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Pathway-specific polygenic risk scores correlate with clinical 
status and Alzheimer’s-related biomarkers
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1The Translational Genomics Research Institute, Quantitative Medicine and Systems Biology, 
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Abstract

Background: APOE is the largest genetic risk factor for Alzheimer’s disease (AD), but there 

is a substantial polygenic component. Polygenic risk scores (PRS) can summarize small effects 

across the genome but may obscure differential risk across molecular processes and pathways that 

contribute to heterogeneity of disease presentation.

Objective: We examined polygenic risk impacting specific AD-associated pathways and its 

relationship with clinical status and biomarkers of amyloid, tau, and neurodegeneration (A/T/N).

Methods: We analyzed data from 1,411 participants from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI). We applied pathway analysis and clustering to identify AD-

associated “pathway clusters” and construct pathway-specific PRSs (excluding the APOE region). 

We tested associations with diagnostic status, abnormal levels of amyloid and ptau, and 

hippocampal volume.

Results: Thirteen pathway clusters were identified, and eight pathway-specific PRSs were 

significantly associated with AD diagnosis. Amyloid-positivity was associated with endocytosis 

and fibril formation, response misfolded protein, and regulation protein tyrosine PRSs. Ptau 

positivity and hippocampal volume were both related to protein localization and mitophagy PRS, 

and ptau-positivity was also associated with an immune signaling PRS. A global AD PRS showed 

stronger associations with diagnosis and all biomarkers compared to pathway PRSs.

Conclusion: Pathway PRS may contribute to understanding separable disease processes, but do 

not add significant power for predictive purposes. These findings demonstrate that AD-phenotypes 

may be preferentially associated with risk in specific pathways, and defining genetic risk along 
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multiple dimensions may clarify etiological heterogeneity in AD. This approach to delineate 

pathway-specific PRS can be used to study other complex diseases.
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INTRODUCTION

Alzheimer’s disease (AD) is known to be influenced by many genetically-mediated factors, 

with a heritability estimated to be 60–80% [1]. Although autosomal dominant forms of AD 

are due to mutations in the APP, PSEN1, and PSEN2 genes, sporadic or late onset AD 

has a more complex genetic basis. The APOE gene represents the single largest genetic 

risk factor [2], but over the past decade or so a number of additional AD risk genes have 

been discovered [3–6], with the most recent AD genome-wide association study (GWAS) 

identifying 75 risk loci [7]. Finding effective treatment for AD remains elusive, and there 

is increasing focus on its heterogenous presentation, both clinically and at the level of 

pathobiological mechanisms. Ultimately, identifying the sources of genetic risk for AD may 

not only shed light on the pathobiology of the disease but also lead to novel drug targets.

While large-scale GWAS continue to identify specific risk loci, the polygenic nature of AD 

suggest the possibility that informative genetic signals may fall beneath the genome-wide 

significance thresholds. One approach to capturing these weak associations is to construct 

polygenic risk scores (PRSs) by taking the sum of all putative risk variants, defined broadly, 

weighted by their effect size from independent GWAS, assigning each individual a score, 

and then testing the association of this score with diagnosis and related phenotypes [8]. 

For genetically complex diseases such as AD, PRSs have been shown to strengthen AD 

diagnostic classification beyond the use of APOE genotypes [9] and have further been 

shown to be associated with brain structure, amyloid-β (Aβ) and tau pathology, and 

cognitive decline [10–13]. AD PRSs have also been shown to be associated with increased 

risk for mild cognitive impairment among individuals in their 50s [14], and have even been 

shown to be associated with brain structure in young adults [15, 16], demonstrating their 

utility across multiple age ranges.

A benefit of PRSs is that they provide a global summary measure that aggregates the large 

and small effect sizes of different variants across the genome. However, aggregating the 

effects of individual loci may obscure distinct sources of risk. One approach to overcome 

this limitation has been to calculate PRS with the APOE region removed to demonstrate 

effects of the APOE gene and APOE-independent variants [17–19]. In this light, AD risk 

genes identified through GWAS have been associated with a number of pathways, such as 

immune function, cholesterol transport, mitochondrial function, protein-lipid complex, and 

endocytosis [4, 6, 7, 20, 21], and the APOE gene itself impacts a variety of processes [22]. 

