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Significance

 Layer 2/3 (L2/3) glutamatergic 
neurons are important sites of 
experience-dependent plasticity 
and learning in the mammalian 
cortex. Their properties vary 
continuously with cortical depth 
and depend upon experience. 
Here, by applying spatial 
transcriptomics and different 
computational approaches in the 
mouse primary visual cortex, we 
show that vision regulates 
orthogonal gene expression 
programs underlying cell states 
and cell types. Visual deprivation 
not only induces an activity-
dependent cell state, but also 
alters the composition of L2/3 cell 
types, which are appropriately 
described as a transcriptomic 
continuum. Our results provide 
insights into how experience 
shapes transcriptomes that may, 
in turn, sculpt brain wiring, 
function, and behavior.
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NEUROSCIENCE

Spatial profiling of the interplay between cell type- and  
vision-dependent transcriptomic programs in the visual cortex
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How early sensory experience during “critical periods” of postnatal life affects the 
organization of the mammalian neocortex at the resolution of neuronal cell types is 
poorly understood. We previously reported that the functional and molecular profiles 
of layer 2/3 (L2/3) cell types in the primary visual cortex (V1) are vision-dependent 
[S. Cheng et al., Cell 185, 311–327.e24 (2022)]. Here, we characterize the spatial 
organization of L2/3 cell types with and without visual experience. Spatial tran-
scriptomic profiling based on 500 genes recapitulates the zonation of L2/3 cell types 
along the pial–ventricular axis in V1. By applying multitasking theory, we suggest 
that the spatial zonation of L2/3 cell types is linked to the continuous nature of their 
gene expression profiles, which can be represented as a 2D manifold bounded by 
three archetypal cell types. By comparing normally reared and dark reared L2/3 cells, 
we show that visual deprivation-induced transcriptomic changes comprise two inde-
pendent gene programs. The first, induced specifically in the visual cortex, includes 
immediate-early genes and genes associated with metabolic processes. It manifests 
as a change in cell state that is orthogonal to cell-type-specific gene expression pro-
grams. By contrast, the second program impacts L2/3 cell-type identity, regulating 
a subset of cell-type-specific genes and shifting the distribution of cells within the 
L2/3 cell-type manifold. Through an integrated analysis of spatial transcriptomics 
with single-nucleus RNA-seq data, we describe how vision patterns cortical L2/3 cell 
types during the critical period.

cortex | transcriptomics | spatial transcriptomics | vision | gradients

 Early sensory experiences influence the development of neural circuitry throughout the 
mammalian brain ( 1   – 3 ). In the primary visual cortex (V1), visual experience is required 
to establish the circuitry for binocular vision ( 4 ,  5 ). Vision-dependent development of 
binocular circuits occurs in mice after eye-opening [postnatal day (P) 14]. There are 
only a few binocular layer 2/3 (L2/3) neurons at eye opening and their number increases 
during the ensuing week. From P21 to P35, the tuning properties of these neurons 
improve markedly in a vision-dependent process. This developmental time window is 
referred to as the critical period ( 4 ,  6   – 8 ). Classically, the influence of early visual expe-
rience has not been examined at the level of the many cell types that form the building 
blocks of V1 circuitry. To address this gap, we previously performed single-nucleus 
RNA-seq (snRNA-seq) in normal- and dark-reared (NR, DR) mice during postnatal 
development, including the critical period ( 9   – 11 ). Using computational methods, we 
reconstructed the postnatal maturation of V1 cell types in NR mice and compared these 
profiles with DR mice. This enabled us to identify the cell types and gene expression 
programs impacted by vision. For most cell types, DR had little impact on molecular 
identity. However, DR had a pronounced effect on glutamatergic cell types in the 
supragranular layers (L) 2/3/4. In NR mice, L2/3 glutamatergic neurons comprise three 
molecularly distinct types (A, B, and C). These L2/3 types occupy three partially over-
lapping sublayers along the pial–ventricular axis of L2/3 (upper, middle, and lower, 
respectively) based on the in situ expression patterns of three marker genes. DR altered 
the expression patterns of these marker genes, and a comparison of transcriptome-based 
clusters in DR did not correspond to NR types. Based on these observations, we con-
cluded that visual deprivation during the critical period selectively disrupted L2/3 cell 
types. Furthermore, visual deprivation regulated large groups of genes, including deter-
minants of cell adhesion and synapse formation. However, as clusters in DR could not 
be matched to NR types, we could not separate vision-dependent changes in cell state 
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from vision-dependent changes in cell type, their organization, 
or both.

 Here, we combined spatial transcriptomics and computational 
analyses to map the organization of L2/3 cell types in V1, and to 
assess the impact of visual deprivation on this organization. The gene 
expression changes due to visual deprivation comprise two inde-
pendent transcriptomic programs. The first program is upregulated 
across multiple cell types throughout the visual areas and represents 
an activity-dependent cell state. The second program regulates a 
subset of cell-type-specific genes within L2/3, and its impact on cell 
type composition can be interpreted using multitasking theory ( 12 ), 
a recently proposed framework for analyzing gene expression con-
tinua. Thus, visual deprivation affects both activity-dependent tran-
scriptomic states and cell-type composition in L2/3. 

Results

Spatial Transcriptomic Analysis of V1 Reveals the Continuous 
Sublayered Arrangement of L2/3 Glutamatergic Cell Types. We 
first sought to explore the spatial arrangement of L2/3 cell types. 
To do this, we performed multiplexed error-robust fluorescence 
in situ hybridization [MERFISH (13)] on brain coronal sections 
containing V1 obtained from NR mice at P28 (Fig. 1A) (14). 
MERFISH is an imaging-based approach that allows simultaneous 
mapping of hundreds of genes in individual cells within an intact 
tissue section. Using computational methods, cells can be classified 

into types based on combinatorial gene expression patterns, and 
the spatial arrangement of each cell type can be visualized. For 
these experiments, we selected a panel of 500 genes that included 
cortical area- and layer-specific markers, marker genes for all major 
cortical cell populations (9, 15), and activity-regulated genes (16) 
(Datasets S1 and S2). Notably, given our specific goal of studying 
cell-type-specific changes within L2/3, we included 170 genes 
selected from the 286 L2/3 cell-type-identity genes we previously 
reported (9) (Dataset S1). These 170 genes includes all type-B-
specific genes (n = 35/35), and more than half of the types A and 
C-specific genes (n = 135/251) selected with a preference on gene 
categories such as cell-surface molecules, synaptic factors, and 
transcription factors—factors that are related to neuronal cell type 
identity and function.

