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ABSTRACT OF THE DISSERTATION 

 

Mechanistic challenges in achieving precise top-down attentional modulations in the visual 
system 

 

 
by 

 

Sunyoung Park 

 

Doctor of Philosophy in Experimental Psychology 
 

University of California San Diego, 2024 
 

Professor John Serences, Chair 
 

Voluntary selective attention is a fundamental process in visual perception, enabling the 

prioritization of behaviorally relevant information from a complex sensory environment. While 

prefrontal cortex (PFC) has been implicated as the source of this top-down modulatory signal, 

how this is achieved is unclear given that PFC neurons have coarse and high-dimensional 

selectivity. Thus, this dissertation investigates how prefrontal areas with coarse and high-

dimensional selectivity for spatial locations and visual features modulate sensory processing with 
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high precision. Chapter 1 explores the limits in the precision of top-down spatial attention, 

revealing that feedback signals from frontal and parietal regions are less spatially precise 

compared to the sensory responses in early visual areas, such as V1. Chapter 2 uses spiking 

neural network models to examine how feedback signals, despite their coarse and high-

dimensional nature, can lead to precise modulations of early visual processing. These simulations 

highlight the importance of random projections between control and sensory networks in 

producing targeted attentional modulations and controlling disruptive spurious signals. Chapter 3 

further investigates the impact of structured versus random feedback connections, showing that 

introducing slight structure to the network connections enables targeted attentional enhancement 

and the spread of feature-based attention. Together, these findings expand our understanding of 

how top-down attentional signals from prefrontal areas modulate sensory processing, 

emphasizing the interaction between high-dimensional representations in the prefrontal cortex 

and structured representations in early sensory areas to produce precise neural modulations 

required to achieve behavioral goals.
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INTRODUCTION 

 

A crucial aspect of the visual system is to process incoming information in a way that 

supports effective interactions with our surroundings to achieve behavioral goals. A key 

component serving this function is voluntary, or top-down, selective attention, which supports 

the ability to distinguish a behaviorally relevant visual target within a complex visual 

environment. As such, higher-order cognitive functions rely on being able to select and prioritize 

more relevant information over other less relevant information, which cannot be accomplished 

through passive processing of bottom-up sensory input.  

Decades of research on top-down attention has shown that it leads to improvements in the 

sensory processing of the relevant visual inputs (1–4). For example, behavioral studies have 

revealed that top-down attention promotes efficient perception by enhancing the discriminability 

of basic visual features such as contrast (5, 6) accelerating the speed of processing (7), enhancing 

spatial resolution (8), and suppressing nearby distractors (9, 10). In addition, electrophysiological 

recording studies and functional magnetic resonance imaging (fMRI) studies have reported 

changes in the neural signals and representations underlying these behavioral enhancements. For 

example, directing attention to a spatial location or a feature can result in signal enhancement, 

noise reduction, and shifts in neural tuning (11–26; reviewed in 2, 3). All of these studies have 

demonstrated that our visual system has the ability to selectively target a specific visual input 

that matches current behavioral goals to prioritize important stimuli for processing. 

As to how these behavioral and neural changes occur, studies suggest a key role for the 

prefrontal cortex in sending feedback signals that target relevant sensory neurons in early visual 

areas and modulate their activities. For example, the frontal eye field (FEF) has been found to be 
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the source area for spatial attention (27–31), as microstimulation to monkey FEF led to attention-

like increase in V4 activity in a spatially selective way (28). Lateral prefrontal cortex (LPFC) has 

long been implicated in cognitive control, as disrupting LPFC activity leads to impaired top-

down control over bottom-up stimulus drive (32–34). In addition, inferior frontal junction (IFJ) 

has been suggested as the source of attentional modulation for feature and object in humans (35–

39). While there are some functional distinctions with respect to different types of top-down 

modulations, these brain regions are all higher-order areas that sit at the top of the feedforward 

hierarchy of sensory processing. 

