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Abstract

This paper examines the correlation across a number of international stock market indices.

As correlation is not observable, we assume it to be a latent variable whose dynamics

must be estimated using data on observables. To do so, we use ¯ltering methods to

extract stochastic correlation from returns data. We ¯nd evidence that the estimated

correlation structure is dynamically changing over time. We also investigate the link

between stochastic correlation and volatility. In general, stochastic correlation tends to

increase in response to higher volatility but the e®ect is by no means consistent. These

results have important implications for portfolio theory as well as risk management.



Stochastic Correlation Across International Stock Markets

1 Introduction

Modeling the dynamics of security returns and their risk characteristics remains an im-

portant task for both ¯nancial research as well as its application. For example, risk

management techniques used to assess value at risk (VaR) have gained in popularity in

recent years. A common approach in calculating VaR is based on the assumption that

the underlying security returns are conditionally multivariate normally distributed and

then uses standard portfolio theory to determine the variance of a particular portfolio to

assess its risk exposure.

Advances to this approach have for the most part involved the more careful model-

ing of the covariance structure of the underlying security returns. In particular, most

of this e®ort has been expended on accurately modeling the dynamics of volatility. For

example, Generalized Autoregressive Conditional Heteroscedastic (GARCH) models (En-

gle [1982], Bollerslev [1986], and Nelson [1991]) and stochastic volatility models (Harvey,

Ruiz, Shephard [1994], and Kim, Chib and Shephard [1998]) have been used to charac-

terize the volatility of returns of common stocks and other assets.

This paper focuses on the correlation structure of security returns. To the extent that

economic and political conditions do change over time, we would expect the correlation

between international stock markets to change as well. The changing nature of this cor-

relation is consistent with recent empirical evidence. For example, Longin and Solnik

[1995] use a GARCH model to investigate the behavior of monthly international equity

returns and conclude that the correlation between these returns is dynamically changing.
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Ramachand and Susmel [1998] ¯t a switching ARCH model to weekly international stock

market returns and ¯nd evidence of markedly di®erent correlations across regimes. Using

daily returns of American Depository Receipts (ADRs) to avoid non-synchronicity prob-

lems, Karolyi and Stulz [1996] ¯nd evidence of changing correlation in the daily returns

of US and Japanese indices. Changing correlation also characterizes returns within do-

mestic markets. Kroner and Ng [1998] ¯t a bivariate ARCH model to the weekly returns

of US small and large cap portfolios and conclude that varying the restrictions placed

on the evolution of variances as well as correlation can lead to markedly di®erent model

parameter estimates.

While much e®ort has been expended on modeling the multivariate structure of co-

variance, most of this research has used GARCH models. Multivariate GARCH models

for conditional covariance, however, su®er from increasing parameter dimensionality and

are often practical to estimate only after imposing severe restrictions, for example, as-

suming the correlation coe±cient is constant (Bollerslev [1990]). In this paper, we model

the correlation coe±cient as a latent variable and use ¯ltering methods to estimate the

resultant non-linear model on the basis of observed security returns. Our approach allows

for more °exibility in modeling the dynamics of correlation than the GARCH approach

and provides a natural setting in which to assess whether other exogenous factors, such

as stock market volatility (Solnik, Boucrelle and LeFur [1996]), statistically a®ect the

behavior of correlation.

The plan of this paper is as follows. Section 2 details the methodology used to estimate

the resultant stochastic probit model. We consider the use of both single period returns

as well as longer return windows. After describing our returns data in Section 3, we

present our empirical results in Section 4. The implications of stochastic correlation for
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risk management are explored in Section 5. Section 6 concludes the paper.

2 Methodology

In modeling the correlation between security returns, we use two methods to assemble

these returns data. The ¯rst uses each of the n available single period returns as an

observation from which to infer the prevailing correlation. The second groups the single

period returns data into m sequential non-overlapping intervals of length ts with n =

m £ ts. Under this second approach, we assume that the correlation is constant across

each interval of length ts and we model the correlation as changing across these m periods

so de¯ned. While this latter approach reduces attendant measurement errors, it does so

at the expense of having fewer observations from which to estimate the parameters of the

model.