 We performed a preliminary clustering of the cells from the 
entire section, defining clusters using a combination of molecular 
similarity and spatial proximity (Materials and Methods ). This 
analysis identified 15 cell clusters, which highlighted different 
high-level anatomical structures of the mouse brain, including the 
neocortex with its characteristic laminar structure, parts of the 
hippocampus, and midbrain structures (SI Appendix, Fig. S1A﻿ ). 
These associations were supported by in situ expression patterns 
of well-known genes. For example, Slc17a7  (Vglut1 ), a marker for 
glutamatergic neurons, is prominently expressed in the cortex and 
parts of the hippocampus, two regions where glutamatergic neu-
rons comprise 80 ~ 90% of all neurons ( 19   – 21 ) (SI Appendix, 
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Fig. 1.   MERFISH recapitulates the spatial organization of L2/3 glutamatergic neurons in V1. (A) MERFISH was performed on mouse coronal brain sections using 
a panel of 500 genes. The gene panel was designed to resolve cell types and cell states in V1 based on published studies (9, 15–17). The lower panel shows an 
overview of the MERFISH data, showing a thin (10 µm) coronal section including the neocortex, parts of the hippocampus, and midbrain structures. Individual 
cells are colored by their cluster membership based on both gene expression similarity and spatial proximity (see SI Appendix, Fig. S1A for a detailed annotation 
of these clusters). (B) Cortical cells with defined locations along the medial–lateral (M-L) and pial–ventricular (P-V) axis of the cortex. Tissue was straightened 
in silico to facilitate downstream analysis. Cells are colored as in panel B. (C) Two genes, Scnn1a and Igfbp4 with area-specific in situ signatures. (D) Expression 
levels of genes in panel E along the M-L axis. The location of V1 is highlighted. (E) Examples of genes with layer-specific signatures in V1. (F) in situ organizations 
of subclasses of glutamatergic neurons (Left), GABAergic neurons (Middle), and nonneuronal cells (Right) in V1. (G) Correlations between physical distance and 
transcriptomic distance for pairs of glutamatergic (Left), GABAergic (Middle), and nonneuronal cells (Right) in V1. The sizes of the dots represent the density of cell 
pairs in decile bins. Physical distance is the difference in cell location along the cortical depth. Transcriptomic distance is the Euclidean distance in the space of top 
10 principal components (PCs) derived from MERFISH genes. Both distances are normalized such that the minimum is 0 and maximum is 1. (H) Subclasses of V1 
glutamatergic neurons are represented in UMAP embeddings obtained from integrating snRNA-seq (Left; ref. 9) and MERFISH (Right; this study) using Harmony 
(18). (I) Spatial distributions of glutamatergic subclasses along the cortical depth (P-V) axis. (J) Aggregated expression in V1 L2/3 for gene groups defining types 
A (n = 64 genes), B (n = 35 genes), and C (n = 71 genes). Type A, B, and C genes are distributed in Upper, Middle, and Lower L2/3, respectively. Colors represent 
gene expression levels going from 0 to 99 percentile. (K) Spatial distributions of types A, B, and C along the cortical depth spanning L2/3. MERFISH cell labels 
were transferred from previously published snRNA-seq data (9).
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Fig. S1B﻿ ). In contrast, Gad1 , a marker for GABAergic neurons, 
is expressed at low levels in the cortex but high levels in the mid-
brain, where inhibitory neurons represent ~50% of neuronal cells 
( 20 ,  21 ). Sox10 , a marker for oligodendrocytes, is enriched in the 
white matter beneath the cortex.

 We used the pial surface to define the tangential (medial–lateral) 
and vertical (pial–ventricular) coordinates of each cell and demar-
cated areas of the neocortex ( Fig. 1 B –G  ). We localized the primary 
visual cortex (V1) based on the enrichment of Scnn1a  and the 
depletion of Igfbp4  along the tangential axis. Both markers, 
described previously ( 15 ,  17 ), allowed us to identify V1 as a ~2 
mm wide × 1 mm deep region ( Fig. 1 C  and D  ). Within V1, we 
identified many genes expressed in a layer-specific fashion ( Fig. 1E  ).

 We used an integrative approach to classify each V1 cell in 
MERFISH into one of three classes (excitatory neurons, inhibitory 
neurons, and nonneuronal cells) and each neuron into one of 12 
subclasses, as in ref.  9  ( Fig. 1F   and SI Appendix, Fig. S1 C –E ). The 
relative frequencies of the subclasses tightly corresponded between 
MERFISH and snRNA-seq (Spearman correlation = 0.95) 
( Fig. 1H   and SI Appendix, Fig. S1 C –E ). The three cell classes in 
V1—glutamatergic neurons, GABAergic neurons, and nonneu-
ronal cells—have distinct transcriptomic and spatial organizations. 
Different subclasses of glutamatergic neurons were spatially local-
ized within expected layers along the pial–ventricular axis, where 
physical proximity implies transcriptomic similarity ( Fig. 1 F –I   
and SI Appendix, Fig. S1F﻿ ). By contrast, GABAergic neurons and 
nonneuronal cells are distributed more in a salt-and-pepper pat-
tern with only weak correlations between physical and transcrip-
tomic distance ( Fig. 1 F  and G  ).

 Previously, we found that L2/3 cells can be clustered into three 
types (L2/3A, L2/3B, and L2/3C). Individual marker genes for 
these types—Cdh13  for L2/3A, Trpc6  for L2/3B, and Chrm2  for 
L2/3C—were expressed in upper, middle, and lower regions of 
L2/3 along the pial–ventricular axis ( 9 ). However, the MERFISH 
data allowed us to validate the three-layered zonation of L2/3 types 
using a much larger gene panel ( Fig. 1J   and SI Appendix, Fig. S2 ). 
Combinatorial gene signatures based on 170 type-identity genes 
enabled classification of MERFISH L2/3 cells as L2/3A, L2/3B, 
or L2/3C. As expected, soma of the three cell types localized to the 
upper, middle, and lower sublayers within L2/3 ( Fig. 1K  ). Type A 
and C identity genes were expressed in a more restricted spatial 
pattern, whereas type B identity genes were expressed more broadly.  

Multitasking Theory Relates the Spatial Zonation of L2/3 Gluta­
matergic Neuronal Types to Their Continuous Transcriptomic 
Variation. Rather than forming three discrete transcriptomic cell 
types, L2/3 glutamatergic neurons form a continuum. This is most 
evident when we analyzed the data using diffusion pseudotime 
(DPT) (22), an approach based on diffusion maps (23). For 
snRNA-seq, DPT orders cells according to their type identity 
along the x axis and their corresponding type-identity genes along 
the y axis (Fig. 2A). The genes are expressed at different levels in a 
graded fashion, with no clear boundaries between the domains of 
each cell type. DPT produces a similar result for the MERFISH 
dataset, with cells now ordered based on their location along 
the cortical depth Fig. 2B), further supporting the link between 
continuous transcriptomic variation and spatial zonation.

 Strikingly, such a link is predicted by a recently proposed frame-
work known as multitasking theory ( 12 ,  24 ,  25 ). This theory 
posits that “ if gene expression lies on a D-dimensional manifold 
(e.g., D  = 3  for a tetrahedron, D  = 2  for a triangle, or D  = 1  for a 
line), the cells should show at least a D-dimensional spatial zona-
tion [in tissue] ” ( 12 ). Applying this framework to our data, we 
find that L2/3 neurons lie on a V-shaped manifold along the first 

two PCs, which is bounded by a triangle ( Fig. 2C   and Materials 
and Methods ) ( 26 ). The structure of the manifold and the coordi-
nates of the bounding triangle are similar for both the snRNA-seq 
and the MERFISH datasets ( Fig. 2D   and SI Appendix, Fig. S3 ). 
According to multitasking theory, vertices of the triangle represent 
“archetypal” cell types, with the gene expression profile of each 
archetype specialized for a particular function (see below). Indeed, 
the three vertices map to the L2/3 A, B, and C types identified by 
clustering, and cells inside the triangle are mixtures of the arche-
typal gene expression profiles ( Fig. 2 E  and F  ). Finally, consistent 
with the theory, the organization along the manifold from A to B 
to C is mirrored in the spatial zonation along the pial–ventricular 
axis ( Fig. 1 J  and K  ). This link between transcriptomic and spatial 
organization can also be shown by examining the distribution of 
the “physical distance” vs. “task distance” for pairs of L2/3 cells 
( 25 ). We find a correlation between cortical depth and task dis-
tance along PC1, reflecting the spatial arrangement of types A-C 
along L2/3 sublayers (SI Appendix, Fig. S4A﻿ ). By contrast, the 
correlation is weaker along PC2, suggesting type B has a more 
“salt-and-pepper” organization (SI Appendix, Fig. S4B﻿ ).

 We performed additional analyses to assess the robustness of 
the V-shaped manifold and the bounding triangle. Repeating the 
analyses with subsets of cells or genes resulted in only minor per-
turbations of the bounding triangle ( Fig. 2 G  and H  ). Repeating 
the analyses with shuffled versions of the original gene expression 
matrix further substantiated the continuous nature of the tran-
scriptomic variation. First, we shuffled gene expression values 
independently for each gene across L2/3 cells, which preserves 
individual gene expression distributions while disrupting their 
correlations. This resulted in all cells collapsing toward the center 
and a total disruption of the triangular structure (P  < 0.001; t-ratio 
test) ( Fig. 2I   and SI Appendix, Fig. S5 ). We then shuffled gene 
expression values independently for each gene within each cell 
type ( Fig. 2J  ). This procedure distinguishes between two scenarios: 
a genuine continuum vs. discrete types seemingly continuous due 
to noise in the data, which could arise from the intrinsic stochas-
ticity of gene expression or sampling noise in single-cell sequenc-
ing ( 27 ). When applied to clusters that span a continuum, the 
shuffling procedure splits continua into discrete clusters as long 
as the level of noise in the data is low to intermediate (SI Appendix, 
Fig. S6 A , C, and E﻿ ). In contrast, when the clusters are already 
discrete it has no effect regardless of noise level (SI Appendix, 
Fig. S6 B , D, and F﻿ ). Applying this shuffling procedure to our 
data splits L2/3 cells into three clusters ( Fig. 2J  ), supporting that 
transcriptomic continuum is genuine and not an artifact of noise.