Two individuals may therefore have similar scores on a global PRS with very different risk 

associated with the underlying pathways that are perturbed as a result. It is well documented 

that AD demonstrates substantial heterogeneity with respect to its clinical presentation [23–

25], but also in the distribution of associated pathology and atrophy. For example, potential 
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subtypes have been identified using AD-related biomarkers, including those associated with 

amyloid [26], tau [27–30], and neurodegeneration [31–35].

Breaking down global AD PRS into pathway-specific PRSs may help to better understand 

the etiology of AD and its heterogeneity, and previous studies have taken this approach [19, 

36–42]. Several of these focused on associations of pathway PRS with AD diagnosis [36, 39, 

40, 42], but there is a growing interest in characterizing individuals based on AD-related 

pathology involving amyloid, tau and neurodegeneration (i.e., the A/T/N classification 

system) [43] that are also likely to have a polygenic basis. One study examined the 

association of defined pathway-specific PRS with clinical diagnosis and amyloid [19], and 

another with tau [41]. However, it is of interest to examine clinical status and all A/T/N 

biomarkers together in order to assess the pattern of pathway-specific PRS associations 

across each. Only one previous study compared the association of pathway-specific PRS 

with cognitive status and multiple A/T/N biomarkers [37], but this analysis was restricted 

to 3 pathways calculated from 21 single nucleotide polymorphisms (SNPs) found to be 

significant in an earlier GWAS of AD [5, 37]. Previous studies have highlighted the 

importance of including larger numbers of variants, including those below the level of 

genome-wide significance in relevant analyses [9, 14]. In the same vein, it may be useful to 

consider additional pathways beyond those reaching stringent thresholds of significance to 

capture genetic influences on complex disease such as AD.

Here, we conducted a comprehensive examination of associations between pathway-specific 

PRS with dementia status and all three A/T/N biomarkers to better characterize patterns of 

genetic influences on each. Additionally, prior pathway PRS analyses have depended upon 

a priori defined pathways. We present a generalizable approach to identify clusters of trait-

relevant pathways in a data-driven manner that can be used to calculate pathway-specific 

PRS for any trait or complex disease.

MATERIALS AND METHODS

Participants

Data used in the preparation of this article were obtained from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 

2003 as a public-private partnership, led by Principal Investigator Michael W. Weiner, 

MD. The primary goal of ADNI has been to test whether serial magnetic resonance 

imaging (MRI), positron emission tomography (PET), other biological markers, and clinical 

and neuropsychological assessment can be combined to measure the progression of mild 

cognitive impairment and early AD.

Our analyses included data on 1,411 participants from the ADNI-1 (n=699), ADNI-GO/2 

(n=406), and ADNI-3 (n=306) cohorts of European ancestry. The individuals in these 

cohorts had genome-wide genotype data that underwent rigorous quality control filters. 

Our analyses focused on cognitively unimpaired (CU) participants, participants with mild 

cognitive impairment (MCI), and individuals with AD dementia according to baseline ADNI 

diagnosis in the cohorts. Procedures were approved by the Institutional Review Board of 

participating institutions and informed consent was obtained from all participants.
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Genotype data processing and imputation

Individuals in the ADNI cohorts were genotyped using the following chips: Illumina 

Human610-Quad BeadChip (ADNI-1), Illumina HumanOmniExpress BeadChip (ADNI-

GO/2), and Illumina Infinium Global Screening Array v2 (ADNI-3). Genetic data for 

each chip were processed and underwent quality control separately using PLINK2 [44] 

prior to genotype imputation. SNPs were excluded if minor allele frequency <0.05, sample 

missingness >5%, or showed significant deviation from Hardy-Weinberg equilibrium (p 

< 1×10e−06). Samples with genotype missingness >10% were excluded. Participants 

were restricted to those with primarily European ancestry (>80%) as determined by 

SNPweights [45]. Principal components were calculated from linkage disequilibrium (LD)-

pruned variants in combination with 1000 Genomes data [46] for use as covariates in 

later analyses. Imputation was performed on the Michigan Imputation Server (https://

imputationserver.sph.umich.edu/) [47] using the 1000 Genomes phase 3 EUR reference 

panel. Imputed data from all phases was filtered to exclude multi-allelic variants, variants 

with imputation quality of R2<0.3 or variants with a genotype posterior probability <90% 

and then merged. A total of 7,487,325 SNPs from 1,411 participants were retained following 

quality control and merging.