2.1 Single Period Returns

We ¯rst rely on a pair of single period returns to infer the correlation prevailing between

two securities. Assuming we have demeaned the return series, it follows that for a given

population correlation ½ the distribution of the sample correlation coe±cient, r, degener-

ates into a discrete distribution with either r = +1 or r = ¡1. Under the assumption of

conditional bivariate normality, from Abramowitz and Stegun [1965] (page 937) we have

P [r = +1] =
1

2
+ arcsin(½)=¼;

P [r = ¡1] =
1

2
¡ arcsin(½)=¼:

To investigate the behavior of correlation, we need a model for the dynamics of ½. For

mathematical tractability, we transform the correlation onto the range of the real line and

then model the transformed process as a Gaussian autoregressive process.
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We consider transformations of the form

W = W (½);

such that W (0) = 0, W (1) = +1, W (¡1) = ¡1, and dW=d½ > 0. Given the form of

the discrete distribution function, we also seek a transformation that permits tractable

use of the arcsin function. To do so, let ©(:) denote the standard normal cumulative

distribution function and implicitly de¯ne W (:) so that

P [r = +1] =
1

2
+ arcsin(½)=¼ = ©(W )

or equivalently

W = ©¡1(
1

2
+ arcsin(½)=¼):

That is

¼©(W )¡ ¼=2 = arcsin(½)

or

½ = sin(¼©(W )¡ ¼=2):

Combining, we have the following state space model:

an observation equation,

P [rt = +1] =
1

2
+ arcsin(½t)=¼ = ©(Wt); t = 1; : : : ; n;

and a transition equation,

Wt = ®+ ¯Wt¡1 + ¾²t; t = 1; : : : ; n

which governs the dynamics of the latent variable for f²tg a sequence of i.i.d. standard

normals and where ½t = sin(¼©(Wt)¡¼=2). The result is a stochastic probit model where

the state variable W evolves so that the probability of the event (in this case a sample

correlation of +1) varies stochastically over time.

4



2.1.1 Integration-Based Filtering

There are a number of ways of estimating this nonlinear model. A full-nonlinear ¯lter

may be run involving numerical integration of the latent variable. Alternatively, follow-

ing Ball and Torous [1999], a single integration-based ¯lter may be used. As we now

demonstrate, in this case the nature of the ¯lter is such that the integration may be im-

plemented analytically thereby maintaining accuracy while reducing computational e®ort

signi¯cantly.

Denote the sample correlation at time t by rt and the set of sample correlations through

time t by Rt. For each time point t of a bivariate return series either the two returns have

the same sign or opposite sign. When the signs are the same we have rt = 1. To begin

with assume that the marginal distribution of Wt¡1 given observations through time t¡1

is Gaussian:

f(Wt¡1 j Rt¡1) = N(¹t¡1; ¾t¡1):

Next project to obtain the conditional distribution of Wt given Rt¡1 which will also be

Gaussian

f(Wt j Rt¡1) = N(¹tjt¡1; ¾tjt¡1)

with mean

¹tjt¡1 = ®+ ¯¹t¡1

and variance

¾2
tjt¡1 = ¯2¾t¡1 + ¾2:

Applying Bayes theorem we have

f(Wt; rt j Rt¡1) = f(rt jWt; Rt¡1)£ f(Wt j Rt¡1)
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and integrating this expression with respect to Wt gives the conditional likelihood func-

tion f(rt j Rt¡1). An alternative application of Bayes theorem generates the posterior

distribution:

f(Wt j Rt) = f(rt j Wt; Rt¡1)£ f(Wt j Rt¡1)=f(rt j Rt¡1):

Proceeding sequentially in this manner we may calculate the likelihood function:

lnLike =
X

lnf(rt j Rt¡1):

From FrÄuhwirth-Schnatter [1994] we make the additional assumption that the posterior

distribution f(Wt j Rt) is also Gaussian1 and obtain the mean and variance parameters

which characterize this distribution by integration. In particular, de¯ne

G(¹; ¾) =
Z w=+1

w=¡1
©(w)(2¼¾2)¡0:5exp(¡(w ¡ ¹)2=2¾2)dw

F (¹; ¾) =
Z w=+1

w=¡1
(w ¡ ¹)©(w)(2¼¾2)¡0:5exp(¡(w ¡ ¹)2=2¾2)dw

H(¹; ¾) =
Z w=+1

w=¡1
(w ¡ ¹)2©(w)(2¼¾2)¡0:5exp(¡(w ¡ ¹)2=2¾2)dw:

