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Abstract
Microbial metabolisms and interactions that facilitate subsurface conversions of recalcitrant 
carbon to methane are poorly understood. We deployed an in situ enrichment device in a 
subsurface coal seam in the Powder River Basin (PRB), USA, and used BONCAT-FACS-
Metagenomics to identify translationally active populations involved in methane generation from
a variety of coal-derived aromatic hydrocarbons. From the active fraction, high-quality 
metagenome-assembled genomes (MAGs) were recovered for the acetoclastic methanogen, 
Methanothrix paradoxum, and a novel member of the Chlorobi with the potential to generate 
acetate via the Pta-Ack pathway. Members of the Bacteroides and Geobacter also encoded Pta-
Ack and together, all four populations had the putative ability to degrade ethylbenzene, 
phenylphosphate, phenylethanol, toluene, xylene, and phenol. Metabolic reconstructions, gene 
analyses, and environmental parameters also indicated that redox fluctuations likely promote 
facultative energy metabolisms in the coal seam. The active Chlorobi MAG encoded enzymes 
for fermentation, nitrate reduction, and multiple oxygenases with varying binding affinities for 
oxygen. M. paradoxum PRB encoded an extradiol dioxygenase for aerobic phenylacetate 
degradation, which was also present in previously published Methanothrix genomes. These 
observations outline underlying processes for bio-methane from subbituminous coal by 
translationally active populations and demonstrate activity-based metagenomics as a powerful 
strategy in next generation physiology to understand ecologically relevant microbial populations.

Introduction
Methane is an important source of energy globally, and in recent years has undergone 

rapid development accounting for almost 40% of energy consumption in the United States [1]. 
As energy demands increase and natural gas resources are depleted, there is a heightened need 
for alternative and less conventional energy technologies to be developed [1]. One near-term, 
unconventional energy resource is biogenic coalbed methane (CBM), i.e., the biological 
conversion of coal to methane. It has been estimated that roughly 40% of CBM in the United 
States is of biogenic origin, and the interest in CBM is growing due to the presence of this 
natural process associated with many coal reserves in the United States [2]. Biogenic CBM is a 
source of cleaner energy compared to coal owing to its naturally refined low molecular weight  
hydrocarbon content and cleaner burning properties [3, 4]. However, methane has 84 times the 
global warming potential of carbon dioxide over a 20-year period [5], and methane off-gassing at
oil and coal wells is both a major safety concern and a serious environmental problem.  
Ultimately, many hydrocarbon environments can be associated with biogenic methane, and 
whether the goal is to stimulate methane production for harvesting cleaner fuels or mitigate 
methane production to restrict carbon release, current understanding indicates the likely rate-
limiting step is conversion of the coal to methanogenic precursors [6, 7]. The significance of 
different carbon cycling pathways involved in the turnover of recalcitrant carbon to methane is 
still a topic of debate, and unknown carbon cycling pathways continue to be discovered. This 
fundamental knowledge is necessary to understand microbial processes that contribute to 
subsurface carbon turnover in relationship to biogenic methane and helps identify unknown 
pathways that link terrestrial subsurface carbon cycling with carbon dioxide and methane.  

Broadly, biogenic CBM can be divided into two primary microbial steps: (i) conversion 
of coal or other complex organic intermediates into simpler organic precursors and (ii) 
conversion of simple organic intermediates to methane by methanogens. Coal is a complex 
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heterogeneous hydrocarbon with mixed chemical composition including high-molecular-weight 
polycyclic aromatic hydrocarbons and derivatives with a high mass fraction of carbon [8]. Coal 
is classified by ranking thermal maturity with designations increasing from lignite, 
subbituminous, bituminous, and anthracite. Lower rank subbituminous coals such as those found 
in the Powder River Basin (PRB, southeastern Montana/northeastern Wyoming, USA) are 
thought to be more bioavailable than higher rank coals because lower rank coals contain more 
oxygen, sulfur, and nitrogen and less aromaticity [9]. Laboratory studies have indicated 
microbial production of CBM can also increase porosity and consequently the bioavailability of 
coal through the utilization of oxygen-containing functional groups which reduces the degree of 
crystallization and increases the pore connectivity [10, 11]. Other researchers have shown that 
low ranking subbituminous coal can have higher concentrations of extractable acetate [12], an 
important intermediate in microbial conversions of coal to methane [13, 14]. Microbial 
communities break down coal components into simple intermediates that can be utilized by 
methanogens to produce methane, but the specific components of the coal that are targeted for 
degradation and the responsible microbial populations remain unknown.

During methanogenesis methane gas is produced as the final step of organic matter 
degradation in anoxic environments by taxonomically diverse archaea including seven orders of 
Euryarchaeota [15, 16], Verstraetearchaeota [17], and possibly Korarchaeota [18, 19]. The 
primary substrates for archaeal methanogenesis include carbon dioxide and hydrogen, 
methylated compounds, and acetate [20]. Acetoclastic methanogenesis is thought to be 
predominant in nature, with estimates suggesting it accounts for two-thirds of the 100 billion 
tons of methane produced globally by microorganisms each year [21–26]; consequently, acetate 
plays a crucial role in the global production of methane from organic matter. In coalbed 
environments, microbial community analyses and isotopic signatures have indicated the presence
of acetoclastic methanogens alongside hydrogenotrophic and methylotrophic methanogens [27]. 
Only two identified genera of methanogens, Methanosarcina and Methanothrix, are capable of 
acetoclastic methanogenesis and thus are crucial to our current understanding of the global 
methane cycle [22]. While Methanosarcina barkeri, for example, is a generalist capable of 
producing methane from acetate as well as other substrates (e.g., CO2 + H2), Methanothrix 
soehngenii is an obligate acetoclastic methanogen that outcompetes Methanosarcina spp. at low 
acetate concentrations. Methanothrix-like spp. are thus thought to be the predominant 
acetoclastic methanogens in environmental settings where acetate is limited [28, 29]. While 
much is known independently about complex hydrocarbon degradation and methanogenesis, our 
present understanding of the microbial processes that link in situ metabolisms remains limited.