Identification of Alzheimer’s-related pathway clusters

A gene-set analysis of the IGAP2 Alzheimer’s disease GWAS summary statistics [4] was 

conducted with MAGMA v1.09a [48]. All SNPs included in the Kunkle et al. GWAS 

summary statistics were used as inputs in this analysis. SNPs were mapped to protein coding 

genes with a 35-kb upstream/10-kb downstream window. The SNPwise-mean model was 

used for the gene analysis. Gene sets from Gene Ontology (GO) [49, 50], Reactome [51] and 

KEGG [52] databases were downloaded from the Bader Lab website (http://baderlab.org/

GeneSets). Analysis was restricted to gene sets containing 10 to 1,000 genes.

The resulting gene sets contain a high degree of redundancy, so we generated “pathway 

clusters” comprising gene sets with a high proportion of overlapping genes. First, the 

Cytoscape app EnrichmentMap v3.3 [53] was used to generate networks with gene sets 

as nodes and proportion of overlapping genes as edges. A gene set threshold of false 

discovery rate corrected (FDR) q<0.25 and overlap threshold of 0.5 were used as node and 

edge parameters, respectively. A permissive threshold was chosen to consider a broader 

set of potential risk pathways. Next, the AutoAnnotate app (http://baderlab.org/Software/

AutoAnnotate) was used to cluster nodes with the MCL Cluster algorithm. Variants in genes 

belonging to a pathway cluster were used to calculate pathway-specific PRSs.

Pathway-specific polygenic risk scores

Pathway-specific PRSs were calculated based on summary statistic effect sizes from the [4] 

Alzheimer’s disease GWAS using the PRSet function in PRSice-2 v2.3.5 [54]. This GWAS 

was chosen because it is the most recent GWAS based only on clinically diagnosed AD 

(as opposed to proxy cases based on familial history of dementia). Although some of the 

ADNI participants were included in this GWAS, a study by Leonenko et al. [19] estimated 

that this overlap did not result in substantial bias of PRS associations. Each pathway PRS 

was calculated from SNPs mapped to genes contained in each pathway cluster with a 
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35-kb upstream/10-kb downstream window. A global PRS considering all SNPs contained 

in the summary statistics was also calculated. Prior to scoring, SNPs with minor allele 

frequency <0.01 and imputation quality R2<0.5 were excluded from the analysis. Linkage 

disequilibrium (LD) clumping (r2 threshold of 0.2 in a 500 kb window) based on LD 

patterns in the 1000 Genomes EUR cohort was used to restrict scoring to independent loci. 

To determine the effect of PRSs independent of APOE, the region surrounding the APOE 
genes was removed (chr19:45,116,911 – 46,318,605 according to GRCh37). No p-value 

thresholding was used when constructing global or pathway-specific PRS. That is, after 

filtering SNPs for the criteria described above, all remaining SNPs were used to calculate the 

score.

Measures of amyloid, tau, and neurodegeneration

We explored associations between pathway-specific PRS and cerebro-spinal fluid (CSF) and 

PET measures of amyloid and tau. We considered the results of CSF and PET measures 

as both are indicative of the presence of pathology, so we combined classifications from 

each to maximize the sample size for our analyses. Individuals were classified as Aβ- and 

tau-positive based on having abnormal levels from at least one CSF or PET measure at a 

given data collection timepoint (e.g., a classification of Aβ+ could be based on abnormal 

levels of amyloid from either a CSF or PET assessment, or both).

Aβ and p-tau CSF samples were collected on cohort participants and processed as 

previously described [55]. CSF Aβ42 and phosphorylated tau (p-tau) were measured with 

the fully automated Elecsys immunoassay (Roche Diagnostics) by the ADNI biomarker core 

(University of Pennsylvania). Established cutoffs designed to maximize sensitivity in the 

ADNI study population were used to classify biomarker positivity [Aβ+: Aβ42<977 pg/mL; 

p-tau+: p-tau>21.8 pg/mL] (http://adni.loni.usc.edu/methods) [56].

Aβ and tau PET data were processed according to previously published methods (http://

adni.loni.usc.edu/methods) [57, 58]. For Aβ, mean standardized uptake value ratios (SUVR) 

were created from a set of regions including frontal, temporal, parietal and cingulate 

cortices using whole cerebellum (florbetapir) or cerebellar gray matter (PIB) as a reference 

region. We used established cutoffs to determine Aβ-positivity for PIB-PET (SUVR>1.44), 

florbetapir-PET (SUVR>1.11), and florbetaben-PET (SUVR>1.08) [57, 59]. Partial-volume 

corrected flortaucipir (AV-1451) tau PET SUVRs were created from a meta-temporal region 

of interest that included amygdala, entorhinal cortex, fusiform gyrus, inferior temporal 

gyrus, and middle temporal gyrus regions using inferior cerebellar gray matter as a reference 

region. A cut-off of SUVR>1.78 was used to define tau-PET positivity [60].