Noting that the integrand in each case above involves the normal cumulative distribution

function, a change of variable and di®erentiation with respect to ¹ allows us to obtain the

partial derivative of G;F;H with respect to ¹ as integral expressions that now involve the

normal density function rather than the normal cumulative distribution function. Main-

taining Gaussian distributions under convolution implies that the resultant integrals can

be expressed as Gaussian densities. Subsequent integration with respect to ¹ regenerates

the original functions and we obtain the following results:

G(¹; ¾) = ©(
¹

(1 + ¾2)0:5
)

1If the posterior is close to a normal density this approximation error is small. The results of Fahrmeir
[1992] indicate that the posterior tends to normal even in cases where the observation density is extremely
non-normal.
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F (¹; ¾) = ¾2(2¼¾2)¡0:5exp(¡ ¹2

2(1 + ¾2)
)

H(¹; ¾) = ¾2G(¹; ¾) + ¹
¾2

1 + ¾2
F (¹; ¾2):

From these results the likelihood function can be expressed as

Like(rt j Rt) = G(rt¹; ¾):

The updating step in the ¯lter generates the following analytic values for the mean and

variance at time t given available information through time t:

¹t = ¹tjt¡1 +
F (rt¹tjt¡1; ¾tjt¡1)

G(rt¹tjt¡1; ¾tjt¡1)

¾2
t =

HG¡ F 2

G2
j (rt¹tjt¡1; ¾tjt¡1):

Maximum likelihood parameter estimation requires numerical optimization of this like-

lihood function across the parameter space. Additionally, asymptotic standard errors are

obtained from the inverse Hessian computed at the maximum likelihood estimates.2

2The model may also be estimated using Gibbs sampling. To see this de¯ne a process Zt where

Zt » N(Wt; 1)

rt = IZt>0

so that P [rt = 1] = ©(Wt) and P [rt = ¡1] = ©(¡Wt). It will also be convenient to de¯ne W»t to
represent all elements of W except Wt. The Gibbs sampler proceeds in a series of steps

1. Specify priors on parameters £ = f ®, ¯, ¾ g. Prescribe initial values for W and Z.

2. For each t, draw from

f(Wt j rt; Zt;W»t):

3. Draw from

f(Zt jWt; rt):

4. Draw £ given Z and W .

5. Go back to step 2 and sweep through the sampler.

Step 4 is simple assuming a normal-gamma conjugate prior. The more di±cult computation is drawing
in steps 2 and 3. Step 2 is actually straightforward also since the conditional distribution is Gaussian.
Step 3 is a drawing from a truncated normal distribution which is still quite tractable to implement.

7



2.2 Longer Window Methods

Assuming n available single period returns, the methodology outlined in the previous

section utilizes the maximum number of these observations. However, this methodology

is subject to potentially signi¯cant observation error as inference about the correlation

between two return series at any point in time is based solely on a pair of corresponding

single period returns. This observation error can be reduced by combining several single

period returns and relying on the correlation calculated using this collection or window

of returns.

De¯ne a window of length ts as a collection of ts contiguous single period returns.

We now observe the sample correlation between two return series calculated using non-

overlapping windows of corresponding single period returns of the two securities. As

a result, given n single period returns, we have m observations where m £ ts = n. We

assume that the true correlation, ½, remains constant for each pair of returns in a particular

window.