We determined potential metabolic linkages among microbial populations engaged in 
coal degradation, acetate production, and methanogenesis in the PRB Flowers-Goodale coal 
seam using a powerful combination of four primary techniques: (i) a nine-month in situ 
enrichment with crushed coal using a subsurface environmental sampler (SES) [30], (ii) bio-
orthogonal non-canonical amino acid tagging (BONCAT) [31], (iii) fluorescently active cell 
sorting (FACS) [32], and (iv) genome-resolved metagenomics. Previous investigations have 
made major strides in surveying natural microbial communities by combining BONCAT-FACS 
with analyses of SSU rRNA gene sequences [33, 34], but genome-resolved metagenomics has 
yet to be performed on active cells following BONCAT-FACS and can provide biochemical 
predictions for active populations. In comparison to shotgun metagenomic sequencing, which 
sequences total community DNA and cannot discriminate between active, dead, and dormant 
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organisms, sorting translationally active cells prior to metagenomic sequencing enables the 
identification of active microbial populations and associated genetic potential under relevant 
environmental conditions.  We recovered high-quality, active metagenome-assembled genomes 
(MAGs) representing (i) a previously unidentified member of phylum Chlorobi with acetate-
producing potential and (ii) a putative acetoclastic methanogen related to Methanothrix 
paradoxum. We hypothesize that these genomic populations (as well as members of the 
Geobacter and Bacteroidetes) interact in the degradation of aromatic coal byproducts and the 
subsequent production of methane from coal-derived acetate under fluctuating redox conditions.

Results & Discussion
Recovery of high-quality, translationally active MAGs from an in situ coal enrichment

The SES was filled with crushed, subbituminous coal from the PRB and deposited at 115 
m depth within a coal-bearing layer of the Flowers-Goodale coal bed seam at the U.S. 
Geological Survey (USGS) Birney Test Site (Figure 1). Previous research demonstrated high 
concentrations (50 mg/L) of isotopically depleted methane (δ13C-CH4 = -67 ‰ versus VPDB) 
within this layer [6], indicating the presence of a microbial community engaged in CBM 
production. After a nine-month subsurface enrichment, the SES was retrieved maintaining in situ
pressure and gaseous headspace conditions. We then performed BONCAT-FACS and sequenced
the metagenome of translationally active and total sorted cell fractions. Metagenomic binning 
resulted in 24 metagenome assembled genomes (MAGs) from the translationally active fraction 
of the coal-enriched community (Supplementary Table 1) and 44 MAGs from the total cell 
fraction [35]. Two BONCAT-active genomic populations, Bin15 and Bin8, were recovered as 
high-quality MAGs with estimated completeness > 95% and estimated redundancy < 5% based 
on the detection of single copy genes for bacteria and archaea (Table 1). Robust phylogenomic 
analyses of concatenated archaeal ribosomal proteins indicated that Bin15 was a close neighbor 
to Methanothrix paradoxum NSM2 [36] within the Methanosarcinales order of methanogens 
(Figure 2A), and henceforth will be referred to as ‘Methanothrix paradoxum PRB’ for Powder 
River Basin. Consistent with this, M. paradoxum PRB had the highest genome-wide average 
nucleotide identity with M. paradoxum NSM2 at 77.6% when compared with other methanogens
within and outside of the Methanosarcinales (Supplementary Table 2). M. paradoxum PRB had
a genome size of 2.90 Mb, 50.7% G+C content and 2,946 genes, similar to the type strain M. 
soehngenii GP6, which is 3.03 Mb with 51.9% G+C content and 2,925 genes (Table 1). 

Bacterial phylogenomic analysis indicated that high-quality, translationally active MAG 
Bin8 belonged to phylum Chlorobi and classified within the poorly understood OPB56 clade 
(Figure 2B). Recently, Chlorobi groups were observed in situ via sequence analysis during long-
term monitoring of an Australian coal seam post-stimulation for CBM production [37]. The 
Chlorobi phylum was first established to comprise the phototrophic Green Sulfur Bacteria, which
is now considered class Chlorobea [38] and later revised to include the non-phototrophic class, 
Ignavibacteria [39]. OPB56 has been recognized as a third, class-level clade and was originally 
detected as a cluster of SSU rRNA gene sequence clones from Obsidian Pool in Yellowstone 
National Park [40]. Recent genomic discoveries by Hiras and colleagues [41] have confirmed the
class-level OPB56 clade and, like the Ignavibacteria, OPB56 is non-phototrophic and contains 
genomes from thermophilic and non-thermophilic microbial populations. The ‘Chlorobi PRB’ 
MAG (Bin8) was 3.34 Mb in length with 37.5% G+C content and a total of 2,777 genes, in 
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contrast to 2.67 Mb length, 56.0% G+C, and 2,363 genes for NICIL-2, the only other genome 
within the OPB56 clade that has been thoroughly evaluated [41]. 

The recovery of high-quality genomes for M. paradoxum PRB and Chlorobi PRB from 
the translationally active fraction suggests that these populations play key roles in the 
environment, though sequencing and/or amplification biases could also influence high genomic 
recoverability. We tested the hypothesis that these populations are ecologically relevant and 
detectable in coal bed environments by mapping quality-filtered short reads from four additional 
standard shotgun (non-BONCAT) metagenomes to the M. paradoxum PRB and Chlorobi PRB 
MAGs (Table 1). The four environmental metagenomes were from (i) the same well (FG11) but 
a different timepoint, (ii) a different well (FGP) from the same methane-producing coal seam, 
(iii) a non-methane-producing well (N11) also in the PRB [35], and (iv) a CBM-producing well 
(CX10) from the Surat Basin, Australia [42]. After normalizing for total sequence content, mean 
genomic coverage values for M. paradoxum PRB and Chlorobi PRB were 22X and 4X in FG11 
and 153X and 0.25X in FGP, respectively, indicating that these populations exist naturally within
the methane-producing Flowers-Goodale coal seam and may fluctuate in relative abundance 
based on environmental conditions. Moreover, a population corresponding to M. paradoxum 
PRB was also binned in a metagenome from a separate well in the Flowers-Goodale coal seam 
(FG09) and is presented in a companion study [35]. Genomic sequence of M. paradoxum PRB 
and Chlorobi PRB were also recovered from the total community sorted fraction (in addition to 
the translationally active fraction) after the in situ enrichment (i.e., Bin21 in Figure 2A and 
Bin26 in Figure 2B). In contrast, neither M. paradoxum PRB nor Chlorobi PRB recruited 
metagenomic reads from a non-methane-producing well (N11) in the PRB or a methane-
producing well in the Surat Basin (CX10 [42], Table 1). This indicates that these populations 
may be endemic to high-CBM production wells in the PRB, but this hypothesis requires further 
testing as more metagenomic data are produced from coalbed environments. Due to the recovery 
of M. paradoxum PRB and Chlorobi PRB from multiple sequence sources (i.e., translationally 
active cell sorts, total cell sorts, binned environmental metagenomes, and mapped short reads) 
we hypothesize that these two populations play important and interconnected roles in the 
accumulation of methane in the PRB subsurface coal environment. 