 In addition to statistical robustness, we find several transcrip-
tion factors (TFs), such as Meis2 , Rfx3,  and Foxp1,  to be differen-
tially expressed across archetypes consistently during different 
developmental times (SI Appendix, Fig. S7 A  and B ). The patterns 
of these TFs resemble “terminal selector transcription factors” 
which define neuronal cell type identity ( 28 ). These observations 
suggest that the transcriptomic diversity among L2/3 cells repre-
sent genuine cell types rather than transcriptional noise or tran-
sient cell states.

 What is the functional significance of this continuum? 
According to multitasking theory, such transcriptomic continua 
arise as an optimal solution for division of labor among cells in 
tissues where a cell’s functional identity is related to its spatial 
position. While the theory does not specify these functions, 
examining the genes that define the archetypes may provide 
some clues. By performing gene ontology (GO) analyses, we 
found that archetype-defining genes are enriched for biological 
processes related to neuronal development and functions 
(SI Appendix, Fig. S7C﻿ ). Programs involved in neural wiring, 
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including “axon guidance” and “cell–cell adhesion,” show up in 
all three types (A, B, and C). For example, among known cell- 
recognition molecules related to neural wiring, type A expresses 
﻿Cdh13, Cntn5, Epha6, Sema6a,  and Robo1 ; type B expresses 
﻿Epha3  and Sema4a;  and type C expresses Cdh12, Cntn2,  and 
﻿Robo3  (Dataset S3 ). The differential expression of these genes 
may be related to the distinct projection patterns of A, B, and 
C types to the higher visual areas ( 9 ,  29 ). Other programs, such 
as “sensory perception of light stimulus” and “detection of 
mechanical stimulus involved in sensory perception,” are specific 
to types B and C, respectively. Although one can only speculate 
on the functional meaning at this stage (Discussion ), the mani-
fold representation of L2/3 neurons proves useful in understand-
ing global and cell-type-specific changes due to visual deprivation, 
which we analyze in the next section.  

Transcriptomic Heterogeneity in Vision-Deprived L2/3 Neurons 
Involves Two Distinct Gene Programs. To characterize the changes 
induced by visual deprivation, we obtained MERFISH data 
from mice DR between P21 to P28, following our published 
experimental protocol (Fig. 3A and Materials and Methods) (9). 
Comparisons of DR and NR sections collected at P28 showed 
an upregulation of 13 genes (FC > 2, FDR < 0.05, SI Appendix, 
Fig. S8A), a small subset of vision-dependent genes detected by 
snRNA-seq (see below). All 13 genes were canonical immediate 
early genes (IEGs) (16), and their upregulation was localized to the 
visual areas (Fig. 3B). Along the tangential axis, IEG levels were 
significantly higher in V1 than in its flanking regions (Fig. 3 C 
and D and SI Appendix, Fig. S8B). Consistent with prior snRNA-
seq data, we observed that the upregulation of IEGs was broadly 

shared by most neuronal subclasses, albeit the induction is subtler 
in inhibitory neurons than excitatory neurons (SI  Appendix, 
Fig. S8 D and E). Spatially, the upregulation of IEGs is visible 
throughout the cortical depth (Fig. 3 C and E and SI Appendix, 
Fig.  S8C). Within L2/3, canonical IEGs, such as Fos, Nr4a2, 
Junb, and Egr4, were up-regulated in DR similarly in all sublayers 
(Fig. 3F and SI Appendix, Fig. S9 A and C).

 We previously reported that DR selectively disrupts the tran-
scriptomic signatures of L2/3 cell types in single-nucleus (sn) 
RNA-seq data from V1 ( 9 ). Our results were based on unsuper-
vised clustering of snRNA-seq profiles from NR and DR mice. 
Most cell types correspond 1:1 between NR and DR with the 
notable exception of L2/3 neurons. In the MERFISH data, while 
type-identity genes by and large maintained their sublayered 
expression, they also exhibited some vision-dependent alterations 
in DR. L2/3A-specific genes were relatively unchanged, but 
L2/3B- and L2/3C-specific genes were downregulated ( Fig. 3G   
and SI Appendix, Fig. S9 B –D ). Taken together,  Fig. 3 A –G   suggest 
that vision impacts L2/3 transcriptomes in two distinct modes, 
one comprising broadly expressed genes (e.g. IEGs), and the other 
impacting genes associated with cell type identity (SI Appendix, 
Fig. S9 E  and F ).

 These results motivated a reanalysis of our published snRNA-seq 
dataset ( 9 ). We combined NR and DR datasets at P28 and applied 
principal component analysis (PCA) using 6,360 highly variable 
genes (Materials and Methods ). We focused on the top four PCs, 
which exhibited a clear spectral gap from other components 
(SI Appendix, Fig. S10A﻿ ). PC1 and PC2 separated cells by rearing 
condition (NR vs. DR mice), while NR and DR cells intermixed in 
the PC3 to PC4 space ( Fig. 3H   and SI Appendix, Fig. S10 B  and C ).  
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Conversely, PC3 to PC4, but not PC1 to PC2, separated NR 
cells by type identity ( Fig. 3I   and SI Appendix, Fig. S10 B  and 
C ), recapitulating the triangular manifold in  Fig. 2B  , which was 
estimated using 286 type-identity genes. Thus, transcriptomic 
variation in L2/3 glutamatergic neurons is driven by two gene 
programs: The first, encoded in PC1 to PC2, captures vision- 
dependent changes, while the second, encoded in PC3 to PC4, 
captures cell type identity.

 As PCs are derived from orthogonal directions in transcriptomic 
space, we hypothesized that the gene programs encoded in PC1 
to PC2 vs. PC3 to PC4 represent distinct biological processes. 
GO analysis shows that genes driving PC1 and PC2 were enriched 
in the regulation of protein modification and signaling pathways 
( Fig. 3J   and SI Appendix, Fig. S10E﻿ ), likely reflecting shifts in cell 
state due to experience-dependent activity. By contrast, PC3 and 
PC4 were enriched for genes associated with cell–cell adhesion, 
axonogenesis, neuron projection guidance, and chemical synaptic 
transmission ( Fig. 3J  , SI Appendix, Fig. S10E﻿ , and Dataset S4 ), 
which are associated with neuronal cell-type identity ( 30     – 33 ). We 

also compared the top-loading genes within each PC with a list 
of known activity-regulated genes in L2/3 glutamatergic neurons 
from Hrvatin et al. ( 16 ). This list includes 42 “early-response” 
genes, among which many are canonical IEGs, that were con-
served across cell types in the original study, and 37 “late-response” 
genes, which were largely cell-type-specific (Dataset S5 ). PC1 to 
PC2 genes strongly overlapped with IEGs (odds ratio = 25,  
﻿P  < 10−10 ; Fisher’s exact test; significant enrichment) and barely 
overlapped with type-identity genes (odds ratio = 0.1, P  = 0.002; 
Fisher’s exact test; significant depletion) ( Fig. 3K   and SI Appendix, 
Fig. S10F﻿ ). By contrast, PC3 to PC4 genes did not contain IEGs 
and significantly overlapped with type-identity genes (odds ratio 
= 40, P  < 10−10 ). Late-response genes featured in equal numbers 
across PC1 to PC2 and PC3 to PC4.

