrate it can easily be improved to achieve a more efficient estimator
in Section 3 where the asymptotic bias and variance for the two-step estimator are
derived for both seemingly unrelated regression models and clustered /panel data models.
A small set of simulations is conducted in Section 4. Finally, the concluding remarks

are made in Section 5.

2.2 The MY’s estimator

Consider the nonparametric regression model

Y;-:m(XZ-)—I—UZ-,izl,---7n, (21)

where X; is a ¢ X 1 vector of exogenous regressors that is continuously distributed, and

U; is an error term such that E (U;) = 0 and

E(UzU]) = Wjj (90) for some 6y € RP, ,7=1,---,n. (22)

11



Following MY, we assume for simplicity that {U;} is independent of {X;} but allow for
time series structure in either process. In addition, we permit non-identical distributions
across ¢’s.

Let Y = (Y1, ,Y,), Rz = (1,(X; —2)), and Ry = (Riz, -, Rnz). Let

d(x) = (m(x), Om (x) /0x')'. The conventional LLE of ¢ () is given by
Stim () = (RLK,mRy)  RLK, 4 Y (2.3)

where K, 5, =diag(Kp, (X1 — ), -+, Kp, (X —2)), Kp, () = K (-/h1) /h{, K () is a
kernel function, and hq is a bandwidth parameter. In particular, the conventional LLE

of m (x) is given by
. ~1
MLL,hy (SU) =€ (R/xK:v,lu Rx) R;«Kz,le (24)

where e = (1,0, ---,0)" denotes a (g + 1) x 1 vector.

Since My, p, (x) does not explore the information in the error covariance struc-
ture, it cannot be asymptotically efficient in any sense. For this reason, MY proposes
a two-step estimator of m (z) that applies the information in (5.9). To proceed, let
Q2(#) be an n x n matrix with the (,j)th element given by w;; (6). Assume that
Q(0) = P(0)P(0) for some square matrix P (6). Let p;; (§) and v;; (6) denotes the
(i,7)th element of P (#) and P (#)~ ', respectively. When 6 = 6, the true parameter
value, we frequently suppress the dependence of these matrices and their elements on 6
and, for example, write P for P (6) and v;; for v; (6p) . Let m = (m (X1), -+ ,m (X,,))’,
U=(Uy,---,U,) , and sziag(ful_ll, . ,fugy}) . Define Z=HP 'Y+ (In — HP‘I) m

where I, is an n X n identity matrix. Then

Z =m+ e with e = HP~'U,

12



and it is easy to verify that € has mean 0 and covariance matrix as a diagonal matrix:

E (ef) = H? = diag (v, -+ ) - (2.5)

rnn

The two-step MY’s estimators of ¢ (x) and m (x) are given by

gMY,hQ (*73) = (R;Kx,th;t)il RlxKa:,hgz (2.6)
f‘r\LMY,hQ (.CU) =¢ (]_:{201(33,]12R.x)_1 R’sz,hﬁ, (27)

where Z=HP 'Y+ (I, — HP™V) g py, Wappn, = (Moo (X1),- Moo (X)),
and the bandwidth hs is usually different from h;. Clearly, here it is assumed that 6,
and therefore H and P, are known. When 6y is unknown but can be estimated by 0 at
v/n-rate, we can replace H and P by H (5) and P(@) and it is trivial to show that such
a replacement won'’t affect the first-order asymptotic properties of masy 4, (x) . Hence it
is not restrictive to assume that 6y is known.

The following theorem extends the findings in MY to the multivariate case and

it also incorporates the asymptotic properties for slope estimators. To proceed with the

asymptotic theorem, we first state a list of general assumptions.

Assumption Al. K(-) is a product kernel such that K (z) = II]_, k(z;) where k(-) is a
univariate symmetric kernel with compact support Sy satisifying: (i) [ k(x;)dz; =
L (i) [@ik(x)de; = 0; (i) [22k(z;)dz; = of; (iv) for all x;,x; € S we have

k(i) — k()| < clzi — i, ¢ € [0,00).

Assumption A2. (i) f;(x,0) is the marginal density of X; evaluated at x, with f;(z, 6p)
< ¢ for all 4; (ii) f(2) = limpsoon ™t >, filw,00), and 0 < f(x) < oo; (iii)
fi(w,80) is differentiable, and | £\ (x,00)| < ¢; (iv) | fi(x, 60) — fi(a', 60)| < clz—2|

for all z, 2/, and 6y, where 6y denotes the true parameters.

13



Assumption A3. m®(z) < ¢ for all z and o = 1,2, m®*(z) is the ath-order derivative

of m(zx) evaluated at x.

Assumption A4. As n — oo, h — 0,nh4T% — oo and nhdt6 — 0.

Assumption A5. Ty (z,00) = limyeon™ ' S0, 052 fi (), and 0 < @ (2,600) < oo,

1=1 i

where v;; is the diagonal element of H.
Assumption A6. w} (z,6p) = lim, e n~13" w2 fi(z), and 0 < w} (z,6p) < oo.

To compare the asymptotic efficiency among LLE and two-step estimators, we

first present the asymptotic distribution of LLE. Let f; (x) denote the marginal density

of X;, f(z) =limpeen >0 fi (), and wy (z,00) = limyoon ™' Y0, wii(00) fi (x) -

Theorem 1 Assume that Assumptions A1-A4 are met, we have

k21hd —~q  8*m(z)

b0y | S @) — 6@ — | T | [ SN0
qul
wf(wio)(fim)q 0
where QLL = F @) L ) Dh :diag(17h27'” 7h2)(4+1)><(q+1)7
0 Wf(a,’,9())f€22(1€02)q7
Fasg, 1

and rij = [ 2k (2)? dz fori,j = 0,1,2.where kij = [ 2°k (2)? dz fori,j = 0,1,2.

The asymptotic distribution for the two-step estimator is given in the following

Theorem.

Theorem 2 Assume that Assumptions A1-A5 are met, we have

nhg Dy, (gMY,hz (@) = d(z) - BMY) 4 N0, Q).

where
k21h2 <~q  0?m(x) wy(®,00)(rko2)?
2 Zj:l (%? ?2(3:) 01><q
Buyy = » Quy = ) )
W (x,00)k22(Kko2)?™
O 0p1 (w80 reza (02)

T (2)2, 1
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Dy, = diag(1,he, -+ ,h2) is a (g + 1) x (¢ + 1) diagonal matriz, and k;j = [ z'k (z)’ dz

fori,j=0,1,2.

The proof of the above theorem follows straightforwardly from that of Theorem
3 in MY, is similar to that of Theorem 3 below and thus omitted. To obtain the
above result, a necessary condition on (hi, h2) is that hy/he — 0 in order to eliminate
the first order asymptotic bias due to the first stage estimation error. Also, in order
for the remainder term from the second-order Taylor expansion of m (X;) at = vanish
asymptotically, we need lim sup,,_, . nh%Jr4 — c € [0,00).

Let 3 MY,hy (z) denote the vector of the last g elements of SMYM (z) . Theorem

2 implies that

A Ko1h3 <= O*m () d Wy (w,00) (Ko2)
\/nhd | My, () —m(z) — 5 ; 92 — N |0, — )

J

()
nhhs (BMY,hz (z) — om (m)> 4N (07 @y (@, 00) 22 (/{"02)(1_IIQ> .

—2
Oz f (w)’igl
It is easy to see that Mmasy p, () shares the same asymptotic bias as the tradi-

tional LLE my, 5, () but has smaller asymptotic variance than the latter. To see this,

note that the asymptotic variance of myr, p, () is given by

lim n~* Zwii (60) fi (z) (Ko2)? /72 (z).
i=1

n—oo
By the fact that for any nonsingular matrix A with inverse A=, we have a;a® > 1
Vi with a;; and a” being the ith diagonal elements of A and A~! respectively, we can

readily show that

n

lim n~! Zw“ (60) fi (z) —wy (2,600) = lim n~* Z (wii (B0) — vi;?) fi (z) > 0.
i=1

n—oo n—oo
i=1
That is, My n, () is asymptotically more efficient than mp,r, 5, () . By the same token,
BMYM (x) shares the same asymptotic bias as the traditional LLE of Om (z) /Ox but

has smaller asymptotic variance than the latter.
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2.3 A more efficient two-step estimator

In this section we first demonstrate that the MY’s estimator can be improved
to obtain a more efficient estimator and then consider applying our estimation method

to both seemingly unrelated regression models and panel data models.

2.3.1 A more efficient two-step estimator

As indicated in the introduction, MY’s estimator does not fully use the infor-
mation in the diagonal elements of the error covariance matrix € (6p) into estimation.
Note that the transformed errors by MY’s method is non-scalar, when there is serial
correlation and/or heteroskedasticity in original errors. So it still has a room to im-
prove MY’s two-step estimator. Apparently, the cause of the lack of efficiency of MY’s
estimator is due to the misuse of the diagonal matrix H in the definition of Z. It turns
out that we can modify the definition of Z to obtain a more efficient estimator. Let
Z*=H 'Z. Then

Z* = H'm + ¢ with ¢ = P71U. (2.8)
Clearly, €* has mean 0 and covariance matrix as an identity matrix. We can consider
the local linear estimation of ¢ (z) based on the transformed equation in (2.8).

It is straightforward to verify that our two-step estimator of ¢ () based on

(2.8) is given by

< * * 71 *.
5SUW,h2 (.%') = (Rx,KxthRx) Rgg/K:c,hQZ* (2.9)

where R;EH_le, and Z*EP_1Y+ (H_1 — P_l) myz p,. Then we have the following

theorem.
Theorem 3 Assume that Assumptions A1-A4 and A6 are met, we have
< d
nhi D, <5SUW,h2 (z) =6 (z) - BSUW) = N (0, Qsuw),
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where

k21h3 <~q  9?m(x) (ko2)? 0
2 i=1" 9a? Q wi(x,00) Ixq
) SUW — )
Ii22(f€02)q_1
0q><1 0q><1 w;(zﬂo)ﬁgl Iq

Bsyw =

and w;‘c (z,600) = limy, oo 130, vz fi (@)

The proof of the above theorem is delegated to the section I of Appendix A.
Theorem 3, in conjunction with Theorem 2, implies that SSUWﬁ2 (x) shares the same
asymptotic bias as MY’s estimator (5AMy,h2 (x). To compare their asymptotic covariances,

noting that by the Cauchy-Schwarz inequality, we have

1 < Y v i
n Y vnfi(@) T et R f ()

)

which implies that 1/w} (2,60) < Wy (x,60) /fQ (z). Thus, the asymptotic covariance
of SSUW,hQ (x) is less than that of gMy’h2 (z). That is, our two-stage estimator may
have smaller asymptotic variance than MY’s if a non-negligible portion of the diagonal
elements are distinct from others. In other words, it pays off to explore the information

in the diagonal elements of the error covariance matrix.

2.3.2 Two-step estimator for clustered or panel data models

In order to illustrate the applicability of our theorems to popular nonparamet-
ric models, we derive the asymptotic bias and variances of our two-step estimator for
clustered or panel data models. The panel data model has been studied in MY for the
univariate case.

Here we consider the following one-way random effects model
}/7,] :m(XZ])+al+52]7 1= 17 y 1, j: 17 7<]7

where X;; is a ¢ x 1 vector of exogenous variables, «; is independent and identi-
cally distributed (IID) (0,03) , €ij is 1ID (0,052) , o; and g;; are uncorrelated for all
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i, = 1,2,...,n, and m(-) is an unknown smooth function. Let w;; = a; + €5, u; =
(i1, ..., u;7)", and u = (uy,...,u,) . By assumption, we have ¥ = E(uul) = o2y +
021,1; and Q(02,02) = E(w') = I, ® 3, where 1; is a J x 1 vector of ones. As
in MY, assuming that Q = PP’ for some square matrix P, then P~' = I, ® V’l/z,

where V=12 = (vy) Switho; =v =2 - (1-2)L foralli =1,..,J

i,j=1,.. o1/ Joe

vij = v, = —(1 — Z—i)%ﬂg forall i # 57 = 1,...,J, and o1 = \/W. Our two-
step estimator is SSUW}LQ (z) = (R¥K, ,RY) ™! R;’Kx7h22*, where RI=H 'R, R, =
(Xaa1yooos Xa 1y oo, Xanly ooy Xand ), Xajij = (1, (Xij—2)"), Kg p, =diag(Kp, (X1 — ),
oy Ky (X1g =), ooy Kpy (X1 — ), ooy Ky (Xog — 7)), and Z+ is analogously defined

as in Section 3.1. Then Theorem 3 implies that

nh%Dh (;S\SUW,hg (.’L‘) -9 (1‘) — B(Panel)> i) N (0, Q(Panel)> (2.10)
ra1hy \~g  9?m(x)  (ko2)? 0
where B(Fanel) — 7 2o oz Q(Panel) _ | v* iz fi(=) Ixq
_ raa(ko2)?!
0gx1 0gx1 02 Z}_le Fi(@md, 4

and f; () denotes the marginal density of Xj;.

2.4 Monte Carlo simulations

Now we conduct a small set of Monte Carlo simulations to compare the finite
sample performance of our estimator with that of LLE and MY. Consider the following

data generating process:
}/; :m(XZ)+U7,7 1= 17 y Ty

where the univariate random variables X; are first generated independently from N (0, 1)
and then truncated at 3. We use two specifications for m(z) : 0.5 + e =4 /(1 + e~4%)

and 1 — 0.96*2‘”2, which correspond respectively to ma(x) and mg(x) in MY.
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For the error terms, we consider two cases. In Case 1, we assume a time series
structure for U; and generate U; from the following AR(2) process: U; = 0.5U;—1 —
0.4U;_9 + €;, where ¢; are independently and identically distributed (IID) N (0,1). In
Case 2, we assume that U; are heteroskedastic but independent of each other, and
generate U;, i = 1,---, %, as IID from N(0,2), and U;, i = § +1,--- ,n, as IID from
N(0,4). In the first case, only the first two diagonal elements in the square root matrix
(P) of the covariance matrix () of U = (Uy,---,U,) are distinct from others, so that
the MY and SUW estimators are asymptotically equivalent and we should not observe
significant difference in the finite sample performance between the two estimators. In
the second case, however, the LLE and MY estimators are asymptotically equivalent
and both are dominated by the SUW estimator.

For all estimators, we use the Gaussian kernel. For bandwidth sequences, we

/4, where h; and hy

use the least-squares cross validation to choose ho, and set hy = hg
are used in the first and second step estimations, respectively, for both MY and SUW
estimators. The one-step LLE estimator uses ho in the estimation.

Although we know the covariance matrix 2 of U in the simulation, we estimate
it according to the AR(2) specification in Case 1 and heteroskedastic specification in
Case 2. To be specific, we estimate the two autoregressive coefficients in the first case
and the two variances in the second case. Based on the estimation of m (z) on all data
points X7, ---, X, we calculate the bias, standard deviation (Std), root mean squared
error (RMSE), and mean squared error (MSE) for each estimator and average them
across 1000 replications. The sample sizes under our investigation are 100 and 200.

Table 2.1 on page 22 reports the finite sample performance for the three esti-

mators for both m(z) and Om(z)/0x in the case of AR(2) errors. First, in terms of Std

and RMSE (or MSE), both MY and SUW estimators outperform the LLE estimator,
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and have smaller bias for estimators of 9m(x)/dz, but the former tend to have slightly
larger biases for estimating m(z). Second, as expected the efficiency gain of the SUW
estimator over the MY estimator is tiny and may be ignored in the AR(2) error struc-
ture. Noting that the more different diagonal elements in the square root matrix P of
Q, the more efficiency gain we may have, we expect that prominent efficiency gain can
be achieved only in AR(p) model with p = p (n) — oo as n — oo or in ARMA(p, q)-type
of models.

Table 2.2 on page 23 compares the three estimators for both m(z) and Om(z)/dx
under the heteroskedastic errors !. As expected, the performance of the MY estimator
is identical to that of LLE given the fact that they share the same first order asymp-
totic bias and variance. Obviously, our estimator SUW has improvement over LLE and
MY in the sense of having lower Std and RMSE (or MSE). The simulation results pro-
vide a strong support that the SUW estimator is more efficient than the LLE and MY

estimators by considering heterogeneity in the error structure.

2.5 Concluding Remarks

In this chapter we propose a two-step estimator (SUW) for nonparametric
regression with a general parametric error covariance that is more efficient than that of
MY’s. The results are applied to one-way random effects model. Notice that by the
transformation which we employ to obtain our two-step estimator the transformed errors
has spherical parametric covariance structure. Therefore, intuitively SUW estimator
should outperform those nonparametric regression estimators that fail to fully utilize

the information in the error covariance. Simulations confirm the finite sample out-

!The results in Table 2.2 are obtained for the heteroskedastic error case with two different variances.
We also did the simulations for the case with four different variances, and observed higher relative
efficiency gain of SUW over MY compared to the former case.
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performance of our estimator over both LLE and MY’s under both serial correlation
case and heteroskedastic case. Notice that under heteroskedasticity MY’s estimator
degenerates to LLE as the former fails to incorporate the diagonal information in the

error covariance, which is also confirmed in Monte Carlo simulations.
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Chapter 3

System of Equations and Panel
Model Nonparametric and

Semiparametric Estimation

3.1 Introduction

The advantages of using nonparametric method lie in that not only it is free
from misspecification issue of functional form, but also it gives local estimations which
can provide more deep information than parametric method does. It is well known
that the weighted least squares (WLS, also known as GLS) estimator in a parametric
regression model with a known non-scalar covariance matrix of errors, is the best linear
unbiased estimator. This also holds asymptotically for operational WLS estimator in
which the non-scalar covariance matrix is replaced by a consistent estimator, see Greene
(2007, p.157) and Hayashi (2000, p.138). Further, in small samples it is known to be

unbiased for the symmetric errors, see Kakwani (1967), and its efficiency properties are
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analyzed in Taylor (1977). In the case of nonparametric regression model with a non-
scalar covariance, various local linear weighted least squares (LLWLS) estimators have
been developed for the pointwise local linear regression and its derivative estimators, see
Welsh and Yee (2006), Ullah and Roy (1998), Henderson and Ullah (2005 , 2008 ), Lin
and Carroll (2000), among others. However, it has been shown in Henderson and Ullah
(2008), Welsh and Yee (2006), and Lin and Carroll (2000), among others, that such LL-
WLS estimators may not be efficient even when the covariance matrix is known. In fact,
often they are even beaten by the local linear least squares (LLLS) estimator ignoring
the existence of a non-scalar covariance matrix. In view of this Ruckstuhl, Welsh, and
Carroll (2000) proposed a two-step estimator in which the dependent variable, which is
filtered (transformed), with the mean as the regression function and the non-scalar co-
variance matrix transformed to a scalar covariance matrix, also see Su and Ullah (2007).
Martins-Filho and Yao (2009) estimated the filtered dependent variable with its mean
as the regression function but a non-scalar covariance matrix consisting heteroscedas-
ticity. Su, Ullah and Wang (2011) then suggested a new two-step estimator in which
the filtered dependent variable has a mean with transformed regression and a scalar
covariance matrix. They showed that their two-step estimator is asymptotically more
efficient than both the LLLS and the two-step estimator proposed by Martins-Filho and
Yao (2009). In a simulation study they also show that their two-step estimator is also
more efficient compared to both the LLLS and the Martins-Filho and Yao’s two-step
estimator.

The objective of this chapter is to systematically develop the theory and ap-
plication of two-step estimation in the context of the seemingly unrelated regression
(SUR) models. As we know, the SUR models have been extensively studied in paramet-

ric framework and widely used in substantial empirical economic analysis, such as, the

25



wage determinations for different industries, a system of consumer demand equations,
and capital asset pricing models, and so on. However, it hasn’t been well developed
within nonparametric framework, although see, for example, Smith and Kohn (2000),
and Koop, Poier and Tobias (2005), where nonparametric Bayesian methods is used to
estimate multiple equations, Wang, Guo, and Brown (2000) where a penalized spline
estimation method is considered, and Welsh and Yee (2006) where LLWLS estimators
are used.

This chapter develops a new set of results for SUR regression analysis within
nonparametric and semiparametric framework. Specifically, we study the properties of
conventional LLLS and LLWLS in nonparametric SUR, and develop efficient two-step
estimation for nonparametric SUR following Su, Ullah, and Wang (2011) in the context
of single equation model. The corresponding asymptotic theorems under both uncondi-
tional and conditional error variance-covariance cases are established. Then we compare
its asymptotic properties with the LLLS and LLWLS estimators. The theoretical results
show that our two-step estimator is more asymptotically efficient than LLLS. It is known
that various nonparametric and semiparametric specifications have been developed and
widely used within cross-sectional models or panel data models, and the corresponding
estimation and statistical properties have been well discussed in literature. However,
these specifications haven’t been considered in NP and SP SUR models. It would be also
interesting to know the estimation and statistical inference for different specifications
within NP and SP SUR system. Hence, the procedures of estimation for various non-
parametric and semiparametric SUR models are proposed in the current chapter, such
as, the model with error components, partially linear semiparametric model, additive
nonparametric model, varying coefficient model, and the model with endogeneity. In

addition, two nonparametric goodness-of-fit measures for the system are given as well,
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which provide a fundamental knowledge that can be used to develop various tests based
on R-square for SUR system. To examine the finite sample properties, we conduct a
small set of Monte Carlo simulations to compare our two-step estimator with LLLS,
LLWLS estimators, and a class of other two-step estimators as well. The latter can
be shown as a special case of ours. The simulation results confirm that our two-step
estimator outperforms others in the finite sample settings.

The structure of this chapter is as follows. In section 2, we introduce SUR
NP estimations including LLLS estimator, a general two-step estimator, and provide
their asymptotic distributions under unconditional error variance-covariance. In addi-
tion, various LLWLS estimators are discussed. In section 3 we propose the estimation
procedures for a variety of popular NP/SP SUR functions, specifically, partially lin-
ear semiparametric model, model with NP autocorrelated errors, additive NP models,
varying coefficient NP models, varying coefficient IV models, and NP SUR models with
error components. Section 4 discusses NP SUR models with conditional error covari-
ance, and its estimation incorporating the conditional covariance. The corresponding
asymptotic distribution is also provided. In section 5 we define two types of nonparamet-
ric Goodness-of-fit measures in terms of ANOVA decomposition and indicator function.
The following section 6 conducts a small set of Monte Carlo simulations to examine the

finite sample performance of LLLS, LLWLS, and two-step estimators.
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3.2 Nonparametric Seemingly Unrelated Regression Sys-

tem

We start with the following basic nonparametric seemingly unrelated regression
models

The economic variable y;; is the jth observation on the ith cross-sectional unit, Xj;;
is the jth observation on the ith unit. m;(-) is an unknown function form, which
can differ across the cross-sectional units. The observation y;; is related to Xj;, a
¢i X 1 vector of exogenous regressors, and X;;, ¢« = 1,--- M, can differ for different
regression models. For the present, we assume strict exogeneity of X;;, E(u;;|X;;) = 0,
and homoscedasticity Var(u;j|X;;) = o2 within each equation. Also, we assume that
the disturbances are uncorrelated across observations but correlated across equations,
ie, E(uguy;|Xij, Xirj) = o4 for i,/ = 1,--- M and i # 4, and j = 1,--- ,N. For
simpliticy, the fixed number of observations N is assumed. However, it can be extended
to unequal numbers of observations.

The economic examples of such models include: (i) economic growth model
in which 7 stands for different countries, j indexes the time periods, specifically, y;; is
the growth variable for the jth time period on the ith country, and X;; is a vector of
regressors that affect the economic growth of ith country at the jth period; (ii) regional
consumption model in which 7 denotes the ith cluster, j denotes the jth household; (iii)
the wage determination for different industries, in which we can set different equations
for different industries, that is, ¢ indexes the ith industry, j is the jth observation; (iv)
a system of consumer demand equations on a panel data set, etc. In a special case,

mi(Xi;) = XijB; that is the standard Zellner’s (1962) parametric SUR system.
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3.2.1 Estimation with Unconditional Error Variance-Covariance 2

In this section, we introduce the local linear least squares estimator (LLLS),
propose a more efficient two-step estimator in a general form, and also discuss the
properties of LLWLS estimators within SUR. The asymptotic distributions for both

LLLS and two-step estimators are given for multivariate nonparametric SUR models.

3.2.1.1 Local Linear Least Squares Estimator

By first order Taylor expansion, we write

yig = mi(Xij) + ui

mi(as) + (Xgj — w)ymi (@) + g

= (1 (Xij_fﬁi)/) mn;)(j:) + Ui

= Zij(xi)0i(xs) + wij,

12

/
where §;(x;) = <mz(ﬂfz) mf»”’(@)) , which is a (¢; + 1) x 1 vector, and Z;;(z;) =

/
(1 (XZ] —:Ei)/> . Let Yi = (yila-“yiN),a Zl(l'l) = (Zzl(l‘z), s, ZzN(xz)> ’ which
/
has a dimension of N x (g;+1), and u; = <ui17 . UiN) . In a vector representation,

for each regression ¢, we can write

Yi =~ Zi(x4)0;(zi) + u;.

Further, one can stack regression ¢ = 1,--- , M, in a matrix version,
(7 Z1(z1) 0 01(z1) uy
= + ,
Ym 0 Zy(znr) ) \Om(war) upg
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which can be written compactly as

2
N
3
=
&
_|_
i

I I /
where y = (yl,...,yM) ,is a MN x 1 vector, m(X) = (my(X1),...,my(Xnr)),

mi(Xi) = (mi(Xin), oo mi(Xin)) w = (u], uM)'

Z(x) = diag (Zl(aﬁl), ZM(xM)>,

which has MN x (XM ,q; + M) dimension, and §(z) = <51(x1), 5M(IBM)>’ a
(XM, ¢; + M) x 1 vector. By the assumption of basic SUR models, we have E (u|X) =
Oy nvx1 and Q =Var(u|X) = ¥ ® Iy, where ¥ is a M x M matrix with typical diago-
nal element 02-22- and off-diagonal element o;; for i, ¢/ = 1,..., M. Then the local linear
estimator of §(z) is obtained by minimizing u’'K(z)u,

A~

0(x) = (Z'(2)K(2)Z(2)) "' Z'(x) K (2)y,

where K (z) = diag (Khl(Xl —21), ... Kp, (Xa— xM)> ,isa M N x M N diagonal
matrix, Kj,(X; — z;) = diag <Kh¢(Xi1 —xi), ... Kp,(Xiv— $Z)> and Kj, (X;; —

Xij—x;

Assumption Al. K(-)isa product kernel such that K (x;) = II?_, k(z;s) where k(-) is a
univariate symmetric kernel with compact support Sy, satisifying: (1) [ k(zs)dz;s =
1 (i) [ @isk(zis)dzs = 0; (iil) fx?sk:(xis)d:ris = a,%; (iv) for all x;s,2}, € Sk we

have |k(z4s) — k()| < clzis — al], ¢ € [0, 00).
Assumption A2. (i) f;j(z,6p) is the marginal density of X;; evaluated at z;, with

fij(xi,00) < ¢ for all i,j, and ;5 (ii) fi (2i,00) = limy—oo NP3, fij(wi,00),

and 0 < f; () < oo; (iil) fij(zs,00) is differentiable, and |fi(j1)(xi,90)] < ¢ (iv)
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|fij(zi,60) — fij(z),60)] < c|lz; — x| for all z;, z;, and 6y, where 6y denotes the

true parameters.

Assumption A3. g;(x;,x;) denotes a joint density of (Xij, Xi/j) evaluated at (z;, ;).

The partial derivatives of g;(z;, z;) exist and are continuous.
Assumption A4. m(z) is two times differentiable.

Assumption A5. Asn — oo, h; — O,nh‘i”+2 — 0o and nhi-”JF6 — 0.

Theorem 4 Under the assumptions A1-A5 and the assumptions on the error terms of

basic SUR models, we have

D(8(x) — 8(x) — Brrrs) > N(0,9Q111s)

where D Zdiag<D1, e DM) y Di = \/thm Dy, =diag(L, hi, ..., hi) is a (1 + gi) X
/
(1+ ¢;) diagonal matriz, Brrrs = (Bl,LLL57 e BM,LLLS> )
Qrrrs = diag <QLLLL5, ce QM,LLLS> ’
ka1h? K %m(x;)
2 817129
BirrLs = s=bo ,
0g; x1
02 (ko2)% /
fi(zs 1xgi
Qrors = Jileo) ’

0, .
aix1 filzi)rg, 70

and x;s is the sth element of x; fori=1,..., M.

Remark 1 We allow the marginal distribution of = differ across equations and across

observations in each equation. The average of the densities must converge.

Remark 2 Notice that local linear least squares method doesn’t incorporate the co-

variance into estimation, hence, the asymptotic distribution of LLLS for the whole
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SUR system actually is the same as the ones for each eqution regression by LLLS.
Since the asymptotic covariances across different equations are smaller order than
the asymptotic variances, the off-diagonals in the asymptotic variance-covariance

matrix are zero.

3.2.1.2 Two-step Estimator

To utilize the information incorporated in the variance-covariance of errors, we
propose the following two-step estimator to improve the estimation. The transformation

required for the second step is made as follows

Q 2y + H'-Q V) )m(X) = H 'm(X)+Q Y?u (3.3)

<
I
=
s
s
+
<

= H 'Z(z)é(z) + v,

where y = Q~1/2y + (H -0 2)m(X), v = Q/2u. It is clear to see that the trans-
formed errors are now independent and identically distributed. The intuition behind the
above transformation is similar with the parametric GLS in which X is standardized
by the standard deviation of errors. Here, we use H to standardize unknown function

2y

m(X). For example, when there is no correlation across errors, i.e., Q = diag (0
then v; ; = 1/04;, and the unknown function m(X) is standadized by the standard errors.
At point Xj;, the transformed unknown function is m;(Xj;)/o. If € is not a diagonal
matrix, H will take care of both the variance and covariance of errors.