These prefrontal areas make good candidates as the source area for top-down attention 

signals, as they receive converging inputs from sensory cortex, motor cortex, the basal ganglia, 

and the medial temporal lobe (40). This convergence allows these areas to integrate different 

information - sensory, motor, memory, affect, and others - and compute which information is to 

be prioritized. Moreover, these prefrontal areas can conversely send control signals to modulate 

the activity of the different brain areas via widespread feedback projections (40, 41). However, 

as a consequence of converging inputs, the prefrontal cortex neurons end up having a coarse and 

high-dimensional selectivity to visual features. For example, studies have shown that FEF, a key 

area implicated in voluntary spatial attention, have much larger and variable spatial receptive 

fields (RFs) compared to early visual areas (42–44). Moreover, the prefrontal cortex has neurons 

that can encode multiple task parameters at the same time, with their responses varying to reflect 

different combinations of stimulus features and/or task demands (45, 46). This leads to the high 

dimensionality of representations in the prefrontal cortex, which cannot be easily mapped to 

neural codes in early sensory areas where RFs encode basic visual features in a relatively 

stereotyped and inflexible manner. In this dissertation I aim to address the question: Given the 
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coarse and high-dimensional selectivity in the prefrontal “control” areas, how do top-down 

attentional signals relayed from these areas modulate signals in early sensory cortex with the 

high precision required to achieve specific behavioral goals? 

In Chapter 1, I investigate limits in the spatial precision of top-down modulations in the 

early visual areas in the absence of an external sensory signal. While the early visual areas that 

are the target of spatial attention modulations have highly selective spatial receptive fields, the 

frontal and parietal areas that are suggested to be the source for these signals have relatively 

coarse spatial receptive fields. Using fMRI, I demonstrate that while mid-level visual areas, such 

as V4, showed comparable top-down and bottom-up precision in their spatial representation, V1 

showed a significant discrepancy, in which the top-down precision was substantially lower than 

the bottom-up precision. This finding provides a foundational insight that the nature of the top-

down feedback signals is diffuse in early visual areas when there is no spatially specific bottom-

up signal, reflecting the coarse spatial selectivity in the source areas for spatial attention.  

In Chapter 2, I examine the consequences of relaying feedback signals through neurons 

with high-dimensional selectivity using a spiking neural network model. While prefrontal cortex 

neurons are found to have selectivity profiles that are complex and high-dimensional (e.g. 

maximally responding to a conjunction of two features, and less when the features are presented 

individually), it is unclear how top-down signals propagated through these neurons can result in 

a targeted modulation of the sensory response to the relevant feature. Through simulations in a 

neural model consisting of a sensory network and a control network connected through random 

and reciprocal projections, I demonstrate that feedback signals indeed propagate to unstimulated 

sensory neurons that are irrelevant to the target stimulus. However, this incidental spread of top-

down modulations does not resemble sensory signals and thus does not lead to “illusory” 
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percepts. This finding highlights the importance of random connections between more structured 

early sensory areas and the later attentional control areas, which can cancel out spurious signals 

and selectively enhance the relevant neural activity. 

In Chapter 3, I further test the importance of randomness in connectivity by 

parametrically manipulating the randomness of the projections in the spiking neural network 

model. While maximum randomness in between-network connections seems ideal in regulating 

spurious signals that can arise from feedback modulations, the simulations in Chapter 2 do not 

capture the global spread of feature-based attention (47, 48). By parameterizing the connectivity 

scheme on a continuum of randomness and structuredness, I demonstrate that more structure in 

the connections can give rise to spurious activity in unstimulated neurons that resemble coherent 

activity patterns for sensory stimuli. Moreover, I show that a balanced point can be achieved in 

which unstimulated neurons show elevated activity in a feature-specific way as reported in 

previous empirical studies, while the signals for the relevant stimulus receive the strongest top-

down enhancement. This recapitulates the importance of a randomly connected network to show 

attentional enhancement in a targeted way while suggesting that minimal structure in the network 

may be needed to account for the global spread of feature-based attention. 

In conclusion, this dissertation examines the nature of the voluntary attentional signals 

originating from prefrontal cortex and how they can provide precise modulatory feedback to 

highly selective neurons in early sensory cortex. Based on the known properties of the prefrontal 

cortex, I argue that the limited spatial precision of top-down modulations is the consequence of 

propagating feedback signals through neurons with high-dimensional selectivity, and that 

random connections between higher-order and early sensory neurons cancel out unwanted and 

spurious feedback signals. These findings provide new insights into the neural computations 
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underlying voluntary selective attention and highlight the interplay between the less structured, 

high-dimensional prefrontal regions and the more structured, low-dimensional sensory areas. 