 These results highlight the consistency between the MERFISH 
and the snRNA-seq datasets and present the following overall 
picture. The transcriptomic variance in NR and DR layer 2/3 cells 
can be decomposed into two independent programs: 1) PC1 to 
PC2, associated with experience-regulated cell states, and 2) PC3 
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Fig. 3.   Gene programs driving transcriptomic heterogeneity in normal- and dark-reared L2/3 neurons. (A) Protocol for dark-rearing (9). (B) In situ expression 
patterns of Fos in NR and DR coronal sections. Locations of V1 are highlighted. (C) Aggregated in situ expression of IEGs (16) in NR and DR in V1 and its flanking 
cortical regions. Rows in each condition correspond to biological replicates. (D and E) Aggregated expression of IEGs along the M-L axis (D) and the P-V axis (E). 
Fold change is quantified relative to the mean expression level over the entire V1 region for all NR samples. (F and G) In situ expression of representative IEGs 
(F) and type-identity genes (G). Individual dots are transcript molecules detected by MERFISH. Line plots show the distribution of puncta along the P-V axis from 
upper to lower L2/3. The density of puncta was defined as the number of puncta per 100 µm2 area averaged across samples. Error bars represent SEM. (H and I) 
Distribution of L2/3 cells’ neighbor identities in terms of the fraction of k nearest neighbors (k = 30) that are of the same rearing condition (NR vs. DR; panel H) and 
of the same type (A vs. B vs. C; panel I). PCs are computed from n = 6,360 HVGs (Materials and Methods and SI Appendix, Fig. S10). (J) GO analysis shows biological 
processes enriched in genes driving PC1 to PC2 (in red) and PC3 to PC4 (in blue). Raw results from the enrichment analysis were filtered to remove redundant 
terms (Materials and Methods). A full list of the top 10 significant GO terms with FDR < 0.05 is shown in SI Appendix, Fig. S10E. Top 100 genes for each PC ranked by 
the absolute value of PC loadings are used. (K) Overlap between PC-driving genes and previously defined gene groups. Activity-regulated genes, including early 
response genes (IEGs) and late-response genes in L2/3 glutamatergic neurons are from ref. 16. Type-identity genes from ref. 9 are listed in Dataset S1.
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to PC4, associated with cell type identity. However, we find that 
the contribution of these programs to the overall variance within a 
dataset differs by rearing condition. For NR, the projected variance 
along PC3 to PC4 is 2.9-fold higher than that along PC1 to PC2. 
By contrast, for DR, the projected variance along PC1 to PC2 is 
2.8-fold higher than along PC3 to PC4. This disparity, however, 
drives the lack of correspondence in the highly- variable-gene-based 
clustering of NR and DR L2/3 neurons reported by Cheng et al. 
( 9 ). Consistent with this, a “focused” clustering of DR L2/3 neurons 
using the 286 type-identity genes recovers cell clusters correspond-
ing 1:1 with types A, B, and C in NR (SI Appendix, Fig. S11 ). 
Overall, this suggests that despite being masked by 
experience-dependent changes, cell identity programs persist in DR 
(SI Appendix, Fig. S10D﻿ ), albeit with major alterations ( Fig. 3G  ). 
We now analyze these alterations.  

Visual Deprivation Alters the Composition of L2/3 Cell Types 
along the Transcriptomic Continuum. We used the 2D manifold 
representation (Fig. 2 C and D) to study cell-type-specific changes 
induced by visual deprivation. We hypothesized that vision could 
regulate one or more of the following features: a) the locations of 
the archetypes, i.e., the bounding triangle; b) the distribution of 
cells along the manifold, which correspond to changes in cell type 
composition and spatial zonation; and c) the expression levels of 
one or more type-identity genes.

 To evaluate whether archetype coordinates change, we recalcu-
lated PCs based on the 286 type-identity genes as in  Fig. 2C  , but 
now using both NR and DR cells from the published snRNA-seq 
data. Using this representation, we separately inferred archetype 
coordinates using cells from each biological sample (n = 4 repli-
cates for each condition, including P38 data from ref.  9 ). These 
calculations verified that L2/3 cells from NR and DR mice occupy 
similar triangular regions, with no significant changes detected in 
archetype coordinates (3 ~ 10% changes relative to the minimum 
distance between archetypes) (SI Appendix, Fig. S12 A  and C ).

 Individual cells, however, distributed differently between NR 
and DR, shifting away from the region proximal to archetype B 
toward archetype A, and away from archetype C in DR ( Fig. 4A   
and SI Appendix, Fig. S12B﻿ ). This reorganization between NR and 
DR was also predicted by two alternative methods: optimal trans-
port analysis ( 34 ,  35 ) ( Fig. 4B   and Materials and Methods ) and 
supervised classification-based label transfer from NR to DR cells 
( Fig. 4C  ). The compositional difference between NR and DR at 
P28 or P38 was larger than the difference between P28NR and 
P38NR, or between P28DR and P38DR (SI Appendix, Fig. S12D﻿ ). 
This suggests that the effect of DR on L2/3 transcriptomic iden-
tities is consistent over at least ten days. Furthermore, similar 
changes in cell type composition were also recovered in the 
MERFISH data (SI Appendix, Fig. S13 ). Additionally, MERFISH 
shows that the overall expression levels of type B and C genes 
decrease in DR, especially in middle and lower L2/3 ( Fig. 4 D  and 
﻿E   and SI Appendix, Fig. S14 ). By contrast, the expression of type 
A genes is relatively unchanged and consistently enriched in 
upper L2/3.        

 We performed differential gene expression analysis between NR 
and DR samples to identify vision-dependent genes within each 
type. In total, we identified 386 unique vision-dependent genes, 
of which 70 were regulated in type A, 226 in type B, and 304 in 
type C (fold change > 2 and FDR < 0.05). These genes included 
90% (n = 38/42) of previously identified L2/3 IEGs ( 16 ), while 
the IEGs represent ~10% (n = 38/386) of the vision-dependent 
genes ( Fig. 4F   and Dataset S6 ). Moreover, most vision-dependent 
genes (90%; n = 348/386) are not type-specific, and they were 
up- or down-regulated in all or two of the three L2/3 types in DR 

( Fig. 4 F –H  ). Conversely, most type-identity genes (87%;  
n = 248/286) were vision-independent, consistently marking types 
A, B, and C in NR and DR ( Fig. 4 F  and G  ). Of 286 type-specific 
genes, 38 (13%) were vision-dependent ( Fig. 4 F  and I  ). These 
﻿vision-dependent type-identity  genes fell into six groups based on 
their patterns of regulation ( Fig. 4I  ). Overall, type A had smaller 
fold changes in DR compared with types B and C in almost all 
genes. Unlike types B and C-specific genes, a group of type A 
genes (Group 2; n = 9) were up-regulated in types B and C, but 
did not change in type A themselves. The changes in individual 
type-identity genes were consistent with the overall trend that type 
A was less affected by DR than types B and C.

 Together, these results exemplify the plasticity of the transcrip-
tional programs defining A, B, and C cell types, resulting in a 
redistribution of cells in the 2D manifold associated with type 
identity due to visual deprivation ( Fig. 4J  ). The nature of this 
redistribution is consistent across biological replicates of 
snRNA-seq (SI Appendix, Fig. S12 ) and MERFISH (SI Appendix, 
Fig. S13 ). Finally, L2/3 glutamatergic neurons (also known as 
L2/3 intratelencephalic neurons; L2/3 IT) are more sensitive to 
vision than deeper-layer intratelencephalic (L5/6 IT) neurons, 
consistent with prior results ( 9 ) (SI Appendix, Fig. S15 ).   

Discussion

 We previously showed that vision deprivation selectively impacts 
L2/3 glutamatergic neuronal types in V1 ( 9 ). Using unsupervised 
clustering of snRNA-seq data, we found that L2/3 neuronal clus-
ters in DR mice “poorly resembled the three types in NR animals, 
and the expression patterns of cell-type-specific marker genes were 
disrupted”. We interpreted these results as “a global disruption of 
gene expression patterns throughout L2/3 ”, resulting in “the loss of 
[L2/3] cell type identity in animals deprived of light ”. The nature of 
the disruption in gene expression was, however, not clear due to 
our inability to relate cell types between the two conditions. In 
this study, we set out to resolve this issue.

 Here, combining spatial transcriptomics with additional com-
putational analyses enabled us to relate L2/3 cell types between 
NR and DR and thereby clarify the vision-dependent gene expres-
sion changes. We showed that visual deprivation impacts two 
orthogonal gene programs, one associated with experience-induced 
cell states and the other overlapping with programs of cell type 
identity. The deprivation-induced state changes dominate the 
transcriptomic variation in DR, masking cell type distinctions in 
the unsupervised clustering analysis used previously.