Assume that Q = PP’ for some MN x M N matrix P. Let p;; and v;; denote

the (i, j)th element of P and P~ respectively. Let H Ediag(vfj, e Uiy )y BE(2) =
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H~'Z(z), then by minimizing v’ K (z)v the two-step estimator would be
b stepl®) = (R (@)K (2) R* ()" R* (@)K ()3 (3.4)

Even though the two-step estimator described above has the same form as Su,
Ullah, and Wang (2011), the interpretaion here is different from that paper. In Su,
Ullah, and Wang (2011), the two-step estimator that incorporated a general parametric
covariance into estimation is motivated by improving the one proposed by Martins-Filho
and Yao (2009) which failed to consider the unconditional heteroskedastic errors. The

transformation proposed by Martins-Filho and Yao (2009) is as
HP 'Y+ (I -HP ') m(X)=m(X) +e,

where ¢ = HP~'u. Obviously, the covariance matrix of transformed errors is a diagonal
matrix: E (ee') = H2, which consists heteroskedasticity. Also, it is interesting to notice
that if the errors are uncorrelated across equations, and K(x) — K(0), the nonpara-
metric two-step estimator 52_St6p will become the parametric GLS estimator. To derive

the asymptotic distribution for the two-step estimator, we need additional assumption.

Assumption A6. W;,i (25,00) = limy_oo N1 Z;VZ1 U(Qi—l)N+jfij (z;),and 0 < w}’i (x4,

th) < oo, for every z;, and 0y, where v(;_1)n4; is the diagonal element of H.

The asymptotic distribution for the two-step estimator is given in the following

Theorem.

Theorem 5 Under the assumptions A1-A6 and the assumptions on the error terms of

basic SUR models, we have

D (32—step<x) -0 («T) - B2—5t6p> i} N (07 QQ—step)
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where D Ediag(Dl’ e DM) . Di = \/Nh!'Dy,, Dy, =diag(1, hi, ..., hi), a (1 + g;) X

/
(14 g;) diagonal matriz, Ba_step = <B1,2—Step7 ol BM72_Step> .
Q2—step = diag <Ql,2step> R QM,2—step) )
ko1h2 i 82m; (a)
2 = ox?,
Bi,2—step = 5= )
Oinl
(r02)%
W;i(il?i,eo) Oqui
Qi,Qfstep = ’ )
Koo (Ko2)% 1

0, Fa(ro) 7 p
xi w i (wi,00)K3, " T

and x;s is the sth element of x; fori=1,..., M.

To compare the efficiency of the two-step estimator with LLLS, we need com-

2
Tii

fi(zs,00)

pare m with By the fact that for any nonsingular matrix A with inverse
A~ we have a;a" > 1Vi, where a; and a® are the ithe diagonal elements of A and

A~ respectively, we can readily show that

N
lim N_l Z(U%i—l)]\f-i-j,(i—l)N‘f'j - 0-1;2)!]02](:62) > 0.

N—oo -
J=1

That is, d_ step(2) is asymptotically more efficient than Sl Ls ().

Remark 3 So far it is assumed that 2, H and P, are known. When 2, H and P, are
unknown but can be estimated at v/ N—rate we can replace them by 2, H and
P and it is trivial to show that such a replacement won’t affect the first-order
asymptotic properties of those above estimators. Hence it is not restrictive to

assume that ), H and P, are known.

Two-step Estimator for SUR model with M =2 To simplify the notation and

give a more specific two-step estimator, we will focus on the case with J = 2. Let
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1
Xél) 0n><(q2+1)

f
X = ,
(2
0n><(q1+1) X$2
2 2
011 012 011 0110220 .
and ¥ = = . As before, we can obtain the conven-
2 2
012 039 011022p 099

tional LLE as 67y, = (X¥KX*) ™' X*Ky, where K =diag(K,, K3), and K; =
diag(Kp, (ij) —xj),- -Khlj(X,(Lj) — x;)) for j = 1,2. Similarly, assume that = PP’
for some 2n x 2n matrix P. Let p;; and v;; denote the (i, j)th element of P and P~

respectively. Let H =diag(v; %, ey v2_n172n). By Cholesky decomposition we have

(enVT=2) o (T 7)1,

p-l_q-1/2_

Onxn 50 In

ie,v; =1/ <011m> and vy qipti = 1/og fori=1,--- n.
Let 0 (2) = (mq (21), Omy (21) /02, ma (x2), Oma (x2) /0xh) where 2 is a
disjoint union of z1 and 2. And K =diag(K,, K2), and K; =diag(Kp,, (X" — z;),---
Khzj(X,(lj) —x;)) for j = 1,2. Notice that the bandwidth hg; is used in the second step.
Applying our two-step estimator to the seemingly unrelated regression models yields the

following estimator of ¢ (z) :

< * «\— 1 pxigsrp

Ssuw (z) = (RYKR:) ' RYKZ: (3.5)
where R} =diag(H; "X, Hy'X3)), Hy =diag(v5;, ., v5b)
H, :diag(v;i17n+1, e v2_nl72n> , and Z-=P- 'Y+ (H*1 - Pil) myz p,- Then we have

D(SSUW(x)—5<x)—B<SUR>) 4 N(O,Q<SUR>) (3.6)

where D =diag <ﬁh217 ﬁh22> , ﬁth = \/nhi;diag(1, hoj, ..., hoj) is a (14 g;5) x (1 + g5)
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(SUR) Q(SUR) O (1) (1)
1 1 +q1) % (1+
diagonal matrix, B(SUR) = , QSUR) — “ @
(SUR) (SUR)
By O(11g)x(1+q)  §2
k21h§j 47 0%m(z;) (Ko2)%
2 2. Ox2 (2.0 01xg,
BYUR) = e N T @) =
0 0, ., [l2b)V g
a;x1 ;% wi i (,00)r3, "B

limy oo™t 30 02 X fi(21), and wh o (z,00) = limyoon >0, U?H—i,n—i—ifi(x?)? and

Zjs is the sth element of x; for j = 1 and 2.

A Special Case of Two-step Estimator Ruckstuhl, Welsh and Carroll (2000) pro-
posed a class of two-step estimator for nonparametric panel data models with random
effects as follows
y = m(X)+u
Q7 2y 4 (I-707)m(X) = m(X)+7QY%u (3.7)
y* = m(X)+u'u =70
By minimizing u* K (z)u*, their two-step estimator can be obtained as
or(x) = (Z'(2) K (2) Z(2)) ' Z' (¢) K (2)y*.

Su and Ullah (2007) follow the same idea of Ruckstuhl, Welsh, and Carroll (2000),
propose the above T—type two-step estimator and provide its asymptotic normality and
the optimal 7. Notice that the class of two-step estimator in Ruckstuhl, Welsh, and
Carroll (2000) and Su and Ullah (2007) is a special case of ours. Let H =71, I is an

indentity matrice, then our method in (3.3) can be written as
Oy 4+ (r71-07 ) m(X) = 7 'm(X) + Q7.
We multiply 7 on both sides of the above equation, then it becomes

Q7 2y + (I-7Q7Y?)m(X) = m(X) + Q" ?u.
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1/2 contain identical

Notice that H =71 implies that all the diagonal elements in Q™
information, that is v;; = 7! for i = 1,..., M N. However, by our settings, H can in-
corporate both heteroskedastic and correlation infromation in errors. Hence, our method
actually generalizes the class of T—type two-step estimator. The corresponding asymp-

totic properties of 5T(x) for nonparametric SUR models can be modified from the ones

of b9 step(), and it is given in the following theorem.

Theorem 6 Under the same conditions as stated in Theorem 5, we have

D(3,(z) — 6(z) — B,) % N(0,9,),

where D Ediag(Dl, . DM> . D; = \/Nh{ Dy,, Dy, =diag(1, h;, ..., h;) is a (1 + ¢;) x

)

/
(14 ¢;) diagonal matriz, B, = (Bl,7'7 o BM77> , Qr = diag (Ql,r, o QM,r) ,
ka1h? In 92m (w;)
2
Biﬂ' = ’ s=1 8%75 P
0q7l><1
7(r02) % !
i (4,0 X
QirLLs = fieio) ) )
72ko2(ko2)%
0 %1 Fi(wi,00)r2; Ig;
and x;s is the sth element of x; fori=1,..., M.

The optimal 7 can be obtained by minimizing the mean squared error of 57(:1:)
To compare the efficiency of this class of two-step estimator with LLLS, we need compare

2
. oz
with ——

2 2 2 . 3 3
T T < g2 — -
JACHTy JACYDE As long as 7° < o;; for ¢ = 1,..., M, the two-step estimator is

more efficient than LLLS. Since this class of 7—type two-step estimator is a special
case of ours, we will just focus on the generalized two-step estimator Sg_step(:r) in the

remainder of the present chapter.

Operational two-step estimator The two-step estimator proposed in the previous

sections is infeasible, since y is unobservable, and 2 and H are unknown. In this section,
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we introduce the operational two-step estimator for nonparametric SUR models in (3.6).
The procedure is described as follows:

(1) First, obtain a preliminary consistent estimator of m; by first-order local
polynomial smoothing y;; on X;; for each equation i. Denote @;; = vy;; — m;(Xi;).

(2) Second, we can obtain a consistent estimator of Q, H by estimating

=
| =

Gt = (ij — ;) (Gyrj — irj)

<
Il
—_

-2 1

-1
J

(i~ )"

:Q
I
=

Il
i

Further we can obtain the feasible y = Q~1/2y + (ﬂil—ﬂfl/Q)n‘a(X).

(3) Third, by first-order local polynomial soomthing feasible 5? on X, obtain
the two-step estimator da_sep(2) = (R (2)K (2)R*(z)) " R¥(2)K (2)y.

So far, our estimator is based on unconditional covariance. The two-step es-
timator can also be extended to the nonparametric SUR models with the conditional
covariance. Later on we will discuss the estimation of nonparametric SUR with condi-
tional covariance, and the method to obtain a conditional covariance matrix within this

framework.

3.2.1.3 Local Linear Weighted Least Squares Estimator

Another popular class of local linear estimator in nonparametric literature
is called local linear weighted least squares (LLWLS) estimator. By minimizing the

following weighted sum of squared residuals

(y—=Z(2)d(2)) W (2)(y—Z(2)d(x)),

the LLWLS can be obtained as

or(@) = (Z'(x)Wy(2) Z(2)) "' Z' (2) W, (2)y,
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where W,.(x) is kernel based weight matrix. For r = 1,2, 3,4,

Wi(z) = KY2(2)Q 'KV (1),
Wo(x) = Q_IK(x),
Wi(z) = K(z)Q7 1,

Wy(z) = QO V2K ()12,

Wi(xz) and Wa(x) are given in Lin and Carroll (2000) for nonparametric panel data
models with random effect, Wy(x) is discussed in Ullah and Roy (1998) for fixed effect
models. Henderson and Ullah (2005) considered Wy (x), Wa(z) and Wy(x) for nonpara-
metric random effect model, and proposed the corresponding feasible estimators. Welsh
and Yee (2006) give all these four types of LLWLS estimators, but only study the bias
and variance of LLWLS estimator &;(z) with weight Wi (z) for a SUR with M = 2 for
both unconditonal and conditional variance-covariance of errors.

Comparing Welsh and Yee (2006)’s SUR model with ours, there are two differ-
ences on the assumptions. One difference is that the SUR model considered by Welsh and
Yee assumes heteroskedastic errors in each equation, but we assume the homoskedastic
errors in each equation which is the assumption made by extensive literature on clas-
sic SUR models. The other different assumption is that they assume an independent
and identically joint distribution of (X1;, Xa;) across observations. However, we allow
different marginal density across equations and observations, and different independent
joint distribution across equations. In addition, Welsh and Yee (2006) doesn’t give the
asymptotic distribution for LLWLS estimators. Hence, it is not appropriate to directly
compare the bias and variance of LLWLS in their paper with those properties of our
two-step estimator. However, by further examining the bias and variance of their esti-

mator, it is not difficult to see that the bias of the first derivatives estimator (! (z)
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in 61(z) would have smaller order than the bias of 7(z), and the covariance of 8y (x)
would be smaller order than the variance of 7 (x) and ") (z) when we consider the
corresponding converge rates, that is, v/ Nhd for 7n(x), and v/ Nhah for m(l)(w). Also, we
notice that the LLWLS estimator &) (z) gains no efficiency compared to the LLLS when
the errors are modified to satisfy the conventional assumption in SUR models, which is
also pointed out in Remark 3 in their paper. Therefore, we can expect the efficiency
gains of our two-step estimator over the LLWLS estimators under the conventional as-
sumptions in SUR models. Henderson and Ullah (2008) compare the efficiency among
LLWLS estimators and various two-step estimators by simulations, and also find that
the latter outperform the former. When the assumptions on errors allow heteroskedas-
ticity within each equation and different correlation across equations, it is difficult to
compare the efficiency of LLWLS with LLLS for both conditional variance-covariance
and unconditional case. As Welsh and Yee (2006) mentioned, the LLWLS estimator
may be less efficient than LLLS in this scenario.

As we know, within parametric framework, if there is no correlation across
equations, the generalized least squares estimator (GLS) doesn’t have efficiency gain
over least squares estimator (LS), even though the heteroskedasticity exists across the
equations. In the following, we examine whether or not this result holds for nonparamet-
ric SUR models. Suppose there is no correlation across regressions, we can write 2 =
diag <Ql e, QM) , Q; = 0Zly, for i = 1,..., M. That is, we allow heteroskedas-
ticity across the regressions, but no correlations are allowed. Since now the variance-
covariance matrix is a diagonal matrix, then Wi(z) = Wa(x) = Wi(x) = Wa(x), four
estimators are equivalent. For simplicity, we take Wi (z) = K'/?(z)Q 1 K'/?(z) as an
example to show the relationship between LLWLS and LLLS under the above settings.

Since all the matices are diagonal in &; (x), we can write the LLWLS separately for each
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regression. The LLWLS for the ith regression is

dri(z) = (Z{(x)Wii(2)Zi(x)) " Zi () Wii(2)y;

= SLLLS,i(«T)a

where 071, 1s,i(z) is the LLLS estimator for the ith regression. The above equation gives
mathematical equivalance between LLLS and LLWLS when there is no correlation across
regressions in nonparametric SUR system. The simulation results conducted later in the
present chapter also confirms this equivalence between LLWLS and LLLS. Furthermore,
when € is an identity matrix, obviously four LLWLS estimators become LLLS estimator,
that is, 6,(z) = 6(x) for r = 1,2,3, 4.

In addition, like parametric SUR models, if the equations have identical ex-
planatory variables, i.e., X; = X, then LLLS and LLWLS are identical. The follow-
ing examines Wi (z) = K'/2(2)Q 1K?(z) case. The cases with Wy(z) = Q1 K(z),
Wi(z) = K(z)Q 1, and Wy(z) = Q V2K (2)Q~ /2, follow the similar proof. Now let

Xi = Xj = X, hence, Kz = Kj = ?, Zl(l'l) = Zj({L‘j) == 7 Then the LLWLS can be
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written as

ou(z) = (Z'()KP(@)Q K (2) Z2(2) 7 2 (@) K2 (@) Q7 K P )y

-1 M

- - R
NZKZ - o MZEKZ j; o Z Ky;

N L Mo
oMZKZ . oMMZKZ S oeMiZ Ky

j=1
o1 (Z KZ) o (Z KZ) (Z K Z) ZZI o"orrrsi(z)
N1 1 _, M .
o (Z KZ) o ou (Z KZ) (Z KZ) S oMy s (@)
=1

where 0% is the (i,j)th element in £71, and o;; is the (i, j)th element in X. We can

have the ith LLWLS &, (z) is

A M M 7 A
dii(x) = Z Oij Z oorrrs(x)
=1

j=1
M M
. N . .
= drrrsi(z) Z oijo’? + - +orrrsm () E oijo?
=1 i=1

= drrrsi(z).

The last equality holds since ¥X ! = I.

3.2.2 Alternative Specifications of NP/SP SUR Models

Up to now all estimators are discussed for the basic NP SUR models. In
reality, we may have various specifications for the system. For examples, partially linear
semiparametric model, additive nonparametric model, varying coefficient model, model
with endogeneity, and error components models, etc. These models are well discussed in
either cross-sectional or panel data framework. However, within SUR, system framework,
they haven’t been studied. Since all these specifications have practical use in extensive

empirical analysis, it is worth to provide theoretical results for these models within
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SUR framework. This section is devoted to propose an efficient estimation for various

specifications of NP/SP SUR models.

3.2.2.1 Partially Linear Semiparametric SUR Models
We consider the partially linear semiparametric SUR models
Yij = mZ(XU) + Zijdi + Uqgyj, 1= 1, ceey ]\47 j = 1, ce ,N, (3.8)

the assumptions on errors remain the same as in (3.6). One way to estimate (3.8) is

using profile least squares method as the following:

Yij — Zij6i = mi(Xy5) + ugj
Y = Yij — Zijbi
vy = mi(Xij) + uij.

Let v = (y1, --yin), ¥* = (v}, ...ys;) , we stack the models into
y =m(X) + u.

By the first order Taylor expansion, we local linearize the function and write the model

as

where y(x) = <fyl(x1)7 - ,YM(Q;M)> i) = (mi(xi) mz(l)’(xi)y. Then the local

linear least squares estimator of (z) is

Stack the model (3.8) into a matrix form as

y = mX)+Zi+u (3.10)

12

Y(@)y(@) + Z5 + u,
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!/
where Z = diag <Z17 ZM> y Li = <ZZ-1, e 7 ) )
!/
0= <51LN; e 5MLN> , and ¢y is a vector of ones. Substitute (3.9) into (3.10), then

the estimator of  can be obtained by

y = x@)x)+Z5+u
= x@)X (@)K (@)x(@) "X (@)K (2)(y — Z6) + Z6 +u

= S@)y—S8(x) 20+ 76 +u, S(x) = x(x) (X (1)K (@)x(x) "X (@) K ().
Reorganizing the above, one can have
[ — S(2)]y=[I — S(2)] Z5 + u.
By the LS method, the estimator of § is
=2 (I-8@)(I~S@)Z]" 2 (1-5@)I~-5@)y.  (311)

Since all the information incorporated in the estimator of ¢ in (3.11) are known, we can

estimate ¢ by (3.11) first, then substitute it into (3.9) to get

Alternatively, we can estimate (3.8) using the idea of Robinson (1988) as the
followings:

(i) Taking the conditional expectation of (3.8) leads to
E(yij| Xi;) = mi(Xsj) + E(Zi;| Xi5) 0. (3.12)
(ii) Subtracting the above from (3.8) we have
vij — E(yij| Xij) = (Zij — E(Zi5|1X45))0i +wij, i=1,..., M, j=1,---,N. (3.13)
Also, one can rewrite (3.12) as
mi(Xij) = E(yi;| Xij) — E(Zi5] Xij)0:. (3.14)
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(iii) The left hand side of (3.13) can be treated as the residuals (4;; ) obtained
by regressing y;; on X;;, and similarly the right hand side of (3.13) Z;; — E(Z;;|X;;) can
be treated as the residuals (u;; ., ) obtained by regression Z;; on X;;. To estimate both re-
gressions, we can just use local constant estimation. Hence, further we can estimate §; by
OLS estimator of regressing ;; . on i;; .., denoted as 32 = (Z az2]m> -1 3 i i ya-

(iv) Further, one can regress Yi; = Yij — Zij0; on X;j to obtain the LLLS

estimator

Notice that the above procedures do not incorporate the variance-covariance
of the errors in the system. The following gives a more efficient estimation.

We can apply two-step estimator to the model (3.8). Combined with the profile
least squares method mentioned earlier, our two-step estimator under this model can be

derived as the following

By substituting 4(z) into model (3.10), we have

y = x@)3x)+Zd+u

= X&) (@)K (@)x" ()X (@)K () | QP (y — 20)
+H - m()| + Z0+u
= @) QV(y - 28+ H T - Y)m(z)] + Z6 + u,
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where S*(2) = x(z)(x* (z) K (z)x*(z))"*x*(z)K(x), the above can be rewritten as
(I — 5" (2)Q Y y—5*(z)(H " — Q Y?)m(z) = [I — S*(2)Q /26 + u.

Let ¥ =[I — §*(2)Q~ Y 2]y—S*(z)(H™! — QYA (x), Z=[I — S*(x)Q~ /2] Z, the GLS
estimator of 4 is

osp = (Z'0 1217071y, (3.16)
By substituting the above dgp into (3.15), we can obtain a more efficient two-step
estimator of v(z), Asp(z) = (x*(z)K(x)x*(z))"1x*(x)K(x)y**. Q can be estimated
from the first step profile least squares. Then we will have an operational two-step
estimator. Here, we introduce our two-step estimation by combining with the profile
least squares. The alternative method combing with the idea of Robinson (1988) can be

also proposed in a similar manner.

3.2.2.2 Additive NP models

As we know, the additive model is useful to conquer the notorious ”curse of
dimension” issue in nonparametric literature. In this section, we consider the following

additive NP models within SUR system,

Yij = mi(Xij,l,---,Xij,d) + €ij
d
= ¢+ Zmi,a(Xij’a) —1—67;3', 7 = 17,,_,M’ J =1, 7N,
a=1

where Xj; o is the ath regressor.

To stack the regression models into one, we have

d
y:C+Zma(Xa)+5u (317)
a=1
/
where Yy = (yn, cee yMN> 5 ma(Xa) = <m1,a(X17a), RN mM7a(XM7a)> , € =
(€11, ..., emn)- To estimate the above additive NP regression model, we use the marginal
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integration method. The similar idea can be found in Yang, Hardle, and Nielson (1999)
for a single nonparametric autoregression model.

The estimation procedure of the marginal integration is as the following:

(1) Let X;j denote the vector that consists of all the remaining Xijp, 1 <
B < dand 8 # a. We can estimate each component of mean function by 1m; o(z) =
% Zf\; 1 i(%i 0, Xita), which is based on the sample version of marginal integration
[ mi(Tia, Xita)dF(Xia). And m;(2;, Xi ) can be estimated by pth order local poly-
nomial smoothing y; on (% .a, Xita) as Mi(Tia, Xita) = €4(ZIWi12Z;) " ZIW; 1y;, where
Zi ={(Xija — i) YN (pr1)s A= 0, ,p, Wiy = diag{ % Kpn,(Xij.a — Tia)Lg, (Xija —
Yﬂ’a)}?{:l, L is a kernel function that has the same properties as K.

(2) Obtain 1i;(x;) = & + Y6 _) Mia(2ia), where & = £ >N vy,

(3) Further, we can obtain the estimated residuals é;; = y;; —1i(z;) to estimate
Q, H, and P.

By applying the transformation proposed in two-step estimation, we can trans-

fer (3.17) into

02y ¢+ (H QY2 <C+Zma a)

y = H*10+Hflzma(Xa)+v

|
=
N
@}
_l_
[]=
3
L.

.
2
N———
+
<

Then employing the procedure proposed above, we can estimate the trans-
formed model to obtain 7vq 2—step(Xa). Specifically, the feasible transformed response

variable can be obtained from the previous results as

ity o (o i),
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The two-step estimator of m; o(x; ) is obtained as follows:

1

mza xza = N g i,2—step wlcinLa)a

A ~ / / —1 7%/ =
mi,278t€p(mi,aaXil,Oé) = eU(Z;( VVz,lZz*) Zz* Wi,lyw

where Z = {ﬁi_l(Xijva - a:i’a)’\}NX(pH), A=0,---,p, H; is the ith submatrix in H.

3.2.2.3 Varying Coefficient NP models

Varying coefficient NP models are practically useful in applied works. The
procedure for estimating this kind of model in a single equation has been extensively
discussed in the literature. See Pagan and Ullah (1999) and Li and Racine (2007) for
details. In this section, we consider the following varying coefficient NP model within

SUR framework,
vij = Bi (Zij) Xij +eij,i=1,..., M, j=1,--- ,N. (3.18)

By local linearizing the coefficient, we have

vy = [Bi()+ (Zy— =) B ()] Xy +uy
< )X Bi (z:) .

= Zij — 2 ij Wij

b ) B (=) j

= Xij(Zij, zi, Xij)0i(2i) + wij,
where 81" (21) = 9B; () [0z, Xij(Zij, 21, Xij) = <1 (Zij — zi)> Xij,
/
Xi(Zi, zi, Xi) = <Xi1(Z¢1,Zi,X¢1), e XiN(ZiNaZiaXiN)> ’

which has dimension N x (¢; + 1). Stack the above models j = 1,--- , M, in a matrix

form as



where

X(Z) :diag <X1(Z1721,X1> yoesoy XM(ZM73M7XM)> )
5(2) = <(51(21) goe ey 5M(ZM)> .

The local linear least squares estimator for the varying coefficient NP models

in (3.18) is

Then we apply the two-step estimator as follows

QO 2y H'-QV2B(2)X = HBZ)X v

— _
yvr = HB(2)X +o.

The corresponding two-step estimator can be written as

—

52—step(z) = (X*,(Z)K(Z)X*(Z))_lX*/(Z)K(Z)YVF7 (3.19)

where x*(z) = Hflx(z). To obtain the operational estimator, in the first step, we can
estimate each equation by local linear least squares to get residuals. Then use the
residuals to get a consistent estimator of covariance, further, obtain the feasible ;V r=
O-1/2 1 O-1/2 5 He v

v+ H —Q7%)x(2)0(2). In the second step, we regress the feasible y r on

H!'3(Z)X to get the two-step estimator.

3.2.2.4 Varying Coefficent IV Models

In the previous section, we have discussed varying coefficient NP models with
exogenous variables. In this section, we further consider the varying coefficient model
with endogenous variables in SUR system. We extend the method proposed by Su,

Murtazashvili, and Ullah (2011) for varying coefficient IV models within cross-sectional
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framework to semiparametric SUR system. Specifically, the model considered here is
vij = Bi(Uij)Xij+eijyi=1,...,M, j=1,---,N
E(£ij|Zi;,Ui;) = 0 almost surely (a.s.)

where X;; is an endogenous regressor, U;; denotes a ¢; X 1 vector of continuous exogenous
regressors, and Z;; is a p; X 1 vector of instrument variables.

The orthogonality condition E(e;;|Z;j,Ui;) = 0 a.s. provides the intuition
that the unknown functional coefficients can be estimated by nonparametric generalized
method of moments (NPGMM). Let V;; = (ZZ], Uij)', we can write the orthogonality

condition as
E[Qu;(Vij)eij|Vij] = ElQu; (Vij){vij — Xij (Ui, wi, Xij)di(ui) }Uiz] = 0

/
where x;; (Ui, ui, Xij) = (1 (U; — Uz)’) Xij, 0i(uy) = (@ (u7) 6Z(1)’ (uz)> . Following
the idea of local linear GMM esitmaiton proposed by Su, Murtazashvili, and Ullah
Zi o
(2011), we can choose Q,(Vij) = , which is a pi(¢i + 1) x 1
Z5 @ (Uij — wi) [hi

vector, where Z is a p; x 1 vector of "global” instruments. The above conditional

moment can be approximated by its sample analogue

gi (uz = NZQ% ij [ij X’LJ(U’LJ)U’Z) zj)éz(uz)]Khl(UZj _ui)
7=1

- —Qul( i) K, (ui) [yi—xi (ui)0i(us)]

where g; (u;) is a k; x 1 vector, k; = p;i(¢; + 1),

Qu; (Vi) N xpi(ai4+1) (Quz( Vi), oo, Qui(ViN)>/,
ti is a pi(g; + 1) x 1 vector with unit elements, and
Kp,;(wi) = diag <Khz.(Uﬂ — ), ..., Kp,(Un— u,»))
= diag (,;K(Uﬂ,;w), ,;K(W)) :
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Define

g (u), ..., gM(u))
Q(u) Kp (u) [y — x(u)d(u)].

Q
S
I
N

==

M
The dimension of ¢ (u) is Y_k; x 1, Q(u) = diag <Qu1(V1)7 o QuM(VM)> ,
=1
M
which has dimension M'N x <Zk1> . To obtain d(u), we can minimize the following
i=1

local linear GMM criterian function

where
U(u) = E(g(u)g(w))
1
= LB QYK () 'K (1) Q(u)
1
= WQ(U)’Kh (u) QK (v) Q(u),
M M
which is a symmetric Y k; x > k; weight matrix that is positive definite. The above
i=1 i=1

function can be written as

/

[Q(w) K (u) (y—x(w)d(w)) ] ¥(u) ™" [Q(u) K (u) (y—x(u)d(u))] .

Then the local linear GMM estimator of 8(w) is given by dgarar(u) as

Senrnr(w) = [e(u) K(w)Q(u)¥(u) " Q(u) K (wx(w)]

X () K (w)Q(u)® (w) "' Q(u) K (u)y
= W K@)Q(u) [Q(w) K (w) QK (w) Qu)]
X(w) K (u)Q(u) [Q(u) K (u) QK (u) Q(u)]

To obtain the optimal choice of weight matrix, we can first get the preliminary

estimator dgaras(u) of dgarar(u) by setting ¥(u) as an identity matrix. Then we define
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the local residual é:ij (ul) =Yij — Xij(Uijy Uy, Xij)gGMM,i (ul) Using
N ~
. leinhz‘(Uij — wi)&ij(u;)
gi (Uz) =N N )
Zl (Zij ® (Usj = ui) [hi) Kp, (U — uz)&ij(us)
]:
to estimate g; (u;), we can obtain the optimal choice of weight matrix

g1(u) g1 (u1) g1 (un) e (u2) -+ g1 (ur) gar (unr)
~ g2 (u2) g1 (1) go(u2) go (u2) -+ G (u2) gar (uns)
U(u) =

gv (uar) g1 (w1)" Gar (unr) G (wa)" -+ Gar (uar) Gar (uar)’

Alternatively, we can directly estimate the local variance-covariance matrix €2

N

by Q(u) = S(u) @ Iy. oy, the (i,i')th element of 3, can be estimated by

5 > (Eijlw) — Eolwa)) (Eirj(uar) — i (ug))

N
Jj=1

=

-1
_ N
where &;(u;) = & > &ij(u;), 4,4/ = 1,..., M. Then the feasible local linear GMM esti-

mator is given by

-1

St = (X K@QM) [0y ()20 (1) Q] QK (wix(w) |

x(0) K (u)Q(w) [Q(u)' Ky, (u) () Ky, () Q)] QUuyK(u)y.  (3:21)

3.2.2.5 NP SUR Models with Error Components

It has been widely recognized that the model combing cross-section with time-
series data has many advantages and applications. Hence, it is also interesting and
meaningful to introduce the nonparametric panel models into SUR system. This sec-
tion considers nonparametric seemingly unrelated regressions with two or three error

components structure. The NP SUR models with three error components is given as
yit,j = mj(Xit,j)+uit,j7 ]: 17"'7M7 1= 17 7N7t:17"‘7T7 (322)
Uity = g+ e+ €t (3.23)
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where j is the equation index, ¢ indexes the individuals, and ¢ indexes the time periods.
It is the nonparametric analogue to the parametric SUR models considered by Avery
(1977).

