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Stereodivergent Coupling of Aldehydes and Alkynes via 
Synergistic Catalysis using Rh and Jacobsen’s Amine

Faben A. Cruz, Vy M. Dong*

Department of Chemistry, University of California, Irvine, California, 92697, United States

Abstract

We report an enantioselective coupling between α-branched aldehydes and alkynes to generate 

vicinal quaternary and tertiary carbon stereocenters. The choice of Rh and organocatalyst 

combination allows for access to all possible stereoisomers with high enantio-, diastereo-, and 

regioselectivity. Our study highlights the power of catalysis to activate two common functional 

groups and provide access to divergent stereoisomers and constitutional structures.

Graphical Abstract

While common in Nature, using two catalysts to synergistically activate two substrates 

has emerged as a powerful strategy for chemical synthesis.1 In comparison to enzymes, 

the relative configuration in a pair of chiral synthetic catalysts is readily altered. Seizing 

this advantage, Carreira and coworkers achieved stereodivergence in their α−alkylation of 

aldehydes with allylic alcohols,2a-c where any stereoisomer could be favored based on the Ir 

and amine combination chosen. While efficient and modular, stereodivergent dual catalysis 

remains rare and warrants further study.3 Recently, Zhang has used dual Ir and Zn catalysis 

to achieve a stereodivergent α-allylation of α-hydroxyketones.2d

Herein, we communicate a complementary method to access γ,δ-unsaturated aldehydes 

by coupling aldehydes and alkynes (Figure 1). While expanding stereodivergent 

hydrofunctionalization, our study also highlights how different modes of catalysis can 

provide access to different constitutional isomers.
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Functional groups have inherent polarities that can be activated or inverted by catalysis. 

Discovered over twenty-five years ago,4 the hydroacylation of alkynes represents a classic 

umpolung transformation where the aldehyde’s natural electrophilic polarity has been 

inverted to generate a nucleophilic acyl-metal-hydride species.5 The hydroacylation of 

alkynes typically generates the α,β-unsaturated isomer under a wide-range of protocols.6 By 

using tandem Ru-hydride catalysis, we and others switched the conventional regioselectivity 

to generate β,γ-unsaturated isomers via a nucleophilic π-allyl species.7 We envisioned 

that a Rh-hydride and amine catalyst duo8 could enable unprecedented access to the 

γ,δ-unsaturated aldehyde via an electrophilic π-allyl complex.9 This synergistic pairing 

produces α-allylated aldehydes, in contrast to previous metal-organocatalyst studies (where 

intramolecular alkyne coupling gave α-vinylated aldehydes).10

We designed this atom-economic transformation on the basis of the triple cascade 

mechanism depicted in Figure 2.11 Breit first demonstrated that Rh-hydride catalysts can 

promote the isomerization of alkynes (2) to generate allenes (6).12a Such allenes (6) undergo 

Rh-hydride insertion to generate electrophilic Rh-π-allyl species (7), which have been 

intercepted by various heteroatom-based nucleophiles.12b-e However, use of this strategy 

to achieve enantioselective C–C bond formation has been elusive.12f-h To address this 

challenge, we proposed that an enamine (8), generated in situ from an aldehyde (1) and 

amine (9), would trap Rh-π-allyl 7 and generate 3. In light of Carreira’s study,2a we 

recognized the challenge of identifying the appropriate Rh and amine combination for both 

reactivity and selectivity.

To test our hypothesis, we chose to study the coupling of 2-phenylpropanal (1a) and 

1-phenyl-1-propyne (2a). Using α-branched aldehydes would help avoid aldol-dimerization 

pathways via enamine catalysis.2b, 13 Moreover, successful transformation of α-branched 

aldehydes would result in formation of either products 3a or 4a, both bearing a quaternary 

carbon stereocenter.14 The regioselectivity reflects where C–C bond formation occurs on 

Rh-π-allyl 7 (i.e., at the more or less substituted carbon). The phosphoric acid allows 

for generation of the requisite Rh–H catalyst, and aids with enamine formation. With 

this model system, we discovered that biaryl atropisomeric bisphosphine ligands were 

most promising for our aldehyde-alkyne coupling. Examination of various MeO-BIPHEP 

derivatives revealed that phosphine substitution influenced regio- and enantioselectivity 

(Chart 1a). A phenyl-substituted MeO-BIPHEP afforded (S,S)-3a in 5% yield with modest 

selectivities (1.8:1 rr, 2.1:1 dr, 15% ee). Increasing the steric bulk of the phosphine 

substituents gave improved regio- and enantioselectivity (>20:1 rr, 96% ee) albeit in 23% 

yield and 3.5:1 dr.