Metabolic properties of Chlorobi PRB
Metabolic comparisons between Chlorobi PRB and NICIL-2 [41] demonstrated 

consistent properties of the OPB56 class-level clade within phylum Chlorobi (Figure 3). In 
contrast to the Green Sulfur Bacteria (class Chlorobea), OPB56 populations are not obligate 
anaerobes and do not possess genes involved in photosynthetic reactions (i.e., reaction centers 
[pscB, pscC, pscD], chlorosome envelope [csmABCDEFHIJX], bacteriochlorophyll a [fmoA]). In
contrast, functional genes detected in Chlorobi PRB and NICIL-2 genomes suggest they are 
obligate heterotrophs with a facultative lifestyle capable of fermentation and aerobic respiration. 
NICIL-2 was previously enriched under oxic conditions and, like Chlorobi PRB, encodes 
multiple subunits for cytochrome c oxidases. Chlorobi PRB also encodes subunits of additional 
oxidases with varying binding affinities for oxygen, including cbb3-type cytochromes and bd-
ubiquinols [43]. These observations suggest Chlorobi PRB may be adapted to respiring oxygen 
across a range of concentrations in subsurface coal seam environments. The cbb3-type oxidase, 
for example, is used by pathogenic proteobacteria to colonize anoxic zones in human tissue [44]. 
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Chlorobi PRB also has the putative ability to perform anaerobic respiration via genes for 
membrane-bound nitrate reduction to ammonia (nrfAH [45]) and nitrous oxide reductase (nosZ
[46]). In support of these findings, previous work using BONCAT-FACS on hot spring samples 
from Yellowstone National Park demonstrated that the OPB56 clade increased in SSU rRNA 
gene relative abundance when amended with oxygen or nitrate [34]. Putative respiration 
pathways are supported by the detection of complete electron transport pathways in both OPB56 
genomes, and all genes were detected for an F-type proton-translocating ATP synthase. Like 
NICIL-2, Chlorobi PRB lacks genes for oxidation of sulfur compounds, distinguishing the 
OPB56 clade from members of class Chlorobea such as Chlorobaculum tepidum. Importantly, 
while Chlorobi PRB has high estimated genome completeness > 95%, the absence of genes 
could represent lack of genetic potential or genes that did not assemble with the MAG for 
methodological reasons. Therefore, missing functional properties inferred from gene absences 
are considered hypotheses that require further testing.

Further distinguishing OPB56 from the photosynthetic Green Sulfur Bacteria, both 
Chlorobi PRB and NICIL-2 encoded a complete TCA cycle and lacked genes for the rTCA 
cycle, which is the method by which members of the Chlorobea fix carbon. NICIL-2 has a 
complete glycolysis pathway while Chlorobi PRB is missing the enolase gene for the conversion 
of 2-phosphoglycerate to phosphoenolpyruvate. Both genomes have all additional genes 
necessary for gluconeogenesis. While NICIL-2 and Chlorobi PRB are both capable of 
fermentation, only Chlorobi PRB has the putative ability to produce acetate via a combination of 
the phosphotransacetylase (Pta) and acetate kinase (Ack) enzymes (discussed below). In contrast,
NICIL-2 lacks the ack gene but has an alcohol dehydrogenase for the fermentative production of 
ethanol, which Chlorobi PRB does not. Carbon sources for NICIL-2 and Chlorobi PRB are 
primarily limited to simple, short-chain carbon compounds [41]; however, consistent with its 
recovery from a coal seam environment, the Chlorobi PRB genome also possessed genes for the 
anaerobic degradation of aromatic hydrocarbons such as phenylphosphate dehydrogenase (ppd), 
ethylbenzene dehydrogenase (ebd), and phenylethanol dehydrogenase (ped) (Table 2). By 
contrast, NICIL-2, which was not recovered from coal, only had the ped gene. Evidence for 
anaerobic hydrocarbon degradation in Chlorobi PRB together with the presence of anaerobic 
respiration genes (nrfAH, nosZ) may indicate that under anoxic conditions Chlorobi PRB 
respires hydrocarbons using oxidized nitrogen compounds [47, 48] and/or ferments 
hydrocarbons to acetate. 

Both genomes from the OPB56 clade lack several biosynthesis pathways for amino acids,
including leucine, valine, isoleucine, serine, phenylalanine, tryptophan, tyrosine, methionine, 
histidine, and proline. These results suggest that NICIL-2 and Chlorobi PRB likely rely on 
exogenous sources for many amino acids. Consistent with this, Reichart and colleagues 
demonstrated an increase SSU rRNA gene relative abundance of the OPB56 clade in 
enrichments amended with isoleucine [34], and the NICIL-2 and Chlorobi PRB genomes both 
have complete degradation pathways for isoleucine. Importantly, the missing biosynthesis 
pathway for methionine could enhance affinity for the synthetic amino acid HPG, which is a 
methionine analog. However, it should be noted that HPG levels used in short-term labeling 
incubations were low as previously described [33], and the Chlorobi sequences could be mapped
back to unlabeled metagenomes from the environment. Finally, Chlorobi PRB and NICIL-2 
encode all components of a complete flagellum complex, and Chlorobi PRB has two additional 
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genes for flagellar chaperones, one that regulates flagellin polymerization (fliS [49]) and another 
that is essential to P ring formation (flgA [50]). These observations suggest that translationally 
active Chlorobi PRB may be motile in the subsurface coal seam, though genes for flagella are 
not always expressed, as is the case for cultures of Ignavibacterium album [39, 51]. Further 
investigations are needed to confirm suggested structures and functions based on gene detection/
annotation. 

Acetate production by Chlorobi PRB
As mentioned previously, Chlorobi PRB has the putative ability to produce acetate as a 

byproduct of fermentation using the Pta-Ack pathway. During fermentation, Pta catalyzes the 
replacement of CoA with a phosphate group and Ack subsequently cleaves the phosphate group, 
thereby releasing acetate while conserving energy in the form of 1 ATP [21]. Substrates for 
acetate production consist of many breakdown products of complex carbon sources, including 
glucose, propionate, and butyrate, as well as H2/CO2 in the case of homoacetogens. The 
importance of the Pta-Ack pathway in methanogenic environments plays a crucial role in 
coupling the breakdown of complex carbon to a substantial fraction of global methane 
production [22–26, 52]. In the Chlorobi PRB genome, ack and pta are adjacent genes on a contig
with a length of ca. 10 kbp that contains seven genes. The neighboring gene to ack/pta is argE, 
which encodes acetylornithine deacetylase (COG0624) within the Zinc peptidase family 
(cl14876), an enzyme that catalyzes another acetate-producing reaction. Chlorobi PRB also has 
an additional copy of pta on a separate contig. These observations further support the hypothesis 
that the Chlorobi PRB population, which was translationally active after being enriched in situ 
on coal, may release acetate as a byproduct during the degradation of coal-derived aromatics. 

