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ABSTRACT OF THE DISSERTATION

Essays on Nonparametric and Semiparametric Models and Continuous Time Models

by

Yun Wang

Doctor of Philosophy, Graduate Program in Economics
University of California, Riverside, June 2012

Dr. Aman Ullah , Chairperson

My dissertation consists of six essays which contribute new theoretical results

to two econometrics frontiers: nonparametrics and finite sample econometrics. Chapters

2 to 3 discuss the estimation and inference of the nonparametric and semiparametric

models. In chapter 2 an efficient two-step estimator is developed in single nonparametric

regression model with a general parametric error covariance. By fully utilizing the infor-

mation incorporated in the error covariance into estimation, the newly developed method

is more efficient compared to the conventional local linear estimator (LLLS) and some

other two-step estimator. The corresponding asymptotic theorems are derived. Monte

Carlo study shows the relative efficiency gain of the newly proposed estimator. Chapter

3 systematically develops a new set of results for seemingly unrelated regression (SUR)

analysis within nonparametric and semiparametric framework. We study the properties

of LLLS and local linear weighted least squares (LLWLS) estimators, provide an effi-

cient two-step estimation for the system and establish the asymptotic theorems under

both unconditional and conditional error variance-covariance cases. The procedures of

estimation for various nonparametric and semiparametric SUR models are proposed. In

addition, two nonparametric goodness-of-fit measures for the system are given. Chapter

vii



4 applies the estimation method developed in chapter 2 and 3 to an empirical analysis

on return to public capital in U.S.

Chapters 5 to 6 study the finite sample properties of the mean reversion pa-

rameter estimator in continuous time models. In chapter 5 we approximate the bias

of κ̂ for the Lévy-based Ornstein-Uhlenbeck (OU) process, and propose bias corrected

estimators of κ. In chapter 6 the exact distribution of the MLE is investigated un-

der different scenarios: known or unknown drift term, fixed or random start-up value,

and zero or positive κ. The numerical calculations demonstrate the remarkably reliable

performance of the proposed exact approach.

In chapter 7 we study the efficiency of the coefficient of determination based on

final prediction error (R2
FPE) and compare it with conventional goodness-of-fit measures

(R2, R2
a) in linear regression models with both normal and non-normal disturbances. The

efficiency results show that R2
FPE has practical use in empirical analysis, for examples,

panel data analysis and time series analysis.
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Chapter 1

Introduction

In recent decades, nonparametric econometrics is a booming frontier in econo-

metrics analysis. In contrast to traditional parametric econometrics, nonparametric

analysis does not require any functional form for underlying regression model, but it is

driven by real data. This feature brings to nonparametric analysis an important prop-

erty of avoiding the unforgiving consequences of parametric misspecification. In other

words, nonparametric analysis can lean closer to the reality than parametric analysis

does, which encourage me developing new theory within this field. Another field my dis-

sertation focuses on is finite sample econometrics. The use of the asymptotic theory has

been popular and well developed in econometric analysis over the past decades. How-

ever, asymptotic properties hinge upon an infinite large sample, which generally is not

practical in extensive studies, such as economics, psychology, engineering, and sociology

and so on. And notice that using asymptotic theory for small or even moderately large

samples may cause unpleasant misleading results. Another undesired drawback for the

use of asymptotic theory lies in that under some circumstances, various estimators have

identical asymptotic distributions. Hence, it is impossible to provide clear preference of
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one estimator over the other. As a powerful tool to overcome the above shortcomings,

finite sample theory becomes one of most important frontiers in modern econometric

analysis, which motivates my interest in developing finite sample theory in popularly

used econometrics models.

My dissertation mainly covers the following topics: (1) estimation and asymp-

totic theory in single nonparametric models and a system of multiple equations in non-

parametric and semiparametric models; (2) moments approximations and exact distri-

bution of the mean reversion parameter estimator in continuous time models; (3) finite

sample properties on coefficient of dertermination based on final prediction errors. The

contributions of my work would be twofold. First, it would contribute to theoretical

methods. Second, my dissertation research would benefit extensive empirical studies,

as it could provide methodological approach to help analyze practical real-world ques-

tions. To illustrate the practical use of the newly developed methods, we also conduct

an empirical study to address the public capital puzzle.

An interest in the estimation of nonparametric regression relationship by ex-

ploring the information in the error covariance has been growing recently. The intuition

behind is analogous to the efficient estimators in linear parametric models. As we know,

in order to obtain a best linear unbiased estimator (BLUE) in classical linear parametric

models, zero conditional mean, uncorrelated relationship, and homoskedasiticity of dis-

turbances are among assumptions to be satisfied. If we suppose that variance-covariance

matrix of disturbances Ω 6= σ2I, we can apply Aitken’s generalized least-squares to pre-

multiple the original variables by a matrix P such that E(Pεε
′
P
′
) = PΩP

′
= I, then a

BLUE will yield since the usual assumptions of the least-squares model can be satisfied

after this transformation (Zellner, 1962). To obtain more efficient estimators in non-

parametric regression analysis, the information enclosed in variance-covariance matrix

2



of disturbances is worth consideration. In the second chapter, we propose a two-step

estimator of nonparametric regression function with general parametric error covariance

and demonstrate it is more efficient than the usual local linear estimator and some

other two-step estimator in literature. This chapter studies the multivariate case for

single nonparametric regression, and establish the asymptotic theorem for both mean

and slope estimators. A small set of Monte Carlo studies shows the relative efficiency

gain of the newly proposed estimator in comparison with LLLS and some other two-

step estimator in nonparametric regression with either AR(2) errors or heteroskedastic

errors. The theoretical results can be widely applied to a general single nonparametric

regression analysis.

Along the line of chapter 2, chapter 3 systematically develops a new set of

results for seemingly unrelated regression (SUR) analysis within nonparametric and

semiparametric framework. It is well known that the SUR models have been extensively

studied in parametric framework and widely used in substantial empirical economic

analysis, such as, the wage determinations for different industries, a system of consumer

demand equations, and capital asset pricing models, and so on. However, it hasn’t been

well developed within nonparametric framework. In chapter 3, we study the properties

of LLLS and local linear weighted least squares (LLWLS) estimators in nonparametric

SUR. To obtain a more efficient estimation, we develop a two-step estimator for the

system and establish the corresponding asymptotic theorems under both unconditional

and conditional error variance-covariance cases. The procedures of estimation for var-

ious nonparametric and semiparametric SUR models are proposed, such as, the NP

SUR model with error components, partially linear semiparametric model, model with

nonparametric autocorrelated errors, additive nonparametric model, varying coefficient

model, and the model with endogeneity. In addition, two nonparametric goodness-of-fit

3



measures for the system are given. To examine the finite sample properties, a small

set of Monte Carlo simulations is conducted to compare the newly developed two-step

estimator with LLLS, LLWLS estimators, and a class of two-step estimator as well.

To illustrate the practical use of the newly developed methods in chapter 2 and

3, an empirical analysis on return to public capital in U.S. is presented in chapter 4. A

panel data for the U.S. 48 contiguous states over the period of 1970-1986 is employed to

revisit the public capital puzzle. Is public-sector capital productive? What’s the role for

public-sector in affecting private economic performance? The debates on these questions

have been receiving extensive attention from economists. Under parametric framework,

empirical studies reach contrary results by either assuming a particular model specifica-

tion for the underlying production function or employing various parametric estimation

methods. Within the parametric framework constant elasticities of the specified models

are assumed across all the states and all the years. The question arises naturally is

whether or not the estimates of returns to inputs can be trusted under above settings.

As we know, nonparametric method is not only free from the unforgiving misspecifica-

tion issue, but also provides local estimates so that variety of the estimates of returns

to inputs can be observed across all the states and all the years. Upon these properties,

nonparametric method would give more precise analysis to address the issue. In this

empirical analysis, there are some interesting findings: First, the average returns of pub-

lic capital on states’ private economic growth are statistically significant and positive.

In other words, the public capital has positive spill-over effects on average across states,

and even though its spill-over effects are smaller than private sector capital stock but still

non-negligible. Second, in general, the returns to the public capital are positive. How-

ever, a few states, for instances, Wyoming, South Dakota, North Dakota, New Mexico,

Montana, have negative returns to the public capital, which are consistent with some

4



recent studies under nonparametric framework. Third, the mean returns to the public

capital across all the 48 states changes over the period of 1970-1986. The returns to

public capital increased sharply during recessions, started decreasing when the economy

stepped into recovering, and fluctuated in small magnitudes during normal time. The

reason behind this may be in that when the economy is in recession the private sector

becomes weak, so that public sector capital plays a more effective role than normal

time. The private sector may gain more benefits from the government investments on

the public capital during recessions than the other times.

Chapters 5-7 are developed within the finite sample framework in which we

derive and evaluate our moment approximations and exact distribution of the mean

reversion parameter estimator (κ̂) in continuous time models (also known as diffusion

processes). The mean reversion parameter (κ) measures the persistence in the stochastic

processes and 1 − κ measures the speed of mean reversion. The smaller value of mean

reversion, the higher persistence in the stochastic process, which means the process is

more likely to remain in the same state from one observation to the next. In practice, this

parameter is of important implications for asset pricing, risk management and forecast.

It has been shown in the literature that mean reversion parameter suffers the most

serious bias problem among all the parameters in diffusion processes. The difficulty in

the estimation of κ is related to the finite sample bias problem well documented in the

discrete time literature (see, for instance, Kendall (1954)).

More specifically, chapter 5 considers the bias of the mean reversion estimator

(κ̂) in the continuous time Lévy processes. In recent years, it has been reported strong

evidence of infinite activity jumps in financial variables (see, for example, Aı̈t-Sahalia

and Jacod (2008)). It is known that the continuous time Lévy processes not only can

capture the infinite activity jumps, but also allow a general form of errors. Due to these
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features, the Lévy processes have become increasingly popular and various Lévy models

have been developed in the asset pricing literature (see for example, Barndorff-Nielsen

(1998), Madan, Carr and Chang (1999), Carr and Wu (2003)). Although an exten-

sive literature has developed methods for estimating the parameters in continuous time

diffusion models and for approximating the estimation bias, the effect of nonnormality

on the estimation has not been studied. The bias of κ̂ is approximated and the bias

expressions are obtained for the Lévy-based Ornstein-Uhlenbeck (OU) process. The

approximate bias of κ̂ under normality is also derived as a special case. The bias expres-

sions indicate that both the skewness and the kurtosis of the Lévy measure affect the

bias when the time span is not very large and the sampling frequency is not very high.

The initial condition, the long term mean (µ), and the volatility parameter (σ) also

enter the bias expressions. Bias corrected estimators of κ are proposed. Monte Carlo

studies are conducted to examine the performance of the bias corrected estimators.

It has been documented in literature that the maximum likelihood estimator

(MLE) of κ tends to over estimate the true value. On one hand, the true distribution

of MLE can be severely skewed in finite samples and the asymptotic results in general

may provide misleading results. Its asymptotic distribution, on the other hand, depends

on how the data are sampled (under expanding, infill, or mixed domain) as well as how

we spell out the initial condition. This poses a tremendous challenge to practitioners in

terms of estimation and inference. In chapter 6, we investigate the exact distribution

of the MLE under different scenarios: known or unknown drift term, fixed or random

start-up value, and zero or positive κ. In particular, we employ numerical integration

via analytical evaluation of a joint characteristic function. The numerical calculations

demonstrate the remarkably reliable performance of the newly proposed exact approach.

Chapter 7 studies the efficiency properties of the coefficient of determination

6



(R2
FPE) based on final prediction error and compares it with conventional goodness-of-fit

measures (R2, R2
a) in linear regression models with both normal and non-normal dis-

turbances. The literature has shown that using R-square based on final prediction error

as a model selection criterion is perfectly consistent with using AIC and is closest with

the criterion BIC than other conventional R-squares. However, there is no theoretical

proof on its efficiency properties. Motivated by its good performance and lack of theo-

retical studies in the literature, I developed this chapter. My theoretical results show it

is a useful tool as a model selection and goodness-of-fit measure in both cross-sectional

analysis and time series analysis.

Chapter 8 concludes the thesis. The mathematical derivations are provided in

the appendix.
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Chapter 2

Single Equation Nonparametric

Estimation with Non-Scalar

Covariance ∗

2.1 Introduction

As is well known, in order to obtain a best linear unbiased estimator (BLUE)

in classical linear parametric models, zero conditional mean, uncorrelated relationship,

and homoskedasiticity of disturbances are among assumptions to be satisfied. If we

suppose that variance-covariance matrix of disturbances Ω 6= σ2I, we can apply Aitken’s

generalized least-squares to premultiple the original variables by a matrix P such that

E(Pεε
′
P
′
) = PΩP

′
= I, then a BLUE will yield since the usual assumptions of the least-

squares model can be satisfied after this transformation (Zellner, 1962). The intuition

behind local linear generalized least squares (LLGLS) estimator is the same as Aitken’s

generalized least-squares. To consider the contemporaneous correlated disturbances in

∗This chapter is a joint work with Dr. Liangjun Su and Dr. Aman Ullah.
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nonparametric regression model, the standard procedure is to apply Aitken’s generalized

least-squares to obtain LLGLS by premultiplying a matrix P such that E(Pεε
′
P
′
) =

PΩP
′

= I on both sides of the weighted equation (Das, 2005). In this spirit, in order to

gain the efficiency of estimators, the information enclosed in variance-covariance matrix

of disturbances is worth consideration.

Recently more and more interests are growing in the estimation of nonparamet-

ric regression relationship by exploring the information in the error covariance. Since

conventional local linear least square estimator (LLE) fully ignores the information in

the error covariance structure, it is not efficient when the error terms are not inde-

pendently identically distributed. Ruckstuhl, Welsh and Carroll (2000) considered a

semiparametric model as Yij = αi + m(Xij) + εij , i = 1, . . . n, j = 1, . . . J, where αi

and εij are independent random variables with zero mean and variances σ2
α > 0, σ2

ε > 0

respectively. Considering the structure of variance component, they obtained a two-step

estimator which is more asymptotic efficient than the pooled estimator that ignored the

dependence in their semiparametric model. The idea of their two-step estimator is to

multiply both sides of the model by the square-root of the inverse covariance matrix

to transform the original disturbances to be indepent and identically distributed. Fol-

lowing the basic intuition of Ruckstuhl, Welsh and Carroll (2000) and employing the

covariance structure, Su and Ullah (2007) developed a class of two-step estimators in

which the regressors were allowed to be a random vector, and two different bandwidth

sequences were used in the two steps. In addition, Su and Ullah (2007) also considered

a more efficient estimation of the first order derivatives of the nonparametric regression

mean. Xiao, Linton, Carroll and Mammen (2003) proposed a kernel-based procedure

for local polynomial estimation in Nonparametric regression with autocorrelated errors,

which was more efficient than the estimator obtained by ignoring the correlation struc-

9



ture entirely. The intuition behind the procedure proposed by Xiao et al. (2003) is

to transform their original model to have uncorrelated disturbances. Unlike Xiao et

al. (2003) investigated a stationary case, Linton and Mammen (2008) considered both

stationary case and unit root case in disturbances. However, the intuition behind the

procedure of Linton and Mammen (2008) was still familiar, that is, they employed a

dynamic transformation to make the error term white noise. In addition, when esti-

mating nonparametric function for panel data with measurement error, Lin and Carroll

(2000) computed separate regressions at each time period and averaged the weighted

resulting estimates, which improved efficiency over a single measurement error analy-

sis by pooling all the panel data. Different with the papers mentioned before where

the errors exhibited a parametric correlation structure, Su and Ullah (2006) provided a

three-step procedure to let the errors enter the model nonparametrically, and then their

baisc model was constructed as Yt = m1 (Xt) +m2 (Ut−1, . . . , Ut−p) + εt.

The case considered by Martins-Filho and Yao (2009, MY hereafter) is rela-

tively more general than the above. For nonparametric regression with general para-

metric error covariance, they have proposed a two-step estimator of nonparametric re-

gression function and demonstrated it is more efficient than the traditional local linear

estimator (LLE). Intuitively MY gains the relative efficiency of their estimator over the

LLE because the former applies the information in the off-diagonal elements of the error

covariance whereas the latter fully ignores the information in the error covariance struc-

ture. Nevertheless, MY did not fully explore the information in the diagonal elements

of the error covariance. Consequently, if these diagonal elements are not identical across

observations (say when the error term is an AR process or heteroskedastic of known

form), then their estimator can be further improved.

In this chapter, we propose a modified estimator of MY. We demonstrate clearly
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that the full use of the error covariance structure can result in an asymptotically more

efficient estimator than MY’s estimator. The relative efficiency of our estimator over

MY’s is verified through simulations where the error terms in the nonparametric re-

gression follow an AR(2) process or a heteroskedastic structure. In addition, we extend

MY’s estimator to the multivariate case, and also establish the asymptotic theorems for

the slope estimators which are not studied by MY. To illustrate the applicability of our

asymptotic results to popular nonparametric models, we study the asymptotic properties

of our two-step estimators for seemingly unrelated regression and clustered/panel data

models. Also, the practical use of the newly proposed method is demonstrated within a

nonparametric panel regression model with random effects in a real data setting.

The chapter is structured as follows. We introduce the MY’s estimator in

Section 2 and demonstrate it can easily be improved to achieve a more efficient estimator

in Section 3 where the asymptotic bias and variance for the two-step estimator are

derived for both seemingly unrelated regression models and clustered/panel data models.

A small set of simulations is conducted in Section 4. Finally, the concluding remarks

are made in Section 5.

2.2 The MY’s estimator

Consider the nonparametric regression model

Yi = m (Xi) + Ui, i = 1, · · · , n, (2.1)

where Xi is a q × 1 vector of exogenous regressors that is continuously distributed, and

Ui is an error term such that E (Ui) = 0 and

E (UiUj) = ωij (θ0) for some θ0 ∈ <p, i, j = 1, · · · , n. (2.2)

11



Following MY, we assume for simplicity that {Ui} is independent of {Xi} but allow for

time series structure in either process. In addition, we permit non-identical distributions

across i’s.

Let Y ≡ (Y1, · · · , Yn)′, Rix ≡ (1, (Xi − x)′)′, and Rx ≡ (R1x, · · · , Rnx)′. Let

δ (x) ≡ (m (x) , ∂m (x) /∂x′)′. The conventional LLE of δ (x) is given by

δ̂LL,h1 (x) =
(
R′xKx,h1Rx

)−1
R′xKx,h1Y (2.3)

where Kx,h1 =diag(Kh1 (X1 − x) , · · · ,Kh1 (Xn − x)), Kh1 (·) = K (·/h1) /hq1, K (·) is a

kernel function, and h1 is a bandwidth parameter. In particular, the conventional LLE

of m (x) is given by

m̂LL,h1 (x) = e′
(
R′xKx,h1Rx

)−1
R′xKx,h1Y (2.4)

where e ≡ (1, 0, · · · , 0)′ denotes a (q + 1)× 1 vector.

Since m̂LL,h1 (x) does not explore the information in the error covariance struc-

ture, it cannot be asymptotically efficient in any sense. For this reason, MY proposes

a two-step estimator of m (x) that applies the information in (5.9). To proceed, let

Ω (θ) be an n × n matrix with the (i, j)th element given by ωij (θ) . Assume that

Ω (θ) = P (θ)P (θ)′ for some square matrix P (θ). Let pij (θ) and υij (θ) denotes the

(i, j)th element of P (θ) and P (θ)−1 , respectively. When θ = θ0, the true parameter

value, we frequently suppress the dependence of these matrices and their elements on θ0

and, for example, write P for P (θ0) and υij for υij (θ0) . Let m ≡ (m (X1) , · · · ,m (Xn))′ ,

U ≡ (U1, · · · , Un)′ , and H≡diag
(
υ−1

11 , · · · , υ−1
nn

)
. Define Z ≡HP−1Y+

(
In −HP−1

)
m

where In is an n× n identity matrix. Then

Z = m + ε with ε ≡ HP−1U,
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and it is easy to verify that ε has mean 0 and covariance matrix as a diagonal matrix:

E
(
εε′
)

= H2 = diag
(
υ−2

11 , · · · , υ
−2
nn

)
. (2.5)

The two-step MY’s estimators of δ (x) and m (x) are given by

δ̂MY,h2 (x) =
(
R′xKx,h2Rx

)−1
R′xKx,h2Ẑ (2.6)

m̂MY,h2 (x) = e′
(
R′xKx,h2Rx

)−1
R′xKx,h2Ẑ, (2.7)

where Ẑ≡HP−1Y+
(
In −HP−1

)
m̂LL,h1 , m̂LL,h1 ≡ (m̂LL,h1 (X1) , · · · , m̂LL,h1 (Xn))′,

and the bandwidth h2 is usually different from h1. Clearly, here it is assumed that θ0,

and therefore H and P, are known. When θ0 is unknown but can be estimated by θ̂ at

√
n-rate, we can replace H and P by H(θ̂) and P (θ̂) and it is trivial to show that such

a replacement won’t affect the first-order asymptotic properties of m̂MY,h2 (x) . Hence it

is not restrictive to assume that θ0 is known.

The following theorem extends the findings in MY to the multivariate case and

it also incorporates the asymptotic properties for slope estimators. To proceed with the

asymptotic theorem, we first state a list of general assumptions.

Assumption A1. K(·) is a product kernel such that K(x) = Πq
i=1k(xi) where k(·) is a

univariate symmetric kernel with compact support Sk satisifying: (i)
∫
k(xi)dxi =

1; (ii)
∫
xik(xi)dxi = 0; (iii)

∫
x2
i k(xi)dxi = σ2

k; (iv) for all xi,x
′
i ∈ Sk we have

|k(xi)− k(x′i)| ≤ c|xi − x′i|, c ∈ [0,∞).

Assumption A2. (i) fi(x, θ0) is the marginal density ofXi evaluated at x, with fi(x, θ0)

< c for all i; (ii) f̄ (x) = limn→∞ n
−1
∑n

i=1 fi(x, θ0), and 0 < f̄ (x) < ∞; (iii)

fi(x, θ0) is differentiable, and |f (1)
i (x, θ0)| < c; (iv) |fi(x, θ0)−fi(x′, θ0)| ≤ c|x−x′|

for all x, x′, and θ0, where θ0 denotes the true parameters.
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Assumption A3. mα(x) < c for all x and α = 1, 2, mα(x) is the αth-order derivative

of m(x) evaluated at x.

Assumption A4. As n→∞, h→ 0, nhq+2 →∞ and nhq+6 → 0.

Assumption A5. ωf (x, θ0) ≡ limn→∞ n
−1
∑n

i=1 υ
−2
ii fi (x) , and 0 < ωf (x, θ0) < ∞,

where υii is the diagonal element of H.

Assumption A6. ω∗f (x, θ0) = limn→∞ n
−1
∑n

i=1 υ
2
iifi(x), and 0 < ω∗f (x, θ0) <∞.

To compare the asymptotic efficiency among LLE and two-step estimators, we

first present the asymptotic distribution of LLE. Let fi (x) denote the marginal density

of Xi, f (x) ≡ limn→∞ n
−1
∑n

i=1 fi (x) , and ωf (x, θ0) ≡ limn→∞ n
−1
∑n

i=1 ωii(θ0)fi (x) .

Theorem 1 Assume that Assumptions A1-A4 are met, we have

√
nhq2Dh

δ̂LL,h (x)− δ (x)−


κ21h22

2

∑q
j=1

∂2m(x)
∂x2j

0q×1


 d→ N (0,ΩLL) .

where ΩLL =


ωf (x,θ0)(κ02)q

f
2
(x)

0
′

0
ωf (x,θ0)κ22(κ02)q−1

f
2
(x)κ221

Iq

 , Dh = diag(1, h2, · · · , h2)(q+1)×(q+1),

and κij =
∫
zik (z)j dz for i, j = 0, 1, 2.where κij =

∫
zik (z)j dz for i, j = 0, 1, 2.

The asymptotic distribution for the two-step estimator is given in the following

Theorem.

Theorem 2 Assume that Assumptions A1-A5 are met, we have

√
nhq2Dh2

(
δ̂MY,h2 (x)− δ (x)−BMY

)
d→ N (0,ΩMY ) .

where

BMY =


κ21h22

2

∑q
j=1

∂2m(x)
∂x2j

0q×1

 , ΩMY =


ωf (x,θ0)(κ02)q

f
2
(x)

01×q

0q×1
ωf (x,θ0)κ22(κ02)q−1

f
2
(x)κ221

Iq

 ,
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Dh2 = diag(1, h2, · · · , h2) is a (q + 1)× (q + 1) diagonal matrix, and κij =
∫
zik (z)j dz

for i, j = 0, 1, 2.

The proof of the above theorem follows straightforwardly from that of Theorem

3 in MY, is similar to that of Theorem 3 below and thus omitted. To obtain the

above result, a necessary condition on (h1, h2) is that h1/h2 → 0 in order to eliminate

the first order asymptotic bias due to the first stage estimation error. Also, in order

for the remainder term from the second-order Taylor expansion of m (Xi) at x vanish

asymptotically, we need lim supn→∞ nh
q+4
2 → c ∈ [0,∞).

Let β̂MY,h2 (x) denote the vector of the last q elements of δ̂MY,h2 (x) . Theorem

2 implies that√
nhq2

m̂MY,h2 (x)−m (x)− κ21h
2
2

2

q∑
j=1

∂2m (x)

∂x2
j

 d→ N

(
0,
ωf (x, θ0) (κ02)q

f
2

(x)

)
,

√
nhq2h2

(
β̂MY,h2 (x)− ∂m (x)

∂x

)
d→ N

(
0,
ωf (x, θ0)κ22 (κ02)q−1

f
2
(x)κ2

21

Iq

)
.

It is easy to see that m̂MY,h2 (x) shares the same asymptotic bias as the tradi-

tional LLE m̂LL,h2 (x) but has smaller asymptotic variance than the latter. To see this,

note that the asymptotic variance of m̂LL,h2 (x) is given by

lim
n→∞

n−1
n∑
i=1

ωii (θ0) fi (x) (κ02)q /f
2

(x) .

By the fact that for any nonsingular matrix A with inverse A−1, we have aiia
ii ≥ 1

∀i with aii and aii being the ith diagonal elements of A and A−1 respectively, we can

readily show that

lim
n→∞

n−1
n∑
i=1

ωii (θ0) fi (x)− ωf (x, θ0) = lim
n→∞

n−1
n∑
i=1

(
ωii (θ0)− υ−2

ii

)
fi (x) ≥ 0.

That is, m̂MY,h2 (x) is asymptotically more efficient than m̂LL,h2 (x) . By the same token,

β̂MY,h2 (x) shares the same asymptotic bias as the traditional LLE of ∂m (x) /∂x but

has smaller asymptotic variance than the latter.
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2.3 A more efficient two-step estimator

In this section we first demonstrate that the MY’s estimator can be improved

to obtain a more efficient estimator and then consider applying our estimation method

to both seemingly unrelated regression models and panel data models.

2.3.1 A more efficient two-step estimator

As indicated in the introduction, MY’s estimator does not fully use the infor-

mation in the diagonal elements of the error covariance matrix Ω (θ0) into estimation.

Note that the transformed errors by MY’s method is non-scalar, when there is serial

correlation and/or heteroskedasticity in original errors. So it still has a room to im-

prove MY’s two-step estimator. Apparently, the cause of the lack of efficiency of MY’s

estimator is due to the misuse of the diagonal matrix H in the definition of Z. It turns

out that we can modify the definition of Z to obtain a more efficient estimator. Let

Z∗≡H−1Z. Then

Z∗ = H−1m + ε∗ with ε∗ ≡ P−1U. (2.8)

Clearly, ε∗ has mean 0 and covariance matrix as an identity matrix. We can consider

the local linear estimation of δ (x) based on the transformed equation in (2.8).

It is straightforward to verify that our two-step estimator of δ (x) based on

(2.8) is given by

δ̂SUW,h2 (x) ≡
(
R∗′x Kx,h2R

∗
x

)−1
R∗′x Kx,h2Ẑ

∗ (2.9)

where R∗x≡H−1Rx, and Ẑ∗≡P−1Y+
(
H−1 − P−1

)
m̂LL,h1 . Then we have the following

theorem.

Theorem 3 Assume that Assumptions A1-A4 and A6 are met, we have√
nhq2Dh2

(
δ̂SUW,h2 (x)− δ (x)−BSUW

)
d→ N (0,ΩSUW ) ,
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where

BSUW =


κ21h22

2

∑q
j=1

∂2m(x)
∂x2j

0q×1

 , ΩSUW =


(κ02)q

ω∗f (x,θ0) 01×q

0q×1
κ22(κ02)q−1

ω∗f (x,θ0)κ221
Iq

 ,

and ω∗f (x, θ0) = limn→∞ n
−1
∑n

i=1 υ
2
iifi (x) .

The proof of the above theorem is delegated to the section I of Appendix A.

Theorem 3, in conjunction with Theorem 2, implies that δ̂SUW,h2 (x) shares the same

asymptotic bias as MY’s estimator δ̂MY,h2 (x). To compare their asymptotic covariances,

noting that by the Cauchy-Schwarz inequality, we have

1

n−1
∑n

i=1 υ
2
iifi (x)

≤
n−1

∑n
i=1 υ

−2
ii fi (x)

{n−1
∑n

i=1 fi (x)}2
,

which implies that 1/ω∗f (x, θ0) ≤ ωf (x, θ0) /f
2

(x) . Thus, the asymptotic covariance

of δ̂SUW,h2 (x) is less than that of δ̂MY,h2 (x) . That is, our two-stage estimator may

have smaller asymptotic variance than MY’s if a non-negligible portion of the diagonal

elements are distinct from others. In other words, it pays off to explore the information

in the diagonal elements of the error covariance matrix.

2.3.2 Two-step estimator for clustered or panel data models

In order to illustrate the applicability of our theorems to popular nonparamet-

ric models, we derive the asymptotic bias and variances of our two-step estimator for

clustered or panel data models. The panel data model has been studied in MY for the

univariate case.

Here we consider the following one-way random effects model

Yij = m(Xij) + αi + εij , i = 1, · · · , n, j = 1, · · · , J,

where Xij is a q × 1 vector of exogenous variables, αi is independent and identi-

cally distributed (IID)
(
0, σ2

α

)
, εij is IID

(
0, σ2

ε

)
, αi and εlj are uncorrelated for all
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i, l = 1, 2, ..., n, and m (·) is an unknown smooth function. Let uij = αi + εij , ui ≡

(ui1, ..., uiJ)′ , and u ≡ (u1, ..., un)′ . By assumption, we have Σ ≡ E(uiu
′
i) = σ2

εIJ +

σ2
α1J1′J and Ω(σ2

ε , σ
2
α) ≡ E(uu′) = In ⊗ Σ, where 1J is a J × 1 vector of ones. As

in MY, assuming that Ω = PP ′ for some square matrix P, then P−1 = In ⊗ V −1/2,

where V −1/2 = (vij)i,j=1,...,J with vii ≡ v = 1
σε
− (1 − σε

σ1
) 1
Jσε

for all i = 1, ..., J,

vij = vo = −(1 − σε
σ1

) 1
Jσε

for all i 6= j = 1, ..., J, and σ1 =
√
Jσ2

α + σ2
ε . Our two-

step estimator is δ̂SUW,h2 (x) = (R∗′x Kx,h2R
∗′
x )−1 R∗′x Kx,h2Ẑ

∗ , where R∗x≡H−1Rx, Rx ≡

(Xx,11, ..., Xx,1J , ..., Xx,n1, ..., Xx,nJ), Xx,ij = (1, (Xij−x)′)′,Kx,h2 ≡diag(Kh2 (X11 − x) ,

..., Kh2(X1J −x), ..., Kh2 (Xn1 − x) , ..., Kh2 (XnJ − x)), and Ẑ∗ is analogously defined

as in Section 3.1. Then Theorem 3 implies that

√
nhq2Dh

(
δ̂SUW,h2 (x)− δ (x)−B(Panel)

)
d→ N

(
0,Ω(Panel)

)
(2.10)

where B(Panel) =


κ21h22

2

∑q
s=1

∂2m(x)
∂x2s

0q×1

 , Ω(Panel) =


(κ02)q

v2
∑J
j=1 fj(x)

01×q

0q×1
κ22(κ02)q−1

v2
∑J
j=1 fj(x)κ221

Iq

 ,

and fj (·) denotes the marginal density of Xij .

2.4 Monte Carlo simulations

Now we conduct a small set of Monte Carlo simulations to compare the finite

sample performance of our estimator with that of LLE and MY. Consider the following

data generating process:

Yi = m (Xi) + Ui, i = 1, · · · , n,

where the univariate random variables Xi are first generated independently from N (0, 1)

and then truncated at ±3. We use two specifications for m(x) : 0.5 + e−4x/(1 + e−4x)

and 1− 0.9e−2x2 , which correspond respectively to m2(x) and m3(x) in MY.

18



For the error terms, we consider two cases. In Case 1, we assume a time series

structure for Ui and generate Ui from the following AR(2) process: Ui = 0.5Ui−1 −

0.4Ui−2 + εi, where εi are independently and identically distributed (IID) N (0, 1) . In

Case 2, we assume that Ui are heteroskedastic but independent of each other, and

generate Ui, i = 1, · · · , n2 , as IID from N(0, 2), and Ui, i = n
2 + 1, · · · , n, as IID from

N(0, 4). In the first case, only the first two diagonal elements in the square root matrix

(P ) of the covariance matrix (Ω) of U ≡ (U1, · · · , Un)′ are distinct from others, so that

the MY and SUW estimators are asymptotically equivalent and we should not observe

significant difference in the finite sample performance between the two estimators. In

the second case, however, the LLE and MY estimators are asymptotically equivalent

and both are dominated by the SUW estimator.

For all estimators, we use the Gaussian kernel. For bandwidth sequences, we

use the least-squares cross validation to choose h2, and set h1 = h
5/4
2 , where h1 and h2

are used in the first and second step estimations, respectively, for both MY and SUW

estimators. The one-step LLE estimator uses h2 in the estimation.

Although we know the covariance matrix Ω of U in the simulation, we estimate

it according to the AR(2) specification in Case 1 and heteroskedastic specification in

Case 2. To be specific, we estimate the two autoregressive coefficients in the first case

and the two variances in the second case. Based on the estimation of m (x) on all data

points X1, · · · , Xn, we calculate the bias, standard deviation (Std), root mean squared

error (RMSE), and mean squared error (MSE) for each estimator and average them

across 1000 replications. The sample sizes under our investigation are 100 and 200.

Table 2.1 on page 22 reports the finite sample performance for the three esti-

mators for both m(x) and ∂m(x)/∂x in the case of AR(2) errors. First, in terms of Std

and RMSE (or MSE), both MY and SUW estimators outperform the LLE estimator,
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and have smaller bias for estimators of ∂m(x)/∂x, but the former tend to have slightly

larger biases for estimating m(x). Second, as expected the efficiency gain of the SUW

estimator over the MY estimator is tiny and may be ignored in the AR(2) error struc-

ture. Noting that the more different diagonal elements in the square root matrix P of

Ω, the more efficiency gain we may have, we expect that prominent efficiency gain can

be achieved only in AR(p) model with p ≡ p (n)→∞ as n→∞ or in ARMA(p, q)-type

of models.

Table 2.2 on page 23 compares the three estimators for bothm(x) and ∂m(x)/∂x

under the heteroskedastic errors 1. As expected, the performance of the MY estimator

is identical to that of LLE given the fact that they share the same first order asymp-

totic bias and variance. Obviously, our estimator SUW has improvement over LLE and

MY in the sense of having lower Std and RMSE (or MSE). The simulation results pro-

vide a strong support that the SUW estimator is more efficient than the LLE and MY

estimators by considering heterogeneity in the error structure.

2.5 Concluding Remarks

In this chapter we propose a two-step estimator (SUW) for nonparametric

regression with a general parametric error covariance that is more efficient than that of

MY’s. The results are applied to one-way random effects model. Notice that by the

transformation which we employ to obtain our two-step estimator the transformed errors

has spherical parametric covariance structure. Therefore, intuitively SUW estimator

should outperform those nonparametric regression estimators that fail to fully utilize

the information in the error covariance. Simulations confirm the finite sample out-

1The results in Table 2.2 are obtained for the heteroskedastic error case with two different variances.
We also did the simulations for the case with four different variances, and observed higher relative
efficiency gain of SUW over MY compared to the former case.
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performance of our estimator over both LLE and MY’s under both serial correlation

case and heteroskedastic case. Notice that under heteroskedasticity MY’s estimator

degenerates to LLE as the former fails to incorporate the diagonal information in the

error covariance, which is also confirmed in Monte Carlo simulations.
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Chapter 3

System of Equations and Panel

Model Nonparametric and

Semiparametric Estimation

3.1 Introduction

The advantages of using nonparametric method lie in that not only it is free

from misspecification issue of functional form, but also it gives local estimations which

can provide more deep information than parametric method does. It is well known

that the weighted least squares (WLS, also known as GLS) estimator in a parametric

regression model with a known non-scalar covariance matrix of errors, is the best linear

unbiased estimator. This also holds asymptotically for operational WLS estimator in

which the non-scalar covariance matrix is replaced by a consistent estimator, see Greene

(2007, p.157) and Hayashi (2000, p.138). Further, in small samples it is known to be

unbiased for the symmetric errors, see Kakwani (1967), and its efficiency properties are
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analyzed in Taylor (1977). In the case of nonparametric regression model with a non-

scalar covariance, various local linear weighted least squares (LLWLS) estimators have

been developed for the pointwise local linear regression and its derivative estimators, see

Welsh and Yee (2006), Ullah and Roy (1998), Henderson and Ullah (2005 , 2008 ), Lin

and Carroll (2000), among others. However, it has been shown in Henderson and Ullah

(2008), Welsh and Yee (2006), and Lin and Carroll (2000), among others, that such LL-

WLS estimators may not be efficient even when the covariance matrix is known. In fact,

often they are even beaten by the local linear least squares (LLLS) estimator ignoring

the existence of a non-scalar covariance matrix. In view of this Ruckstuhl, Welsh, and

Carroll (2000) proposed a two-step estimator in which the dependent variable, which is

filtered (transformed), with the mean as the regression function and the non-scalar co-

variance matrix transformed to a scalar covariance matrix, also see Su and Ullah (2007).

Martins-Filho and Yao (2009) estimated the filtered dependent variable with its mean

as the regression function but a non-scalar covariance matrix consisting heteroscedas-

ticity. Su, Ullah and Wang (2011) then suggested a new two-step estimator in which

the filtered dependent variable has a mean with transformed regression and a scalar

covariance matrix. They showed that their two-step estimator is asymptotically more

efficient than both the LLLS and the two-step estimator proposed by Martins-Filho and

Yao (2009). In a simulation study they also show that their two-step estimator is also

more efficient compared to both the LLLS and the Martins-Filho and Yao’s two-step

estimator.

The objective of this chapter is to systematically develop the theory and ap-

plication of two-step estimation in the context of the seemingly unrelated regression

(SUR) models. As we know, the SUR models have been extensively studied in paramet-

ric framework and widely used in substantial empirical economic analysis, such as, the

25



wage determinations for different industries, a system of consumer demand equations,

and capital asset pricing models, and so on. However, it hasn’t been well developed

within nonparametric framework, although see, for example, Smith and Kohn (2000),

and Koop, Poier and Tobias (2005), where nonparametric Bayesian methods is used to

estimate multiple equations, Wang, Guo, and Brown (2000) where a penalized spline

estimation method is considered, and Welsh and Yee (2006) where LLWLS estimators

are used.