Neurodegeneration was indexed by the ratio of hippocampal volume to intracranial volume. 

As there is no established cut-off for abnormal hippocampal volume, this was used as a 

continuous measure in all analyses.

Statistical analysis

All analyses were conducted with R v4.2.1 [61]. Differences in demographic variables 

were tested with t-tests for continuous variables and chi-squared tests for categorical 

variables. Associations with baseline diagnostic status restricted to cognitively unimpaired 
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(CU) participants and those with dementia at their baseline visit and were tested using 

logistic regressions with diagnosis (CU vs dementia) as outcome. Associations with A/T/N 

biomarkers included participants of all diagnostic categories and used the first timepoint at 

which biomarker measures from all three categories were available. For amyloid and tau, 

our logistic regression models took biomarker abnormality status (positive vs negative) as 

the dependent or outcome measure of interest. For hippocampal volume, linear regression 

used the ratio of hippocampal volume to intracranial volume (ICV) as the outcome. Magnet 

field strength was also included as a covariate in analyses of hippocampal volume. Separate 

models were run with each PRS as predictor. The effect of APOE was assessed by including 

number of APOE-ε4 alleles (0, 1, or 2) as a separate variable. Models additionally included 

age, gender, and the first three principal components of the ADNI cohort genetic relationship 

matrix to control for any cryptic population stratification [62]. Several post-hoc analyses 

were run to provide additional context to the PRS effect. Participants were stratified by 

APOE-ε4 into carriers and non-carriers, and PRS effects were tested separately in each 

group. Differences between these groups were directly tested with an interaction between 

APOE-ε4 carrier status and pathway PRS. To determine whether pathway-specific PRS in 

aggregate would increase predictive power, we fit models for each outcome (i.e., clinical 

status and biomarker abnormality) that included all pathway-specific PRS in the same 

model. The fit of these models were compared to models that included only the global 

PRS using Vuong’s likelihood ratio test [63]. We corrected for multiple comparisons using 

Benjamini-Hochberg FDR-adjustment [64].

RESULTS

Pathway analysis

The results of MAGMA analysis of the Alzheimer’s GWAS summary statistics suggested 

that several pathways were significantly enriched among associated variants – all surviving 

FDR correction for multiple comparisons (Supplementary Table S1). These included 

negative regulation of amyloid precursor protein catabolic process (GO:1902992), regulation 

of aspartic-type peptidase activity (GO:1905245), negative regulation of cellular component 

organization (GO:0051129), negative regulation of amyloid-beta formation (GO:1902430), 

and regulation of humoral immune response mediated by circulating immunoglobulin 

(GO:0002923). A number of other genesets were nominally significant (p<0.05, 

uncorrected) and those with FDR q<0.25 were included in clustering (Supplementary 

Table S1). Clustering yielded 13 pathway clusters: protein localization (including regulation 

of amyloid-beta and tau protein kinase activity), cholesterol transport, amyloid protein 

processing, immune signaling, inflammatory response (including microglial activation), 

endocytosis and fibril regulation, humoral immune response (including regulation of 

complement activation), receptor metabolic process, responses to misfolded protein, 

phototransduction, regulation of cell junction assembly, regulation of protein tyrosine, and 

mitophagy. Variants in the enriched pathways were used to construct the pathway-specific 

PRS.

Table 3 lists the number of SNPs used to calculate each PRS and Supplementary Table 

S2 lists the gene sets included in each of the pathway clusters. Although the majority of 

Schork et al. Page 6

J Alzheimers Dis. Author manuscript; available in PMC 2023 December 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



genes contributed to only one pathway cluster, some contributed to 2 or more clusters 

(Figure 1A). Genes that contributed to a relatively high number of pathways included 

CLU (n=7), CAV1 (n=6), IL1B (n=5), SNCA (n=5), SRC (n=5), THY1 (n=5), TNF (n=5), 

and TREM2 (n=5). Supplementary Table S3 lists the number of pathways each gene was 

associated with. Similarly, the vast majority of SNPs were used in the calculation of only 

one pathway-specific PRS, but some SNPs did contribute to multiple scores (Figure 1B). 