When ts > 1, the sampling distribution of the sample correlation coe±cient is no

longer discrete. Anderson [1984] provides a detailed analysis of this sampling distribution

under the assumption of conditional bivariate normality. Simple analytic expressions are

available when ts = 2 or ts = 3, but for larger values of ts either iterative formulae are
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needed or truncations of hypergeometric expansions must be relied upon.3

In general, the density of the sample correlation is highly nonnormal and converges

slowly to normality as ts increases. Fisher [1921], however, noted that the following

transformation of the sample correlation converges to a standard normal distribution

extremely quickly:

T (r) = 0:5ln
1 + r

1¡ r ´ tanh¡1(r):

Let

T (½) = 0:5ln
1 + ½

1¡ ½ ´ tanh¡1(½)

denote the corresponding transformation of the population correlation coe±cient. This

transformation is monotonically increasing and has the whole real line as its range.4

3From Johnson, Kotz, and Balakrishnan [1995], Chapter 32, for ts = 2, the density of r is given by:

f tsr (r) = ¼¡1(1¡ r2)¡0:5(1¡ ½2)(1¡ r2½2)¡1f1 + r½Q(r½)g

while for ts = 3

f tsr (r) = ¼¡1(1¡ ½2)¡1:5(1¡ r2½2)¡2f3r½+ (1 + 2r2½2)Q(r½)g

where

Q(r½) = (1¡ r2½2)¡0:5arccos(¡r½):

For larger values of ts, Johnson, Kotz, and Balakrishnan provide an iterative formula to expand the
density for increasing ts.

4Recall that in the single returns case, ts = 1, we use the transformation

W1(½) = ©¡1(0:5 + arcsin(½)=¼)

while for ts > 1 we use

T (½) ´Wts(½) = tanh¡1(½):

These transformations are similar to each other (veri¯ed in unreported calculations) and both share the
characteristics that W (0) = 0, W (1) = +1, W (¡1) = ¡1, and dW=d½ > 0. The choice of a particular
transformation is based on technical convenience. The transformation W1(:) permits an analytic solution
to the integrated ¯lter approach while we use Wts(:) for ts > 1 because this transformation applied to r
converges very quickly to normality for increasing ts.
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Our econometric framework may now be expressed conveniently in state-space form.

The observation equation is

T (rt) = T (½t) + wt t = 1; : : : ;m

where the distribution of fwtg will be approximately standard normal for large ts for each

t. For small values of ts, we require the exact distribution of fwtg which can be de¯ned

implicitly given the conditional distribution of T (rt) j T (½t).
5 The transition equation is

T (½t) = ®+ ¯T (½t¡1) + ¾²t; t = 1; : : : ;m

where the errors f²tg are independent standard normals.6

We assume that the dynamics of T (½t) are given by a ¯rst order autoregressive speci¯-

cation. The model may be easily extended to incorporate exogenous explanatory variables

fZtg that are hypothesized to in°uence correlation:

T (½t) = ®+ ¯T (½t¡1) + µZt + ¾²t; t = 1; : : : ;m:

For example, a natural choice for Zt is a measure of return volatility. In this way we can

statistically assess the e®ects of volatility on the behavior of stochastic correlation.

As before, we follow Ball and Torous [1999] and use a single integration-based ¯lter to

estimate the parameters of the model. Given a set of m observations T (r1); : : : ; T (rm),

the likelihood function can be expressed as

lnLike =
X

lnf(T (rt j Tt¡1))

5Observe that for any x,

P [T (rt) · x] = P [rt · tanh(x)]:

The density of T (rt) is given by

f tsT (r)(x) = f tsr (tanh(x)):dftanh(x)g=dx = f tsr (tanh(x))(1¡ tanh(x)2):

6In the empirical results presented later, we estimate the model with the reparameterization ¹ = ®
1¡¯ .
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where Tt ´ fT (rt); T (rt¡1); : : : ; T (r1)g denotes the history of the observable through time

t and f(T (rt) j Tt¡1) denotes the conditional density of T (rt) given the history of the

observable through time t¡ 1.

Approximating the prior density by a normal density with the same ¯rst and second

moments as the prior, the ¯lter is then implemented in a similar fashion to the Gaussian

case. The projection, based on a normal prior, preserves normality and so can be im-

plemented analytically. The evaluation of the conditional likelihood requires numerical

integration as the measurement error is non-Gaussian, but the approximation can be

made highly accurate in our case as the integration is single dimensional. Computation

of the ¯rst and second moments of the updated prior each requires an additional single

dimensional numerical integration and so the iterative scheme may be continued.