This chapter develops a new set of results for SUR regression analysis within

nonparametric and semiparametric framework. Specifically, we study the properties of

conventional LLLS and LLWLS in nonparametric SUR, and develop efficient two-step

estimation for nonparametric SUR following Su, Ullah, and Wang (2011) in the context

of single equation model. The corresponding asymptotic theorems under both uncondi-

tional and conditional error variance-covariance cases are established. Then we compare

its asymptotic properties with the LLLS and LLWLS estimators. The theoretical results

show that our two-step estimator is more asymptotically efficient than LLLS. It is known

that various nonparametric and semiparametric specifications have been developed and

widely used within cross-sectional models or panel data models, and the corresponding

estimation and statistical properties have been well discussed in literature. However,

these specifications haven’t been considered in NP and SP SUR models. It would be also

interesting to know the estimation and statistical inference for different specifications

within NP and SP SUR system. Hence, the procedures of estimation for various non-

parametric and semiparametric SUR models are proposed in the current chapter, such

as, the model with error components, partially linear semiparametric model, additive

nonparametric model, varying coefficient model, and the model with endogeneity. In

addition, two nonparametric goodness-of-fit measures for the system are given as well,
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which provide a fundamental knowledge that can be used to develop various tests based

on R-square for SUR system. To examine the finite sample properties, we conduct a

small set of Monte Carlo simulations to compare our two-step estimator with LLLS,

LLWLS estimators, and a class of other two-step estimators as well. The latter can

be shown as a special case of ours. The simulation results confirm that our two-step

estimator outperforms others in the finite sample settings.

The structure of this chapter is as follows. In section 2, we introduce SUR

NP estimations including LLLS estimator, a general two-step estimator, and provide

their asymptotic distributions under unconditional error variance-covariance. In addi-

tion, various LLWLS estimators are discussed. In section 3 we propose the estimation

procedures for a variety of popular NP/SP SUR functions, specifically, partially lin-

ear semiparametric model, model with NP autocorrelated errors, additive NP models,

varying coefficient NP models, varying coefficient IV models, and NP SUR models with

error components. Section 4 discusses NP SUR models with conditional error covari-

ance, and its estimation incorporating the conditional covariance. The corresponding

asymptotic distribution is also provided. In section 5 we define two types of nonparamet-

ric Goodness-of-fit measures in terms of ANOVA decomposition and indicator function.

The following section 6 conducts a small set of Monte Carlo simulations to examine the

finite sample performance of LLLS, LLWLS, and two-step estimators.
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3.2 Nonparametric Seemingly Unrelated Regression Sys-

tem

We start with the following basic nonparametric seemingly unrelated regression

models

yij = mi(Xij) + uij , i = 1, ...,M, j = 1, · · · , N. (3.1)

The economic variable yij is the jth observation on the ith cross-sectional unit, Xij

is the jth observation on the ith unit. mi(·) is an unknown function form, which

can differ across the cross-sectional units. The observation yij is related to Xij , a

qi × 1 vector of exogenous regressors, and Xij , i = 1, · · ·M, can differ for different

regression models. For the present, we assume strict exogeneity of Xij , E(uij |Xij) = 0,

and homoscedasticity V ar(uij |Xij) = σ2
ii within each equation. Also, we assume that

the disturbances are uncorrelated across observations but correlated across equations,

i.e, E(uijui′j |Xij , Xi′j) = σii′ for i, i′ = 1, · · · ,M and i 6= i′, and j = 1, · · · , N. For

simpliticy, the fixed number of observations N is assumed. However, it can be extended

to unequal numbers of observations.

The economic examples of such models include: (i) economic growth model

in which i stands for different countries, j indexes the time periods, specifically, yij is

the growth variable for the jth time period on the ith country, and Xij is a vector of

regressors that affect the economic growth of ith country at the jth period; (ii) regional

consumption model in which i denotes the ith cluster, j denotes the jth household; (iii)

the wage determination for different industries, in which we can set different equations

for different industries, that is, i indexes the ith industry, j is the jth observation; (iv)

a system of consumer demand equations on a panel data set, etc. In a special case,

mi(Xij) = Xijβi that is the standard Zellner’s (1962) parametric SUR system.
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3.2.1 Estimation with Unconditional Error Variance-Covariance Ω

In this section, we introduce the local linear least squares estimator (LLLS),

propose a more efficient two-step estimator in a general form, and also discuss the

properties of LLWLS estimators within SUR. The asymptotic distributions for both

LLLS and two-step estimators are given for multivariate nonparametric SUR models.

3.2.1.1 Local Linear Least Squares Estimator

By first order Taylor expansion, we write

yij = mi(Xij) + uij

' mi(xi) + (Xij − xi)m(1)
i (xi) + uij

=

(
1 (Xij − xi)′

) mi(xi)

m
(1)
i (xi)

+ uij

= Zij(xi)δi(xi) + uij ,

where δi(xi) =

(
mi(xi) m

(1)′
i (xi)

)′
, which is a (qi + 1) × 1 vector, and Zij(xi) =(

1 (Xij − xi)′
)
. Let yi = (yi1, ...yiN )′, Zi(xi) =

(
Zi1(xi), · · · , ZiN (xi)

)′
, which

has a dimension of N×(qi+1), and ui =

(
ui1, · · · , uiN

)′
. In a vector representation,

for each regression i, we can write

yi ' Zi(xi)δi(xi) + ui.

Further, one can stack regression i = 1, · · · ,M, in a matrix version,
y1

...

yM

 =


Z1(x1) 0

...
. . .

...

0 ZM (xM )




δ1(x1)

...

δM (xM )

+


u1

...

uM

 ,
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which can be written compactly as

y = m(X) + u (3.2)

' Z(x)δ(x) + u,

where y =
(
y
′
1, . . . , y

′
M

)′
, is a MN × 1 vector, m(X) = (m1(X1), ...,mM (XM ))′ ,

mi(Xi) = (mi(Xi1), ..., mi(XiN ))′, u =
(
u
′
1, ..., u

′
M

)′
,

Z(x) = diag

(
Z1(x1), . . . . ZM (xM )

)
,

which has MN × (ΣM
i=1qi + M) dimension, and δ(x) =

(
δ1(x1), . . . . δM (xM )

)
, a

(ΣM
i=1qi + M) × 1 vector. By the assumption of basic SUR models, we have E (u|X) =

0MN×1 and Ω ≡Var(u|X) = Σ ⊗ IN , where Σ is a M ×M matrix with typical diago-

nal element σ2
ii and off-diagonal element σii′ for i, i′ = 1, ...,M. Then the local linear

estimator of δ(x) is obtained by minimizing u′K(x)u,

δ̂(x) = (Z ′(x)K(x)Z(x))−1Z ′(x)K(x)y,

where K(x) ≡ diag
(
Kh1(X1 − x1), . . . . KhM (XM − xM )

)
, is a MN×MN diagonal

matrix, Khi(Xi − xi) ≡ diag

(
Khi(Xi1 − xi), . . . . Khi(XiN − xi)

)
and Khi(Xij −

xi) = 1
hi
k(

Xij−xi
hi

).

Assumption A1. K(·) is a product kernel such thatK(xi) = Πq
s=1k(xis) where k(·) is a

univariate symmetric kernel with compact support Sk satisifying: (i)
∫
k(xis)dxis =

1; (ii)
∫
xisk(xis)dxis = 0; (iii)

∫
x2
isk(xis)dxis = σ2

k; (iv) for all xis,x
′
is ∈ Sk we

have |k(xis)− k(x′is)| ≤ c|xis − x′is|, c ∈ [0,∞).

Assumption A2. (i) fij(xi, θ0) is the marginal density of Xij evaluated at xi, with

fij(xi, θ0) < c for all i, j, and xi; (ii) f̄i (xi, θ0) = limN→∞N
−1
∑N

j=1 fij(xi, θ0),

and 0 < f̄i (x) < ∞; (iii) fij(xi, θ0) is differentiable, and |f (1)
ij (xi, θ0)| < c; (iv)
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|fij(xi, θ0) − fij(x′i, θ0)| ≤ c|xi − xi′ | for all xi, xi′ , and θ0, where θ0 denotes the

true parameters.

Assumption A3. gj(xi, xi′) denotes a joint density of
(
Xij , Xi′j

)
evaluated at (xi, xi′).

The partial derivatives of gj(xi, xi′) exist and are continuous.

Assumption A4. m(x) is two times differentiable.

Assumption A5. As n→∞, hi → 0, nhqi+2
i →∞ and nhqi+6

i → 0.

Theorem 4 Under the assumptions A1-A5 and the assumptions on the error terms of

basic SUR models, we have

D(δ̂(x)− δ(x)−BLLLS)
d→ N (0,ΩLLLS)

where D ≡diag

(
D1, · · · , DM

)
, Di =

√
Nhqii Dhi , Dhi ≡diag(1, hi, ..., hi) is a (1 + qi)×

(1 + qi) diagonal matrix, BLLLS =

(
B1,LLLS , . . . , BM,LLLS

)′
,

ΩLLLS = diag

(
Ω1,LLLS , . . . , ΩM,LLLS

)
,

Bi,LLLS =


k21h2i

2

qi∑
s=1

∂2mi(xi)
∂x2i,s

0qi×1

 ,

Ωi,LLLS =


σ2
ii(κ02)qi

f̄i(xi)
0′1×qi

0qi×1
σ2
iiκ22(κ02)qi−1

f̄i(xi)κ221
Iqi

 ,

and xis is the sth element of xi for i = 1, . . . ,M.

Remark 1 We allow the marginal distribution of x differ across equations and across

observations in each equation. The average of the densities must converge.

Remark 2 Notice that local linear least squares method doesn’t incorporate the co-

variance into estimation, hence, the asymptotic distribution of LLLS for the whole
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SUR system actually is the same as the ones for each eqution regression by LLLS.

Since the asymptotic covariances across different equations are smaller order than

the asymptotic variances, the off-diagonals in the asymptotic variance-covariance

matrix are zero.

3.2.1.2 Two-step Estimator

To utilize the information incorporated in the variance-covariance of errors, we

propose the following two-step estimator to improve the estimation. The transformation

required for the second step is made as follows

y = m(X) + u

Ω−1/2y + (H−1−Ω−1/2)m(X) = H−1m(X) + Ω−1/2u (3.3)

→
y = H−1m(X) + v

= H−1Z(x)δ(x) + v,

where
→
y ≡ Ω−1/2y + (H−1−Ω−1/2)m(X), v ≡ Ω−1/2u. It is clear to see that the trans-

formed errors are now independent and identically distributed. The intuition behind the

above transformation is similar with the parametric GLS in which X is standardized

by the standard deviation of errors. Here, we use H to standardize unknown function

m(X). For example, when there is no correlation across errors, i.e., Ω = diag
(
σ2
ii

)MN

i=1
,

then vi,i = 1/σii, and the unknown function m(X) is standadized by the standard errors.

At point Xij , the transformed unknown function is mi(Xij)/σii. If Ω is not a diagonal

matrix, H will take care of both the variance and covariance of errors.

Assume that Ω = PP ′ for some MN ×MN matrix P . Let pij and vij denote

the (i, j)th element of P and P−1, respectively. Let H ≡diag(v−1
1,1, ..., v

−1
MN,MN ), R∗(x) =
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H−1Z(x), then by minimizing v′K(x)v the two-step estimator would be

δ̂2−step(x) = (R∗′(x)K(x)R∗(x))−1R∗′(x)K(x)
→
y . (3.4)

Even though the two-step estimator described above has the same form as Su,

Ullah, and Wang (2011), the interpretaion here is different from that paper. In Su,

Ullah, and Wang (2011), the two-step estimator that incorporated a general parametric

covariance into estimation is motivated by improving the one proposed by Martins-Filho

and Yao (2009) which failed to consider the unconditional heteroskedastic errors. The

transformation proposed by Martins-Filho and Yao (2009) is as

HP−1Y+
(
I −HP−1

)
m(X)= m(X) + ε,

where ε ≡ HP−1u. Obviously, the covariance matrix of transformed errors is a diagonal

matrix: E (εε′) = H2, which consists heteroskedasticity. Also, it is interesting to notice

that if the errors are uncorrelated across equations, and K(x) → K(0), the nonpara-

metric two-step estimator δ̂2−step will become the parametric GLS estimator. To derive

the asymptotic distribution for the two-step estimator, we need additional assumption.

Assumption A6. ω∗f,i (xi, θ0) = limN→∞N
−1
∑N

j=1 υ
2
(i−1)N+jfij(xi), and 0 < ω∗f,i (xi,

θ0) <∞, for every xi, and θ0, where υ(i−1)N+j is the diagonal element of H.

The asymptotic distribution for the two-step estimator is given in the following

Theorem.

Theorem 5 Under the assumptions A1-A6 and the assumptions on the error terms of

basic SUR models, we have

D
(
δ̂2−step(x)− δ (x)−B2−step

)
d→ N (0,Ω2−step)
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where D ≡diag

(
D1, · · · , DM

)
, Di =

√
Nhqii Dhi , Dhi ≡diag(1, hi, ..., hi), a (1 + qi)×

(1 + qi) diagonal matrix, B2−step =

(
B1,2−step, . . . , BM,2−step

)′
,

Ω2−step = diag

(
Ω1,2−step, . . . , ΩM,2−step

)
,

Bi,2−step =


k21h2i

2

qi∑
s=1

∂2mi(xi)
∂x2is

0qi×1

 ,

Ωi,2−step =


(κ02)qi

ω∗f,i(xi,θ0) 01×qi

0qi×1
κ22(κ02)qi−1

ω∗f,i(xi,θ0)κ221
Iqi

 ,

and xis is the sth element of xi for i = 1, . . . ,M.

To compare the efficiency of the two-step estimator with LLLS, we need com-

pare 1
ω∗f,i(xi,θ0) with

σ2
ii

f̄i(xi,θ0)
. By the fact that for any nonsingular matrix A with inverse

A−1, we have aiia
ii ≥ 1∀i, where aii and aii are the ithe diagonal elements of A and

A−1 respectively, we can readily show that

lim
N→∞

N−1
N∑
j=1

(υ2
(i−1)N+j,(i−1)N+j − σ

−2
ii )fij(xi) ≥ 0.

That is, δ̂2−step(x) is asymptotically more efficient than δ̂LLLS (x) .

Remark 3 So far it is assumed that Ω, H and P , are known. When Ω, H and P , are

unknown but can be estimated at
√
N−rate we can replace them by Ω̂, Ĥ and

P̂ and it is trivial to show that such a replacement won’t affect the first-order

asymptotic properties of those above estimators. Hence it is not restrictive to

assume that Ω, H and P , are known.

Two-step Estimator for SUR model with M =2 To simplify the notation and

give a more specific two-step estimator, we will focus on the case with J = 2. Let

34



y ≡
(
y(1)′ , y(2)′

)′
, Xi,xj ≡ (1, (X

(j)
i − xj)′)′, X

(j)
xj ≡

(
X1,xj , ..., Xn,xj

)′
,

X∗x ≡

 X
(1)
x1 0n×(q2+1)

0n×(q1+1) X
(2)
x2

 ,

and Σ ≡

σ2
11 σ12

σ12 σ2
22

 =

 σ2
11 σ11σ22ρ

σ11σ22ρ σ2
22

 . As before, we can obtain the conven-

tional LLE as δ̂LL = (X∗′x KX∗x)−1 X∗′x Ky, where K =diag(K1,K2), and Kj =

diag(Kh1j (X
(j)
1 − xj), · · ·Kh1j (X

(j)
n − xj)) for j = 1, 2. Similarly, assume that Ω = PP ′

for some 2n × 2n matrix P . Let pij and vij denote the (i, j)th element of P and P−1,

respectively. Let H ≡diag(v−1
1,1, ..., v

−1
2n,2n). By Cholesky decomposition we have

P−1 = Ω−1/2 =


(
σ11

√
1− ρ2

)−1
In −ρ

(
σ22

√
1− ρ2

)−1
In

0n×n σ−1
22 In

 ,

i.e., vii = 1/
(
σ11

√
1− ρ2

)
and vn+i,n+i = 1/σ22 for i = 1, · · · , n.

Let δ (x) = (m1 (x1) , ∂m1 (x1) /∂x′1,m2 (x2) , ∂m2 (x2) /∂x′2)′ where x is a

disjoint union of x1 and x2. And K =diag(K1,K2), and Kj =diag(Kh2j (X
(j)
1 − xj), · · ·

Kh2j (X
(j)
n − xj)) for j = 1, 2. Notice that the bandwidth h2j is used in the second step.

Applying our two-step estimator to the seemingly unrelated regression models yields the

following estimator of δ (x) :

δ̂SUW (x) =
(
R∗′x KR∗x

)−1
R∗′x KẐ∗ (3.5)

where R∗x =diag(H−1
1 X

(1)
x1 , H

−1
2 X

(2)
x2 ), H1 =diag

(
v−1

11 , ..., v
−1
nn

)
,

H2 =diag
(
v−1
n+1,n+1, ..., v

−1
2n,2n

)
, and Ẑ∗≡P−1Y+

(
H−1 − P−1

)
m̂LL,h1 . Then we have

D̃
(
δ̂SUW (x)− δ (x)−B(SUR)

)
d→ N

(
0,Ω(SUR)

)
(3.6)

where D̃ ≡diag

(
D̃h21 , D̃h22

)
, D̃h2j =

√
nhq2jdiag(1, h2j , ..., h2j) is a (1 + qj)×(1 + qj)
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diagonal matrix, B(SUR) =

 B
(SUR)
1

B
(SUR)
2

 , Ω(SUR) =

 Ω
(SUR)
1 0(1+q1)×(1+q2)

0(1+q2)×(1+q1) Ω
(SUR)
2

 ,

B
(SUR)
j =


k21h22j

2

qj∑
s=1

∂2mj(xj)

∂x2js

0qj×1

, Ω
(SUR)
j =


(κ02)qj

ω∗f,j(x,θ0) 01×qj

0qj×1
κ22(κ02)qj−1

ω∗f,j(x,θ0)κ221
Iqj

 , ω∗f,1 (x, θ0) =

limn→∞ n
−1
∑n

i=1 υ
2
ii ×fi(x1), and ω∗f,2 (x, θ0) = limn→∞ n

−1
∑n

i=1 υ
2
n+i,n+ifi(x2), and

xjs is the sth element of xj for j = 1 and 2.

A Special Case of Two-step Estimator Ruckstuhl, Welsh and Carroll (2000) pro-

posed a class of two-step estimator for nonparametric panel data models with random

effects as follows

y = m(X) + u

τΩ−1/2y + (I−τΩ−1/2)m(X) = m(X) + τΩ−1/2u (3.7)

y∗ = m(X) + u∗,u∗ ≡ τΩ−1/2u.

By minimizing u∗′K(x)u∗, their two-step estimator can be obtained as

δ̂τ (x) = (Z ′(x)K(x)Z(x))−1Z ′(x)K(x)y∗.

Su and Ullah (2007) follow the same idea of Ruckstuhl, Welsh, and Carroll (2000),

propose the above τ−type two-step estimator and provide its asymptotic normality and

the optimal τ . Notice that the class of two-step estimator in Ruckstuhl, Welsh, and

Carroll (2000) and Su and Ullah (2007) is a special case of ours. Let H =τI, I is an

indentity matrice, then our method in (3.3) can be written as

Ω−1/2y + (τ−1I−Ω−1/2)m(X) = τ−1m(X) + Ω−1/2u.

We multiply τ on both sides of the above equation, then it becomes

τΩ−1/2y + (I−τΩ−1/2)m(X) = m(X) + τΩ−1/2u.
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Notice that H =τI implies that all the diagonal elements in Ω−1/2 contain identical

information, that is vii = τ−1 for i = 1, . . . ,MN . However, by our settings, H can in-

corporate both heteroskedastic and correlation infromation in errors. Hence, our method

actually generalizes the class of τ−type two-step estimator. The corresponding asymp-

totic properties of δ̂τ (x) for nonparametric SUR models can be modified from the ones

of δ̂2−step(x), and it is given in the following theorem.

Theorem 6 Under the same conditions as stated in Theorem 5, we have

D(δ̂τ (x)− δ(x)−Bτ )
d→ N (0,Ωτ ) ,

where D ≡diag

(
D1, · · · , DM

)
, Di =

√
Nhqii Dhi , Dhi ≡diag(1, hi, ..., hi) is a (1 + qi)×

(1 + qi) diagonal matrix, Bτ =

(
B1,τ , . . . , BM,τ

)′
, Ωτ = diag

(
Ω1,τ , . . . , ΩM,τ

)
,

Bi,τ =


k21h2i

2

qi∑
s=1

∂2mi(xi)
∂x2i,s

0qi×1

 ,

Ωi,LLLS =


τ2(κ02)qi

f̄i(xi,θ0)
0′1×qi

0qi×1
τ2κ22(κ02)qi−1

f̄i(xi,θ0)κ221
Iqi

 ,

and xis is the sth element of xi for i = 1, . . . ,M.

The optimal τ can be obtained by minimizing the mean squared error of δ̂τ (x).

To compare the efficiency of this class of two-step estimator with LLLS, we need compare

τ2

f̄i(xi,θ0)
with

σ2
ii

f̄i(xi,θ0)
. As long as τ2 ≤ σ2

ii for i = 1, . . . ,M, the two-step estimator is

more efficient than LLLS. Since this class of τ−type two-step estimator is a special

case of ours, we will just focus on the generalized two-step estimator δ̂2−step(x) in the

remainder of the present chapter.

Operational two-step estimator The two-step estimator proposed in the previous

sections is infeasible, since
→
y is unobservable, and Ω and H are unknown. In this section,
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we introduce the operational two-step estimator for nonparametric SUR models in (3.6).

The procedure is described as follows:

(1) First, obtain a preliminary consistent estimator of mi by first-order local

polynomial smoothing yij on Xij for each equation i. Denote ûij = yij − m̂i(Xij).

(2) Second, we can obtain a consistent estimator of Ω̂, Ĥ by estimating

σ̂ii′ =
1

N − 1

N∑
j=1

(
ûij − ûij

) (
ûi′j − ûi′j

)
,

σ̂2
ii =

1

N − 1

N∑
j=1

(
ûij − ûij

)2
.

Further we can obtain the feasible
→
y = Ω̂−1/2y + (Ĥ

−1−Ω̂−1/2)m̂(X).

(3) Third, by first-order local polynomial soomthing feasible
→
y on X, obtain

the two-step estimator δ̂2−step(x) = (R∗′(x)K(x)R∗(x))−1R∗′(x)K(x)
→
y .

So far, our estimator is based on unconditional covariance. The two-step es-

timator can also be extended to the nonparametric SUR models with the conditional

covariance. Later on we will discuss the estimation of nonparametric SUR with condi-

tional covariance, and the method to obtain a conditional covariance matrix within this

framework.

3.2.1.3 Local Linear Weighted Least Squares Estimator

Another popular class of local linear estimator in nonparametric literature

is called local linear weighted least squares (LLWLS) estimator. By minimizing the

following weighted sum of squared residuals

(y−Z(x)δ(x))′Wr(x)(y−Z(x)δ(x)),

the LLWLS can be obtained as

δ̂r(x) = (Z ′(x)Wr(x)Z(x))−1Z ′(x)Wr(x)y,
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where Wr(x) is kernel based weight matrix. For r = 1, 2, 3, 4,

W1(x) = K1/2(x)Ω−1K1/2(x),

W2(x) = Ω−1K(x),

W3(x) = K(x)Ω−1,

W4(x) = Ω−1/2K(x)Ω−1/2.

W1(x) and W2(x) are given in Lin and Carroll (2000) for nonparametric panel data

models with random effect, W4(x) is discussed in Ullah and Roy (1998) for fixed effect

models. Henderson and Ullah (2005) considered W1(x), W2(x) and W4(x) for nonpara-

metric random effect model, and proposed the corresponding feasible estimators. Welsh

and Yee (2006) give all these four types of LLWLS estimators, but only study the bias

and variance of LLWLS estimator δ̂1(x) with weight W1(x) for a SUR with M = 2 for

both unconditonal and conditional variance-covariance of errors.

Comparing Welsh and Yee (2006)’s SUR model with ours, there are two differ-

ences on the assumptions. One difference is that the SUR model considered by Welsh and

Yee assumes heteroskedastic errors in each equation, but we assume the homoskedastic

errors in each equation which is the assumption made by extensive literature on clas-

sic SUR models. The other different assumption is that they assume an independent

and identically joint distribution of (X1j , X2j) across observations. However, we allow

different marginal density across equations and observations, and different independent

joint distribution across equations. In addition, Welsh and Yee (2006) doesn’t give the

asymptotic distribution for LLWLS estimators. Hence, it is not appropriate to directly

compare the bias and variance of LLWLS in their paper with those properties of our

two-step estimator. However, by further examining the bias and variance of their esti-

mator, it is not difficult to see that the bias of the first derivatives estimator m̂(1)(x)
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in δ̂1(x) would have smaller order than the bias of m̂(x), and the covariance of δ̂1(x)

would be smaller order than the variance of m̂(x) and m̂(1)(x) when we consider the

corresponding converge rates, that is,
√
Nhq for m̂(x), and

√
Nhqh for m̂(1)(x). Also, we

notice that the LLWLS estimator δ̂1(x) gains no efficiency compared to the LLLS when

the errors are modified to satisfy the conventional assumption in SUR models, which is

also pointed out in Remark 3 in their paper. Therefore, we can expect the efficiency

gains of our two-step estimator over the LLWLS estimators under the conventional as-

sumptions in SUR models. Henderson and Ullah (2008) compare the efficiency among

LLWLS estimators and various two-step estimators by simulations, and also find that

the latter outperform the former. When the assumptions on errors allow heteroskedas-

ticity within each equation and different correlation across equations, it is difficult to

compare the efficiency of LLWLS with LLLS for both conditional variance-covariance

and unconditional case. As Welsh and Yee (2006) mentioned, the LLWLS estimator

may be less efficient than LLLS in this scenario.

As we know, within parametric framework, if there is no correlation across

equations, the generalized least squares estimator (GLS) doesn’t have efficiency gain

over least squares estimator (LS), even though the heteroskedasticity exists across the

equations. In the following, we examine whether or not this result holds for nonparamet-

ric SUR models. Suppose there is no correlation across regressions, we can write Ω =

diag

(
Ω1 , . . . , ΩM

)
, Ωi = σ2

i IN , for i = 1, . . . ,M. That is, we allow heteroskedas-

ticity across the regressions, but no correlations are allowed. Since now the variance-

covariance matrix is a diagonal matrix, then W1(x) = W2(x) = W3(x) = W4(x), four

estimators are equivalent. For simplicity, we take W1(x) = K1/2(x)Ω−1K1/2(x) as an

example to show the relationship between LLWLS and LLLS under the above settings.

Since all the matices are diagonal in δ̂1(x), we can write the LLWLS separately for each
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regression. The LLWLS for the ith regression is

δ̂1,i(x) = (Z ′i(x)W1,i(x)Zi(x))−1Z ′i(x)W1,i(x)yi

= (Z ′i(x)K
1/2
i (x)Ω−1

i K
1/2
i (x)Zi(x))−1Z ′i(x)K

1/2
i (x)Ω−1

i K
1/2
i (x)yi

= (Z ′i(x)Ki(x)Zi(x))−1Z ′i(x)Ki(x)yi

= δ̂LLLS,i(x),

where δ̂LLLS,i(x) is the LLLS estimator for the ith regression. The above equation gives

mathematical equivalance between LLLS and LLWLS when there is no correlation across

regressions in nonparametric SUR system. The simulation results conducted later in the

present chapter also confirms this equivalence between LLWLS and LLLS. Furthermore,

when Ω is an identity matrix, obviously four LLWLS estimators become LLLS estimator,

that is, δ̂r(x) = δ̂(x) for r = 1, 2, 3, 4.

In addition, like parametric SUR models, if the equations have identical ex-

planatory variables, i.e., Xi = Xj , then LLLS and LLWLS are identical. The follow-

ing examines W1(x) = K1/2(x)Ω−1K1/2(x) case. The cases with W2(x) = Ω−1K(x),

W3(x) = K(x)Ω−1, and W4(x) = Ω−1/2K(x)Ω−1/2, follow the similar proof. Now let

Xi = Xj = X, hence, Ki = Kj = K, Zi(xi) = Zj(xj) = Z. Then the LLWLS can be
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written as

δ̂1(x) = (Z ′(x)K1/2(x)Ω−1K1/2(x)Z(x))−1Z ′(x)K1/2(x)Ω−1K1/2(x)y

=


σ11Z

′
KZ · · · σ1MZ

′
KZ

...
. . .

...

σM1Z
′
KZ · · · σMMZ

′
KZ



−1


M∑
j=1

σ1jZ
′
Kyj

...

M∑
j=1

σMjZ
′
Kyj



=


σ11

(
Z
′
KZ

)−1
· · · σ1M

(
Z
′
KZ

)−1

...
. . .

...

σM1

(
Z
′
KZ

)−1
· · · σMM

(
Z
′
KZ

)−1





(
Z
′
KZ

) M∑
l=1

σ1lδ̂LLLS,l(x)

...(
Z
′
KZ

) M∑
l=1

σMlδ̂LLLS,l(x)


,

where σij is the (i, j)th element in Σ−1, and σij is the (i, j)th element in Σ. We can

have the ith LLWLS δ̂1(x) is

δ̂i,1(x) =
M∑
j=1

σij

M∑
l=1

σjlδ̂LLLS,l(x)

= δ̂LLLS,1(x)
M∑
j=1

σijσ
j1 + · · ·+ δ̂LLLS,M (x)

M∑
j=1

σijσ
jM

= δ̂LLLS,i(x).

The last equality holds since ΣΣ−1 = I.

3.2.2 Alternative Specifications of NP/SP SUR Models

Up to now all estimators are discussed for the basic NP SUR models. In

reality, we may have various specifications for the system. For examples, partially linear

semiparametric model, additive nonparametric model, varying coefficient model, model

with endogeneity, and error components models, etc. These models are well discussed in

either cross-sectional or panel data framework. However, within SUR system framework,

they haven’t been studied. Since all these specifications have practical use in extensive

empirical analysis, it is worth to provide theoretical results for these models within
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SUR framework. This section is devoted to propose an efficient estimation for various

specifications of NP/SP SUR models.

3.2.2.1 Partially Linear Semiparametric SUR Models

We consider the partially linear semiparametric SUR models

yij = mi(Xij) + Zijδi + uij , i = 1, ...,M, j = 1, · · · , N, (3.8)

the assumptions on errors remain the same as in (3.6). One way to estimate (3.8) is

using profile least squares method as the following:

yij − Zijδi = mi(Xij) + uij

y∗ij ≡ yij − Zijδi

y∗ij = mi(Xij) + uij .

Let y∗i = (y∗i1, ...y
∗
iN )′, y∗ = (y∗1, ...y

∗
M )′, we stack the models into

y∗ = m(X) + u.

By the first order Taylor expansion, we local linearize the function and write the model

as

y∗ ' χ(x)γ(x) + u,

where γ(x) =

(
γ1(x1), ..., γM (xM )

)
, γi(xi) =

(
mi(xi) m

(1)′

i (xi)

)′
. Then the local

linear least squares estimator of γ(x) is

γ̂(x) = (χ′(x)K(x)χ(x))−1χ′(x)K(x)y∗. (3.9)

Stack the model (3.8) into a matrix form as

y = m(X) + Zδ + u (3.10)

' χ(x)γ(x) + Zδ + u,
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where Z = diag

(
Z1, · · · ZM

)
, Zi =

(
Zi1, · · · , ZiN

)′
,

δ =

(
δ1ιN , · · · δM ιN

)′
, and ιN is a vector of ones. Substitute (3.9) into (3.10), then

the estimator of δ can be obtained by

y = χ(x)γ̂(x) + Zδ + u

= χ(x)(χ′(x)K(x)χ(x))−1χ′(x)K(x)(y − Zδ) + Zδ + u

= S(x)y−S(x)Zδ + Zδ + u, S(x) ≡ χ(x)(χ′(x)K(x)χ(x))−1χ′(x)K(x).

Reorganizing the above, one can have

[I − S(x)] y= [I − S(x)]Zδ + u.

By the LS method, the estimator of δ is

δ̂ =
[
Z ′
(
I − S′(x)

)
(I − S(x))Z

]−1
Z ′
(
I − S′(x)

)
(I − S(x)) y. (3.11)

Since all the information incorporated in the estimator of δ in (3.11) are known, we can

estimate δ by (3.11) first, then substitute it into (3.9) to get

γ̂(x) = (χ′(x)K(x)χ(x))−1χ′(x)K(x)(y − Zδ̂).

Alternatively, we can estimate (3.8) using the idea of Robinson (1988) as the

followings:

(i) Taking the conditional expectation of (3.8) leads to

E(yij |Xij) = mi(Xij) + E(Zij |Xij)δi. (3.12)

(ii) Subtracting the above from (3.8) we have

yij − E(yij |Xij) = (Zij − E(Zij |Xij))δi + uij , i = 1, ...,M, j = 1, · · · , N. (3.13)

Also, one can rewrite (3.12) as

mi(Xij) = E(yij |Xij)− E(Zij |Xij)δi. (3.14)
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(iii) The left hand side of (3.13) can be treated as the residuals (ûij,yx) obtained

by regressing yij on Xij , and similarly the right hand side of (3.13) Zij−E(Zij |Xij) can

be treated as the residuals (ûij,zx) obtained by regression Zij on Xij . To estimate both re-

gressions, we can just use local constant estimation. Hence, further we can estimate δi by

OLS estimator of regressing ûij,yx on ûij,zx, denoted as δ̂i =
(∑

û2
ij,zx

)−1∑
ûij,zxûij,yx.

(iv) Further, one can regress y∗ij = yij − Zij δ̂i on Xij to obtain the LLLS

estimator

γ̂(x) = (χ′(x)K(x)χ(x))−1χ′(x)K(x)y∗.

Notice that the above procedures do not incorporate the variance-covariance

of the errors in the system. The following gives a more efficient estimation.

We can apply two-step estimator to the model (3.8). Combined with the profile

least squares method mentioned earlier, our two-step estimator under this model can be

derived as the following

y∗ = m(X) + u,y∗ = y−Zδ

Ω−1/2y∗ + (H−1 − Ω−1/2)m(X) = H−1m(X) + v

y∗∗ = χ∗(x)γ(x) + v, χ∗(x) = H−1χ(x)

γ̂(x) = (χ∗′(x)K(x)χ∗(x))−1χ∗′(x)K(x)y∗∗. (3.15)

By substituting γ̂(x) into model (3.10), we have

y = χ(x)γ̂(x) + Zδ + u

= χ(x)(χ∗′(x)K(x)χ∗(x))−1χ∗′(x)K(x)

[
Ω−1/2(y − Zδ)

+ (H−1 − Ω−1/2)m̂(x)

]
+ Zδ + u

= S∗(x)[Ω−1/2(y − Zδ) + (H−1 − Ω−1/2)m̂(x)] + Zδ + u,
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where S∗(x) ≡ χ(x)(χ∗′(x)K(x)χ∗(x))−1χ∗′(x)K(x), the above can be rewritten as

[I − S∗(x)Ω−1/2]y−S∗(x)(H−1 − Ω−1/2)m̂(x) = [I − S∗(x)Ω−1/2]Zδ + u.

Let ỹ ≡[I − S∗(x)Ω−1/2]y−S∗(x)(H−1 − Ω−1/2)m̂(x), Z̃≡[I − S∗(x)Ω−1/2]Z, the GLS

estimator of δ is

δ̂SP = (Z̃ ′Ω−1Z̃)−1Z̃ ′Ω−1ỹ. (3.16)

By substituting the above δ̂SP into (3.15), we can obtain a more efficient two-step

estimator of γ(x), γ̂SP (x) = (χ∗′(x)K(x)χ∗(x))−1χ∗′(x)K(x)y∗∗. Ω can be estimated

from the first step profile least squares. Then we will have an operational two-step

estimator. Here, we introduce our two-step estimation by combining with the profile

least squares. The alternative method combing with the idea of Robinson (1988) can be

also proposed in a similar manner.

3.2.2.2 Additive NP models

As we know, the additive model is useful to conquer the notorious ”curse of

dimension” issue in nonparametric literature. In this section, we consider the following

additive NP models within SUR system,

yij = mi(Xij,1, ..., Xij,d) + εij

= ci +

d∑
α=1

mi,α(Xij,α) + εij , i = 1, ...,M, j = 1, · · · , N,

where Xij,α is the αth regressor.

To stack the regression models into one, we have

y = c+
d∑

α=1

mα(Xα) + ε, (3.17)

where y =

(
y11, . . . , yMN

)
, mα(Xα) =

(
m1,α(X1,α), . . . , mM,α(XM,α)

)′
, ε =

(ε11, . . . , εMN ). To estimate the above additive NP regression model, we use the marginal
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integration method. The similar idea can be found in Yang, Hardle, and Nielson (1999)

for a single nonparametric autoregression model.

The estimation procedure of the marginal integration is as the following:

(1) Let Xij,α denote the vector that consists of all the remaining Xij,β, 1 ≤

β ≤ d and β 6= α. We can estimate each component of mean function by m̂i,α(xα) =

1
N

∑N
l=1 m̂i(xi,α, Xil,α), which is based on the sample version of marginal integration∫

mi(xi,α, Xil,α)dF (Xil,α). And m̂i(xi,α, Xil,α) can be estimated by pth order local poly-

nomial smoothing yi on (xi,α, Xil,α) as m̂i(xi,α, Xil,α) = e′0(Z ′iWi,lZi)
−1Z ′iWi,lyi, where

Zi ≡ {(Xij,α − xi,α)λ}N×(p+1), λ = 0, · · · , p, Wi,l = diag{ 1
NKhi(Xij,α − xi,α)Lgi(Xij,α −

Xil,α)}Nj=1, L is a kernel function that has the same properties as K.

(2) Obtain m̂i(xi) = ĉi +
∑d

α=1 m̂i,α(xi,α), where ĉi = 1
N

∑N
j=1 yij .

(3) Further, we can obtain the estimated residuals ε̂ij = yij−m̂i(xi) to estimate

Ω, H, and P.

By applying the transformation proposed in two-step estimation, we can trans-

fer (3.17) into

Ω−1/2y + (H−1−Ω−1/2)

(
c+

d∑
α=1

mα(Xα)

)
= H−1

(
c+

d∑
α=1

mα(Xα)

)
+ v

→
y = H−1c+ H−1

d∑
α=1

mα(Xα) + v

= c∗ +
d∑

α=1

m∗α(Xα) + v

Then employing the procedure proposed above, we can estimate the trans-

formed model to obtain m̂α,2−step(Xα). Specifically, the feasible transformed response

variable can be obtained from the previous results as

→
y = Ω̂−1/2y + (Ĥ

−1−Ω̂−1/2)

(
ĉ+

d∑
α=1

m̂α(Xα)

)
.
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The two-step estimator of mi,α(xi,α) is obtained as follows:

m̂i,α(xi,α) =
1

N

N∑
l=1

m̂i,2−step(xi,α, Xil,α),

m̂i,2−step(xi,α, Xil,α) = e′0(Z∗′i Wi,lZ
∗
i )−1Z∗′i Wi,l

→
y i,

where Z∗i ≡ {Ĥ
−1
i (Xij,α − xi,α)λ}N×(p+1), λ = 0, · · · , p, Ĥi is the ith submatrix in Ĥ.