Together, this work contributes to a deeper understanding of the mechanistic aspect of voluntary 

attention and outlines possible requirements in a biologically plausible model of our brain. 
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Chapter 1 Relative precision of top-down attentional modulations is lower in early visual cortex 
compared to mid- and high-level visual areas 
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Abstract 

Top-down spatial attention enhances cortical representations of behaviorally relevant 

visual information and increases the precision of perceptual reports. However, little is known 

about the relative precision of top-down attentional modulations in different visual areas, 

especially compared to the highly precise stimulus-driven responses that are observed in early 

visual cortex. For example, the precision of attentional modulations in early visual areas may be 

limited by the relatively coarse spatial selectivity and the anatomical connectivity of the areas in 

prefrontal cortex that generate and relay the top-down signals. Here, we used fMRI and human 

participants to assess the precision of bottom-up spatial representations evoked by high contrast 

stimuli across the visual hierarchy. Then, we examined the relative precision of top-down 

attentional modulations in the absence of spatially-specific bottom-up drive. While V1 showed 

the largest relative difference between the precision of top-down attentional modulations and the 

precision of bottom-up modulations, mid-level areas such as V4 showed relatively smaller 

differences between the precision of top-down and bottom-up modulations. Overall, this 

interaction between visual areas (e.g. V1 vs V4) and the relative precision of top-down and 

bottom-up modulations suggests that the precision of top-down attentional modulations is limited 

by the representational fidelity of areas that generate and relay top-down feedback signals.  

 

New & Noteworthy 

When the relative precision of purely top-down and bottom-up signals were compared across 

visual areas, early visual areas like V1 showed higher bottom-up precision compared to top-

down precision. In contrast, mid-level areas showed similar levels of top-down and bottom-up 

precision. This result suggests that the precision of top-down attentional modulations may be 
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limited by the relatively coarse spatial selectivity and the anatomical connectivity of the areas 

generating and relaying the signals.  
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Introduction 

The ability to voluntarily attend to a part of the visual field to process relevant sensory 

information is key to navigating visually cluttered environments. Attentional control signals are 

thought to originate in subregions of prefrontal cortex (PFC) and parietal cortex and target 

neurons in early visual cortex to improve information processing. However, relatively large 

receptive field sizes and the anatomical organization of feedback pathways in PFC may impose 

structural constraints on the precision of these top-down attentional modulations in earlier visual 

areas. 

Previously, behavioral studies have shown that voluntary, or top-down, selective 

attention leads to spatially precise improvements in sensory processing (1–3). For example, the 

selective deployment of top-down attention to a relevant spatial position promotes more efficient 

perception in a variety of visual tasks (4, 5) by improving discriminability of basic visual 

features such as contrast (6, 7), spatial frequency (8), and textures (9). Moreover, top-down 

spatial attention can accelerate the speed of processing (2), enhance spatial resolution (10), and 

suppress nearby distractors (11, 12).  

In addition to the changes in behavior, neurophysiological recording studies in monkeys 

and fMRI studies in humans have found signal enhancement, noise reduction, and shifts in 

spatial tuning in visual areas when top-down attention is directed inside single-unit or 

population-level receptive fields (13–22; reviewed in: 23, 24). Indeed, top-down modulations in 

early and later visual areas have been reported even in the absence of any kind of external 

stimulation (25–34), and activation patterns in visual cortex can be used to decode attended 

spatial locations and non-spatial features (35–44). However, these studies primarily focused on 
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establishing the presence of different kinds of attention effects, so little is known about the 

precision of top-down attentional modulations across different areas of the visual hierarchy.  

The high precision of bottom-up sensory representations in early visual areas like V1 

makes these areas potentially ideal targets for supporting equally precise top-down attentional 

modulations. For example, receptive fields of early visual area neurons are quite small (smaller 

than 1° at fovea and around 1° at 10° periphery in V1; Hubel & Wiesel, 1974) and are highly 

tuned to specific features such as orientation, motion trajectory, spatial frequency, or color (46–

48). Thus, neurons in early visual areas can precisely code low-level visual features compared to 

neurons in mid- and high-level visual areas that have larger and more complex receptive fields, 

such as V4 (49–55).  