Correlations between the PRS ranged from −0.04 to 0.49 but, in general, the correlations 

were fairly small (mean r = 0.01; Figure 1C).

Associations with diagnostic status

Sample characteristics of participants included in the analysis of diagnostic status are 

listed in Table 1, and full results are shown in Figure 1 and Supplementary Table 

S3. In models including PRS and APOE-ε4 status, a higher global PRS (β=1.91, t-

value=11.01, p<0.001) and number of APOE-ε4 alleles (β=0.94, t-value=8.60, p<0.001) 

were significantly associated with an Alzheimer’s dementia diagnosis. Eight of the 13 

pathway PRSs were significantly associated with diagnostic status after correction for 

multiple comparisons. These included: protein localization, cholesterol transport, amyloid 

protein processing, immune signaling, endocytosis and fibril regulation, regulation cell 

junction, regulation protein tyrosine, and mitophagy. When examining APOE-ε4 non-

carriers only, results were similar except that cholesterol transport and regulation protein 

tyrosine were no longer significant whereas the receptor metabolic process PRS went from 

non-significant to significant. In APOE-ε4 carriers, only the global, regulation cell junction, 

and regulation protein tyrosine PRSs were significant. The effects of the global PRS 

(β=−0.54, t-value=−2.10, p=0.035) and protein localization PRS (β=−0.45, t-value=−2.41, 

p=0.016) were significantly weaker in APOE-ε4 carriers than non-carriers, whereas the 

phototransduction PRS was stronger in APOE-ε4 carriers (β=0.39, t-value=2.17, p=0.030). 

However, these did not survive correction for multiple comparisons.

Associations with amyloid positivity

Sample characteristics of participants included in the analysis of biomarkers are listed in 

Table 2, and full results of the associations with amyloid positivity are shown in Figure 

2 and Supplementary Table S4. In models including PRS and APOE-ε4 status, a higher 

global PRS (β=0.45, t-value=4.21, p<0.001) and number of APOE-ε4 alleles (β=1.14, 

t-value=9.18, p<0.001) were significantly associated with amyloid positivity. Three of the 13 

pathway PRSs were significantly associated with amyloid status after correction for multiple 

comparisons. These included: endocytosis and fibril regulation, response misfolded protein, 

and regulation protein tyrosine. When examining APOE-ε4 non-carriers only, the global 

PRS as well as the endocytosis and fibril regulation PRS were significant. In APOE-ε4 

carriers, only the global and regulation protein tyrosine PRSs were significant. The effect 

of the regulation protein tyrosine PRS was significantly stronger in APOE-ε4 carriers than 

non-carriers (β=0.52, t-value=2.55, p=0.010), but this did not survive correction for multiple 

comparisons.
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Associations with tau positivity

Full results of the associations with tau positivity are shown in Figure 3 and Supplementary 

Table S5. In models including PRS and APOE-ε4 status, a higher global PRS (β=0.43, t-

value=4.25, p<0.001) and number of APOE-ε4 alleles (β=0.62, t-value=6.63, p<0.001) were 

significantly associated with tau positivity. Three of the 13 pathway PRSs were significantly 

associated with tau status after correction for multiple comparisons. These included: protein 

localization, immune signaling, and mitophagy. When examining APOE-ε4 non-carriers 

only, results were similar except that the mitophagy PRS was no longer significant, whereas 

the inflammatory response PRS became significant. In APOE-ε4 carriers, neither the global 

PRS nor any of the pathway PRSs were significant. The effect of the immune signaling PRS 

was significantly weaker in APOE-ε4 carriers than non-carriers (β=−0.66, t-value=−3.72, 

p<0.001), but this did not survive correction for multiple comparisons.

Associations with hippocampal volume

Full results of the associations with hippocampal volume are shown in Figure 4 and 

Supplementary Table S6. In models including PRS and APOE-ε4 status, a higher global 

PRS (β=−0.26, t-value=−6.88, p<0.001) and number of APOE-ε4 alleles (β=−0.24, t-

value=−6.98, p<0.001) were significantly associated with smaller hippocampal volume. Two 

of the 13 pathway PRSs were significantly associated with tau status after correction for 

multiple comparisons. These included: protein localization and mitophagy. When examining 

APOE-ε4 non-carriers only, the global PRS and mitophagy PRS were significant. In APOE-

ε4 carriers, only the global PRS was significant. The PRS effects were not significantly 

different between APOE-ε4 carrier and non-carriers.