3.2.2.3 Varying Coefficient NP models

Varying coefficient NP models are practically useful in applied works. The

procedure for estimating this kind of model in a single equation has been extensively

discussed in the literature. See Pagan and Ullah (1999) and Li and Racine (2007) for

details. In this section, we consider the following varying coefficient NP model within

SUR framework,

yij = βi (Zij)Xij + εij , i = 1, ...,M, j = 1, · · · , N. (3.18)

By local linearizing the coefficient, we have

yij =
[
βi (zi) + (Zij − zi)β(1)

i (zi)
]
Xij + uij

=

(
1 (Zij − zi)

)
Xij

 βi (zi)

β
(1)
i (zi)

+ uij

= χij(Zij , zi, Xij)δi(zi) + uij ,

where β
(1)
i (zi) ≡ ∂βi (zi) /∂zi, χij(Zij , zi, Xij) ≡

(
1 (Zij − zi)

)
Xij ,

χi(Zi, zi, Xi) =

(
χi1(Zi1, zi, Xi1), . . . , χiN (ZiN , zi, XiN )

)′
,

which has dimension N × (qi + 1). Stack the above models j = 1, · · · ,M, in a matrix

form as

y = β(Z)X + u

= χ(z)δ(z) + u,
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where

χ(z) =diag

(
χ1(Z1, z1, X1) , . . . , χM (ZM , zM , XM )

)
,

δ(z) =

(
δ1(z1) , . . . , δM (zM )

)
.

The local linear least squares estimator for the varying coefficient NP models

in (3.18) is

δ̂(z) = (χ′(z)K(z)χ(z))−1χ′(z)K(z)y.

Then we apply the two-step estimator as follows

Ω−1/2y + (H−1−Ω−1/2)β(Z)X = H−1β(Z)X + v

→
yV F = H−1β(Z)X + v.

The corresponding two-step estimator can be written as

δ̂2−step(z) = (χ∗′(z)K(z)χ∗(z))−1χ∗′(z)K(z)
→
yV F , (3.19)

where χ∗(z) = H−1χ(z). To obtain the operational estimator, in the first step, we can

estimate each equation by local linear least squares to get residuals. Then use the

residuals to get a consistent estimator of covariance, further, obtain the feasible
→
yV F =

Ω̂−1/2y + (Ĥ
−1−Ω̂−1/2)χ(z)δ̂(z). In the second step, we regress the feasible

→
yV F on

H−1β(Z)X to get the two-step estimator.

3.2.2.4 Varying Coefficent IV Models

In the previous section, we have discussed varying coefficient NP models with

exogenous variables. In this section, we further consider the varying coefficient model

with endogenous variables in SUR system. We extend the method proposed by Su,

Murtazashvili, and Ullah (2011) for varying coefficient IV models within cross-sectional
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framework to semiparametric SUR system. Specifically, the model considered here is

yij = βi (Uij)Xij + εij , i = 1, ...,M, j = 1, · · · , N

E(εij |Zij , Uij) = 0 almost surely (a.s.)

where Xij is an endogenous regressor, Uij denotes a qi×1 vector of continuous exogenous

regressors, and Zij is a pi × 1 vector of instrument variables.

The orthogonality condition E(εij |Zij , Uij) = 0 a.s. provides the intuition

that the unknown functional coefficients can be estimated by nonparametric generalized

method of moments (NPGMM). Let Vij = (Z ′ij , Uij)
′, we can write the orthogonality

condition as

E[Qui(Vij)εij |Vij ] = E[Qui(Vij){yij − χij(Uij , ui, Xij)δi(ui)}|Uij ] = 0,

where χij(Uij , ui, Xij) =

(
1 (Uij − ui)′

)
Xij , δi(ui) =

(
βi (ui) β

(1)′

i (ui)

)′
. Following

the idea of local linear GMM esitmaiton proposed by Su, Murtazashvili, and Ullah

(2011), we can choose Qui(Vij) =

 Zaij

Zaij ⊗ (Uij − ui) /hi

 , which is a pi(qi + 1) × 1

vector, where Zaij is a pi × 1 vector of ”global” instruments. The above conditional

moment can be approximated by its sample analogue

gi (ui) =
1

N

N∑
j=1

Qui(Vij)[yij − χij(Uij , ui, Xij)δi(ui)]Khi(Uij − ui)

=
1

N
Qui(Vi)

′Khi(ui) [yi−χi(ui)δi(ui)] ,

where gi (ui) is a ki × 1 vector, ki = pi(qi + 1),

Qui(Vi)N×pi(qi+1) =

(
Qui(Vi1), . . . , Qui(ViN )

)′
,

ιi is a pi(qi + 1)× 1 vector with unit elements, and

Khi(ui) = diag

(
Khi(Ui1 − ui), . . . , Khi(UiN − ui)

)
= diag

(
1
hi
K(Ui1−uihi

), . . . , 1
hi
K(UiN−uihi

)

)
.
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Define

g (u) =

(
g1 (u) , . . . , gM (u)

)′
=

1

N
Q(u)′Kh (u) [y − χ(u)δ(u)].

The dimension of g (u) is
M∑
i=1
ki×1, Q(u) ≡ diag

(
Qu1(V1), . . . , QuM (VM )

)
,

which has dimension MN ×
(
M∑
i=1
ki

)
. To obtain δ(u), we can minimize the following

local linear GMM criterian function

g (u)′Ψ(u)−1g (u) ,

where

Ψ(u) = E(g (u) g (u)′)

=
1

N2
E
(
Q(u)′Kh (u) εε′Kh (u)Q(u)

)
=

1

N2
Q(u)′Kh (u) ΩKh (u)Q(u),

which is a symmetric
M∑
i=1
ki ×

M∑
i=1
ki weight matrix that is positive definite. The above

function can be written as

[
Q(u)′K(u) (y−χ(u)δ(u))

]′
Ψ(u)−1

[
Q(u)′K(u) (y−χ(u)δ(u))

]
.

Then the local linear GMM estimator of δ(u) is given by δ̂GMM (u) as

δ̂GMM (u) =
[
χ(u)′K(u)Q(u)Ψ(u)−1Q(u)′K(u)χ(u)

]−1
(3.20)

χ(u)′K(u)Q(u)Ψ(u)−1Q(u)′K(u)y

=
{
χ(u)′K(u)Q(u)

[
Q(u)′Kh (u) ΩKh (u)Q(u)

]−1
Q(u)′K(u)χ(u)

}−1

χ(u)′K(u)Q(u)
[
Q(u)′Kh (u) ΩKh (u)Q(u)

]−1
Q(u)′K(u)y.

To obtain the optimal choice of weight matrix, we can first get the preliminary

estimator δ̃GMM (u) of δGMM (u) by setting Ψ(u) as an identity matrix. Then we define
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the local residual ε̃ij(ui) = yij − χij(Uij , ui, Xij)δ̃GMM,i(ui). Using

g̃i (ui) =
1

N


N∑
j=1

ZijKhi(Uij − ui)ε̃ij(ui)

N∑
j=1

(Zij ⊗ (Uij − ui) /hi)Kht(Uij − ut)ε̃ij(ui)


to estimate gi (ui) , we can obtain the optimal choice of weight matrix

Ψ̃(u) =



g̃1 (u1) g̃1 (u1)′ g̃1 (u1) g̃2 (u2)′ · · · g̃1 (u1) g̃M (uM )′

g̃2 (u2) g̃1 (u1)′ g̃2 (u2) g̃2 (u2)′ · · · g̃2 (u2) g̃M (uM )′

...
...

. . .
...

g̃M (uM ) g̃1 (u1)′ g̃M (uM ) g̃1 (u1)′ · · · g̃M (uM ) g̃M (uM )′


.

Alternatively, we can directly estimate the local variance-covariance matrix Ω

by Ω̂(u) = Σ̂(u)⊗ IN . σii′ , the (i, i′)th element of Σ, can be estimated by

σ̂ii′ =
1

N − 1

N∑
j=1

(
ε̃ij(ui)− ε̃i(ui)

) (
ε̃i′j(ui′)− ε̃i′(ui′)

)
,

where ε̃i(ui) = 1
N

N∑
j=1

ε̃ij(ui), i, i
′ = 1, . . . ,M. Then the feasible local linear GMM esti-

mator is given by

δ̂GMM (u) =

{
χ(u)′K(u)Q(u)

[
Q(u)′Kh (u) Ω̂(u)Kh (u)Q(u)

]−1
Q(u)′K(u)χ(u)

}−1

χ(u)′K(u)Q(u)
[
Q(u)′Kh (u) Ω̂(u)Kh (u)Q(u)

]−1
Q(u)′K(u)y. (3.21)

3.2.2.5 NP SUR Models with Error Components

It has been widely recognized that the model combing cross-section with time-

series data has many advantages and applications. Hence, it is also interesting and

meaningful to introduce the nonparametric panel models into SUR system. This sec-

tion considers nonparametric seemingly unrelated regressions with two or three error

components structure. The NP SUR models with three error components is given as

yit,j = mj(Xit,j) + uit,j , j = 1, ...,M, i = 1, · · · , N, t = 1, ..., T, (3.22)

uit,j = µi,j + vt,j + εit,j , (3.23)
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where j is the equation index, i indexes the individuals, and t indexes the time periods.

It is the nonparametric analogue to the parametric SUR models considered by Avery

(1977).

To derive the covariance of the errors for two observations we have

E
(
uit,jui′t′,j′

)
= E (µi,j + vt,j + εit,j)

(
µi′,j′ + vt′,j′ + εi′t′,j′

)
(3.24)

= E
(
µi,jµi′,j′

)
+ E

(
vt,jvt′,j′

)
+ E

(
εit,jεi′t′,j′

)
.

The second equality is based on the assumption of independent non-corresponding com-

ponents. Following the notation in Avery (1977) and the standard assumptions on errors

for parametric SUR, we have

E
(
µi,jµi′,j′

)
= σ2

µjj′
, i = i′,

= 0, i 6= i′,

E
(
vt,jvt′,j′

)
= σ2

vjj′
, t = t′,

= 0, t 6= t′,

E
(
εit,jεi′t′,j′

)
= σ2

εjj′
, i = i′ and t = t′,

= 0, i 6= i′ or t 6= t′,

and the covariance of the errors for two observations is given as

E
(
uit,jui′t′,j′

)
= σ2

µjj′
+ σ2

vjj′
+ σ2

εjj′

= σ2
jj′ , if i = i′ and t = t′.

We stack the models (3.22) into a matrix form

y = m(X) + U,

where U =
(
U
′
1, ..., U

′
M

)′
, y ≡

(
y11,1, . . . , yNT,M

)′
,

m(X) = (m1(X1), ...,mM (XM ))′ , and mj(Xj) = (mj(X11,j), ...,mj(XNT,j))
′ which is
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a NT × 1 vector. Following Avery (1977), we express the variance-covariance matrix of

the residuals for the entire system in (3.22) as

E
(
UU ′

)
= Ω =


σ2

11Σ11 · · · σ2
1JΣ1J

...
. . .

...

σ2
J1ΣJ1 · · · σ2

JJΣJJ

 , (3.25)

where Σjj′ =
(
1− ρjj′ −$jj′

)
INT+ρjj′ (IN ⊗ ιT ι′T )+$jj′ (ιN ι

′
N ⊗ IT ), ρjj′ ≡

σ2
µjj′

σ2
jj′

,$jj′

≡
σ2
vjj′

σ2
jj′
.

Now it is ready to apply our two-step estimator into the model (3.22). The

procedure is described as the followings:

(i) We can estimate each equation by LLLS to obtain the pooled LLLS estima-

tor m̂j,LLLS(xj). Define Ûj ≡ yj− m̂j,LLLS(xj). Then we can estimate the unconditional

covariance component of errors by the two-way analysis of variance method described

in Avery (1977) within the parametric framework. Hence, the estimated covariance Ω̂

can be obtained.

(ii) By using Ω̂, we can obtain the estimated Ĥ and the feasible −→y defined in

our two-step estimator (3.3), further, the two-step estimator in the form of (3.4) for the

NP SUR with error component models.

The above provides a general nonparametric framework for SUR with three

component error structure. If one is interested in random effects SUR model with two

error components structure, then the model (3.22) can be simplified to

yit,j = mj(Xit,j) + εit,j + ui,j , j = 1, ...,M, i = 1, · · · , N, t = 1, ..., T. (3.26)

Each equation j is a one-way random effect model, and uit,j = εit,j + µi,j . In model

(3.26), the (j, j′)th element in the variance-covariance matrix would be σ2
jj′Σjj′ =

σ2
jj′
(
1− ρjj′

)
INT + σ2

jj′ρjj′ (IN ⊗ ιT ι′T ) .
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The fixed effects SUR model can be written as

yit,j = ci,j +mj(Xit,j) + εit,j , j = 1, ...,M, i = 1, · · · , N, t = 1, ..., T, (3.27)

where ci,j is correlated with the included variables, i.e., E(ci,j |Xi,j) = h (Xi,j) , and the

assumptions on εit,j remain the same as random effects SUR models. The estimation of

the above fixed effects SUR model is a straightforward extension of the method proposed

in the section (3.2.2.1) for partially linear semiparametric SUR models.

3.2.3 Estimation with Conditional Error Variance-Covariance Ω(x)

All the aforementioned estimations are based on the parametric variance co-

variance. This section provides the asymptotic theorems for local linear least squares

estimator and our two-step estimator for the NP SUR regressions with conditional

error variance-covariance. We consider the SUR model in (3.6) but with the condi-

tional variance-covariance of errors. Now we assume that E(uij |Xij) = 0, and ho-

moscedasticity V ar(εij |Xij) = σ2
ii (Xij) for each equation. Also, we assume that the

disturbances are uncorrelated across observations but correlated across equations, i.e,

E(εijεi′j |Xij , Xi′j) = σii′
(
Xij , Xi′j

)
for i, i′ = 1, · · · ,M and i 6= i′, and j = 1, · · · , N.

In a matrix form, the conditional variance-covariance is Ω(x) ≡ Σ(x) ⊗ I for a given

evaluated point x.

Assumption A7. Σ(x) is a nonsingular matrix, and the partial derivatives of the

components of Σ(x) exist in a neighbourhood of x, i.e., ∂sσ
2
ii(x), ∂sσii′(x) exist,

s = 1, . . . .M.

Assumption A8. Ω(x) = P (x)P (x)′ for some MN ×MN matrix P (x), pij(x) and

vij(x) denote the (i, j)th element of P (x) and P−1(x), respectively, and H(x) ≡diag

55



(v−1
1,1(x), ..., v−1

MN,MN (x)). And the partial derivatives of vij(x) exist in a neighbour-

hood of x.

Assumption A9. f̄i (xi) = limN→∞N
−1fij(xi), and 0 < f̄i (xi) < ∞; ω∗f,i (xi) =

limN→∞N
−1
∑N

j=1 υ
2
(i−1)N+j(xi)fij(xi), and 0 < ω∗f,i (xi) <∞.

Theorem 7 Under the assumptions A1-A9 and the assumptions on the error terms of

basic SUR models, we have

D(δ̂(x)− δ(x)−BLLLS)
d→ N (0,ΩLLLS) ,

where D ≡diag

(
D1, · · · , DM

)
, Di =

√
Nhqii Dhi , Dhi ≡diag(1, hi, ..., hi) is a (1 + qi)×

(1 + qi) diagonal matrix, BLLLS =

(
B1,LLLS , . . . , BM,LLLS

)′
,

ΩLLLS = diag

(
Ω1,LLLS , . . . , ΩM,LLLS

)
,

Bi,LLLS =


k21h2i

2

qi∑
s=1

∂2mi(xi)
∂x2i,s

0qi×1

 ,

Ωi,LLLS =


σ2
ii(xi)(κ02)qi

f̄i(xi)
0′1×qi

0qi×1
σ2
ii(xi)κ22(κ02)qi−1

f̄i(xi)κ221
Iqi

 ,

and xis is the sth element of xi for i = 1, . . . ,M.

Theorem 8 Under the assumptions A1-A9 and the assumptions on the error terms of

basic SUR models, we have

D
(
δ̂2−step(x)− δ (x)−B2−step

)
d→ N (0,Ω2−step (x)) ,

where D ≡diag

(
D1, · · · , DM

)
, Di =

√
Nhqii Dhi , Dhi ≡diag(1, hi, ..., hi) is a (1 + qi)×
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(1 + qi) diagonal matrix, B2−step =

(
B1,2−step, . . . , BM,2−step

)′
,

Ω2−step (x) = diag

(
Ω1,2−step (x) , . . . , ΩM,2−step (x)

)
,

Bi,2−step =


k21h2i

2

qi∑
s=1

∂2mi(xi)
∂x2is

0qi×1

 ,

Ωi,2−step (xi) =


(κ02)qi

ω∗f,i(xi)
01×qi

0qi×1
κ22(κ02)qi−1

ω∗f,i(xi)κ
2
21
Iqi

 ,

and xis is the sth element of xi for i = 1, . . . ,M.

Remark In both Theorem 7 and 8, the off-diagonals of asymptotic variance-covariance

matrix are zero because the off-diagonals are smaller order than the diagonals.

Also, the conditional correlation doesn’t enter the asymptotic variance-covariance

since the terms incoporating the correlations are all smaller order than those terms

with conditional variances.

To obtain a feasible two-step estimation in this scenario, the estimated con-

ditional variance-covariance is required. We can estimate the conditional covariance as

the following

σ̂2
ii(x) =

1
N

N∑
j=1

Kh(xi −Xij)ε
2
ij

1
N

N∑
j=1

Kh(xi −Xij)

, for i = 1, . . . ,M

σ̂ii′(x) = Ĉov(εij , εi′j) =

1
N

N∑
j=1

Kh(x−Xj)εijεi′j

1
N

N∑
j=1

Kh(x−Xj)

, for i, i′ = 1, . . . ,M and i 6= i′,

where Xj ∈ <d is a disjoint union of {Xij} ,h = diag(h1, . . . , hq),Kh(x − Xj) =

|h|−1K
(
h−1(x−Xj)

)
, and Kh(xi −Xij) = |h|−1K

(
h−1(xi −Xij)

)
.
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3.3 Goodness-of-fit

Another important issue about nonparametric regression analysis is goodness-

of-fit. This section proposes two alternative ways to measure the fit of NP SUR models.

Consider the stacked SUR model as the following

y = m(X) + ε

= Z(x)δ(x) + u.

For each equation, we can construct variance decomposition within nonparametric frame-

work as follows

yij = m̂i(xi) + (Xij − xi)m̂(1)
i (xi) + ûij

yij − ȳ = m̂i(xi) + (Xij − xi)m̂(1)
i (xi)− ȳ + ûij

(yij − ȳ)
√
Khi (Xij − xi) =

[
m̂i(xi) + (Xij − xi)m̂(1)

i (xi)− ȳ
]√

Khi (Xij − xi)

+ûij

√
Khi (Xij − xi).

If we can show that the above cross-product term equals zero, then the ANOVA decom-

position can be applied. Notice that the cross-product term

M∑
i=1

N∑
j=1

[
m̂i(xi) + (Xij − xi)m̂(1)

i (xi)− ȳ
]
Khi (Xij − xi) ûij

=
M∑
i=1

N∑
j=1

m̂i(xi)Khi (Xij − xi) ûij +
M∑
i=1

N∑
j=1

(Xij − xi)m̂(1)
i (xi)Khi (Xij − xi) ûij

= 0.

since
N∑
j=1

ûijKhi (Xij − xi) = 0 and
N∑
j=1

ûij(Xij − xi)Khi (Xij − xi) = 0 by the local

linear least squares method. Then the local ANOVA decomposition for nonparametric

regression can be written as

TSS(x) = ESS(x) +RSS(x),
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specifically,

M∑
i=1

N∑
j=1

(yij − ȳ)2Khi (Xij − xi) =
M∑
i=1

N∑
j=1

[
m̂i(xi) + (Xij − xi)m̂(1)

i (xi)− ȳ
]2

·Khi (Xij − xi) +
M∑
i=1

N∑
j=1

û2
ijKhi (Xij − xi) .

Therefore, a local nonparametric goodness-of-fit for SUR system by LLLS can

be defined as

R2(x) = 1− RSS(x)

TSS(x)
=
ESS(x)

TSS(x)

=

M∑
i=1

N∑
j=1

[
m̂i(xi) + (Xij − xi)m̂(1)

i (xi)− ȳ
]2
Khi (Xij − xi)

M∑
i=1

N∑
j=1

(yij − ȳ)2Khi (Xij − xi)
.

For each i regression, we have

R2
i (xi) =

N∑
j=1

[
m̂i(xi) + (Xij − xi)m̂(1)

i (xi)− ȳ
]2
Khi (Xij − xi)

N∑
j=1

(yij − ȳ)2Khi (Xij − xi)
.

Similarly, we can define the local nonparametric goodness-of-fit for our two-step

estimator

δ̂2−step(x) = (R∗′(x)K(x)R∗(x))−1R∗′(x)K(x)
→
y

as

R2
2−step(x) =

M∑
i=1

N∑
j=1

[
υ2

(i−1)N+j

(
m̂i(xi) + (Xij − xi)m̂(1)

i (xi)
)
−−→y

]2
Khi (Xij − xi)

M∑
i=1

N∑
j=1

(−→y ij −−→y )2
Khi (Xij − xi)

,

where υ(i−1)N+j is the diagonal element of P−1, and m̂i(xi) and m̂
(1)
i (xi) are obtained

by our two-step estimator.

Based on local nonparametric goodness-of-fit, the global nonparametric goodness-

of-fit can be written as

R2 = 1− RSS

TSS
=
ESS

TSS
.
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For example, for LLLS estimator, the global ANOVA decompostition incorporates

TSS ≡
∫
χ
TSS(x)dx =

M∑
i=1

N∑
j=1

(yij − ȳ)2
∫
Khi(Xij − xi)dxi,

ESS ≡
∫
χ
ESS(x)dx

=
M∑
i=1

N∑
j=1

∫ [
m̂i(xi) + (Xij − xi)m̂(1)

i (xi)− ȳ
]2
Khi (Xij − xi) dxi,

RSS ≡
∫
χ
RSS(x)dx =

M∑
i=1

N∑
j=1

∫
û2
ijKhi (Xij − xi) dxi.

The corresponding global R2 for the two-step estimator can be obtained in a similar

manner.

Notice that both local and global R2s defined above for the two-step estima-

tor are acturally goodness-of-fit measures for the corresponding transformed models.

In other words, R2 defined for the above two-step estimator measures the fraction of

variation in transformed dependent variables that can be explained by the transformed

model. Also, notice that ANOVA decompositions do not hold for y =Z(x)δ̂2−step(x)+ û.

Therefore, R2 based on ANOVA decomposition is not available for the fitted model,

ŷ =Z(x)δ̂2−step(x).

To propose a goodness-of-fit measure that can explain the fit of original model

estimated by our two-step estimation, we define the following nonparametric R2 estima-

tor based on an indicator function as

R̂2
I,2−step(x) =

1−

M∑
i=1

N∑
j=1

(
yij − Zij(xi)δ̂2−step(xi)

)2

M∑
i=1

N∑
j=1

(yij − ȳ)2

 ·

I

 M∑
i=1

N∑
j=1

(yij − ȳ)2 ≥
M∑
i=1

N∑
j=1

(
yij − Zij(xi)δ̂2−step(xi)

)2

 ,

where I (·) is the indicator function, which makes sure that R̂2
I,2−step(x) takes value

in [0, 1] . Here, the idea of using an indicator function follows Yao and Ullah (2011).
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This R̂2
I,2−step(x) gives the measure for how well the fitted model Z(x)δ̂2−step(x) can

explain the variation in y. The above two types of goodness-of-fit measure provides a

fundamental knowledge that can be used to develop various test based on R2 for NP/SP

SUR system.

3.4 Simulation

In this section, we conduct a small set of Monte Carlo simulations to study the

finite sample properties of LLLS, LLWLSs, τ−type two-step estimator, and our two-step

estimator. For LLWLS, we examine two types of weights, W1(x) = K1/2(x)Ω−1K1/2(x)

and W4(x) = Ω−1/2K(x)Ω−1/2, which are commonly used in literature.

We first generate data from the following data generating processes (DGPs):

DGP1 :


Y1i = φ (X1i, 0.5, 0.15) + U1i

Y2i = φ (X2i, 0.5, 0.15) + U2i

where φ (x, a, b) is the normal density function with mean 0.5 and standard

deviation 0.15. We set {X1i} and {X2i} are mutually independent iid U(0, 1), andU1i

U2i

 ∼ iid N

0

0

 ,

 1 2ρ

2ρ 4


 .

The process {Xi = (X1i, X2i)} is independent of the process {U1i, U2i} . We

consider different choices of ρ : 0,±0.5,±0.9. DGP 1 is designed to compare the finite

sample performance of LLS, LLWLSs, and two-step estimators under the specification

of y = m(X) + u with unconditional error variance-covariance.

DGP2 :


Y1i = X2

1i + U1i

Y2i = exp(X2i)/ (1 + exp(X2i)) + U2i
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where {Xi = X1i = X2i} are standard normal random variables N(0, 1) but

with compact support [−12, 12] . The disturbances are generated asU1i

U2i

 |Xi ∼ iid N


0

0

 , σ2 (Xi)

 1 ρi

ρi 1


 ,

where σ2 (Xi) = 0.25 + X2
i , and ρi = ρ exp (Xi) /(1 + exp (Xi)). We consider

different choices of ρ : 0,±0.5,±0.9. DGP 2 is designed to compare the finite sample

performance of LLS, two-step estimators, and LLWLS estimators under the specification

of y = m(X) + u with conditional error variance-covariance.

For DGP 1, we use cross-validation least squares bandwidth calculated by

LLLS for the estimations of LLLS, LLWLS estimators, and the second step of two-step

estimators. We choose the first step bandwidth for both two-step estimators as one third

of the second step bandwidth. In the first step, a smaller bandwidth than the one in the

second step should be used to eliminate the bias raised from the first step estimation.

The bandwidths used for estimations in DGP 2 are the same as in DGP 1. The

difference from DGP 1 is that in DGP 2 we need choose a bandwidth to estimate the

conditional covariance. Here we use the rule of thumb, i.e., c = 2.12, as the bandwidth

to estimate the conditional covariance. We use 1,000 replications for n = 50, and 500

replications for n = 100 for each DGP.

Table 3.1 on page 66 and Table 3.2 on page 67 list the results for DGP 1 for

n = 50, 100, separately. Both tables report the estimation with true parameters and with

estimated parameters in variance-covariance matrix. The finite sample performance is

evaluated in terms of absolute bias and mean squared errors. In DGP 1 we assume

homoskedasticity within each equation, and a correlation across two equations. The

findings in Table 1 are summarized as the followings. First, we can obviously see that

our two-step estimator generally outperforms other types of estimators in the sense of

62



having smallest absolute bias and mean squared errors, only except for the cases with

ρ = ±0.9, and the case when ρ = 0.5 and using true parameters in estimation, in which

τ two-step estimator performs the best. Second, the two types of two-step estimator

perform better than LLLS and two different weighted LLWLS. Third, comparing LLWLS

with LLLS, we find that these two commonly used LLWLS estimators do not have

consistent efficiency gain over LLLS in these settings. It is worth mention that when

there is no correlation across equations, local linear weighted estimators have the same

performance as LLLS when using the true variance-covariance in estimation and have

lager absolute bias and MSE when using estimated variance-covariance. This simulation

result is consistent with the theoretical findings in Welsh and Yee (2006), and also it

is consistent with the situation within the parametric SUR framework. As we know,

under the parametric SUR system, if there is no correlation across equations, the GLS

estimator doesn’t gain any efficiency over the least squares. That is, without correlation,

estimating SUR jointly is equal to estimating each equation separately in parametric

framework.

Table 3.2 on page 67 also gives the simulation results for DGP 1 with sample

size n = 100. First, we can observe that larger sample size better performances for

all estimators, by comparing Table 3.2 with Table 3.1. Second, we find that LLWLS

with two different weights tend to outperform over LLLS in the sense of having lower

MSE for most of cases. For the case with no correlation and using true variance-

covariance, we can still see the consistent result as Table 3.1, i.e., LLLS and two types

of weighted local linear estimators have the exactly same performance. Also, LLWLS

with W4(x) = Ω−1/2K(x)Ω−1/2 has better performance than LLWLS with W1(x) =

K1/2(x)Ω−1K1/2(x). Third, when using estimated variance-covariance in estimation,

our two-step estimator always has the best performance among these five estimators
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in terms of both absolute bias and MSE. When using the true variance-covariance in

estimation, τ−type two-step estimator works best for the case with ρ = ±0.9. Under

other cases, our two-step estimator still beats other estimators. Fourth, similarly as

Table 3.1 shows, these two types of two-step estimators have better performance than

LLLS and two different weighted LLWLS.

In order to compare the performance of all these five estimators for the case

with conditional covariance, we propose DGP 2. The results for n = 50, 100, and

ρ = 0,±0.5,±0.9 are reported in Table 3.3 on page 68. We find that our two-step

estimator has the smallest absolute biases and lowest MSEs for all cases, and τ−two-

step performs better than LLLS, and LLWLSs. An interesting finding here is that LLLS,

and LLWLSs with different weights have the same performance. The reason behind is

that all nonparametric estimators give local estimates for given evaluated point x. By the

design of DGP 2, the conditional variance-covariance will become homoskedastic given

particular x. As Welsh and Yee (2006) indicated, if ρ(x) = ρ, estimating the system

jointly doesn’t have any efficiency gain over estimating the system marginally. Also, in

section (3.2.1.3), we have shown that if the system has identical explanatory variables,

LLWLS is equivalent to LLLS. Hence, it is not surprised to see that LLLS and LLWLS

perform the exact same in DGP 2. According to the simulation results in Table 3.1,

Table 3.2, and Table 3.3, two-step estimators outperform LLLS, and LLWLSs. And our

two-step estimator generally has the best performance.

3.5 Concluding Remarks

The aim of this chapter is to contribute the theoretical advances for nonpara-

metric and semiparametric SUR system. The main contributions include the follow-
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ings. First, we study the asymptotic properties of LLLS and our two-step estimator for

both unconditional error variance-covariance and conditional error variance-covariance

cases, and also further discuss the properties of different types of LLWLS proposed in

the literature. Second, we introduce various popular nonparametric or semiparametric

models in cross-sectional or panel data framework into SUR system, and provide effi-

cient estimation procedures for these various specifications. Third, the nonparametric

goodness-of-fit measures are defined for the nonparametric SUR models, which can be

used as a fundamental knowledge to develop a series of hypothesis testing based on R2.

The current chapter doesn’t give the asymptotic properties for the proposed estimation

of various popular specifications. The related works are worth being developed in the

future.
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Table 3.1: DGP 1 with n = 50

sample size n = 50 No Estimation With Esitmation

Correlation size (ρ) Estimators Abs. Bias MSE Abs. Bias MSE

0 LLLS 4.2098 1.8972 4.1602 1.8370
LLWLS(W1(x)) 4.2098 1.8972 4.1827 1.8605
LLWLS(W4(x)) 4.2098 1.8972 4.1824 1.8593
τ−two-step 4.1822 1.8600 4.1264 1.7975

two-step 4.1762 1.8504 4.1168 1.7867

0.5 LLLS 4.1831 1.8649 4.2144 1.8972
LLWLS(W1(x)) 4.2010 1.8930 4.2049 1.8881
LLWLS(W4(x)) 4.1993 1.8883 4.2017 1.8814
τ−two-step 4.1408 1.8213 4.1632 1.8396

two-step 4.1417 1.8181 4.1587 1.8320

0.9 LLLS 4.1932 1.8950 4.1327 1.8399
LLWLS(W1(x)) 4.2013 1.8911 4.1142 1.8034
LLWLS(W4(x)) 4.1909 1.8702 4.1058 1.7872
τ−two-step 4.1197 1.8095 4.0616 1.7618

two-step 4.1393 1.8241 4.0736 1.7726

-0.5 LLLS 4.1841 1.8622 4.1546 1.8304
LLWLS W1 4.3190 2.0149 4.1482 1.8186
LLWLS W2 4.3194 2.0135 4.1461 1.8141
τ−two-step 4.1954 1.8612 4.1102 1.7740

two-step 4.1905 1.8534 4.1054 1.7699

-0.9 LLLS 4.1561 1.8494 4.2411 1.9442
LLWLS W1 4.1356 1.8230 4.1812 1.8841
LLWLS W2 4.1282 1.8079 4.1744 1.8711
τ−two-step 4.0887 1.7573 4.1694 1.8513

two-step 4.1093 1.7753 4.1812 1.8629
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Table 3.2: DGP 1 with n = 100

sample size n = 100 No Estimation With Esitmation

Correlation size (ρ) Estimators Abs. Bias MSE Abs. Bias MSE

0 LLLS 3.9918 1.6571 4.0114 1.6806
LLWLS W1 3.9918 1.6571 4.0170 1.6885
LLWLS W2 3.9918 1.6571 4.0149 1.6856
τ−two-step 3.9378 1.5975 3.9478 1.6131

two-step 3.9189 1.5772 3.9217 1.5868

0.5 LLLS 3.9294 1.5943 3.9444 1.5981
LLWLS W1 3.9522 1.6149 3.9609 1.6159
LLWLS W2 3.9321 1.5891 3.9420 1.5917
τ−two-step 3.8696 1.5384 3.8760 1.5327

two-step 3.8594 1.5269 3.8584 1.5150

0.9 LLLS 3.9841 1.6490 3.9923 1.6593
LLWLS W1 3.9918 1.6605 3.9631 1.6243
LLWLS W2 3.9318 1.5818 3.9070 1.5532
τ−two-step 3.9004 1.5659 3.8874 1.5550

two-step 3.9098 1.5700 3.8816 1.5469

-0.5 LLLS 4.0090 1.6915 3.9761 1.6426
LLWLS(W1(x)) 3.9629 1.6383 3.9608 1.6275
LLWLS(W4(x)) 3.9536 1.6253 3.9518 1.6154
τ−two-step 3.9539 1.6210 3.9091 1.5671

two-step 3.9468 1.6119 3.8898 1.5487

-0.9 LLLS 4.0086 1.6815 3.9933 1.6783
LLWLS(W1(x)) 3.9603 1.6378 3.9317 1.6117
LLWLS(W4(x)) 3.9258 1.5881 3.9024 1.5710
τ−two-step 3.9235 1.5774 3.9093 1.5711

two-step 3.9280 1.5818 3.9005 1.5610
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Table 3.3: DGP 2 with n = 50, 100

n=50 n=100

Correlation size (ρ) Estimators Abs. Bias MSE Abs. Bias MSE

0 LLLS 2.7383 1.1676 2.5591 1.0625
LLWLS(W1(x)) 2.7387 1.1676 2.5591 1.0625
LLWLS(W4(x)) 2.7387 1.1676 2.5591 1.0625
τ−two-step 2.7203 1.1613 2.5369 1.0557

two-step 2.6942 1.1532 2.5059 1.0477
0.5 LLLS 2.7192 1.1497 2.5506 1.0476

LLWLS(W1(x)) 2.7193 1.1497 2.5506 1.0476
LLWLS(W4(x)) 2.7192 1.1497 2.5506 1.0476
τ−two-step 2.6997 1.1424 2.5276 1.0399

two-step 2.6699 1.1332 2.4949 1.0304
0.9 LLLS 2.7486 1.1751 2.5544 1.0490

LLWLS(W1(x)) 2.7486 1.1751 2.5544 1.0490
LLWLS(W4(x)) 2.7486 1.1751 2.5544 1.0490
τ−two-step 2.7321 1.1667 2.5323 1.0390

two-step 2.6987 1.1542 2.4936 1.0253
-0.5 LLLS 2.7299 1.1613 2.5632 1.0575

LLWLS(W1(x)) 2.7300 1.1614 2.5632 1.0575
LLWLS(W4(x)) 2.7300 1.1613 2.5632 1.0575
τ−two-step 2.7090 1.1540 2.5419 1.0501

two-step 2.6800 1.1454 2.5119 1.0413
-0.9 LLLS 2.7681 1.1880 2.5553 1.0435

LLWLS(W1(x)) 2.7681 1.1880 2.5553 1.0435
LLWLS(W4(x)) 2.7681 1.1880 2.5553 1.0435
τ−two-step 2.7472 1.1791 2.5295 1.0327

two-step 2.7125 1.1669 2.4891 1.0191
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Chapter 4

Return on Public Capital in U.S.:

An Application

4.1 Introduction

In order to provide a practical example for applying our newly proposed method

to a real data setting, this section is devoted to revisit the relationship between public

capital and regional economic performance. The debate on the role of public capital

has caused extensive attentions from economists. There are substantial works studying

the relationship between public capital and regional economic performance within the

United States. To sum up, the empirical works have reached three different conclusions.

Some scholars conclude that the public capital played a positive and significant role in

effecting the regional productivity, see, for example, Munnell (1990). Some economists

hold an opposite conclusion that that the public infrastructure had significant but neg-

ative effects on private productivity (see, e.g., Evans and Karras (1994)). The third

type of argument is that the contribution of the public infrastructure to private sector is

statistically insignificant (see, e.g., Holtz-Eakin (1994) and Baltagi and Pinnoi (1995)).
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Notice that the extensive empirical analysis is conducted within the parametric frame-

work by assuming a particular production function and constant elasticity across all the

states and all the years.

As we know, nonparametric method has two big advantages compared with

parametric regression analysis. One is that the former is free from the notorious function

misspecification issue. The other is that nonparametric regression estimation provides

local estimates so that we can clearly examine the changing pattern in returns to in-

puts across all states and years. Even though there are some big advantages in using

nonparametric analysis, very few works on this topic employ nonparametric methods,

see, for instance, Henderson and Ullah (2008). By utilizing the discussed nonparametric

techniques in the previous chapters, we examine the role of public capital in affecting

the regional economic performance. The data employed here is the widely used data set

from Munnell (1990), which incorporates a panel data of U.S. 48 contiguous states over

the period of 1970-1986.

4.2 Model Specification and Estimation

To provide detailed analysis, we adopt the following three nonparametric mod-

els:

1. Model 1 is conventional nonparametric one-way random effect model for all U.S.

48 contiguous states, which actually is a special case of the NP SUR model with

error components discussed in chapter 3 with M = 1, and two error components.

It is specified as

Yit = m(KGit,KPRit, Lit, UNEMit) + αi + εit, i = 1, · · · , 48, t = 1, · · · , 17,

where Yit denotes the GDP of state i in period t, KG denotes public capital,
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KPR is the private capital stock, L is employment, and UNEM stands for the

unemployment rate used to control for business cycle effects as commonly used

in the literature. All variables in the model except for UNEM are measured in

logarithms. This model is an analogue to the parametric setting in Baltagi and

Pinnoi (1995).