Contrarily, regions in parietal and frontal cortex that are thought to be sources of top-

down attentional control signals, such as the lateral intraparietal area (LIP) or the frontal eye 

fields (FEF), have much larger spatial receptive fields and thus relatively coarse codes for spatial 

position (e.g., receptive fields are around 10-20° with a large variance at 10° periphery in FEF; 

56–59). In addition, anatomical studies suggest that areas such as FEF primarily send feedback 

projections to mid-level visual areas such as V4, with only sparse connections to earlier areas 

such as V1 (60–63). Consistent with these anatomical observations, microstimulations to FEF 

neurons lead to a spatially selective increase in the firing rates in V4 neurons (64), and V4 shows 

larger and earlier attentional enhancements in firing rates compared to V1 and V2, suggesting 

that attentional feedback signals target mid-level visual areas first and then are back-propagated 

to earlier visual areas (65). Thus, the precision of top-down attention signals in early visual areas 

might be limited by the coarser selectivity of the higher level ‘control’ areas and the mid-level 
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areas that appear to serve as the primary relay stations for top-down feedback to the highly 

selective neurons in early visual cortex.  

In this study, we tested whether the precision of top-down attentional modulations was 

relatively coarser than bottom-up modulations in early visual areas compared to later visual 

areas. First, to measure the precision of bottom-up spatial representations in each visual area, 

participants were shown a series of small checkerboard stimuli at different locations in the visual 

field (termed the bottom-up spatial mapping task). Then, we used a separate task in which 

participants were cued to attend to a small or a large part of the visual field to measure the 

precision of top-down modulations in each visual area (termed the top-down spatial attention 

task). Note that, by necessity, the bottom-up mapping task and the top-down attention task are 

different (e.g. one has a small and highly salient peripheral stimulus, while the other requires 

covert attention to a cued location). However, despite using different paradigms, we can still 

compare the relative precision of both bottom-up and top-down modulations in early vs. later 

areas (and critically, the same tasks were used to assess the respective precision in all visual 

areas). As such, the key comparison in our analysis was evaluating the interaction between task 

type (bottom-up vs. top-down) and visual area, which indicates that there is a change in the 

relative precision of bottom-up and top-down modulations that cannot be explained by 

differences between the two tasks. 

We applied multivariate pattern analyses (MVPA) to single-trial voxel activation patterns 

to generate several measures of the precision of spatial representations. Bottom-up 

representational precision was measured as decoding accuracy for a single stimulus location in 

the bottom-up mapping task. Top-down attentional precision was measured as decoding accuracy 

for attended locations in the attention task. In addition to the decoding accuracy, we also 
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analyzed confusion matrices from the raw classifier outputs to provide a more nuanced 

assessment of the spatial precision in visual areas during each task. We found that earlier visual 

areas, such as V1, showed higher relative precision for bottom-up representations compared to 

top-down representations. However, mid-level and parietal areas such as V3, V4 and IPS showed 

comparable bottom-up and top-down precision, leading to an interaction between region of 

interest and the relative precision of different modulations. Overall, these findings are consistent 

with the hypothesis that the precision of top-down modulations in early visual cortex is limited 

by the precision of areas that generate and relay top-down feedback signals.   
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Methods 

Participants  

Five participants (3 females), who had normal or corrected-to-normal vision and were 

right-handed, were recruited from the University of California, San Diego (UCSD) community 

(mean age 26.0 ± 2.7 yr). All participants performed a one-hour behavioral training session 

followed by two fMRI scan sessions of the two main experimental tasks, each session lasting two 

hours. Participants were also scanned to obtain data for retinotopic mapping of occipital and 

parietal cortex in 1-2 separate fMRI sessions. In addition, extra runs of the bottom-up spatial 

mapping task were obtained for some participants who also participated in a separate study that 

used the same mapping task. Participants were compensated for their participation at a rate of 

$10/h for the behavioral training and $20/h for the scanning sessions. The local Institutional 

Review Board at UCSD approved the experiment, and all participants provided written informed 

consent. 