Dihedral angles of biaryl ligands can be tuned by changing the backbone of the ligand 

and this angle is known to impact the efficiency in enantioselective hydrogenation.15a 

Thus, we next investigated a series of DTBM-variants with varying dihedral angles and 

observed improved yields with larger dihedral angles (Chart 1b).15b (R)-DTBM-SEGPHOS 

afforded (S,S)-3a in 11% yield, while (R)-DTBM-MeO-BIPHEP gave (S,S)-3a in 23% 

yield. Increasing the ligand dihedral angle further, via (R)-DTBM-BINAP, resulted in an 

improved 37% yield. Changing solvent from DCE to MeNO2 gave (S,S)-3a in 66% yield 

(Chart 1c).16
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While aiming to maintain high levels of regio- and enantioselectivity, we turned our 

attention towards improving diastereoselectivity. A variety of amine catalysts (e.g., 
diaryl prolinol, diamines, amino alcohols and cinchona alkaloids) were examined, but 

these scaffolds did not provide high reactivity and selectivity (Chart 1c). Amine (S)-

A3 gave similar results to A1. However, switching the enantiomer of A3 had no 

effect on diastereoselectivity. Next, we investigated Jacobsen’s recently reported primary 

amine catalyst A5,17a which was used for enantioselective aldehyde α-hydroxlyation 

and α-fluorination. This catalyst features an amide that imparts facial bias via hydrogen-

bonding.17b In our study, Jacobsen’s amine (S,S)-A5 provided excellent diastereoselectivity 

and reactivity (75%, >20:1 dr, >99% ee).18 Diastereoselectivity can be switched by using 

(R,R)-A5 instead of (S,S)-A5 in combination with a Rh-(R)-DTBM-BINAP catalyst, to 

enable access to the syn-diastereomer (R,S)-3a (75%, 8:1 dr, >99% ee).

With this catalyst-combination in hand, we investigated the anti-selective coupling of 

various aldehydes 1 and alkynes 2 (Table 1). Aldehydes with electron-rich phenyl rings 

underwent stereoselective coupling in 86% yield (3b). Aldehydes with aromatic and 

heteroaromatic rings, like 2-naphthylene, N-tosyl-3-indole, benzodioxole, and 3-thiophene 

also undergo efficient and selective coupling (3c–3f). Electron-rich, electron-deficient, 

and bromine-containing alkynes (3k–3l) can be used. Alkynes with silyl (3m) and nitro 

groups (3o) are also suitable coupling partners, however the nitro-containing alkyne gave 

diminished ee’s (72% ee). Alkynes with heterocycles, such as indoles and benzodioxanes 

can also be used (3g–3h, 71–96%, >20:1 rr, 16:1– >20:1 dr, 93–>99% ee). Chemoselective 

aldehyde-alkyne coupling occurs with alkynes bearing electrophilic functionality like 

Weinreb amides (3i) or methyl esters (3n), but low ee (4% ee) with high dr (17:1 dr) is 

observed with with amide 3i.

Finally, we compared the efficiency for syn- versus anti-selective coupling using a second 

set of model substrates (Table 2). By simply altering the relative chirality of the catalyst 

combination, we could access either diastereomer. Notably, the syn- (R,S) and anti-motifs 

(S,S) can be accessed with comparably high selectivities when using aldehydes containing 

trifluoromethyl groups (3p) or bromine (3r). However, relatively lower diastereoselectivities 

were observed for the syn-diastereomers when using aldehydes with chlorine (3u, 8:1 vs. 

15:1 dr) or triflates (3s, 3:1 vs. >20:1 dr), or alkynes with meta-chloride substitution (3t, 5:1 

vs. 16:1 dr) or pyridine (3q, 4:1 vs. >20:1 dr); these results suggest partial matching between 

the enamine and Rh-allyl species.19

Our dual-catalyst protocol provides an atom-economic route to γ,δ-unsaturated aldehydes 

via alkyne hydrofunctionalization. The use of a Rh-catalyst and Jacobsen’s amine allows 

for enantio-, diastereo-, and regioselective access to all possible stereoisomers, by simply 

changing the handedness of each catalyst. In addition, this synergistic system demonstrates 

how different modes of catalysis can enable divergent coupling of aldehydes and alkynes 

to generate different constitutional isomers. Insights from this study will guide future 

enantioselective alkyne hydrofunctionalizations via C–C bond formation.

Cruz and Dong Page 3

J Am Chem Soc. Author manuscript; available in PMC 2022 May 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Divergence in Aldehyde-Alkyne Coupling Enabled by Different Modes of Catalysis.
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Figure 2. 
Proposed Dual-Catalytic Aldehyde-Alkyne Coupling via a Triple Cascade.
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Chart 1. 
Ligand and Amine Effects on Aldehyde-Alkyne Couplinga

aSee SI for reaction conditions. Yields determined by 1H NMR using an internal standard. 

rr’s and dr’s determined by 1H NMR analysis of the crude reaction mixture. ee’s determined 

by SFC analysis. b4.5 mol% [Rh(cod)Cl]2, 50 mol% (BuO)2POOH instead, run at 40 °C.
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Table 1.

Anti-selective Aldehyde-Alkyne Coupling 
a

a
Isolated yields. See SI for reaction conditions.
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Table 2.

Stereodivergent Aldehyde-Alkyne Coupling
a

a
Isolated yields. See SI for reaction conditions.
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