DISCUSSION

The current results support and extend previous work disentangling the biological pathways 

contributing to Alzheimer’s disease risk and pathogenesis. Consistent with previous 

findings, we found that a global AD PRS was significantly associated with diagnostic 

status, amyloid and tau positivity, and hippocampal volume [9–13, 15, 17]. The global AD 

PRS captures the combined effects of multiple separable influences on disease risk and 

therefore is not useful for teasing apart genetically-mediated etiological differences among 

individuals. Several studies have examined the relationship of AD diagnosis or AD-related 

biomarkers with pathway-specific PRS calculated from GWAS-significant SNPs [36, 37, 

39]. Here, we generated pathway-specific PRSs from clusters of gene sets and SNPs with 

association strength p-values falling below the threshold of GWAS significance. Breaking 

down the global effects of polygenic factors into more refined genetic pathway-associated 

subset of polygenes has been shown to provide useful information above-and-beyond 

variants with more pronounced effects arising from GWAS for certain conditions, including 

AD and MCI [8, 9, 14].

As expected, most of the pathway PRSs associated with AD diagnostic status in the current 

study correspond to pathways that have consistently been uncovered in previous GWAS. 

These pathways include amyloid precursor processing, immune and microglial response, 

endocytosis, cholesterol transport, lipid-protein complex and amyloid clearance [4, 6, 7, 21]. 
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Several pathways of focus in our study, however, had less support from other GWAS, but 

have nonetheless been linked to AD in yet other studies. For example, the regulation cell 

junction and regulation protein tyrosine pathway-specific PRS we considered may capture 

effects of genes involved in synaptic functioning and cell signaling, consistent with studies 

suggesting this pathway is involved in AD-related cognitive decline [65, 66]. In addition, 

mitochondrial function has been proposed as playing a key role in the development of 

AD [67, 68], and mitophagy in particular may have widespread impacts on age-related 

disease, including Alzheimer’s disease [69]. Our results are also consistent with studies that 

have examined the association of pathway-specific PRS with AD diagnosis, including Aβ 
clearance, cholesterol transport, immune response, and endocytosis [19, 36, 37, 39, 40]

Amyloid positivity was significantly associated with pathway-specific PRS for endocytosis 

and fibril regulation, response to misfolded proteins, and regulation of protein tyrosine. 

The pathways associated with these PRSs are involved in the production, trafficking and 

clearance of Aβ peptides, as well as their aggregation into fibrils, which has biological 

plausibility. The endocytic pathway plays a key role in the amyloidogenic processing of 

APP as it is internalized to the intracellular space followed by cleavage into Aβ in the 

early endosome [70, 71]. Tyrosine kinases may be involved in both the trafficking of APP 

and upregulating BACE activity [72, 73]. In addition, genes encompassed by the response 

misfolded protein PRS that we find associated with AD pathology, include molecular 

chaperones (e.g., CLU) and the ubiquitin-proteasome system, which mediate degradation 

of abnormal and misfolded proteins [74–76]. A previous study examining pathway-PRS 

found that PRS related to Aβ clearance and cholesterol metabolism were also related to 

CSF and PET measures of amyloid; however, these scores only included GWAS-significant 

variants and the effects were primarily driven by APOE [37].

We also found that tau positivity was significantly associated with pathway PRSs for protein 

localization, immune signaling, and mitophagy. The protein localization pathway includes 

tau protein kinase activity, which may relate to abnormal hyperphosphorylation of tau [77]. 

Sun et al. [41] also found that a PRS reflecting the tau kinase activity was associated 

with CSF and PET measures of tau. Tau binds to microtubules to provide stabilization, 

but detaches when phosphorylated which can reduce axonal integrity and disrupt protein 

transport along the cytoskeleton [78]. Additionally, this unbound phosphorylated tau can 

aggregate into neurofibrillary tangles [79]. Regarding the PRS reflecting immune signaling, 

although inflammation can be secondary to abnormal tau, there is also evidence for an 

upstream role of glial activation and neuroinflammation in driving the accumulation and 

spread of tau [80, 81]. This is consistent with a previous finding that a PRS constructed 

from only GWAS significant variants related to immune response was associated with CSF 

tau [37]. As with inflammation, disruptions to mitophagy may be secondary to disease 

processes, but there is evidence for upstream roles of mitochondrial function, including 

mitophagy, in the development of AD pathology [68, 82]. Hippocampal volume was also 