Acetoclastic methanogenesis by Methanothrix paradoxum PRB
Only two genera of methanogens, Methanothrix and Methanosarcina, have been shown 

to use acetate as the sole source of carbon and energy during the production of methane [53]. 
Unlike Methanosarcina spp., which are generalists that can also grow on methylated compounds 
or hydrogen, Methanothrix spp. have no known substrates for methane production apart from 
acetate [22, 54]. Known Methanothrix spp. have extremely high affinity for acetate and can 
outcompete Methanosarcina spp. by growing at lower acetate concentrations in many 
environments. While Methanosarcina spp. use the previously discussed Pta-Ack pathway in 
reverse to activate acetate for methane production, Methanothrix spp. instead use acetyl-CoA 
synthetase (acs). M. paradoxum PRB from the present study harbored genes consistent with the 
latter type of acetoclastic methanogenesis (Table 2; Supplementary Table 4A), including acs 
for acetate activation, carbon monoxide dehydrogenases (cdh) for cleavage of carbon groups and 
oxidation of CO, methyltransferases (mtr) for activation of the methyl group, and methyl 
coenzyme M reductase (mcr) for the final reduction step that produces methane [20, 22]. Four 
adjacent copies of acs existed on a 24,695-kbp contig and a fifth copy was detected on a separate
contig. The cdh operon was ordered alpha, epsilon, beta, CooC1 Ni-accessory protein, delta, 
gamma, and was present on a single contig spanning 41,179 kbp. The mcr operon was on a large 
contig > 40 kbp in length and consisted of subunits ordered beta, D, gamma, alpha. In addition to
methanogenesis from acetate, hidden Markov model (HMM) scans for anaerobic hydrocarbon 
degradation proteins [55] detected putative protein sequences for breaking down phenylethanol 
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(ped), toluene and xylene (bss), and phenol (pps). These observations suggest that, in addition to 
producing methane directly from acetate, M. paradoxum PRB may directly or indirectly use 
certain coal byproducts as additional sources of carbon and/or energy. These results coincide 
with the recent discovery of a different methanogen, Methermicoccus shengliensis, which has the
ability to utilize methyl-groups from methoxylated aromatic compounds [56].

Considerations of oxygen tolerance and usage
Several important findings challenge the classical understanding that all methanogens are 

strict anaerobes. Possible aerotolerant methanogens have been identified in methanogenic 
ecosystems such as rice paddy fields, arid soils, and anaerobic digesters (e.g., [57–59]). Several more
observations of possible oxygen tolerance come specifically from the acetoclastic Methanothrix 
genus. First, the original cultivations of M. soehngenii GP6 demonstrated that growth could be 
attained starting from aerobic samples and on sewage exposed to pure oxygen for up to 48 hrs
[54]. Second, Jetten and colleagues [22, 28] purified and characterized the Cdh enzyme from M. 
soehngenii, which was determined to be “completely insensitive to molecular oxygen,” in 
contrast to the same enzyme from Methanosarcina barkeri which irreversibly decreased in 
activity by 90% after trace oxygen exposure [60]. Phylogenetic analysis of the Cdh enzyme from
M. paradoxum PRB confirms placement as a neighbor to the Cdh from M. soehngenii, together 
forming a separate cluster from the Methanosarcinales Cdh group (Supplementary Figure 1). 
Finally, Angle et al. [36] observed that methane production increased by up to an order of 
magnitude in oxygenated wetland soils compared to anoxic soils and methanogenesis was 
attributed primarily to acetoclastic M. paradoxum. In the present study, SES oxygen 
measurements in the FGP well ranged from 0.25 to 1.09 mole % (n = 5) (Supplementary Table 
3). Although we cannot rule out potential oxygen contamination from sampling or analysis, 
previous metagenomic analyses of coal bed environments have indicated the importance of 
aerobic or microaerophilic metabolisms in such environments [61]. The observed oxygen 
fluctuations are consistent with the wide-ranging potential for energy conservation observed in 
Chlorobi PRB, which encodes oxygenases with varying binding affinities (high to low oxygen 
concentrations), nitrate reductases, and fermentation enzymes. 

Remarkably, the M. paradoxum PRB genome harbored an extradiol dioxygenase (elh) 
gene from the LigB superfamily for the aerobic degradation of phenylacetate [62]. The 
presumptive protein sequence was recovered with a 40.8% amino acid similarity in the HMM 
scan, with an expect (e) value of 3.0 X 10-25 (e value of 5.6 X 10-86 for match to COG2078, 
Supplementary Table 4A). We ruled out sequence contamination by comparing the full 36-kb 
contig containing the elh gene to the NCBI non-redundant sequence database and observed a 
closest nucleotide sequence match (77.76% identity, e value = 0) to M. soehngenii GP6. 
Consistent with this, M. soehngenii GP6 and M. paradoxum NSM2 both had copies of elh as 
well. Further support for phenylacetate metabolism in M. paradoxum PRB was observed in a 
neighboring gene for phenylacetate-coenzyme A ligase (COG1451, adenylate-forming domain 
family), which occurred just three genes downstream of elh for aerobic phenylacetate 
degradation (Supplementary Table 5). Phenylacetate has been demonstrated as a key 
intermediate in the conversion of organic matter to methane by accumulation in peat soil 
enrichments when methanogenesis was inhibited; in some inhibition experiments, phenylacetate 
accumulated to even higher concentrations than acetate [25]. Finally, growth and methane 
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production were observed for M. soehngenii in the presence of acetate and phenylacetate, 
although not on phenylacetate alone [54]. Due to the (i) apparent relationship between 
phenylacetate and acetoclastic methanogenesis, (ii) the unique oxygen-tolerating characteristics 
of Methanothrix spp., (iii) the presence of the elh dioxygenase for phenylacetate degradation in 
M. paradoxum PRB, and (iv) the observed fluctuating redox conditions of the Flowers-Goodale 
coal seam, we hypothesize that M. paradoxum PRB may use trace oxygen for ring cleavage of 
coal-derived phenylacetate during or as an alternative (and/or supplement) to the production of 
methane from acetate. Further research such as methanogenic cultivations under oxic/suboxic 
conditions and purifications of the novel Elh enzyme would be needed to test this hypothesis. 