2. Model 2 is NP SUR model with three error components with M = 2. The model

has the following form

Yit,j = mj(KGit,j ,KPRit,j , Lit,j , UNEMit,j) + αi,j + vt,j + εit,j ,

i = 1, · · · , 24, t = 1, · · · , 17, j = 1, 2.

In order to apply this model to the data set, we divide 48 states into two regions,

low productivity region (j = 1) and high productivity region (j = 2), according to

the states’ ranking in terms of 1986 gross state product. By doing so, each region

has 24 states. The states within the same productivity region may have similar

behavior. Under these settings, we estimate these two groups jointly.

3. Model 3 is estimating nonparametric one-way random effect model for each region

separately. The model specification is as model 1. The only difference is that we

are using 24 states for each region, and estimate each group separately.

To compare with parametric results, this chapter also estimates the following

parametric random effect model which follows Baltagi and Pinnoi (1995),

Yit = β1KGit + β2KPRit + β3Lit + β4UNEMit + αi + εit, i = 1, · · · , 48, t = 1, · · · , 17.

All variables in the above parametric and nonparametric models are measured in log-

arithms with only one exception of UNEM . Therefore, the coefficients of KG, KPR,
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and L are elasticities in parametric settings. The derivatives of KG, KPR, and L in

nonparametric settings are local elasticities.

We use our two-step estimation to estimate the above three nonparametric

models. The second order Epanechnikov kernel is used in nonparametric random ef-

fect analysis. The second order Gaussian kernel is used in the first step of NP SUR

analysis, and in the second step, we still use the second order Epanechnikov kernel.

The rule-of-thumb bandwidth is used throughout the nonparametric analysis. As we

know, in nonparametric analysis, kernel function doesn’t play an important role, but

the bandwidth does. So the latter should be chosen cautiously. All the bootstrapped

standard errors are calculated from 500 repetitions which are given in parenthesis under

the estimates. In model 1 and model 3, σ2
α and σ2

ε are estimated by using the consistent

estimators proposed in Ruckstuhl, Welsh, and Carroll (2000 p. 61). For model 2, the

variance-covariance is estimated by the method in Avery (1977).

4.3 Empirical Analysis

The estimation results for mean and median elasticity across all 48 states over

the time period are reported in Table 4.1 on page 79. The estimated mean and median

elasticity for low productivity region and high productivity region are listed in Table 4.2

on page 79.

From Table 4.1, we have the following findings: (1) All three models give statis-

tically significant public capital elasticity, private capital elasticity, and labor elasticity.

Although the magnitude of public capital elasticity is smaller than the private capital,

it is nonnegligible. (2) Model 2 gives very similar results to those obtained by model

1, and model 3 tends to give smaller public capital elasticity and larger private capital
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elasticity than the other two models. (3) By adding up the elasticity of public capital,

private capital, and labor for all three models, the sum of elasticity is a bit larger than 1,

which might suggest increasing returns to scale. In addition, the estimated correlations

for the error components across two regions in model 2 are ĉorr(αi,1, αi,2) = 0.2897,

ĉorr(vt,1, vt,2) = 0.8576, and ĉorr(εit,1, εit,2) = −0.0129, for i = 1, · · · , 24, t = 1, · · · , 17.

These results suggest that the correlations across two regions for individual error compo-

nent and time error component should be considered. Hence, it should be more efficient

to use the NP SUR model (model 2) to estimate these two regions jointly than using

NP random effect model to estimate each region separately. This may also give the

explanation that model 1 and model 2 have very close results, but model 3 has some-

how discrepancy. Also, comparing the bootstrapped standard errors in the parenthesis

under the estimates, we can find that in general model 2 has the smallest bootstrapped

standard errors, and model 3 has the largest standard errors. The explanation behind

this perhaps is that model 2 and model 3 divide 48 states into two regions according to

productivity, and the states may have more common behaviors with the ones in the same

region than those in the other region. And model 2 estimates the two regions jointly by

using NP SUR with error components, which not only incorporate the common behavior

of the states within each region, but also consider the associations across two regions.

The estimated correlations for the error components across two regions in model 2 also

confirm that the associations across two regions shouldn’t be ignored.

Table 4.2 compares the mean and median elasticity across low productivity

region and high productivity region. First, from model 2, we can obviously see that

the high productivity region has larger mean/median elasticity of public capital, larger

mean/median elasticity of labor, and smaller mean/median elasticity of private capital

than the low productivity region. These results are consistent with that public capital
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and labor are complements, but public capital and private capital are substitutes. Sec-

ond, all the mean/median elasticities of KG, KPR, and L are statistically significant

at 10% level with the only exception of the mean elasticity of KG for high productivity

region in model 3. Third, similarly with the results given in Table 4.1, here model 3

doesn’t give very close results to model 2. Comparing the estimates for low produc-

tivity region and the ones for high productivity region in model 3, we can still observe

that higher mean/median elasticity of public capital in high productivity region, higher

mean/median labor elasticity, and lower mean/median private capital elasticity, which

is consistent with Table 4.1 and the literature. Additionally, generally we can see the

lower bootstrapped standard errors in model 2 compared to model 3, which implies that

incorporating the correlations across two regions into estimation improves the efficiency

of estimator.

To compare with parametric analysis, we also estimate the parametric ran-

dom effect model. The estimated elasticities of KG, KPR, and L are 0.0044, 0.3105,

and 0.7297, respectively. The standard deviation of the estimated elasticity of KG is

0.0234, which shows KG is statistically insignificant. The standard deviations of the

estimated elasticity of KPR and L are 0.0198 and 0.0249, respectively. KPR and L

are statistically significant. Obviously, all the nonparametric results are different from

the parametric results. First, according to nonparametric analysis the public capital

has positive and significant effect on state GDP. However, the parametric results show

the tiny magnitude of the estimated elasticity of public capital and its insignificance.

Second, the estimated elasticities of KPR and L obtained in the parametric regres-

sion are larger than those obtained in nonparametric analysis. Third, note that by the

parametric random effect model, we assume the constant elasticity across all the states

and over the entire period, which is irrealistic in reality. However, the nonparametric
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analysis provides local estimation. Hence, the latter can reveal more information than

the former does.

In order to picture the changes in the elasticity of public capital over the time

period and the differences among states, we plot figure Figure 4.1- 4.4 on pages 80 - 83

to help us know deep information behind the regression estimations. Figure 4.1 plot

the mean elasticity of public capital across states over 1970-1986 obtained from three

models. The solid line is for model 1, the line with dots denotes model 2, and the line with

triangles is the elasticity from model 3. The shaded area indicates the recession periods

according to NBER. From Figure 4.1, we can see that the mean elasticity of public

capital changes over the time, and three models give a consistent result that elasticity

increases during recessions, and decreases when the economy started recovering. In

addition, Figure 4.1 clearly shows that model 1 and model 2 give very similar results,

but model 3 has discrepancy from them. As mentioned earlier, the reason behind maybe

in that model 1 and model 2 estimate 48 states jointly, i.e., the connections among these

48 states are incorporated into the estimation of these two models. However, model 3

estimates two regions separately, so the associations among the states from two different

regions are ignored. Since model 1 and model 2 give very close results, we only report

the estimations obtained from model 1 in the following figures 4.2- 4.4.

Figure 4.2 plots the mean elasticity of public capital for California, New York,

South Dakota, and Wyoming. First, Figure 4.2 shows that the elasticity is not constant

over the time period of 1970-1986. Second, Figure 4.2 presents the same pattern as

Figure 4.1 shows, that is, during the recession periods these four states all have increasing

public capital elasticity. This same pattern revealed by Figure 4.1 and Figure 4.2 implies

that the government investment on infrastructure during recessions has positive effect

on economic productivity. In other words, the fiscal policy indeed plays a positive role
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in spurring the economy during recession periods. Also, we notice that shortly after

each recession period, the elasticity of public capital falls. This may because that after

the economy steps out of the recession, the private sector becomes strong, and private

capital increases. As a result, the public capital elasticity decreases, which may due to

the substitutes effect between public capital and private capital. Third, it is clear to

see that both California and New York have positive returns over the studied period.

However, South Dakota has consistent negative returns over 1970-1986, and Wyoming

has negative returns in most of years.

Figure 4.3 presents the mean elasticity of public capital over 1970-1986 for all

48 states. From Figure 4.3, Montana, New Mexico, North Dakota, South Dakota, and

Wyoming have negative returns to public capital on average. North Dakota and South

Dakota are from plains, Montana and Wyoming are from rocky mountain region, and

New Mexico is from southwest, according to BEA regions. To explore the reason behind

these negative returns, we further examine the original data set. From the original data,

we calculate the ratio of public capital to GSP and the public capital per labor. We

find that the ratios of public capital to GSP for these states with negative returns are

higher than the average of the ratios across states, with the only exception of Wyoming,

which has a little bit lower ratio (0.42) than the average of ratios (0.45). And South

Dakota has the highest ratio (0.65) among all 48 states. By examining the public capital

per labor, these five states all have higher levels than the average of public capital per

labor across states (15.3). Specifically, Wyoming (26.0) has the highest level, and South

Dakota (21.8) is the second to the highest level. The literature has shown the public

capital and labor are complements. Hence, the higher levels in public capital per labor

for those states with negative public returns may imply the less efficiency in utilizing

the public capital. The information from the data gives an explanation that Wyoming
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has the highest negative returns to public capital among 48 states, and South Dakota

has the second highest negative returns to public capital.

Figure 4.4 provides the picture for the elasticity of public capital for all 48

states in 1970, 1982, and 1986. The line with one dot in-between denotes the year 1970,

the solid line indicates the year 1982, and the line with two dots in-between stands for

the year 1986. Figure 4 tells that for most of states the elasticity of public capital in year

1982 is higher than in the years 1970 and 1986. One may be curious on what happened

in the U.S. economy around 1982. In the early 1980s, the U.S. economy suffered a

severe recession, which had being widely characterized as a ”W-shaped” (also known as

”double dip”) recession. According to NBER, there were two recessions recorded in the

early 1980s. The U.S. economy first stepped into recession in January 1980, followed by

a short period of recovering from August 1980 to June 1981, and then dipped back into

a severer recession for the period of July 1981-November 1982.1 Combined Figure 4.4

with Figure 4.1 in which the mean elasticity across states reached the highest level in

1982, our estimation results suggest that the public capital played the most efficient role

for the majority of states in the most serious recession during the examined years.

4.4 Concluding Remarks

In this section, we apply the newly developed two-step nonparametric estima-

tion method in chapter 2 and chapter 3 to a real data setting. The relationship between

public capital and regional economic performance in U.S are analyzed by using nonpara-

metric random effect model and SUR model with error components. To sum up, there

are three interesting findings. The last two findings can only obtained by nonparametric

method. The first finding is that the public capital plays an effective role in economic

1Source: NBER
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performance because the elasticity of public capital in US is positive and significant. The

last two findings are: one is that the elasticity of public capital across states increases

when the U.S. economy stepped into the recessions, and decreases when the economy

started booming. This finding implies the government plays a more effective role during

the recession periods than the normal periods. The other is that five states in U.S. have

negative returns on public capital. By further examining the data, I find that the ratio

of public capital to state GDP and the public capital per labor for these five states are

much higher than the rest of states. These imply that these five states overinvest on the

infrastructure and inefficiency in using the public capital. Nonparametric can provide

us these stories as it gives local estimates for elasticity of public capital for each state

at any particular year, whereas parametric estimation cannot.
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Table 4.1: Mean and median elasticity across states

KG KPR L UNEM

Model 1
mean elasticity 0.1314 0.2852 0.6326 -0.0041

(0.0510) (0.0265) (0.0420) (0.0036)
median elasticity 0.1550 0.2742 0.6501 -0.0027

(0.0433) (0.0257) (0.0339) (0.0040)
Model 2
mean elasticity 0.1313 0.2836 0.6342 -0.0042

(0.0328) (0.0181) (0.0280) (0.0027)
median elasticity 0.1530 0.2696 0.6523 -0.0030

(0.0271) (0.0183) (0.0219) (0.0030)
Model 3
mean elasticity 0.1049 0.3094 0.6589 -0.0055

(0.0447) (0.0481) (0.0846) (0.0125)
median elasticity 0.1358 0.3646 0.5902 -0.0059

(0.0723) (0.0524) (0.0280) (0.0033)

Table 4.2: Mean and median elasticity for two regions

KG KPR L UNEM

Low Productivity Region
Model 2
mean elasticity 0.0911 0.3083 0.6274 -0.0035

(0.0539) (0.0227) (0.0315) (0.0033)
median elasticity 0.1214 0.2899 0.6457 -0.0021

(0.0341) (0.0207) (0.0236) (0.0034)
Model 3
mean elasticity 0.1051 0.3812 0.5604 -0.0040

(0.0538) (0.0398) (0.0415) (0.0043)
median elasticity 0.1267 0.3839 0.5422 -0.0039

(0.0528) (0.0330) (0.0398) (0.0047)
High Productivity Region

Model 2
mean elasticity 0.1715 0.2590 0.6409 -0.0048

(0.0395) (0.0249) (0.0452) (0.0036)
median elasticity 0.1765 0.2579 0.6599 -0.0040

(0.0372) (0.0244) (0.0329) (0.0039)
Model 3
mean elasticity 0.1047 0.2376 0.7574 -0.0070

(0.0797) (0.0909) (0.1629) (0.0251)
median elasticity 0.1543 0.2786 0.6610 -0.0080

(0.0461) (0.0352) (0.0424) (0.0045)
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Figure 4.3: Elasticity of Public Capital across States
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Chapter 5

Approximate Moments of Mean

Reversion Parameter Estimator

in Continuous Time Gaussian and

Lévy Processes ∗

5.1 Introduction

In recent years, an extensive literature has developed on using diffusion pro-

cesses to model the dynamic behavior of financial securities. For example, Vasicek (1977)

used the following Ornstein-Uhlenbeck (OU) process to model the spot interest rate,

dXt = κ(µ−Xt)dt+ σdBt, (5.1)

where Bt is a standard Brownian motion. This is a Gaussian Markov process and

possesses a stationary distribution when κ > 0. In this case, κ captures the rate of

∗This chapter is a joint work with Dr. Aman Ullah and Dr. Jun Yu
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convergence towards its long term mean, µ. Tang and Chen (2009) considered a more

general form of a Brownian motion based continuous time model (i.e. diffusion process),

dXt = κ(µ−Xt)dt+ σ(Xt; θ)dBt, (5.2)

where σ(Xt; θ) is the diffusion function of Xt at time t. If σ(Xt; θ) = σ
√
Xt, the diffusion

process becomes the CIR model (Cox, Ingersoll, and Ross, 1985 ). A even more general

diffusion process is given by,

dXt = µ(Xt; θ)dt+ σ(Xt; θ)dBt, (5.3)

with a general drift function µ(Xt; θ). An important special case is when µ(Xt; θ) = µXt

and σ(Xt; θ) = σXt. Black and Scholes (1973) used it to model the spot price of a stock.

All these processes are Brownian-motion based. Under some smoothness con-

ditions on the drift function and the diffusion function, the sample path generated from

Xt is continuous everywhere. In recent years, however, it has been reported strong evi-

dence of infinite activity jumps in financial variables; see, for example, Aı̈t-Sahalia and

Jacod (2008). To capture the infinite activity jumps, continuous time Lévy processes

have become increasingly popular and various Lévy models have been developed in the

asset pricing literature (see for example, Barndorff-Nielsen (1998), Madan, Carr and

Chang (1999), Carr and Wu (2003)).

In practice, one can only obtain the observations at discrete time points from

a finite time span. Let T be the time span, h the sampling interval, and n (= T/h)

the number of observations. Hence, T < ∞ and h > 0. Based on discrete time ob-

servations, different methods have been used to estimate the continuous time models.

Phillips and Yu (2009c) provided an overview of some widely used estimation methods.

When the drift function is linear and slowly mean reverting, it is found that there is

serious estimation bias in the mean reversion parameter, κ, by almost all the methods.
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Because this parameter is of important implications for asset pricing, risk management

and forecasting, how to accurately estimate this parameter has received considerable

attentions in the literature. For example, Yu (2009) approximates the bias of the maxi-

mum likelihood estimator (MLE) of κ when the long run mean is known and the initial

condition is the marginal distribution under the Gaussion OU process. Tang and Chen

(2009) approaximates the bias of MLE of κ when the long run mean is unknown un-

der the Gaussion OU process and the CIR model. To reduce the estimation bias of κ,

Phillips and Yu (2005) proposed the jackknife method. While the jackknife increases

the variance, a carefully designed jackknifing procedure can offer substain improvement

in reducing the bias, leading to a decrease in the root mean square errors (RMSE). To

further reduce RMSE, Phillips and Yu (2009b) proposed the indirect inference method

while Tang and Chen (2009) proposed a parametric bootstrapping method. These two

methods are simulation-based and hence numerically more demanding.

The difficulty in the estimation of κ̂ is not unexpected because it is related

to the finite sample bias problem well documented in the discrete time literature; see,

for example, Kendall (1954). However, the magnitude of the bias in κ̂ is very large in

practically relevant cases to the U.S. data so that the implications for the bias become

very important. For example, Phillips and Yu (2005) showed that the bias of maximum

likelihood estimator for κ in the CIR model can be over 200% even though 25 years of

data were used (regardless of the sample frequency). They further reported evidence

that the bias in the drift term estimation are even worse than that caused by the

discretization and even that caused by a misspecification of the diffusion function. The

simulation results of Phillips and Yu (2005) and Tang and Chen (2009) show that the

bias of the long run mean (µ) and parameters in the diffusion function are virtually zero.

For instance, in the stationary Vasicek model, as Tang and Chen (2009) showed, the
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bias of κ̂ is up to O(T−1), while the bias of σ and µ is O(n−1) and O(n−2), respectively,

as T →∞ with h is fixed.

While the bias in κ̂ has been well studied in the continuous time diffusion

process, to the best of our knowledge, nothing has been reported on the bias in κ̂ in the

continuous time Lévy process. The objective of this chapter is to approximate the bias

of κ̂ under the Lévy measure, then study the effects of nonnormality on the estimation

bias. Quasi maximum likelihood (QML)/OLS is used to estimate κ which makes it

feasible the analytical expression for κ̂. We present the results on the bias under the

assumption where the error term follows a non-Gaussian distribution with finite first

eight moments. It is found that the kurtosis has a negative effect on the bias of κ̂. The

skewness has a positive (positive) effect on the bias of κ̂ if the distribution has negative

(positive) skewness. In addition, under the Gaussian OU process the initial condition

has non-monotonic effect on the bias of κ̂ and the bias of κ̂ is a monotonically increasing

function of the diffusion parameter, σ. A bias corrected estimator of κ̂ is proposed. The

simulation results show that our proposed estimator generally performs well in terms

of bias and the root mean square error, especially, when κ is small. Small values of

κ correspond to the near unit root situation and is empirically relevant for financial

variables in the U.S., such as interest rates and volatility.

The structure of this chapter is as follows. In Section 2, we introduce a con-

tinuous time Lévy process and derive the bias of κ̂. Section 3 derives the bias of κ̂ in a

higher order term. Section 4 reports the simulation results. Section 5 concludes.
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5.2 Parameter Estimation for Lévy Processes

5.2.1 Continuous Time Lévy Process

As argued before, while the diffusion processes are very useful, empirical evi-

dence of infinitely active jumps has been found in data. In this chapter we extend the

Gaussian OU model of Vasicek to a Lévy-based OU model:

dXt = κ (µ−Xt−) dt+ σdLt, (5.4)

where (Lt)t≥0 is a Lévy process defined on (Ω,Θ, {Θ}, P ) with L0 = 0 and satisfies the

following three properties:

1. Independent increments: for every increasing sequence of times t0, . . . , tn the ran-

dom variables Xt0 , Xt1 −Xt0 , . . . , Xtn −Xtn−1 are independent;

2. Stationary increment: the law of Xt+h −Xt is independent of t;

3. Stochastic continuity: for all ε > 0, limh→0 P (|Xt+h −Xt| ≥ ε) = 0. For a given

t, the probability of seeing a jump at t is zero. In other words, jumps happen at

random times.

Obvisouly, the Brownian motion is a special case of the Lévy process and,

hence, the Vasicek model is a special case of Model (5.4). Other well known examples

include the Poisson process, the gamma process, the variance gamma process, and the

α-stable process. While the Brownian motion has a continuous sample path, it does

not allow for any jumps. The Poisson process allows for jumps. However, the jump is

of finite activity. General Lévy processes allow an infinite number of jumps within any

time interval. Also, general Lévy processes allow non-Gaussian increments.

Protter (1990, Theorem 7) showed that the unique solution exists for Model

(5.4). If µ = 0 and is known a priori, Model (5.4) becomes
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dXt = −κXt−dt+ σdLt. (5.5)

Based on the Ito’s lemma, the exact discrete time model of (5.5) is given by,

Xih = exp(−κh)X(i−1)h + σ

√
1− exp(−2κh)

2κ
εi, (5.6)

where the distribution of εi depends on the specification of the Lévy measure L(t). This

is a discrete time AR(1) model with a possibly non-Gaussian error term. When L(t) is

the Brownion motion, εi ∼ N(0, 1). If L(t) is the variance gamma process of Madan and

Seneta (1990) (i.e. L(t) = B(γ(t; 1, ν)) where γ(t; 1, ν) is a gamma distribution with

mean 1 and variance ν), then εi follows the variance gamma distribition whose density

and the moment generate function are given by,

f(x) =

∫ ∞
0

1√
2πg

e−x
2/(2g) g

1/ν−1e−g/ν

Γ(1/ν)ν1/ν
dg, (5.7)

and

mgf(u) =
(
1− νu2/2

)−1/ν
, (5.8)

where Γ is the gamma function. The variance gamma distribution is conditional Gaus-

sian given that the conditional variance is distributed as a gamma variate whose mean is

1 and variance is ν. It is known that, for the variance gamma distribution, the moments

of all orders exist with the mean 0, the variance 1, and the kurtosis 3 + 3ν. Since the

excess kurtosis is determined by the parameter ν, ν measures the degree of tail thickness.

If Lt = Bt and X0 = x0. the exact discrete time model of (5.4) is

Xih = φX(i−1)h + µ(1− e−κh) + σ

√
1− e−2κh

2κ
εi, εi ∼ N(0, 1), X0 = x0, (5.9)

where φ = e−κh. When κ → 0 or h → 0, φ → 1 and Equation (5.9) has a unit root in

the limit. To simplify notation, we write Xih as Xi. The transition density in Equation

89



(5.9) is

Xi | Xi−1 ∼ N
{
Xi−1e

−κh + µ(1− e−κh),
1

2κ
σ2(1− e−2κh)

}
, (5.10)

facilitating the maximum likelihood (ML) estimation, or equivalently ordinary least

squares (OLS) estimation of κ,

κ̂ = − ln φ̂

h
with φ̂ =

n−1
∑n

i=1XiXi−1 − n−2
∑n

i=1Xi
∑n

i=1Xi−1

n−1
∑n

i=1X
2
i−1 − n−2 (

∑n
i=1Xi−1)2 . (5.11)

Taking the Taylor expansion to the second order, we obtain

κ̂ = − lnφ

h
− 1

h

(
φ̂− φ
φ

)
+

1

2h

(
φ̂− φ
φ

)2

+ op(T
−1),

κ̂− κ = −1

h

(
φ̂− φ
φ

)
+

1

2h

(
φ̂− φ
φ

)2

+ op(T
−1),

E(κ̂)− κ = − 1

hφ
E
(
φ̂− φ

)
+

1

2hφ2
E
(
φ̂− φ

)2
+ o(T−1)

= −Bias(φ̂)

hφ
+
MSE(φ̂)

2hφ2
+ o(T−1), (5.12)

where MSE(φ̂) = E
(
φ̂− φ

)2
represents the mean square errors (MSE) of φ̂.

For general Lévy processes, the transition density is not Gaussian any more.

As a result, φ̂ and, hence, κ̂ is not the MLE. However, φ̂ and κ̂ are the QMLEs and

can be obtained by OLS. Although the QML/OLS is not as efficient as the ML, it is

analytically more tractable. To approximate the bias of κ̂, we follow Bao and Ullah

(2010) and make the same assumptions about εi. In particular, we assume εi is i.i.d

and follows a distribution with eight moments:

m1 = 0,m2 = 1,m3 = γ1,m4 = γ2 + 3, (5.13)

m5 = γ3 + 10γ1,m6 = γ4 + 15γ2 + 10γ2
1 + 15,

m7 = γ5 + 21γ3 + 35γ2γ1 + 105γ1,

m8 = γ6 + 28γ4 + 56γ3γ1 + 35γ2
2 + 210γ2 + 280γ2

1 + 105,
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where γ1 and γ2 are the Pearson’s measures of skewness and kurtosis of the distribution

and γ1, . . . , γ6 can be regarded as measures for deviation from normality. For a normal

distribution, γ1, . . . , γ6 all equal 0.

5.2.2 Bias approximation when the long run mean is known

When µ = 0 and it is known, the exact discrete time model of the Lévy process

is,

Xih = φX(i−1)h + σ

√
1− e−2κh

2κ
εi. (5.14)

Bao and Ullah (2007 , 2010) and Bao (2007) give the approximate bias and

the MSE of the OLS estimator for the AR(1) model without intercept but with a non-

Gaussian error term:

Bias(φ̂) = −2φ

n
+ o(n−1)

MSE(φ̂) =
1− φ2

n
+

1

n2

[
14φ2 − 1− (1− φ2)x2

0

σ2
0

− 4γ1φ(1− φ2)2

1− φ3
− γ2(1− φ2)

]
+o(n−2),

where x0 is fixed. In the Guassian case, εt ∼iidN(0, 1), we have, for fixed x0,

E(κ̂− κ|x0) = − 1

hφ

(
−2φ

n

)
+

1

2hφ2

[
1− φ2

n
+

1

n2

(
14φ2 − 1− 2κx2

0

σ2

)]
+ o(T−1)

=
e2κh + 3

2T
+

1

2nT

[
14− e2κh − 2κe2κhx2

0

σ2

]
+ o(T−1).

In the non-Guassian case, i.e., εt ∼iid(0, 1), the skewness and the excess kur-

tosis coefficients matter for approximating the MSE up to O(T−2). Consequently, the

bias formula, for fixed x0, can be obtained as
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E[κ̂− κ | x0] = − 1

hφ
(−2φ

n
) +

1

2hφ2
{1− φ2

n
+

1

n2
[14φ2 − 1− 2κx2

0

σ2

−4γ1φ(1− φ2)2

1− φ3
− γ2(1− φ2)]}+ o(T−1)

=
e2κh + 3

2T
+

1

2nT
{14− e2κh − 2κe2κhx2

0

σ2
− 4γ1e

κh(1− e−κh)(1 + e−κh)2

e−2κh + e−κh + 1

−γ2(e2κh − 1)}+ o(T−1).

We summarize the above results in Theorem 2.1.

Theorem 9 Under Model (5.14) with a known mean, a non-Gaussian error term with

moments given in (5.13), and a fixed initial condition x0, the approximation to the bias

of κ̂ is given by,

E[κ̂− κ | x0] =
e2κh + 3

2T
+

1

2nT
{14− e2κh − 2κe2κhx2

0

σ2

−4γ1e
κh(1− e−κh)(1 + e−κh)2

e−2κh + e−κh + 1
− γ2(e2κh − 1)}+ o(T−1). (5.15)

Corollary 10 Under the Lévy process (5.14) with a known mean, a non-Gaussian error

term with moments given in (5.13), and a random non-Gaussian initial condition x0 with

mean 0 and varinace σ2/ (2κ), the approximation to the bias of κ̂ is given by,

E(κ̂− κ) =
e2κh + 3

2T
+

1

2nT
{14− 2e2κh − 4γ1e

κh(1− e−κh)(1 + e−κh)2

e−2κh + e−κh + 1

−γ2(e2κh − 1)}+ o(T−1). (5.16)

In Theorem 9 the results on Bias(κ̂) are obtained conditional on x0. When x0

is assumed to be random with mean 0 and varinace σ2/ (2κ), the uncoditional bias is

obtained by the iterated expectation, namely, E (κ̂− κ) = Ex0 [E(κ̂− κ) | x0].

Corollary 11 Under the Lévy process (5.14) with a known mean, a Gaussian error

term (γ1 = 0 and γ2 = 0), and a fixed x0, the approximation to the bias of κ̂ is given by,

E[κ̂− κ | x0] =
e2κh + 3

2T
+

1

2nT

[
14− e2κh − 2κe2κhx2

0

σ2

]
+ o(T−1). (5.17)
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Corollary 12 Under the Lévy process (5.14) with a known mean, a Gaussian error

term, and a random Gaussian initial condition x0 with mean 0 and varinace σ2/ (2κ),

the approximation to the bias of κ̂ is given by

E(κ̂− κ) =
e2κh + 3

2T
+

1

nT
[7− e2κh] + o(T−1). (5.18)

Remark 2.1.1 Here we have considered the bias of the AR(1) coefficient up to O(n−1)

and the MSE of the AR(1) coefficient up to O(n−2) to obtain the results in Theo-

rem 9 and Corollary 10 for the non-Gaussian case, and Corollary 11 and Corollary

12 for the Gaussian case. In Theorem 9 and Corollary 11 the results are obtained

conditional on x0. In Corollary 2.2 and Corollary 2.4 the results are obtained for a

random x0. Yu (2009) derived the result for the bias of κ̂ for the case of normality

and x0 ∼ N(0, σ2/ (2κ)) as,

E(κ̂− κ) =
e2κh + 3

2T
− 2(1− e−2nκh)

Tn(1− e−2κh)
. (5.19)

The first term on the right hand side of (5.19) is the same as the first term in

(5.18), but the second term is different.

Remark 2.1.2 The second term in (5.17) incorporates the initial condition x0, sug-

gesting that the initial condition affects the bias. Notice that if x0 > 0(< 0),

∂Bias(κ̂)/∂x0 < 0(> 0), implying that the bias is a decreasing (increasing) func-

tion of the initial condition.

Remark 2.1.3 Results obtained in Theorem 5.15 show that σ2, the initial condition

x0, the skewness and the excess kurtosis all affect the bias of κ̂. Note that

∂Bias(κ̂)/∂γ2 < 0, which implies that the bias is a monotonically decreasing

function of the excess kurtosis. If x0 > 0(< 0), ∂Bias(κ̂)/∂x0 < 0(> 0), im-

plying that the bias is a decreasing (increasing) function of the initial condi-
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tion when x0 > 0(< 0). If γ1 > 0(< 0), ∂Bias(κ̂)/∂γ1 < 0(> 0). Moreover,

∂Bias(κ̂)/∂σ2 > 0 implies that the bias is a monotonically increasing function of

the variance of error terms, σ2.

5.2.3 Bias approximation when the long run mean is unknown

For the discrete time AR(1) model with an unknown intercept, the second-

order bias of the OLS estimator φ̂, up to O(n−1), is Bias(φ̂) = −1+3φ
n , as obtained in

Bao and Ullah (2007). The MSE, up to O(n−2), is given by Bao and Ullah (2010) as

M(φ̂) =
1− φ2

n
+

1

n2
{23φ2 + 10φ− 1 + φ

1− φ

(
β − (1− φ)x0

σ0

)2

−4γ1φ(1− φ2)2

1− φ3
− γ2(1− φ2)}+ o(n−2)

where x0 is the initial condition, γ1 the skewness, and γ2 the excess kurtosis. In a special

case of the Gaussian error term, we have,

M(φ̂) =
1− φ2

n
+

1

n2

[
23φ2 + 10φ− 1 + φ

1− φ

(
β − (1− φ)x0

σ0

)2
]

+ o(n−2).

Substituting above results into (5.12), the bias of κ̂ in the Gaussian case is,

E(κ̂− κ|x0) =
1 + 3φ

Tφ
+

1− φ2

2Tφ2
+

1

2Tnφ2
{23φ2 + 10φ

−1 + φ

1− φ

(
β − (1− φ)x0

σ0

)2

}+ o(T−1)

where β = µ(1− e−κh), σ0 = σ
√

1−e−2κh

2κ . We can rewrite the bias in terms of κ, h, and

µ as,

E(κ̂− κ|x0) =
eκh + 3

T
+
e2κh − 1

2T
+

1

2nT

(
23 + 10eκh − 2κe2κh(µ− x0)2

σ2

)
+ o(T−1)

=
1

2T
(e2κh + 2eκh + 5) +

1

2Tn

(
23 + 10eκh − 2κe2κh(µ− x0)2

σ2

)
+o(T−1).
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If we consider the case of non-normality, i.e., εt ∼iid(0, 1), the skewness and the

excess kurtosis coefficients show up in the approximate MSE, up to O(n−2). Therefore,

we can obtain the formula of the bias of κ̂, for a fixed x0, as

E(κ̂)− κ =
1

2T
(e2κh + 2eκh + 5) +

1

2Tn
{23 + 10eκh − 2κe2κh(µ− x0)2

σ2

−4γ1e
κh(1− e−κh)(1 + e−κh)2

1 + e−κh + e−2κh
− γ2(e2κh − 1)}+ o(T−1).

The results of the estimation bias of κ̂ for Lévy process with an unknow mean

are formally stated in the following Theorem.

Theorem 13 Under the Lévy process (5.9) with an unknown mean, a non-Gaussian

error term with moments given in (5.13), and a fixed initial condition x0, the approxi-

mation to the bias of κ̂ is,

E[κ̂− κ | x0] =
1

2T
(e2κh + 2eκh + 5) +

1

2Tn
{23 + 10eκh − 2κe2κh(µ− x0)2

σ2

−4γ1e
κh(1− e−κh)(1 + e−κh)2

1 + e−κh + e−2κh
− γ2(e2κh − 1)}+ o(T−1). (5.20)

Corollary 14 Under the Lévy process (5.9) with an unknown mean, a non-Gaussian

error term with moments given in (5.13), and a random initial condition x0 whose mean

is µ and varinace σ2/(2κ), the approximation to the bias of κ̂ is

E(κ̂− κ) =
1

2T
(e2κh + 2eκh + 5) +

1

2Tn
{23 + 10eκh − e2κh

−4γ1e
κh(1− e−κh)(1 + e−κh)2

1 + e−κh + e−2κh
− γ2(e2κh − 1)}+ o(T−1) (5.21)

In Theorem 13 the results on Bias(κ̂) are obtained conditional on x0. When x0 is

assumed to be random with mean 0 and varinace σ2/ (2κ), the uncoditional bias is

obtained by the iterated expectation, namely, E (κ̂− κ) = Ex0 [E(κ̂− κ) | x0].
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Corollary 15 Under Lévy process (5.9) with an unknown mean, a Gaussian error term

(γ1 = 0 and γ2 = 0), and a fixed x0, the approximation to the bias of κ̂ is,

E[κ̂− κ | x0] =
1

2T
(e2κh + 2eκh + 5) +

1

2Tn

(
23 + 10eκh − 2κe2κh(µ− x0)2

σ2

)
+ o(T−1)

(5.22)

Corollary 16 Under the Lévy process (5.9) with an unknown mean, a Gaussian error

term (γ1 = 0 and γ2 = 0), and a random Gaussian x0 with mean µ and varinace

σ2/(2κ), the approximation to the Bias of κ̂ is,

E(κ̂− κ) =
1

2T
(e2κh + 2eκh + 5) +

1

2Tn
(23 + 10eκh − e2κh) + o(T−1) (5.23)

Remark 2.2.1 Here we consider the bias of the AR(1) coefficient up to O(n−1), and

the MSE of the AR(1) coefficient up to O(n−2) to obtain the results in Theorem

13 and Corollary 14 for the non-Gaussian case, and Corollary 15 and 16 for the

Gaussian case. In Theorem 13 and Corollary 15 the results onBias(κ̂) are obtained

conditional on x0. In Corollary 14 and Corollary 16 the results on Bias(κ̂) are

obtained for a random x0. Tang and Chen (2009) derived the result for the bias

of κ̂ for the case of normality and x0 ∼ N(µ, σ2/ (2κ)) as,

E(κ̂)− κ =
1

2T
(e2κh + 2eκh + 5) (5.24)

which is the first term of (5.23). Therefore, our results in Theorem 13 under Lévy-

based OU process with an unknown mean, provides an improvement over that of

Tang and Chen (2009). In addition, we derive the results for ther Lévy-based OU

process. Yu (2009) also gave the bias of κ̂ for fixed x0 case as

E(κ̂− κ) =
e2κh + 3

2T
. (5.25)
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Remark 2.2.2 We note that the second term 1
2Tn

(
23 + 10eκh − 2κe2κh(µ−x0)2

σ2

)
in (5.22)

incorporates both µ and x0. If x0 is fixed and µ > x0(< x0), then ∂Bias(κ̂)/∂µ <

0(> 0), which implies that the higher µ lowers the bias. Also note that the

bias is not a monotonic function of x0; if µ > x0, ∂Bias(κ̂)/∂x0 > 0; otherwise,

∂Bias(κ̂)/∂x0 < 0. Furthermore, when Tn is very large, the effects of µ and x0 on

the bias are negligible. However, when x0 = µ, the bias term is free from µ and σ.

Remark 2.2.3 Result (5.20) shows that not only µ and x0 but also the skewness and

the excess kurtosis affect the bias. We note that ∂Bias(κ̂)/∂γ2 < 0, which imply

the bias is the monotonically decreasing function of the excess kurtosis. If γ1 > 0,

∂Bias(κ̂)/∂γ1 < 0; if γ1 < 0, ∂Bias(κ̂)/∂γ1 > 0.

5.3 Bias Approximations with Higher Order Bias and MSE

This section shows the bias approximation by considering both the bias and

the MSE of the AR(1) coefficient up to O(n−2). Bao (2007) gave the approximate bias

and the MSE of the OLS estimator for the AR(1) model without intercept and with a

general error term as,

Bias(φ̂) = −2φ

n
+

1

n2

[
4φ+

2φx2
0

σ2
0

− (1 + φ)x0γ1

σ0
+

2γ1(1 + φ+ 3φ2)(1− φ2)

1− φ3

+ 2γ2φ

]
+ o(n−2)

MSE(φ̂) =
1− φ2

n
+

1

n2

[
14φ2 − 1− (1− φ2)x2

0

σ2
0

− 4γ1φ(1− φ2)2

1− φ3

− γ2(1− φ2)

]
+ o(n−2),
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and those for the AR(1) model with intercept and with a general error term as,

Bias(φ̂) = −1 + 3φ

n
+

1

n2

[
3φ− 9φ2 − 1

1− φ
+

1 + 3φ

(1− φ)2

(
β − (1− φ)x0

σ0

)2

+
4γ1φ

2(1− φ2)

1− φ3
+ 2γ2φ

]
+o(n−2),

MSE(φ̂) =
1− φ2

n
+

1

n2

[
23φ2 + 10φ− 1 + φ

1− φ

(
β − (1− φ)x0

σ0

)2

− 4γ1φ(1− φ2)2

1− φ3
− γ2(1− φ2)

]
+o(n−2).

Based on these results, we obtain the bias approximations of the OLS estimator of κ̂ in

the context of the Lévy OU process with a known mean and with an unknown mean,

which are presented below.