To derive the covariance of the errors for two observations we have
E (wijupp jr) = E(pij+vej+eing) (o + vejy + o jr) (3.24)
= E(pijpey) +E (vejoey) + B (sieev ) -
The second equality is based on the assumption of independent non-corresponding com-

ponents. Following the notation in Avery (1977) and the standard assumptions on errors

for parametric SUR, we have

E (pijpe ) = Uij].,J =,
= 0,i#d,
E(vjvry) = o . t=t,
= 0,t#t,
E (Eit,jEi/t’,j/) = Jgjj,,i =7 andt =1,

= 0,i#i ort#t,

and the covariance of the errors for two observations is given as

o 2 2
E (uit,juz’t’,] g + Uvjj/

N — 2
/) T T Hygy +U€j

jl

= U?j/, ifi=4and t=1¢.
We stack the models (3.22) into a matrix form
y =m(X) + U,
/ / / !
where U = <U1, ...,UM) LY = (y11,1, . yNT,M> )
m(X) = (ml(Xl),...,mM(XM))/, and mj(Xj) = (mj(Xle), ...,mj(XNT’j))/ which is
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a NT x 1 vector. Following Avery (1977), we express the variance-covariance matrix of

the residuals for the entire system in (3.22) as

2 2
o o o7y

E(UU)=0Q= : : : (3.25)
ohEn e 058y

2
g
/ I — My
where 350 = (1 — pjjr — @jjr) Inv+pjj (In @ vrip)+ajy (inily ® Ir), piy = @y
Ji
2
Toy
o2,
17

Now it is ready to apply our two-step estimator into the model (3.22). The
procedure is described as the followings:

(i) We can estimate each equation by LLLS to obtain the pooled LLLS estima-
tor M rrrs(z;). Define Uj = y; —m; rrrs(z;). Then we can estimate the unconditional
covariance component of errors by the two-way analysis of variance method described
in Avery (1977) within the parametric framework. Hence, the estimated covariance
can be obtained.

(ii) By using (), we can obtain the estimated H and the feasible y defined in
our two-step estimator (3.3), further, the two-step estimator in the form of (3.4) for the
NP SUR with error component models.

The above provides a general nonparametric framework for SUR with three
component error structure. If one is interested in random effects SUR model with two

error components structure, then the model (3.22) can be simplified to
yir; =mj(Xig) + it + gy j=1,., M, i=1,--- Nt =1,..,T. (3.26)

Each equation j is a one-way random effect model, and w;;; = €;t; + jts5. In model
(3.26), the (j,j')th element in the variance-covariance matrix would be J?j,Ejj/ =
o2

5 (L= piy) It + 0Py (IN ® uriy)
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The fixed effects SUR model can be written as
Yit,j = Cij + mj(Xiw-) + Eit,js j = 1, e M, 1= 1, e ,N,t = 1, ...,T, (327)

where ¢; j is correlated with the included variables, i.e., E(c; ;| X; ;) = h (X, ), and the
assumptions on €; ; remain the same as random effects SUR models. The estimation of
the above fixed effects SUR model is a straightforward extension of the method proposed

in the section (3.2.2.1) for partially linear semiparametric SUR models.

3.2.3 Estimation with Conditional Error Variance-Covariance Q(x)

All the aforementioned estimations are based on the parametric variance co-
variance. This section provides the asymptotic theorems for local linear least squares
estimator and our two-step estimator for the NP SUR regressions with conditional
error variance-covariance. We consider the SUR model in (3.6) but with the condi-
tional variance-covariance of errors. Now we assume that E(u;;|X;;) = 0, and ho-
moscedasticity Var(g;;|X;;) = 0% (X;;) for each equation. Also, we assume that the
disturbances are uncorrelated across observations but correlated across equations, i.e,
E(eien;| Xij, Xirj) = o4 (Xi5, Xypj) for i, = 1,--- M and i # i, and j = 1,--- ,N.
In a matrix form, the conditional variance-covariance is Q(z) = X(z) ® I for a given

evaluated point x.

Assumption A7. ¥(z) is a nonsingular matrix, and the partial derivatives of the
components of ¥(z) exist in a neighbourhood of z, i.e., d50%(x), Os0: (z) exist,

s=1,....M.

Assumption A8. Q(z) = P(z)P(x) for some MN x MN matrix P(z), p;j(x) and

v;j(z) denote the (i, j)th element of P(x) and P~1(z), respectively, and H(z) =diag
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(vl_% (@), s Vifn asn (). And the partial derivatives of v;;(z) exist in a neighbour-

hood of z.

Assumption A9. f;(z;) = limy_oo N7 fij(x;), and 0 < f; (7;) < oo; wi; (i) =

Hmpy oo N1 Z;VZI U(Qi_l)N+j(xi)fij(xi), and 0 < w}; (z;) < oco.

Theorem 7 Under the assumptions A1-A9 and the assumptions on the error terms of

basic SUR models, we have

D(3(z) — 8(z) — Brrrs) % N (0,Q1r1s),

where D Edi@g(p17 e DM> , Di = \/Nh} Dy, Dy, =diag(1, hi, ..., h;) is a (1 + g;) ¥
!/
(1 + Ql) dZ’(lgO’fl(ll matriz, BLLLS = (BI,LLLS> e BM,LLLS) ,
Qrrs = diag (QLLLLS, oo QM,LLLS) 7
ko1h2 & 92m,(z;)
2 Ox2
Birrrs = s=1 v
Oqz‘><1
o2 (zi) (ro2) " /
fi (i 1xgi
QirLLs = filwe) , ) )
o7 (xi)ka2(ko2) T~
Ogix1 fi(xi)r3, Iy,
and ;s is the sth element of x; fori=1,..., M.

Theorem 8 Under the assumptions A1-A9 and the assumptions on the error terms of

basic SUR models, we have

D (82—step(w) -0 (CU) - B2—step> i N (07 QQ—step ($)) )

where D Ediag(pl, . DM) . D; = \/Nh{ Dy, Dy, =diag(1, h;, ..., h;) is a (1 + ¢;) x

)
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!/
(14 g;) diagonal matriz, Ba_sep = <Bl,2—step7 ol BM72_St€p> .

Qo step () = diag <Ql,2step (), ..., Qnr,2—step (:U)) )
ko1h? &L 92m, ()
2 Ox?
Bi,2—step = s=1 * )
Oinl
(r02)% 0
w* (3:1) 1xgq;
Qi,Qfstep ($1) = i . )
K22 (ro2) T~
Ol]i><1 (02

Wi, (xi)r3, T

and x;s is the sth element of x; fori=1,..., M.

Remark In both Theorem 7 and 8, the off-diagonals of asymptotic variance-covariance
matrix are zero because the off-diagonals are smaller order than the diagonals.
Also, the conditional correlation doesn’t enter the asymptotic variance-covariance
since the terms incoporating the correlations are all smaller order than those terms

with conditional variances.

To obtain a feasible two-step estimation in this scenario, the estimated con-
ditional variance-covariance is required. We can estimate the conditional covariance as

the following

N
%];Kh(%‘ — Xij)e3;

62(x) = ~ ,fori=1,....M

%ZlKh(l’i - Xij)
J:

N
% ;Kh(a; — Xj)gijgi’j
Giv(x) = Covley,e;) = = ~ , fori,i’ =1,...,M and i # 7,

N ZlKh(w - Xj)
j:

where X; € R? is a disjoint union of {X;;},h = diag(hy, ..., hy), Kn(z — Xj) =

Ih| 'K (h™'(z — X)), and Kn(z; — Xij) = b 'K (b~ (z; — Xy5)) -
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3.3 Goodness-of-fit

Another important issue about nonparametric regression analysis is goodness-
of-fit. This section proposes two alternative ways to measure the fit of NP SUR models.

Consider the stacked SUR model as the following

For each equation, we can construct variance decomposition within nonparametric frame-

work as follows

vi; = mi(xg) + (X — xi)mgl)(xi) + 145
vy =7 = ia(ws) + (Xyg — wm (2:) = g+ iy
(yij -9) Kp, (Xij —z;) = [mz(xz) + (Xij - l‘z)mz(l) (z5) — ﬂ} Ky, (Xij — ;)

+’Etij Khi (ng — J}Z)

If we can show that the above cross-product term equals zero, then the ANOVA decom-

position can be applied. Notice that the cross-product term

M N
> [mi(xi) + (Xi — wi)in () — 3?] K, (Xij — i) Gy

i=1j=1
M N M N
~ ~ ~ (1 ~
= S i) K, (Xig — ) iy + > > (Xij — wi)in” (a0) K, (Xij — )
i=1j=1 i=1j=1
= 0.

N N
since Z’l)z‘thi (Xij — xz) = 0 and Z'&ij(Xij — xi)Khi (Xij —.%'i) =0 by the local
7j=1 7j=1

linear least squares method. Then the local ANOVA decomposition for nonparametric

regression can be written as

TSS(z) = ESS(z) + RSS(x),
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specifically,

2

M N
_ . L (1 _
SN g =9 Ko (X =) = Y [ru(e) + (X — wi)rin (@) - g
= i=1j=1
M N
K, (Xij — i) + > Y 5K, (Xij — ).
i=1j=1
Therefore, a local nonparametric goodness-of-fit for SUR system by LLLS can

be defined as

B@) = 1= 755t = T55()
M N )
;Z:l ml(mz) + (Xij - xl)mz (xz) -y Khl (Xz - xz)

i=1j=1
For each i regression, we have
s . (1) 12
> i) + (Xiy — @il (@) = 5| Ko, (Xiy = 1)
R (a;) = =

N
12
> (ig = 4)" Kn (X5 — i)
j=1
Similarly, we can define the local nonparametric goodness-of-fit for our two-step

estimator
ba-step(w) = (R”(2) K ()R (2)) "' R"(2) K (x)y
Mo . . (1) 2
2.2 [U(H)NH (mz‘(%) + (Xij — i), (%')) —?} K, (Xij — i)

i=1j=1
(7¢j - ?)2 Kp, (Xij — z;)

Mz

Rgfstep (‘T) =

M N '
2.
i=1j=1
where v(;_1)n+; is the diagonal element of P~1, and 7;(z;) and mﬁ.”(mi) are obtained
by our two-step estimator.

Based on local nonparametric goodness-of-fit, the global nonparametric goodness-

of-fit can be written as

RSS ESS

2
=1———==—=.
R 7SS 1TSS
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For example, for LLLS estimator, the global ANOVA decompostition incorporates

TSS = /TSS(x)dx: ym /Kh ij — i) dxi,
X ;

ESS = /ESS(x)d:n

= ZZ/ (@) + (X — xi)m" (a:) - ?Jr Ky, (X4 — ;) dx,

i=1j5=1

/RSS )dx = ZZ/ — ;) da;.

i=1j=1

RSS

The corresponding global R? for the two-step estimator can be obtained in a similar
manner.

Notice that both local and global R?s defined above for the two-step estima-
tor are acturally goodness-of-fit measures for the corresponding transformed models.
In other words, R? defined for the above two-step estimator measures the fraction of
variation in transformed dependent variables that can be explained by the transformed
model. Also, notice that ANOVA decompositions do not hold for y =Z(x)da_ step(2) 4.
Therefore, R?> based on ANOVA decomposition is not available for the fitted model,
§ =Z(x)02—step().

To propose a goodness-of-fit measure that can explain the fit of original model
estimated by our two-step estimation, we define the following nonparametric R? estima-

tor based on an indicator function as

% % (yz‘j - Zij(%)gz—step(%))z

R%,Q—step(x) = 1- i M N
>3 (i — )
i=1j=1
M N M N 9
ZZ (yij - g>2 > ZZ <yzg z] -Tz 52 step(xz)> ,
i=1j=1 i=1j=1

where I(-) is the indicator function, which makes sure that R? o step(T) takes value

n [0,1]. Here, the idea of using an indicator function follows Yao and Ullah (2011).
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This R%Q_Step(:c) gives the measure for how well the fitted model Z(m)ég_step(x) can
explain the variation in y. The above two types of goodness-of-fit measure provides a
fundamental knowledge that can be used to develop various test based on R? for NP /SP

SUR system.

3.4 Simulation

In this section, we conduct a small set of Monte Carlo simulations to study the
finite sample properties of LLLS, LLWLSs, T—type two-step estimator, and our two-step
estimator. For LLWLS, we examine two types of weights, W (z) = K/2(z)Q 1 K'/2(z)
and Wy(z) = Q V2K (2)Q~/2, which are commonly used in literature.

We first generate data from the following data generating processes (DGPs):

Y1i = ¢ (X1,0.5,0.15) + Uy,
DGP1 :

Yy, = ¢ (ng', 05, 015) + Us;

where ¢ (z,a,b) is the normal density function with mean 0.5 and standard

deviation 0.15. We set {X1;} and {Xy;} are mutually independent iid U(0,1), and

Uai 0 20 4
The process {X; = (X1;, X2;)} is independent of the process {Ui;, Uz} . We
consider different choices of p : 0,40.5,+0.9. DGP 1 is designed to compare the finite
sample performance of LLS, LLWLSs, and two-step estimators under the specification
of y = m(X) + u with unconditional error variance-covariance.

Yii = X% + Uy
DGP2 .

Yoi = exp(Xa;)/ (14 exp(Xa;)) + Us
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where {X; = Xj; = Xo;} are standard normal random variables N(0,1) but

with compact support [—12,12]. The disturbances are generated as

Uy 0 L pi
| X; ~ iid N Lo (X;) ;
Uzi 0 pi 1

where 02 (X;) = 0.25 + X?, and p; = pexp (X;) /(1 + exp (X;)). We consider
different choices of p : 0,£0.5, £0.9. DGP 2 is designed to compare the finite sample
performance of LLS, two-step estimators, and LLWLS estimators under the specification
of y = m(X) 4 u with conditional error variance-covariance.

For DGP 1, we use cross-validation least squares bandwidth calculated by
LLLS for the estimations of LLLS, LLWLS estimators, and the second step of two-step
estimators. We choose the first step bandwidth for both two-step estimators as one third
of the second step bandwidth. In the first step, a smaller bandwidth than the one in the
second step should be used to eliminate the bias raised from the first step estimation.

The bandwidths used for estimations in DGP 2 are the same as in DGP 1. The
difference from DGP 1 is that in DGP 2 we need choose a bandwidth to estimate the
conditional covariance. Here we use the rule of thumb, i.e., ¢ = 2.12, as the bandwidth
to estimate the conditional covariance. We use 1,000 replications for n = 50, and 500
replications for n = 100 for each DGP.

Table 3.1 on page 66 and Table 3.2 on page 67 list the results for DGP 1 for
n = 50, 100, separately. Both tables report the estimation with true parameters and with
estimated parameters in variance-covariance matrix. The finite sample performance is
evaluated in terms of absolute bias and mean squared errors. In DGP 1 we assume
homoskedasticity within each equation, and a correlation across two equations. The

findings in Table 1 are summarized as the followings. First, we can obviously see that

our two-step estimator generally outperforms other types of estimators in the sense of
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having smallest absolute bias and mean squared errors, only except for the cases with
p = =£0.9, and the case when p = 0.5 and using true parameters in estimation, in which
T two-step estimator performs the best. Second, the two types of two-step estimator
perform better than LLLS and two different weighted LLWLS. Third, comparing LLWLS
with LLLS, we find that these two commonly used LLWLS estimators do not have
consistent efficiency gain over LLLS in these settings. It is worth mention that when
there is no correlation across equations, local linear weighted estimators have the same
performance as LLLS when using the true variance-covariance in estimation and have
lager absolute bias and MSE when using estimated variance-covariance. This simulation
result is consistent with the theoretical findings in Welsh and Yee (2006), and also it
is consistent with the situation within the parametric SUR framework. As we know,
under the parametric SUR system, if there is no correlation across equations, the GLS
estimator doesn’t gain any efficiency over the least squares. That is, without correlation,
estimating SUR jointly is equal to estimating each equation separately in parametric
framework.

Table 3.2 on page 67 also gives the simulation results for DGP 1 with sample
size n = 100. First, we can observe that larger sample size better performances for
all estimators, by comparing Table 3.2 with Table 3.1. Second, we find that LLWLS
with two different weights tend to outperform over LLLS in the sense of having lower
MSE for most of cases. For the case with no correlation and using true variance-
covariance, we can still see the consistent result as Table 3.1, i.e., LLLS and two types
of weighted local linear estimators have the exactly same performance. Also, LLWLS
with Wy(z) = Q V2K (2)Q~ /2 has better performance than LLWLS with Wi (z) =
KY2(2)Q 'K'Y2(x). Third, when using estimated variance-covariance in estimation,

our two-step estimator always has the best performance among these five estimators
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in terms of both absolute bias and MSE. When using the true variance-covariance in
estimation, T7—type two-step estimator works best for the case with p = +0.9. Under
other cases, our two-step estimator still beats other estimators. Fourth, similarly as
Table 3.1 shows, these two types of two-step estimators have better performance than
LLLS and two different weighted LLWLS.

In order to compare the performance of all these five estimators for the case
with conditional covariance, we propose DGP 2. The results for n = 50,100, and
p = 0,£0.5,£0.9 are reported in Table 3.3 on page 68. We find that our two-step
estimator has the smallest absolute biases and lowest MSEs for all cases, and T—two-
step performs better than LLLS, and LLWLSs. An interesting finding here is that LLLS,
and LLWLSs with different weights have the same performance. The reason behind is
that all nonparametric estimators give local estimates for given evaluated point x. By the
design of DGP 2, the conditional variance-covariance will become homoskedastic given
particular z. As Welsh and Yee (2006) indicated, if p(z) = p, estimating the system
jointly doesn’t have any efficiency gain over estimating the system marginally. Also, in
section (3.2.1.3), we have shown that if the system has identical explanatory variables,
LLWLS is equivalent to LLLS. Hence, it is not surprised to see that LLLS and LLWLS
perform the exact same in DGP 2. According to the simulation results in Table 3.1,
Table 3.2, and Table 3.3, two-step estimators outperform LLLS, and LLWLSs. And our

two-step estimator generally has the best performance.

3.5 Concluding Remarks

The aim of this chapter is to contribute the theoretical advances for nonpara-

metric and semiparametric SUR system. The main contributions include the follow-
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ings. First, we study the asymptotic properties of LLLS and our two-step estimator for
both unconditional error variance-covariance and conditional error variance-covariance
cases, and also further discuss the properties of different types of LLWLS proposed in
the literature. Second, we introduce various popular nonparametric or semiparametric
models in cross-sectional or panel data framework into SUR system, and provide effi-
cient estimation procedures for these various specifications. Third, the nonparametric
goodness-of-fit measures are defined for the nonparametric SUR models, which can be
used as a fundamental knowledge to develop a series of hypothesis testing based on R2.
The current chapter doesn’t give the asymptotic properties for the proposed estimation
of various popular specifications. The related works are worth being developed in the

future.
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Table 3.1: DGP 1 with n = 50

sample size n = 50

No Estimation

With Esitmation

Correlation size (p) Estimators Abs. Bias MSE  Abs. Bias MSE
0 LLLS 4.2098 1.8972 4.1602 1.8370
LLWLS(Wy(z))  4.2098  1.8972  4.1827  1.8605
LLWLS(Wy(z)) 4.2098 1.8972 4.1824 1.8593

T—two-step 4.1822 1.8600 4.1264 1.7975

two-step 4.1762 1.8504 4.1168 1.7867

0.5 LLLS 4.1831 1.8649 4.2144 1.8972
LLWLS(Wy(z))  4.2010  1.8930  4.2049  1.8881
LLWLS(Wy(z))  4.1993  1.8883  4.2017  1.8814

T—two-step 4.1408 1.8213 4.1632 1.8396

two-step 4.1417 1.8181 4.1587 1.8320

0.9 LLLS 4.1932 1.8950 4.1327 1.8399
LLWLS(Wy(z))  4.2013  1.8911  4.1142  1.8034
LLWLS(Wy(z))  4.1909  1.8702  4.1058  1.7872

T—two-step 4.1197 1.8095 4.0616 1.7618

two-step 4.1393 1.8241 4.0736 1.7726

-0.5 LLLS 4.1841 1.8622 4.1546 1.8304
LLWLS_W1 4.3190 2.0149 4.1482 1.8186

LLWLS_W2 4.3194 2.0135 4.1461 1.8141

T—two-step 4.1954 1.8612 4.1102 1.7740

two-step 4.1905 1.8534 4.1054 1.7699

-0.9 LLLS 4.1561 1.8494 4.2411 1.9442
LLWLS_W1 4.1356 1.8230 4.1812 1.8841

LLWLS_W2 4.1282 1.8079 4.1744 1.8711

T—two-step 4.0887 1.7573 4.1694 1.8513

two-step 4.1093 1.7753 4.1812 1.8629
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Table 3.2: DGP 1 with n =100

sample size n = 100

No Estimation

With Esitmation

Correlation size (p) Estimators Abs. Bias MSE  Abs. Bias MSE
0 LLLS 3.9918 1.6571 4.0114 1.6806
LLWLS_W1 3.9918 1.6571 4.0170 1.6885

LLWLS_W2 3.9918 1.6571 4.0149 1.6856

T—two-step 3.9378 1.5975 3.9478 1.6131

two-step 3.9189 1.5772 3.9217 1.5868

0.5 LLLS 3.9294 1.5943 3.9444 1.5981
LLWLS_W1 3.9522 1.6149 3.9609 1.6159

LLWLS_W2 3.9321 1.5891 3.9420 1.5917

T—two-step 3.8696 1.5384 3.8760 1.5327

two-step 3.8594 1.5269  3.8584 1.5150

0.9 LLLS 3.9841 1.6490 3.9923 1.6593
LLWLS_W1 3.9918 1.6605 3.9631 1.6243

LLWLS_W2 3.9318 1.5818 3.9070 1.5532

T—two-step 3.9004 1.5659 3.8874 1.5550

two-step 3.9098 1.5700 3.8816 1.5469

-0.5 LLLS 4.0090 1.6915 3.9761 1.6426
LLWLS(Wi(z))  3.9629  1.6383  3.9608  1.6275
LLWLS(Wy(z))  3.9536  1.6253  3.9518  1.6154

T—two-step 3.9539 1.6210 3.9091 1.5671
two-step 3.9468 1.6119 3.8898 1.5487

-0.9 LLLS 4.0086 1.6815 3.9933 1.6783
LLWLS(Wy(z))  3.9603  1.6378  3.9317  1.6117
LLWLS(Wy(z)) 39258  1.5881  3.9024  1.5710

T—two-step 3.9235 1.5774 3.9093 1.5711

two-step 3.9280 1.5818 3.9005 1.5610
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Table 3.3: DGP 2 with n = 50, 100

n=>50 n=100

Correlation size (p) Estimators Abs. Bias MSE  Abs. Bias MSE
0 LLLS 2.7383 1.1676 2.5591 1.0625
LLWLS(Wy(z)) 27387  1.1676  2.5591  1.0625
LLWLS(Wy(z)) 2.7387 1.1676 2.5591 1.0625

T—two-step 2.7203 1.1613 2.5369 1.0557
two-step 2.6942 1.1532 2.5059 1.0477

0.5 LLLS 2.7192 1.1497 2.5506 1.0476
LLWLS(W1(z)) 2.7193 1.1497 2.5506 1.0476
LLWLS(Wy(z)) 27192  1.1497  2.5506  1.0476

T—two-step 2.6997 1.1424 2.5276 1.0399

two-step 2.6699 1.1332 2.4949 1.0304

0.9 LLLS 2.7486 1.1751 2.5544 1.0490
LLWLS(Wy(z)) 27486  1.1751  2.5544  1.0490
LLWLS(Wy(z)) 27486  1.1751  2.5544  1.0490

T—two-step 2.7321 1.1667 2.5323 1.0390

two-step 2.6987 1.1542  2.4936 1.0253

-0.5 LLLS 2.7299 1.1613 2.5632 1.0575
LLWLS(Wy(z)) 27300  1.1614  2.5632  1.0575
LLWLS(Wy(z)) 2.7300 1.1613 2.5632 1.0575

T—two-step 2.7090 1.1540 2.5419 1.0501

two-step 2.6800 1.1454  2.5119 1.0413

-0.9 LLLS 2.7681 1.1880 2.5553 1.0435
LLWLS(Wy(z)) 27681  1.1880  2.5553  1.0435
LLWLS(Wy(z)) 2.7681 1.1880 2.5553 1.0435

T—two-step 2.7472 1.1791 2.5295 1.0327

two-step 2.7125 1.1669 2.4891 1.0191
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Chapter 4

Return on Public Capital in U.S.:

An Application

4.1 Introduction

In order to provide a practical example for applying our newly proposed method
to a real data setting, this section is devoted to revisit the relationship between public
capital and regional economic performance. The debate on the role of public capital
has caused extensive attentions from economists. There are substantial works studying
the relationship between public capital and regional economic performance within the
United States. To sum up, the empirical works have reached three different conclusions.
Some scholars conclude that the public capital played a positive and significant role in
effecting the regional productivity, see, for example, Munnell (1990). Some economists
hold an opposite conclusion that that the public infrastructure had significant but neg-
ative effects on private productivity (see, e.g., Evans and Karras (1994)). The third
type of argument is that the contribution of the public infrastructure to private sector is

statistically insignificant (see, e.g., Holtz-Eakin (1994) and Baltagi and Pinnoi (1995)).
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Notice that the extensive empirical analysis is conducted within the parametric frame-
work by assuming a particular production function and constant elasticity across all the
states and all the years.

As we know, nonparametric method has two big advantages compared with
parametric regression analysis. One is that the former is free from the notorious function
misspecification issue. The other is that nonparametric regression estimation provides
local estimates so that we can clearly examine the changing pattern in returns to in-
puts across all states and years. FEven though there are some big advantages in using
nonparametric analysis, very few works on this topic employ nonparametric methods,
see, for instance, Henderson and Ullah (2008). By utilizing the discussed nonparametric
techniques in the previous chapters, we examine the role of public capital in affecting
the regional economic performance. The data employed here is the widely used data set
from Munnell (1990), which incorporates a panel data of U.S. 48 contiguous states over

the period of 1970-1986.

4.2 Model Specification and Estimation

To provide detailed analysis, we adopt the following three nonparametric mod-

els:

1. Model 1 is conventional nonparametric one-way random effect model for all U.S.
48 contiguous states, which actually is a special case of the NP SUR model with
error components discussed in chapter 3 with M = 1, and two error components.

It is specified as
Yit = m(K Gy, KPRy, Ly, UNEM;;) + o + €54, i =1,--- ,48, t =1,--- 17,

where Yj; denotes the GDP of state ¢ in period ¢, KG denotes public capital,
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KPR is the private capital stock, L is employment, and UN FEM stands for the
unemployment rate used to control for business cycle effects as commonly used
in the literature. All variables in the model except for UNEM are measured in
logarithms. This model is an analogue to the parametric setting in Baltagi and

Pinnoi (1995).

. Model 2 is NP SUR model with three error components with M = 2. The model

has the following form

Yiej = mj(KGitj, KPRitj, Lit j, UNEM j) + i j + vej + €it g,

i o= 1,---,24, t=1,---,17, j=1,2.

In order to apply this model to the data set, we divide 48 states into two regions,
low productivity region (j = 1) and high productivity region (j = 2), according to
the states’ ranking in terms of 1986 gross state product. By doing so, each region
has 24 states. The states within the same productivity region may have similar

behavior. Under these settings, we estimate these two groups jointly.

. Model 3 is estimating nonparametric one-way random effect model for each region
separately. The model specification is as model 1. The only difference is that we

are using 24 states for each region, and estimate each group separately.

To compare with parametric results, this chapter also estimates the following

parametric random effect model which follows Baltagi and Pinnoi (1995),

Yit = 51 KGiyt + fo KPR + B3Lit + BAUNEM;; + oy + €44, © =1,---,48, t =1,--- ,17.

All variables in the above parametric and nonparametric models are measured in log-

arithms with only one exception of UNEM. Therefore, the coefficients of KG, KPR,
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and L are elasticities in parametric settings. The derivatives of KG, KPR, and L in
nonparametric settings are local elasticities.

We use our two-step estimation to estimate the above three nonparametric
models. The second order Epanechnikov kernel is used in nonparametric random ef-
fect analysis. The second order Gaussian kernel is used in the first step of NP SUR
analysis, and in the second step, we still use the second order Epanechnikov kernel.
The rule-of-thumb bandwidth is used throughout the nonparametric analysis. As we
know, in nonparametric analysis, kernel function doesn’t play an important role, but
the bandwidth does. So the latter should be chosen cautiously. All the bootstrapped
standard errors are calculated from 500 repetitions which are given in parenthesis under
the estimates. In model 1 and model 3, 02 and o2 are estimated by using the consistent
estimators proposed in Ruckstuhl, Welsh, and Carroll (2000 p. 61). For model 2, the

variance-covariance is estimated by the method in Avery (1977).