3 Data and Sample Statistics

We consider daily data on six major stock market indices: Canada, Germany, Hong Kong,

Japan, the UK, and the US. The data are obtained from Datastream's FT/S&P World

Stock Market ¯les. The series are denominated in US dollars, begin on January 1st 1987

and end on May 1st 1999. To minimize the possibility of inducing spurious correlation, we

eliminate common holidays across these series. We do not, however, remove an observation

if it corresponds to a holiday in one series but not in another series. As a result, we have

3189 local end-of-day observations on the level of each index.

Daily returns are then computed and their summary statistics are presented in Table

I. As expected, over our sample period the US market exhibited the highest average

daily return while the Japanese market exhibited the lowest. Daily returns of the Hong

Kong market were the most variable while the least variable market was the Canadian.
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Daily returns to the US and Hong Kong markets exhibited the greatest deviations from

normality as measured by their respective skewness and kurtosis.

4 Empirical Results

Since the single period returns methodology uses only information on the sign of the

respective returns on each day, to obtain statistically reliable parameter estimates requires

that we use as much data as possible. To minimize non-synchronicity problems, we

compare daily returns to stock markets in the same time zone (Canada vs the US) or

approximately the same (within one hour) time zone (Germany vs the UK, and Hong

Kong vs Japan).

Table II provides the results of applying the single returns methodology to the daily

returns of Canada vs the US, Germany vs the UK, and Hong Kong vs Japan. While the

estimated correlation processes for the daily returns of Canada vs the US and Germany

vs the UK are very close to a random walk ( ^̄ ¼ 0:99), the results for the daily returns

of Hong Kong vs Japan are consistent with a more stationary behavior in the estimated

correlation process. For the Asian pair of markets we see much lower levels of average

(transformed) correlation, ¹, and higher levels of estimated ¾ than for the North American

and European pairs of markets. In all cases, however, the statistical evidence points to

the estimated correlation processes being stochastic.

To investigate the correlations between the world's largest equity markets - Japan, the

UK and the US - requires that we compare two-day returns to accommodate the non-

synchronous nature of the observations between these markets. This reduces the number

of observations from 3189 one day returns to 1594 two day returns and, as a result, in this

case we rely on the longer window methodology. In particular, we set ts = 3 so that the
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correlations are calculated using approximately one trading week of corresponding returns

data. The results are presented in Panel A of Table III. We see high levels of reversion

in these estimated correlation processes as indicated by the estimated ¯ parameters. In

addition, in each case the mean level of correlation is signi¯cantly positive and evidence

of stochastic volatility is clearly evident.

For comparison purposes, Panel B of Table III gives the results of applying the longer

window methodology to the daily returns of Canada vs the US, Germany vs the UK,

and Hong Kong vs Japan using ts = 5 so that one trading week of returns data is used

in calculating correlations. Recall that the estimation results using the single period

returns methodology may be unduly in°uenced by the measurement error inherent in

the estimation of correlations on the basis of one day's data. From Panel B we see

that consistent with the results for the Japanese, UK, and US markets, the estimated

correlation processes appear to be mean reverting as well as stochastic.

Figure I plots the estimated mean level of correlation for the Germany-UK daily return

series. The stochastic reverting nature of the correlation is clearly evident. The Figure

also plots the corresponding exponentially smoothed correlation coe±cient assuming a

smoothing parameter of ¸ = 0:97.7 We can see a close correspondence between this

time-varying estimate of correlation and the mean of the estimated stochastic correlation

process, though, as expected, the exponentially smoothed estimate does not appear to be

as variable.

Solnik, Boucrelle and Le Fur [1996] provide evidence of a positive relation between

sample correlations and sample variances for monthly returns of a number of international

stock indices. We now investigate whether this result continues to hold using daily returns

7Formally, if fXtg is the original series then the smoothed series, fSMtg, is given by SMt = ¸SMt¡1 +
(1¡ ¸)Xt.
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in the context of our stochastic correlation model. To do so, we add an estimate of index

volatility as an explanatory variable. In particular, we use the sum of the estimated

volatilities for the pair of returns used in the correlation calculations after exponentially

smoothing these estimated variances with a smoothing parameter of 0.97.8 Table III

also gives these results for the daily returns of Canada vs the US, Germany vs the UK,

and Hong Kong vs Japan using ts = 5. While there is some evidence of correlation

increasing in response to shocks in volatility, especially in the case of Canada vs the