Theorem 17 Under Model (5.14) with a known mean, a non-Gaussian error term with

moments given in (5.13), and a fixed x0, the approximation to the bias of κ̂ is given by

E[κ̂− κ | x0] =
e2κh + 3

2T
+

1

2nT
{6− e2κh − 2κe2κhx2

0(e2κh + 3)

σ2(e2κh − 1)
+

2(eκh + 1)x0γ1

σ
√

1−e−2κh

2k

−4γ1(3 + 2eκh + 3e−κh + 2e−2κh)

e−2κh + e−κh + 1
− γ2(e2κh + 3)}+ o(T−1). (5.26)

Corollary 18 Under the Lévy process (5.14) with a known mean, a non-Gaussian error

term with moments given in (5.13), and a random nonnormal x0 with mean 0 and

varinace σ2/ (2κ), the approximation to the bias of κ̂ is,

E(κ̂− κ) =
e2κh + 3

2T
+

1

2nT
{6− e2κh − e2κh(e2κh + 3)

(e2κh − 1)

−4γ1(3 + 2eκh + 3e−κh + 2e−2κh)

e−2κh + e−κh + 1
− γ2(e2κh + 3)}+ o(T−1).(5.27)

Theorem 19 Under the Lévy process (5.9) with an unknown mean, a non-Gaussian

error term with moments given in (5.13), and the initial condition x0, the approximation
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to the bias of κ̂ is

E[κ̂− κ | x0] =
1

2T
(e2κh + 2eκh + 5) +

1

2Tn
{23 +

12e2κh − 16eκh + 18

eκh(eκh − 1)

−2κ(µ− x0)2(1 + 2e−κh + 5e−2κh)

σ2e−2κh(1− e−2κh)

−
4γ1

[
(1− e−κh)(1 + e−κh)2 + 2e−2κh(1 + e−κh)

]
e−κh(1 + e−κh + e−2κh)

−γ2(e2κh + 3)}+ o(T−1) (5.28)

Corollary 20 Under the Lévy process (5.9) with an unknown mean, a non-Gaussian

error term with moments given in (5.13), and a random initial condition whose mean

is µ and varinace σ2/(2κ), the approximation to the bias of κ̂ is

E(κ̂− κ) =
1

2T
(e2κh + 2eκh + 5) +

1

2Tn
{23 +

12e2κh − 16eκh + 18

eκh(eκh − 1)

−(1 + 2e−κh + 5e−2κh)

e−2κh(1− e−2κh)

−
4γ1

[
(1− e−κh)(1 + e−κh)2 + 2e−2κh(1 + e−κh)

]
e−κh(1 + e−κh + e−2κh)

−γ2(e2κh + 3)}+ o((T )−1) (5.29)

Remark 3.1 Here we consider the bias and the MSE of the AR(1) coefficient up to

O(n−2) to obtain our new results in Theorem 17 and Corollary 18 for the Lévy

process with a known mean. The bias approximations for the Gaussian OU pro-

cess may be straightforward developed by substituting γ1 = 0 and γ2 = 0 into

above results. As before, the initial condition, the variance, the skewness and the

excess kurtosis of of the error term all enter the higher order bias approximations.

Compared with Theorem 9, the second term is different. With the use of a higher

order term for the AR(1) coefficient, the esitmaiton bias approximation of κ̂ has a

cross product term of x0 and γ1. In addition, the approximated estimation bias is

non-monotonical function of the initial value and the kewness. The excess kurtosis
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continues to have a negative effect on the estimation bias, and its negative impact

is larger than the results in Theorem 9.

Remark 3.2 The second term in Collary 18 is different from that in Corollary 10.

Corollary 18 shows that the higher order bias approximation continues to be a

non-monotonical function of the skewness and that the kurtosis of the error term

distribution has a larger negative effect on the estimation bias than that obtained

in Corollary 10.

Remark 3.3 With the aid of the higher order approximation, the second terms ob-

tained in Theorem 19 differ from those obtained in Theorem 13. The marginal

effects of the long run mean, the initial condition, the skewness and the kurtosis of

the error term are all different. The squared skewness and the kurtosis in Theorem

19 have a larger negative impact on the bias.

Remark 3.4 The results obtained in Corollary 20 differ from those in Corollary 14

in terms of the second term.Corollary 20 shows that the marginal impacts of the

squared skewness and the kurtosis are higher than waht is implied in Corollary 14.

5.4 Bias Approximation with Higher Order Talyor Expan-

sion

The theoretical results in the previous sections are obtained by considering

talyor expansion up to o(T−1). This section presents the bias approximation by incor-

porating higher order taylor expansion up to o(T−2).By higher order taylor expansion

κ̂ = κ− φ̂− φ
hφ

+
1

2h

(
φ̂− φ
φ

)2

− 1

3h

(
φ̂− φ
φ

)3

+
1

4h

(
φ̂− φ
φ

)4

+ op(n
−2h−1).
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Therefore, to approximate the bias of κ̂, not only the bias and MSE of κ̂ are needed be

considered, but also the third and fourth moment of κ̂, i.e., E
(
φ̂− φ

)3
and E

(
φ̂− φ

)4
,

should be incorporated.

For pure model, we obtain

E
(
φ̂− φ

)3
= n−2[β−3

2 (γ2
1β3 − 12φβ2)] + o(n−2),

E
(
φ̂− φ

)4
= = 3n−2

(
1− φ2

)2
+ o(n−2),

where βi = (1 − φi)−1. The following gives the conditional bias approximation and

uncondition bias approximation for pure model.

Theorem 21 Under Model (5.14) with a known mean, a non-Gaussian error term with

moments given in (5.13), and a fixed x0, the approximation to the bias of κ̂ is given by

Bias(κ̂|x0) = E(κ̂− κ|x0)

=
3 + e2κh

2T
+

1

nT
{3 +

1

4

[
3e4κh + 8e2κh − 29 + 16e−2κh

]
−
κe2κh

(
e2κh + 3

)
x2

0

σ2 (e2κh − 1)

+γ1

(
eκh + 1

)
x0

σ
√

1−e−2κh

2κ

− γ2
3 + e2κh

2e2κh

−γ2
1

(
eκh + 1

) (
e4κh + 10e2κh + 6eκh + 13

)
3 (e2κh + eκh + 1)

}+ o(
1

nT
) (5.30)

Corollary 22 Under the Lévy process (5.14) with a known mean, a non-Gaussian error

term with moments given in (5.13), and a random nonnormal x0 with mean 0 and

varinace σ2/ (2κ), the approximation to the bias of κ̂ is,

Bias(κ̂) = E(κ̂− κ)

=
3 + e2κh

2T
+

1

nT
{3 +

1

4

[
3e4κh + 8e2κh − 29 + 16e−2κh

]
−
e2κh

(
e2κh + 3

)
2 (e2κh − 1)

−γ2
3 + e2κh

2e2κh

−γ2
1

(
eκh + 1

) (
e4κh + 10e2κh + 6eκh + 13

)
3 (e2κh + eκh + 1)

}+ o(
1

nT
)
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Remark 4.1 Comparing Theorem 21 with the previous results obtained for the condi-

tional bias of κ̂ in the pure model, we find that the bias expression is a nonlinear

function of the skewness when considering higher order Taylor expansion. As

shown in Corollary 22, the unconditional bias of κ̂ in the pure model is also a non-

linear function of the skewness, which is different from the previous results. Also,

note that by higher order Taylor expansion, both conditional and unconditional

bias is up to o( 1
nT ).

For intercept model, we derive that

E
(
φ̂− φ

)3
= n−2[β−3

2 (β3γ
2
1 − 3β1β2 − 12φβ2

2)] + o(n−2),

E
(
φ̂− φ

)4
= 12n−2β−2

2 + o(n−2).

The following gives the conditional bias approximation and uncondition bias

approximation for intercept model.

Theorem 23 Under the Lévy process (5.9) with an unknown mean, a non-Gaussian

error term with moments given in (5.13), and the initial condition x0, the approximation

to the bias of κ̂ is

Bias(κ̂|x0) = E(κ̂− κ|x0)

=
5 + 2eκh + e2κh

2T
+

1

nT
{
(

15

2
+ 7eκh + 3e2κh + e3κh + 3e4κh +

7

eκh − 1

)
+
e4κh + 4e3κh + 7e2κh

(eκh + 1)(eκh − 1)

κ (µ− x0)2

σ2

−γ2
1

6
(
eκh + 1

) (
e2κh + 1

)
+
(
eκh − 1

)2 (
eκh + 1

)3
3 (e2κh + eκh + 1)

−γ2
3 + e2κh

2
}+ o(

1

nT
)

Corollary 24 Under the Lévy process (5.9) with an unknown mean, a non-Gaussian

error term with moments given in (5.13), and a random initial condition whose mean
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is µ and varinace σ2/(2κ), the approximation to the bias of κ̂ is

Bias(κ̂) = E(κ̂− κ)

=
5 + 2eκh + e2κh

2T
+

1

nT
{
(

15

2
+ 7eκh + 3e2κh + e3κh + 3e4κh +

7

eκh − 1

)
+
e4κh + 4e3κh + 7e2κh

2(eκh + 1)(eκh − 1)

−γ2
1

6
(
eκh + 1

) (
e2κh + 1

)
+
(
eκh − 1

)2 (
eκh + 1

)3
3 (e2κh + eκh + 1)

−γ2
3 + e2κh

2
}+ o(

1

nT
)

The derivations for the above theorems are outlined in the section III of Ap-

pendix A.

Remark 4.2 Comparing Theorem 23 with the previous results obtained for the con-

ditional bias of κ̂ in the intercept model, we find that the bias expression is a

nonlinear function of the skewness when considering higher order Taylor expan-

sion. As shown in Corollary 24, the unconditional bias of κ̂ in the intercept model

is also a nonlinear function of the skewness, which is different from the previous

results. Also, note that by higher order Taylor expansion, both conditional and

unconditional bias for the intercept model is up to o( 1
nT ).

5.5 Simulation Results

In this section, we perform Monte Carlo simulations to check the finite sample

performance of our bias formulae. We also propose ways for bias correcting and check

the performance of the bias corrected κ̂ in terms of mean, relative bias, and root mean

squared error. We further compare the performance of the bias corrected κ̂ with those

based on the bias formulae derived in Yu (2009) and Tang and Chen (2009). The

Lévy processes both with a known mean and with an unknown mean are considered.
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All simulation results are calculated from 10,000 replications. It is not entirely fair to

compare our bias formulae with those derived in Yu (2009) and Tang and Chen (2009)

because both Yu and Tang and Chen assumed the true model is the Gaussian model.

5.5.1 Bias correction for Lévy process with a known mean under non-

Gaussianity

First we consider four estimators for Lévy process with a known mean under

nonnormality: OLS, Yu (2009) estimator corrected by the bias (5.19) for random x0

case and (5.25) for fixed x0 case which are given in Remark 2.1.1, the estimator (UWY)

corrected by the bias corresponding to (5.15) for fixed initial condition case and (10) for

random initial condition case, the estimator (UWYH) corrected by the bias correspond-

ing to (5.26) for fixed case and (5.27) for random case, and the estimator (UWYHT)

corrected by the bias corresponding to (21) for fixed case and (5.31) for random case.

In order to obtain non-Gaussian error terms we generate the random numbers from the

gamma distribution with mean 1 and variance ν (v = 0.25, 1), then make the transfor-

mation on the generated errors to satisfy the assumption in (5.13), and then generate

the discrete time observations under the model (5.14). We set κ to be small so that it

is empirically realistic for the U.S. data. In particular, we consider four values for κ,

0.1, 0.5, 1.0, 3.0. We set T = 5 and h = 1/12, 1/52, 1/252. For the fixed x0 case, we set

x0 = 0. For the random x0 case, we generate x0 from the variance gamma distribution.

Figure 1 and 2 in figure 5.1 on page 109 plot the true bias for h = 1/12 and v =

1, the bias according to Yu (2009), UWY, UWYH, and UWYHT for the Levy processes

with a known mean. The red solid line represents the true bias, the black dashed line

is the Yu’s bias, the blue dashed line is the UWY corrected estimator, the green line

with star shows the UWYH corrected estimator, and the light blue with circle is the
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UWYHT corrected estimator. We notice that UWYH and UWYHT behave almost the

same. Those two lines are almost overlaped. For the random x0 case, Figure 1 shows that

when κ is smaller than 0.5 the Yu, UWYH and UWYHT estimators drop below the true

bias. When κ is greater than 0.5 both Yu and UWYH bias approximations can match the

true bias very well. However, the blue dashed line shows that UWY bias approximation

is a little above the true bias. As κ gets larger, all three bias approximations, Yu,

UWYH, and UWYHT, are approaching the true bias more closely. For the fixed x0

case, Figure 2 shows that all bias approximations have small discrepency from the true

bias, especially when κ is less than 0.5. UWYH and UWYH bias approximations are

closest to the true bias compared to Yu and UWY.

Simulations results are also reported in Tables 5.1- 5.4 on pages 111- 114 and

the results can be summarized as follows. First, Yu’s method has the smallest bias

among all estimators when κ = 0.1, 0.5, 1.0 when v = 0.25 and x0 is fixed. Second, when

κ is moderately larger (κ = 3.0), UWYH and UWYHT have smaller relative bias than

Yu’s estimator. Third, RMSEs are very close among Yu, UWY, UWYH, and UWYHT

estimators. Fourth, when v = 1 and x0 is fixed, UWYH and UWYHT performs slightly

better than Yu estimator in terms of relative bias for κ = 0.1, 0.5, 1.0, 3.0. For random

x0 case shown in Table 5.3 and Table 5.4, when κ = 0.1, Yu’s method performs slightly

better than UWYH in the sense of having a lower bias and RMSE. When κ is moderately

larger (κ = 0.5, 1.0, 3.0) and v = 0.25, UWYH and UWYHT have lower relative bias

than Yu. The findings in Tables 5.1- 5.4 are consistent with the plots in Figure 1 and

Figure 2.
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5.5.2 Bias correction for Lévy process with an unknown mean under

non-Gaussianity

In this case, we also consider five estimators under the Lévy process with an

unknown mean and a non-Gaussian error term: OLS, Tang and Chen (2009) estimator

(TC) corrected by the bias (5.24) given in Remark 2.2.1, the estimator UWY corrected

by the bias corresponding to (5.20) for fixed initial condition case and (5.21) for random

initial condition case, UWYH corrected by the bias expression in (5.28) for fixed case

and (5.29) for random case, and UWYH corrected by the bias expression in (5.31) for

fixed case and (5.31) for random case. As before, the error term is first generated from

the gamma distribution with mean 1 and variance ν (ν = 0.25, 1). We set µ = 0.1 and

σ2 = 0.1. For the case of the fixed initial condition, x0 is fixed at µ. For the case of the

random initial condition, x0 is generated from the gamma distribution with mean 1 and

variance ν (ν = 0.25, 1).

Figure 3 and 4 in figure 5.2 plot the true bias, the biases according to Tang

and Chen (2009), UWY, UWYH, and UWYHT for the Levy processes with an unknown

mean. The red solid line represents the true bias, the black dashed line with dots is

the TC bias according to Tang and Chen (2009), the blue dashed line is UWY, the

green line with stars shows the UWYH bias expression, and the blue line with circle is

UWYHT. For random initial condition case, among all bias approximations shown in

Figure 3, UWYHT performs the best and shows the curvature as κ is getting smaller.

Figure 4 shows the performance of all bias approximations for the Lévy process with an

unknown mean and the fixed x0 case. When κ is close to zero, UWYH and UWYHT bias

approximation goes up dramatically. When κ is greater than 1.0, UWYH and UWYHT

are very close to the true bias.
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Tables 5.5- 5.8 report the simulation results. As for the case with a known

mean, the simulation results under the Lévy process with an unknown mean provides

the evidence that UWYH is useful in finite samples. The simulations in Table 5.5- 5.8

show that UWYH always has the smallest bias and the lowest RMSE for most of cases,

especially, for larger κ = 1.0, 3.0. For κ = 0.5, UWY has the best performance in terms

of relative bias and RMSE. These results are consistent with those in Figures 3 and 4,

namely, our estimators (UWY, UWYH, and UWYHT) offer improvement over OLS and

TC, especially when κ = 0.5, 1.0, 3.0. UWYH is the most efficient estimator in the sense

of having the smallest bias and the lowest RMSE. UWYHT performs closely to UWYH.

The main findings the two experiements are as follow. First, for the Lévy

process with a unknown mean, no matter if x0 is fixed or random, under non-Gaussanity

the RMSE of UWY is always smaller than that of the TC estimator and UWYH has the

smallest bias and the smallest RMSE when κ = 1.0, 3.0. Second, for the Lévy process

with a known mean, Yu, UWYH and UWYHT perform similarly. When κ = 0.1, Yu has

a slightly smaller bias and RMSE than UWYH. However, when κ = 0.5, 1.0, 3.0, UWYH

performs slightly better than Yu in the sense of having a slightly lower relative bias and

RMSE. Second, Figures 1-4 show that the UWYH and UWYHT bias approximations

have large distance from the true bias as κ is very close to 0. However, as κ gets larger,

the UWYH and UWYHT bias approximations get closer to the true bias. Finally, all

the simulation results in this seciton point outs that if the true model us non-Gaussian,

it is important to take into account of the feature for the sake of bias correction and the

higher order bias approximation is useful to improve the efficiency and the accuracy of

κ̂ in finite samples.
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5.6 Conclusions

This chapter considers the effect of the non-Gaussianity of error terms under

the Lévy processes with a known mean and with an unknown mean. We obtain the

bias approximations of the mean reversion parameter estimator under a general error

distribution and find that the skewness (γ1), the kurtorsis (γ2), the initial condition, the

long term mean (µ), and the diffusion parameter (σ2) all affect the bias of κ. Monte

Carlo simulations provide supports that our proposed bias corrected estimator of the

mean reversion parameter is effective in finite samples.

108



0.
5

1
1.

5
2

2.
5

3
0

0.
2

0.
4

Fi
gu

re
 1

 O
U

 P
ro

ce
ss

 w
ith

 a
 K

no
w

n 
M

ea
n 

an
d 

ra
nd

om
 x

0 
(h

=1
/1

2,
 v

=1
)

ka
pp

a

Bias

0.
5

1
1.

5
2

2.
5

3
0.

3

0.
4

0.
5

Fi
gu

re
 2

 O
U

 P
ro

ce
ss

 w
ith

 a
 K

no
w

n 
M

ea
n 

an
d 

fix
ed

 x
0 

 (h
=1

/1
2,

 v
=1

)

ka
pp

a

Bias

F
ig

u
re

5.
1:

L
év

y
p

ro
ce

ss
w

it
h

a
k
n

ow
n

m
ea

n
u

n
d

er
n

on
-G

au
ss

ia
n

it
y

109



0
.5

1
1

.5
2

2
.5

3
012345

F
ig

u
re

 3
 O

U
 P

ro
c
e

s
s
 w

it
h

 a
n

 U
n

k
n

o
w

n
 M

e
a

n
 a

n
d

 r
a

n
d

o
m

 x
0

 (
h

=
1

/1
2

, 
v
=

0
.2

5
)

k
a

p
p

a

Bias

0
.5

1
1

.5
2

2
.5

3
01234

F
ig

u
re

 4
 O

U
 P

ro
c
e

s
s
 w

it
h

 a
n

 U
n

k
n

o
w

n
 M

e
a

n
 a

n
d

 f
ix

e
d

 x
0

 (
h

=
1

/1
2

, 
v
=

0
.2

5
)

k
a

p
p

a

Bias

F
ig

u
re

5.
2:

L
év

y
p

ro
ce

ss
w

it
h

a
k
n

ow
n

m
ea

n
u

n
d

er
n

on
-G

au
ss

ia
n

it
y

110



T
ab

le
5
.1

:
B

ia
s

co
rr

ec
ti

on
fo

r
th

e
L

év
y

p
ro

ce
ss

w
it

h
a

k
n

ow
n

m
ea

n
an

d
a

fi
x
ed

x
0

(v
=

0.
25

)

v
=

0.
25

O
L

S
Y

u
U

W
Y

U
W

Y
H

U
W

Y
H

T
O

L
S

Y
u

U
W

Y
U

W
Y

H
U

W
Y

H
T

O
L

S
Y

u
U

W
Y

U
W

Y
H

U
W

Y
H

T

T
=

5,
h

=
1/

12
,
κ

=
0.

1
T

=
5,
h

=
1/

52
,
κ

=
0.

1
T

=
5,
h

=
1/

25
2,
κ

=
0.

1

M
ea

n
0.

46
24

0.
06

07
0.

03
91

0.
05

74
0.

05
73

0.
46

87
0.

06
83

0.
06

33
0.

06
76

0.
06

76
0.

46
83

0.
06

82
0.

06
72

0.
06

81
0.

06
81

r.
b
ia

s(
%

)
36

2.
4

-3
9.

28
-6

0.
90

-4
2.

56
-4

2.
65

36
8.

71
-3

1.
68

-3
6.

68
-3

2.
44

-3
2.

45
36

8.
29

-3
1.

79
-3

2.
82

-3
1.

94
-3

1.
94

R
M

S
E

0.
76

81
0.

67
84

0.
68

00
0.

67
86

0.
67

86
0.

76
63

0.
67

25
0.

67
28

0.
67

26
0.

67
26

0.
76

66
0.

67
30

0.
67

31
0.

67
30

0.
67

30

T
=

5,
h

=
1/

12
,
κ

=
0.

5
T

=
5,
h

=
1/

52
,
κ

=
0.

5
T

=
5,
h

=
1/

25
2,
κ

=
0.

5

M
ea

n
0.

89
11

0.
48

24
0.

46
10

0.
47

94
0.

47
88

0.
89

05
0.

48
86

0.
48

36
0.

48
78

0.
48

78
0.

89
01

0.
48

97
0.

48
87

0.
48

95
0.

48
95

r.
b
ia

s(
%

)
78

.2
3

-3
.5

1
-7

.8
0

-4
.1

3
-4

.2
3

78
.1

1
-2

.2
8

-3
.2

8
-2

.4
3

-2
.4

4
78

.0
2

-2
.0

6
-2

.2
7

-2
.0

9
-2

.0
9

R
M

S
E

0.
88

76
0.

79
70

0.
79

78
0.

79
71

0.
79

71
0.

87
21

0.
77

99
0.

78
00

0.
77

99
0.

77
99

0.
86

39
0.

77
08

0.
77

09
0.

77
08

0.
77

08

T
=

5,
h

=
1/

12
,
κ

=
1.

0
T

=
5,
h

=
1/

52
,
κ

=
1.

0
T

=
5,
h

=
1/

25
2,
κ

=
1.

0

M
ea

n
1.

40
89

0.
99

07
0.

96
96

0.
98

79
0.

98
67

1.
39

86
0.

99
47

0.
98

97
0.

99
40

0.
99

39
1.

39
75

0.
99

67
0.

99
57

0.
99

66
0.

99
66

r.
b
ia

s(
%

)
40

.8
9

-0
.9

3
-3

.0
4

-1
.6

4
-1

.3
31

6
39

.8
6

-0
.5

3
-1

.0
3

-0
.6

0
-0

.6
1

39
.7

5
-0

.3
3

-0
.4

3
-0

.3
4

-0
.3

4
R

M
S
E

1.
03

34
0.

94
91

0.
94

96
0.

94
92

0.
94

92
0.

98
96

0.
90

58
0.

90
58

0.
90

58
0.

90
58

0.
97

49
0.

89
01

0.
89

01
0.

89
01

0.
89

01

T
=

5,
h

=
1/

12
,
κ

=
3.

0
T

=
5,
h

=
1/

52
,
κ

=
3.

0
T

=
5,
h

=
1/

25
2,
κ

=
3.

0

M
ea

n
3.

46
87

3.
00

39
2.

98
41

3.
00

24
2.

99
57

3.
41

41
3.

00
19

2.
99

69
3.

00
12

3.
00

10
3.

40
20

2.
99

96
2.

99
85

2.
99

95
2.

99
95

r.
b
ia

s(
%

)
15

.6
2

0.
13

-0
.5

3
-0

.0
8

-0
.1

4
13

.8
0

0.
06

-0
.1

0
0.

04
0.

03
13

.4
0

-0
.0

1
-0

.0
5

-0
.0

2
-0

.0
2

R
M

S
E

1.
58

31
1.

51
22

1.
51

22
1.

51
22

1.
51

22
1.

38
08

1.
31

72
1.

31
72

1.
31

72
1.

31
72

1.
33

77
1.

27
59

1.
27

59
1.

27
59

1.
27

59

111



T
a
b

le
5.

2:
B

ia
s

co
rr

ec
ti

on
fo

r
th

e
L

év
y

p
ro

ce
ss

w
it

h
a

k
n

ow
n

m
ea

n
an

d
a

fi
x
ed

x
0

(v
=

1.
0)

v
=

1.
0

O
L

S
Y

u
U

W
Y

U
W

Y
H

U
W

Y
H

T
O

L
S

Y
u

U
W

Y
U

W
Y

H
U

W
Y

H
T

O
L

S
Y

u
U

W
Y

U
W

Y
H

U
W

Y
H

T

T
=

5,
h

=
1/

12
,
κ

=
0.

1
T

=
5,
h

=
1/

52
,
κ

=
0.

1
T

=
5,
h

=
1/

25
2,
κ

=
0.

1

M
ea

n
0.

46
09

0.
05

92
0.

03
76

0.
07

10
0.

07
06

0.
46

14
0.

06
10

0.
05

60
0.

06
37

0.
06

37
0.

47
12

0.
07

11
0.

07
01

0.
07

17
0.

07
17

r.
b
ia

s(
%

)
36

0.
88

-4
0.

80
-6

2.
35

-2
9.

02
-2

9.
36

36
1.

38
-3

9.
00

-4
4.

00
-3

6.
30

-3
6.

32
37

1.
20

-2
8.

88
-2

9.
91

-2
8.

33
-2

8.
33

R
M

S
E

0.
77

32
0.

68
50

0.
68

66
0.

68
44

0.
68

44
0.

74
86

0.
65

67
0.

65
70

0.
65

66
0.

65
66

0.
76

86
0.

67
36

0.
67

37
0.

67
36

0.
67

36

T
=

5,
h

=
1/

12
,
κ

=
0.

5
T

=
5,
h

=
1/

52
,
κ

=
0.

5
T

=
5,
h

=
1/

25
2,
κ

=
0.

5

M
ea

n
0.

88
82

0.
47

95
0.

45
85

0.
49

18
0.

49
01

0.
88

22
0.

48
03

0.
47

53
0.

48
30

0.
48

29
0.

88
79

0.
48

75
0.

48
64

0.
48

80
0.

48
80

r.
b
ia

s(
%

)
77

.6
5

-4
.0

9
-8

.3
1

-1
.6

4
-1

.9
9

76
.4

4
-3

.9
5

-4
.9

4
-3

.4
0

-3
.4

2
77

.5
8

-2
.5

0
-2

.7
1

-2
.3

9
-2

.3
9

R
M

S
E

0.
89

50
0.

80
66

0.
80

75
0.

80
64

0.
80

65
0.

85
42

0.
76

41
0.

76
43

0.
76

41
0.

76
41

0.
85

94
0.

76
70

0.
76

70
0.

76
69

0.
76

69

T
=

5,
h

=
1/

12
,
κ

=
1.

0
T

=
5,
h

=
1/

52
,
κ

=
1.

0
T

=
5,
h

=
1/

25
2,
κ

=
1.

0

M
ea

n
1.

40
29

0.
98

48
0.

96
43

0.
99

76
0.

99
40

1.
38

86
0.

98
48

0.
97

98
0.

98
75

0.
98

73
1.

38
99

0.
98

91
0.

98
81

0.
98

96
0.

98
96

r.
b
ia

s(
%

)
40

.2
9

-1
.5

2
-3

.5
7

-0
.2

4
-0

.6
0

38
.8

7
-1

.5
2

-2
.0

2
-1

.2
49

0
-1

.2
67

1
38

.9
9

-1
.0

9
-1

.1
9

-1
.0

4
-1

.0
4

R
M

S
E

1.
03

69
0.

95
55

0.
95

60
0.

95
54

0.
95

54
0.

97
32

0.
89

24
0.

89
25

0.
89

23
0.

89
23

0.
96

42
0.

88
19

0.
88

19
0.

88
19

0.
88

19

T
=

5,
h

=
1/

12
,
κ

=
3.

0
T

=
5,
h

=
1/

52
,
κ

=
3.

0
T

=
5,
h

=
1/

25
2,
κ

=
3.

0

M
ea

n
3.

45
51

2.
99

02
2.

97
29

3.
00

62
2.

99
26

3.
39

69
2.

98
47

2.
97

99
2.

98
76

2.
98

70
3.

38
29

2.
98

04
2.

97
94

2.
98

10
2.

98
10

r.
b
ia

s(
%

)
15

.1
7

-0
.3

3
-0

.9
0

0.
21

-0
.2

5
13

.2
3

-0
.5

1
-0

.6
7

-0
.4

1
-0

.4
3

12
.7

6
-0

.6
5

-0
.6

9
-0

.6
3

-0
.6

3
R

M
S
E

1.
57

71
1.

51
00

1.
51

02
1.

51
00

1.
51

00
1.

36
38

1.
30

48
1.

30
49

1.
30

48
1.

30
48

1.
31

92
1.

26
26

1.
26

26
1.

26
26

1.
26

26

112



T
ab

le
5
.3

:
B

ia
s

co
rr

ec
ti

on
fo

r
th

e
L

év
y

p
ro

ce
ss

w
it

h
a

k
n

ow
n

m
ea

n
an

d
a

ra
n

d
om

x
0

(v
=

0.
25

)

v
=

0.
25

O
L

S
Y

u
U

W
Y

U
W

Y
H

U
W

Y
H

T
O

L
S

Y
u

U
W

Y
U

W
Y

H
U

W
Y

H
T

O
L

S
Y

u
U

W
Y

U
W

Y
H

U
W

Y
H

T

T
=

5,
h

=
1/

12
,
κ

=
0.

1
T

=
5,
h

=
1/

52
,
κ

=
0.

1
T

=
5,
h

=
1/

25
2,
κ

=
0.

1

M
ea

n
0.

35
21

0.
20

53
-0

.0
69

5
0.

35
21

0.
35

21
0.

35
09

0.
20

39
-0

.0
54

1
0.

35
09

0.
35

09
0.

35
57

0.
20

86
-0

.0
45

3
0.

35
57

0.
35

57
r.

b
ia

s(
%

)
25

2.
07

10
5.

35
-1

69
.5

4
25

2.
14

25
2.

05
25

0.
91

10
3.

86
-1

54
.0

8
25

0.
92

25
0.

91
25

5.
71

10
8.

58
-1

45
.3

2
25

5.
71

25
5.

71
R

M
S
E

0.
58

91
0.

54
27

0.
55

87
0.

58
91

0.
58

91
0.

57
01

0.
52

23
0.

53
46

0.
57

01
0.

57
01

0.
58

37
0.

53
59

0.
54

45
0.

58
37

0.
58

37

T
=

5,
h

=
1/

12
,
κ

=
0.

5
T

=
5,
h

=
1/

52
,
κ

=
0.

5
T

=
5,
h

=
1/

25
2,
κ

=
0.

5

M
ea

n
0.

84
48

0.
51

90
0.

41
65

0.
51

83
0.

51
77

0.
84

39
0.

52
21

0.
43

73
0.

52
23

0.
52

23
0.

84
44

0.
52

37
0.

44
31

0.
52

42
0.

52
42

r.
b
ia

s(
%

)
68

.9
7

3.
79

-1
6.

69
3.

65
3.

55
68

.7
7

4.
43

-1
2.

54
4.

46
4.

46
68

.8
9

4.
74

-1
1.

37
4.

83
4
.8

3
R

M
S
E

0.
80

18
0.

72
41

0.
72

87
0.

72
41

0.
72

41
0.

78
82

0.
70

96
0.

71
20

0.
70

96
0.

70
96

0.
79

19
0.

71
34

0.
71

53
0.

71
34

0.
71

34

T
=

5,
h

=
1/

12
,
κ

=
1.

0
T

=
5,
h

=
1/

52
,
κ

=
1.

0
T

=
5,
h

=
1/

25
2,
κ

=
1.

0

M
ea

n
1.

37
78

1.
00

31
0.

94
05

1.
00

23
1.

00
10

1.
37

08
1.

00
77

0.
96

23
1.

00
73

1.
00

73
1.

36
84

1.
00

78
0.

96
67

1.
00

77
1.

00
77

r.
b
ia

s(
%

)
37

.7
8

0.
31

-5
.9

5
0.

23
0.

10
37

.0
8

0.
77

-3
.7

7
0.

73
0.

73
36

.8
4

0.
78

-3
.3

3
0.

77
0
.7

7
R

M
S
E

0.
96

84
0.

89
16

0.
89

36
0.

89
16

0.
89

16
0.

93
86

0.
86

23
0.

86
31

0.
86

23
0.

86
23

0.
92

89
0.

85
27

0.
85

33
0.

85
27

0.
85

27

T
=

5,
h

=
1/

12
,
κ

=
3.

0
T

=
5,
h

=
1/

52
,
κ

=
3.

0
T

=
5,
h

=
1/

25
2,
κ

=
3.

0

M
ea

n
3.

45
25

3.
00

46
2.

97
06

3.
00

59
2.

99
91

3.
40

23
3.

00
42

2.
98

56
3.

00
39

3.
00

38
3.

38
97

3.
00

07
2.

98
63

3.
00

07
3.

00
07

r.
b
ia

s(
%

)
15

.0
8

0.
15

-0
.9

8
0.

20
-0

.0
3

13
.4

1
0.

14
-0

.4
8

0.
13

0.
13

12
.9

9
0.

03
-0

.4
6

0.
02

0
.0

2
R

M
S
E

1.
53

55
1.

46
73

1.
46

76
1.

46
73

1.
46

73
1.

35
63

1.
29

52
1.

29
53

1.
29

52
1.

09
52

1.
31

75
1.

25
86

1.
25

87
1.

25
86

1.
25

86

113



T
a
b

le
5.

4:
B

ia
s

co
rr

ec
ti

on
fo

r
th

e
L

év
y

p
ro

ce
ss

w
it

h
a

k
n

ow
n

m
ea

n
an

d
a

ra
n

d
om

x
0

(v
=

1.
0)

v
=

1.
0

O
L

S
Y

u
U

W
Y

U
W

Y
H

U
W

Y
H

T
O

L
S

Y
u

U
W

Y
U

W
Y

H
U

W
Y

H
T

O
L

S
Y

u
U

W
Y

U
W

Y
H

U
W

Y
H

T

T
=

5,
h

=
1/

12
,
κ

=
0.

1
T

=
5,
h

=
1/

52
,
κ

=
0.

1
T

=
5,
h

=
1/

25
2,
κ

=
0.

1

M
ea

n
0.

36
91

0.
22

24
-0

.0
52

4
0.

38
43

0.
38

39
0.

36
82

0.
22

12
-0

.0
36

8
0.

37
17

0.
37

17
0.

36
83

0.
22

12
-0

.0
32

7
0.

36
90

0.
36

90
r.

b
ia

s(
%

)
26

9.
13

12
2.

41
-1

52
.4

2
28

2.
26

28
3.

92
26

8.
24

12
1.

19
-1

36
.7

5
27

1.
71

27
1.

69
26

8.
31

12
1.

18
-1

32
.7

2
26

9.
02

26
9.

02
R

M
S
E

0.
63

64
0.

58
95

0.
59

65
0.

64
29

0.
64

28
0.

59
68

0.
54

67
0.

55
03

0.
59

83
0.

59
83

0.
59

90
0.

54
91

0.
55

17
0.

59
93

0.
59

93

T
=

5,
h

=
1/

12
,
κ

=
0.

5
T

=
5,
h

=
1/

52
,
κ

=
0.

5
T

=
5,
h

=
1/

25
2,
κ

=
0.

5

M
ea

n
0.

84
32

0.
51

73
0.

41
53

0.
53

19
0.

53
02

0.
84

30
0.

52
13

0.
43

65
0.

52
50

0.
52

49
0.

84
32

0.
52

24
0.

44
18

0.
52

36
0.

52
36

r.
b
ia

s(
%

)
68

.6
3

3.
46

-1
6.

95
6.

38
6.

03
68

.6
0

4.
26

-1
2.

70
4.

99
4.

97
68

.6
4

4.
48

-1
1.

61
4.

72
4
.7

2
R

M
S
E

0.
81

92
0.

74
40

0.
74

86
0.

74
45

0.
74

44
0.

78
87

0.
71

06
0.

71
31

0.
71

07
0.

71
07

0.
77

98
0.

70
06

0.
70

26
0.

70
06

0.
70

06

T
=

5,
h

=
1/

12
,
κ

=
1.

0
T

=
5,
h

=
1/

52
,
κ

=
1.

0
T

=
5,
h

=
1/

25
2,
κ

=
1.

0

M
ea

n
1.

37
20

0.
99

73
0.

93
54

1.
01

22
1.

00
85

1.
36

35
1.

00
04

0.
95

50
1.

00
35

1.
00

33
1.

36
13

1.
00

06
0.

95
95

1.
00

13
1.

00
13

r.
b
ia

s(
%

)
37

.2
0

-0
.2

7
-6

.4
6

1.
22

0.
84

94
36

.3
5

0.
04

-4
.5

0
0.

35
0.

33
36

.1
3

0.
06

-4
.0

5
0.

13
0
.1

3
R

M
S
E

0.
98

18
0.

90
86

0.
91

09
0.

90
87

0.
90

86
0.

93
07

0.
85

68
0.

85
80

0.
85

68
0.

85
68

0.
91

21
0.

83
75

0.
83

85
0.

83
75

0.
83

75

T
=

5,
h

=
1/

12
,
κ

=
3.

0
T

=
5,
h

=
1/

52
,
κ

=
3.

0
T

=
5,
h

=
1/

25
2,
κ

=
3.

0

M
ea

n
3.

43
93

2.
99

14
2.

95
98

3.
01

01
2.

99
65

3.
38

59
2.

98
78

2.
96

93
2.

99
11

2.
99

05
3.

37
02

2.
98

13
2.

96
68

2.
98

19
2.

98
19

r.
b
ia

s(
%

)
14

.6
4

-0
.2

9
-1

.3
3

0.
34

-0
.1

2
12

.8
6

-0
.4

1
-1

.0
2

-0
.3

0
-0

.3
2

12
.3

4
-0

.6
2

-1
.1

1
-0

.6
0

-0
.6

0
R

M
S
E

1.
53

74
1.

47
33

1.
47

38
1.

47
33

1.
47

33
1.

34
06

1.
28

39
1.

28
42

1.
28

38
1.

28
38

1.
29

59
1.

24
20

1.
24

23
1.

24
20

1.
24

20

114



T
a
b

le
5.

5:
B

ia
s

co
rr

ec
ti

on
fo

r
th

e
L

év
y

p
ro

ce
ss

w
it

h
an

u
n

k
n

ow
n

m
ea

n
an

d
a

fi
x
ed

x
0

(v
=

0.
25

)

v
=

0.
25

O
L

S
T

C
U

W
Y

U
W

Y
H

U
W

Y
H

T
O

L
S

T
C

U
W

Y
U

W
Y

H
U

W
Y

H
T

O
L

S
T

C
U

W
Y

U
W

Y
H

U
W

Y
H

T

T
=

5,
h

=
1/

12
,
κ

=
0.