4.3 Empirical Analysis

The estimation results for mean and median elasticity across all 48 states over
the time period are reported in Table 4.1 on page 79. The estimated mean and median
elasticity for low productivity region and high productivity region are listed in Table 4.2
on page 79.

From Table 4.1, we have the following findings: (1) All three models give statis-
tically significant public capital elasticity, private capital elasticity, and labor elasticity.
Although the magnitude of public capital elasticity is smaller than the private capital,
it is nonnegligible. (2) Model 2 gives very similar results to those obtained by model

1, and model 3 tends to give smaller public capital elasticity and larger private capital
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elasticity than the other two models. (3) By adding up the elasticity of public capital,
private capital, and labor for all three models, the sum of elasticity is a bit larger than 1,
which might suggest increasing returns to scale. In addition, the estimated correlations
for the error components across two regions in model 2 are corr(a;1,q;2) = 0.2897,
corr (v, v,2) = 0.8576, and corr (e, €it2) = —0.0129, for ¢ = 1,--- ,24, t =1,--- ,17.
These results suggest that the correlations across two regions for individual error compo-
nent and time error component should be considered. Hence, it should be more efficient
to use the NP SUR model (model 2) to estimate these two regions jointly than using
NP random effect model to estimate each region separately. This may also give the
explanation that model 1 and model 2 have very close results, but model 3 has some-
how discrepancy. Also, comparing the bootstrapped standard errors in the parenthesis
under the estimates, we can find that in general model 2 has the smallest bootstrapped
standard errors, and model 3 has the largest standard errors. The explanation behind
this perhaps is that model 2 and model 3 divide 48 states into two regions according to
productivity, and the states may have more common behaviors with the ones in the same
region than those in the other region. And model 2 estimates the two regions jointly by
using NP SUR with error components, which not only incorporate the common behavior
of the states within each region, but also consider the associations across two regions.
The estimated correlations for the error components across two regions in model 2 also
confirm that the associations across two regions shouldn’t be ignored.

Table 4.2 compares the mean and median elasticity across low productivity
region and high productivity region. First, from model 2, we can obviously see that
the high productivity region has larger mean/median elasticity of public capital, larger
mean/median elasticity of labor, and smaller mean/median elasticity of private capital

than the low productivity region. These results are consistent with that public capital
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and labor are complements, but public capital and private capital are substitutes. Sec-
ond, all the mean/median elasticities of KG, KPR, and L are statistically significant
at 10% level with the only exception of the mean elasticity of KG for high productivity
region in model 3. Third, similarly with the results given in Table 4.1, here model 3
doesn’t give very close results to model 2. Comparing the estimates for low produc-
tivity region and the ones for high productivity region in model 3, we can still observe
that higher mean/median elasticity of public capital in high productivity region, higher
mean/median labor elasticity, and lower mean/median private capital elasticity, which
is consistent with Table 4.1 and the literature. Additionally, generally we can see the
lower bootstrapped standard errors in model 2 compared to model 3, which implies that
incorporating the correlations across two regions into estimation improves the efficiency
of estimator.

To compare with parametric analysis, we also estimate the parametric ran-
dom effect model. The estimated elasticities of KG, KPR, and L are 0.0044, 0.3105,
and 0.7297, respectively. The standard deviation of the estimated elasticity of KG is
0.0234, which shows K G is statistically insignificant. The standard deviations of the
estimated elasticity of KPR and L are 0.0198 and 0.0249, respectively. KPR and L
are statistically significant. Obviously, all the nonparametric results are different from
the parametric results. First, according to nonparametric analysis the public capital
has positive and significant effect on state GDP. However, the parametric results show
the tiny magnitude of the estimated elasticity of public capital and its insignificance.
Second, the estimated elasticities of KPR and L obtained in the parametric regres-
sion are larger than those obtained in nonparametric analysis. Third, note that by the
parametric random effect model, we assume the constant elasticity across all the states

and over the entire period, which is irrealistic in reality. However, the nonparametric
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analysis provides local estimation. Hence, the latter can reveal more information than
the former does.

In order to picture the changes in the elasticity of public capital over the time
period and the differences among states, we plot figure Figure 4.1- 4.4 on pages 80 - 83
to help us know deep information behind the regression estimations. Figure 4.1 plot
the mean elasticity of public capital across states over 1970-1986 obtained from three
models. The solid line is for model 1, the line with dots denotes model 2, and the line with
triangles is the elasticity from model 3. The shaded area indicates the recession periods
according to NBER. From Figure 4.1, we can see that the mean elasticity of public
capital changes over the time, and three models give a consistent result that elasticity
increases during recessions, and decreases when the economy started recovering. In
addition, Figure 4.1 clearly shows that model 1 and model 2 give very similar results,
but model 3 has discrepancy from them. As mentioned earlier, the reason behind maybe
in that model 1 and model 2 estimate 48 states jointly, i.e., the connections among these
48 states are incorporated into the estimation of these two models. However, model 3
estimates two regions separately, so the associations among the states from two different
regions are ignored. Since model 1 and model 2 give very close results, we only report
the estimations obtained from model 1 in the following figures 4.2- 4.4.

Figure 4.2 plots the mean elasticity of public capital for California, New York,
South Dakota, and Wyoming. First, Figure 4.2 shows that the elasticity is not constant
over the time period of 1970-1986. Second, Figure 4.2 presents the same pattern as
Figure 4.1 shows, that is, during the recession periods these four states all have increasing
public capital elasticity. This same pattern revealed by Figure 4.1 and Figure 4.2 implies
that the government investment on infrastructure during recessions has positive effect

on economic productivity. In other words, the fiscal policy indeed plays a positive role
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in spurring the economy during recession periods. Also, we notice that shortly after
each recession period, the elasticity of public capital falls. This may because that after
the economy steps out of the recession, the private sector becomes strong, and private
capital increases. As a result, the public capital elasticity decreases, which may due to
the substitutes effect between public capital and private capital. Third, it is clear to
see that both California and New York have positive returns over the studied period.
However, South Dakota has consistent negative returns over 1970-1986, and Wyoming
has negative returns in most of years.

Figure 4.3 presents the mean elasticity of public capital over 1970-1986 for all
48 states. From Figure 4.3, Montana, New Mexico, North Dakota, South Dakota, and
Wyoming have negative returns to public capital on average. North Dakota and South
Dakota are from plains, Montana and Wyoming are from rocky mountain region, and
New Mexico is from southwest, according to BEA regions. To explore the reason behind
these negative returns, we further examine the original data set. From the original data,
we calculate the ratio of public capital to GSP and the public capital per labor. We
find that the ratios of public capital to GSP for these states with negative returns are
higher than the average of the ratios across states, with the only exception of Wyoming,
which has a little bit lower ratio (0.42) than the average of ratios (0.45). And South
Dakota has the highest ratio (0.65) among all 48 states. By examining the public capital
per labor, these five states all have higher levels than the average of public capital per
labor across states (15.3). Specifically, Wyoming (26.0) has the highest level, and South
Dakota (21.8) is the second to the highest level. The literature has shown the public
capital and labor are complements. Hence, the higher levels in public capital per labor
for those states with negative public returns may imply the less efficiency in utilizing

the public capital. The information from the data gives an explanation that Wyoming
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has the highest negative returns to public capital among 48 states, and South Dakota
has the second highest negative returns to public capital.

Figure 4.4 provides the picture for the elasticity of public capital for all 48
states in 1970, 1982, and 1986. The line with one dot in-between denotes the year 1970,
the solid line indicates the year 1982, and the line with two dots in-between stands for
the year 1986. Figure 4 tells that for most of states the elasticity of public capital in year
1982 is higher than in the years 1970 and 1986. One may be curious on what happened
in the U.S. economy around 1982. In the early 1980s, the U.S. economy suffered a
severe recession, which had being widely characterized as a ”W-shaped” (also known as
”double dip”) recession. According to NBER, there were two recessions recorded in the
early 1980s. The U.S. economy first stepped into recession in January 1980, followed by
a short period of recovering from August 1980 to June 1981, and then dipped back into
a severer recession for the period of July 1981-November 1982.! Combined Figure 4.4
with Figure 4.1 in which the mean elasticity across states reached the highest level in
1982, our estimation results suggest that the public capital played the most efficient role

for the majority of states in the most serious recession during the examined years.

4.4 Concluding Remarks

In this section, we apply the newly developed two-step nonparametric estima-
tion method in chapter 2 and chapter 3 to a real data setting. The relationship between
public capital and regional economic performance in U.S are analyzed by using nonpara-
metric random effect model and SUR model with error components. To sum up, there
are three interesting findings. The last two findings can only obtained by nonparametric

method. The first finding is that the public capital plays an effective role in economic

1Source: NBER
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performance because the elasticity of public capital in US is positive and significant. The
last two findings are: one is that the elasticity of public capital across states increases
when the U.S. economy stepped into the recessions, and decreases when the economy
started booming. This finding implies the government plays a more effective role during
the recession periods than the normal periods. The other is that five states in U.S. have
negative returns on public capital. By further examining the data, I find that the ratio
of public capital to state GDP and the public capital per labor for these five states are
much higher than the rest of states. These imply that these five states overinvest on the
infrastructure and inefficiency in using the public capital. Nonparametric can provide
us these stories as it gives local estimates for elasticity of public capital for each state

at any particular year, whereas parametric estimation cannot.
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Table 4.1: Mean and median elasticity across states

KG KPR L UNEM

Model 1
mean elasticity 0.1314 0.2852 0.6326  -0.0041
(0.0510) (0.0265) (0.0420) (0.0036)
median elasticity  0.1550 0.2742 0.6501  -0.0027
(0.0433)  (0.0257) (0.0339) (0.0040)

Model 2
mean elasticity 0.1313 0.2836 0.6342 -0.0042
(0.0328) (0.0181) (0.0280) (0.0027)
median elasticity  0.1530 0.2696 0.6523  -0.0030
(0.0271) (0.0183) (0.0219) (0.0030)

Model 3
mean elasticity 0.1049 0.3094 0.6589  -0.0055
(0.0447)  (0.0481) (0.0846) (0.0125)
median elasticity — 0.1358 0.3646 0.5902  -0.0059
(0.0723)  (0.0524) (0.0280) (0.0033)

Table 4.2: Mean and median elasticity for two regions

KG KPR L UNEM
Low Productivity Region

Model 2
mean elasticity 0.0911 0.3083 0.6274  -0.0035
(0.0539) (0.0227) (0.0315) (0.0033)
median elasticity  0.1214 0.2899 0.6457  -0.0021
(0.0341) (0.0207) (0.0236) (0.0034)

Model 3
mean elasticity 0.1051 0.3812 0.5604  -0.0040
(0.0538)  (0.0398) (0.0415) (0.0043)
median elasticity — 0.1267 0.3839 0.5422  -0.0039
(0.0528) (0.0330) (0.0398) (0.0047)

High Productivity Region

Model 2
mean elasticity 0.1715 0.2590 0.6409  -0.0048
(0.0395) (0.0249) (0.0452) (0.0036)
median elasticity  0.1765 0.2579 0.6599  -0.0040
(0.0372) (0.0244) (0.0329) (0.0039)

Model 3
mean elasticity 0.1047 0.2376 0.7574  -0.0070
(0.0797)  (0.0909) (0.1629) (0.0251)
median elasticity  0.1543 0.2786 0.6610  -0.0080
(0.0461) (0.0352) (0.0424) (0.0045)
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Chapter 5

Approximate Moments of Mean
Reversion Parameter Estimator
in Continuous Time Gaussian and

Lévy Processes *

5.1 Introduction

In recent years, an extensive literature has developed on using diffusion pro-
cesses to model the dynamic behavior of financial securities. For example, Vasicek (1977)

used the following Ornstein-Uhlenbeck (OU) process to model the spot interest rate,
dXt = I{(,U, — Xt)dt -+ O'dBt, (51)

where B; is a standard Brownian motion. This is a Gaussian Markov process and

possesses a stationary distribution when x > 0. In this case, x captures the rate of

*This chapter is a joint work with Dr. Aman Ullah and Dr. Jun Yu
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convergence towards its long term mean, p. Tang and Chen (2009) considered a more

general form of a Brownian motion based continuous time model (i.e. diffusion process),
dX; = Iﬂ?(u — Xt)dt + J(Xt; e)dBt, (52)

where o(Xy; 0) is the diffusion function of X; at time t. If 0(Xy; 6) = 0/ Xy, the diffusion
process becomes the CIR model (Cox, Ingersoll, and Ross, 1985 ). A even more general

diffusion process is given by,
dX; = p(Xy; 0)dt + o(Xy;0)dBy, (5.3)

with a general drift function u(Xy;0). An important special case is when u(Xy;0) = uX;
and o(Xy;0) = 0X;. Black and Scholes (1973) used it to model the spot price of a stock.

All these processes are Brownian-motion based. Under some smoothness con-
ditions on the drift function and the diffusion function, the sample path generated from
X is continuous everywhere. In recent years, however, it has been reported strong evi-
dence of infinite activity jumps in financial variables; see, for example, Ait-Sahalia and
Jacod (2008). To capture the infinite activity jumps, continuous time Lévy processes
have become increasingly popular and various Lévy models have been developed in the
asset pricing literature (see for example, Barndorff-Nielsen (1998), Madan, Carr and
Chang (1999), Carr and Wu (2003)).

In practice, one can only obtain the observations at discrete time points from
a finite time span. Let T be the time span, h the sampling interval, and n (= T'/h)
the number of observations. Hence, T < oo and h > 0. Based on discrete time ob-
servations, different methods have been used to estimate the continuous time models.
Phillips and Yu (2009¢) provided an overview of some widely used estimation methods.
When the drift function is linear and slowly mean reverting, it is found that there is

serious estimation bias in the mean reversion parameter, x, by almost all the methods.
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Because this parameter is of important implications for asset pricing, risk management
and forecasting, how to accurately estimate this parameter has received considerable
attentions in the literature. For example, Yu (2009) approximates the bias of the maxi-
mum likelihood estimator (MLE) of k¥ when the long run mean is known and the initial
condition is the marginal distribution under the Gaussion OU process. Tang and Chen
(2009) approaximates the bias of MLE of x when the long run mean is unknown un-
der the Gaussion OU process and the CIR model. To reduce the estimation bias of k,
Phillips and Yu (2005) proposed the jackknife method. While the jackknife increases
the variance, a carefully designed jackknifing procedure can offer substain improvement
in reducing the bias, leading to a decrease in the root mean square errors (RMSE). To
further reduce RMSE, Phillips and Yu (2009b) proposed the indirect inference method
while Tang and Chen (2009) proposed a parametric bootstrapping method. These two
methods are simulation-based and hence numerically more demanding.

The difficulty in the estimation of K is not unexpected because it is related
to the finite sample bias problem well documented in the discrete time literature; see,
for example, Kendall (1954). However, the magnitude of the bias in K is very large in
practically relevant cases to the U.S. data so that the implications for the bias become
very important. For example, Phillips and Yu (2005) showed that the bias of maximum
likelihood estimator for x in the CIR model can be over 200% even though 25 years of
data were used (regardless of the sample frequency). They further reported evidence
that the bias in the drift term estimation are even worse than that caused by the
discretization and even that caused by a misspecification of the diffusion function. The
simulation results of Phillips and Yu (2005) and Tang and Chen (2009) show that the
bias of the long run mean (u) and parameters in the diffusion function are virtually zero.

For instance, in the stationary Vasicek model, as Tang and Chen (2009) showed, the
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bias of & is up to O(T 1), while the bias of o and x is O(n~!) and O(n~2), respectively,
as T — oo with h is fixed.

While the bias in K has been well studied in the continuous time diffusion
process, to the best of our knowledge, nothing has been reported on the bias in k in the
continuous time Lévy process. The objective of this chapter is to approximate the bias
of £ under the Lévy measure, then study the effects of nonnormality on the estimation
bias. Quasi maximum likelihood (QML)/OLS is used to estimate x which makes it
feasible the analytical expression for k. We present the results on the bias under the
assumption where the error term follows a non-Gaussian distribution with finite first
eight moments. It is found that the kurtosis has a negative effect on the bias of &. The
skewness has a positive (positive) effect on the bias of & if the distribution has negative
(positive) skewness. In addition, under the Gaussian OU process the initial condition
has non-monotonic effect on the bias of £ and the bias of % is a monotonically increasing
function of the diffusion parameter, o. A bias corrected estimator of & is proposed. The
simulation results show that our proposed estimator generally performs well in terms
of bias and the root mean square error, especially, when k is small. Small values of
k correspond to the near unit root situation and is empirically relevant for financial
variables in the U.S., such as interest rates and volatility.

The structure of this chapter is as follows. In Section 2, we introduce a con-
tinuous time Lévy process and derive the bias of k. Section 3 derives the bias of & in a

higher order term. Section 4 reports the simulation results. Section 5 concludes.
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5.2 Parameter Estimation for Lévy Processes

5.2.1 Continuous Time Lévy Process

As argued before, while the diffusion processes are very useful, empirical evi-
dence of infinitely active jumps has been found in data. In this chapter we extend the

Gaussian OU model of Vasicek to a Lévy-based OU model:
dXi =k (p— X4—)dt + odLy, (5.4)

where (Lt); is a Lévy process defined on (£2,0, {0}, P) with Ly = 0 and satisfies the

following three properties:

1. Independent increments: for every increasing sequence of times g, ..., t, the ran-

dom variables X;,, X¢;, — Xy,..., Xy, — Xy, , are independent;
2. Stationary increment: the law of X;,, — X; is independent of t;

3. Stochastic continuity: for all € > 0, limy_,g P(|X¢+n — X¢| > €) = 0. For a given
t, the probability of seeing a jump at t is zero. In other words, jumps happen at

random times.

Obvisouly, the Brownian motion is a special case of the Lévy process and,
hence, the Vasicek model is a special case of Model (5.4). Other well known examples
include the Poisson process, the gamma process, the variance gamma process, and the
a-stable process. While the Brownian motion has a continuous sample path, it does
not allow for any jumps. The Poisson process allows for jumps. However, the jump is
of finite activity. General Lévy processes allow an infinite number of jumps within any
time interval. Also, general Lévy processes allow non-Gaussian increments.

Protter (1990, Theorem 7) showed that the unique solution exists for Model

(5.4). If 4 =0 and is known a priori, Model (5.4) becomes
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dX; = —kX,_dt + odLy. (5.5)

Based on the Ito’s lemma, the exact discrete time model of (5.5) is given by,

1 —exp(—2kh)
2/{/ (2]

Xin = eXp(—lﬁh)X(i_l)h + O'\/ (5.6)

where the distribution of ¢; depends on the specification of the Lévy measure L(t). This
is a discrete time AR(1) model with a possibly non-Gaussian error term. When L(¢) is
the Brownion motion, €; ~ N(0, 1). If L(¢) is the variance gamma process of Madan and
Seneta (1990) (i.e. L(t) = B(v(t;1,v)) where v(t;1,v) is a gamma distribution with
mean 1 and variance v), then ¢; follows the variance gamma distribition whose density

and the moment generate function are given by,

B 00 1 22 )gl/u—le—g/y
fla) = [ e oo (5.7)
and
mgf(u) = (1 - 1/u2/2)71/y ) (5.8)

where I' is the gamma function. The variance gamma distribution is conditional Gaus-
sian given that the conditional variance is distributed as a gamma variate whose mean is
1 and variance is v. It is known that, for the variance gamma distribution, the moments
of all orders exist with the mean 0, the variance 1, and the kurtosis 3 + 3v. Since the
excess kurtosis is determined by the parameter v, v measures the degree of tail thickness.

If Ly = By and Xy = x¢. the exact discrete time model of (5.4) is

B 1— 6—2/§h
Xin = (bX(ifl)h + M(l —e€ Hh) +o \/ T€i7€i ~ N<O7 1), Xo = wo, (5'9)

where ¢ = e™*". When k — 0 or h — 0, ¢ — 1 and Equation (5.9) has a unit root in

the limit. To simplify notation, we write X;;, as X;. The transition density in Equation
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(5.9) is

1
Xi| X;o1~N {Xi_le“h + u(1 — e M, %02(1 - em)} : (5.10)

facilitating the maximum likelihood (ML) estimation, or equivalently ordinary least

squares (OLS) estimation of &,

" —-1\n X, , 2\ A N .
Re B0 g = L A T e Kim Kie )
Ty Xy =2 (s Xi1)
Taking the Taylor expansion to the second order, we obtain
. - 2
~ _ g 1(é-9) 1 (99 L
k= h h( ¢ )+2h< ¢ >+OP(T )7
. - 2
1 =6\, 1 [d=0 .
R—K = h(qﬁ >+2h< " > +0,(T77),
~ - 1 ~ 1 - 2 1
ER)—rk = —h—¢E<¢—¢)+2h¢2E<q§—¢) +o(T™)
__Bias(d)  MSE(9) Q
- Ddd)  IEEO L o, (5.12)

where MSE(&) =F <g5 — q5>2 represents the mean square errors (MSE) of ®.

For general Lévy processes, the transition density is not Gaussian any more.
As a result, g% and, hence, K is not the MLE. However, (]3 and K are the QMLEs and
can be obtained by OLS. Although the QML/OLS is not as efficient as the ML, it is
analytically more tractable. To approximate the bias of k, we follow Bao and Ullah
(2010) and make the same assumptions about &;. In particular, we assume ¢; is i.i.d

and follows a distribution with eight moments:

mp; = O,mgzl,m3:71,m4:72—l—3, (5.13)
ms = 3+ 1071, m = 4 + 1572 + 1047 + 15,
my = 5+ 213 + 3521 + 10574,

ms = 7+ 2874 + 567371 + 3573 + 21072 + 28047 + 105,
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where 1 and 9 are the Pearson’s measures of skewness and kurtosis of the distribution
and 71,...,7 can be regarded as measures for deviation from normality. For a normal

distribution, 71, ..., all equal 0.

5.2.2 Bias approximation when the long run mean is known

When ¢ = 0 and it is known, the exact discrete time model of the Lévy process
is,
1 — e—2rh

Xih = (bX(ifl)h + o TEZ‘. (514)

Bao and Ullah (2007 , 2010) and Bao (2007) give the approximate bias and
the MSE of the OLS estimator for the AR (1) model without intercept but with a non-

Gaussian error term:

Bias(¢) = —%m(ml)
N 1=9¢* 1 2 (1—¢*)zg 4ol — ¢%) 2
MSE(9) = ——+ 5 |U¢’ —1—- =0 & —72(l—¢7)
0
+o(n™?),

where ¢ is fixed. In the Guassian case, ; ~iidN (0, 1), we have, for fixed xy,

. 1 2¢ 1 [1-¢* 1 5 2k73 .
E(R — klzg) = “hé <_n> + oha? [n + 3 <14q§ —-1- 3 +o(T™)
teih +3 1 2K62/@hx2
_ 14 — 26 _ 0 71
oT " 2nT [ ‘ o2 ] +olT™)

In the non-Guassian case, i.e., &, ~iid(0, 1), the skewness and the excess kur-
tosis coefficients matter for approximating the MSE up to O(T~2). Consequently, the

bias formula, for fixed xg, can be obtained as
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1 2 1 1—¢* 1
Tl Yot e

dyip(1 — ¢?)? _
SIS - )+ or
eth +3 1 u orh 2H€2nh$g 4’)’1€nh<1 _ efnh)<1 4 efnh)2
o7 togp e T e—2rh { e—rh 1 |

2
2K

2
14° —1- =

ER—k | =z =

—y2(e* = 1)} +o(T7H).
We summarize the above results in Theorem 2.1.

Theorem 9 Under Model (5.14) with a known mean, a non-Gaussian error term with
moments given in (5.13), and a fized initial condition x, the approximation to the bias

of k 1s given by,

e?h 43 n 1 {14 — 2k _ 2re2 N g
2T 2nT o2
4’716’{}1(1 _ e—nh)(l + e—nh)Q
- e—2rh +€fnh +1

ER—k | =)=

— (" — 1)} +o(T7Y).  (5.15)

Corollary 10 Under the Lévy process (5.14) with a known mean, a non-Gaussian error
term with moments given in (5.13), and a random non-Gaussian initial condition xo with

mean 0 and varinace o2/ (2k), the approzimation to the bias of K is given by,

2kh rh —kh —kh\2
. e 4+ 3 1 oxh Ame" (1 —e ) (14 e )
Ek—k) = 5T + 2nT{14 — 2 e
—yo (e — 1)} 4+ o(T7H). (5.16)

In Theorem 9 the results on Bias(k) are obtained conditional on zo. When xg
is assumed to be random with mean 0 and varinace 02/ (2k), the uncoditional bias is

obtained by the iterated expectation, namely, E (kK — k) = E, [E(k — k) | 0.

Corollary 11 Under the Lévy process (5.14) with a known mean, a Gaussian error

term (y1 =0 and v2 = 0), and a fized xq, the approzimation to the bias of K is given by,

" e*h 43 1
ER — k| x| = 5T + ST 14 — e2rh _ =

9 2kh .2
A G ) (5.17)
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Corollary 12 Under the Lévy process (5.14) with a known mean, a Gaussian error
term, and a random Gaussian initial condition xo with mean 0 and varinace o2/ (2k),

the approzimation to the bias of k is given by

2kh
- +3 1 _
E(/i—/ﬁ) = eT—FniTW—eQEh]—FO(T 1). (518)

Remark 2.1.1 Here we have considered the bias of the AR(1) coefficient up to O(n~1)
and the MSE of the AR(1) coefficient up to O(n~2) to obtain the results in Theo-
rem 9 and Corollary 10 for the non-Gaussian case, and Corollary 11 and Corollary
12 for the Gaussian case. In Theorem 9 and Corollary 11 the results are obtained
conditional on zy. In Corollary 2.2 and Corollary 2.4 the results are obtained for a
random xo. Yu (2009) derived the result for the bias of % for the case of normality
and g ~ N(0,0%/ (2K)) as,

R teih +3 2(1 _ 672nnh)
E(k—k)= ST Tn(l— ) (5.19)

The first term on the right hand side of (5.19) is the same as the first term in

(5.18), but the second term is different.

Remark 2.1.2 The second term in (5.17) incorporates the initial condition zg, sug-
gesting that the initial condition affects the bias. Notice that if o > 0(< 0),
0Bias(R)/0xo < 0(> 0), implying that the bias is a decreasing (increasing) func-

tion of the initial condition.

Remark 2.1.3 Results obtained in Theorem 5.15 show that o2, the initial condition
zo, the skewness and the excess kurtosis all affect the bias of K. Note that
0Bias(k)/0v2 < 0, which implies that the bias is a monotonically decreasing
function of the excess kurtosis. If o > 0(< 0), dBias(k)/dxg < 0(> 0), im-

plying that the bias is a decreasing (increasing) function of the initial condi-
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tion when zop > 0(< 0). If v3 > 0(< 0), dBias(k)/0y1 < 0(> 0). Moreover,
OBias(k)/00? > 0 implies that the bias is a monotonically increasing function of

the variance of error terms, o2.

5.2.3 Bias approximation when the long run mean is unknown

For the discrete time AR(1) model with an unknown intercept, the second-
order bias of the OLS estimator g%, up to O(n™1), is Bias(g%) = —@, as obtained in

Bao and Ullah (2007). The MSE, up to O(n~2), is given by Bao and Ullah (2010) as

A Sl AR S L+¢ (6-(1-¢)o\’
M) = ——+ {23 +10¢—1_¢< - >
92
S s ) 4o

where xg is the initial condition, 1 the skewness, and v the excess kurtosis. In a special

case of the Gaussian error term, we have,

1—¢%2 1
¢>+72
n

2
M(¢) = 2362 + 106 — sz (5— (100— ¢)1’0) v

n

Substituting above results into (5.12), the bias of K in the Gaussian case is,

~ 1430 1—¢? 1 5
E(k — = 23 10
(R = lao) To T 3Tg? T 2Tngr (30 +109
L+¢ (6—(L=¢)ro\’ L
— T
o (PR Am Y oy
where 8 = p(1—e "), op =0 1_62;2%. We can rewrite the bias in terms of x, h, and
1t as,
kh 2kh 2kh 2
. e +3 e -1 1 2ke“" (1 — x0) _
E(R — = 23 + 10e"" — 7!
(K — K|zo) Tt ‘a7 ( + 10e 2 +o(T™)
1 1 2 2kh o 2
= SR 20 1 5) <23 +10eh — =€ Ef’; z0) )

+o(T71).

94



If we consider the case of non-normality, i.e., ¢ ~iid(0, 1), the skewness and the
excess kurtosis coefficients show up in the approximate MSE, up to O(n~2). Therefore,
we can obtain the formula of the bias of &, for a fixed xg, as

2nh(

,\ 1 9 _ 2
ER) -k = — (2" 425 4 5) 4 —{23 410 — 2T (L= o)
2T o2

4’}/16&’1(1 _ e—nh)(l 4 e—nh)
B 1+ e~rh 4 e=26h

— (2 — 1)} 4 o(T7h).

The results of the estimation bias of k for Lévy process with an unknow mean

are formally stated in the following Theorem.