 Using multitasking theory, we showed that the transcriptomic 
variation among L2/3 cells can be represented as a continuous 
manifold in 2D bounded by a triangle whose vertices represent 
archetypes A, B, and C. These archetypes represent the “basis sets” 
used to construct the profiles of sampled L2/3 neurons. While 
preserving the archetypes themselves, dark-rearing redistributes 
cells within the manifold, shifting cells away from archetypes B 
and C. Thus, L2/3 cell types are not lost in animals deprived of 
light, but their composition is altered, and the underlying gene 
expression programs are masked by orthogonal activity-induced 
changes. These changes are consistently reproduced in both 
MERFISH and snRNA-seq datasets.

 A key tenet of multitasking theory is to link transcriptomic 
continua to the spatial zonation of functionally distinct cell types. 
Previous observations indicate that neurons within different L2/3 
sublayers (A, B, C) differ in their functional properties and pro-
jections to higher visual areas ( 9 ,  16 ,  36 ). Our results support the 
idea that vision is required to maintain the proper distribution of 
cells in the L2/3 cell-type continuum and that vision preferentially 
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impacts types B and C more than type A. The unequal dependence 
on vision could be related to the spatial zonation, as previous 
studies have shown that deep, but not more superficial, L2/3 cells 
receive LGN inputs ( 37 ). Consistent with this, our GO analyses 
suggest that types B and C but not type A genes are enriched in 
biological processes associated with sensory input (Dataset S3 ). It 
remains to be determined whether the vision-dependent programs 
observed here are specific to developmental plasticity during the 
critical period or broadly applicable to adult plasticity as well.

 Previous studies have shown that neural activity influences the 
transcriptomes of developing neurons ( 9 ,  15 ,  16 ,  38       – 42 ). Among 
cortical cell types, L2/3 glutamatergic neurons have been identified 
as the most sensitive to sensory experience ( 15 ,  39 ), consistent 
with findings from functional studies ( 43 ,  44 ). Several studies 
have highlighted the regulation of IEGs under sensory depriva-
tion, although the direction of regulation may depend upon the 
experimental protocol ( 9 ,  16 ,  39 ,  40 ,  42 ). Our data, based on 
both snRNA-seq and MERFISH, indicates that dark-rearing leads 
to an upregulation of IEGs, an effect that is specific to visual areas. 

Additionally, known IEGs only represent about 10% of genes 
altered by dark-rearing ( Fig. 4F  ). The area-specific nature of the 
upregulation makes it unlikely to be an experimental artifact, yet 
the discrepancy in the direction of change compared to some 
previous studies ( 39 ) remains perplexing and warrants systematic 
investigation in future research.

 How the interplay between intrinsic and vision-dependent 
molecular programs establish the transcriptomic continuum of 
L2/3 glutamatergic neurons, and how this sculpts circuitry and 
visual perception are exciting and challenging questions. Emerging 
techniques correlating transcriptomics, neural activity, and/or 
connectivity at the single neuron level provide tools to explore 
these mechanisms ( 45     – 48 ). We anticipate that these studies, 
alongside modeling and computational analysis, will provide 
insights into the significance of the continuous nature of cell type 
variation for the proper function of V1. Multitasking theory ( 12 , 
 24 ,  25 ,  49 ) suggests that transcriptomic continua aid the division 
of labor among cells in a tissue responsible for multiple functions. 
For continua bound by a polygon, cells close to each vertex 
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Fig. 4.   Visual deprivation redistributes cells within the L2/3 type triangle. (A) Distribution of L2/3 types within the L2/3 type-triangle. Cell density for NR cells 
(Left), DR cells (Middle), and the difference between NR and DR (Right) are shown in PC1 and PC2 space derived from type-identity genes. (B) Optimal transport 
analysis (34, 35) showing the transport map connecting the NR to DR distribution. The arrows indicate the direction of local redistribution of cells in the reduced 
gene expression space. (C) The proportions of L2/3 cells assigned as types A, B, and C for NR and DR samples. The type assignment is based on type A, B, and 
C identity gene expression (Materials and Methods). (D) In situ expression levels of A, B, and C type-identity genes for NR and DR samples. (E) Expression of A, B, 
and C identity genes along the P-V axis from upper to lower L2/3 for NR (Left) and DR (Right) samples. Mean expression levels were shown relative to the baseline 
levels, which are defined as the mean expression levels in NR samples averaged across L2/3. (F) Overlap between vision-dependent genes, type-identity genes, 
and previously identified L2/3 IEGs (16). (G–I) Expression profiles of type-identity vision-independent genes (G), vision-dependent non-type-identity genes (H), 
and vision-dependent type-identity genes (I). Expression levels are z-score normalized across all samples independently for each gene (row). Gene numbers 
correspond to panel (F). (J) Diagram shows L2/3 transcriptomes comprise two orthogonal axes of variations–cell-state programs and cell-type programs. Visual 
deprivation activates cell-state programs and shifts cell-type programs away from archetypes B and C toward A.

http://www.pnas.org/lookup/doi/10.1073/pnas.2421022122#supplementary-materials
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(archetype) are specialized for a particular function, while cells in 
the middle are “generalists,” which can perform multiple functions 
at the cost of being suboptimal for any single function. When 
gradients in gene expression space are also correlated with position, 
this can create spatial domains within a tissue, each suited for a 
unique complement of functions. Consistent with this idea, tran-
scriptomic continua have recently been found to be a common 
trait in the mammalian brain, and they are often correlated with 
spatial and physiological continua ( 21 ,  50           – 56 ). Indeed, the phys-
iological and morphological features of L2/3 neurons in binocular 
V1 vary as a continuum along the pial–ventricular axis ( 57 ). 
Together, these findings suggest that vision controls the function 
of L2/3 glutamatergic neurons in V1, at least in part, by contrib-
uting to shaping the properties of this continuum. As L2/3 neuron 
types have selectively expanded in the primate cortex, continua 
of cell types may be particularly well suited to change by experi-
ence and may contribute to the enhanced cognitive capacities of 
primates.  

Materials and Methods

Mice for MERFISH. Mouse breeding and husbandry procedures were carried 
out in accordance with the animal care and use committee protocol number 
2009-031-31A at the University of California, Los Angeles. Mice were given food 
and water ad libitum and lived in a 12-h day/night cycle with up to four adult ani-
mals per cage. Only virgin male C57BL/6 J wild-type mice were used for MERFISH 
experiments to match with ref. 9.

Visual Deprivation Paradigm. Mice were dark-reared starting P21, which marks 
the beginning of the ocular dominance critical period. Prior to P21, mice were 
reared in cages in a room with a 12-h light/dark cycle. At P21, mouse cages were 
moved to a separate room and placed inside a dark box lined on the inside and 
the outside with black rubberized fabric (ThorLabs Cat# BK5) with edges sealed by 
tape and fabric to avoid any light entry. Mice were dark-reared in this setup for 7 d 
(P21-28DR group). During this period, any handling of the cages was performed 
in the dark with room lights off, door crevices sealed from exterior light, and in 
dim red light, which is invisible to the mice. A light meter was used to measure the 
amount of light inside the dark-rearing box before visual deprivation paradigm. 
All mice were dark-reared in 0 to 0.01 lx conditions. At the end of dark-rearing, 
mice were killed and harvested for MERFISH experiments under red light.

Normally reared mice were housed in a 12 h light-ON, 12 h light-OFF cycle 
and were harvested during a range of 6 to 8 h into the light-OFF phase. The 
cages of normally reared mice were wrapped with the same black rubberized 
fabric and carried to dark room with only red light on to minimize light exposure 
before they were killed.