5
T

=
5,
h

=
1/

52
,
κ

=
0.

5
T

=
5,
h

=
1/

25
2,
κ

=
0.

5

M
ea

n
1.

61
42

0.
79

70
0.

74
14

0.
22

41
3

0.
17

79
3

1.
57

87
0.

77
48

0.
76

21
0.

21
20

0.
20

19
1.

56
34

0.
76

26
0.

75
99

0.
20

20
0.

19
99

r.
b
ia

s(
%

)
22

2.
84

59
.4

0
48

.2
8

-5
5.

17
-6

4.
42

21
5.

74
54

.9
6

52
.4

2
-5

7.
59

-5
9.

62
21

2.
67

52
.5

1
51

.9
9

-5
9.

6
0

-6
0.

01
R

M
S
E

1.
57

23
1.

14
84

1.
13

53
1.

14
31

1.
15

51
1.

50
96

1.
09

12
1.

08
81

1.
09

46
1.

09
73

1.
47

37
1.

05
35

1.
05

29
1.

06
29

1.
06

35

T
=

5,
h

=
1/

12
,
κ

=
1.

0
T

=
5,
h

=
1/

52
,
κ

=
1.

0
T

=
5,
h

=
1/

25
2,
κ

=
1.

0

M
ea

n
2.

06
80

1.
23

24
1.

17
63

0.
93

85
0.

88
88

2.
01

01
1.

20
23

1.
18

95
0.

91
95

0.
90

92
1.

99
22

1.
19

05
1.

18
79

0.
91

00
0.

90
79

r.
b
ia

s(
%

)
10

6.
80

23
.2

5
17

.6
2

-6
.1

6
-1

1.
12

10
1.

01
20

.2
3

18
.9

5
-8

.0
52

4
-9

.0
81

7
99

.2
1

19
.0

5
18

.7
9

-9
.0

0
-9

.2
1

R
M

S
E

1.
62

97
1.

25
27

1.
24

35
1.

23
25

1.
23

60
1.

52
91

1.
16

57
1.

16
36

1.
15

08
1.

15
16

1.
49

22
1.

13
05

1.
13

01
1.

11
80

1.
11

81

T
=

5,
h

=
1/

12
,
κ

=
3.

0
T

=
5,
h

=
1/

52
,
κ

=
3.

0
T

=
5,
h

=
1/

25
2,
κ

=
3.

0

M
ea

n
4.

07
32

3.
15

15
3.

09
26

3.
04

02
2.

96
95

3.
92

31
3.

09
90

3.
08

61
3.

04
59

2.
99

17
3.

88
74

3.
08

25
3.

07
99

2.
98

86
2.

98
65

r.
b
ia

s(
%

)
35

.7
7

5.
05

3.
09

1.
34

-1
.0

2
30

.7
7

3.
30

2.
87

0.
09

-0
.2

8
29

.5
8

2.
75

2.
66

-0
.3

8
-0

.4
5

R
M

S
E

2.
06

20
1.

76
72

1.
76

31
1.

76
12

1.
76

10
1.

74
01

1.
47

84
1.

47
75

1.
47

50
1.

47
51

1.
67

29
1.

42
05

1.
42

04
1.

41
82

1.
41

82

115



T
ab

le
5
.6

:
B

ia
s

co
rr

ec
ti

on
fo

r
th

e
L

év
y

p
ro

ce
ss

w
it

h
an

u
n

k
n

ow
n

m
ea

n
an

d
a

fi
x
ed

x
0

(v
=

1.
0)

v
=

1.
0

O
L

S
T

C
U

W
Y

U
W

Y
H

U
W

Y
H

T
O

L
S

T
C

U
W

Y
U

W
Y

H
U

W
Y

H
T

O
L

S
T

C
U

W
Y

U
W

Y
H

U
W

Y
H

T

T
=

5,
h

=
1/

12
,
κ

=
0.

5
T

=
5,
h

=
1/

52
,
κ

=
0.

5
T

=
5,
h

=
1/

25
2,
κ

=
0.

5

M
ea

n
1.

61
22

0.
79

50
0.

73
97

0.
23

75
0.

19
13

1.
56

45
0.

76
06

0.
74

79
0.

20
14

0.
19

12
1.

55
25

0.
75

17
0.

74
91

0.
19

18
0.

18
98

r.
b
ia

s
22

2.
44

59
.0

0
47

.9
5

-5
2.

50
-6

1.
75

21
2.

90
52

.1
3

49
.5

9
-5

9.
73

-6
1.

76
21

0.
49

50
.3

3
49

.8
1

-6
1.

63
-6

2.
05

R
M

S
E

1.
58

41
1.

16
59

1.
15

32
1.

15
81

1.
16

95
1.

48
49

1.
06

75
1.

06
45

1.
07

74
1.

08
03

1.
45

35
1.

03
36

1.
03

29
1.

04
87

1.
04

94

T
=

5,
h

=
1/

12
,
κ

=
1.

0
T

=
5,
h

=
1/

52
,
κ

=
1.

0
T

=
5,
h

=
1/

25
2,
κ

=
1.

0

M
ea

n
2.

06
43

1.
22

88
1.

17
32

0.
95

05
0.

90
08

1.
99

35
1.

18
57

1.
17

31
0.

90
65

0.
89

62
1.

97
82

1.
17

64
1.

17
38

0.
89

66
0.

89
45

r.
b
ia

s
10

6.
43

22
.8

8
17

.3
2

-4
.9

5
-9

.9
2

99
.3

6
18

.5
8

17
.3

1
-9

.3
5

-1
0.

38
97

.8
0

17
.6

4
17

.3
8

-1
0.

34
-1

0
.5

5
R

M
S
E

1.
65

02
1.

28
17

1.
27

29
1.

26
21

1.
26

50
1.

50
89

1.
15

06
1.

14
86

1.
13

94
1.

14
03

1.
46

52
1.

10
47

1.
10

43
1.

09
54

1.
09

56

T
=

5,
h

=
1/

12
,
κ

=
3.

0
T

=
5,
h

=
1/

52
,
κ

=
3.

0
T

=
5,
h

=
1/

25
2,
κ

=
3.

0

M
ea

n
4.

05
96

3.
13

79
3.

08
14

3.
04

40
2.

97
33

3.
90

11
3.

07
69

3.
06

42
2.

98
41

2.
97

31
3.

86
66

3.
06

17
3.

05
90

2.
96

85
2.

96
64

r.
b
ia

s
35

.3
2

4.
60

2.
71

1.
47

-0
.8

89
0

30
.0

4
2.

56
2.

14
-0

.5
30

-0
.9

0
28

.8
8

2.
06

1.
97

-1
.0

5
-1

.1
2

R
M

S
E

2.
06

89
1.

78
22

1.
77

87
1.

77
74

1.
77

71
1.

72
46

1.
47

25
1.

47
18

1.
47

05
1.

47
07

1.
64

65
1.

40
11

1.
40

10
1

1.
40

01
1.

40
02

116



T
a
b

le
5.

7:
B

ia
s

co
rr

ec
ti

on
fo

r
th

e
L

év
y

p
ro

ce
ss

w
it

h
an

u
n

k
n

ow
n

m
ea

n
an

d
a

ra
n

d
om

x
0

(v
=

0.
25

)

v
=

0.
25

O
L

S
T

C
U

W
Y

U
W

Y
H

U
W

Y
H

T
O

L
S

T
C

U
W

Y
U

W
Y

H
U

W
Y

H
T

O
L

S
T

C
U

W
Y

U
W

Y
H

U
W

Y
H

T

T
=

5,
h

=
1/

12
,
κ

=
0.

5
T

=
5,
h

=
1/

52
,
κ

=
0.

5
T

=
5,
h

=
1/

25
2,
κ

=
0.

5

M
ea

n
1.

52
48

0.
70

76
0.

65
38

0.
30

51
-0

.1
67

0
1.

49
76

0.
69

37
0.

68
14

0.
29

33
-0

.1
22

7
1.

48
95

0.
68

87
0.

68
61

0.
28

86
-0

.1
1
47

r.
b
ia

s(
%

)
20

4.
96

41
.5

2
30

.7
6

-3
8.

98
-1

33
.4

19
9.

52
38

.7
5

36
.2

8
-4

1.
34

-1
24

.5
3

19
7.

89
37

.7
4

37
.2

3
-4

2.
2
8

-1
22

.9
3

R
M

S
E

1.
47

14
1.

07
61

1.
06

70
1.

07
37

1.
24

89
1.

42
51

1.
03

59
1.

03
37

1.
03

84
1.

19
30

1.
40

70
1.

01
79

1.
01

74
1.

02
23

1.
17

40

T
=

5,
h

=
1/

12
,
κ

=
1.

0
T

=
5,
h

=
1/

52
,
κ

=
1.

0
T

=
5,
h

=
1/

25
2,
κ

=
1.

0

M
ea

n
1.

99
62

1.
16

07
1.

10
65

0.
95

74
0.

68
10

1.
94

86
1.

14
08

1.
12

84
0.

94
03

0.
72

42
1.

93
53

1.
13

37
1.

13
12

0.
93

37
0.

73
04

r.
b
ia

s(
%

)
99

.6
2

16
.0

7
10

.6
5

-4
.2

5
-3

1.
90

94
.8

6
14

.0
8

12
.8

4
-5

.9
7

-2
7.

58
93

.5
3

13
.3

7
13

.0
12

-6
.6

3
-2

6.
96

R
M

S
E

1.
53

81
1.

18
29

1.
17

68
1.

17
27

1.
21

46
1.

45
73

1.
11

52
1.

11
37

1.
10

79
1.

14
02

1.
43

01
1.

09
14

1.
09

11
1.

08
52

1.
11

62

T
=

5,
h

=
1/

12
,
κ

=
3.

0
T

=
5,
h

=
1/

52
,
κ

=
3.

0
T

=
5,
h

=
1/

25
2,
κ

=
3.

0

M
ea

n
4.

03
42

3.
11

25
3.

05
64

3.
04

03
2.

87
21

3.
89

58
3.

07
17

3.
05

92
3.

00
44

2.
92

07
3.

86
30

3.
05

82
3.

05
57

2.
99

15
2.

92
15

r.
b
ia

s(
%

)
34

.4
7

3.
75

1.
88

1.
34

-4
.2

6
29

.8
6

2.
39

1.
97

0.
15

-2
.6

4
28

.7
7

1.
94

1.
86

-0
.2

84
7

-2
.6

2
R

M
S
E

1.
99

27
1.

70
70

1.
70

42
1.

70
38

1.
70

81
1.

70
23

1.
44

93
1.

44
88

1.
44

76
1.

44
97

1.
64

36
1.

40
02

1.
40

00
1.

39
90

1.
40

11

117



T
ab

le
5
.8

:
B

ia
s

co
rr

ec
ti

on
fo

r
th

e
L

év
y

p
ro

ce
ss

w
it

h
an

u
n

k
n

ow
n

m
ea

n
an

d
a

ra
n

d
om

x
0

(v
=

1.
0)

v
=

1.
0

O
L

S
T

C
U

W
Y

U
W

Y
H

U
W

Y
H

T
O

L
S

T
C

U
W

Y
U

W
Y

H
U

W
Y

H
T

O
L

S
T

C
U

W
Y

U
W

Y
H

U
W

Y
H

T

T
=

5,
h

=
1/

12
,
κ

=
0.

5
T

=
5,
h

=
1/

52
,
κ

=
0.

5
T

=
5,
h

=
1/

25
2,
κ

=
0.

5

M
ea

n
1.

52
82

0.
71

10
0.

65
75

0.
32

38
-0

.1
48

3
1.

48
63

0.
68

25
0.

67
01

0.
28

55
-0

.1
30

5
1.

48
46

0.
68

37
0.

68
12

0.
28

44
-0

.1
1
89

r.
b
ia

s(
%

)
20

5.
64

42
.2

0
31

.5
1

-3
5.

24
-1

29
.6

5
19

7.
27

36
.4

9
34

.0
3

-4
2.

90
-1

26
.0

9
19

6.
91

36
.7

5
36

.2
4

-4
3.

1
2

-1
23

.7
7

R
M

S
E

1.
50

10
1.

11
37

1.
10

49
1.

10
77

1.
27

13
1.

40
40

1.
01

57
1.

01
35

1.
02

19
1.

18
14

1.
38

73
0.

99
45

0.
99

40
1.

00
09

1.
15

68

T
=

5,
h

=
1/

12
,
κ

=
1.

0
T

=
5,
h

=
1/

52
,
κ

=
1.

0
T

=
5,
h

=
1/

25
2,
κ

=
1.

0

M
ea

n
1.

99
53

1.
15

97
1.

10
62

0.
97

21
0.

69
57

1.
93

40
1.

12
62

1.
11

39
0.

92
93

0.
71

31
1.

92
49

1.
12

33
1.

12
08

0.
92

40
0.

72
07

r.
b
ia

s(
%

)
99

.5
3

15
.9

8
10

.6
2

-2
.7

9
-3

0.
43

93
.4

1
12

.6
2

11
.3

9
-7

.0
7

-2
8.

69
92

.4
9

12
.3

3
12

.0
8

-7
.6

0
-2

7.
93

R
M

S
E

1.
56

68
1.

22
06

1.
21

47
1.

21
04

1.
24

77
1.

43
94

1.
10

25
1.

10
11

1.
09

75
1.

13
22

1.
40

68
1.

06
71

1.
06

68
1.

06
27

1.
09

61

T
=

5,
h

=
1/

12
,
κ

=
3.

0
T

=
5,
h

=
1/

52
,
κ

=
3.

0
T

=
5,
h

=
1/

25
2,
κ

=
3.

0

M
ea

n
4.

02
20

3.
10

03
3.

04
69

3.
04

55
2.

87
73

3.
87

40
3.

04
99

3.
03

75
2.

98
61

2.
90

25
3.

84
24

3.
03

76
3.

03
51

2.
97

16
2.

90
16

r.
b
ia

s(
%

)
34

.0
7

3.
34

1.
55

1.
52

-4
.0

9
29

.1
3

1.
66

1.
25

-0
.4

6
-3

.2
5

28
.0

8
1.

25
1.

17
-0

.9
4

-3
.2

8
R

M
S
E

2.
00

56
1.

72
86

1.
72

63
1.

72
63

1.
73

01
1.

68
59

1.
44

25
1.

44
21

1.
44

17
1.

44
49

1.
61

55
1.

37
90

1.
37

89
1.

37
88

1.
38

20

118



Chapter 6

Exact Distribution and Density of

Mean Reversion Parameter

Estimator in Continuous Time

Models ∗

6.1 Introduction

Since the seminal works of Merton (1971) and Black and Scholes (1973),

continuous-time models have been used extensively in financial economics, see the ex-

cellent survey by Sundaresan (2000). Econometricians have also paid close attention to

this line of literature. Maximum likelihood, generalized method of moments, simulated

method of moments, and nonparametric approaches have been developed for model

estimation, see, for instance, Singleton (2001), Aı̈t-Sahalia (2002), Bandi and Phillips

∗This chapter is a joint work with Dr. Yong Bao and Dr. Aman Ullah
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(2003), Hong and Li (2005), and Phillips and Yu (2009a). As shown in the literature,

there exists serious estimation bias in the mean reversion parameter (κ) by almost all

the methods, especially when the diffusion process has a linear drift function and the

speed of mean reversion is slow (i.e., small values of κ).1 For example, Phillips and Yu

(2005) revealed that the bias of the maximum likelihood estimator (MLE) for κ in the

CIR model (Cox, Ingersoll, and Ross, 1985) can be extremely large for data sets with

very long time spans, regardless of data frequency. Recently, Tang and Chen (2009)

showed that the bias of κ̂ is up to O(T−1) in the stationary Vasicek model, where T

is the time span. They also derived the approximate biases of the diffusion and drift

estimators, and their simulations demonstrated that the estimation biases of diffusion

and drift parameters are virtually zero, but κ̂ could be substantially biased. Since the

mean reversion parameter κ is of most importance for asset pricing, risk management,

and forecasting, considerable attention in the literature has arisen to improve its estima-

tion accuracy. Recent contributions include indirect inference (Phillips and Yu, 2009b),

bootstrapping (Tang and Chen, 2009), and analytical bias approximation (Yu, 2011).

In addition to the classical asymptotic analysis under expanding domain (T →

∞), asymptotic results under infill (n→∞, where n is the number of sample observa-

tions within a data span T ) and mixed (n→∞ and T →∞) domains are also analyzed

in the literature. In the context of Vasicek (1977) and CIR processes with unknown

drift, Tang and Chen (2009) showed that asymptotic distributions of the MLE are quite

different under expanding and mixed domains. Aı̈t-Sahalia (2002) derived the asymp-

totic distribution of his approximate MLE under the expanding domain in diffusions

models. A striking observation from his simulations is that under the stationary case,

the asymptotic distribution of the estimated mean reversion parameter deviates more

1Here we use the word “bias” in a very loose term. In Section 2, we discuss this issue more formally.
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seriously from its corresponding finite-sample distribution as the true parameter value

deceases from 10 to 1, i.e., as the process is getting closer to a unit root process, even

with a very large sample size (n = 1000). Under the mixed domain, Brown and Hewitt

(1975) obtained the limit normal distribution for the MLE of κ in the Vasicek model

with a known drift term, see also Bandi and Phillips (2003 , 2007), and Phillips and

Yu (2009c) for asymptotic analysis under mixed domain. In a recent paper, Zhou and

Yu (2010) derived the asymptotic distributions of the least squares (LS) estimator of κ

in a general class of diffusion models under the three different domains. They provided

Monte Carlo evidence that the infill asymptotic distribution is much more accurate

in approximating the true finite-sample distribution than the asymptotic distributions

under the other two domains.

The problems of approximate estimation bias and inaccurate and different dis-

tribution approximations floating in the literature are largely due to the absence of exact

analytical distribution results. Moreover, in reality, given the discretized data (with a

given finite data span T and finite sample size n ), we do not really know under which

asymptotic domain our inference about κ̂ shall be, but the asymptotic distribution re-

sults can behave quite differently under expanding, infill, and mixed domains. To address

these problems, in this chapter we investigate the exact distribution of the estimated

mean reversion parameter. To the best of our knowledge, this chapter is the first to ex-

amine the exact finite-sample distribution of the estimated κ in continuous-time models.

Since the MLE of κ is a simple transformation of the LS estimator of the autoregressive

coefficient φ in a first-order autoregressive (AR(1)) model with discrete data, our study

is intrinsically related to the vast literature studying the finite-sample distribution of

the AR(1) coefficient estimator φ̂. The Imhof (1961) technique, in conjunction with

Davies (1973, 1980), was typically used to develop the exact distribution of φ̂, see Ullah
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(2004) for a comprehensive review. Nevertheless, the Imhof (1961) technique is appli-

cably only when the process is strictly stationary with an initial random observation

included in formulating φ̂, or when the first observation is discarded. Computational

burden of the Imhof (1961) technique also increases tremendously as the sample size

of the AR process increases, since it involves computation of eigenvalues of a matrix

whose dimension is the same as the sample size. In this chapter, we take a different

approach by first analytically evaluating the joint characteristic function of the random

numerator and denominator in defining φ̂, and then inverting it via Gurland (1948) and

Gil-Pelaez (1951) to calculate the exact finite-sample distribution. This approach is in

line with Tsui and Ali (1992 , 1994 ) and Ali (2002) . However, note that in Tsui and

Ali (1992 , 1994 ) and Ali (2002), no intercept term was included in the AR(1) model.

This is equivalent to a known drift term in our continuous-time model. In this paper,

we consider explicitly the case when the drift term is unknown. Moreover, Tsui and Ali

(1992 , 1994 ) did not include the initial observation in formulating the LS estimator φ̂.

However, the initial observation does matter in studying the finite-sample distributions;

in fact, it also matters even for the asymptotic distributions under several scenarios.

The initial observation was included in Ali (2002) , but he studied the approximate

distributions.

The reminder of this chapter is as follows. In Section 2, we derive the exact

distribution of the MLE of the mean reversion parameter κ. Section 3 offers some insights

to the issues of moment and asymptotic distribution. Section 4 presents the simulation

results and compares the exact distribution results with the asymptotic results under

the three different domains. Section 5 concludes. Technical details are collected in the

section IV of Appendix A.
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6.2 Finite-Sample Properties

We consider the Ornstein-Uhlenbeck (OU) process with initial value x(0),

dx(t) = κ(µ− x(t))dt+ σdB(t), (6.1)

where κ ∈ R, µ ∈ R, σ > 0, and B(t) is a standard Brownian motion. We are interested

in estimating the parameter κ. When κ 6= 0, the solution to the above process is

x(t) = µ+ (x(0)− µ) exp (−κt) + σ

∫ t

0
exp (κ(s− t)) dB(s), t ≥ 0.

Usually κ > 0 is assumed, and then as t → ∞, the deterministic part of x tends to

the mean level µ, so we have a mean-reverting process. When κ = 0, the process is no

longer mean reverting:

x(t) = x(0) + σB(t),

where the parameter µ vanishes.

The exact discrete model corresponding to (6.1) is given by

xih = α+ φx(i−1)h + εih, (6.2)

where 0 < φ = exp(−κh) ≤ 1, α = µ(1− exp(−κh)), εih = σεi
√

(1− exp(−2κh))/(2κ)

when κ > 0 and εih = σ
√
hεi when κ = 0, εi ∼ i.i.d.N(0, 1), h is the sampling interval,

i = 0, 1, · · · , n such that the observed data are discretely recorded at (0, h, 2h, · · · , nh)

in the time interval [0, T ] and nh = T . Thus n + 1 is the total number of discrete

observations and T is the data span. When κ > 0, φ < 1; when κ = 0, φ = 1, α = 0,

so (6.2) becomes a random walk (with no drift). In the following, we suppress h in xih

and εih for notational convenience.

It is well known that the LS/ML estimator of κ is

κ̂ = − ln(φ̂)

h
, (6.3)
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where φ̂ is the LS estimator of the autoregression coefficient φ from the AR(1) model

(6.2), defined as

φ̂ =



∑n
i=1 xi−1xi∑n
i=1 x

2
i−1

κ = 0, or κ > 0 and µ is known

(without loss of generality, µ = 0)

∑n
i=1(xi−1−x̄)xi∑n
i=1(xi−1−x̄)2

κ > 0 and µ is unknown

, (6.4)

where x̄ = n−1
∑n

i=1 xi−1.
2

We are interested in studying the properties of κ̂ estimated from the discrete

sample via φ̂. As can be expected, the exact properties of κ̂ depend on how to spell out

the initial observation x(0) = x0. We distinguish between three cases: (A) x0 is fixed

at 0; (B) x0 is fixed at a constant c; (C) x0 is a random draw from N((1− φ)−1α, (1−

φ2)−1σ2
ε), σ

2
ε =Var(εi) , or, equivalently, N

(
µ, (2κ)−1σ2

)
, κ > 0, and x0 is independent

of (ε1, · · · , εn). Under case C, the time series (x0, x1, · · · , xn) is stationary. Since case

A is a special case of B by setting c = 0, in the sequel, we focus on cases B and C and

discuss briefly case A.

2There seems to be some confusion in the literature regarding the sample size n in formulating the
LS estimator φ̂. In Tsui and Ali (1992 ,1994 ), the initial observation x0 is discarded, following the
convention of Hurwicz (1950) . Yet in Ali (2002) the initial observation is included, which possibly
leads the author to state (wrongly) that there might be an error in Tsui and Ali (1994). Since we are
interested in studying the finite sample properties of κ̂, the initial condition x0 matters and we include
it in the estimation procedure.

124



6.2.1 Distribution and Density

We note that φ̂ can be negative with a non-zero probability; in fact, (6.3) is

defined only if φ̂ > 0. Thus, we define exact distribution of κ̂− κ as

Pr (κ̂− κ ≤ w) ≡ Pr
(
κ̂− κ ≤ w|φ̂ > 0

)
= Pr

(
φ̂ ≥ φ exp (−hw) |φ̂ > 0

)
=

Pr
(
φ̂ ≥ φ exp (−hw)

)
Pr
(
φ̂ > 0

)
=

1− Pr
(
φ̂ ≤ φ exp (−hw)

)
1− Pr

(
φ̂ < 0

)
=

1− Pr
(
φ̂− φ ≤ (exp (−hw)− 1)φ

)
1− Pr

(
φ̂− φ < −φ

)
=

1− Fφ̂(d)

1− Fφ̂(−φ)
, (6.5)

where d = (exp (−hw)− 1)φ and Fφ̂(d) denotes the cumulative distribution function

(CDF) of φ̂−φ at d. Thus the distribution of κ̂−κ at w follows from the distribution of

φ̂−φ, given the sampling frequency h. From (6.5), we have the probability distribution

function (PDF) of κ̂− κ, conditional on φ̂ > 0,

fκ̂(w) =
hφ exp (−hw) fφ̂(d)

1− Fφ̂(−φ)
, (6.6)

where fφ̂(d) denotes the PDF of φ̂− φ at d. 3

We note from (6.5) that evaluation of the cumulative distribution of κ̂ depends

on evaluation of the distribution of φ̂. When κ > 0 and x0 is random, we can write

φ̂ − φ as a ratio of quadratic forms in the normal random vector (x0, x1, · · · , xn)′, and

the technique of Imhof (1961) can be used to evaluate Fφ̂, and thus Fκ̂. For fixed x0,

it is not obvious how to directly apply Imhof (1961).4 More fundamentally, as pointed

3Note that (6.5) and (6.6) hold regardless of the distribution assumption.
4If we discard x0, then the Imhof (1961) technique is still applicable, as we can define φ̂ in terms of

quadratic forms in xn.
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out by Tsui and Ali (1994) and Ali (2002), Imhof’s procedure requires computation

of eigenvalues of an (n + 1) × (n + 1) matrix, which becomes very cumbersome as the

sampling interval h decreases.5 Therefore, we proceed to derive the distribution of φ̂,

and hence that of κ̂, by an alternative method.

Following Tsui and Ali (1994), we use the results from Gurland (1948) and

Gil-Pelaez (1951) on a ratio of two random variables. Let Y1 and Y2 have the joint

characteristic function (CF) ϕ (u, v) = E(exp (iuY1 + ivY2)). If Pr (Y2 ≤ 0) = 0, then the

distribution of Y = Y1/Y2 is given by

FY (y) = Pr

(
Y1

Y2
≤ y
)

=
1

2
− 1

π

∫ ∞
0
=
(
ϕ(u,−uy)

u

)
du, (6.7)

and the density function is

fY (y) = F ′Y (y) =
1

π

∫ ∞
0
=
(
∂ϕ(u, v)

∂v
|v=−uy

)
du, (6.8)

which can be used to derive Fφ̂(d), Fφ̂(−φ), and fφ̂(d), and thus Fκ̂(w) and fκ̂(w), via

(6.5) and (6.6), respectively.

6.2.2 Characteristic Function

To be able to use (6.7) and (6.8), an essential task is to derive the characteristic

function of φ̂− φ. Let 0n be an n× 1 vector of zeros, In be the identity matrix of size

n, ιn be an n × 1 vector of ones, dn = (ιn−1, 0)′, Mn = In − n−1ιnι
′
n, and ei,n be

unit/elementary vector in n-dimensional Euclidean space with its ith element being 1.

Denote χn+1 = (x0,xn)′, xn = (x1, · · · , xn)′, zn = xn/σε, z0 = x0/σε, and

AC
n = An (Cn−1) =

 0′n−1 0

Cn−1 0n−1

 , BC
n = Bn (Cn−1) =

 Cn−1 0n−1

0′n−1 0

 ,

(6.9)

5Another issue is that Imhof’s (1961) procedure is not directly applicable to work out fκ̂(w), even
though Lu (2006) discussed numerical evaluation of the probability distribution function of a normal
quadratic form.
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where Cn−1 is an (n− 1) × (n− 1) matrix; when Cn−1 = In−1, we suppress it and

simply put An and Bn. For an n×n matrix Cn, we use cn,ij to denote its ij-th element,

and c
(ij)
n to denote the ij-th element of C−1

n , whenever it exists.

6.2.2.1 Known Intercept (µ = 0 )

When the mean level µ is known (0), regardless of the value of mean-reverting

parameter κ, the corresponding intercept in the discrete AR(1) model is zero and φ̂ is

the ratio of
∑n

i=1 xi−1xi to
∑n

i=1 x
2
i−1. Note that (x2, · · · , x3)′ = (0n−1, In−1)xn and

(x1, · · · , xn−1)′ = (In−1,0n−1)xn, so

n∑
i=2

xi−1xi = x′n

 0′n−1

In−1

 (In−1,0n−1)xn

= x′nAnxn,

n∑
i=2

x2
i−1 = x′n

 In−1

0′n−1

 (In−1,0n−1)xn

= x′nBnxn.

Therefore, we can write
∑n

i=1 xi−1xi = χ′n+1An+1χn+1 = x0x
′
ne1,n + x′nAnxn and∑n

i=1 x
2
i−1 = χ′n+1Bn+1χn+1 = x2

0 + x′nBnxn.

If x0 is fixed, then

φ̂− φ =
x0x1 + x′nAnxn
x2

0 + x′nBnxn
− φ

=

[
x0x

′
ne1,n + x′n(An − φBn)xn − φx2

0

]
/σ2

ε(
x2

0 + x′nBnxn
)
/σ2

ε

=
z0z
′
ne1,n + z′n(An − φBn)zn − φz2

0(
z2

0 + z′nBnzn
) .

The density function of zn (conditional on z0) is

f (zn) = (2π)−
n
2 exp

[
−
∑n

i=1 (zi − φzi−1)2

2

]

= (2π)−
n
2 exp

[
−φ

2z2
0

2
+ φz0z

′
ne1,n −

1

2
z′n
(
In + φ2Bn − 2φAn

)
zn

]
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and the joint CF of the numerator and denominator in defining φ̂ − φ, conditional on

z0, is

ϕ (u, v) = (2π)−
n
2

∫ +∞

−∞
exp

{
iu
[
z0z
′
ne1,n + z′n(An − φBn)zn − φz2

0

]
+iv

(
z2

0 + z′nBnzn
)}
f (zn) dzn

= (2π)−
n
2 exp

(
−iuφz2

0 + ivz2
0 −

φ2z2
0

2

)
·
∫ +∞

−∞
exp{−1

2
z′n
[
In +

(
φ2 + 2iuφ− 2iv

)
Bn

− (φ+ iu)
(
An +A′n

)]
zn + (φ+ iu) z0z

′
ne1,n}dzn.

Rn = Rn (u, v) = In +
(
φ2 + 2iuφ− 2iv

)
Bn − (φ+ iu) (An +A′n), (6.10)

which is a tridiagonal matrix with its main diagonal elements rn,ii = 1+φ2 +2i(uφ−v),

i = 1, · · · n − 1, rn,ii = 1, i = n, and sub- and super-diagonal elements −φ − iu. Note

that

−1

2
z′nRnzn + (φ+ iu) z0z

′
ne1,n = −1

2

[
zn − (φ+ iu) z0R

−1
n e1,n

]′
Rn

·
[
zn − (φ+ iu) z0R

−1
n e1,n

]
+

1

2
[(φ+ iu) z0]2 e′1,nR

−1
n e1,n,

so

ϕ (u, v) = exp

{
z2

0

2

(
2iv − 2iuφ− φ2

)
+

1

2
[(φ+ iu) z0]2 e′1,nR

−1
n e1,n

}
·(2π)−

n
2

∫ +∞

−∞
exp

{
− 1

2

[
zn − (φ+ iu) z0R

−1
n e1,n

]′
Rn

·
[
zn − (φ+ iu) z0R

−1
n e1,n

]}
dzn

= |Rn|−1/2 exp

{
z2

0

2

[
−2i(uφ− v)− φ2 + (φ+ iu)2 e′1,nR

−1
n e1,n

]}
.
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Also, e′1,nR
−1
n e1,n = r

(11)
n , where r

(11)
n is the element at the first row and column of

R−1
n . It is obvious that r

(11)
n = |Rn−1| / |Rn| . By expanding along the first row of

Rn, we can verify |Rn| =
[
1 + φ2 + 2i(uφ− v)

]
|Rn−1| − (φ+ iu)2 |Rn−2| , and thus

1− |Rn+1| / |Rn| = −φ2 − 2i(uφ− v) + (φ+ iu)2 r
(11)
n , which lead to

ϕ (u, v) = |Rn|−1/2 exp

[
z2

0

2

(
1− |Rn+1|

|Rn|

)]
, (6.11)

and thus

∂ϕ (u, v)

∂v
= −ϕ (u, v)

[
∂ |Rn|
∂v

(
1

2 |Rn|
− z2

0 |Rn+1|
2 |Rn|2

)
+
∂ |Rn+1|
∂v

z2
0

2 |Rn|

]
. (6.12)

If x0 = 0, then the characteristic function and its derivative degenerate to ϕ (u, v) =

|Rn|−1/2 and ∂ϕ (u, v) /∂v = −(|Rn|−3/2 /2)∂ |Rn| /∂v, respectively.

If x0 is random (and κ > 0), we write

φ̂− φ =
χ′n+1 (An+1 − φBn+1)χn+1

χ′n+1Bn+1χn+1

,

which is invariant to σ2
ε . Without loss of generality, normalize σ2

ε = 1, and the density

function of χn+1 is

f
(
χn+1

)
= (2π)−

n+1
2

∣∣∣∣ V n+1

1− φ2

∣∣∣∣−1/2

exp

[
−1

2
χ′n+1

(
V n+1

1− φ2

)−1

χn+1

]
,

where V n+1 is (n+ 1)× (n+ 1) with its elements vn,ij = φ|i−j|. Given its special struc-

ture, we can verify that
(
1− φ2

)
V −1
n+1 is tridiagonal with main diagonal elements 1 at

positions 1 and n+ 1, 1 + φ2 at positions 2 to n, and sub- and super-diagonal elements
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−φ. Also,
∣∣V −1

n+1

∣∣ = (1− φ2)−n. Then immediately,

ϕ (u, v) = (2π)−
n+1
2

∣∣∣∣ V n+1

1− φ2

∣∣∣∣−1/2

·
∫ +∞

−∞
exp

{
− 1

2
χ′n+1

[(
V n+1

1− φ2

)−1

− 2iu (An+1 − φBn+1)

− 2ivBn+1

]
χn+1

}
dχn+1

=
√

1− φ2
∣∣(1− φ2

)
V −1
n+1 − iu(An+1 +A′n+1) + 2i (uφ− v)Bn+1

∣∣−1/2

=
√

1− φ2
∣∣Rn+1 − φ2e1,n+1e

′
1,n+1

∣∣−1/2
,

whereRn+1−φ2e1,n+1e
′
1,n+1 is tridiagonal with its main diagonal elements 1+2i(uφ−v)

at position 1, 1 + φ2 + 2i(uφ− v) at positions 2 to n, and 1 at position n+ 1, and sub-

and super-diagonal elements −φ − iu. Expanding Rn+1 − φ2e1,n+1e
′
1,n+1 by its first

row leads to
∣∣Rn+1 − φ2e1,n+1e

′
1,n+1

∣∣ = [1 + 2i(uφ− v)] |Rn| − (φ+ iu)2 |Rn−1| . Recall

|Rn| =
[
1 + φ2 + 2i(uφ− v)

]
|Rn−1| − (φ+ iu)2 |Rn−2| . So

∣∣Rn+1 − φ2e1,n+1e
′
1,n+1

∣∣ =

|Rn+1| − φ2 |Rn| ,

ϕ (u, v) =
√

1− φ2
(
|Rn+1| − φ2 |Rn|

)−1/2
, (6.13)

and

∂ϕ (u, v)

∂v
= − ϕ (u, v)

2 (|Rn+1| − φ2 |Rn|)

(
∂ |Rn+1|
∂v

− φ2∂ |Rn|
∂v

)
. (6.14)

6.2.2.2 Unknown Intercept (µ 6= 0 and κ > 0)

When the mean level µ is unknown and the mean-reverting parameter κ > 0,

the corresponding intercept in the discrete AR(1) model is nonzero and φ̂ is the ratio of
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∑n
i=1(xi−1 − x̄)xi to

∑n
i=1(xi−1 − x̄)2. Note that

(x0 − x̄, · · · , xn−1 − x̄)′ = Mn(x0, · · · , xn−1)′

= Mn(0, x1, · · · , xn−1)′ +Mn (x0, 0, · · · 0)′

= Mn

 0′n−1 0

In−1 0n−1

xn + x0Mne1,n

≡ MnAnxn + x0Mne1,n,

so we can write

n∑
i=1

(xi−1 − x̄)xi = x′nMnAnxn + x0x
′
nMne1,n = χ′n+1A

M
n+1χn+1,

n∑
i=1

(xi−1 − x̄)2 = x′nA
′
nMnAnxn + x2

0e
′
1,nMne1,n + 2x0x

′
nA
′
nMne1,n

= χ′n+1B
M
n+1χn+1,

where xn = (0n, In)χn+1, and AM
n+1 and BM

n+1 are defined in (6.9).

If x0 is fixed, then

φ̂− φ =
x′nMnAnxn + x0x

′
nMne1,n

x′nA
′
nMnAnxn + x2

0e
′
1,nMne1,n + 2x0x′nA

′
nMne1,n

− φ

=
z′n(MnAn − φA′nMnAn)zn + z0z

′
n(In − 2φA′n)Mne1,n − φz2

0e
′
1,nMne1,n

z′nA
′
nMnAnzn + 2z0z′nA

′
nMne1,n + z2

0e
′
1,nMne1,n

.

The density function of zn (conditional on z0) is

f (zn) = (2π)−
n
2 exp

[
−
∑n

i=1 (zi − α− φzi−1)2

2

]

= (2π)−
n
2 exp

{
− 1

2

[
z′n
(
In + φ2Bn − 2φAn

)
zn

+ 2z′n (αφdn − αιn − φz0e1,n) + nα2 + φ2z2
0 + 2αφz0

]}
,
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and the joint CF of the numerator and denominator in defining φ̂− φ is

ϕ (u, v) = (2π)−
n
2 exp

[
−nα

2 + φ2z2
0 + 2αφz0

2
+ (iv − iuφ) z2

0e
′
1,nMne1,n

]
·
∫ +∞

−∞
exp

{
− 1

2
z′n

[
In + φ2Bn − 2φAn − 2iu

(
MnAn − φA′nMnAn

)
− 2ivA′nMnAn

]
zn + z′nδn

}
dzn,

where

δn = δn(u, v) = iuz0(In − 2φA′n)Mne1,n + 2ivz0A
′
nMne1,n − (αφdn − αιn − φz0e1,n) ,

(6.15)

and the (symmetrized) matrix in the quadratic form of zn in the exponent of the integral,

denoted by Sn = Sn(u, v), can be written as

Sn = In + φ2Bn − φ
(
An +A′n

)
− iu(MnAn +A′nMn) + 2iuφA′nMnAn (6.16)

−2ivA′nMnAn

= In + φ2Bn − φ
(
An +A′n

)
− iu(An +A′n) + 2iuφA′nAn − 2ivA′nAn

+n−1iuιnι
′
nAn + n−1iuA′nιnι

′
n − 2n−1iuφA′nιnι

′
nAn + 2n−1ivA′nιnι

′
nAn

= Rn +
i

n
(uιnι

′
nAn + uA′nιnι

′
n − 2uφA′nιnι

′
nAn + 2vA′nιnι

′
nAn)

= Rn +
i

n

 2(u+ v − uφ)ιn−1ι
′
n−1 uιn−1

uι′n−1 0

 , (6.17)

by noticing

A′nιnι
′
nAn =

 ιn−1ι
′
n−1 0n−1

0′n−1 0

 , ιnι
′
nAn =

 ιn−1ι
′
n−1 0n−1

ι′n−1 0

 .