Theorem 13 Under the Lévy process (5.9) with an unknown mean, a non-Gaussian
error term with moments given in (5.13), and a fixed initial condition xq, the approxi-
mation to the bias of K is,

2nh<

1 2kh Kkh kh 2Ke n—= $0)2
2T( +2e™ +5) + 7{23 + 10e 2

dryef(1 — e=Fh) (1 + e=rh)? _
— T — (2 — 1)} 4 o(T7h). (5.20)

Elk—r | o] =

Corollary 14 Under the Lévy process (5.9) with an unknown mean, a non-Gaussian
error term with moments given in (5.13), and a random initial condition x¢ whose mean

is 1 and varinace o2 /(2k), the approzimation to the bias of & is

E(r—-kr) = 2eh 4 9erh 1 5) + 7{23 + 10 — 21

2T(
et e Ak

1 71 21
1 + efnh + 672/411 )} + 0( ) (5 )

In Theorem 13 the results on Bias(k) are obtained conditional on zp. When zq is
assumed to be random with mean 0 and varinace 02/ (2k), the uncoditional bias is

obtained by the iterated expectation, namely, E (kK — k) = E, [E(k — k) | o]
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Corollary 15 Under Lévy process (5.9) with an unknown mean, a Gaussian error term

(71 =0 and v = 0), and a fized xo, the approzimation to the bias of K is,

2%62nh<

—~ 1 1
E[R — k| 2g) = — (" 4+ 2¢" 4 5) + —— <23 + 10e"" —

H— 1’0)2 _
oT 9Tn 2 > +o(T7)

g

(5.22)

Corollary 16 Under the Lévy process (5.9) with an unknown mean, a Gaussian error
term (y1 = 0 and v = 0), and a random Gaussian xo with mean p and varinace

02/(2K), the approzimation to the Bias of K is,

1 1
E(R —k) = ﬁ(e%h + 2efh 4 5) + o7 (234 10eh — €251y 4 o(T71) (5.23)

Remark 2.2.1 Here we consider the bias of the AR(1) coefficient up to O(n~1), and
the MSE of the AR(1) coefficient up to O(n~2) to obtain the results in Theorem
13 and Corollary 14 for the non-Gaussian case, and Corollary 15 and 16 for the
Gaussian case. In Theorem 13 and Corollary 15 the results on Bias(k) are obtained
conditional on xg. In Corollary 14 and Corollary 16 the results on Bias(k) are
obtained for a random zy. Tang and Chen (2009) derived the result for the bias

of % for the case of normality and zg ~ N(u,0?/ (2k)) as,

1
ER)— k= ﬁ(e%h + 2¢"M 4 5) (5.24)

which is the first term of (5.23). Therefore, our results in Theorem 13 under Lévy-
based OU process with an unknown mean, provides an improvement over that of
Tang and Chen (2009). In addition, we derive the results for ther Lévy-based OU

process. Yu (2009) also gave the bias of & for fixed z( case as

e2th 43

E(f—r) = —5

(5.25)
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Remark 2.2.2 We note that the second term 51— (23 + 10e"h — W) in (5.22)
incorporates both p and xzg. If xg is fixed and p > xo(< xg), then dBias(k)/0u <
0(> 0), which implies that the higher p lowers the bias. Also note that the
bias is not a monotonic function of xg; if u > zg, dBias(k)/0xg > 0; otherwise,

0Bias(k)/0xy < 0. Furthermore, when T'n is very large, the effects of u and xy on

the bias are negligible. However, when x¢y = p, the bias term is free from p and o.

Remark 2.2.3 Result (5.20) shows that not only p and xg but also the skewness and
the excess kurtosis affect the bias. We note that 0Bias(k)/0v2 < 0, which imply
the bias is the monotonically decreasing function of the excess kurtosis. If v, > 0,

OBias(R) /0y < 0; if v < 0, OBias(R)/dy1 > 0.

5.3 Bias Approximations with Higher Order Bias and MSE

This section shows the bias approximation by considering both the bias and
the MSE of the AR(1) coefficient up to O(n=2). Bao (2007) gave the approximate bias
and the MSE of the OLS estimator for the AR(1) model without intercept and with a

general error term as,

Bias(¢) = —% + % 4 + 2‘22”3 _a +f§$o’h L2 ¢1+_3$32)(1 —#?)
+2920| +o(n™?)
MSE(¢) = ! _n‘bZ + % 1467 — 1 — (1 —;gQ)x% B 471?(2;52)2
— 21 =¢%)| +o(n™?),
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and those for the AR(1) model with intercept and with a general error term as,

Blasto) = == 742|715 Tu-92\  w

. 1436 1 [3¢—9¢2—1+ 1+ 3¢ <5—(1—¢)xo>2

201 _ 42
+ —471? £1¢3 ) L 272¢]
+o(n?),
N 1-¢? 1 2 1+¢ (B—(1- ¢z’
MSE(¢) = - 47#2w>+w¢1_¢< — >
4 _ A2)\2
_ ’Ylﬂi(i ¢3¢ ) _72(1 _¢2)
+o(n=2).

Based on these results, we obtain the bias approximations of the OLS estimator of % in
the context of the Lévy OU process with a known mean and with an unknown mean,

which are presented below.

Theorem 17 Under Model (5.14) with a known mean, a non-Gaussian error term with

moments given in (5.13), and a fized g, the approzimation to the bias of K is given by

2kh
~ e +3 1
ErR—k | =)= 5 T 2nT{6 —e2rh _

2/<ce2’“hx%(e2“h +3) 2(e”h + Dz

2(p2kh _ / on
0'(6"’i 1) o %

— 72"+ 3)} +o(T 7). (5.26)

4ry1 (3 + 2" 4 3e™Hh 4 2¢72kN)
B 672nh + efnh +1

Corollary 18 Under the Lévy process (5.14) with a known mean, a non-Gaussian error
term with moments given in (5.13), and a random nonnormal xo with mean 0 and

varinace o2/ (2k), the approzimation to the bias of & is,

e2/~ch +3 1 62){h(62.‘€h 4 3)

E(f — — 6_p2nh _ ¢ €T F3)
(R =) TR T (e2Fh — 1)

4ry1 (3 + 2" 4 3e™Hh 4 2e72kN)

672nh + efnh +1

— (2" £ 3)} + o(T71). (5.27)

Theorem 19 Under the Lévy process (5.9) with an unknown mean, a non-Gaussian

error term with moments given in (5.13), and the initial condition xq, the approximation
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to the bias of K is

12¢26h — 16e" + 18
enh(enh _ 1)

1 1
Elf — _ = (,2kh 2I€h )]
k—kK | :1:0]—2 (e*""" + 2e +5)—|—2 n{3+

2k (p — 20)%(1 + 2e 7 4 5e=20h)
N 02260 (1 — e=2h)
4y [(1 _ eiﬁh)(l 4 efnh)Z 4 2672'€h(1 4 e*'ﬁh)}
e—Hh(l + e—kh + e—QHh)

—yo(e? M 4 3)} 4+ o(T7 ) (5.28)

Corollary 20 Under the Lévy process (5.9) with an unknown mean, a non-Gaussian
error term with moments given in (5.13), and a random initial condition whose mean

is i and varinace o2 /(2k), the approzimation to the bias of & is

12e26h — 16eMM + 18
enh(enh _ 1)

1
ER—-k) = ﬁ(e%h + 2e"h 4+ 5) +
(14 2e™"" 4 5e26h)
672nh(1 _ 672nh)
dyp [(1— e M) (1 + e )2 4 2e72R0 (1 4 71|
B e—nh(l + e—nh + e—2nh)

{23+

2Tn

—2 (2 £ 3)} 4+ o((T)™1) (5.29)

Remark 3.1 Here we consider the bias and the MSE of the AR(1) coefficient up to
O(n~2) to obtain our new results in Theorem 17 and Corollary 18 for the Lévy
process with a known mean. The bias approximations for the Gaussian OU pro-
cess may be straightforward developed by substituting v = 0 and v = 0 into
above results. As before, the initial condition, the variance, the skewness and the
excess kurtosis of of the error term all enter the higher order bias approximations.
Compared with Theorem 9, the second term is different. With the use of a higher
order term for the AR(1) coefficient, the esitmaiton bias approximation of £ has a
cross product term of xg and ;. In addition, the approximated estimation bias is

non-monotonical function of the initial value and the kewness. The excess kurtosis
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continues to have a negative effect on the estimation bias, and its negative impact

is larger than the results in Theorem 9.

Remark 3.2 The second term in Collary 18 is different from that in Corollary 10.
Corollary 18 shows that the higher order bias approximation continues to be a
non-monotonical function of the skewness and that the kurtosis of the error term
distribution has a larger negative effect on the estimation bias than that obtained

in Corollary 10.

Remark 3.3 With the aid of the higher order approximation, the second terms ob-
tained in Theorem 19 differ from those obtained in Theorem 13. The marginal
effects of the long run mean, the initial condition, the skewness and the kurtosis of
the error term are all different. The squared skewness and the kurtosis in Theorem

19 have a larger negative impact on the bias.

Remark 3.4 The results obtained in Corollary 20 differ from those in Corollary 14
in terms of the second term.Corollary 20 shows that the marginal impacts of the

squared skewness and the kurtosis are higher than waht is implied in Corollary 14.

5.4 Bias Approximation with Higher Order Talyor Expan-
sion

The theoretical results in the previous sections are obtained by considering
talyor expansion up to o(7T~!). This section presents the bias approximation by incor-

porating higher order taylor expansion up to o(7~2).By higher order taylor expansion
b-0 1 (d-0) 1 (d-0\" 1 (é-0)
- - - - —2; -1
—r- P4 S [220) o [220) 4o (2228 )
T The +2h(¢) 3h<¢>+4h<¢>+%(” )

100

=)



Therefore, to approximate the bias of %, not only the bias and MSE of k are needed be
~ 3 ~ 4
considered, but also the third and fourth moment of %, i.e., E <¢ — qﬁ) and E (ng — qﬁ) ,

should be incorporated.

For pure model, we obtain

. 3
E(d=0) = n72B;°(41Bs — 1268)] +oln”?),
. 4 B 9 B
E<¢>—¢) = =3 2(1-¢*)" +o(n?),
where 3; = (1 — ¢')~!. The following gives the conditional bias approximation and

uncondition bias approximation for pure model.

Theorem 21 Under Model (5.14) with a known mean, a non-Gaussian error term with

moments given in (5.13), and a fized o, the approximation to the bias of K is given by

Bias(k|xg) = FE(k — k|xo)

- + -

2T nT

Ke2kh (ez“h + 3) :L'%
0-2 (e2nh _ 1)

(ef-ih 4 1) xo 34+ e2nh

1
{84 [3&“ 4 8e2h 99 ¢ 166*2“’1]

o o/ 1—e—2rh s 2e2rh
2K
o (€5 4+ 1) (e + 10e*" + 6e™ + 13) Lo 1 ) (5.30)
n 3 (e26h + erh 4 1) T ’

Corollary 22 Under the Lévy process (5.14) with a known mean, a non-Gaussian error
term with moments given in (5.13), and a random nonnormal xo with mean 0 and

varinace o2/ (2k), the approzimation to the bias of & is,

Bias(k) = FE(k— k)

3+ e2/§h 1 1 e2/§h (62/§h + 3)
— ~ {34 = [3 4kh 8 2kh 29 + 16 72/<h} .
57—+ T{ + 3¢ +8e + 16e 2 (1)
3 4 e26h
72 262/£h
e 1) (e 4 1025 4 Gerh + 13 1
B Ll Ly 4oL

3 (e2rh +erh 1)
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Remark 4.1 Comparing Theorem 21 with the previous results obtained for the condi-
tional bias of & in the pure model, we find that the bias expression is a nonlinear
function of the skewness when considering higher order Taylor expansion. As
shown in Corollary 22, the unconditional bias of & in the pure model is also a non-
linear function of the skewness, which is different from the previous results. Also,
note that by higher order Taylor expansion, both conditional and unconditional

bias is up to o(-1).

For intercept model, we derive that
. 3
E(d=0) = n 288} - 3818 — 1268)] + o(n?),
E (cﬁ - ¢)4 = 12072852+ o(n”2).

The following gives the conditional bias approximation and uncondition bias

approximation for intercept model.

Theorem 23 Under the Lévy process (5.9) with an unknown mean, a non-Gaussian
error term with moments given in (5.13), and the initial condition xg, the approximation

to the bias of K is

Bias(k|lxg) = FE(k — k|xo)
54 2e e 1 (15 P 7
= 5T +n—T{ ?—i—?e” + 3e ™ 4 2" 3™ +e”h—1

erh + 4e3rh + 7e2kh 4 (M _ 1,0)2
(eﬁh + 1)(enh _ 1) 0-2
CLB(e 1) (2 1) + (e = 1) (et 4 1)
n 3 (e2rh +erh 1)

1
o)

3 _|_ e2l§h
=} +of

Corollary 24 Under the Lévy process (5.9) with an unknown mean, a non-Gaussian

error term with moments given in (5.13), and a random initial condition whose mean
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is i and varinace o2 /(2k), the approzimation to the bias of & is

Bias(k) = FE(k—K)

54 2efh 4 e25h 1 (15 7
_ 2fee e +nT{(2+7e”h+3e2“h+e3“h+3e4“h+)

2T
e4f€h +4e3nh + 7625h
2(efh + 1) (erh — 1)
B (e 1) (e 1) + (- 1) (e 1 1)
" 3 (e26h 4+ erh 4 1)
3+€2nh 1
5 P+ O(ﬁ)

-2

The derivations for the above theorems are outlined in the section III of Ap-

pendix A.

Remark 4.2 Comparing Theorem 23 with the previous results obtained for the con-
ditional bias of & in the intercept model, we find that the bias expression is a
nonlinear function of the skewness when considering higher order Taylor expan-
sion. As shown in Corollary 24, the unconditional bias of % in the intercept model
is also a nonlinear function of the skewness, which is different from the previous
results. Also, note that by higher order Taylor expansion, both conditional and

unconditional bias for the intercept model is up to O(n%)'

5.5 Simulation Results

In this section, we perform Monte Carlo simulations to check the finite sample
performance of our bias formulae. We also propose ways for bias correcting and check
the performance of the bias corrected % in terms of mean, relative bias, and root mean
squared error. We further compare the performance of the bias corrected x with those
based on the bias formulae derived in Yu (2009) and Tang and Chen (2009). The

Lévy processes both with a known mean and with an unknown mean are considered.
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All simulation results are calculated from 10,000 replications. It is not entirely fair to
compare our bias formulae with those derived in Yu (2009) and Tang and Chen (2009)

because both Yu and Tang and Chen assumed the true model is the Gaussian model.

5.5.1 Bias correction for Lévy process with a known mean under non-

Gaussianity

First we consider four estimators for Lévy process with a known mean under
nonnormality: OLS, Yu (2009) estimator corrected by the bias (5.19) for random zg
case and (5.25) for fixed xg case which are given in Remark 2.1.1, the estimator (UWY)
corrected by the bias corresponding to (5.15) for fixed initial condition case and (10) for
random initial condition case, the estimator (UWYH) corrected by the bias correspond-
ing to (5.26) for fixed case and (5.27) for random case, and the estimator (UWYHT)
corrected by the bias corresponding to (21) for fixed case and (5.31) for random case.
In order to obtain non-Gaussian error terms we generate the random numbers from the
gamma distribution with mean 1 and variance v (v = 0.25,1), then make the transfor-
mation on the generated errors to satisfy the assumption in (5.13), and then generate
the discrete time observations under the model (5.14). We set x to be small so that it
is empirically realistic for the U.S. data. In particular, we consider four values for x,
0.1,0.5,1.0,3.0. We set T'="5 and h = 1/12,1/52,1/252. For the fixed x case, we set
xg = 0. For the random xy case, we generate xg from the variance gamma distribution.

Figure 1 and 2 in figure 5.1 on page 109 plot the true bias for h = 1/12 and v =
1, the bias according to Yu (2009), UWY, UWYH, and UWYHT for the Levy processes
with a known mean. The red solid line represents the true bias, the black dashed line
is the Yu’s bias, the blue dashed line is the UWY corrected estimator, the green line

with star shows the UWYH corrected estimator, and the light blue with circle is the
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UWYHT corrected estimator. We notice that UWYH and UWYHT behave almost the
same. Those two lines are almost overlaped. For the random x( case, Figure 1 shows that
when £ is smaller than 0.5 the Yu, UWYH and UWYHT estimators drop below the true
bias. When & is greater than 0.5 both Yu and UWYH bias approximations can match the
true bias very well. However, the blue dashed line shows that UWY bias approximation
is a little above the true bias. As x gets larger, all three bias approximations, Yu,
UWYH, and UWYHT, are approaching the true bias more closely. For the fixed zg
case, Figure 2 shows that all bias approximations have small discrepency from the true
bias, especially when & is less than 0.5. UWYH and UWYH bias approximations are
closest to the true bias compared to Yu and UWY.

Simulations results are also reported in Tables 5.1- 5.4 on pages 111- 114 and
the results can be summarized as follows. First, Yu’s method has the smallest bias
among all estimators when x = 0.1,0.5, 1.0 when v = 0.25 and xg is fixed. Second, when
k is moderately larger (x = 3.0), UWYH and UWYHT have smaller relative bias than
Yu’s estimator. Third, RMSEs are very close among Yu, UWY, UWYH, and UWYHT
estimators. Fourth, when v = 1 and zg is fixed, UWYH and UWYHT performs slightly
better than Yu estimator in terms of relative bias for k = 0.1,0.5,1.0,3.0. For random
xo case shown in Table 5.3 and Table 5.4, when x = 0.1, Yu’s method performs slightly
better than UWYH in the sense of having a lower bias and RMSE. When & is moderately
larger (k = 0.5,1.0,3.0) and v = 0.25, UWYH and UWYHT have lower relative bias
than Yu. The findings in Tables 5.1- 5.4 are consistent with the plots in Figure 1 and

Figure 2.
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5.5.2 Bias correction for Lévy process with an unknown mean under

non-Gaussianity

In this case, we also consider five estimators under the Lévy process with an
unknown mean and a non-Gaussian error term: OLS, Tang and Chen (2009) estimator
(TC) corrected by the bias (5.24) given in Remark 2.2.1, the estimator UWY corrected
by the bias corresponding to (5.20) for fixed initial condition case and (5.21) for random
initial condition case, UWYH corrected by the bias expression in (5.28) for fixed case
and (5.29) for random case, and UWYH corrected by the bias expression in (5.31) for
fixed case and (5.31) for random case. As before, the error term is first generated from
the gamma distribution with mean 1 and variance v (v = 0.25,1). We set u = 0.1 and
02 = 0.1. For the case of the fixed initial condition, x¢ is fixed at u. For the case of the
random initial condition, zq is generated from the gamma distribution with mean 1 and
variance v (v = 0.25,1).

Figure 3 and 4 in figure 5.2 plot the true bias, the biases according to Tang
and Chen (2009), UWY, UWYH, and UWYHT for the Levy processes with an unknown
mean. The red solid line represents the true bias, the black dashed line with dots is
the TC bias according to Tang and Chen (2009), the blue dashed line is UWY, the
green line with stars shows the UWYH bias expression, and the blue line with circle is
UWYHT. For random initial condition case, among all bias approximations shown in
Figure 3, UWYHT performs the best and shows the curvature as x is getting smaller.
Figure 4 shows the performance of all bias approximations for the Lévy process with an
unknown mean and the fixed zg case. When & is close to zero, UWYH and UWYHT bias
approximation goes up dramatically. When & is greater than 1.0, UWYH and UWYHT

are very close to the true bias.
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Tables 5.5- 5.8 report the simulation results. As for the case with a known
mean, the simulation results under the Lévy process with an unknown mean provides
the evidence that UWYH is useful in finite samples. The simulations in Table 5.5- 5.8
show that UWYH always has the smallest bias and the lowest RMSE for most of cases,
especially, for larger k = 1.0,3.0. For k = 0.5, UWY has the best performance in terms
of relative bias and RMSE. These results are consistent with those in Figures 3 and 4,
namely, our estimators (UWY, UWYH, and UWYHT) offer improvement over OLS and
TC, especially when x = 0.5,1.0,3.0. UWYH is the most efficient estimator in the sense
of having the smallest bias and the lowest RMSE. UWYHT performs closely to UWYH.

The main findings the two experiements are as follow. First, for the Lévy
process with a unknown mean, no matter if z is fixed or random, under non-Gaussanity
the RMSE of UWY is always smaller than that of the TC estimator and UWYH has the
smallest bias and the smallest RMSE when x = 1.0,3.0. Second, for the Lévy process
with a known mean, Yu, UWYH and UWYHT perform similarly. When £ = 0.1, Yu has
a slightly smaller bias and RMSE than UWYH. However, when x = 0.5,1.0,3.0, UWYH
performs slightly better than Yu in the sense of having a slightly lower relative bias and
RMSE. Second, Figures 1-4 show that the UWYH and UWYHT bias approximations
have large distance from the true bias as x is very close to 0. However, as x gets larger,
the UWYH and UWYHT bias approximations get closer to the true bias. Finally, all
the simulation results in this seciton point outs that if the true model us non-Gaussian,
it is important to take into account of the feature for the sake of bias correction and the
higher order bias approximation is useful to improve the efficiency and the accuracy of

K in finite samples.
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5.6 Conclusions

This chapter considers the effect of the non-Gaussianity of error terms under
the Lévy processes with a known mean and with an unknown mean. We obtain the
bias approximations of the mean reversion parameter estimator under a general error
distribution and find that the skewness (1), the kurtorsis (72), the initial condition, the
long term mean (u), and the diffusion parameter (02) all affect the bias of k. Monte
Carlo simulations provide supports that our proposed bias corrected estimator of the

mean reversion parameter is effective in finite samples.
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Chapter 6

Exact Distribution and Density of
Mean Reversion Parameter

Estimator in Continuous Time

Models *

6.1 Introduction

Since the seminal works of Merton (1971) and Black and Scholes (1973),
continuous-time models have been used extensively in financial economics, see the ex-
cellent survey by Sundaresan (2000). Econometricians have also paid close attention to
this line of literature. Maximum likelihood, generalized method of moments, simulated
method of moments, and nonparametric approaches have been developed for model

estimation, see, for instance, Singleton (2001), Ait-Sahalia (2002), Bandi and Phillips

*This chapter is a joint work with Dr. Yong Bao and Dr. Aman Ullah
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(2003), Hong and Li (2005), and Phillips and Yu (2009a). As shown in the literature,
there exists serious estimation bias in the mean reversion parameter (k) by almost all
the methods, especially when the diffusion process has a linear drift function and the
speed of mean reversion is slow (i.e., small values of x).! For example, Phillips and Yu
(2005) revealed that the bias of the maximum likelihood estimator (MLE) for x in the
CIR model (Cox, Ingersoll, and Ross, 1985) can be extremely large for data sets with
very long time spans, regardless of data frequency. Recently, Tang and Chen (2009)
showed that the bias of % is up to O(T~!) in the stationary Vasicek model, where T
is the time span. They also derived the approximate biases of the diffusion and drift
estimators, and their simulations demonstrated that the estimation biases of diffusion
and drift parameters are virtually zero, but % could be substantially biased. Since the
mean reversion parameter x is of most importance for asset pricing, risk management,
and forecasting, considerable attention in the literature has arisen to improve its estima-
tion accuracy. Recent contributions include indirect inference (Phillips and Yu, 2009b),
bootstrapping (Tang and Chen, 2009), and analytical bias approximation (Yu, 2011).
In addition to the classical asymptotic analysis under expanding domain (7" —
00), asymptotic results under infill (n — oo, where n is the number of sample observa-
tions within a data span T') and mixed (n — oo and T' — 00) domains are also analyzed
in the literature. In the context of Vasicek (1977) and CIR processes with unknown
drift, Tang and Chen (2009) showed that asymptotic distributions of the MLE are quite
different under expanding and mixed domains. Ait-Sahalia (2002) derived the asymp-
totic distribution of his approximate MLE under the expanding domain in diffusions
models. A striking observation from his simulations is that under the stationary case,

the asymptotic distribution of the estimated mean reversion parameter deviates more

'Here we use the word “bias” in a very loose term. In Section 2, we discuss this issue more formally.
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seriously from its corresponding finite-sample distribution as the true parameter value
deceases from 10 to 1, i.e., as the process is getting closer to a unit root process, even
with a very large sample size (n = 1000). Under the mixed domain, Brown and Hewitt
(1975) obtained the limit normal distribution for the MLE of k in the Vasicek model
with a known drift term, see also Bandi and Phillips (2003 , 2007), and Phillips and
Yu (2009c¢) for asymptotic analysis under mixed domain. In a recent paper, Zhou and
Yu (2010) derived the asymptotic distributions of the least squares (LS) estimator of x
in a general class of diffusion models under the three different domains. They provided
Monte Carlo evidence that the infill asymptotic distribution is much more accurate
in approximating the true finite-sample distribution than the asymptotic distributions
under the other two domains.

The problems of approximate estimation bias and inaccurate and different dis-
tribution approximations floating in the literature are largely due to the absence of exact
analytical distribution results. Moreover, in reality, given the discretized data (with a
given finite data span 7" and finite sample size n ), we do not really know under which
asymptotic domain our inference about & shall be, but the asymptotic distribution re-
sults can behave quite differently under expanding, infill, and mixed domains. To address
these problems, in this chapter we investigate the exact distribution of the estimated
mean reversion parameter. To the best of our knowledge, this chapter is the first to ex-
amine the exact finite-sample distribution of the estimated x in continuous-time models.
Since the MLE of « is a simple transformation of the LS estimator of the autoregressive
coefficient ¢ in a first-order autoregressive (AR(1)) model with discrete data, our study
is intrinsically related to the vast literature studying the finite-sample distribution of
the AR(1) coefficient estimator ¢. The Imhof (1961) technique, in conjunction with

Davies (1973, 1980), was typically used to develop the exact distribution of g%, see Ullah
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(2004) for a comprehensive review. Nevertheless, the Imhof (1961) technique is appli-
cably only when the process is strictly stationary with an initial random observation
included in formulating <;3, or when the first observation is discarded. Computational
burden of the Imhof (1961) technique also increases tremendously as the sample size
of the AR process increases, since it involves computation of eigenvalues of a matrix
whose dimension is the same as the sample size. In this chapter, we take a different
approach by first analytically evaluating the joint characteristic function of the random
numerator and denominator in defining ¢, and then inverting it via Gurland (1948) and
Gil-Pelaez (1951) to calculate the exact finite-sample distribution. This approach is in
line with Tsui and Ali (1992 , 1994 ) and Ali (2002) . However, note that in Tsui and
Ali (1992 , 1994 ) and Ali (2002), no intercept term was included in the AR(1) model.
This is equivalent to a known drift term in our continuous-time model. In this paper,
we consider explicitly the case when the drift term is unknown. Moreover, Tsui and Ali
(1992 , 1994 ) did not include the initial observation in formulating the LS estimator $.
However, the initial observation does matter in studying the finite-sample distributions;
in fact, it also matters even for the asymptotic distributions under several scenarios.
The initial observation was included in Ali (2002) , but he studied the approximate
distributions.

The reminder of this chapter is as follows. In Section 2, we derive the exact
distribution of the MLE of the mean reversion parameter k. Section 3 offers some insights
to the issues of moment and asymptotic distribution. Section 4 presents the simulation
results and compares the exact distribution results with the asymptotic results under
the three different domains. Section 5 concludes. Technical details are collected in the

section IV of Appendix A.
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6.2 Finite-Sample Properties

We consider the Ornstein-Uhlenbeck (OU) process with initial value x(0),
dz(t) = k(p — z(t))dt + odB(t), (6.1)

where k € R, p € R, 0 > 0, and B(t) is a standard Brownian motion. We are interested

in estimating the parameter x. When x # 0, the solution to the above process is

x(t) = p+ (x(0) — p) exp (—kt) + 0/0 exp (k(s —t))dB(s), t > 0.

Usually £ > 0 is assumed, and then as t — oo, the deterministic part of = tends to
the mean level pu, so we have a mean-reverting process. When s = 0, the process is no

longer mean reverting;:

z(t) = z(0) + o B(t),

where the parameter p vanishes.

The exact discrete model corresponding to (6.1) is given by

Tih = @+ QT(_1)p + Eihs (6.2)

where 0 < ¢ = exp(—rh) < 1, a = u(1 — exp(—rh)), ein, = oe;/(1 — exp(—2kh))/(2k)
when & > 0 and ¢;, = ov/he; when & = 0, ¢ ~ i.i.d.N(0, 1), h is the sampling interval,
i=0,1,--- ,n such that the observed data are discretely recorded at (0, h,2h,--- ,nh)
in the time interval [0,7] and nh = T. Thus n + 1 is the total number of discrete
observations and T is the data span. When k > 0, ¢ < 1; when k =0, ¢ = 1, a = 0,
80 (6.2) becomes a random walk (with no drift). In the following, we suppress h in x;,
and e;;, for notational convenience.

It is well known that the LS/ML estimator of & is

(6.3)



where (Z) is the LS estimator of the autoregression coefficient ¢ from the AR(1) model

(6.2), defined as

" mi .
2 i1 k=0, or K > 0 and p is known

17
¢ = (without loss of generality, u = 0) > (6.4)
% k > 0 and g is unknown

where 2 =n"1 30 212

We are interested in studying the properties of & estimated from the discrete
sample via ff; As can be expected, the exact properties of £ depend on how to spell out
the initial observation x(0) = xy. We distinguish between three cases: (A) zg is fixed
at 0; (B) x is fixed at a constant ¢; (C) x¢ is a random draw from N((1 — ¢)la, (1 —
#?)"to?), 02 =Var(g;), or, equivalently, N (,u, (2%)*102) , k> 0, and g is independent
of (e1,--+,&,). Under case C, the time series (xg,x1, -+ ,x,) is stationary. Since case
A is a special case of B by setting ¢ = 0, in the sequel, we focus on cases B and C and

discuss briefly case A.

2There seems to be some confusion in the literature regarding the sample size n in formulating the
LS estimator QAS In Tsui and Ali (1992 ,1994 ), the initial observation zo is discarded, following the
convention of Hurwicz (1950) . Yet in Ali (2002) the initial observation is included, which possibly
leads the author to state (wrongly) that there might be an error in Tsui and Ali (1994). Since we are
interested in studying the finite sample properties of %, the initial condition x¢ matters and we include
it in the estimation procedure.
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6.2.1 Distribution and Density

We note that ngﬁ can be negative with a non-zero probability; in fact, (6.3) is

defined only if qg > (0. Thus, we define exact distribution of & — k as

Pr(k—r<w) = Pr(%—ﬁ§w|<]3>0>

1-Pr (45 < ¢exp(—hw))
1—Pr(¢3<0)
1=Pr (6= 6 < (exp(~hw) — 1)0)
1—Pr(¢3—¢<—<f>)

~Fy(d

1
[ Fy(—9)’

where d = (exp (—hw) — 1) ¢ and Fj(d) denotes the cumulative distribution function

(6.5)

(CDF) of ¢ — ¢ at d. Thus the distribution of 4 — « at w follows from the distribution of
qg— ¢, given the sampling frequency h. From (6.5), we have the probability distribution

function (PDF) of # — k, conditional on ¢ >0,

he exp (—hw) f4(d)
falw) = ——— Fi(—o)

where f;(d) denotes the PDF of b—¢atd >

(6.6)

We note from (6.5) that evaluation of the cumulative distribution of £ depends
on evaluation of the distribution of gZA) When « > 0 and x¢ is random, we can write
qg — ¢ as a ratio of quadratic forms in the normal random vector (zg,x1,- - ,2,)’, and
the technique of Imhof (1961) can be used to evaluate F Py and thus Fj. For fixed zg,

it is not obvious how to directly apply Imhof (1961).# More fundamentally, as pointed

3Note that (6.5) and (6.6) hold regardless of the distribution assumption.