Biological process for CBM production
The recovery of two high-quality MAGs with ostensibly related putative metabolisms 

(i.e., acetoclastic methanogenesis in M. paradoxum PRB and acetate production in Chlorobi 
PRB) indicated the importance of acetate as an intermediate substrate during CBM production. 
We scanned the lower quality, translationally active MAGs for the putative ability to produce 
acetate via the Ack/Pta pathway and identified members of the Bacteroidetes and Geobacter with
ack/pta genes (Table 1; Supplementary Table 1). However, the Ack/Pta pathway can be used 
in reverse during acetate activation to acetyl-CoA. Acetate consumption via Ack/Pta has been 
demonstrated for Geobacter sulfurreducens [63], suggesting that Geobacter in the PRB may 
compete with M. paradoxum PRB for acetate dependent upon availability of potential electron 
acceptors. Further supporting this hypothesis, Beckmann et al. used DNA stable isotope probing 
to demonstrate carbon assimilation from acetate by Geobacter spp. and methanogens together in 
the same methane-producing coal seam in Australia [37]. In addition to reverse Ack/Pta, 
pyruvate:ferredoxin oxidoreductase (PFOR) has recently been suggested by in silico analysis to 
generate pyruvate from acetate in a single step in G. sulfurreducens [64], representing another 
pathway for acetate utilization. PFOR is common among anaerobic microorganisms for the 
reversible oxidation of pyruvate to acetyl-CoA [65, 66]. All three bacterial MAGs (Geobacter 
PRB, Chlorobi PRB, and Bacteroidetes PRB) encode at least one PFOR as well as Ack/Pta; 
however, given the demonstrated reversibility of the respective reactions, directionality is 
difficult to predict for in situ conditions. Recent work has shown that the direction of the Ack/Pta
pathway in Escherichia coli is determined by thermodynamic controls [67], suggesting redox 
conditions and/or metabolite availability in the Flowers-Goodale coal seam may ultimately 
determine whether these bacterial populations consume or produce acetate for methanogenesis 
by M. paradoxum PRB.

Deduced polypeptide sequences for Bacteroidetes and Geobacter MAGs were scanned 
for aerobic and anaerobic hydrocarbon degradation enzymes. Similar to M. paradoxum PRB, 
both “Bacteroidetes PRB” and “Geobacter PRB” encoded the Elh enzyme suggesting aerobic 
phenylacetate degradation, and all elh genes were on contigs taxonomically confirmed by total 
nucleotide matches to the same taxonomic groups. In terms of anaerobic hydrocarbon 
metabolism, Bacteroidetes PRB and Geobacter PRB both encoded had multiple copies of the 
gene encoding Ped for the degradation of phenylethanol. Bacteriodetes PRB, like Chlorobi PRB,
encoded a phenylphosphate carboxylase (Ppc), while Geobacter PRB encoded the 
phenylphosphate synthase (Pps, like M. paradoxum PRB) and the Ebd for the degradation of 
ethylbenzene (like Chlorobi PRB). Members of the Bacteroidetes is a large group of 
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phylogenetically diverse bacteria that can behave been associated with complex carbon turnover 
in suboxic to anoxic environments sometimes associated with methanogenesis [68, 69]. 
Geobacter sequences and/or organisms have been observed in different environments associated 
with the turnover of recalcitrant carbon and/or methanogenesis. For example, in recent studies, 
Geobacter were shown to be increased with biochar samples and increased methanogenesis [70],
correlated to decreased polyphenolics/polycyclic aromatics in methanogenic rice paddy soils
[71], and shown to catalyze the turnover of organic matter associated with Fe (hydr)oxides [72].

Our genome-resolved analyses of the translationally active community in the PRB 
subsurface reveal a conceptual model describing important populations and their associated 
biochemical capacities that contribute to microbial CBM production (Figure 4). By incubating 
coal down-well in an SES for nine months and allowing establishment of a coal-dependent 
microbial community under in situ methanogenic conditions, the coal-community was secured at
depth before retrieval, and then retrieved to the surface in a sealed chamber. M. paradoxum PRB 
is likely a key methanogen in the PRB subsurface with the genomic potential to convert acetate 
to methane, and this population apparently becomes active in the presence of crushed coal in 
situ. Sources of acetate are likely derived from Chlorobi PRB via the Pta-Ack pathway, with 
possible additional contributions coming from Bacteroidetes and Geobacter populations, though 
these populations may also consume acetate depending on environmental conditions. Together, 
all four translationally active populations (M. paradoxum PRB, Chlorobi PRB, Bacteroidetes 
PRB, and Geobacter PRB) have the combined genomic potential for the anaerobic degradation 
of ethylbenzene, phenylphosphate, phenylethanol, toluene, xylene, and phenol. M. paradoxum 
PRB, Bacteroidetes PRB, and Geobacter PRB have the additional potential to break down 
phenylacetate under micro-aerobic conditions. Finally, certain hydrocarbon degradation enzymes
are linked by related pathways, such as Ebd and Ped, which catalyze conversions of 
ethylbenzene to phenylethanol and subsequently phenylethanol to acetophenone, respectively. 
All four MAGs possess the ped gene but only Chlorobi PRB and Geobacter PRB possess strong 
matches to the ebd gene. These data provide insights into a coalbed methane community that is 
likely metabolically interconnected in which hydrocarbon conversions by certain community 
members stimulate downstream conversions by others. 

Conclusions
Subsurface environments associated with different forms of hydrocarbons account for up 

to 1013 metric tons of carbon globally that can be ultimately recycled back to CO2 and CH4 [73]. 
Investigations into how microbial communities interact to complete different stages of carbon 
remineralization in these environments—from initial interactions and degradation of complex 
aromatics to ultimately the production of methane and carbon dioxide from precursor metabolites
—can provide insight for potential contributions to the global carbon cycle with impacts ranging 
from climate change to the energy sector. Unfortunately, very little is known regarding many of 
the steps associated with the degradation of recalcitrant hydrocarbons in the subsurface under in 
situ conditions as these environments are extremely difficult to sample and many of the 
associated microorganisms are not known and/or not in cultivation. To this end, we used a 
unique SES device to allow an ecologically relevant community to establish under in situ 
conditions (enriched on crushed coal in the subsurface), and then used novel techniques in 
activity-based metagenomics to identify translationally active members of the microbial 
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community. Our observations indicate that in this coal-bearing subsurface ecosystem, specific 
microbial populations facilitate the biological conversion of coal degradation products to 
methane using acetate as a key intermediate. Genomic analyses of Chlorobi PRB (and perhaps 
Bacteroidetes PRB and Geobacter PRB) suggested putative abilities to degrade aromatic 
hydrocarbons (anaerobically or aerobically) and produce acetate for the subsequent production of
methane by the putative acetoclastic methanogen, Methanothrix paradoxum PRB. Consequently,
these microbial populations may play crucial roles cycling carbon in a shallow subsurface coal 
seam environment that contributes to the conversion of coal to methane gas.