associated with pathway PRSs for protein localization and mitophagy. Shared pathways 

with tau positivity and may reflect the tighter linkage between neurodegeneration and tau 

compared to amyloid [83, 84].
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Our results are generally consistent with those of a recent GWAS on CSF measures of 

amyloid and tau [85]. The authors found little overlap in the loci associated with amyloid 

and tau aside from APOE. In contrast, there was overlap between loci associated with 

tau and ventricular volume, which can be used as an indicator of neurodegeneration. The 

authors also examined associations of AD-associated variants with CSF amyloid and tau, 

and a cluster analysis pursued by them identified patterns that were broadly similar to our 

own. For example, variants associated with CSF amyloid were associated with amyloid 

processing, endocytosis, and tyrosine kinase, whereas variants associated with CSF tau 

were linked to the immune system. Deriving PRSs based on GWAS of AD biomarkers 

represents a promising approach to index risk in specific pathways, but sample sizes for 

such studies are relatively small. PRSs based on pathway analysis of diagnosis-based GWAS 

are therefore a useful alternative that can leverage large case-control datasets to provide 

converging information.

Although we focused on APOE-independent sources of AD risk, it is important to note 

that the number of APOE-ε4 alleles had a comparable or even stronger (in the case of 

amyloid) effect on the outcomes as the polygenic component indexed with a PRS. APOE 
belonged to gene sets that were part of several cluster, including endocytosis and fibril 

regulation, protein localization, cholesterol transport, and amyloid protein processing. The 

variants falling within the APOE region were excluded from our PRSs, but this does suggest 

APOE can exert an impact through multiple routes. Stratifying based on APOE-ε4 carrier 

status suggested stronger effects of pathway PRSs on tau positivity in non-carriers. It may be 

that smaller polygenic effects are obscured in the presence of a larger APOE-related signal. 

Alternatively, APOE-ε4 may be sufficient to increase risk for tau pathology whereas those 

lacking this risk allele require additional sources of risk to develop abnormal levels of tau.

There are several additional items worth mentioning to put our analyses into context. 

First, we find evidence that the effect size of the global PRS is much larger than any 

pathway-specific PRS effect sizes in our analyses. While pathway-specific PRSs may be 

beneficial for understanding disease etiology, they do not appear to add predictive power 

when considered in the aggregate over-and-above the global PRS. Second, we mapped SNPs 

to genes using the standard position-based approach available in MAGMA. However, many 

GWAS SNPs are located in non-coding regions and may be associated with disease risk 

through their gene regulatory effects [86]. Thus, approaches that make use of information 

such as chromatin interactions [87] or expression quantitative trait loci [88] to determine 

which gene a variant present in a non-coding region affects may prove useful in developing 

pathway-specific PRS. Third, although the vast majority of genes/SNPs were associated with 

only one pathway, others were part of multiple pathway clusters, so the pathway PRSs are 

not entirely independent with each other. Fourth, we added interactions with diagnosis to 

all biomarker models to determine whether PRS associations differed by group. However, 

no interaction terms were significant after correcting for multiple comparisons and there 

did not appear to be a consistent pattern among the few interactions that reached nominal 

significant. Fifth, this analysis was restricted to those of European ancestry and results 

may not generalize to other ancestry groups. This is of particular importance because prior 

findings suggest that genetic effects on pathology and dementia risk may differ across 

ancestry groups [89–91]. There is also likely to be a complex interplay between pathway-
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specific genetic risk and environmental risk factors, and exposure to risk may be unequally 

distributed across ancestry groups due to partial overlap with systemic inequities associated 

with race and ethnicity. Finally, this analysis required choices of parameters at various 

steps, such as the p-value thresholds used to filter variants and gene sets, method used to 

construct PRS, and even which gene sets were used. We believe our choices represent a 

reasonable attempt to capture the broad sources of polygenic influence on AD risk while 

minimizing unrelated signal. However, alternative approaches may be equally valid and 

should be determined by the context of a given analysis.