4If we discard xo, then the Imhof (1961) technique is still applicable, as we can define qﬁ in terms of
quadratic forms in @,
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out by Tsui and Ali (1994) and Ali (2002), Imhof’s procedure requires computation
of eigenvalues of an (n 4 1) x (n + 1) matrix, which becomes very cumbersome as the
sampling interval h decreases.® Therefore, we proceed to derive the distribution of (;3,
and hence that of &, by an alternative method.

Following Tsui and Ali (1994), we use the results from Gurland (1948) and
Gil-Pelaez (1951) on a ratio of two random variables. Let Y; and Y3 have the joint
characteristic function (CF) ¢ (u,v) = E(exp (iuY; 4+ ivY2)). If Pr (Y3 < 0) = 0, then the

distribution of Y = Y7 /Y5 is given by

Fy<y>:Pr<QSy>=;—i/0m3<w)du, (6.7)

and the density function is

1 [ [ 0p(u,v)
= F = — S| —— v=—u 5 .

fy (y) = Fy () 7r/0 J( 5y = y>du (6.8)
which can be used to derive F(l;(d), F(i)(—qﬁ), and fd;(d), and thus Fj(w) and fz(w), via

(6.5) and (6.6), respectively.

6.2.2 Characteristic Function

To be able to use (6.7) and (6.8), an essential task is to derive the characteristic
function of gZ; — ¢. Let 0,, be an n x 1 vector of zeros, I,, be the identity matrix of size
1

n, t, be an n x 1 vector of ones, d, = (t,,-1,0), M,, = I, — n 'tpe),, and e;, be

unit/elementary vector in n-dimensional Euclidean space with its ith element being 1.

Denote Xn+1 = (:130, mn)la Ly = (51717 T 7xn)/7 Zn = :L'n/(fg, 20 = :I:O/O'Ea and
Ag = An (Cn—l) = 5 Bg = Bn (Cn—l) = )
Cnfl Onfl O',fL—l 0

(6.9)

® Another issue is that Imhof’s (1961) procedure is not directly applicable to work out fi(w), even
though Lu (2006) discussed numerical evaluation of the probability distribution function of a normal
quadratic form.
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where C,,_1 is an (n — 1) x (n — 1) matrix; when C,_; = I,_1, we suppress it and
simply put A, and B,,. For an n x n matrix C,,, we use ¢, ;; to denote its ij-th element,

and i) to denote the i j-th element of C,, !, whenever it exists.

6.2.2.1 Known Intercept (x =10 )

When the mean level p is known (0), regardless of the value of mean-reverting

parameter k, the corresponding intercept in the discrete AR(1) model is zero and qg is

the ratio of Y.° , z;—12z; to >~ x? ;. Note that (w2, -+ ,x3) = (0p—1,I,—1) T, and
(1'17 T 71'71—1)/ = (In—la On—l) Lp, SO
—~ 0},
szflxz = x, (Inflaonfl) Tn
=2 Infl
= x Az,
- 2 / Ins
infl = I, (In—170n—1) Ty
=2 0;1_1
= z) B,x,.

Therefore, we can write ;" | %i—12; = X1 Ant1Xni1 = ToT,e1, + X, Apx, and
S a2 =x.,B =22+ B,z
i=1Ti—1 = Xn+1Pn+1Xn+1 = Tp nPnTn.
If x¢ is fixed, then

- _ xez1 + T, Apy,

¢—¢

23 + /By, —¢
[mom;el’n +a (A, — ¢B,)x, — d)x%] /ag
(23 + @, Bpxy) /o2
z0zhe1n + 20 (An — ¢Bp)z, — 023
(zg + Z%ann) .

The density function of z, (conditional on zp) is

S0 (2 — p2i)?
2

f(z) = (2m) Fexp [—

_n 22’2 1
= (2m) 2 exp {—QSQO + 20z, €10 — §z’n (In + ¢*’B,, — 2¢An) Zn

127



and the joint CF of the numerator and denominator in defining (;3 — ¢, conditional on

zg, 18

—+o0
o(u,v) = (2m)" 2 / exp {iu [zoz/neLn + 20 (A — ¢By)zp — gbzg]

+iv (2§ + 2, Bnzn) } f (20) A2y

2,2
= (2m) 2 exp <iu¢z§ + ivzg — ¢2zo)

oo 1 ! 2 : :
/ exp{—zz;, [In + (¢° + 2iug — 2iv) B,

—00

— (¢ +iu) (Ap + A})] zn + (¢ + iu) 202),€1, d2y.

R, = R, (u,v) = I, + (¢* + 2iu¢ — 2iv) B, — (¢ + iu) (A, + A},), (6.10)

which is a tridiagonal matrix with its main diagonal elements 7y, ;; = 1+ ¢* +2i(u¢ —v),

t=1,--- n—1,r,; = 1,9 = n, and sub- and super-diagonal elements —¢ — iu. Note
that
1 / . / ]. . -1 /
_iannzn + (¢ +iu) zozpe1n = —3 [zn — (¢ +1iu) 20R,, elyn} R,

. [zn — ((]5 + iu) zoR;IeLn]

1 . _
+§ [((b + I’LL) zO]Q ell,an 161,77,7

SO
2 .. : 2y, 1 : 2 1 p-1
¢ (u,v) = exp ) (2iv — 2iug — ¢*) + 3 [(¢ +iu) 20]" €], R, "e1n

+oco
-(2#)_3/ exp{ - % [zn — (¢ +iu) ZOR;IeLn]/Rn
. [zn — (¢ + iu) zoRglel,n] }dzn

2
= Rl e {3 o o) - 4 (6 10 Ry e}
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Also, e}, R, ley, = rﬁ}”, where 7" is the element at the first row and column of

R;'. It is obvious that riY = |R,—1|/|R,|. By expanding along the first row of
R, we can verify |R,| = [1+ ¢*+ 2i(u¢ —v)] [Ru_1| — (¢ +iu)?|Ry—2|, and thus

1= [Rpi1| /| Rn| = —¢? — 2i(u¢ — v) + (¢ + i) r§™, which lead to

2
o (4, v) = | Rl V2 exp [20 (1 - ‘1,";;:,1‘)] | (6.11)

and thus

9¢ (u, v) 9 |Ry| 1 2 | Rnt1] d|Rnt1| 2
_ _ . 12
v # (u,v) [ ov \2|R,|  2|R,|? v 2|R,| (6.12)

If xg = 0, then the characteristic function and its derivative degenerate to ¢ (u,v) =
|R,| Y2 and 9y (u,v) /0v = —(|Rn|~>? /2)0 |Ry| /O, respectively.

If g is random (and x > 0), we write

_ Xni1 (Ans1 — éBri1) X1
X;H—lBTH-an—l—l ’

¢—¢

which is invariant to o2. Without loss of generality, normalize 02 = 1, and the density

function of X, is

—~1/2
exp

_n+1

f(Xpg1) = @2m)" 2 Vntt

1—¢?

)

Ly (V)T
2Xn+l 1_¢2 Xn+1

where V41 is (n 4+ 1) x (n + 1) with its elements vy, ;; = ¢/"=7|. Given its special struc-
ture, we can verify that (1 - ¢2) V;il is tridiagonal with main diagonal elements 1 at

positions 1 and n + 1, 1 + ¢? at positions 2 to n, and sub- and super-diagonal elements
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—¢. Also, |V 1| = (1 — ¢?)~". Then immediately,
plwo) = (07T |7
e 1 Vil )\ L
/ eXP{ - §X%+1 <1 —tbl?> = 2iu (A1 — ¢Bny1)
- 2ian+1 Xn+1}an+1

1/2

= V1-¢2|(1-¢*) Vi —iu(Ans1 + Al ) + 21 (ud — v) Bpga |

= V1-¢?|Rn1 — ¢2€1,n+1€,17n+1‘_1/2 ;

where R, 11 —¢2617n+1 e’l’n 41 is tridiagonal with its main diagonal elements 1+ 2i(u¢—v)
at position 1, 1 + ¢? + 2i(u¢ — v) at positions 2 to n, and 1 at position n + 1, and sub-
and super-diagonal elements —¢ — iu. Expanding R, 1 — ¢261,n+16,17n 41 by its first
row leads to |Ry 11 — ¢%e1ny1€] 41| = [L+2i(u¢ — v)] |Rn| — (¢ +iu)? |[R, 1] . Recall

IR,| = [1+ 6%+ 2i(u¢ — v)] |Ru1| — (¢ +iu)* | Ru—2|. So |Rys1 — d*e1nr1€] yq| =

|Rui1| — 67 |Ral,
o (u,0) = V1= 2 (|Rusa| — ¢ |Ral) 2, (6.13)
and
B T e (a“;‘:i“‘ ‘¢28’£”) - 61y

6.2.2.2 Unknown Intercept (¢ # 0 and k > 0)

When the mean level p is unknown and the mean-reverting parameter x > 0,

the corresponding intercept in the discrete AR(1) model is nonzero and  is the ratio of
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S (zic1 — T)xi to Y (zi—1 — )2, Note that

(.%'0—:2’,-" 7xn—1_-’z')/ = Mn(x(]a"' axn—l)/

= Mn(07x17"‘ an—l)/—i_Mn(xO,O?"'O)/

0
= M, Ty, + $D]\Jnel,n

In—l On—l

M,A,x, +xoM,eipy,

SO we can write

n

_ / / / M
E (xi—l - l‘)xZ = Ccn]\4n14nfcn + xOngnel,n = Xn-i—l‘471-#-1Xn-&-17
=1

—\2 I Al 21 /I Al
E (rie1 —2)° = =z, A, M,Ayz, + 20€) ,Myer, + 2v0x, A, M e,
i=1

= X%+1B%1Xn+1,
where @, = (0, I,,) X1, and AM, and BM , are defined in (6.9).

If ¢ is fixed, then

R x, M, Az, + zox, M,ei, B
x Al M, A, x, + x%e’lynMnel,n + 2xox!, A, M ,eq
Z,(MyA, — A, M, Ap)z, + 202, (I, — 20A),) M ye1 n — pz3€) ,, Mpern

/ /
2 AL My Az, + 22020 A} M eq , + z%e’LnMnel,n

The density function of z, (conditional on zp) is

f(zn)

(27) "% exp [_ Yo (m—a— ¢Zi_1)2]

2

= (271')’% exp { - % [z; (In + ¢*B,, — 2<Z>An) Zn

+ 22, (apd, — at, — pzoern) +na’ + ¢°25 + 2a¢20] },

131



and the joint CF of the numerator and denominator in defining qB — ¢ is

2 2.2
. 2
plu) = @n) Foxp|-"EEEHEION L Gy iug) el M,
+oo 1
. / exp 52| In+ 6* By — 204, — 2iu (Mo Ay — 04, M, Ay)
—2ivA! M, A, |z, + z%én}dzn,
where

On = 0p(u,v) =iuzo(I, — 2¢>A’n)Mne1,n + inng;Mneljn — (agpd,, — at, — ¢zpe1 ),
(6.15)
and the (symmetrized) matrix in the quadratic form of z,, in the exponent of the integral,

denoted by S,, = Sy (u,v), can be written as

S, = I,+¢’B,—¢(A,+AL) —iu(M,A, + A, M,) + 2iupAl, M, A, (6.16)
—2ivA! M, A,
= I,+¢*’B, — ¢ (A, + A}) —iu(A, + AL) + 2iupAl A, — 2ivA, A,
+n Yuene], Ay + n 7 uAL L, — 20 Hug AL Lt Ay + 207w AL Ll A,

= R, + —(utnt, A, +uAl gt —2upAl i, Ay +20A Ll Ay)

1
n
i 2wt v—ud)_it,  utp—

= R,+— , (6.17)

n /
ULy, _q 0

by noticing

’ ’
tn-1ty,_1 On_1 tn-1t,_1 On_1

/ / /
A tnt, A, = s Uty An =
! /
On—l 0 Lh1 0
Thus we have

2 2.2
noa® 4+ ¢ z5 + 2adzy .
— ¢ 20 ¢ +i(v—ug) z%e'lvnMnel,n

o (1,0) = |S,| "2 exp [

1
+ 55;5;1% : (6.18)
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and

0p (u,v ) _
L) ¢ (u, (12081 ZMpein+ 21zoe’17nMnAnSn16n

+16 08t 5, — 1 8|Sn|>.

27" v 218, ov (6.19)

When zg is random,

Xn+1 (A ¢Bn+1) Xn+1
Xn+1Bn+1Xn+1

¢—¢=
which is invariant to o2. With o2 normalized to be 1, the density of X, is

n+1 —-1/2

\
f (Xng1) = (27)" 1 _;:2

1 atni1\ [ Vit -1 Qlnt1
+ +
- exXp [_2 <Xn+1_ 1j¢> <1_n¢2> <Xn+l_ 1j¢>]7
and the joint CF of x},,; (AM, — ¢BM ) xpny1 and X, 1 BYL 1 X1 i
—-1/2 1 o2 , Vit —1
eXp —§mbn+1 1_7¢2 ln+l
+o00 1 V >—1
/ n+1 .
. expq — =X — 2iu —¢B
/—oo { 9 n+1 <1_¢2 ( n+1 TL+1)
« Vv +1 -1
Xnt1 T ﬂX;L-H <1_n¢2> Ln+1}dxn+1
_ Vi |12 1 \
= (2m) 1 _nd)Q exp —5’)’;1+1 1_717& Tn+1
400 1
/
/ eXpy — §Xn+1
—0o0

+ X;L+17’I’L+l }an—‘rla

: M
—2ivB,

n+1
2

—1
(1‘/“1) — 2iuAM | + 2i(up — v) BM | xni

¢2

where

« VvV +1 -1
Yn+1 = 1— ¢ (1 — ¢2> Lp+1.- (620)

Note that

Vit
Yn+1 (1_7?52) Yng1 = na® + (1+ @) ap,
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and that the (symmetrized) matrix in the quadratic form of x,,,; in the exponent of

the above integral, denoted by T'y41 = Thpt1(u,v), is

1 — ¢2
= (1=¢")V i —w(Anp1 + Al ) + 2i(ug — 0) B

Ve \ .
T,1 = < o= ) —iu(AM + AN + 2i(up —v)BM

i 0, O 0, tnt;, 2i(u¢p — v) tnt), Oy
+— + N
n !/ / n /
tpt, O 0 0, 0, O
= Ryt — ¢261,n+1€/1,n+1
2(v — ud) (u+2v —2up),, 4 u
i
+E (u+2v—2ud)tn—1 2(v+u—ud)tn_ith,_y utp_1 |- (6.21)
u utLl, 4 0

Therefore,

_ no? + (1 +P)au 1 _
@) (u,v) =1 ¢2 |Tn+1‘ 1/2 exp <_ (2 ) + 27;1+1Tn41_1'7n+1) , (6.22)

and

(6.23)

1
- Yn+1 o Yn+1 |Tn+l| v

9o (u,v)  @(uw) [, OT,1 1 9|Tpi|
ov 2 ’

6.2.2.3 Unknown Intercept (¢ # 0 but x =0)

When the mean level i is unknown but the mean-reverting parameter x = 0,
the corresponding intercept in the discrete AR(1) model is zero. Given that the intercept
term is unknown, we still estimate ¢ as the ratio of S (i1 —Z)w to Yo (zim1—T)?,
though the true intercept is zero. The joint CF ¢ (u,v) and its partial derivative with
respective to v of the numerator and denominator in defining ¢ — ¢ are (6.18) and (6.19),
respectively, with ¢ = 1 and o = 0. Note that when x = 0, we consider only the case

when xzg is fixed.
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6.2.3 Evaluation of Characteristic Functions

To evaluate the characteristic functions (6.11), (6.13), (6.18), and (6.22) with
R, 6,, Sn, Yni1, and Ty defined in (6.10), (6.15), (6.17), (6.20), and (6.21), respec-
tively, we need to find the determinants and inverses of (n x n) and (n+ 1) x (n 4 1)
matrices.

As emphasized in Tsui and Ali (1994), the typical way of evaluating matrix
determinant/inverse by using eigenvalues can be very expensive as n increases. When
there is no intercept term in the AR(1) model, we have already noticed that |R,| =
[1+ ¢ + 2i(u¢p — v)] |Rn—1| — (¢ + iu)® | Rp_a|, starting with [Ri| = 1 and |Re| = 1 +
& + 2i(ugp — v) — (¢ + iu)2. Tsui and Ali (1992, 1994) proposed expanding along the

last row of R,, so that
|Ry| = [Dya| — (6 +iw)? [Dyal, (6.24)

where D,, = D,,(u,v) is the determinant of an n x n tridiagonal matrix with 1 + ¢? +
2i(u¢ — v) on its main diagonal and — (¢ + iu) on its super- and sub- diagonals, which

can be evaluated by using the result of Muir (1884):

n

1Dyl =[] [1+ ¢* + 2i(u¢ — v) — 2(¢ + iu) cos (mi/(n + 1))] .

=1

A probably more direct and efficient way (see Berstein (2009, page 235)) is perhaps to

use
1+¢2+2i(ugp—v) |" . 2 . \2
D, - (n: 1) Lz} [1+ ¢% + 2i(ugp — v)]” =4 (¢ + iu) 625)
lﬁl%gz [1+¢2+Zi(u¢—v)]27é4(¢+iu)2
where

L+ 62+ 2i(ug —v) +/[L + 6 + 2i(ud — v)]* — 4 (6 + tu)?

61 = 9 )

5 1+¢2+2i(uq§—v)—\/[1+¢2+Qi(uq§—fu)}2—4(¢+iu)2

2 = :
2
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The more challenging task is to deal with the case when o # 0 and k¥ > 0,
namely, to evaluate the determinants and inverses of S,, and T',,. First, we note that S,,

has some special structure:

i 2(“’ +v— U(ﬁ)bn—lbr/n_l Uln—1 An—l ap—1
Sn=Ru+ = ,
uLl,_y 0 a,—1 1
where
2{u+v —u 1 .
A, 1=D, 1+ (n(b)bn_u;l, An-1= " ln-1— (¢ +iu) en—1,-1.
Note that
_ / -1
1Sh] = An1] (1—a,_ 1A jan—1) , (6.26)
where
2ilu+v —u _
Bl =1 (14 HEEEEE D). (6.27)
and
_ _ 2ilu+v —u _ _
Anil = Dnil - ( (b) Dnill’nfll’;z—anil‘ (628)

n+ 2i(u+v — ugzﬁ)L’nler_Lian_l
Keep in mind that (6.26) is valid only if A,_; is nonsingular; (6.27) is valid only if
D,,_; is nonsingular; (6.28) is valid only if D,,_; is nonsingular and n + 2i(u + v —
ud)e!, D1, # 0. From (6.25), we see that |D,,| # 0; Appendix A section IV part
(i) also shows that n + 2i(u +v — u¢)e!, ;D 1,_1 # 0. Further, these two conditions
ensure that |A,_1| # 0.

Given that we already know how to evaluate analytically the determinant of
D,, via (6.25), we need to work out D, ! to be able to evaluate (6.26) via (6.27) and

(6.28) . From Hu and O’Connell (1996), with slight modification®:

SHu and O’Connell (1996) presents the result for the case when the main diagonal is real. Yes, it is
still valid when the condition regarding the real diagonal is changed to its real part if the diagonal is
complex. In our case, the matrix D,, is divided by — (¢ + iu), which is always non-zero as ¢ > 0, so
the new matrix has main diagonal [1 + ¢® + 2i(u¢ — v)]/[~ (¢ + iu)] and super- and sub- diagonals 1.
Now the real part of [1+ ¢* 4 2i(u¢ — v)]/[— (¢ +iu)] is [—¢ (1 + ¢*) — 2u(u¢ — v)] / (¢* 4+ u?) . Their
determinant result is also valid with this modification, comparable to (6.25).
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cosh[(n+1—|j—i|)\]—cosh[(n+1—i—j)\ iu— .
—== ZSirzh()\) slnh[(iﬂ[r(l))\] = <¢2+5)2)’ (Z)
(i5) — i+j cosh[(n+1—|j—i|)A\]—cosh[(n+1—i—7)\ iu— ..
dn (_1) ! QSiEh(/\‘gs}inh[(ni(l))\] = (¢2+32>7 (”) ’ (629)
i+j+1 cos[(n+1—|j—i|)A\]—cos[(n+1—i—j)A iu— .y
(_1) ’ QSgn()g sln[(n—&[-(l))\] = (¢2+f2> ) (”Z)

where

(=@ (1+¢%) — 2u(up—v) _

(@ »? + u? s -2
_ 2) _ _
i) ¢(1+a;2)+5:<u¢ v) S,
_ 2) _ _
(ii1) — 2 < ¢(1+q;2)+52u(u¢ U)<2

with corresponding A equal to arccosh([1 + ¢? + 2i(u¢ — v)]/[2 (¢ + iu)]), arccosh(—[1 +
$?+2i(up—v)]/[2 (¢ + iu)]), and arccos(—[1+ @2 +2i(up —v)]/[2 (¢ + iu)]), respectively.
The above analytical inverse is “piece-wise”. For fast programming and in the need of
the derivatives of D,; ! an equivalent formula is given by da Fonseca and Petronilho

(2001) (note that D! is symmetric),

1 Ui—1 (%) Un—j (W) <

e

) — (1t (6.30)

where U, (x) is Chebyshev polynomial of the second kind, defined by a second-order re-

cursion, Uy y1(z) = 22Uy, (x) —Up—1(x), n > 1, with two initial conditions Uy(z) = 1 and

n

Ui(x) = 2z. It also has an analytic expression: Uy (z) = 2" [[;_; [ — cos(mi/(n +1))].

With A;Lil given by (6.28), evaluation of the inverse of S,, is straightforward:

A;il 0n—1 N 1 A;ilan—l ) .
l—a),_ A an . ap 1Ay —1 )

0/ 1 O n—1

n

S, =

n

(6.31)

if 1— a%_lA;ilan_l # 0, which is verified to hold true in Appendix A section IV part
(i)
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Next, we write

/ iu

1+ 2i(ug —v) + 20w gy
AL ap
Tnir = b1 A1 apq = ’
' a’l 1
o al_, 1
where

i(u+ 2v — 2u .
b1 = ( n QS) lp—1 — ((b + 1U) €ln-1-

Following the same strategy as before,

Toia] = | AL (1 - 0/ AL at), (6.32)
where
2i(v —
A = [Ap_| <1 4 2i(ud — v) + l(vnu“‘” — b;l_lAnlle) : (6.33)
and
0 0,
At =
On—l Ar;il
N 1
1+ 2i(ug —v) + 2040 g AL b,
-1
< ~-1 b, AL > . (6.34)
A;ilbnfl

(Note that |A,_1| and A~ !, are given by (6.27) and (6.28), respectively.) With A%~

given above, evaluation of the inverse of T', 1 easily follows:

o At o P Anlan < | > (6.35)
— - a*/A*f _1 . .
1—ayAXlar ) n=mn

Again, for (6.32) to be valid, A} needs to be nonsingular; for (6.33) to be valid, A,_;

needs to be nonsingular; for (6.34) to be valid, A, _1 needs to be nonsingular and
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1+ 2i(ug — v) + 2i(v — up)/n — bl,_ A1 b,_1 # 0; for (6.35) to be valid, A’ needs
to be nonsingular and 1 — a’ A% 'a’ # 0. Appendix A section IV part (i) verifies that
these conditions in fact hold.

For us to be able to use (6.8) to evaluate the density function (6.6), we need
also work out the derivatives of (6.11), (6.13), (6.18), and (6.22), given by (6.12), (6.14),
(6.19), and (6.23), respectively. Essentially, we seek analytical expressions for 0 |R,,| /0v,
d18n| /0v, 38,1 /0v, O|T 1| /Ov, and 8T;_1H/OU. Appendix A section IV part (ii) gives

detailed expressions for these derivatives.

6.3 On the Moment and Asymptotic Distribution

Given the density function of & — k, conditional on gZ; > 0, we can write the

moment of &, if existing, as

R +oo 1 R
B> 0)=w+ [ fulwdw = - Bn()lé > 0)
where
A 1 +oo
Bn(@l6 > 0) = =gy [ i) 0 = 9y
Note that [ (w) f3 (w — ¢) dw exists if and only if J57% In (w w)| f5 (w = ¢) dw ex-

ists. For w € [1,400), |In(w)| <w —1, so

[T mel e gan = [ ) -6
0 ¢ 0 ¢
+oo
[ ) ;0= ¢)du
1
JRCICIATEDEE
+oo
[ D g =g du

IN
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Since f¢3 (w — ¢) is a PDF function, it is bounded, say, by a positive constant ¢, then

fo I (w)| f; (w — @) dw < —c fo In (w) dw = ¢. Next observe that

/m(w—l)fww—sz»)dw - /+Oo(z+¢—1)fA(Z)dz
1 ¢ 1 ¢

B :—io ) q ) +o0 A q
= [ eh@dre-n [ e

where the second part (¢ — 1) lt?? [ () dz is bounded, and the first part

/Jroozfq;(z)dz = /Jroozf(;s (z)dz—/ﬂl(bzfq; (z)dz

1—¢ —o0

Again, f01_¢ z!)"(g5 (z)dz < cf01_¢ zdz, which is bounded, and fj;o Zf<23 (z2)dz = E(QZ;) — o,
assuming E(¢) exists. (Keep in mind that Ey (-) and f; (-) denote the CDF and PDF of
¢ — ¢, respectively.) Thus, existence or not of E(&|¢ > 0) depends on existence or not
of E((%) When z is random, ¢ can be written as a ratio of quadratic forms in a normal
random vector (see the next subsection), and from Roberts (1995), we can easily verify
that E(¢) always exists if n > 1 or 2 for the AR(1) model without or with intercept.
When z is fixed and is not used in formulating the LS estimator ¢, a very similar
argument can show that E(¢) always exists if n > 2 or 3 for the AR(1) model without
or with intercept. Including an extra fixed data point in formulating qAﬁ should not affect
existence or not of E(q@) Thus, in any interesting case, say, with at least 4 data points,
E(¢) always exists, and hence E(&|¢ > 0) always exists.

Unconditionally, however, E(#) is not well defined in the real domain. This
is because Pr(¢ < 0) = Pr(p — ¢ < —¢) = Fy(=¢) # 0, and & = = —1In(¢)/h takes
on complex values with a positive probability. Given this observation, one has to be
cautions to interpret the approximate bias results developed in the literature. Note

that for 0 < ¢ < 1, Pr(¢ < 0) — 0 asymptotically, since ¢ is consistent. In other

words, & is always well defined asymptotically, and so is its asymptotic distribution.
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In this perspective, we might interpret the approximate moment as the moment of the

asymptotic distribution. We summarize the asymptotic distribution of # from Zhou and

u (2010) as follows.”

k>0 T — ooand h fixed VT (k& —

T —+ocoand h =0 VT (i —
h — 0 and T fixed T (

d 2kS
AN ( e 1)
d

—

N (0, 2&)

d
k) 5 _Ai1(v0,0)

B1(v0,¢)

d fo (r)dB(r)

k=0 T — oo and h fixed T(k—K) TH
0 T
T —ooand h — 0 T (i —r) % fofmidB(r

h — 0 and T fixed T(R—ﬁ)i—%

k>0 T — oo and h fixed VT (& — k) £>N< ,6%6_1)

T —oocand h — 0 \/T(/%—/i)iN(O,Z‘i)

h—0and T fixed T (k—r) % — 52229
1 1

k=0 T — oo and h fixed T(k—K) 4k Ef(r)dB(r)_B(ll)fo B(T%dr

1f0 BZ(T)d'I‘—(fO B(?{)d’r)

T — oo and h — 0 T(k—K) 4 Ef(r)dB(r)_B(ll)fo B(T%dr
Jo BZ(T)d’I‘—(fO B(T)d’l‘)

h — 0 and T fixed T(R—&)g—%

"Note that Zhou and Yu (2010) did not give the expanding and infill asymptotic distribution results
when k = 0 and p # 0. This corresponds to the scenario, in a discrete framework, when no intercept is
present in the true model, but a constant term is included in the regression. The expanding and infill
asymptotic distribution results easily follow via the generalized delta method.
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where

1
A1 ('yo,c) = ’)// CTdB +

9
(&
Bi (v0,¢) = 70( +2’Y0

/Oljc 1
/O e Jo(r)dB(r) + /0 J2(r)dr,
Ay (0e) = U /OlcldBu # [ raBe) o [ ean

Cc

_ /01 dB(r) (ch + /01 Je(r)dr + C4’Yo> ;

2 1 1 1
By (y0,¢) = c3b® + c/ c1Je(r)dr +/ Jf(r)dr —I—cib’yo + 270/ e Jo(r)dr
0 0 0
2

2(,2c __ 1 1
—i—%(e% ) _ (czb—i—/ Je(r)dr + c4’Y0> )
0

with ¢ = —kT, ¢y = € =1, co = (e —c—1)/c?, c3 = (€% — 4e® + 2¢ + 3)/(2¢?),

ca = (e¢ —1)/c, b= pv/=cr/o, v = xo/(0VT), and Jo(r) = [ e“"=*)dB(s). Note that

under the infill asymptotics, the results are conditional on the initial xg.