Materials and Methods
Down-well sampling, BONCAT incubations

The following methods are also presented in a companion study that is a broad-scope 
analysis of microbial coal degradation processes (e.g., fumarate addition, biosurfactant 
production) at multiple sites in the PRB under varying sulfate conditions [35]. In September 
2017, an SES (Patent # US10704993B2) was loaded with UV-sterile crushed coal, lowered by 
cable to a depth of 115 m in the FG11 well in the PRB (at the U.S. Geological Survey’s Birney 
site) [6], and opened by a control box at the surface. After nine months of down-well incubation 
the SES was closed, forming a gas-tight chamber, and retrieved to the surface. 10-ml SES 
slurries were extracted through a Swagelok device (Solon, Ohio, USA) and anoxically 
transferred into sterile balch tubes (95% N2, 5% CO2) in triplicate.  L-homopropargylglycine 
(HPG, Click Chemistry Tools, Scottsdale, Arizona, USA) was prepared in sterile degassed water 
(DEPC diethyl pyrocarbonate treated filter sterilized water, pH 7) and added to each replicate at a
final concentration of 250 μM. Higher HPG concentrations were used compared to previous 
studies (e.g.,[33, 34]) to overcome loss of the bioorthogonal amino acid due to sorption to 
porous coal. To account for control for sorting artifacts control samples were prepared the same 
way, except did not have HPG added (HPG negative control). All samples were incubated in the 
dark at 20°C for 24 hrs (compared to an in situ temperature range of 16 – 18°C, Supplementary 
Table 3). We note that the BONCAT methodology requires relatively short incubation times (< 
48 hrs [33, 34]) to prevent over-labeling and/or cross-labeling. In this case a 24-hr incubation 
was selected based on experimental verification of identifiable cells by fluorescence microscopy 
and in attempt to minimize bottle effects for the subsamples removed from the SES. Following 
incubation, cells were removed from coal according to the protocol described by Couradeau et 
al. [33]. Briefly, 1 ml of slurry was removed and added to Tween® 20 at a final concentration of 
0.02% (Sigma-Aldrich) in phosphate saline buffer (1X PBS). Samples were then vortexed at 
maximum speed for 5 min followed by centrifugation at 500 xG for 5 min [33]. The supernatant 
was removed, filtered through a 40-µm strainer, and spun at 14,000 xG to concentrate detached 
cells. The cell pellet was immediately cryopreserved at −20°C in a sterile 55% glycerol TE 
(11X) solution. 

Fluorescent labeling, cell sorting, amplification, and metagenomic sequencing 
The click reaction buffer consisted of copper sulfate (CuSO4 100 µM final concentration),

tris-hydroxypropyltriazolylmethylamine (THPTA, 500 µM final concentration), and FAM picolyl
azide dye (5 µM final concentration) [32]. For the click reaction, each sample (200 µl) was 
placed on a 25-mm 0.2-µum polycarbonate filter resting on a microscope slide, and 80 µl of 
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BONCAT click reaction was added before covering with a coverslip. The BONCAT click 
reaction consisted of 5 mM Sodium Ascorbate, 5mM Aminoguanidine HCl, 500 µM THPTA, 
100 µM CuSO4, and 5 µM FAM picolyl azide in 1X phosphate buffered saline. Incubation time 
was 30 min, followed by three washes in 20 ml of 1X PBS for 5 min each.  Cells were recovered 
from the filter by vortexing in 0.02% Tween for 5 min, and then stained using 0.5 µM SYTOTM59
(ThermoFisher Scientific, Invitrogen, Eugene Oregon, USA) DNA stain.
     For cell sorting a BD-InfluxTM (BD Biosciences, San Jose, California, USA) specifically
configured to capture total cells (SYTOTM59 [excitation = 622 nm, emission = 645 nm]) in the 
red region of a 640-nm laser and BONCAT active cells (FAM picolyl azide dye [excitation= 490
nm/emission = 510 nm]) in the green region of a 488-nm blue laser. The total cell population was
gated for BONCAT positivity by comparing the 530/40 BP fluorescence off a 488-nm laser 
against an HPG negative control that had undergone the same click reaction. Two fractions (total
cells and BONCAT active cells) were sorted from each replicate sample. The first faction 
consisted of the DNA+ cells, and the second only contained BONCAT+  cells as determined by 
comparison to the HPG negative control. Fractions were sorted into 394 well plates, and for each
fraction 5,000 cells were collected into 4 wells and 300 cells were collected into 20 well. 
Following sorting plates were frozen at −80°C until further processing.

Cells were pelleted from wells containing 5,000 cells via centrifugation (6,000 xG for 1 
hr at 10°C), followed by removal of the supernatant and a brief inverted spin at 6 xG. This step 
was necessary to avoid interference with subsequent whole genome amplification reaction 
chemistry. Wells containing only 300 sorted cells were not pelleted, rather were directly lysed 
and amplified using 5 µl WGAX reactions following optimized conditions [74]. Briefly, cells 
were lysed in 650 nl lysis buffer for 10 min at room temperature. The lysis buffer consisted of 
300 nl TE + 350 nl of 400 mM KOH, 10 mM EDTA, and 100 mM DTT. Lysis reactions were 
neutralized by the addition of 350 nl of 315 mM HCl in Tris-HCl. Whole genome amplification 
reactions were brought to 5 µl with final concentrations of 1X EquiPhi29 reaction buffer 
(ThermoFisher), 0.2 U/µl EquiPhi29 polymerase (Thermo), 0.4 mM dNTPs, 50 µM random 
heptamers, 10 mM DTT, and 0.5 µM SYTO13. Plates were incubated at 45°C for 13 hr. 
Libraries for metagenomic sequencing were created using the Nextera XT v2 kit (Illumina) with 
12 rounds of PCR amplification. All volumes and inputs to Nextera reactions were reduced 10-
fold from the manufacturer’s recommendations. Libraries were sequenced 2x150 bp mode on the
Nextseq platform (Illumina).