US, the e®ects are not particularly strong. To better understand this result, in Figure

II we plot the estimated mean stochastic correlation for the German and the UK daily

returns series against the exponentially smoothed measure of their market volatility. To

make the comparison clear, we scale the estimated smoothed volatility to have the same

mean and standard deviation as the estimated mean correlation. While it does appear at

times that correlation and the volatilities move together, this is by no means a consistent

phenomena. Consequently, the estimated relation between correlation and volatility is

not a particularly strong one.

5 Risk Management

Value-at-Risk (VaR) is a common tool used in assessing and managing the risk of a portfo-

lio of securities. Many of the methods used to calculate VaR are based on the assumption

that security returns are conditionally normally distributed. Di®erences between these

methods often re°ect di®erences in the modeling of the security returns' unconditional

means and, in particular, di®erences in the modeling of their covariance structure.

Consider a simple portfolio of two securities where the weight w1 is placed in security

8Alternative smoothing parameters and alternative estimates of volatility gave similar results.
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1 and the weight w2 is placed in security 2. Assume that the security variances are ¾2
1

and ¾2
2, respectively, and that for short return horizons the mean returns are themselves

negligible. As before, we let ½ denote the correlation between the security returns.

If these parameters are known and the security returns are assumed to be bivariate

normally distributed then it is straightforward to assess the percentiles of this portfolio's

return. In particular, the portfolio variance is given by:

¾2
P = w2

1¾
2
1 + w2

2¾
2
2 + 2w1w2½¾1¾2

and the VaR at the ® signi¯cance level for an initial investment of I0 is then

I0¾P z®

where z® is that point of the standard normal distribution Z for which P [Z > z®] = ®.

For a prespeci¯ed ® and a known initial investment I0, the VaR is then the square root

of a linear function of ½. It follows then that the speci¯cation of the correlation ½ plays a

key role in assessing VaR.

To better see this, consider a special case in which we invest equal amounts in two

securities having equal variance ¾2. In this case the portfolio variance is given by

¾2
P = ¾2(

1

2
+

1

2
½):

Taking the base case as ½ = 0, we see that the resultant VaR is

I0z®¾

s
1

2
;

while for ½6= 0, VaR is given by

I0z®¾P

s
1

2
+

1

2
½:
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Hence the ratio of the VaR in the general case to the base case is given by
p

1 + ½. For

example, compared to ½ = 0, this ratio is 31:6% when ½ = 0:1, 50:0% when ½ = 0:25 and

70:7% when ½ = 0:50.

The behavior of this ratio for varying values of ½ allows us to assess the e®ects of

stochastic correlation on portfolio risk. Using an estimated 95% con¯dence band for ½,

Figure III plots the corresponding band of upper and lower estimated VaR ratios for the

Germany-UK return series through time. As can clearly be seen, sharp movements in

estimated correlation are translated into sharp movements in estimated VaR.

6 Conclusions

The modeling and estimation of the stochastic covariance between security returns is a

challenging problem. Much of the extant research has relied on multivariate GARCH

models with severe restrictions on the parameters needed to reduce the dimensionality of

the resultant parameter space.

In this paper we focus on stochastic correlation and apply our methodology to index

returns corresponding to major stock markets in North America, Asia, and Europe. The

inter-relation between these markets may change stochastically over time in response to

shifts in government policy and other fundamental economic changes.

Rather than rely on GARCH models, we treat stochastic correlation as a latent unob-

servable and apply non-linear ¯ltering methods to extract estimates of this state variable

on the basis of observed returns. We provide clear empirical evidence that the correlation

between the sampled index returns is indeed changing stochastically over time. While

Ang and Bekaert [1998] provide evidence consistent with the covariance structure of in-

ternational interest rates being subject to regime shifts, our evidence points to a di®using
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correlation structure for index returns rather than one subject to sudden large shocks.

We also investigate the relation between stochastic correlation and volatility estimates.