6.4 Numerical Results

In this section, we conduct Monte Carlo simulations to illustrate the finite
sample performance of our exact distribution in comparison with the “true” distribution
and the asymptotic distribution. The data generating process follows the OU model in
(6.2), and the error term is generated from normal distribution. Then we adopt the
algorithm mentioned in section 2 to compute the exact distribution of LS/ML of «.

We set T = 1,2,5,10, h = 1/12,1/52,1/252, x = 0.01,0.1,1, p = 0, 0.1,
o =0.1, 29 = por g ~ N(p,02/(2k)). Compared with Zhou and Yu (2010), we have
a more comprehensive experiment design, so as to have a better understanding of the
finite-sample distributions. For the fixed start-up case (zo = 0), we also consider £ = 0.
As pointed out in Zhou and Yu (2010), the values of 0.01 and 0.1 for s are empirically

realistic for interest rate data while the value of 1 is empirically realistic for volatility.
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In Tables 6.1- 6.8, the “true” distribution results come from 1,000,000 repli-
cations, and we make comparison of the exact (p), true (peqr), and asymptotic results
under the three asymptotics (pexp; Pmizs Ping)- In simulating the asymptotic non-normal
results, 10,000 replications are used and a sample size of 5,000 is used to approximate
the integrals involving the Brownian motion by the discrete Riemann sums.® To save
space, we report only four tables (each with two panels corresponding to 7' = 1,10,
respectively). Tables 6.1 and 6.4 report the cumulative distributions of T' (k — k) under
a fixed start-up when x = 0.01, with zo = u = 0, 0.1, respectively, and Tables 6.5 and
6.8 report the results when zg is random.

Several striking features are present in these tables. First, the exact distribu-
tion results match to at least the third decimal place with those obtained by 1 million
simulations, in all the cases considered. This indicates high accuracy of the exact results
calculated by our numerical integration algorithm. In consistent with the asymptotic
results in Zhou and Yu (2010), there is no much difference between the results under
the expanding and mixed domains, and the infill asymptotics provide relatively better
performance. Yet, the asymptotic distribution under the infill domain may still provide
poor approximation to the true distribution when the data span is short, especially so
in the left tails. While increasing data frequency does not affect much the asymptotic
distributions, it does affect the true distribution, and the remarkable performance of the
exact distribution is robust to data frequency, as well as to data span and other aspects
of model specification.

Second, the true distribution of & is highly skewed to the right. Normality is a

terrible approximation of the finite-sample distribution of 4. As data frequency or data

8Given that the infill asymptotic results are conditional on x, in comparison with the exact results
with a random start-up, they are calculated as averaging over 2,000 replications, where in each replica-
tion, xo ~ N(ut,0%/(2k)). Also, the discrete AR(1) process is simulated with a sample size of 2,000 when
o is random.
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span increases, the true distribution tends to exhibit a longer left tail and a shorter right
tail. Moreover, we can infer from these tables the exact/true median of T (k — k) in all
cases are substantially positive. (A direct calculation of the median is also possible, see
the paragraph to follow.) This suggests that & can significantly over estimate & in finite
samples. This degree of overestimation does not decrease with a higher data frequency
(given a fixed data span). This is in line with the observations made by Phillips and Yu
(2005) and Tang and Chen (2009). On the other hand, increasing data span might help
alleviate this problem, though somewhat marginally.

Third, how the initial observation is spelled out affects significantly the exact
distribution of . For example, for the fixed start-up case, the distortions of the asymp-
totic distributions are less severe when zy = 0 compared with when zy # 0, and the
exact distribution is less skewed to the right. This feature is related to the role of initial
observation in the unit test literature. It also suggests that the conclusions in Tsui and
Ali (1992 , 1994 ) with z¢ discarded should be examined with more scrutiny. Given
the CDF function (6.7) and PDF function (6.8), one might be tempted to calculate the
quantile function F; *(t), ¢t € [0,1] by Newton’s method of interpolation. Yet, calcula-
tion of the PDF function also involves numerical integration. To reduce computational
time, we instead employ a very simple bisection search algorithm. Since it is relatively
cheap to simulate the asymptotic results and we have observed that the in-fill asymptotic
results are more reliable compared with the expanding and mixed asymptotic results,
we start with the ¢-th empirical quantile of the simulated sample for approximating the
in-fill asymptotic results, say co. If Fj;(cp) < t, we set ¢; as the min {2¢, 1}-th empirical
quantile of the simulated sample. (Typically, Fj(c1) > t. If not, one can set ¢; as the
min {ct, 1}-th empirical quantile of the simulated sample, ¢ = 3,4, -, until one finds

Fi(e1) > t.) If Fi(co) > t, we set ¢ as the ¢/2-th empirical quantile of the simulated
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sample. (Typically, Fj;(c1) < t. If not, one can set ¢; as the ct-th empirical quantile of
the simulated sample, ¢ = 1/3,1/4,--- , until one finds Fj;(c1) < t.) Given the two ini-
tial points ¢y and ¢, a bisection search can then be straightforwardly applied to search
numerically for F- 1(t). This algorithm is in a similar spirit of the algorithm in Lu and
King (2002) . We have calculated some typical percentiles of 1" (k — k) under different

scenarios. To save space, they are not reported here but are available upon request.

6.5 Conclusions

We have investigated the exact finite-sample distribution of the estimated
mean-reversion parameter in the Ornstein-Uhlenbeck diffusion process. We have consid-
ered several different set-ups: known or unknown drift term, fixed or random start-up
value, and zero or positive mean-reversion parameter. In particular, we employ numeri-
cal integration via analytical evaluation of a joint characteristic function. Our numerical
calculations demonstrate the remarkably reliable performance of the exact approach. It
is found that the true distribution of the maximum likelihood estimator of the mean-
reversion parameter can be severely skewed in finite samples. The asymptotic results
under expanding and mixed domains in general perform worse than those under the in-
fill domain, though the latter may still perform poorly in the left tails when data spans
are short. Our exact approach always provides distribution results of high accuracy,
and thus should be used for conducting hypothesis testing and constructing confidence

intervals.
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Chapter 7

On Efficiency Properties of an
R-square Coefficient Based on

Final Prediction Error

7.1 Introduction

In a recent work, Rousson and Gogoniu (2007) proposed a new version of the
coefficient of determination — R% p;, which measures the percentage of variation in newly
observed dependent variable explained by the fitted model. One of the most exciting
advantages of R% pg is that it can be used as a model selection criterion which is capable
to choose a model with the best prediction ability. Also, the newly proposed R% pp can
not only overcome the prominent limitation of using R? — inflation, but also avoid
the problem of selecting a overfitted model with some irrelevant explanatory variables
caused by using RZ. In addition, as Rousson and Gosoniu (2007) mentioned, R% 5 and

AIC are asymptotically equivalent. The empirical analysis in their paper provided the
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evidence that using R%PE as a model selection criterion is perfectly consistent with
using AIC, and is closest with the criterion BIC than R? and R2. Thus, R% pp can
be simultaneously devoted to both aims of goodness-of-fit measure and model selection,
which is practical in extensive empirical work. However, Rousson and Gosoniu (2007)
didn’t study the efficiency properties of R% pp- Motivated by the aforementioned facts,
the goal of the present chapter is to reveal the bias and MSE properties of this newly
proposed goodness-of-fit based on the final prediction error, and compare it with R? and
R2.

This chapter first shows that the exact bias of R%PE is always smaller than
that of R? and R2, and the variance of R%PE is always higher than the other two
without specifying the distribution of disturbances. Second, we conduct the analysis of
the large-sample asymptotic expansions of the biases and MSEs with 4.i.d non-normal
disturbances. The large-sample approximate biases give the identical results to the
exact forms, that is, the approximate bias of R% pp is always smaller than the other
two measures. However, the results of the approximate MSEs are more complicated. In
normal case, the approximate MSE of R% . is higher than those of R? and R%. When
the disturbances are non-normally distributed, the superiority of R% ., in efficiency will
be held under some conditions. These efficiency results developed show that the FPE
based R-square is useful for the models which have low values of the population goodness
of fit measures (for example in cross section models) or for models with high goodness
of fit measures (for example in time series models).

The structure of this chapter is as follows. In the next section, RQF pp Will be
introduced and its efficiency property in comparison with R?, R? will be conducted. In
addition, a small numerical analysis is presented as well. The last section is concluding

remarks.
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7.2 Efficiency Properties of R-Square Coefficients
Let us start with the following linear regression model
y=ar+XB+u (7.1)

where the dependent variable y is a n x 1 vector, ¢ is a n X 1 unity vector, X isan X p
matrix with n observations and p explanatory variables, regression parameters ( is a
p X 1 vector, « is a scalar, and the disturbances u has n x 1 dimension with zero mean
vector and o2, variance-covariance matrix.

We have the goodness-of-fit measure R? as follows

_ Y MX(X'MX)" XMy

R2
y' My

(7.2)

where M = I, —n~1u/. It is well known that R? can also be written in the form of SSR
and SST as R?> = 1—SSR/SST, where SSR =1 [ (Y; = Yi)?, SST = 3.1, (Vi - Y;)%.
And the adjusted version of R? (R?) can be written in terms of R? as R2 = (1+7)R?—r,

r = =2 > 0. Then it is easy to verify that R? < R? since R? — R?2 = r(1 — R?), and

0<R2<1,r>0.

In the following, I will briefly state how Rousson and Gosoniu (2007) obtained
R%, g+ 1f one is interested in the prediction ability of a model, it is good to consider the
"mean squared prediction error” denoted by MSPE. Suppose that (zi zi2... Tip, Z;),
i=1,---,n, is a new observed sample which has the same sample size with the original
one. Notice that Z; is the "new observed value” and YZ is the predicted value, so the
?mean squared prediction error” can be defined as MSPE = S\ | E(Z; — Y;)?/n =

o2(n+p+1)/n. When a model doesn’t include any explanatory variable (p = 0,02 =

u

a%), one can obtain the mean squared prediction error M SPE, = a%,(n + 1)/n. In

order to get R%pp, Rousson and Gosoniu (2007) use the unbiased estimators FPE
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and F'PFEy to substitute MSPE and MSPEjy, respectively. Then R% pp is given by

Ripp=1-— ]\]\/[4555) = —%,Where FPE = s2(n+p+1)/n and FPEy = s2-(n+1)/n.
Now it is easy to rewrite R% 55 in terms of SSR and SST, and further in terms of R?,

and R? as follows:

R2 _ 1_SS’R‘ n—1 n+t+p+l
FPE SST n—p—1 n+1
2 _
_ (n+p+1)R; —p (7.3)
n+1
— 2 _
_ (n=1)(n+p+1)R*—2pn (7.4)

(n—p—1)(n+1)
Now one can easily show that R%,, < R? < R? as Rousson and Gosoniu (2007)
pointed out. Examing the formulas of R% pp-one can obviously see that R% pp provides
the measure of ability of predicting newly observed sample by using fitted model.
As Cramer (1987) has shown, the 'population’ measure of goodness-of-fit has
the following form

2

p lim R* = (1+ ?

-~y l= < .
n—00 n—lﬁ’X’MXﬁ) §,0<0=<1 (75)

and R2 has the same probability limit. Thus, we can easily obtain that R% pp has the

(n—1)(n+p+1)R2—2pn __
(n—p=1)(n+1)

same probability limit with R?, i.e., plim, o R%PE = plimy,_,
6.

In the following, we will examine the efficiency propertities of R?, R? and R2F PE
without assuming the distribution of disturbances. Since RQF rE < R? and R2F rE < R?L,

if moments exist, we have

ERY,; -0 < ER?’-0= B(R%pp) < B(R?), (7.6)

ERGpp—0 < ER2—0= B(Ripp) < B(R2). (7.7)
Thus, the bias of R% pp 1s always smaller than those of R? and R2.
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Furthermore, from (7.3) and (7.4), it is also straightforward to show
V(REpp) 2 V(RG) > V(R?).

So the variance of pr pp is always higher than the other two measures.

To simplify notation, R% pp can be rewritten as follows
Ripp = Ra — £(1 - RY)
where £ =p/(n+1),0 < & < 1. From (7.8), we have

(Rq = 0) = (Ripp — 0) = £(1 = Ry).

(7.8)

(7.9)

Hence, one can obtain the distance between MSE of R2 and that of R% 5 as

follows

Dy = M(R3)~ M(Rfpp)

= (201 -0)B(1 - R3) — (2+&B( — R7)’].

From (7.10) we have M (R% ) < M(R2) provided Dy > 0, that is

2(1-0)E(1 — R?)
E(1-R2)?

§+2<
Similarly, the difference between M(R?) and M (R%py) can be written as
Dy = M(Rz) - M(R%PE)

dnr(n + 1) + 4n?r?
(n+1)°

_ dnr 9
= n+1(1 9)E(1 — R?)

E(1 — R?)?

It, therefore, follows that M (R%,5) < M(R?) provided Dy > 0, that is

nro_ (1-6)E(1 — R?)

1
+n+1_ E(1-R2%2)?2

where E(1 — R?) > E(1 — R?)2.
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It is clear that B(R%p5) < B(R2), B(R%pp) < B(R?),and V(R?) < V(R2) <
V(R%PE) from the previous part of the chapter. However, it is not staightforward
to compare M (R%py) with M(R2) and M(R?). From (7.11) and (7.13), R%,, may
perform well in the sense of having relatively lower MSE in some cases, while it may
have higher MSE in other cases.

Using lagre-sample approximations, further, we investigate the bias and MSE
properties of R%PE. We still do not impose restriction on the distribution of distur-
bances, but assume that the disturbances are i.i.d and have first fourth moments as
0, o2, 0371, and 04(72 + 3), where 1 and 7, are Pearson’s measures of skewness and
kurtosis, respectively. The large sample asymptotic results are listed in the following

theorem, and the derivation is briefly sketched.

Theorem 25 The large sample asymptotic approximations for the bias of RQFPE up to

order O(n™1) is given by

B(Rpe) = U p 020 - 1)+ 01 - 0) (7.14)

and the differences among the mean squared errors of three verisons of R-square up to

order O(n=?) are given by

D = MR~ M) = PP g —5) o1 - 20)0] (7.5
Dy = M(R?)— M(R%pp) = 4M1n_29)29[49 — 54 (1 — 26)79]. (7.16)

Proof. Along the lines of Srivastava, Srivastava and Ullah (1995) , the follow-

ing can be obtained
Ripp—6—(1—6 _ 2y 4 o (3
FPE = ( )(g-1/2 +9-1 n ) + Op(n™/7).

where g_1/p = %a_l/g, g_1= 0—12(a_1/2 b_y/p+a-1),and a_, b_,, g are denoted as
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Op(n™"), specifically,

1

a_1/2 = E2(1 — G)U/MXﬁ — 9'1)
1
a1 = —uMX(X'MX)'X'Mu+n"20(u'1)?
n
1—0 ,
by = — e (nv 4 2u' M X[3)

and v = (“,T“ — 0?%). By using the method by Ullah (2004, p. 187) , one can obtain
E (g,l/g), E(g-1), and E (931/2) Hence, the bias of R% 5, up to order O(n™!) is

given by (7.14). By some algebra, we can have

Dy = M(R;)~ M(Ripg)

2p(1 - 0)2 2 3p )
= #E(g—lﬂ t9-1—9%2— %) +O0(n™).

Then (7.15) can hereby be obtained. Similarly, (7.16) can be derived. m

Remark 1 When o = 0, the theorem gives the results for normal case. From the

above theorem, we notice that the skewness doesn’t affect the bias of R% pp, but

0(1—6)2

the kurtosis does. Note that 0B(R%py)/0v2 = , 5o B(R%pp) increases

as 7o increases. Also, B (R%7 pp) is a monotonically decreasing function of p with

OB(R3.pp)/0p = — 120

n

Remark 2 Srivastava et al. (1995) derived the large sample asymptotic approximations

for B(R?) and B(R2) as B(R?) = L9 [p 4+ 0(20 — 1) + 6(1 — 6)y,), B(R2) =

n

M[(20 — 1) + (1 — 0)~2]. Hence, it is easy to compare the difference between

n

the bias of R%y and those of R? and RZ.

B(R*) — B(Ripp) = ——52>0 (7.17)

B(R;) - B(Rtpg) = >0 (7.18)
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Obviously, the approximate bias B(R%py) is always smaller than the other two
for the cases with i.i.d disturbances, which is consistent with the results in the
exact biases which apply all the cases without assuming the distribution of the

disturbances.

Remark 3 From (7.15) and (7.16), one can see that the number of regressors in a
model plays a very important role on the sign of Di. However, it doesn’t matter
with the sign of Dy. When 2 = 0 (normal case), D1 = M(R2) — M(R%p5) < 0,
and Dy = M(R?) — M(R% ;) < 0. For 42 # 0 (non-normal case), it is not
straightforward to see whether M(R% ) is lower than M(R?) and M(RZ). We

need further numerical analysis.

Remark 4 To see the marginal effect of the number of regressors and kurtosis on the

mean square differences in (7.15) and (7.16), we examine the following first partial

derivatives.
oD 2(1 - 6)?
Tpl - —(72)[]9—1—(9(4(9—5) +6(1 — 26)72] (7.19)
0Dy 2p(1 — 0)%0(1 — 20)
p— .2

o — (7.20)
oD 4(1 - 6)%0

8p2 _ A — ) [40 — 5 + (1 — 26)72] (7.21)
0Dy 4p(1—6)*0(1 — 20)

5 = ~ (7.22)

From (7.19) and (7.21), obviously, the sign of these derivatives are uncertain.
Therefore, we cannot have a clear picture of the impact on mean square differences
by adding or removing a regressor. From (7.20) and (7.22), if # > 0.5, both D;
and Do are decreasing function of 5. When 6 < 0.5 D7 and D increases as s

increases.

Table 7.1 on page 164 gives the numerical analysis based on (7.16). The positive
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sign ”"+” denotes the relative efficiency gain of R% pp Over R? in terms of approximate
MSE, and the negative sign ”-” denotes the relative efficiency loss of the former over the
latter. For 42 = —2 and 6 is high (> 0.9), R, performs better than R? in the sense
of having lower MSE. Also, for the cases with v, > 0 and low population fit (6 < 0.5),
R% pp has lower MSE than R? in most cases However, in other cases, the negative sign
implies the efficiency loss R%,p over R?.

The results of numerical analysis on comparing the MSE of R% pp With that of
R2

2 is similar to the above. The difference from before is that the number of regressors

(p) plays a role. The details of the results are omitted here. Generally, for large positive
kurtosis (y2 > 0) and low population fit (# < 0.5), or negative kurtosis (y2 < 0) and
high population fit (6 > 0.9), RQF pp performs better than R? in the sense of having
lower MSE. For the cases which have zero kurtosis or 0 < 79 < 10 and 0.5 < 8 < 0.9,
R2 tends to be more effcient.

Based on the above analytical results and their calculations we find out that
the FPE based goodness-of-fit measures have better efficiency compared to R? and R2
in terms of having lower MSE. The results suggest that for the models with low values
of fits as well as high values the FPE based goodness-of-fit measure is better to use in
practice. Since the fit values in many cross section based empirical studies are found
to be low (below 0.4) ,and in many time series based empirical studies these values are
high (greater than 0.9), we find that FPE based goodness-of-fit measure is useful in both

contexts.
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7.3 Concluding Remarks

To sum up, the exact bias of R% pp is always less than the exact biases of
R? and R? for all the distributions, and the asymptotic approximations of biases have
identical results with those of exact biases. The exact MSE of R% . can behave better
only when the conditions in (7.11) and (7.13) are satisfied. However, these conditions
are not meaningful since they do depend on the exact moments of R? and R2. In view of
this we develope the approximate MSE expressions for the MSE of RQF pp- The efficiency
results developed show that the FPE based R-square is useful to consider in the case of
cross sectional models with low values of goodness of fit measures as well as for the time
series models which tend to have high goodness of fit values. These results, along with
the finding of Rousson and Gosoniu (2007) that the FPE based R-square perform well

in the model selection, strengthen the usefulness of using this goodness of fit in practice.
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Table 7.1: Relative Efficiency Gain/Loss of R%p over R?

Y [#=01]02]03|04]05]|06]|07|08]09]1.0

2 - - - -T-T+1+
0 N _ _ _ _ _ N _ _ _
1 _ _ _ _ _ _ _ _ _ _
| + T+ [+ -1-1-1-1T-1-71-
20 + |+ [+ 1+ -1T-1T-1T-1-1-
30 + [+ [+ 1 +[-1T-1T-1T-1T-1-
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Chapter 8

Conclusions

This dissertation develops a new set of theoretical results under nonparamet-
ric/semiparametric models and continuous time models. Chapters 2-4 discuss our new
estimation method and its empirical application within nonparametric and semipara-
metric framework. Both simulation results and empirical findings show the usefulness of
the newly proposed method in practice. Chapter 5-7 are developed within finite sample
framework. Chapters 5-6 examine the finite sample properties of the mean reversion
parameter estimator (k) in continuous time models. Bias approximations of ¥ and its
bias corrected estimators are given in chapter 5. The exact distribution of % is evaluated
accurately in chapter 6. In chapter 7, we study the efficiency properties of the coefficient
of determination (R%,z) based on final prediction error.

More specifically, In the second chapter, we propose a two-step estimator of
nonparametric regression function with general parametric error covariance for mul-
tivariate case and single nonparametric regression. The asymptotic theorem for both
mean and slope estimators are established. A small set of Monte Carlo studies shows the

relative efficiency gain of the newly proposed estimator in comparison with LLLS and

165



some other two-step estimator in nonparametric regression with either AR(2) errors or
heteroskedastic errors. The theoretical results can be widely applied to a general single
nonparametric regression analysis.

Chapter 3 systematically develops a new set of results for seemingly unrelated
regression (SUR) analysis within nonparametric and semiparametric framework. The
properties of LLLS and local linear weighted least squares (LLWLS) estimators in non-
parametric SUR are studied as well. To obtain a more efficient estimation, we develop
a two-step estimator for the system and establish its asymptotic theorems under both
unconditional and conditional error variance-covariance cases. The procedures of esti-
mation for various nonparametric and semiparametric SUR models are proposed, such
as, the NP SUR model with error components, partially linear semiparametric model,
model with nonparametric autocorrelated errors, additive nonparametric model, varying
coefficient model, and the model with endogeneity. These specification have widely prac-
tical use in empirical analysis. In addition, two nonparametric goodness-of-fit measures
for the system are given. A small set of Monte Carlo simulations shows the relative
efficiency gain of the newly developed two-step estimator over LLLS, LLWLS, and a
class of two-step estimator.

Chapter 4 presents the practical use of the new methods developed in chapter 2
and 3. We apply nonparametric model and two-step estimation to a real data on return
to public capital in U.S. There are some interesting findings in the empirical analysis:
First, the average returns of public capital on states’ private economic growth are statis-
tically significant and positive. Second, in general, the returns to the public capital are
positive. However, a few states, for instances, Wyoming, South Dakota, North Dakota,
New Mexico, Montana, have negative returns to the public capital, which are consistent

with some recent studies under nonparametric framework. Third, the mean returns to
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the public capital across all the 48 states changes over the period of 1970-1986. The
returns to public capital increased sharply during recessions, started decreasing when
the economy stepped into recovering, and fluctuated in small magnitudes during normal
time. Note that the last two interesting findings can be only obtained by nonparametric
analysis in this real data setting.

The theoretical results in chapters 5-7 are developed within the finite sample
framework. Chapter 5 considers the bias of the mean reversion estimator (k) in the
continuous time Lévy processes. The bias of % is approximated and the bias expressions
are obtained for the Lévy-based Ornstein-Uhlenbeck (OU) process. The approximate
bias of Kk under normality is also derived as a special case. The bias expressions indicate
that both the skewness and the kurtosis of the Lévy measure affect the bias when the
time span is not very large and the sampling frequency is not very high. The initial
condition, the long term mean (1), and the volatility parameter (o) also enter the bias
expressions. A bias corrected estimator of k is proposed. Monte Carlo studies show the
good performance of our newly proposed bias corrected estimators.

It is found that the true distribution of the MLE of x can be severely skewed
in finite samples and that the asymptotic results in general may provide misleading
results. In chapter 6, we evaluate the exact distribution of the MLE under different
scenarios: known or unknown drift term, fixed or random start-up value, and zero or
positive k. The numerical calculations demonstrate the remarkably reliable performance
of our newly proposed exact approach.

Chapter 7 studies the efficiency properties of the coefficient of determination
(RQF pp) based on final prediction error and compares it with conventional goodness-
of-fit measures (R2, R2) in linear regression models with both normal and non-normal

disturbances. The theoretical results and a small set of numerical analysis show R% PE
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is a useful tool as a model selection and goodness-of-fit measure in both cross-sectional

analysis and time series analysis.
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Appendix A

Mathematical Derivations

I. Derivations in Chapter 2

Proof of Theorem 3
Following MY, we can readily show that SSUWJLQ (x) is asymptotically equiva-

lent to the following infeasible estimator
n _1 * *
Osuw,h, () = (R;’KMLQR;) RYK, 5,7 (A1)

where Z*=P~1Y + (H*1 — Pil) m =H 'm + ¢*. By the second order Taylor expansion
around zx for elements in m, we have
< * * -1 * — *
6SUW,h2 (.73) =0 (x) + (R:E/Kz,hQRw) Rz/Kme {H lBﬂ? +e } +0p (h%)
where B, is a n X 1 column vector whose ¢th element is given by
1

bpi = 3 (X; —2) m®? () (X; — ),
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and m® (z) is the ¢ x ¢ Hessian matrix of m (z) . It follows that

nhg Dy, (gSUW,hz () —¢ (@)
— \/nhiDy, (RYK, p,RE) " RYK, , H 'B,
+y/nhiDp, (RYK, mRE) ™ RYKy e + 0, (1)

= Bsuyw + Vsuw +0p (1), say,

(A.2)

where the definitions of the bias term Bgyw and the variance term Vgyw are self-

evident. Note that E(e*e”) = I, xp.-

To calculate the asymptotic bias, let S, = n_lD,;lR;jf K ho R;D};l. It is easy

to show that

n V2 U2(X5_$y
h
S, = nt " o K, (Xi — )
= Xi_ Xz_ Xz_ '
= | vpr gt
o | @F (x,600) 0
%
0 w;‘[ (l‘, 90) Kglfq

Similarly,

1 -
D}, R K, H' B,

n 2 .
21:1 0;; Kz hy bz

—_

n 2 X;—x
> ic1 Vit Kahabasi

w;(xveo)ﬁ21h§ q 82mgx)
2 =1 9z2
= 7| + o, (h3).

qul

It follows that Bsyw = v/nh3S, ' LD, 'Ry Ky p, H 'B, =
qul
+0op (h%) :
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Next, by (A.2)-(A.3) we have

1 * *
Vsuw = \/ nhgsnlﬁDhgle/KIwa
-1

w} (2, 6p) 0
= (140, (1))
0 w} (.CI?, 90) K]Ql[q
n 62‘
X nilth];; Z UiiKhQ (Xz — l‘) s
i=1 (X; —x) €

where € is the ith element of €*. Applying the Liapounov central limit theorem yields

Veuw AN (0, Q2suw) - This completes the proof of the theorem.

II. Derivations in Chapter 3

Proof of Theorem 4

For the LLLS estimator, we can write

D{S(m)—é(m)} = D(Z'(2)K(2)Z(z))"Z'(z) K (z)B,

+D(Z' (2)K (2)Z()) "' Z' (x) K (z)u + 0y (1) ,

where B, = (B BxM> isa NM x1 column vector, B, is a M x1 column vector

1

whose jth element is given by by, . = % (Xi5 — xi)/m@) (x;) (X435 — x;) , and m(2) (x;) is

the ¢; x ¢; Hessian matrix of m (x;) . The ith LLLS can be written as

D (i (z:) = 0 ()| = Dy Zi(w:) K(2:) Z(w)) " Z' () K (2:) B,

+D4(Zi(2:) K (24) Z(2:)) 7" Z' () K (i) u; + 0p (1)

The bias of the ith LLLS is Birrrs = S; '+ Dy, Z'(2i) K (2:)Bg,. It can be
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shown that

N 1 (Xijh—ﬂﬂi)'
S = N ' Kp, (Xij — ;)
=1\ Xz (Xig—2)(Xij—ai)’
hq h?
fl (ﬁi) 90) 0
- (A.4)

0 fi (%3, 00) Ko11,,

Then we can prove that

Sy K, (Xij — 22) bay

1 1
—D ' Z/(2)K(2:)By, = —
N i i N N le_xl
Z] 17 h; Kp, (Xij — ;) bﬂ?i,j
fi (0 h? & 92my (2
fiz g)nm 5 ag;?(:c) 2
= s=b0 +op (h7).
OQiX]-
nzth Ble(:vl)
2 o2
It follows that By rrrs = S; ' %D; ' 2 (2i) K (24) By, = s=1 T 4o, (h2).
OinI
Next, we have
: 1
Vi = Nhngi_IND;ilZ’(xi)K(xi)ui
1+0,(1) \/7 u;
Nth Kh .
f’ (332,90 Z ) Xij—xi
Sty

Then it is easy to obtain E(V;) = 0, E(V;V/) = Q; rr1s, and E(V;V})) = o, (1) which
is smaller order than E(V;V/). Applying the Liapounov central limit theorem yields

V4N (0,9rrrs) - This completes the proof of the theorem 2.1.

Proof of Theorem 5
Similarly, we can have
D [by-siep (1) = (2)] = D(R"(2)K(2)R* ()" R"(2)K (2)H'B,
D(R" (@)K (2)R* (1)) 'R (2)K (2)v + 0, (1)..
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Note that E(vv') = Inpxnar- To calculate the asymptotic bias, let
Sr= N_lD,:ilRf’(:ri)K(xi)Rf(aci)D;il.