Metagenomic assembly and binning
Raw metagenomic short reads were quality filtered using illumina-utils [75] (v1.0) with 

default parameters. Technical sequencing replicates were coassembled with MEGAHIT [76] 
(v1.2.9) for each of three biological replicates for both BONCAT-active and TOTAL sorted 
cells, resulting in six metagenome assemblies. These three replicate assemblies from BONCAT-
active and the additional three replicates from TOTAL cell fractions were further coassembled 
via MEGAHIT, resulting in a single metagenome assembly for BONCAT and another for 
TOTAL. Assembled sequences were filtered at a minimum length cutoff of 5,000 bp and binned 
in anvi’o [77] (v6) based on tetranucleotide frequencies with a scaffold split size of 20,000 bp. 
Genome bins were scanned for single copy genes to estimate completeness and redundancy and 
bins were refined until estimated redundancy was < 10%. PyANIp [78] (v0.2.10) was used to 
compare genomic bins between BONCAT and TOTAL assemblies, and bins with alignment 
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lengths > 85% and average nucleotide identities (ANI) greater than 95% were considered the 
same microbial population recovered from both BONCAT and TOTAL. Anvi’o was used to 
summarize additional genomic information of all bins, including % G+C, N50, number of 
contigs, and cumulative sequence length. 

Environmental detection of active genome bins
Three months after the BONCAT-metagenomics experiment, additional coal-enriched 

samples were retrieved from the FG11 well and FGP—a nearby, hydrologically connected well
—for standard shotgun metagenomic sequencing. As a background control, samples were also 
collected from a non-methane-producing coal seam well (N11). DNA was isolated from these 
samples using the MP Biomedical ProDNA Spin Kit for Soil according to the manufacturer’s 
protocol. Metagenomic sequencing was performed by the U.S Department of Energy Joint 
Genome Institute and raw reads were quality-filtered as above. Bowtie2 [79] (v2.2.6) was used to
map FG11, FGP, and N11 short reads against BONCAT-active genome bins to retrieve sequence
coverage values for these bins directly from the environment. We also downloaded metagenomic
data from a methane-producing coal seam in the Surate Basin, Australia (CX10), for additional 
comparison (NCBI SRA: SRX1122679) [42]. Total sequence content in quality-filtered fastq 
files from FG11 (19.5 Gb), FGP (25.2 Gb), N11 (11.5 Gb), and CX10 (8.9 Gb) was used to 
normalize coverage values for comparisons across sites.

Phylogenetic analyses and taxonomic designations
For genomic bins with the highest estimated completeness (i.e., M. paradoxum PRB, 

Chlorobi PRB) as well as taxonomically related reference genomes, 16 ribosomal protein 
sequences were extracted via anvi’o and concatenated in the following order: L27A, S10, L2, L3,
L4, L18p, L6, S8, L5, L24, L14, S17, S3_C, L22, S19, L16RP. Muscle [80] (v3.8.31) was used 
to align concatenated ribosomal protein sequences with eight maximum iterations. Phylogenetic 
analyses of aligned concatenated proteins were performed for archaea and bacteria with MrBayes
[81] (v3.2.6) using a fixed aa model, empirical aa frequencies, eight gamma distribution 
categories, eight parallel chains, and a burn-in fraction of 0.25. We ran 100,000 generations for 
the archaeal analysis and 1,000,000 generations for the bacteria, resulting in standard deviations 
in split frequencies of 0.000235 and 0.000000, respectively. Taxonomies of the other bins were 
determined by nucleotide sequence comparisons with BLASTn [82] to the NCBI non-redundant 
database [83]. Bacteroidetes_PRB_Bin13 and Geobacter_PRB_Bin11 bins did not contain 
enough ribosomal proteins for phylogenetic analysis and were instead assigned rank level 
taxonomy based on nearest matches to each contig within each bin. The majority of contigs in 
Bin 11 (82 of 151) had strong matches to members of the Geobacter, while the remaining hits 
were closely related members of the Deltaproteobacteria phylum. In contrast, Bin 13 could not 
be resolved beyond the phylum level. Only 79 of the 126 contigs in Bin 13 had hits to the NCBI 
database and those hits were scattered amongst diverse members within the Bacteroidetes 
phylum (e.g., Flavobacterium, Draconibacterium, Sphingobacteriaceae). 

An additional Bayesian phylogenetic tree was calculated for the Cdh enzyme subunit 
alpha (approximately 800 aa in length) from methanogens. First, Cdh sequences were aligned 
with MAFFT [84] (maxiterate 1000, localpair) and trimmed with BMGE [85] (BLOSUM30). 
We used MrBayes [81] to calculate the Bayesian tree with a mixed amino acid model. The 
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standard deviation of split frequencies was 0.0000 after 1,000,000 iterations and all posterior 
probabilities were 1.00.

Metabolic analysis
Prodigal [86] was used in the anvi’o platform to identify open reading frames within 

genomic sequence. Initial functional annotations were conducted using the KEGG database [87] 
with deduced amino acid. METABOLIC [88] was also used for identification of functional genes
related to major biogeochemical cycles. The Chlorobi PRB genome was further examined in 
direct comparison to the NICIL-2 genome using EC pathway annotations focused on important 
attributes of the Chlorobi phylum outlined by Hiras et al. [41] We used HMM scans of deduced 
protein sequences against the AromaDeg database [89] to uncover enzymes associated with 
aerobic aromatic hydrocarbon degradation. Similarly, for anaerobic conversions of aromatic 
hydrocarbons we scanned deduced proteins for enzymes in the AnHyDeg database [55]. For 
genes of interest (e.g., related to methane metabolism, Pta-Ack pathway, phenylacetate 
degradation) we examined host contigs to confirm taxonomic calls by using BLASTn [82] 
against the NCBI non-redundant database [83]. Contigs were further examined for neighboring 
genes related to the same microbial process (e.g., subunits of the same enzyme).

Geochemical analyses
Water samples analyzed for pH, temperature, CH4, and δ13C-CH4 were collected with a 

Grundfos submersible pump after three wellbore volumes were pumped and field properties 
stabilized and were analyzed as previously described [6, 27]. Samples for O2 and other gases 
were collected with an SES. The internal substrate chamber of the SES was removed, and the 
SES was slowly dropped down-well to the center of the well screen depth to collect gas and 
water samples. The SES remained open at the center of the well screen for several minutes 
before closing the SES and retrieving to the surface. Gas concentrations were measured using a 
headspace equilibration technique developed by Isotech Laboratories, Inc. (a Stratum Reservoir 
brand) as described previously [90] with detailed analysis information available through Isotech 
Laboratories (www.isotechlabs.com). Acetate concentrations were measured by previously 
reported methods [91].
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Tables:
Table 1 | Genomic characteristics of translationally active MAGs enriched on crushed coal

Genomic Population
Length 
(Mb)

Compl 
(%)

Redund 
(%) N50

G+C 
(%) Contigs Genes

PRB High-CH4 
coal seam 

(FG11)