Tissue Preparation and MERFISH Experiments. All mice were anesthetized 
with isoflurane and then perfused transcardially with 10 mL heparinized PBS. 
Following perfusion, the brains were harvested, imbedded in prechilled Tissue-
Tek® OCT mounting medium, and flash-frozen in dry ice-prechilled methylb-
utane. The frozen blocks were then kept on dry ice and stored at −80 °C until 
time of sectioning. To prepare cryosections for MERFISH, two entire OCT blocks 
(two brains) or three bisected OCT blocks (three hemibrains) were combined and 
sectioned at −20 °C in a Leica CM1850 cryostat. Two 12-mm-thick coronal slices 
(one anterior and one posterior containing binocular V1 with ~550 μm apart in 
the anterior–posterior axis) were directly collected onto specially coated 4 cm-
diameter MERFISH glass slides (merslides, Vizgen Item# 10500001). For locating 
the visual cortex, atlas coordinates from (Franklin and Paxinos, (58)) and Allen 
Brain Atlas were used. Collected cryosections on the MERFISH slides (merslides) 
were fixed in 4% paraformaldehyde in PBS (15 min at RT) in a 6 cm petri dish, 
rinsed with cold RNase-free PBS, and stored in 70% ethanol at 4 °C until the step 
of MERFISH probe hybridization.

MERFISH was performed according to Vizgen’s instructions. Briefly, mers-
lides with brain sections stored in 70% ethanol were rinsed with Vizgen Sample 
Preparation Buffer (SPB) after aspiration of 70% ethanol, incubated with Vizgen’s 
Formamide Wash Buffer (FWB, 30 min at 37 °C) followed by MERFISH probe 
labeling with a customized mouse gene panel containing 500 mouse genes 

(VZGCP0991, Dataset S2, ~40 h at 37 °C) in a moist chamber, and washed with 
FWB twice (30 min at 47 °C). The brain sections were be embedded with Vizgen 
gel mix after removal of FWB, cleared in 5 mL clearing mix solution with 50 mL 
protease K (overnight at 37 °C), stained with Vizgen DAPI/poly(T) reagent included 
in the Vizgen 500-gene imaging kit (10 min at RT) after rinse with SPB and 
FWB (10 min at RT). Then the merslide was thoroughly rinsed with SPB, carefully 
assembled into an imaging gasket chamber, and uploaded into the MERSCOPE 
for imaging. The MERFISH imaging was done on the MERSCOPE with an activated 
Vizgen 500-gene imaging kit after adding the imaging buffer activator and RNase 
inhibitor (100 mL) as instructed. The imaging process was conducted under the 
direction of Vizgen’s MERSCOPE program (Software version 233.230615.567) 
with the default settings (both polyT and DAPI channels “on,” scan thickness: 
10 mm). Once the MERFISH imaging process was completed, the output files 
were transferred for in-depth analysis with MERFISH Visualizer and in-house 
custom bioinformatic pipeline.

snRNA-seq Data Processing and Normalization. Cell-by-gene count matri-
ces from the previous study were downloaded from Gene Expression Omnibus 
(GEO) repository GSE190940 (9). Cell type labels were downloaded from the 
associated Github repository https://github.com/shekharlab/mouseVC. Raw 
count matrices were normalized as described before. Transcript counts within 
each cell were rescaled to sum up to 10,000. A pseudocount of 1 was added 
to the normalized transcript counts for each gene within each cell, followed by 
log10-transformation. For PCA and clustering, log10-transformed counts were 
z-scored across cells for each gene.

We reproduced a list of L2/3 type-identity genes (n = 286, Dataset S1) by 
following the differential expression analysis used in the previous study. Briefly, 
the expression of each gene was compared in one type versus others (L2/3 A vs, B 
to C; L2/3 B vs. A to C; and L2/3 C vs. A to B). We used scanpy.tl.rank_genes_groups 
to identify differentially expressed genes (DEGs) if a gene meets the following 
criteria: a) false discovery rate (FDR) < 0.05 based on Wilcoxon rank-sum test; 
b) fold change > 2, and c) the gene was expressed in >30% cells in the up-
regulated type.

MERFISH Data Processing and Normalization. Starting from a cell-by-gene 
matrix, in which each entry is an integer representing the number of transcripts 
detected in each cell and for a specific gene by MERFISH, we first removed low 
quality cells. We kept cells with a volume between 50 ~ 2,000, total number of 
detected transcripts >10, and false positive rate of transcript detection < 5% for 
the initial analysis. (Later to identify L2/3 cell types A, B, and C, we further selected 
high-quality cells with total number of detected transcripts > 50). Notably, the 
false positive rate is a unique feature of MERFISH. In MERFISH experiments, 
transcripts were identified by binary barcodes extracted from repeated rounds of 
hybridization, imaging, and puncta detection. A few barcodes were designed to 
be blank barcodes unmapped to any genes, which allowed us to estimate false 
positive transcript detection rate. Out of the eight MERFISH sections, four were 
done on the full coronal sections while the rest were done on hemibrain coronal 
sections only. For consistency, we computationally cut out a hemi-brain section 
for every sample for downstream analysis.

Following the same procedure employed in a previous MERFISH study (21), 
we normalized the raw count matrix first by cell volume and then by mean tran-
script count across samples such that each section had the same mean number 
of transcripts (n = 250) detected per cell. This procedure effectively ameliorated 
cell volume-associated variation and batch effects across samples. After the above 
cell-to-cell and sample-to-sample size normalization, we normalized the data by 
log (+1) transformation and z-scored every gene.

Notably, we found a massive upregulation of a panel of IEGs in sections from 
DR mice compared to NR (see main text). To remove this confounding factor, 
sample-to-sample normalization was done using 484 out of the 500 genes pro-
filed by MERFISH (excluding the 16 IEGs) to compute the total transcript counts. 
We found that the identification of major cell subclasses was unaffected by the 
inclusion/exclusion of IEGs. However, IEG removal helped quantify gene expres-
sion changes in NR vs DR within L2/3 types more accurately.

Spatial Domain Analysis. To identify the major anatomical areas and molecular 
organization within our MERFISH sections, we performed a clustering analysis on 
each section based on cell-to-cell gene expression similarity and spatial proxim-
ity. Using the normalized data as features, we performed a PCA and generated a 

http://www.pnas.org/lookup/doi/10.1073/pnas.2421022122#supplementary-materials
https://github.com/shekharlab/mouseVC
http://www.pnas.org/lookup/doi/10.1073/pnas.2421022122#supplementary-materials
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gene-expression-similarity graph based on coordinates in the space of the top 
50 PCs. We also generated a spatial-proximity graph based on spatial locations 
of the cells. Both graphs were generated using scanpy.pp.neighbors following 
default parameters. We generated a spatial-and-gene hybrid graph by blending 
the spatial and the gene graphs with equal weighting. We applied Leiden clus-
tering on the hybrid graph using scanpy.tl.leiden following default parameters. 
The resulting spatial domains recover major anatomical structures in the mouse 
brain, which were visualized in Fig. 1 and SI Appendix, Fig. S1. Clusters were 
annotated based on anatomical and molecular features.

Establishing Curved Cortical Coordinates and Identifying V1. We developed 
an automated iterative procedure to fit a smooth curve along the pial surface, 
which served as a reference line to establish curved coordinate system along 
the vertical (pia-ventricular; P-V) and the tangential (medial–lateral; M-L) axis 
of the cortex.

We took advantage of meningeal cells (VLMCs), which specifically express 
Slc6a13 and are located along the pial surface. Using these Slc6a13+ cells as 
anchors, we first fit a fourth-order polynomial using numpy.polyfit. Subsequently, 
we used the fitted line as a reference to calculate the depth for all the anchor cells. 
Anchor cells whose depth that are >1/2 of the maximum depth (robust maximum 
taken as the 95% max depth) among all anchors were removed from the set of 
anchor cells for another round of more refined fitting. This procedure was repeated 
for 5 ~ 10 times until the inferred reference line was stable and visually matched 
the cortical surface. Using the reference line, all cortical cells were assigned a 
depth along the P-V axis and a width along the M-L axis.

Using the curved coordinates, cortical cells, defined as having cortical depth 
less than 1,100 microns from the pial surface, were extracted from the full coronal 
sections for downstream analysis. V1 cells were identified based on tangential 
locations based on areal-specific markers mentioned in the main text.