It is easy to show that

N AN vl I)N—‘,-'(Xijh_xi)/
* — 1= 1= i
Si = N IZ ! ! Khi (ij—xl)
j 2 Xij—@i 2 (Xij—2i) (Xij—z;)'
(i—=1)N+j  h; (i=1)N+j h?
w},; (@, 60) 0
0 w}iﬂ- (SE, 00) Iiglfz.
Similarly,
ZN U2- 'Kh (X—.T)b 3
L DR @)K (@) H By, = FmL TN
n; T4 \Li i)ty Da; =
N Z N2 Xig=Ti g (X Vb
ijl“(z‘—l)mj i Ko (Xij = i) bays
x90 ro1h? i azml mz)
= +0p (h?) .
0qi><1
It follows that
PR R, _
Big—step = 5} 1NDhi1R '(2) K (x)H; 'By,
h2 qi oo
H2; i Z 85;12(@‘1) ;
e s=1 2,8 + Op (hz)
OQiX:L
Next, we have
*—11 —1 px*/
‘/i,2—step = Sz NDh’ Rz (xl)K(xZ)Vl
N .
1+o ( , Vi
o ey VT D iy o (X = w0) ,
fZ 0 j=1 Xij_xiV‘
hi Vi

where v; is the ith element of v. Applying the Liapounov central limit theorem yields

Vo_step AN (0,9Q2_step) - This completes the proof of the theorem.
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II1. Derivations in Chapter 5

Proof. The following outlines the proof of Theorem 21 and Theorem 23 in

Chapter 5. We have
- lnqg

R= ———

h

Then, by higher order taylor expansion

. . 2 . 3 ~ 4
~ o—9¢ 1 [9o—9 L (o—¢ 1 (¢—9 —2, -1
=kt — | —] — = —= — [ — h™).
kK=K ho + 5% 5 e 5 + m 5 + op(n )
Take expectation on both side, we can have

~ ~ 2 ~ 3 ~ 4
E(E_K)Z_E@—qﬁ) LE(o-0) £(6-0) E(3-9)

ho 2h? 3hes et T o(n™*h71).

~ 3 ~ 4
To obtain the bias approximation of k, we need derive F <q§ — qb) , and F ((b — qﬁ) .
. . 2
The approximate bias E (gb — ¢> and MSE F (gb — gb) are given in Bao (2007). The

following proof follows Bao (2007), and here we use the similar notation for simplicity.

First, we write the pure model as
Yt = Pyt—1 + &
and the intercept model as
Y= + ¢y, ter.

We write the OLS estimator in matrix form

y' 1 Ae

2 _ L _yade
b=¢ y/_1Ayt—1

N
=0+ 5
where y_1 = (Y0, Y1, --,Yn-1)", € = (€1,€2,...,&,)". For pure model
Y—1 =yp +ce =yoF + ce, and A =1, where yp = yoF.

For Intercept model

y_1=yp+ce=yoF +act+ce, and A= M =1 —n"1u, where yp = yoF + ac.
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For both models,

0 o ... ... 0 0
1 1 0
10) 10} 1 0
F = CcC =
¢? ¢ 1
(bnfl 0
¢n72 ¢n73 . (b 1 0
N = rphe+€ Ace,
D = 7vprp+2r'phce +€'d Ace,
rp = Ayp.

By Nagar (1959) expansion, we can have

. N N
0=0 = 5= D — E(D) + E(D)
N _ —1
= 50 {1+[D-EMD)]E (D)}
_ N N[D — E(D)] N N|[D — E(D))? B N[D - E(D)? + op(n-?)
E(D) EAD) (D) Bi(D) T

Therefore, we can obtain the first to fourth moments of ¢ as the followings

E(ND)  E(ND? E(ND?)

) _E(N) _
Blo=9) = 1) ~Eor HEor - Eor )

N E(N? E(N2D E(N2D?

P61 = Sigoym o+ ey o)
. E(N? E(N3D

6= = tgipm ~Spoy o)
. _ E(NY) _

Elp-9) = [E(D) +o(n?)
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We need derive E(N3), E(N3D), E(N*), where

N3 = (rhe)® 4 3(r'pe)?(e' Ace) + 3(r'pe) (' Ace)? + (€' Ace)?

N3D = (rpe)3rprp + 2(rpe)® (rpee) + (rpe)3(e'd Ace) + 3(rpe)?(e/ Ace)rlprp
+6(r'pe)?(e Ace) (rpce) + 3(rpe)? (e’ Ace) (€' Ace) + 3(rpe) (e’ Ace)*r'prp
+6(r'pe) (' Ace)? (' ce) + 3(rpe) (e’ Ace)? (¢ Ace)

+ (" Ace)®r'prp + 2(e’ Ace)® (rhpce) + (£ Ace)3(€'d Ace)
N* = (he)t +4(r'pe)? (' Ace) + 6(rpe) (' Ace)? + 4(rhe) (€' Ace)? + (' Ace)?
Notice that we only need keep the terms of at least O(n) in E(N?3), O(n?) in E(N3D)

and E(N%). Using Ullah (2004), Bao and Ullah (2010) and by tedious calculations, for pure

model, we have

E(N®) = of (viBs +6pB3) n+ o(n)
E(N3D) = 03(12p83 + B3B273)n* + o(n?)
E(NY = 3088202 + o(n?)

and

E(D) = E(rprp+ 2rpee +¢&'cdce) = rprp + 2rhcE(e) + E(e'd ce)

= ygBa + 05(nfz — 53) +o(n™")

where 3; = (1 — p')~!. And

E(D)]™ = (nBaod)  [l—z+a2?+--],

[E(D)]™2 = (nBa02) “[1 =22+ 32 +---],
[ED)® = (nfod) " [L- 3¢+ 62+ -],
E(D)]™* = (nBao2) '[1 — 4z + 102> + -],
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where z = L[y2/02 — By + o(n7!)]. Since &; ~ (0,1), 0 = 1, nh = T, ¢ = e "
oo = o+/(1 — e~rh) /2K, we have

. \3 E(N®) _E(N®D) »
B =¢)1 = 4pmp -~y o)

= n 2By 3 (7385 — 12pBa)] + o(n2),

R 4
BI(6-0)1 = ot + o)

= 3n 26,2 +o(n7?).

Substitute the above results into E(k — k), we can have Theorem 21. For Intercept model,
we have y_1 = yp +ce = yoF +act+ce, A= M =1 T, and rp = Ayp =

MyoF + Mact = ygM F + aM ct. More specifically,

— b1(1—¢")

¢— 11— 9"
yoMF = yo ;

o1 =131 ")

—E A+ LB — ¢")

(1—¢) = "+ 3 Bile — ™)
aMc = af

(1—¢" ) =2+ 1 Bi(d — 6")
Then we can simplify the expression of rp as
(yo — aB1)¢” + A

(Yo — afr)p+ A
D )

(yo — afr)e" 1 + A
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where

A = afi bl - 6" +afiln— 1) — B0 — o)

= 1 [yO/Bl(l - ¢n) - aﬁl - aﬁ%((ﬁ - ¢n)]

n

= O(n™h).

Using Ullah (2004), Bao and Ullah (2010) and by tedious calculations, for intercept

model, we obtain

E(N3®) = E[(r'he)?] + 3E[(rhe)?(' Ace)] + 3E[(r'pe) (e’ Ace)?] + E[(' Ace)?]

= 0§ (ViBs + 6665 — 3B152) n + o(n),

E(N®D) = rphrpE(N?)
F2E[(rhe)3(rhce)] + B(rhe)3(e'd Ace)] + 6E[(rne)2(e! Ace) (rhyce)]
+3E[(re)2(/ Ace) (e'c Ace)] + 6 E[(rpe) (€' Ace)2(r)pce)]
+3E[(rhe) (¢ Ace)?(e'¢ Ace)]
+2E[( Ace)®(rhyce)] + E[(€ Ace)®(e'd Ace)]

= 0§(—3B1535 + 129535 + B3B2yi)n* + o(n?),

E(NY) = E[(rpe)'] + 4E[(rpe)’(e'Ace)]
+6E[(r'he)? (e Ace)?] + AE[(rhe) (€' Ace)?] 4+ E[(e' Ace)?]
= 120565n° + o(n?),

and

E(D) = rprp+2rphcE(e) + E(e'd Ace)
= nogf+ Ba [yg + & BF — 20810 — 05(¢* + 20 + 2)B2] + o(1).
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Further, we obtain

R E(N3)

Bl—o) = 4 3EV°D)

EoF  CEop )
= 07287383} — 3182 — 12063)] + o(n~?),
. E(N%)

BO =)' = gy o)

= 1207282 + o(n7?).

Theorem 23 can be obtained by substituting the above results into E(k — k). m

IV. Derivations in Chapter 6

Derivation Part (i)

This appendix verifies that various conditions for (6.26)—(6.28), (6.31), (6.32)—
(6.35) to be valid. For notational convenience, let a = 2i(u + v — ug), b = —[1 + ¢? +
2i(ug — v)]/ (¢ +1iu) # 0, by = (b+ V02 —4)/2, by = (b= V02— 4)/2, c = — (¢ +u),
and d = i(u + 2v — 2ug).

For (6.28), a necessary condition is n 4 at!, ;D' ¢, 1 # 0. Note that ¢ > 0,
so ¢ # 0, and define D}, = D,,/c. Then n +at!, (D' 0,1 =n+ (a/c)d), D5 e, .

It can be easily shown that the symmetric D! has elements
4 = (<) (DL | Dy /103, i<, (A5)

where |Df| = (k+1) (b/2)F when b = +2, 0¥+ — pE+1) /(b — by) when b # +2. So

when b = 2 (corresponding to ¢ = —1 and v = 0) or —2 (corresponding to ¢ = 1 and
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when b # 12,

/ *—1
Ln—an—ll’n*1

(b1 — ba) (BT — b%)
n—2 n—1 n—1

27 > (=) (B =)+ (v — ) (05 -t )
i=1 j=i+1 i=1
(B3 = 05*1) (n = 1) + (babg — jby) (n + 1)
(by — ba)” (b — b3)
2
by —b2) (0F — by) (b1 — 1)(bg — 1)

L
(b —b —
{(1 ﬂ( 1— b 1— by
biby — bIbG
by — by

B

+(1 —b9) [ —b’f(n—2)]

n__ 3n—172
—(1—101) ﬁ@—ll—@+wyn—m . (A7)
by — by

For any positive integer n, we can verify that
n+ad, D e, 1 =n+ (a/c),_ D, 1 #0

under the above two cases. The determinant formula (6.25) shows that D, is always

nonsingular, so (6.27) is valid. |D,,| # 0 and n+ae!, ;D! t,-1 # 0 ensure that A,,_;
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is nonsingular, and both (6.26) and (6.28) are valid. Further note that

u *— *—1
a, 1A 1@n—-1 = _n2 2% 1D ll’n 1+Cen 1,n— 1Dn_len_1’n_1
i, 1
+2Een71n 1Dt

T 9 / *—1
nes +act, D",

¢ _ [62( €n— 1,n— ID ll’n 1)2

u? 2

_ﬁ([,/ 1D* 1Ln 1)

+2—cen Ln— D) 11,n 1w, 1D 1Ln 1], (A.8)

where ¢/, ;D" %1, 1 is given by (A.6) and (A.7), e/, Ln—1

D*_len 1,n—1 is the lower-

right element of D~} and e/, 11D “l,_1 is the sum of the last column of D 7.

n—1’

In particular, given (A.5),

N 2(n—1)
€, 1n—1 1en Ln—1= Th« = ) )
‘ n—l‘ bl —by "
BT —bh

and

’ x—1 . *(i,n—1)
en—l,n 1Dn 1ln-1 = § :d

b= 42
, (A.9)
b+ 42
b= -2
b=2 {(A.10)

n—1 *
— Z(_1)1+i ‘Dn—i—l‘
=1 ‘D:l—1|
1-n
2
= 2”*‘1’(*1)”‘*1
4n
[ +(—1)"b1 | (14b2)— [b5 +(—1)"ba | (14b1)
(14b1)(1+b2) (b7 —by)

By substitution, we can verify that 1 — a,_,

b# 2

A;ilan_l # 0 for any positive integer

n. This condition, together with a nonsingular A, _1, ensures that the inverse formula

(6.31) is valid.

With A, _; being nonsingular, (6.33) is valid. Plugging the expression for
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A1, from (6.28) leads to

2
1 a(bl, 1D Tty 1)
! -1 _ / x—1 n—1 —1%n—
bn—lAn—lbn*1 - E n—an—lbn*1 - 2 D 1 ’ (All)
ne +aCLn 1D, 1tn—1
where
2 2cd
/ *—1 _d J 2 1 x—1 ca *—
n—an—lb"*1 - 2 bn— lD'n, 1” +C el,n—an—lel,”*l—i_ n el,n lD 1[’” 1
b/ D* _ d / D* D*
-1 11’71 1 = ;l’n—l n—1tn— 1+Celn 1 1Ln 1)

in which ¢/, ;D* 14, ; is given by (A.6) and (A.7), e, 1D;” “le1n_1 is the top-left
element of D*~% and €} 1D “1tn_1 is the sum of the first row of D*~}. From (A.5),

we see that

/ *—1 _ / *—1
€, 1D, 1€e1n-1 = ey, 1D jen1n-1,

eln 1Dy 1Ln 1 = €p 1n— 1Dy 1Ln 1

given by (A.9) and (A.10), respectively. Upon substitution, we can verify that 142i(u¢—
v)+2i(v—up)/n—bl,_; A1 b, 1 # 0 for any positive integer n. This condition, together
with a nonsingular D,,_1, ensures that both (6.32) and (6.34) are valid.

Finally, given the definitions of a} and A}, we write

(a/n—1A;Li1bnfl - %)2

a/A el =al, ATl a, g+ i ) £ By AT (A.12)
where a/, A" a, 1 is given by (A.8), b/, ;A ' b, 1 is given by (A.11), and
a;z—lAfLLbnfl = (u i 72,;0_ 2u0) 1Dy~ 1Ln 1+ cep n— 2 161 n—1
+% RN 2 P
" ne? + ace), a1D:;:11Ln_1 [cz(en i Dicitn-1)”
w2 = 20) (D )?

ac Vi x—1 / *x—1
+ ?enfl,nfl‘Dn*an—ll’nlenfll’n—l :
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Note that ¢/, ;D* "¢, 1 is given by (A.6) and (A.7), e/ D e, 1,1 is given

n—1n—

by (A.9), e;hl’nlez:lan_l is given by (A.10). By substitution, we can verify that

1—a¥ A;‘fla; = 0 for any positive integer n. This condition, together with a nonsingular

A’ ensures that the inverse formula (6.35) is valid.

Derivation Part (ii)

This appendix gives various derivatives that are needed to evaluate the PDF

function. From (6.24),

_ 0 |Dy1| .20 |Dyps
where 0|D),,| /Ov might be derived analytically from
1Dyl =[] [1+ ¢* + 2i(u¢ — v) — 2(¢ + iu) cos (wi/(n + 1))] .
i=1
A computational less demanding way is to use
0 |Dy,| _,0D,,
= |Dy|tr | D A4
ol = D (D00 (A14)
= —2i|D,|tr (D;"),
where |D,,| is given by (6.25), and from (6.30)
tr (D;l) _ Zi:l Ui—1 (b) Up—i (b) (A.15)

(6 +1u)Un (b)
where b = —[1 + ¢? + 2i(u¢ — v)]/[2 (¢ + iu)] # 0, as defined in Appendix A section IV
part (i).

Similarly,

95|
ov

oS
_ ~199n
= |Sp|tr (Sn 5 ) , (A.16)

where |S,,| is given by (6.26), and we can verify that
0S8, _2i(In—1 - %Ln—ﬂ';@fl) 0n—1

o . ’

(A.17)
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which can be used directly, together with (6.31) and (6.26), in evaluating 0 |S,| /0v =
IS, tr (S,10S,/0v) and 08! /ov = —8,,1 (88, /0v)S,, .

Next, from the definition of T4, we write

—2i+ 2 A 0
aCrn-&-l .
v = %Ln—l —2i(In_1 — %Ln_ll,;b_l) 0,1 5 (A'18)
0 O;L—l 0

which can be used directly, together with (6.35) and (6.32), in evaluating 0 [T, 41| /0v =

[ Trsa|tr (T 11 0T n41/0v) and 0T, 11 /00 = ~T 11 (0T ni1/O0) T .

Derivation Part (iii)

Given the characteristic functions (6.11), (6.13), (6.18), (6.22), we need to im-
plement numerical integration to calculate (6.5) via (6.7). This can be straightforwardly
implemented using Matlab’s quadgk command. One caveat to note is that the square
root function in the complex domain is not continuous. One choice is to follow Perron
(1989) to identify explicitly the discontinuous points by grid search and then integrate
by parts. The search, however, might be inefficient and time-consuming. Instead, we
use the following algorithm so that the integrand function for quadgk is always continu-
ous. Let g (t) = y/a(t) +ib(t) denote the integrand function in question with ¢ € [I,u] .
quadgk requires the integrand function to accept a vector (t1,ts2,--- ,t,) and returns a
vector of output. Let §; = arg (a(t;) + ib(¢;)) € [—m, 7] and denote a; = a (t;), b; = b (t;),

and g; = g (t;) .
1. Start with ¢; and set g; = sqrt (a; +1b1) . Set k = 0.
2. Beginning with to, if a; < 0, a;—1 < 0, and b;b;_1 <=0, set k = k+ 1; otherwise, k

is unchanged. Set g; = y/a? + b? (cos (6} /2) +isin (07 /2)), where 0F = 6; + 2k.

184



Bibliography

1]

Y. Ait-Sahalia. Maximum likelihood estimation of discretely sampled diffusion: A
closed-form approximation approach. Econometrica, 70:223-262, 2002.

M.M. Ali. Distribution of the least squares estimator in a first-order autoregressive
model. Econometric Reviews, 21:89-119, 2002.

Y. At-Sahalia and J. Jacod. Fisher’s information for discretely sampled lévy pro-
cesses. Econometrica, 76:727-761, 2008.

R. B. Avery. Error components and seemingly unrelated regressions. Econometrica,
45, 1:199-208, 1977.

B. H. Baltagi and N. Pinnoi. Public capital stock and state productivity growth:
Further evidence from an error components model. Empirical Economics, 20:351—
359, 1995.

F.M. Bandi and P.C.B. Phillips. Fully nonparametric estimation of scalar diffusion
models. Econometrica, 71:241-283, 2003.

F.M. Bandi and P.C.B. Phillips. A simple approach to the parametric estimation of
potentially nonstationary diffusions. Journal of Econometrics, 137:354-395, 2007.

Y. Bao. The approximate moments of the least squares estimator for the station-
ary autoregressive model under a general error distribution. Econometric Theory,
23:1013-1021, 2007.

Y. Bao and A. Ullah. The second-order and mean squared error of estimators in
time-series models. Journal of Econometrics, 140:650-669, 2007.

Y. Bao and A. Ullah. Expectation of quadratic forms in normal and nonnormal vari-
able with econometric applications. Journal of Statistical Planning and Inference,
140:1193-1205, 2010.

O.E. Barndorff-Nielsen. Processes of normal inverse gaussian type. Finance and
Stochastics, 2:41-68, 1998.

D. S. Berstein. Matriz Mathematics: Theory, Facts, and Formulas. Princeton
University Press, New Jersey, 2009.

F. Black and M. Scholes. The pricing of options and corporate liabilities. Journal
of Political Economics, 81:637-654, 1973.

185



[14]

[15]

[16]

[17]

[18]

[19]

[29]

[30]

31]

B.W. Brown and J.T.Hewitt. Asymptotic likelihood theory for diffusion processes.
Journal of Applied Probability, 12:228-238, 1975.

P. Carr and L. Wu. The finite moment log stable process and option pricing. Journal
of Finance, 58:753-778, 2003.

J. Cox, J. Ingersoll, and S. Ross. A theory of the term structure of interest rates.
Econometrica, 53:385-407, 1985.

J.S. Cramer. Mean and variance of r? in small and moderate samples. Journal of
FEconometrics, 35:253-266, 1987.

C.M. da Fonseca and J. Petronilho. Explicit inverses of some tridiagonal matrices.
Linear Algebra and its Applications, 325:7-21, 2001.

M. Das. Theory and Empirical Evidence on the Ecology Versus FEcocnomy Debate:
A Nonparametric Estimation of the SURE Model and an Application to a General
Equilibrium Model of Trade and Environment. Phd thesis, University of California,
Riverside, 2005.

R.B. Davies. Numerical inversion of a characteristic function. Biomeirika, 60:416,
1973.

R.B. Davies. Algorithm as 155: The distribution of a linear combination of x?
random variables. The American Statistician, 29:323-333, 1980.

P. Evans and G. Karras. Are government activities productive? evidence from a
panel of u.s. states. Review of Economics and Statistics, 76, 1:1-11, 1994.

J. Gil-Pelaez. Note on the inversion theorem. Biometrika, 38:481-482, 1951.
W. H. Greene. Econometric Analysis. Prentice Hall, New Jersey, 2007.

J. Gurland. Inversion formula for the distribution of ratios. Annals of Mathematical
Statistics, 19:228-237, 1948.

F. Hayashi. FEconometrics. Princeton University Press, Princeton, New Jersey,
2000.

D. Henderson and A. Ullah. Nonparametric random effect estimator. FEconomics
Letters, 88:403-407, 2005.

D. Henderson and A. Ullah. Nonparametric estimation in a one-way error com-
ponent model: A monte carlo analysis. Working paper, Economics Department,
University of California, Riverside, 2008.

D. Holtz-Eakin. Public-sector capital and the productivity puzzle. Review of Eco-
nomics and Statistics, 76:12—21, 1994.

Y. Hong and H. Li. Nonparametric specification testing for continuous time model
with application to spot interest rates. Review of Financial Studies, 18:37-84, 2005.

G.Y. Hu and R.F. O’Connell. Analytical inversion of symmetric tridiagonal matri-
ces. ournal of Physics A: Mathematical and General, 29:1511-1513, 1996.

186



32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

L. Hurwicz. Least squares bias in time series. In T.C. Koopmans, editor, Statistical
Inference in Dynamic Models, pages 365-383. Wiley, New York, 1950.

J.P. Imhof. Computing the distribution of quadratic forms in normal variables.
Biometrika, 48:419-426, 1961.

N. Kakwani. The unbiasedness of zellner’s seemingly unrelated regression equations
estimators. Journal of the American Statistical Association, 62:141-142, 1967.

M.G. Kendall. Note on bias in the estimation of autocorrelation. Biometrika,
41:403-404, 1954.

G. Koop, D. Poier, and J. Tobias. Semiparametric bayesian inference in multiple
equation models. Journal of Applied Econometrics, 20,6:723-747, 2005.

Q. Li and J. S. Racine. Nonparametric Econometrics: Theory and Practice. Prince-
ton University Press, Princeton, New Jersey, 2007.

X. Lin and R. J. Carroll. Nonparametric function estimation for clustered data when
the predictor is measured without/with error. Journal of the American Statistical
Association, 95:520-534, 2000.

O. B. Linton and E. Mammen. Nonparametric transformation to white noise.
Journal of Econometrics, 142:241-264, 2008.

Z.-H. Lu. The numerical evaluation of the probability density function of a quadratic
form in normal variables. Computational Statistics and Data Analysis, 51:1986—
1996, 2006.

Z.-H. Lu and M.L. King. Improving the numerical technique for computing the
accumulated distribution of a quadratic form in normal variables. Fconometric
Reviews, 21:149-165, 2002.

D. Madan, P. Carr P, and E. Chang. The variance gamma processes and option
pricing. Furopean Finance Review, 2:79-105, 1999.

D. Madan and E. Seneta. The variance gamma (v.g.) model for share market
returns. Journal of Business, 63:511-524, 1990.

C. Martins-Filho and F. Yao. Nonparametric regression estimation with general
parametric error covariance. Journal of Multivariate Analysis, 100:309-333, 20009.

R.C. Merton. Optimum consumption and portfolio rules in a continuous time model.
Journal of Economic Theory, 3:373—-413, 1971.

T. Muir. FEzercise on determinants, in Mathematical Questions and Solutions.
Hodggon, London, 1884.

A. H. Munnell. How does public infrastructure affect regional economic perfor-
mance? New England Economic Review, pages 11-32, 1990.

A.L. Nagar. The bias and moment matrix of the general k-class estimators of the
parameters in simultaneous equations. Econometrica, 27:575-595, 1959.

187



[49]

[50]

[51]

[52]

[53]

[54]

[56]

[57]

[58]

[63]

[64]

A. Pagan and A. Ullah. Nonparametric Econometrics. Cambridge University Press,
New York, 1999.

P. Perron. The calculation of the limiting distribution of the least-squares estimator
in a near-integrated model. Econometric Theory, 5:241-255, 1989.

P.C.B. Phillips and J. Yu. Jackknifing bond option prices. Review of Financial
Studies, 18:707-742, 2005.

P.C.B. Phillips and J. Yu. Simulation-based estimation of contingent-claims prices.
Review of Financial Studies, 22:3669-3705, 2009a.

P.C.B. Phillips and J. Yu. A two-stage realized volatility approach to estimation
of diffusion processes with discrete data. Journal of Econometrics, 150:139-150,
2009b.

P.C.B. Phillips and J. Yu. Maximum likelihood and gaussian estimation of con-
tinuous time models in finance. In T. Mikosch, J. Krei3, R. A. Davis, and T. G.
Andersen, editors, Handbook of Financial Time Series, pages 497-530. Springer-
Verlag, New York, 2009c.

P. Protter. Stochastic Integration and Differential Equations: A New Approach.
Springer, Heidelberg, 1990.

L.A. Roberts. On the existence of moments of ratios of quadratic forms. Econo-
metric Theory, 11:750-774, 1995.

P. M. Robinson. Root-n-consistent semiparametric regression. Fconometrica, 56,
4:931-954, 1988.

V. Rousson and N.F. Gogoniu. An r-square coefficient based on final prediction
error. Statistical Methodology, 4:331-340, 2007.

A. F. Ruckstuhl, A. H. Welsh, and R. J. Carroll. Nonparametric function estimation
of the relationship between two repeatedly measured variables. Statistica Sinica,
10:51-71, 2000.

K. Singleton. Estimation of affine pricing models using the empirical characteristic
function. Journal of Econometrics, 102:111-141, 2001.

M. Smith and R. Kohn. Nonparametric seemingly unrelated regression. Journal of
FEconometrics, 98:257-281, 2000.

A K. Srivastava, V.K. Srivastava, and A. Ullah. The coefficient of determination and
its adjusted version in linear regression models. Econometric Reviews, 14(2):229—
240, 1995.

L. Su, I. Murtazashvili, and A. Ullah. Local linear gmm estimation of functional
coefficient iv models with application to the estimation of rate of return to schooling.
Working paper, Unversity of California, Riverside, 2011.

L. Su and A. Ullah. More efficient estimation in nonparametric regression with
nonparametric autocorrelated errors. Econometric Theory, 22:98-126, 2006.

188



[65]

[66]

[67]

[68]

[69]

[70]

[79]

[30]

[81]

L. Su and A. Ullah. More efficient estimation of nonparametric panel data models
with random effects. Economics Letters, 96:375-380, 2007.

L. Su, A. Ullah, and Y. Wang. Nonparametric regression estimation with general
parametric error covariance: A more efficient two-step estimator. Working paper,
Unversity of California, Riverside, 2011.

S.M. Sundaresan. Continuous-time methods in finance: A review and an assess-
ment. Journal of Finance, 55:1569-1622, 2000.

C.Y. Tang and S.X. Chen. Parameter estimation and bias correction for diffusion
processes. Journal of Econometrics, 149:65-81, 2009.

W. Taylor. Small sample properties of a class of two stage aitken estimators.
FEconometrica, 45:497-508, 1977.

A.K. Tsui and M.M. Ali. Approximations to the distribution of the least squares
estimator in a first-order stationary autoregressive model. Communications in
Statistics-Simulation, 21:463-484, 1992.

A K. Tsui and M.M. Ali. Exact distributions, density functions and moments of
the least squares estimator in a first-order autoregressive model. Computational
Statistics and Data Analysis, 17:433-454, 1994.

A. Ullah. Finite Sample Econometrics. Oxford University Press, New York, 2004.

A. Ullah and N. Roy. Nonparametric and semiparametric econometrics of panel
data. In A. Ullah and D. E. A. Giles, editors, Handbook of Applied Economics
Statistics. Marcel Dekker, New York, 1998.

O. Vasicek. An equilibrium characterisation of the term structure. Journal of
Financial Economics, 5:177-188, 1977.

Y. D. Wang, W. S. Guo, and B. Brown. Spline smoothing for bivariate data with
application between hormones. Statistica Sinica, 10, 2:377-397, 2000.

A. H. Welsh and T. W. Yee. Local regression for vector responses. Journal of
Statistical Planning and Inference, 136:3007-3031, 2006.

7. Xiao, O. B. Linton, R. J. Carroll, and E. Mammen. More efficient local polyno-
mial estimation in nonparametric regression with autocorrelated errors. Journal of
American Statistical Association, 98:980-992, 2003.

L. Yang, W. Hérdle, and J. Nielsen. Nonparametric autoregression with multiplica-
tive volatility and additive mean. Journal of Time Series Analysis, 20:579-604,
1999.

F. Yao and A. Ullah. A nonparametric 72 test for the presence of relevant variables.
Working paper, Economics, Department, West Virginia University, 2011.

J. Yu. Bias in the estimation of the mean reversion parameter in continuous time
models. Working paper, Singapore Management University, 2009.

J. Yu. Bias in the estimation of the mean reversion parameter in continuous time
models. Journal of Econometrics, forthcoming, 2011.

189



[82] A. Zellner. An efficient method of estimating seemingly unrelated regressions and
tests for aggregation bias. Journal of the American Statistical Association, 57,
298:348-368, 1962.

[83] Q. Zhou and J. Yu. Asymptotic distributions of the least square estimator for
diffusion processes. Working paper, Singapore Management University, 2010.

190