PRB High-CH4 
coal seam 

(FGP)

PRB Low-CH4 
coal seam 

(N11)

Surat Basin High-
CH4 coal seam 

(CX10)

Chlorobi PRB (Bin8) 3.34 97.2 1.4 34,774 37.5 164 2,777 4.1 0.3 0.1 0.3

   Chlorobi_NICIL-2* 2.67 95.3 N/D 168,929 56.0 152 2,363 N/A N/A N/A N/A

Methanothrix paradoxum PRB (Bin15) 2.90 97.4 2.6 34,925 50.7 145 2,946 22.1 153.4 0.0 0.1

   Methanothrix paradoxum NSM2** 1.75 92.1 1.3 9,272 54.7 238 1,921 N/A N/A N/A N/A

   Methanothrix paradoxum ASM2** 1.17 72.4 0.0 4,915 54.9 249 1,350 N/A N/A N/A N/A

   Methanothrix soehngenii GP6*** 3.03 97.4 0.0 3,008,626 51.9 2 2,925 N/A N/A N/A N/A

Bacteroidetes PRB (Bin13) 1.95 38.0 5.6 14,966 44.7 237 1,618 12.4 41.5 2.6 0.1

Geobacter PRB (Bin11) 3.04 40.9 1.4 12,174 52.5 393 2,829 17.7 32.5 10.5 0.3

*from Hiras et al., 2016

**from Angle et al., 2017

***from Patel & Sprott, 1990

Environmental Detection (Relative Coverage)

Length in megabase, estimated percent completeness and redundancy, N50, percent G + C content, number of contigs, and number of genes are 
provided are provided for each MAG analyzed in this study and compared to reference genomes of Chlorobi NICIL-2[41] and M. paradoxum 
strains (or MAGs) NSM2[36], ASM2[36], and GP6[54]. Environmental coverage values are displayed for quality-filtered short reads from wells 
FG11 and FGP mapped to each MAG. The three largest environmental metagenomes (FG11, FGP, N11) were scaled in size to the smallest 
metagenome (CX10) prior to relative coverage calculations. 
Total FG11 reads were normalized to total FGP reads so environmental coverages could be compared. 

Table 2 | Hydrocarbon degradation genes detected in translationally active coalbed populations

Population mcr cdh acs ack pta

Aerobic 
hydrocarbon 
degradation Anaerobic hydrocarbon degradation

M. paradoxum PRB (Bin15) yes yes yes ELH* PpsB*, BssD-p* Ped*, PpsB*, EbdA*, Ped*, PcmI, ApcA*

Chlorobi  PRB (Bin8) yes yes ELH PpcB, EbdD, Ped, Ped, Ped, Ped, Ped, Ped, CmdA, CmdB, CmdB
Bacteroidetes PRB (Bin13) yes yes yes ELH*, ELH* PpcB, Ped, PpcB, Ped, Ped, Ped, Ped, Ped
Geobacter PRB (Bin11) yes yes ELH* PpsB*, EbdB*, Ped*, Ped*, Ped*, PpsB*, Ped*, ApcC*, EbdB*, PcmI*, EbdA*, CmdA*

Asterisk indicates the gene encoding this putative enzyme is on a contig with a nucleotide BLAST identity that matches the overall taxonomic
identity for the MAG. Amino acid identities (AAID) to sequences in the hydrocarbon degradation databases are indicated by color (blue > 40%
AAID,  red  >  30%  AAID,  and  grey  >  20%  AAID).  [ELH --  Extradiol  Dioxygenase,  LigB  Superfamily,  Homoprotocatechuate;  ApcA --
Acetophenone carboxylase alpha;  ApcC -- Acetophenone carboxylase gamma;  CmdA -- Cymene Dehydrogenase alpha;  CmdB -- Cymene
Dehydrogenase  beta;  EbdA --  Ethylbenzene  Dehydrogenase  alpha;  EbdB --  Ethylbenzene  Dehydrogenase  beta;  PcmI --  p-Cresol
Methylhydroxylase  alpha  subunit  isoform;  Ped --  Phenylethanol  dehydrogenase;  PpsB --  Phenylphosphate  synthase  subunit  B;  BssD-p  --
Putative BssD (benzylsuccinate synthase activase);  PpcB -- Phenylphosphate Carboxylase beta;  mcr – methyl coenzyme M reductase;  cdh –
carbon monoxide dehydrogenase; acs – acetyl CoA synthetase; ack – acetate kinase; pta -- phosphotransacetylase]
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Figure 1 | Conceptual representation of BONCAT-FACS experimental setup and metagenomic sequencing
workflow. We  performed  down-well  incubation  of  sterile,  crushed  coal  in  the  SES  allowing  for  microbial
colonization and retrieval under in situ pressure and anaerobic conditions. Samples were allocated into sterile gassed
out serum bottles for addition of the bioorthogonal amino acid (HPG) in triplicate 24hr incubations. We then sorted
click-labeled BONCAT active cells (FAM Picolyl dye; Ex: 488 nm/Em: 530 nm) and total cells (SYTO59; Ex: 640
nm/Em: 655–685 nm) from each biological replicate. This was followed by DNA extraction, MDA amplification,
sequencing, and analysis. The upper left coal seambed stratigraphy panel was modified from Barnhart  et al., 2016
[6].
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Figure  2  |  Phylogenetic  positions  of  M. paradoxum PRB (A)  and  Chlorobi PRB (B).  Bayesian  trees  were
constructed from concatenated alignments of 16 ribosomal proteins. Posterior probabilities (between 0.00 and 1.00)
are displayed at branch nodes. The tree scale represents the average number of substitutions per site.
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Arrows representing genes or deduced enzymes are colored by the host microbial population (orange =  Chlorobi
PRB, purple =  Geobacter PRB, blue =  Bacteroidetes PRB, teal  =  M. paradoxum PRB) and indicate that either
carbon or  energy may be derived from the putative reaction.  Dashed lines indicate putative oxygen-consuming
reactions. Detailed metabolic potential of the  Chlorobi PRB MAG is presented in Figure 3. [ebd = ethylbenzene
dehydrogenase,  ped  =  phenylethanol  dehydrogenase,  pps  =  phenylphosphate  synthase,  ppc  =  phenylphosphate
carboxylase, bss = putative benzylsuccinate synthase, ack = acetate kinase, pta = phosphotransacetylase, acs = acetyl
CoA synthase, cdh = carbon monoxide dehydrogenase, mtr = methyltransferase, mcr = methyl CoM reductase, elh =
extradiol dioxygenase: LigB superfamily: homoprotocatechuate]
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