Identification of Subclasses of V1 Cells and Integration with Published 
snRNA-seq Data. To systematically identify major cell populations, V1 cells were 
extracted and merged from all MERFISH sections (eight in total for this study; NR 
and DR) as mentioned above and were integrated with our previously published 
snRNA-seq data (9) using Harmony (18). We did this at two levels—the class level 
and the subclass level within the excitatory and inhibitory classes (SI Appendix, 
Fig. S1).

To integrate the MERFISH and snRNA-seq data (P28NR), we intersected 
MERFISH genes (n = 484, excluding IEGs) and highly variable genes (HVGs; 
n = 7,340) identified by snRNA-seq, which resulted in 361 overlapping genes 
between the two datasets. For this analysis, we only used high-quality MERFISH 
cells, defined as cells with at least 50 transcripts. We computed PCA (n = 20 
components) using cells from both datasets based on the overlapping genes 
(z-scored separately for each dataset). We then applied Harmony using scanpy.
external.pp.harmony_integrate to generate harmonized PCs.

These harmonized PCs were used for downstream visualization and cell-type 
assignment. UMAP were generated using scanpy.pl.umap with the default param-
eters. Cell type labels were transferred from the published snRNA-seq data to 
MERFISH based on k-nearest-neighbor-based assignment using sklearn.neigh-
bors.NearestNeighbors. A MERFISH cell was assigned to the most frequent cell 
class out of its k = 100 snRNA-seq neighbors. To assign cell subclasses with a 
cell class, k = 30 neighbors were used.

A small fraction of MEFISH cells could not be confidently assigned a cell 
class (SI Appendix, Fig. S1C). These cells were defined as those whose k = 100 
neighbors in the harmonized PCs contains ≤ 2 cells from snRNA-seq, indicating 
an unsuccessful data integration for these cells. These cells were assigned label 
“NA” (SI  Appendix, Fig.  S1), most likely being low-quality nonneuronal cells 
with lower number of transcripts, and unspecific spatial signatures. They were 
mostly grouped with microglia and endothelial cells in the UMAP embedding 
(SI Appendix, Fig. S1C).

Identification of L2/3 Glutamatergic Cell Types. The procedures above iden-
tified all cell subclasses, among which we focused on one subclass, the L2/3 
glutamatergic neurons, for further analysis. Two strategies were used to further 
identify the three types of L2/3 neurons (types A, B, and C). The first was to repeat 
the analysis above at the cell type level, which assigned each MERFISH cell an 
identity based on its k-nearest neighboring snRNA-seq cells in the harmonized 
PC space.

We also used a second strategy, which offers more biological interpretability. 
Given the continuous nature of L2/3 types bounded by the three archetypes A, 
B, and C, we developed continuous A-B-C scores based on the expression levels 
of type-A, B, and C identity genes (n = 170 profiled by MERFISH). Each cell 
was assigned three scores (pa, pb, pc ) , with pa + pb + pc = 1 , representing the 
probabilities that this cell belongs to type A, B, and C, respectively. For a cell i  , 
we first characterized its overall expression levels of type-A specific genes by the 
mean z-scored type-A-identity gene expression,

zia =
1

|Ga|
∑

g∈Ga

zig,

where Ga represents the set of type-A-identity genes and ||Ga|| represents its size. 
Type B and C scores were similarly defined as

zib =
1

|Gb|
∑

g∈Gb

zig,

zic =
1

|Gc|
∑

g∈Gc

zig,

These mean z-scores were normalized to be bounded between [0, 1].

sia =
|zia − zmin,a|
zmax,a − zmin,a

,

where zmin,a is defined as the 40th percentile of zia among L2/3 cells and zmax,a 
is defined as the 95th percentile. Next, we normalized these scores such that 
they sum to 1,

pia =
sia

sia + sib + sic
,

These scores can be directly visualized at single-cell level using an additive blend-
ing between three (archetypal) colors. To assign discrete cell type labels, one can 
also assign a cell to the type that has the highest ABC scores. Cells with clear A, B, 
or C identity, i.e. archetypal cells, are defined as those whose highest ABC scores 
were greater than 0.6 ( max

(
pa, pb, pc

)
> 0.6).

Pseudotime Analysis for the L2/3 Transcriptomic Continuum. We com-
puted pseudotemporal coordinates for L2/3 cells to understand their continuous 
organization. We first computed the top 50 PCs using z-scored L2/3 type-identity 
genes, and generated a k-nearest-neighbor (k = 50) graph between cells in the 
PC space. The graph was built using the function Scanpy.pp.neighbors. Next, we 
ran a diffusion map (22) using Scanpy.tl.diffmap and ran diffusion pseudotime 
using scanpy.dpt following default parameters. The cell with the smallest PC1 was 
assigned as the root cell and serves as the starting point of diffusion. As a result, 
each cell was assigned a pseudotemporal coordinate, and cells were ranked by 
the increasing order of pseudotime.

We also ranked L2/3 type-identity genes according to their expression along 
the pseudotime coordinates. We defined the pseudotime of a gene ( Tg ) as the 
weighted average of cell pseudotime,

Tg =
∑

c

wgctc ,

where tc is the pseudotime of the cell ( c  ), and wgc is the weight of the cell c  
contributing to the gene g . The weight of a gene is defined by its expression 
level and sums to 1,

wgc =
xgc∑
c�xgc�

,

where xgc is the size and log normalized expression. This gene pseudotime was 
defined at P28NR and was kept fixed to give a consistent representation for com-
parisons between conditions.

Archetypal Analysis (the Multitasking Framework). We used the python 
package py_pcha: https://github.com/ulfaslak/py_pcha to determine the geom-
etry of the L2/3 cell type continuum in the PC1-PC2 space derived from the L2/3 

http://www.pnas.org/lookup/doi/10.1073/pnas.2421022122#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2421022122#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2421022122#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2421022122#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2421022122#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2421022122#supplementary-materials
https://github.com/ulfaslak/py_pcha
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type-identity genes. The tool uses archetypal analysis, also known as the principal 
convex hull analysis, to infer a triangular boundary to the L2/3 transcriptomes. The 
same procedure (with parameters delta = 0 and noc = 3) was applied to different 
combinations of data (snRNA-seq, MERFISH, different conditions, harmonized 
data, and shuffled data; see main text).

We evaluated the significance of the triangular fit by the t-ratio test as proposed 
by the multitasking framework (12). T-ratio is the ratio between the area of the 
convex hull of the data and that of the principal convex hull (the triangular bound 
in our case). We calculated the area of the convex hull using the python package 
scipy and its function scipy.spatial.ConvexHull. We tested the significance of the 
observed t-ratio by comparing it to t-ratios of shuffled data by permuting each 
gene independently across all cells. P-value was computed based on 1,000 shuffles.

Simulations of Continuous and Discrete Types. First, we describe our proce-
dure to simulate transcriptomic continua. Let cells and genes be ranked, such cells 
with a particular ranking express genes with a similar ranking. Let i  be an integer 
representing the cell ranking, which ranges from 1 to Nc , with Nc denoting the total 
number of cells. Let j  be an integer representing the gene ranking, which ranges 
from 1 to Ng , with Ng denoting the total number of genes. We use pi = i∕Nc and 
pj = j∕Ng to represent the normalized rankings such that both the gene rankings 
and cell rankings range from 0 to 1. We consider a model where the expected 
expression level of gene j  in cell i  is a Gaussian such that

�ij= e
−
( pi−pj

�

)2

,

where � denotes the level of noise. Gene counts are then drawn from a scaled 
Poisson distribution parameterized by �ij : 

cij ∼ s ⋅ Poisson
(
�ij

)
.

For our simulation, we chose Ng = 60,Nc = 600, s = 100 , with different � values 
between 0.1 and 1. Random numbers were generated using the python package 
numpy.random.

Second, for simulating discrete types, we assumed a model wherein each type 
is distinguished by a set of “marker” genes. Let i  be a cell and C(i) be the cell type 
it belongs to. Let j  be a gene and C

(
j
)
 be the cell type of which it is a marker. The 

expected expression level of gene j  in cell i  was modeled by a binary matrix:

�ij =

{
1ifC(i)=C

(
j
)

�ifC(i)≠C
(
j
) ,

where �  denotes the amount of leaky expression, i.e., the level of noise. �  takes 
values between 0 and 1. The larger �  is, the noisier the types are. The actual 
count matrix was drawn from a scaled Poisson distribution parameterized by �ij ,

cij ∼ s ⋅ Poisson
(
�ij

)
.