Thus we have

ϕ (u, v) = |Sn|−1/2 exp

[
− nα2 + φ2z2

0 + 2αφz0

2
+ i (v − uφ) z2

0e
′
1,nMne1,n

+
1

2
δ′nS

−1
n δn

]
, (6.18)
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and

∂ϕ (u, v)

∂v
= ϕ (u, v)

(
iz2

0e
′
1,nMne1,n + 2iz0e

′
1,nMnAnS

−1
n δn

+
1

2
δ′n
∂S−1

n

∂v
δn −

1

2 |Sn|
∂ |Sn|
∂v

)
. (6.19)

When x0 is random,

φ̂− φ =
χ′n+1

(
AM
n+1 − φBM

n+1

)
χn+1

χ′n+1B
M
n+1χn+1

,

which is invariant to σ2
ε . With σ2

ε normalized to be 1, the density of χn+1 is

f
(
χn+1

)
= (2π)−

n+1
2

∣∣∣∣ V n+1

1− φ2

∣∣∣∣−1/2

· exp

[
−1

2

(
χn+1 −

αιn+1

1− φ

)′( V n+1

1− φ2

)−1(
χn+1 −

αιn+1

1− φ

)]
,

and the joint CF of χ′n+1

(
AM
n+1 − φBM

n+1

)
χn+1 and χ′n+1B

M
n+1χn+1 is

ϕ (u, v) = (2π)−
n+1
2

∣∣∣∣ V n+1

1− φ2

∣∣∣∣−1/2

exp

[
−1

2

α2

(1− φ)2
ι′n+1

(
V n+1

1− φ2

)−1

ιn+1

]

·
∫ +∞

−∞
exp

{
− 1

2
χ′n+1

[(
V n+1

1− φ2

)−1

− 2iu
(
AM
n+1 − φBM

n+1

)
− 2ivBM

n+1

]
χn+1 +

α

1− φ
χ′n+1

(
V n+1

1− φ2

)−1

ιn+1

}
dχn+1

= (2π)−
n+1
2

∣∣∣∣ V n+1

1− φ2

∣∣∣∣−1/2

exp

[
−1

2
γ ′n+1

(
V n+1

1− φ2

)
γn+1

]
·
∫ +∞

−∞
exp

{
− 1

2
χ′n+1

[(
V n+1

1− φ2

)−1

− 2iuAM
n+1 + 2i(uφ− v)BM

n+1

]
χn+1

+ χ′n+1γn+1

}
dχn+1,

where

γn+1 =
α

1− φ

(
V n+1

1− φ2

)−1

ιn+1. (6.20)

Note that

γ ′n+1

(
V n+1

1− φ2

)
γn+1 = nα2 + (1 + φ)αµ,
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and that the (symmetrized) matrix in the quadratic form of χn+1 in the exponent of

the above integral, denoted by T n+1 = T n+1(u, v), is

T n+1 =

(
V n+1

1− φ2

)−1

− iu(AM
n+1 +AM ′

n+1) + 2i(uφ− v)BM
n+1

= (1− φ2)V −1
n+1 − iu(An+1 +A′n+1) + 2i(uφ− v)Bn+1

+
iu

n


 0′n 0

ιnι
′
n 0n

+

 0n ιnι
′
n

0 0′n


− 2i(uφ− v)

n

 ιnι
′
n 0n

0′n 0


= Rn+1 − φ2e1,n+1e

′
1,n+1

+
i

n


2(v − uφ) (u+ 2v − 2uφ)ι′n−1 u

(u+ 2v − 2uφ)ιn−1 2(v + u− uφ)ιn−1ι
′
n−1 uιn−1

u uι′n−1 0

 . (6.21)

Therefore,

ϕ (u, v) =
√

1− φ2 |T n+1|−1/2 exp

(
−nα

2 + (1 + φ)αµ

2
+

1

2
γ ′n+1T

−1
n+1γn+1

)
, (6.22)

and

∂ϕ (u, v)

∂v
=
ϕ (u, v)

2

(
γ ′n+1

∂T−1
n+1

∂v
γn+1 −

1

|T n+1|
∂ |T n+1|
∂v

)
. (6.23)

6.2.2.3 Unknown Intercept (µ 6= 0 but κ = 0)

When the mean level µ is unknown but the mean-reverting parameter κ = 0,

the corresponding intercept in the discrete AR(1) model is zero. Given that the intercept

term is unknown, we still estimate φ̂ as the ratio of
∑n

i=1(xi−1−x̄)xi to
∑n

i=1(xi−1−x̄)2,

though the true intercept is zero. The joint CF ϕ (u, v) and its partial derivative with

respective to v of the numerator and denominator in defining φ̂−φ are (6.18) and (6.19),

respectively, with φ = 1 and α = 0. Note that when κ = 0, we consider only the case

when x0 is fixed.
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6.2.3 Evaluation of Characteristic Functions

To evaluate the characteristic functions (6.11), (6.13), (6.18), and (6.22) with

Rn, δn, Sn, γn+1, and T n+1 defined in (6.10), (6.15), (6.17), (6.20), and (6.21), respec-

tively, we need to find the determinants and inverses of (n × n) and (n + 1) × (n + 1)

matrices.

As emphasized in Tsui and Ali (1994), the typical way of evaluating matrix

determinant/inverse by using eigenvalues can be very expensive as n increases. When

there is no intercept term in the AR(1) model, we have already noticed that |Rn| =[
1 + φ2 + 2i(uφ− v)

]
|Rn−1| − (φ+ iu)2 |Rn−2|, starting with |R1| = 1 and |R2| = 1 +

φ2 + 2i(uφ − v) − (φ+ iu)2 . Tsui and Ali (1992, 1994) proposed expanding along the

last row of Rn so that

|Rn| = |Dn−1| − (φ+ iu)2 |Dn−2| , (6.24)

where Dn = Dn(u, v) is the determinant of an n× n tridiagonal matrix with 1 + φ2 +

2i(uφ− v) on its main diagonal and − (φ+ iu) on its super- and sub- diagonals, which

can be evaluated by using the result of Muir (1884):

|Dn| =
n∏
i=1

[
1 + φ2 + 2i(uφ− v)− 2 (φ+ iu) cos (πi/(n+ 1))

]
.

A probably more direct and efficient way (see Berstein (2009, page 235)) is perhaps to

use

|Dn| =


(n+ 1)

[
1+φ2+2i(uφ−v)

2

]n [
1 + φ2 + 2i(uφ− v)

]2
= 4 (φ+ iu)2

βn+1
1 −βn+1

2
β1−β2

[
1 + φ2 + 2i(uφ− v)

]2 6= 4 (φ+ iu)2

, (6.25)

where

β1 =
1 + φ2 + 2i(uφ− v) +

√
[1 + φ2 + 2i(uφ− v)]2 − 4 (φ+ iu)2

2
,

β2 =
1 + φ2 + 2i(uφ− v)−

√
[1 + φ2 + 2i(uφ− v)]2 − 4 (φ+ iu)2

2
.
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The more challenging task is to deal with the case when α 6= 0 and κ > 0,

namely, to evaluate the determinants and inverses of Sn and T n. First, we note that Sn

has some special structure:

Sn = Rn +
i

n

 2(u+ v − uφ)ιn−1ι
′
n−1 uιn−1

uι′n−1 0

 =

 ∆n−1 an−1

an−1 1

 ,
where

∆n−1 = Dn−1 +
2i(u+ v − uφ)

n
ιn−1ι

′
n−1, an−1 =

iu

n
ιn−1 − (φ+ iu) en−1,n−1.

Note that

|Sn| = |∆n−1|
(
1− a′n−1∆

−1
n−1an−1

)
, (6.26)

where

|∆n−1| = |Dn−1|
(

1 +
2i(u+ v − uφ)

n
ι′n−1D

−1
n−1ιn−1

)
, (6.27)

and

∆−1
n−1 = D−1

n−1 −
2i(u+ v − uφ)

n+ 2i(u+ v − uφ)ι′n−1D
−1
n−1ιn−1

D−1
n−1ιn−1ι

′
n−1D

−1
n−1. (6.28)

Keep in mind that (6.26) is valid only if ∆n−1 is nonsingular; (6.27) is valid only if

Dn−1 is nonsingular; (6.28) is valid only if Dn−1 is nonsingular and n + 2i(u + v −

uφ)ι′n−1D
−1
n−1ιn−1 6= 0. From (6.25), we see that |Dn| 6= 0; Appendix A section IV part

(i) also shows that n+ 2i(u+ v − uφ)ι′n−1D
−1
n−1ιn−1 6= 0. Further, these two conditions

ensure that |∆n−1| 6= 0.

Given that we already know how to evaluate analytically the determinant of

Dn via (6.25), we need to work out D−1
n to be able to evaluate (6.26) via (6.27) and

(6.28) . From Hu and O’Connell (1996), with slight modification6:

6Hu and O’Connell (1996) presents the result for the case when the main diagonal is real. Yes, it is
still valid when the condition regarding the real diagonal is changed to its real part if the diagonal is
complex. In our case, the matrix Dn is divided by − (φ+ iu) , which is always non-zero as φ > 0, so
the new matrix has main diagonal [1 + φ2 + 2i(uφ − v)]/[− (φ+ iu)] and super- and sub- diagonals 1.
Now the real part of [1 + φ2 + 2i(uφ− v)]/[− (φ+ iu)] is

[
−φ

(
1 + φ2

)
− 2u(uφ− v)

]
/
(
φ2 + u2

)
. Their

determinant result is also valid with this modification, comparable to (6.25).
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d(ij)
n =



− cosh[(n+1−|j−i|)λ]−cosh[(n+1−i−j)λ]
2 sinh(λ) sinh[(n+1)λ]

(
iu−φ
φ2+u2

)
, (i)

(−1)i+j cosh[(n+1−|j−i|)λ]−cosh[(n+1−i−j)λ]
2 sinh(λ) sinh[(n+1)λ]

(
iu−φ
φ2+u2

)
, (ii)

(−1)i+j+1 cos[(n+1−|j−i|)λ]−cos[(n+1−i−j)λ]
2 sin(λ) sin[(n+1)λ]

(
iu−φ
φ2+u2

)
, (iii)

, (6.29)

where

(i)
−φ
(
1 + φ2

)
− 2u(uφ− v)

φ2 + u2
≤ −2

(ii)
−φ
(
1 + φ2

)
− 2u(uφ− v)

φ2 + u2
≥ 2

(iii)− 2 <
−φ
(
1 + φ2

)
− 2u(uφ− v)

φ2 + u2
< 2

with corresponding λ equal to arccosh([1 + φ2 + 2i(uφ− v)]/[2 (φ+ iu)]), arccosh(−[1 +

φ2 +2i(uφ−v)]/[2 (φ+ iu)]), and arccos(−[1+φ2 +2i(uφ−v)]/[2 (φ+ iu)]), respectively.

The above analytical inverse is “piece-wise”. For fast programming and in the need of

the derivatives of D−1
n , an equivalent formula is given by da Fonseca and Petronilho

(2001) (note that D−1
n is symmetric),

d(ij)
n = (−1)i+j

1

−(φ+ iu)

Ui−1

(
1+φ2+2i(uφ−v)
−2(φ+iu)

)
Un−j

(
1+φ2+2i(uφ−v)
−2(φ+iu)

)
Un

(
1+φ2+2i(uφ−v)
−2(φ+iu)

) , i ≤ j (6.30)

where Un(x) is Chebyshev polynomial of the second kind, defined by a second-order re-

cursion, Un+1(x) = 2xUn(x)−Un−1(x), n ≥ 1, with two initial conditions U0(x) = 1 and

U1(x) = 2x. It also has an analytic expression: Un(x) = 2n
∏n
i=1 [x− cos(πi/(n+ 1))] .

With ∆−1
n−1 given by (6.28), evaluation of the inverse of Sn is straightforward:

S−1
n =

 ∆−1
n−1 0n−1

0′n−1 0

+
1

1− a′n−1∆
−1
n−1an−1

 ∆−1
n−1an−1

−1

( a′n−1∆
−1
n−1 −1

)
,

(6.31)

if 1− a′n−1∆
−1
n−1an−1 6= 0, which is verified to hold true in Appendix A section IV part

(i).
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Next, we write

T n+1 =


1 + 2i(uφ− v) + 2i(v−uφ)

n b′n−1
iu
n

bn−1 ∆n−1 an−1

iu
n a′n−1 1

 ≡
 ∆∗n a∗n

a∗′n 1

 ,

where

bn−1 =
i(u+ 2v − 2uφ)

n
ιn−1 − (φ+ iu) e1,n−1.

Following the same strategy as before,

|T n+1| = |∆∗n|
(
1− a∗′n∆∗−1

n a∗n
)
, (6.32)

where

|∆∗n| = |∆n−1|
(

1 + 2i(uφ− v) +
2i(v − uφ)

n
− b′n−1∆

−1
n−1bn−1

)
, (6.33)

and

∆∗−1
n =

 0 0′n−1

0n−1 ∆−1
n−1


+

1

1 + 2i(uφ− v) + 2i(v−uφ)
n − b′n−1∆

−1
n−1bn−1

·

 −1

∆−1
n−1bn−1

( −1 b′n−1∆
−1
n−1

)
. (6.34)

(Note that |∆n−1| and ∆−1
n−1 are given by (6.27) and (6.28), respectively.) With ∆∗−1

n

given above, evaluation of the inverse of T n+1 easily follows:

T−1
n+1 =

 ∆∗−1
n 0n

0′n 0

+
1

1− a∗′n∆∗−1
n a∗n

 ∆∗−1
n a∗n

−1

( a∗′n∆∗−1
n −1

)
. (6.35)

Again, for (6.32) to be valid, ∆∗n needs to be nonsingular; for (6.33) to be valid, ∆n−1

needs to be nonsingular; for (6.34) to be valid, ∆n−1 needs to be nonsingular and
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1 + 2i(uφ − v) + 2i(v − uφ)/n − b′n−1∆
−1
n−1bn−1 6= 0; for (6.35) to be valid, ∆∗n needs

to be nonsingular and 1− a∗′n∆∗−1
n a∗n 6= 0. Appendix A section IV part (i) verifies that

these conditions in fact hold.

For us to be able to use (6.8) to evaluate the density function (6.6), we need

also work out the derivatives of (6.11), (6.13), (6.18), and (6.22), given by (6.12), (6.14),

(6.19), and (6.23), respectively. Essentially, we seek analytical expressions for ∂ |Rn| /∂v,

∂ |Sn| /∂v, ∂S−1
n /∂v, ∂ |T n+1| /∂v, and ∂T−1

n+1/∂v. Appendix A section IV part (ii) gives

detailed expressions for these derivatives.

6.3 On the Moment and Asymptotic Distribution

Given the density function of κ̂ − κ, conditional on φ̂ > 0, we can write the

moment of κ̂, if existing, as

E(κ̂|φ̂ > 0) = κ+

∫ +∞

−∞
fκ̂(w)dw = −1

h
E(ln(φ̂)|φ̂ > 0),

where

E(ln(φ̂)|φ̂ > 0) =
1

1− Fφ̂(−φ)

∫ +∞

0
ln (w) fφ̂ (w − φ) dw.

Note that
∫ +∞

0 ln (w) fφ̂ (w − φ) dw exists if and only if
∫ +∞

0 |ln (w)| fφ̂ (w − φ) dw ex-

ists. For w ∈ [1,+∞), |ln (w)| ≤ w − 1, so

∫ +∞

0
|ln (w)| fφ̂ (w − φ) dw =

∫ 1

0
|ln (w)| fφ̂ (w − φ) dw

+

∫ +∞

1
|ln (w)| fφ̂ (w − φ) dw

≤
∫ 1

0
|ln (w)| fφ̂ (w − φ) dw

+

∫ +∞

1
(w − 1) fφ̂ (w − φ) dw.
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Since fφ̂ (w − φ) is a PDF function, it is bounded, say, by a positive constant c, then∫ 1
0 |ln (w)| fφ̂ (w − φ) dw ≤ −c

∫ 1
0 ln (w) dw = c. Next observe that

∫ +∞

1
(w − 1) fφ̂ (w − φ) dw =

∫ +∞

1−φ
(z + φ− 1) fφ̂ (z) dz

=

∫ +∞

1−φ
zfφ̂ (z) dz + (φ− 1)

∫ +∞

1−φ
fφ̂ (z) dz,

where the second part (φ− 1)
∫ +∞

1−φ fφ̂ (z) dz is bounded, and the first part

∫ +∞

1−φ
zfφ̂ (z) dz =

∫ +∞

−∞
zfφ̂ (z) dz −

∫ 1−φ

0
zfφ̂ (z) dz.

Again,
∫ 1−φ

0 zfφ̂ (z) dz ≤ c
∫ 1−φ

0 zdz, which is bounded, and
∫ +∞
−∞ zfφ̂ (z) dz = E(φ̂)− φ,

assuming E(φ̂) exists. (Keep in mind that Fφ̂ (·) and fφ̂ (·) denote the CDF and PDF of

φ̂ − φ, respectively.) Thus, existence or not of E(κ̂|φ̂ > 0) depends on existence or not

of E(φ̂). When x0 is random, φ̂ can be written as a ratio of quadratic forms in a normal

random vector (see the next subsection), and from Roberts (1995), we can easily verify

that E(φ̂) always exists if n > 1 or 2 for the AR(1) model without or with intercept.

When x0 is fixed and is not used in formulating the LS estimator φ̂, a very similar

argument can show that E(φ̂) always exists if n > 2 or 3 for the AR(1) model without

or with intercept. Including an extra fixed data point in formulating φ̂ should not affect

existence or not of E(φ̂). Thus, in any interesting case, say, with at least 4 data points,

E(φ̂) always exists, and hence E(κ̂|φ̂ > 0) always exists.

Unconditionally, however, E(κ̂) is not well defined in the real domain. This

is because Pr(φ̂ < 0) = Pr(φ̂ − φ < −φ) = Fφ̂(−φ) 6= 0, and κ̂ = − ln(φ̂)/h takes

on complex values with a positive probability. Given this observation, one has to be

cautions to interpret the approximate bias results developed in the literature. Note

that for 0 < φ ≤ 1, Pr(φ̂ ≤ 0) → 0 asymptotically, since φ̂ is consistent. In other

words, κ̂ is always well defined asymptotically, and so is its asymptotic distribution.
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In this perspective, we might interpret the approximate moment as the moment of the

asymptotic distribution. We summarize the asymptotic distribution of κ̂ from Zhou and

Yu (2010) as follows.7

µ = 0

κ > 0 T →∞ and h fixed
√
T (κ̂− κ)

d→N
(

0, e
2kδ−1
δ

)
T →∞ and h→ 0

√
T (κ̂− κ)

d→ N (0, 2κ)

h→ 0 and T fixed T (κ̂− κ)
d→ −A1(γ0,c)

B1(γ0,c)

κ = 0 T →∞ and h fixed T (κ̂− κ)
d→ −

∫ 1
0 B(r)dB(r)∫ 1
0 B

2(r)dr

T →∞ and h→ 0 T (κ̂− κ)
d→ −

∫ 1
0 B(r)dB(r)∫ 1
0 B

2(r)dr

h→ 0 and T fixed T (κ̂− κ)
d→ −A1(γ0,c)

B1(γ0,c)

µ 6= 0

κ > 0 T →∞ and h fixed
√
T (κ̂− κ)

d→N
(

0, e
2kδ−1
δ

)
T →∞ and h→ 0

√
T (κ̂− κ)

d→ N (0, 2κ)

h→ 0 and T fixed T (κ̂− κ)
d→ −A2(γ0,c)

B2(γ0,c)

κ = 0 T →∞ and h fixed T (κ̂− κ)
d→ −

∫ 1
0 B(r)dB(r)−B(1)

∫ 1
0 B(r)dr∫ 1

0 B
2(r)dr−(

∫ 1
0 B(r)dr)

2

T →∞ and h→ 0 T (κ̂− κ)
d→ −

∫ 1
0 B(r)dB(r)−B(1)

∫ 1
0 B(r)dr∫ 1

0 B
2(r)dr−(

∫ 1
0 B(r)dr)

2

h→ 0 and T fixed T (κ̂− κ)
d→ −A2(γ0,c)

B2(γ0,c)

7Note that Zhou and Yu (2010) did not give the expanding and infill asymptotic distribution results
when κ = 0 and µ 6= 0. This corresponds to the scenario, in a discrete framework, when no intercept is
present in the true model, but a constant term is included in the regression. The expanding and infill
asymptotic distribution results easily follow via the generalized delta method.
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where

A1 (γ0, c) = γ0

∫ 1

0
ecrdB(r) +

∫ 1

0
Jc(r)dB(r),

B1 (γ0, c) =
γ2

0(e2c − 1)

2c
+ 2γ0

∫ 1

0
ecrJc(r)dB(r) +

∫ 1

0
J2
c (r)dr,

A2 (γ0, c) =
b

c

∫ 1

0
c1dB(r) +

∫ 1

0
Jc(r)dB(r) + γ0

∫ 1

0
ecrdB(r)

−
∫ 1

0
dB(r)

(
c2b+

∫ 1

0
Jc(r)dr + c4γ0

)
,

B2 (γ0, c) = c3b
2 +

2b

c

∫ 1

0
c1Jc(r)dr +

∫ 1

0
J2
c (r)dr + c2

4bγ0 + 2γ0

∫ 1

0
ecrJc(r)dr

+
γ2

0(e2c − 1)

2c
−
(
c2b+

∫ 1

0
Jc(r)dr + c4γ0

)2

,

with c = −κT, c1 = erc − 1, c2 = (ec − c − 1)/c2, c3 = (e2c − 4ec + 2c + 3)/(2c3),

c4 = (ec − 1)/c, b = µ
√
−cκ/σ, γ0 = x0/(σ

√
T ), and Jc(r) =

∫ r
0 e

c(r−s)dB(s). Note that

under the infill asymptotics, the results are conditional on the initial x0.

6.4 Numerical Results

In this section, we conduct Monte Carlo simulations to illustrate the finite

sample performance of our exact distribution in comparison with the “true” distribution

and the asymptotic distribution. The data generating process follows the OU model in

(6.2), and the error term is generated from normal distribution. Then we adopt the

algorithm mentioned in section 2 to compute the exact distribution of LS/ML of κ.

We set T = 1, 2, 5, 10, h = 1/12, 1/52, 1/252, κ = 0.01, 0.1, 1, µ = 0, 0.1,

σ = 0.1, x0 = µ or x0 ∼ N(µ, σ2/(2κ)). Compared with Zhou and Yu (2010), we have

a more comprehensive experiment design, so as to have a better understanding of the

finite-sample distributions. For the fixed start-up case (x0 = 0), we also consider κ = 0.

As pointed out in Zhou and Yu (2010), the values of 0.01 and 0.1 for κ are empirically

realistic for interest rate data while the value of 1 is empirically realistic for volatility.
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In Tables 6.1- 6.8, the “true” distribution results come from 1,000,000 repli-

cations, and we make comparison of the exact (p), true (pedf ), and asymptotic results

under the three asymptotics (pexp, pmix, pinf ). In simulating the asymptotic non-normal

results, 10,000 replications are used and a sample size of 5,000 is used to approximate

the integrals involving the Brownian motion by the discrete Riemann sums.8 To save

space, we report only four tables (each with two panels corresponding to T = 1, 10,

respectively). Tables 6.1 and 6.4 report the cumulative distributions of T (κ̂− κ) under

a fixed start-up when κ = 0.01, with x0 = µ = 0, 0.1, respectively, and Tables 6.5 and

6.8 report the results when x0 is random.

Several striking features are present in these tables. First, the exact distribu-

tion results match to at least the third decimal place with those obtained by 1 million

simulations, in all the cases considered. This indicates high accuracy of the exact results

calculated by our numerical integration algorithm. In consistent with the asymptotic

results in Zhou and Yu (2010), there is no much difference between the results under

the expanding and mixed domains, and the infill asymptotics provide relatively better

performance. Yet, the asymptotic distribution under the infill domain may still provide

poor approximation to the true distribution when the data span is short, especially so

in the left tails. While increasing data frequency does not affect much the asymptotic

distributions, it does affect the true distribution, and the remarkable performance of the

exact distribution is robust to data frequency, as well as to data span and other aspects

of model specification.

Second, the true distribution of κ̂ is highly skewed to the right. Normality is a

terrible approximation of the finite-sample distribution of κ̂. As data frequency or data

8Given that the infill asymptotic results are conditional on x0, in comparison with the exact results
with a random start-up, they are calculated as averaging over 2,000 replications, where in each replica-
tion, x0 ∼ N(µ, σ2/(2κ)). Also, the discrete AR(1) process is simulated with a sample size of 2,000 when
x0 is random.
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span increases, the true distribution tends to exhibit a longer left tail and a shorter right

tail. Moreover, we can infer from these tables the exact/true median of T (κ̂− κ) in all

cases are substantially positive. (A direct calculation of the median is also possible, see

the paragraph to follow.) This suggests that κ̂ can significantly over estimate κ in finite

samples. This degree of overestimation does not decrease with a higher data frequency

(given a fixed data span). This is in line with the observations made by Phillips and Yu

(2005) and Tang and Chen (2009). On the other hand, increasing data span might help

alleviate this problem, though somewhat marginally.

Third, how the initial observation is spelled out affects significantly the exact

distribution of κ̂. For example, for the fixed start-up case, the distortions of the asymp-

totic distributions are less severe when x0 = 0 compared with when x0 6= 0, and the

exact distribution is less skewed to the right. This feature is related to the role of initial

observation in the unit test literature. It also suggests that the conclusions in Tsui and

Ali (1992 , 1994 ) with x0 discarded should be examined with more scrutiny. Given

the CDF function (6.7) and PDF function (6.8), one might be tempted to calculate the

quantile function F−1
κ̂ (t), t ∈ [0, 1] by Newton’s method of interpolation. Yet, calcula-

tion of the PDF function also involves numerical integration. To reduce computational

time, we instead employ a very simple bisection search algorithm. Since it is relatively

cheap to simulate the asymptotic results and we have observed that the in-fill asymptotic

results are more reliable compared with the expanding and mixed asymptotic results,

we start with the t-th empirical quantile of the simulated sample for approximating the

in-fill asymptotic results, say c0. If Fκ̂(c0) < t, we set c1 as the min {2t, 1}-th empirical

quantile of the simulated sample. (Typically, Fκ̂(c1) > t. If not, one can set c1 as the

min {ct, 1}-th empirical quantile of the simulated sample, c = 3, 4, · · · , until one finds

Fκ̂(c1) > t.) If Fκ̂(c0) > t, we set c1 as the t/2-th empirical quantile of the simulated

144



sample. (Typically, Fκ̂(c1) < t. If not, one can set c1 as the ct-th empirical quantile of

the simulated sample, c = 1/3, 1/4, · · · , until one finds Fκ̂(c1) < t.) Given the two ini-

tial points c0 and c1, a bisection search can then be straightforwardly applied to search

numerically for F−1
κ̂ (t). This algorithm is in a similar spirit of the algorithm in Lu and

King (2002) . We have calculated some typical percentiles of T (κ̂− κ) under different

scenarios. To save space, they are not reported here but are available upon request.

6.5 Conclusions

We have investigated the exact finite-sample distribution of the estimated

mean-reversion parameter in the Ornstein-Uhlenbeck diffusion process. We have consid-

ered several different set-ups: known or unknown drift term, fixed or random start-up

value, and zero or positive mean-reversion parameter. In particular, we employ numeri-

cal integration via analytical evaluation of a joint characteristic function. Our numerical

calculations demonstrate the remarkably reliable performance of the exact approach. It

is found that the true distribution of the maximum likelihood estimator of the mean-

reversion parameter can be severely skewed in finite samples. The asymptotic results

under expanding and mixed domains in general perform worse than those under the in-

fill domain, though the latter may still perform poorly in the left tails when data spans

are short. Our exact approach always provides distribution results of high accuracy,

and thus should be used for conducting hypothesis testing and constructing confidence

intervals.
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Chapter 7

On Efficiency Properties of an

R-square Coefficient Based on

Final Prediction Error

7.1 Introduction

In a recent work, Rousson and Goşoniu (2007) proposed a new version of the

coefficient of determination – R2
FPE , which measures the percentage of variation in newly

observed dependent variable explained by the fitted model. One of the most exciting

advantages of R2
FPE is that it can be used as a model selection criterion which is capable

to choose a model with the best prediction ability. Also, the newly proposed R2
FPE can

not only overcome the prominent limitation of using R2 – inflation, but also avoid

the problem of selecting a overfitted model with some irrelevant explanatory variables

caused by using R2
a. In addition, as Rousson and Goşoniu (2007) mentioned, R2

FPE and

AIC are asymptotically equivalent. The empirical analysis in their paper provided the
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evidence that using R2
FPE as a model selection criterion is perfectly consistent with

using AIC, and is closest with the criterion BIC than R2 and R2
a. Thus, R2

FPE can

be simultaneously devoted to both aims of goodness-of-fit measure and model selection,

which is practical in extensive empirical work. However, Rousson and Goşoniu (2007)

didn’t study the efficiency properties of R2
FPE . Motivated by the aforementioned facts,

the goal of the present chapter is to reveal the bias and MSE properties of this newly

proposed goodness-of-fit based on the final prediction error, and compare it with R2 and

R2
a.

This chapter first shows that the exact bias of R2
FPE is always smaller than

that of R2 and R2
a, and the variance of R2

FPE is always higher than the other two

without specifying the distribution of disturbances. Second, we conduct the analysis of

the large-sample asymptotic expansions of the biases and MSEs with i.i.d non-normal

disturbances. The large-sample approximate biases give the identical results to the

exact forms, that is, the approximate bias of R2
FPE is always smaller than the other

two measures. However, the results of the approximate MSEs are more complicated. In

normal case, the approximate MSE of R2
FPE is higher than those of R2 and R2

a. When

the disturbances are non-normally distributed, the superiority of R2
FPE in efficiency will

be held under some conditions. These efficiency results developed show that the FPE

based R-square is useful for the models which have low values of the population goodness

of fit measures (for example in cross section models) or for models with high goodness

of fit measures (for example in time series models).

The structure of this chapter is as follows. In the next section, R2
FPE will be

introduced and its efficiency property in comparison with R2, R2
a will be conducted. In

addition, a small numerical analysis is presented as well. The last section is concluding

remarks.
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7.2 Efficiency Properties of R-Square Coefficients

Let us start with the following linear regression model

y = αι+Xβ + u (7.1)

where the dependent variable y is a n× 1 vector, ι is a n× 1 unity vector, X is a n× p

matrix with n observations and p explanatory variables, regression parameters β is a

p× 1 vector, α is a scalar, and the disturbances u has n× 1 dimension with zero mean

vector and σ2In variance-covariance matrix.

We have the goodness-of-fit measure R2 as follows

R2 =
y′MX(X ′MX)−1X ′My

y′My
(7.2)

where M = In−n−1ιι′. It is well known that R2 can also be written in the form of SSR

and SST as R2 = 1−SSR/SST, where SSR =
∑n

i=1(Yi− Ŷi)2, SST =
∑n

i=1(Yi− Ȳi)2.

And the adjusted version of R2 (R2
a) can be written in terms of R2 as R2

a = (1+r)R2−r,

r ≡ p
n−p−1 > 0. Then it is easy to verify that R2

a ≤ R2, since R2 −R2
a = r(1−R2), and

0 ≤ R2 ≤ 1, r > 0.

In the following, I will briefly state how Rousson and Goşoniu (2007) obtained

R2
FPE . If one is interested in the prediction ability of a model, it is good to consider the

”mean squared prediction error” denoted by MSPE. Suppose that (xi1,xi2,··· ,xip,Zi),

i = 1, · · · , n, is a new observed sample which has the same sample size with the original

one. Notice that Zi is the ”new observed value” and Ŷi is the predicted value, so the

”mean squared prediction error” can be defined as MSPE =
∑n

i=1E(Zi − Ŷi)2/n =

σ2
u(n+ p+ 1)/n. When a model doesn’t include any explanatory variable (p = 0, σ2

u =

σ2
Y ), one can obtain the mean squared prediction error MSPE0 = σ2

Y (n + 1)/n. In

order to get R2
FPE , Rousson and Gosoniu (2007) use the unbiased estimators FPE
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and FPE0 to substitute MSPE and MSPE0, respectively. Then R2
FPE is given by

R2
FPE = 1− MSPE

MSPE0
= 1− FPE

FPE0
,where FPE = s2

u(n+p+1)/n and FPE0 = s2
Y (n+1)/n.

Now it is easy to rewrite R2
FPE in terms of SSR and SST, and further in terms of R2,

and R2
a as follows:

R2
FPE = 1− SSR

SST
· n− 1

n− p− 1
· n+ p+ 1

n+ 1

=
(n+ p+ 1)R2

a − p
n+ 1

(7.3)

=
(n− 1)(n+ p+ 1)R2 − 2pn

(n− p− 1)(n+ 1)
(7.4)

Now one can easily show that R2
FPE ≤ R2

a ≤ R2 as Rousson and Gosoniu (2007)

pointed out. Examing the formulas of R2
FPE ,one can obviously see that R2

FPE provides

the measure of ability of predicting newly observed sample by using fitted model.

As Cramer (1987) has shown, the ’population’ measure of goodness-of-fit has

the following form

p lim
n→∞

R2 = (1 +
σ2

n−1β′X ′MXβ
)−1 ≡ θ, 0 < θ ≤ 1 (7.5)

and R2
a has the same probability limit. Thus, we can easily obtain that R2

FPE has the

same probability limit with R2, i.e., p limn→∞R
2
FPE = p limn→∞

(n−1)(n+p+1)R2−2pn
(n−p−1)(n+1) =

θ.

In the following, we will examine the efficiency propertities of R2, R2
a and R2

FPE

without assuming the distribution of disturbances. Since R2
FPE ≤ R2 and R2

FPE ≤ R2
a,

if moments exist, we have

ER2
FPE − θ ≤ ER2 − θ ⇒ B(R2

FPE) ≤ B(R2), (7.6)

ER2
FPE − θ ≤ ER2

a − θ ⇒ B(R2
FPE) ≤ B(R2

a). (7.7)

Thus, the bias of R2
FPE is always smaller than those of R2 and R2

a.
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Furthermore, from (7.3) and (7.4), it is also straightforward to show

V (R2
FPE) ≥ V (R2

a) ≥ V (R2).

So the variance of R2
FPE is always higher than the other two measures.

To simplify notation, R2
FPE can be rewritten as follows

R2
FPE = R2

a − ξ(1−R2
a) (7.8)

where ξ ≡ p/(n+ 1), 0 < ξ < 1. From (7.8), we have

(R2
a − θ)− (R2

FPE − θ) = ξ(1−R2
a). (7.9)

Hence, one can obtain the distance between MSE of R2
a and that of R2

FPE as

follows

D1 = M(R2
a)−M(R2

FPE)

= ξ[2(1− θ)E(1−R2
a)− (2 + ξ)E(1−R2

a)
2]. (7.10)

From (7.10) we have M(R2
FPE) ≤ M(R2

a) provided D1 ≥ 0, that is

ξ + 2 ≤ 2(1− θ)E(1−R2
a)

E(1−R2
a)

2
. (7.11)

Similarly, the difference between M(R2) and M(R2
FPE) can be written as

D2 = M(R2)−M(R2
FPE)

=
4nr

n+ 1
(1− θ)E(1−R2)− 4nr(n+ 1) + 4n2r2

(n+ 1)2 E(1−R2)2 (7.12)

It, therefore, follows that M(R2
FPE) ≤M(R2) provided D2 ≥ 0, that is

1 +
nr

n+ 1
≤ (1− θ)E(1−R2)

E(1−R2)2
, (7.13)

where E(1−R2) ≥ E(1−R2)2.
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It is clear that B(R2
FPE) ≤ B(R2

a), B(R2
FPE) ≤ B(R2), and V (R2) ≤ V (R2

a) ≤

V (R2
FPE) from the previous part of the chapter. However, it is not staightforward

to compare M(R2
FPE) with M(R2

a) and M(R2). From (7.11) and (7.13), R2
FPE may

perform well in the sense of having relatively lower MSE in some cases, while it may

have higher MSE in other cases.

Using lagre-sample approximations, further, we investigate the bias and MSE

properties of R2
FPE . We still do not impose restriction on the distribution of distur-

bances, but assume that the disturbances are i.i.d and have first fourth moments as

0, σ2, σ3γ1, and σ4(γ2 + 3), where γ1 and γ2 are Pearson’s measures of skewness and

kurtosis, respectively. The large sample asymptotic results are listed in the following

theorem, and the derivation is briefly sketched.

Theorem 25 The large sample asymptotic approximations for the bias of R2
FPE up to

order O(n−1) is given by

B(R2
FPE) =

(1− θ)
n

[−p+ θ(2θ − 1) + θ(1− θ)γ2] (7.14)

and the differences among the mean squared errors of three verisons of R-square up to

order O(n−2) are given by

D1 = M(R2
a)−M(R2

FPE) =
2p(1− θ)2

n2
[−p

2
+ θ(4θ − 5) + θ(1− 2θ)γ2] (7.15)

D2 = M(R2)−M(R2
FPE) =

4p(1− θ)2θ

n2
[4θ − 5 + (1− 2θ)γ2]. (7.16)

Proof. Along the lines of Srivastava, Srivastava and Ullah (1995) , the follow-

ing can be obtained

R2
FPE − θ = (1− θ)(g−1/2 + g−1 −

2p

n
) +Op(n

−3/2).

where g−1/2 ≡ 1
σ2a−1/2, g−1 ≡ 1

σ2 (a−1/2 · b−1/2 + a−1), and a−r, b−r, g−r are denoted as
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Op(n
−r), specifically,

a−1/2 =
1

n
2(1− θ)u′MXβ − θv

a−1 =
1

n
u′MX(X ′MX)−1X ′Mu+ n−2θ(u′ι)2

b−1/2 = −1− θ
nσ2

(nv + 2u′MXβ)

and v ≡ (u
′u
n − σ2). By using the method by Ullah (2004, p. 187) , one can obtain

E
(
g−1/2

)
, E (g−1) , and E

(
g2
−1/2

)
. Hence, the bias of R2

FPE up to order O(n−1) is

given by (7.14). By some algebra, we can have

D1 = M(R2
a)−M(R2

FPE)

=
2p(1− θ)2

n
E(g−1/2 + g−1 − g2

−1/2 −
3p

2n
) +O(n−2).

Then (7.15) can hereby be obtained. Similarly, (7.16) can be derived.

Remark 1 When γ2 = 0, the theorem gives the results for normal case. From the

above theorem, we notice that the skewness doesn’t affect the bias of R2
FPE , but

the kurtosis does. Note that ∂B(R2
FPE)/∂γ2 = θ(1−θ)2

n , so B(R2
FPE) increases

as γ2 increases. Also, B(R2
FPE) is a monotonically decreasing function of p with

∂B(R2
FPE)/∂p = − (1−θ)

n .