While we ¯nd this relation to be positive, in contrast to the results of Solnik et al. [1996]

and others, in general, we document a statistically insigni¯cant response in correlation to

increased market volatility.

Certainly risk management techniques that ignore the stochastic component of corre-

lation are quite likely to provide erroneous risk assessments.
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Table I

Summary Statistics of Daily Returns of the Sampled International Stock Market Indices

This table provides summary statistics of the daily returns of the sampled international
stock market indices. The data are obtained from Datastream's FT/S&P World Stock
Market ¯les. The sample period is January 1 1987 to May 1 1999 and represents 3189
local end-of-day observations on the level of each index.

Stock indices Mean Standard Deviation Skewness Kurtosis
(£10¡4)

Canada 2.589 0.009 -1.423 28.043
Germany 3.101 0.013 -0.811 9.485
Hong Kong 4.284 0.019 -4.041 82.532
Japan 0.472 0.015 -0.107 11.184
UK 4.452 0.010 -1.154 14.055
US 5.353 0.011 -3.771 82.531
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Table II

Maximum Likelihood Estimates of Stochastic Correlation Using Single Returns
Methodology

This table provides maximum likelihood estimates of the dynamics of the transformed
correlation W between the sampled stock indices. The dynamics of the latent variable W
are assumed governed by

Wt = ®+ ¯Wt¡1 + ¾²t:

We estimate the parameters ¯, ¾, and the long-term mean of the process ¹ = ®
1¡¯ . The

data are obtained from Datastream's FT/S&P World Stock Market ¯les. The sample
period is January 1 1987 to May 1 1999 and represents 3189 local end-of-day observations
on the level of each index. Asymptotic standard errors are in parentheses and are obtained
from the inverse Hessian matrix evaluated at the maximum likelihood estimates.

Stock Indices Estimated ¹ Estimated ¯ Estimated ¾ LogLikelihood
Canada-US 0.4069 0.9966 0.00981 -1915.4626

(0.059) (0.0028) (0.0047)
Germany-UK 0.4340 0.9879 0.0175 -1906.0386

(0.0369) (0.0125) (0.0126)
Hong Kong-Japan 0.1746 0.9125 0.0637 -2042.8821

(0.0268) (0.0534) (0.0345)
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Table III

Maximum Likelihood Estimates of Stochastic Correlation Using Longer Window
Methodology

This table provides maximum likelihood estimates of the dynamics of the transformed
correlation T between the sampled stock indices. The dynamics of the latent variable T
are assumed governed by

T (½t) = ®+ ¯T (½t¡1) + µZt + °²t:

We estimate the parameters ¯, ¾, the long-term mean of the process ¹ = ®
1¡¯ , as well

as the parameter µ which measures the response of correlation to changes in measured
volatility, Zt. The data are obtained from Datastream's FT/S&P World Stock Market
¯les. The sample period is January 1 1987 to May 1 1999 and represents 3189 local
end-of-day observations on the level of each index. Asymptotic standard errors are in
parentheses and are obtained from the inverse Hessian matrix evaluated at the maximum
likelihood estimates.

Panel A

Stock Indices Estimated ¹ Estimated ¯ Estimated ¾ LogLikelihood
Japan-UK 0.296 0.978 0.025 -684.167

(0.056) (0.024) (0.017)
Japan-US 0.111 0.911 0.061 -696.498

(0.043) (0.161) (0.079)
Hong Kong-Japan 0.415 0.980 0.034 -704.950

(0.078) (0.019) (0.017)

Panel B

Stock indices Estimated ¹ Estimated ¯ Estimated ¾ Estimated µ LogLikelihood
Canada-US 0.651 0.946 0.074 -601.863

(0.059) (0.046) (0.039)
0.659 0.752 0.154 0.033 -597.458

(0.032) (0.148) (0.057) (0.022)
Germany-UK 0.551 0.954 0.058 -595.433

(0.055) (0.033) (0.025)
0.548 0.926 0.071 0.005 -594.346

(0.043) (0.067) (0.040) (0.006)
Japan-Hong Kong 0.252 0.963 0.040 -547.959

(0.047) (0.026) (0.016)
0.253 0.962 0.040 0.001 -547.900

(0.047) (0.027) (0.017) (0.002)
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