We simulated three discrete types (A, B, C), each with 20 marker genes and con-
taining 200 cells, with different � values between 0.1 and 1. To assign an order 
between types, among the 20 marker genes, 6 were shared between neighboring 
types, such that 6 type-A markers were also expressed in type B, and 6 type-B 
markers were also expressed in type C, and so on.

Aligning V1 Coordinates across Sections. In our samples, V1 spanned about 
2 mm (or ~2,000 microns) along the tangential (M-L) axis of the cortex, with 
different sections having different lengths as defined by the expression domains 
of V1 marker genes Scnn1a and Igfbp4 (see Main text). To quantify the in situ 
patterns of specific genes within V1 and in other cortical regions across samples, 
we defined a normalized tangential coordinate system relative to the length of 
V1. Specifically, for each section we used the tangential locations of the two ends 
of V1, tm and tl , to normalize tangential coordinates along the cortex:

t̃ =
t − tm

tl − tm
,

In this normalization, 0 and 1 represent the two ends of V1 (medial-most and 
lateral-most) respectively. And values <0 and 0 > 1 represent regions outside 
of (flanking) V1. Expression levels of specific genes are quantified according to 
this normalized coordinate system.

Focused Clustering. In addition to the cell types identified previously, we applied 
K-means clustering (sklearn.cluster.Kmeans) using only L2/3 type-identity genes 
as features, to identify focused clusters. As mentioned in the main text, the moti-
vation of this analysis is to uncover L2/3 cell types in DR while ignoring changes 
to other gene programs related to cell states. This procedure generates matched 
cell types between NR and DR.

PCA. We applied PCA using sklearn.decomposition.PCA. In Fig. 3, we applied it 
on L2/3 glutamatergic neurons combined from both P28NR and P28DR mice, 
using a set of unbiasedly identified highly variable genes (HVGs) as features. For 
HVGs identification, we considered n = 21,222 genes that had nonzero counts in 
at least 10 cells. For each gene, we computed the variance-mean ratio on counts-
per-10 k-transcripts (CP10k) normalized data. Under a Poisson distribution, this 
variance-mean ratio is expected to be a constant. Indeed, this value is stable across 
orders of magnitude difference in mean expression across genes. To select HVGs 
with different baseline (mean) expressions, we grouped genes into decile-bins 
according to mean expression, and for each bin, we selected the top 30% genes 
with the most variance-mean ratio. N = 6,360 genes were selected, and most  
(n = 270/286) L2/3 type-specific genes are part of the HVGs.

In Fig. 4, we applied PCA using L2/3 type-identity genes (n = 286; Dataset S1) 
as features. Focusing on L2/3 type-identity genes, rather than HVGs, allowed us to 
study the impact of visual deprivation on the L2/3 type-identity gene programs, 
while ignoring changes to other gene programs.

We evaluated the degree of overlap between two PCA eigenvectors vi and 
vj as the absolute value of their dot product ( |||vi ⋅vj

||| ). As the eigenvectors are 
orthonormal, this value is bounded between 0 and 1.

GO Analysis. We used the tool EnrichR: https://maayanlab.cloud/Enrichr/ for 
GO analysis. All enrichment analyses were performed by comparing a gene list 
of interest with a background set of top 5,000 most expressed genes in L2/3 
(P28NR). Top 10 enriched GO terms of Biological Process (2023 version) that 
were statistically significant with FDR < 0.05 were shown. For terms belonging 
to the same branch (parents or children), only one term with the highest FDR was 
shown in the main figures to reduce redundancy. Terms annotated as “obsolete” 
according to quickGO (https://www.ebi.ac.uk/QuickGO/annotations) were also 
removed from the main figures. All enriched terms (unfiltered) are shown in 
supplementary figures.

Previously Identified L2/3 Stimulus–Response Genes. Hrvatin et  al. (16) 
reported 611 stimulus–response genes identified from different cell types in 
V1, among which we filtered out those that are related to L2/3 glutamatergic 
neurons (labeled as “ExcL23” in ref. 16), including 42 early-response genes and 
37 late-response genes. These genes are listed in Dataset S5.

We used the Fisher exact test with n = 6,360 HVGs as the background to test 
for enrichment or depletion of the overlap between PC-driving genes and the 
above activity-regulated genes.

Quantification of Cell Redistribution in DR. We profiled the cell-density 
distributions of L2/3 cells in PC1 to PC2 space derived from type-identity genes 
using the python package seaborn.histplot. The distributions were robust across 
a range of bin widths, and we used bin-widths of 1 ~ 1.5 for visualization. We 
used the Jensen–Shannon (JS) divergence (59) to measure the level of difference 
in cell-density distributions between NR and D and across samples. This metric 
was calculated using scipy.spatial.distance.jensenshannon.

Optimal transport analysis was performed using the python package POT: 
https://pythonot.github.io/. The program computes the optimal transport map (35, 
60) connecting the empirical distributions of NR cells and DR cells in PC1 to PC2 
space derived from type-identity genes. We first used ot.dist to compute pairwise 
distance matrix between NR and DR cells with default parameters. We then used 
ot.emd to calculate the transport map. The result was a matrix whose elements 
denote transport couplings between each pair of NR and DR cells, a proxy for their 
transcriptomic correspondence. We visualized this result by a coarse-grained vector 
field as follows. First, the PC1 to PC2 space was meshed into equal-sized 2D bins. 
For each 2D bin, we computed a vector representing the mean moving direction 
and magnitude for all cells that fall into the bin. The vectors are visualized by arrows 
whose direction represents the average moving directions among local cells, whose 
lengths are proportional to the movement magnitudes, and whose color (darkness) 
is proportional to the number of cells represented by the bins.

http://www.pnas.org/lookup/doi/10.1073/pnas.2421022122#supplementary-materials
https://maayanlab.cloud/Enrichr/
https://www.ebi.ac.uk/QuickGO/annotations
http://www.pnas.org/lookup/doi/10.1073/pnas.2421022122#supplementary-materials
https://pythonot.github.io/
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Identification of DEGs between NR and DR. In scRNA-seq analysis, it is com-
mon to treat individual cells as samples in statistical tests for identifying DEGs. 
This approach often leads to many statistically significant genes as even modest 
effect sizes can appear unlikely (low P-values) under the “no effect” null hypoth-
esis owing to large cell numbers. Therefore, as a conservative measure to identify 
DEGs between NR and DR, we chose to regard the biological samples, rather than 
single cells, as independent data points.

We compared NR vs. DR across independent biological samples, with each 
condition having four independent biological samples: P28 rep1, P28 rep2, P38 
rep1, and P38 rep2. Raw counts from cells of the same types and samples were 
aggregated to produce pseudobulk profiles. We only considered genes with mean 
expression (in counts per million transcripts; CPM) >10 in at least one type in either 
NR or DR. We performed an independent-sample t-test (scipy.stats.ttest_ind)  
on the pseudobulk profiles between NR and DR for each type. The resulting  
P-values were adjusted by the Benjamini–Hochberg procedure to calculate the 
FDR. Effect sizes were quantified as the log2 fold change (in CPM) in DR compared 
with NR. DEGs were defined as those with FDR < 0.05 and |log2FC| > 1.

Data, Materials, and Software Availability. MERFISH data generated by this 
study was deposited on Zenodo with DOI: 10.5281/zenodo.13916878 (14). snRNA-
seq data was downloaded from GEO with the accession number GSE190940 (10). 
Code to reproduce L2/3 type specific genes (Dataset S1, n = 286) was obtained 
from the GitHub repository: https://github.com/shekharlab/mouseVC (11). Code 

to reproduce the figures in the manuscript was deposited in the following 
GitHub repository: https://github.com/FangmingXie/vision_and_visctx (61).  
A standalone software including a step-by-step tutorial to reproduce the 
Archetypal Analysis and its associated statistical tests described in the manu-
script was deposited in the following GitHub repository: https://github.com/
FangmingXie/SingleCellArchetype (26). All other data are included in the man-
uscript and/or supporting information.
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