Remark 2 Srivastava et al. (1995) derived the large sample asymptotic approximations

for B(R2) and B(R2
a) as B(R2) = (1−θ)

n [p + θ(2θ − 1) + θ(1 − θ)γ2], B(R2
a) =

θ(1−θ)
n [(2θ − 1) + (1 − θ)γ2]. Hence, it is easy to compare the difference between

the bias of R2
FPE and those of R2 and R2

a.

B(R2)−B(R2
FPE) =

2(1− θ)p
n

≥ 0 (7.17)

B(R2
a)−B(R2

FPE) =
(1− θ)p

n
≥ 0 (7.18)
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Obviously, the approximate bias B(R2
FPE) is always smaller than the other two

for the cases with i.i.d disturbances, which is consistent with the results in the

exact biases which apply all the cases without assuming the distribution of the

disturbances.

Remark 3 From (7.15) and (7.16), one can see that the number of regressors in a

model plays a very important role on the sign of D1. However, it doesn’t matter

with the sign of D2. When γ2 = 0 (normal case), D1 = M(R2
a) −M(R2

FPE) < 0,

and D2 = M(R2) − M(R2
FPE) < 0. For γ2 6= 0 (non-normal case), it is not

straightforward to see whether M(R2
FPE) is lower than M(R2) and M(R2

a). We

need further numerical analysis.

Remark 4 To see the marginal effect of the number of regressors and kurtosis on the

mean square differences in (7.15) and (7.16), we examine the following first partial

derivatives.

∂D1

∂p
= −2(1− θ)2

n2
[p+ θ(4θ − 5) + θ(1− 2θ)γ2] (7.19)

∂D1

∂γ2
=

2p(1− θ)2θ(1− 2θ)

n2
(7.20)

∂D2

∂p
=

4(1− θ)2θ

n2
[4θ − 5 + (1− 2θ)γ2] (7.21)

∂D2

∂γ2
=

4p(1− θ)2θ(1− 2θ)

n2
(7.22)

From (7.19) and (7.21), obviously, the sign of these derivatives are uncertain.

Therefore, we cannot have a clear picture of the impact on mean square differences

by adding or removing a regressor. From (7.20) and (7.22), if θ > 0.5, both D1

and D2 are decreasing function of γ2. When θ < 0.5 D1 and D2 increases as γ2

increases.

Table 7.1 on page 164 gives the numerical analysis based on (7.16). The positive
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sign ”+” denotes the relative efficiency gain of R2
FPE over R2 in terms of approximate

MSE, and the negative sign ”-” denotes the relative efficiency loss of the former over the

latter. For γ2 = −2 and θ is high (≥ 0.9), R2
FPE performs better than R2 in the sense

of having lower MSE. Also, for the cases with γ2 > 0 and low population fit (θ < 0.5),

R2
FPE has lower MSE than R2 in most cases However, in other cases, the negative sign

implies the efficiency loss R2
FPE over R2.

The results of numerical analysis on comparing the MSE of R2
FPE with that of

R2
a is similar to the above. The difference from before is that the number of regressors

(p) plays a role. The details of the results are omitted here. Generally, for large positive

kurtosis (γ2 > 0) and low population fit (θ < 0.5), or negative kurtosis (γ2 < 0) and

high population fit (θ > 0.9), R2
FPE performs better than R2

a in the sense of having

lower MSE. For the cases which have zero kurtosis or 0 < γ2 < 10 and 0.5 ≤ θ < 0.9,

R2
a tends to be more effcient.

Based on the above analytical results and their calculations we find out that

the FPE based goodness-of-fit measures have better efficiency compared to R2 and R2
a

in terms of having lower MSE. The results suggest that for the models with low values

of fits as well as high values the FPE based goodness-of-fit measure is better to use in

practice. Since the fit values in many cross section based empirical studies are found

to be low (below 0.4) ,and in many time series based empirical studies these values are

high (greater than 0.9), we find that FPE based goodness-of-fit measure is useful in both

contexts.
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7.3 Concluding Remarks

To sum up, the exact bias of R2
FPE is always less than the exact biases of

R2 and R2
a for all the distributions, and the asymptotic approximations of biases have

identical results with those of exact biases. The exact MSE of R2
FPE can behave better

only when the conditions in (7.11) and (7.13) are satisfied. However, these conditions

are not meaningful since they do depend on the exact moments of R2 and R2
a. In view of

this we develope the approximate MSE expressions for the MSE of R2
FPE . The efficiency

results developed show that the FPE based R-square is useful to consider in the case of

cross sectional models with low values of goodness of fit measures as well as for the time

series models which tend to have high goodness of fit values. These results, along with

the finding of Rousson and Goşoniu (2007) that the FPE based R-square perform well

in the model selection, strengthen the usefulness of using this goodness of fit in practice.
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Table 7.1: Relative Efficiency Gain/Loss of R2
FPE over R2

γ2 θ = 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

−2 - - - - - - - - + +

0 - - - - - - - - - -

1 - - - - - - - - - -

10 + + + - - - - - - -

20 + + + + - - - - - -

30 + + + + - - - - - -
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Chapter 8

Conclusions

This dissertation develops a new set of theoretical results under nonparamet-

ric/semiparametric models and continuous time models. Chapters 2-4 discuss our new

estimation method and its empirical application within nonparametric and semipara-

metric framework. Both simulation results and empirical findings show the usefulness of

the newly proposed method in practice. Chapter 5-7 are developed within finite sample

framework. Chapters 5-6 examine the finite sample properties of the mean reversion

parameter estimator (κ̂) in continuous time models. Bias approximations of κ̂ and its

bias corrected estimators are given in chapter 5. The exact distribution of κ̂ is evaluated

accurately in chapter 6. In chapter 7, we study the efficiency properties of the coefficient

of determination (R2
FPE) based on final prediction error.

More specifically, In the second chapter, we propose a two-step estimator of

nonparametric regression function with general parametric error covariance for mul-

tivariate case and single nonparametric regression. The asymptotic theorem for both

mean and slope estimators are established. A small set of Monte Carlo studies shows the

relative efficiency gain of the newly proposed estimator in comparison with LLLS and
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some other two-step estimator in nonparametric regression with either AR(2) errors or

heteroskedastic errors. The theoretical results can be widely applied to a general single

nonparametric regression analysis.

Chapter 3 systematically develops a new set of results for seemingly unrelated

regression (SUR) analysis within nonparametric and semiparametric framework. The

properties of LLLS and local linear weighted least squares (LLWLS) estimators in non-

parametric SUR are studied as well. To obtain a more efficient estimation, we develop

a two-step estimator for the system and establish its asymptotic theorems under both

unconditional and conditional error variance-covariance cases. The procedures of esti-

mation for various nonparametric and semiparametric SUR models are proposed, such

as, the NP SUR model with error components, partially linear semiparametric model,

model with nonparametric autocorrelated errors, additive nonparametric model, varying

coefficient model, and the model with endogeneity. These specification have widely prac-

tical use in empirical analysis. In addition, two nonparametric goodness-of-fit measures

for the system are given. A small set of Monte Carlo simulations shows the relative

efficiency gain of the newly developed two-step estimator over LLLS, LLWLS, and a

class of two-step estimator.

Chapter 4 presents the practical use of the new methods developed in chapter 2

and 3. We apply nonparametric model and two-step estimation to a real data on return

to public capital in U.S. There are some interesting findings in the empirical analysis:

First, the average returns of public capital on states’ private economic growth are statis-

tically significant and positive. Second, in general, the returns to the public capital are

positive. However, a few states, for instances, Wyoming, South Dakota, North Dakota,

New Mexico, Montana, have negative returns to the public capital, which are consistent

with some recent studies under nonparametric framework. Third, the mean returns to
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the public capital across all the 48 states changes over the period of 1970-1986. The

returns to public capital increased sharply during recessions, started decreasing when

the economy stepped into recovering, and fluctuated in small magnitudes during normal

time. Note that the last two interesting findings can be only obtained by nonparametric

analysis in this real data setting.

The theoretical results in chapters 5-7 are developed within the finite sample

framework. Chapter 5 considers the bias of the mean reversion estimator (κ̂) in the

continuous time Lévy processes. The bias of κ̂ is approximated and the bias expressions

are obtained for the Lévy-based Ornstein-Uhlenbeck (OU) process. The approximate

bias of κ̂ under normality is also derived as a special case. The bias expressions indicate

that both the skewness and the kurtosis of the Lévy measure affect the bias when the

time span is not very large and the sampling frequency is not very high. The initial

condition, the long term mean (µ), and the volatility parameter (σ) also enter the bias

expressions. A bias corrected estimator of κ is proposed. Monte Carlo studies show the

good performance of our newly proposed bias corrected estimators.

It is found that the true distribution of the MLE of κ can be severely skewed

in finite samples and that the asymptotic results in general may provide misleading

results. In chapter 6, we evaluate the exact distribution of the MLE under different

scenarios: known or unknown drift term, fixed or random start-up value, and zero or

positive κ. The numerical calculations demonstrate the remarkably reliable performance

of our newly proposed exact approach.

Chapter 7 studies the efficiency properties of the coefficient of determination

(R2
FPE) based on final prediction error and compares it with conventional goodness-

of-fit measures (R2, R2
a) in linear regression models with both normal and non-normal

disturbances. The theoretical results and a small set of numerical analysis show R2
FPE
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is a useful tool as a model selection and goodness-of-fit measure in both cross-sectional

analysis and time series analysis.

168



Appendix A

Mathematical Derivations

I. Derivations in Chapter 2

Proof of Theorem 3

Following MY, we can readily show that δ̂SUW,h2 (x) is asymptotically equiva-

lent to the following infeasible estimator

δ̂SUW,h2 (x) ≡
(
R∗′x Kx,h2R

∗
x

)−1
R∗′x Kx,h2Z

∗ (A.1)

where Z∗≡P−1Y+
(
H−1 − P−1

)
m =H−1m + ε∗. By the second order Taylor expansion

around x for elements in m, we have

δ̂SUW,h2 (x) = δ (x) +
(
R∗′x Kx,h2R

∗
x

)−1
R∗′x Kx,h2

{
H−1Bx + ε∗

}
+ op

(
h2

2

)
where Bx is a n× 1 column vector whose ith element is given by

bx,i =
1

2
(Xi − x)′m(2) (x) (Xi − x) ,
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and m(2) (x) is the q × q Hessian matrix of m (x) . It follows that

√
nhq2Dh2

(
δ̂SUW,h2 (x)− δ (x)

)
=
√
nhq2Dh2

(
R∗′x Kx,h2R

∗
x

)−1
R∗′x Kx,h2H

−1Bx

+
√
nhq2Dh2

(
R∗′x Kx,h2R

∗
x

)−1
R∗′x Kx,h2ε

∗ + op (1)

≡ BSUW + VSUW + op (1) , say, (A.2)

where the definitions of the bias term BSUW and the variance term VSUW are self-

evident. Note that E(ε∗ε∗′) = In×n.

To calculate the asymptotic bias, let Sn ≡ n−1D−1
h2

R∗′x Kx,h2R
∗
xD
−1
h2

. It is easy

to show that

Sn = n−1
n∑
i=1

 υ2
ii υ2

ii
(Xi−x)′

h2

υ2
ii
Xi−x
h2

υ2
ii

(Xi−x)(Xi−x)′

h22

Kh2 (Xi − x)

p→

 ω∗f (x, θ0) 0

0 ω∗f (x, θ0)κ21Iq

 . (A.3)

Similarly,

1

n
D−1
h2

R∗′x Kx,h2H
−1Bx

=
1

n


∑n

i=1 υ
2
iiKx,h2bx,i∑n

i=1 υ
2
ii
Xi−x
h2

Kx,h2bx,i



=


ω∗f (x,θ0)κ21h22

2

∑q
j=1

∂2m(x)
∂x2j

0q×1

+ op
(
h2

2

)
.

It follows that BSUW =
√
nhq2S

−1
n

1
nD
−1
h2

R∗′x Kx,h2H
−1Bx =


√
nhq2

κ21h22
2

∑q
j=1

∂2m(x)
∂x2j

0q×1


+ op

(
h2

2

)
.
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Next, by (A.2)-(A.3) we have

VSUW =
√
nhq2S

−1
n

1

n
D−1
h2

R∗′x Kx,h2ε
∗

=

 ω∗f (x, θ0) 0

0 ω∗f (x, θ0)κ21Iq


−1

(1 + op (1))

×
√
n−1hq2D

−1
h2

n∑
i=1

υiiKh2 (Xi − x)

 ε∗i

(Xi − x) ε∗i

 ,

where ε∗i is the ith element of ε∗. Applying the Liapounov central limit theorem yields

VSUW
d→ N (0,ΩSUW ) . This completes the proof of the theorem.

II. Derivations in Chapter 3

Proof of Theorem 4

For the LLLS estimator, we can write

D
[
δ̂ (x)− δ (x)

]
= D(Z ′(x)K(x)Z(x))−1Z ′(x)K(x)Bx

+D(Z ′(x)K(x)Z(x))−1Z ′(x)K(x)u + op (1) ,

where Bx =

(
Bx1 , . . . BxM

)
is a NM×1 column vector, Bxi is a M×1 column vector

whose jth element is given by bxi,j = 1
2 (Xij − xi)′m(2) (xi) (Xij − xi) , and m(2) (xi) is

the qi × qi Hessian matrix of m (xi) . The ith LLLS can be written as

Di

[
δ̂i (xi)− δi (xi)

]
= Di(Z

′
i(xi)K(xi)Z(xi))

−1Z ′(xi)K(xi)Bxi

+Di(Z
′
i(xi)K(xi)Z(xi))

−1Z ′(xi)K(xi)ui + op (1) .

The bias of the ith LLLS is Bi,LLLS = S−1
i

1
ND

−1
hi
Z ′(xi)K(xi)Bxi . It can be
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shown that

Si = N−1
N∑
j=1

 1
(Xij−xi)′

hi

Xij−xi
hi

(Xij−xi)(Xij−xi)′

h2i

Khi (Xij − xi)

p→

 f̄i (xi, θ0) 0

0 f̄i (xi, θ0)κ21Iqi

 . (A.4)

Then we can prove that

1

N
D−1
hi
Z ′(xi)K(xi)Bxi =

1

N


∑N

j=1Khi (Xij − xi) bxi,j∑N
j=1

Xij−xi
hi

Khi (Xij − xi) bxi,j



=


f̄i(xi,θ0)κ21h2i

2

qi∑
s=1

∂2mi(xi)
∂x2i,s

0qi×1

+ op
(
h2
i

)
.

It follows that Bi,LLLS = S−1
i

1
ND

−1
hi
Z ′(xi)K(xi)Bxi =


κ21h2i

2

qi∑
s=1

∂2mi(xi)
∂x2i,s

0qi×1

+ op
(
h2
i

)
.

Next, we have

Vi =
√
Nhqii S

−1
i

1

N
D−1
hi
Z ′(xi)K(xi)ui

=
1 + op (1)

f̄i (xi, θ0)

√
Nhqii

N∑
j=1

Khi (Xij − xi)

 ui

Xij−xi
hi

ui

 .

Then it is easy to obtain E(Vi) = 0, E(ViV
′
i ) = Ωi,LLLS , and E(ViV

′
i′) = op (1) which

is smaller order than E(ViV
′
i ). Applying the Liapounov central limit theorem yields

V
d→ N (0,ΩLLLS) . This completes the proof of the theorem 2.1.

Proof of Theorem 5

Similarly, we can have

D
[
δ̂2−step (x)− δ (x)

]
= D(R∗′(x)K(x)R∗(x))−1R∗′(x)K(x)H−1Bx

+D(R∗′(x)K(x)R∗(x))−1R∗′(x)K(x)v + op (1) .
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Note that E(vv′) = INM×NM . To calculate the asymptotic bias, let

S∗i ≡ N−1D−1
hi
R∗′i (xi)K(xi)R

∗
i (xi)D

−1
hi
.

It is easy to show that

S∗i = N−1
N∑
j=1

 υ2
(i−1)N+j υ2

(i−1)N+j
(Xij−xi)′

hi

υ2
(i−1)N+j

Xij−xi
hi

υ2
(i−1)N+j

(Xij−xi)(Xij−xi)′

h2i

Khi (Xij − xi)

p→

 ω∗f,i (x, θ0) 0

0 ω∗f,i (x, θ0)κ21Iqi

 .

Similarly,

1

N
D−1
hi
R∗′i (xi)K(xi)H

−1
i Bxi =

1

N


∑N

j=1 υ
2
(i−1)N+jKhi (Xij − xi) bx,i∑N

j=1 υ
2
(i−1)N+j

Xij−xi
hi

Khi (Xij − xi) bx,i



=


ω∗f,i(x,θ0)κ21h2i

2

qi∑
s=1

∂2mi(xi)
∂x2i,s

0qi×1

+ op
(
h2
i

)
.

It follows that

Bi,2−step = S∗−1
i

1

N
D−1
hi
R∗′(x)K(x)H−1

i Bxi

=


κ21h2i

2

qi∑
s=1

∂2mi(xi)
∂x2i,s

0qi×1

+ op
(
h2
i

)
.

Next, we have

Vi,2−step = S∗−1
i

1

N
D−1
hi
R∗′i (xi)K(xi)vi

=
1 + op (1)

ω∗f,i (x, θ0)

√
N−1hqii

N∑
j=1

υ2
(i−1)N+jKhi (Xij − xi)

 vi

Xij−xi
hi

vi

 ,

where vi is the ith element of v. Applying the Liapounov central limit theorem yields

V2−step
d→ N (0,Ω2−step) . This completes the proof of the theorem.
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III. Derivations in Chapter 5

Proof. The following outlines the proof of Theorem 21 and Theorem 23 in

Chapter 5. We have

κ̂= − ln φ̂

h

Then, by higher order taylor expansion

κ̂ = κ− φ̂− φ
hφ

+
1

2h

(
φ̂− φ
φ

)2

− 1

3h

(
φ̂− φ
φ

)3

+
1

4h

(
φ̂− φ
φ

)4

+ op(n
−2h−1).

Take expectation on both side, we can have

E(κ̂− κ) = −
E
(
φ̂− φ

)
hφ

+
E
(
φ̂− φ

)2

2hφ2
−
E
(
φ̂− φ

)3

3hφ3
+
E
(
φ̂− φ

)4

4hφ4
+ o(n−2h−1).

To obtain the bias approximation of κ̂, we need derive E
(
φ̂− φ

)3
, and E

(
φ̂− φ

)4
.

The approximate bias E
(
φ̂− φ

)
and MSE E

(
φ̂− φ

)2
are given in Bao (2007). The

following proof follows Bao (2007), and here we use the similar notation for simplicity.

First, we write the pure model as

yt = φyt−1 + εt

and the intercept model as

yt= α+ φyt−1+εt.

We write the OLS estimator in matrix form

φ̂ = φ+
y′−1Aε

y′−1Ayt−1
= φ+

N

D

where y−1 = (y0, y1, . . . , yn−1)′, ε = (ε1, ε2, . . . , εn)′. For pure model

y−1 = yD + cε = y0F + cε, and A = I, where yD = y0F.

For Intercept model

y−1 = yD + cε = y0F + αcι+ cε, and A = M = I − n−1ιι′, where yD = y0F + αcι.
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For both models,

F =



1

φ

...

φn−1


, c =



0 0 . . . . . . 0 0

1 0
. . . . . .

...
...

φ 1 0
. . .

...
...

φ2 φ 1
. . .

. . .
...

...
...

. . .
. . .

. . . 0

φn−2 φn−3 · · · φ 1 0



N = r′Dε+ ε′Acε,

D = r′DrD + 2r′Dcε+ ε′c′Acε,

rD = AyD.

By Nagar (1959) expansion, we can have

φ̂− φ =
N

D
=

N

D − E(D) + E(D)

=
N

E(D)

{
1 + [D − E(D)]E−1(D)

}−1

=
N

E(D)
− N [D − E(D)]

E2(D)
+
N [D − E(D)]2

E3(D)
− N [D − E(D)]3

E4(D)
+ op(n

−2).

Therefore, we can obtain the first to fourth moments of φ̂ as the followings

E(φ̂− φ) = 4
E(N)

E(D)
− 6

E(ND)

[E(D)]2
+ 4

E(ND2)

[E(D)]3
− E(ND3)

[E(D)]4
+ o(n−2),

E[(φ̂− φ)2] = 6
E(N2)

[E(D)]2
− 8

E(N2D)

[E(D)]3
+ 3

E(N2D2)

[E(D)]4
+ o(n−2),

E[(φ̂− φ3] = 4
E(N3)

[E(D)]3
− 3

E(N3D)

[E(D)]4
+ o(n−2),

E[(φ̂− φ)4] =
E(N4)

[E(D)]4
+ o(n−2).
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We need derive E(N3), E(N3D), E(N4), where

N3 = (r′Dε)
3 + 3(r′Dε)

2(ε′Acε) + 3(r′Dε)(ε
′Acε)2 + (ε′Acε)3

N3D = (r′Dε)
3r′DrD + 2(r′Dε)

3(r′Dcε) + (r′Dε)
3(ε′c′Acε) + 3(r′Dε)

2(ε′Acε)r′DrD

+6(r′Dε)
2(ε′Acε)(r′Dcε) + 3(r′Dε)

2(ε′Acε)(ε′c′Acε) + 3(r′Dε)(ε
′Acε)2r′DrD

+6(r′Dε)(ε
′Acε)2(r′Dcε) + 3(r′Dε)(ε

′Acε)2(ε′c′Acε)

+(ε′Acε)3r′DrD + 2(ε′Acε)3(r′Dcε) + (ε′Acε)3(ε′c′Acε)

N4 = (r′Dε)
4 + 4(r′Dε)

3(ε′Acε) + 6(r′Dε)
2(ε′Acε)2 + 4(r′Dε)(ε

′Acε)3 + (ε′Acε)4

Notice that we only need keep the terms of at least O(n) in E(N3), O(n2) in E(N3D)

and E(N4). Using Ullah (2004), Bao and Ullah (2010) and by tedious calculations, for pure

model, we have

E(N3) = σ6
0

(
γ2

1β3 + 6ρβ2
2

)
n+ o(n)

E(N3D) = σ8
0(12ρβ3

2 + β3β2γ
2
1)n2 + o(n2)

E(N4) = 3σ8
0β

2
2n

2 + o(n2)

and

E(D) = E(r′DrD + 2r′Dcε+ ε′c′cε) = r′DrD + 2r′DcE(ε) + E(ε′c′cε)

= y2
0β2 + σ2

0(nβ2 − β2
2) + o(n−1)

where βi = (1− ρi)−1. And

[E(D)]−1 =
(
nβ2σ

2
0

)−1
[1− x+ x2 + · · · ],

[E(D)]−2 =
(
nβ2σ

2
0

)−2
[1− 2x+ 3x2 + · · · ],

[E(D)]−3 =
(
nβ2σ

2
0

)−3
[1− 3x+ 6x2 + · · · ],

[E(D)]−4 =
(
nβ2σ

2
0

)−4
[1− 4x+ 10x2 + · · · ],
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where x = 1
n [y2

0/σ
2
0 − β2 + o(n−1)]. Since εi ∼ (0, 1), σ = 1, nh = T, φ = e−κh,

σ0 = σ
√

(1− e−κh) /2κ, we have

E[
(
φ̂− φ

)3
] = 4

E(N3)

[E(D)]3
− 3

E(N3D)

[E(D)]4
+ o(n−2)

= n−2[β−3
2 (γ2

1β3 − 12ρβ2)] + o(n−2),

E[
(
φ̂− φ

)4
] =

E(N4)

[E(D)]4
+ o(n−2)

= 3n−2β−2
2 + o(n−2).

Substitute the above results into E(κ̂−κ), we can have Theorem 21. For Intercept model,

we have y−1 = yD + cε = y0F + αcι + cε, A = M = I − T−1ιι′, and rD = AyD =

My0F +Mαcι = y0MF + αMcι. More specifically,

y0MF = y0



1− 1
nβ1(1− φn)

φ− 1
nβ1(1− φn)

...

φn−1 − 1
nβ1(1− φn)


,

αMcι = αβ1



−n−1
n + 1

nβ1(φ− φn)

(1− φ)− n−1
n + 1

nβ1(φ− φn)

...

(1− φn−1)− n−1
n + 1

nβ1(φ− φn)


.

Then we can simplify the expression of rD as

rD =



(y0 − αβ1)φ0 + λ

(y0 − αβ1)φ+ λ

...

(y0 − αβ1)φn−1 + λ


,
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where

λ = αβ1 −
1

n

[
y0β1(1− φn) + αβ1(n− 1)− αβ2

1(φ− φn)
]

= − 1

n

[
y0β1(1− φn)− αβ1 − αβ2

1(φ− φn)
]

= O(n−1).

Using Ullah (2004), Bao and Ullah (2010) and by tedious calculations, for intercept

model, we obtain

E(N3) = E[(r′Dε)
3] + 3E[(r′Dε)

2(ε′Acε)] + 3E[(r′Dε)(ε
′Acε)2] + E[(ε′Acε)3]

= σ6
0

(
γ2

1β3 + 6φβ2
2 − 3β1β2

)
n+ o(n),

E(N3D) = r′DrDE(N3)

+2E[(r′Dε)
3(r′Dcε)] + E[(r′Dε)

3(ε′c′Acε)] + 6E[(r′Dε)
2(ε′Acε)(r′Dcε)]

+3E[(r′Dε)
2(ε′Acε)(ε′c′Acε)] + 6E[(r′Dε)(ε

′Acε)2(r′Dcε)]

+3E[(r′Dε)(ε
′Acε)2(ε′c′Acε)]

+2E[(ε′Acε)3(r′Dcε)] + E[(ε′Acε)3(ε′c′Acε)]

= σ8
0(−3β1β

2
2 + 12φβ3

2 + β3β2γ
2
1)n2 + o(n2),

E(N4) = E[(r′Dε)
4] + 4E[(r′Dε)

3(ε′Acε)]

+6E[(r′Dε)
2(ε′Acε)2] + 4E[(r′Dε)(ε

′Acε)3] + E[(ε′Acε)4]

= 12σ8
0β

2
2n

2 + o(n2),

and

E(D) = r′DrD + 2r′DcE(ε) + E(ε′c′Acε)

= nσ2
0β2 + β2

[
y2

0 + α2β2
1 − 2αβ1y0 − σ2

0(φ2 + 2φ+ 2)β2

]
+ o(1).
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Further, we obtain

E[(φ̂− φ)3] = 4
E(N3)

[E(D)]3
− 3

E(N3D)

[E(D)]4
+ o(n−2)

= n−2[β−3
2 (β3γ

2
1 − 3β1β2 − 12φβ2

2)] + o(n−2),

E[(φ̂− φ)4] =
E(N4)

[E(D)]4
+ o(n−2)

= 12n−2β−2
2 + o(n−2).

Theorem 23 can be obtained by substituting the above results into E(κ̂− κ).

IV. Derivations in Chapter 6

Derivation Part (i)

This appendix verifies that various conditions for (6.26)–(6.28), (6.31), (6.32)–

(6.35) to be valid. For notational convenience, let a = 2i(u + v − uφ), b = −[1 + φ2 +

2i(uφ − v)]/ (φ+ iu) 6= 0, b1 = (b +
√
b2 − 4)/2, b2 = (b −

√
b2 − 4)/2, c = − (φ+ iu) ,

and d = i(u+ 2v − 2uφ).

For (6.28), a necessary condition is n+ aι′n−1D
−1
n−1ιn−1 6= 0. Note that φ > 0,

so c 6= 0, and define D∗n = Dn/c. Then n+ aι′n−1D
−1
n−1ιn−1 = n+ (a/c)ι′n−1D

∗−1
n−1ιn−1.

It can be easily shown that the symmetric D∗−1
n has elements

d∗(ij)n = (−1)i+j
∣∣D∗i−1

∣∣ ∣∣D∗n−j∣∣ / |D∗n| , i ≤ j, (A.5)

where |D∗k| = (k + 1) (b/2)k when b = ±2, (bk+1
1 − bk+1

2 )/(b1 − b2) when b 6= ±2. So

when b = 2 (corresponding to φ = −1 and v = 0) or −2 (corresponding to φ = 1 and
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v = 0),

ι′n−1D
∗−1
n−1ιn−1 =

2
n−2∑
i=1

n−1∑
j=i+1

(−1)i+ji
(
b
2

)i−1
(n− j)

(
b
2

)n−j−1

n( b2)n−1

+

n−1∑
i=1

i
(
b
2

)i−1
(n− i)

(
b
2

)n−i−1

n( b2)n−1

=


1
n

[
(n−1)3

3 − (n−1)2

4 − n−1
3 + 1

8 −
1
8 (−1)n−1

]
b = 2

1
n

[
− (n−1)4

12 − 2(n−1)3

3 + (n−1)2

12 + 2(n−1)
3

]
b = −2

(A.6)

when b 6= ±2,

ι′n−1D
∗−1
n−1ιn−1 =

1

(b1 − b2) (bn1 − bn2 )

·

2

n−2∑
i=1

n−1∑
j=i+1

(
bi1 − bi2

) (
bn−j1 − bn−j2

)
+

n−1∑
i=1

(
bi1 − bi2

) (
bn−i1 − bn−i2

)
=

(
bn+1
1 − bn+1

2

)
(n− 1) + (b1b

n
2 − bn1b2) (n+ 1)

(b1 − b2)2 (bn1 − bn2 )

+
2

(b1 − b2) (bn1 − bn2 ) (b1 − 1)(b2 − 1)

·

{
(b1 − b2)

(
1− b1n−1

1− b1
− 1− bn−1

2

1− b2

)

+(1− b2)

[
bn1b2 − b21b

n−1
2

b1 − b2
− bn1 (n− 2)

]

− (1− b1)

[
b1b

n
2 − b

n−1
1 b22

b1 − b2
+ bn2 (n− 2)

]}
. (A.7)

For any positive integer n, we can verify that

n+ aι′n−1D
−1
n−1ιn−1 = n+ (a/c)ι′n−1D

∗−1
n−1ιn−1 6= 0

under the above two cases. The determinant formula (6.25) shows that Dn is always

nonsingular, so (6.27) is valid. |Dn| 6= 0 and n+ aι′n−1D
−1
n−1ιn−1 6= 0 ensure that ∆n−1
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is nonsingular, and both (6.26) and (6.28) are valid. Further note that

a′n−1∆
−1
n−1an−1 = − u

n2c
ι′n−1D

∗−1
n−1ιn−1 + ce′n−1,n−1D

∗−1
n−1en−1,n−1

+2
iu

n
e′n−1,n−1D

∗−1
n−1ιn−1

− a

nc2 + acι′n−1D
∗−1
n−1ιn−1

[
c2
(
e′n−1,n−1D

∗−1
n−1ιn−1

)2
− u2

n2

(
ι′n−1D

∗−1
n−1ιn−1

)2
+ 2

iu

n
ce′n−1,n−1D

∗−1
n−1ιn−1ι

′
n−1D

∗−1
n−1ιn−1

]
, (A.8)

where ι′n−1D
∗−1
n−1ιn−1 is given by (A.6) and (A.7), e′n−1,n−1D

∗−1
n−1en−1,n−1 is the lower-

right element of D∗−1
n−1, and e′n−1,n−1D

∗−1
n−1ιn−1 is the sum of the last column of D∗−1

n−1.

In particular, given (A.5),

e′n−1,n−1D
∗−1
n−1en−1,n−1 =

∣∣D∗n−2

∣∣∣∣D∗n−1

∣∣ =


2(n−1)
nb b = ±2

bn−1
1 −bn−1

2
bn1−bn2

b 6= ±2

, (A.9)

and

e′n−1,n−1D
∗−1
n−1ιn−1 =

n−1∑
i=1

d
∗(i,n−1)
n−1

=

n−1∑
i=1

(−1)1+i

∣∣D∗n−i−1

∣∣∣∣D∗n−1

∣∣

=



1−n
2 b = −2

2n+(−1)n−1
4n b = 2

[bn1 +(−1)nb1](1+b2)−[bn2 +(−1)nb2](1+b1)

(1+b1)(1+b2)(bn1−bn2 ) b 6= ±2

.(A.10)

By substitution, we can verify that 1 − a′n−1∆
−1
n−1an−1 6= 0 for any positive integer

n. This condition, together with a nonsingular ∆n−1, ensures that the inverse formula

(6.31) is valid.

With ∆n−1 being nonsingular, (6.33) is valid. Plugging the expression for
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∆−1
n−1 from (6.28) leads to

b′n−1∆
−1
n−1bn−1 =

1

c
b′n−1D

∗−1
n−1bn−1 −

a(b′n−1D
∗−1
n−1ιn−1)2

nc2 + acι′n−1D
∗−1
n−1ιn−1

, (A.11)

where

b′n−1D
∗−1
n−1bn−1 =

d2

n2
ι′n−1D

∗−1
n−1ιn−1

+ c2e′1,n−1D
∗−1
n−1e1,n−1 +

2cd

n
e′1,n−1D

∗−1
n−1ιn−1,

b′n−1D
∗−1
n−1ιn−1 =

d

n
ι′n−1D

∗−1
n−1ιn−1 + ce′1,n−1D

∗−1
n−1ιn−1,

in which ι′n−1D
∗−1
n−1ιn−1 is given by (A.6) and (A.7), e′1,n−1D

∗−1
n−1e1,n−1 is the top-left

element of D∗−1
n−1, and e′1,n−1D

∗−1
n−1ιn−1 is the sum of the first row of D∗−1

n−1. From (A.5),

we see that

e′1,n−1D
∗−1
n−1e1,n−1 = e′n−1,n−1D

∗−1
n−1en−1,n−1,

e′1,n−1D
∗−1
n−1ιn−1 = e′n−1,n−1D

∗−1
n−1ιn−1,

given by (A.9) and (A.10), respectively. Upon substitution, we can verify that 1+2i(uφ−

v)+2i(v−uφ)/n−b′n−1∆
−1
n−1bn−1 6= 0 for any positive integer n. This condition, together

with a nonsingular Dn−1, ensures that both (6.32) and (6.34) are valid.

Finally, given the definitions of a∗n and ∆∗n, we write

a∗′n∆∗−1
n a∗n = a′n−1∆

−1
n−1an−1 +

(
a′n−1∆

−1
n−1bn−1 − iu

n

)2
1 + 2i(uφ− v) + 2i(v−uφ)

n − b′n−1∆
−1
n−1bn−1

, (A.12)

where a′n−1∆
−1
n−1an−1 is given by (A.8), b′n−1∆

−1
n−1bn−1 is given by (A.11), and

a′n−1∆
−1
n−1bn−1 = −u(u+ 2v − 2uφ)

n2c
ι′n−1D

∗−1
n−1ιn−1 + ce′n−1,n−1D

∗−1
n−1e1,n−1

+
a

n
e′n−1,n−1D

∗−1
n−1ιn−1

− a

nc2 + acι′n−1D
∗−1
n−1ιn−1

[
c2(e′n−1,n−1D

∗−1
n−1ιn−1)2

− u(u+ 2v − 2uφ)

n2
(ι′n−1D

∗−1
n−1ιn−1)2

+
ac

n
e′n−1,n−1D

∗−1
n−1ιn−1ι

′
n−1D

∗−1
n−1ιn−1

]
.
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Note that ι′n−1D
∗−1
n−1ιn−1 is given by (A.6) and (A.7), e′n−1,n−1D

∗−1
n−1en−1,n−1 is given

by (A.9), e′n−1,n−1D
∗−1
n−1ιn−1 is given by (A.10). By substitution, we can verify that

1−a∗′n∆∗−1
n a∗n 6= 0 for any positive integer n. This condition, together with a nonsingular

∆∗n, ensures that the inverse formula (6.35) is valid.

Derivation Part (ii)

This appendix gives various derivatives that are needed to evaluate the PDF

function. From (6.24),

∂ |Rn| /∂v =
∂ |Dn−1|

∂v
− (φ+ iu)2 ∂ |Dn−2|

∂v
, (A.13)

where ∂ |Dn| /∂v might be derived analytically from

|Dn| =
n∏
i=1

[
1 + φ2 + 2i(uφ− v)− 2 (φ+ iu) cos (πi/(n+ 1))

]
.

A computational less demanding way is to use

∂ |Dn|
∂v

= |Dn| tr
(
D−1
n

∂Dn

∂v

)
(A.14)

= −2i |Dn| tr
(
D−1
n

)
,

where |Dn| is given by (6.25), and from (6.30)

tr
(
D−1
n

)
= −

∑n
i=1 Ui−1 (b)Un−i (b)

(φ+ iu)Un (b)
, (A.15)

where b = −[1 + φ2 + 2i(uφ− v)]/[2 (φ+ iu)] 6= 0, as defined in Appendix A section IV

part (i).

Similarly,

∂ |Sn|
∂v

= |Sn| tr
(
S−1
n

∂Sn
∂v

)
, (A.16)

where |Sn| is given by (6.26), and we can verify that

∂Sn
∂v

=

 −2i(In−1 − 1
nιn−1ι

′
n−1) 0n−1

0′n−1 0

 , (A.17)
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which can be used directly, together with (6.31) and (6.26), in evaluating ∂ |Sn| /∂v =

|Sn| tr
(
S−1
n ∂Sn/∂v

)
and ∂S−1

n /∂v = −S−1
n (∂Sn/∂v)S−1

n .

Next, from the definition of T n+1, we write

∂T n+1

∂v
=


−2i + 2i

n
2i
n ι
′
n−1 0

2i
n ιn−1 −2i(In−1 − 1

nιn−1ι
′
n−1) 0n−1

0 0′n−1 0

 , (A.18)

which can be used directly, together with (6.35) and (6.32), in evaluating ∂ |T n+1| /∂v =

|T n+1| tr
(
T−1
n+1∂T n+1/∂v

)
and ∂T−1

n+1/∂v = −T−1
n+1(∂T n+1/∂v)T−1

n+1.

Derivation Part (iii)

Given the characteristic functions (6.11), (6.13), (6.18), (6.22), we need to im-

plement numerical integration to calculate (6.5) via (6.7). This can be straightforwardly

implemented using Matlab’s quadgk command. One caveat to note is that the square

root function in the complex domain is not continuous. One choice is to follow Perron

(1989) to identify explicitly the discontinuous points by grid search and then integrate

by parts. The search, however, might be inefficient and time-consuming. Instead, we

use the following algorithm so that the integrand function for quadgk is always continu-

ous. Let g (t) =
√
a(t) + ib(t) denote the integrand function in question with t ∈ [l, u] .

quadgk requires the integrand function to accept a vector (t1, t2, · · · , tn) and returns a

vector of output. Let θi = arg (a(ti) + ib(ti)) ∈ [−π, π] and denote ai = a (ti) , bi = b (ti) ,

and gi = g (ti) .

1. Start with t1 and set g1 = sqrt (a1 + ib1) . Set k = 0.

2. Beginning with t2, if ai < 0, ai−1 < 0, and bibi−1 <= 0, set k = k+ 1; otherwise, k

is unchanged. Set gi =
√
a2
i + b2i (cos (θ∗i /2) + i sin (θ∗i /2)) , where θ∗i = θi + 2kπ.
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