Ultimately, we find evidence that some pathway-specific PRSs are associated with AD 

diagnostic status and A/T/N biomarkers. Our findings indicate that genetic risk for AD 

may exist along multiple dimensions, and the distribution of risk across pathways may 

influence phenotypic manifestations of the disease. Although a global PRS appears to 

provide superior predictive power overall, pathway-specific PRS analysis may help clarify 

aspects of the heterogeneity of AD pathogenesis. More broadly, the approach presented 

here can be applied to delineate pathway clusters for any trait for which a GWAS has been 

performed. Resulting pathway-specific scores may then be used to better understand the 

etiological heterogeneity of other complex diseases as well.
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Figure 1. Contributions of genes and SNPs to one or more pathways.
A) The frequency with which genes were members of one or more pathway clusters for 

genes that were mapped to at least one pathway. B) The frequency with which SNPs 

contributed to the calculation of one or more pathway-PRS for SNPs that were mapped to at 

least one pathway. C) Correlation matrix of global and pathway-specific PRS.
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Figure 2. Associations of polygenic risk scores with diagnostic status.
Logistic regressions were used with diagnostic status (cognitively unimpaired vs dementia) 

as the outcome. Separate models used each PRS as predictor. Models either 1) included 

number of APOE-ε4 alleles as a separate variable, 2) tested only APOE-ε4 non-carriers, 

or 3) tested only APOE-ε4 carriers. All models adjusted for age, gender, and the first 3 

genetic principal components. Plots show standardized regression coefficients (log-odds) 

and standard errors. Associations that survived FDR correction are bolded.
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Figure 3. Associations of polygenic risk scores with amyloid positivity.
Logistic regressions were used with amyloid status (positive vs negative) as the outcome. 

Separate models used each PRS as predictor. Models either 1) included number of APOE-

ε4 alleles as a separate variable, 2) tested only APOE-ε4 non-carriers, or 3) tested only 

APOE-ε4 carriers. All models adjusted for age, gender, and the first 3 genetic principal 

components. Plots show standardized regression coefficients (log-odds) and standard errors. 

Associations that survived FDR correction are bolded.
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Figure 4. Associations of polygenic risk scores with ptau positivity.
Logistic regressions were used with ptau status (positive vs negative) as the outcome. 

Separate models used each PRS as predictor. Models either 1) included number of APOE-

ε4 alleles as a separate variable, 2) tested only APOE-ε4 non-carriers, or 3) tested only 

APOE-ε4 carriers. All models adjusted for age, gender, and the first 3 genetic principal 

components. Plots show standardized regression coefficients (log-odds) and standard errors. 

Associations that survived FDR correction are bolded.
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Figure 5. Associations of polygenic risk scores with hippocampal volume.
Linear regressions were used with hippocampal volume normalized by intracranial volume 

as the outcome. Separate models used each PRS as predictor. Models either 1) included 

number of APOE-ε4 alleles as a separate variable, 2) tested only APOE-ε4 non-carriers, or 

3) tested only APOE-ε4 carriers. All models adjusted for age, gender, scanner field strength 

and the first 3 genetic principal components. Plots show standardized regression coefficients 

and standard errors. Associations that survived FDR correction are bolded.
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Table 1.

Characteristics of sample used to test associations with diagnostic status.

Cognitively Unimpaired Dementia

n 536 214

Gender (Male), n (%) 258 (48.1) 122 (57.0)

Age, mean (SD) 73.49 (5.98) 75.46 (8.11)

Years of education, mean (SD) 16.56 (2.50) 15.11 (2.96)

APOE-ε4 carrier, n (%) 161 (30.0) 143 (66.8)
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Table 2.

Characteristics of sample used to test associations with biomarker measures. CU = cognitively unimpaired, 

MCI = mild cognitive impairment. Hippocampal volume ratio was calculated as (Hippocampal volume / 

Intracranial volume)*100.

Biomarker sample

n 674

Gender, n Male (%) 387 (57.4)

Age, mean (SD) 73.77 (7.36)

Years of education, mean (SD) 15.97 (2.76)

APOE-ε4 carrier, n (%) 300 (44.5)

Diagnosis, n (5)

 CU 200 (29.7)

 MCI 373 (55.3)

 Dementia 101 (15.0)

Amyloid positive, n (%) 430 (63.8)

Ptau positive, n (%) 382 (56.7)

Hippocampal volume ratio, mean (SD) 0.44 (0.08)
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Table 3.

Number of SNPs used to calculate each polygenic risk score.

PRS n SNPs

global 351,203

protein localization 16,776

cholesterol transport 1,428

amyloid protein processing 896

immune signalling 9,062

inflammatory response 603

endocytosis and fibril regulation 11,063

humoral immune response 227

receptor metabolic process 1,757

response misfolded protein 321

phototransduction 606

regulation cell junction 4,821

regulation protein tyrosine 1,446

mitophagy 159
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