Stimulus generation and presentation 

All stimuli were projected on a 24 x 18 cm screen placed inside the bore of the scanner 

and viewed through a head-coil mounted mirror from 47 cm in a darkened room. Stimuli were 

generated and presented using MATLAB and the Psychophysics toolbox (66, 67). The 

luminance output from the projector was linearized in the stimulus presentation software and all 

stimuli were presented against a uniform grey background (286 cd/m2). 
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Figure 1.1 (a) Task procedure of top-down spatial attention task. Each trial started with a brief 
flicker of the white fixation dot at the center of the screen. After 300 ms, one of the two central 
cues indicating the quadrant (Diffuse) or the exact location (Focused) of the upcoming target was 
shown for 500 ms. The cues validly predicted the target location in all trials. A cue-to-target 
delay period followed, and the duration of the delay period varied between 2-8 s (2 s in catch 
trials and 6-8 s in non-catch trials; for detail, see section Top-down spatial attention task in 
Methods). A uniform flickering noise stimulus that was at the same contrast level as the target 
for the trial was present during the delay period. After the delay, the target grating was presented 
for 150 ms in one of the twelve possible locations, and the participants responded by button press 
whether the orientation of the target was closer to a horizontal or a vertical orientation. 
Placeholders (black circular lines) were present throughout the task, marking the possible target 
locations arranged on an imaginary circle. After the target offset, the subsequent trial started after 
an intertrial interval (ITI) of 5-7 s. Pre-scan training sessions used a slightly modified version of 
this task (see section Pre-scan training session in Methods for detail). (b) Task procedure for 
bottom-up spatial mapping task. In each of the 3-s trials, a wedge-shaped flickering 
checkerboard was presented in one of 24 locations, arranged on an imaginary circle. The 24 
wedges altogether tiled the target location areas in the attention task, and in the decoding 
analyses, data from adjacent wedges were combined to match the 12 target locations for the 
cross-generalization analysis (see section MVPA decoding in Methods). In this task, participants 
responded by button press whenever the contrast of the fixation changed. (c, d) Behavioral 
performance for the top-down spatial attention task, data combined from the scanning sessions 
and an independent eye-tracking session (see Supplementary Methods). (c)  Mean behavioral 
accuracy. Accuracy was higher in the diffuse compared to the focused condition by 2%. (d) 
Mean tilt offset. Tilt offsets were higher in the diffuse than in the focused condition. Colored 
dots represent data from individual participants. Error bars represent ±1 standard error of the 
mean (SEM). 
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Bottom-up spatial mapping task 

To estimate the precision of bottom-up spatial representations, we presented one of 24 

wedge-shaped flickering checkerboards at full contrast on each trial (Figure 1.1b). The wedges 

tiled an imaginary donut-shaped annulus that was 5 degrees of visual angle from the inner to the 

outer edge and spanned 4.5 - 9.5 degrees of visual angle from the center fixation point. Thus, 

each wedge covered 15° of arc (360°/24). The annulus covered the target locations in the top-

down attention task. The checkerboard stimulus on each trial was presented on a uniform grey 

background and a 0.2° central fixation point was present throughout the task. Participants were 

instructed to indicate, using a button press with their right index finger, changes in the contrast of 

the fixation dot that occurred on 20 out of 96 (20.8%) trials in each run, evenly split between 

increment and decrement of the contrast. 

Each trial consisted of a 3-s stimulus presentation period without any inter-trial intervals 

(ITIs). The location of the wedge was randomly selected on each trial with the constraint that 

wedges did not appear in the same quadrant consecutively. The contrast of the fixation dot 

changed at least 7s after the previous change. To ensure that participants performed below 

ceiling, we manually adjusted the task difficulty after every run by changing the percent contrast 

change of the contrast increment/decrement of the fixation. Each run consisted of 96 trials, a 

12.8-s blank period at the beginning of the run, and a 12-s blank period at the end of the run, 

adding up to 312.8 s. Participants completed a total of 9-15 runs of the spatial mapping task 

across 2-4 separate sessions. 
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Top-down spatial attention task 

Throughout the top-down spatial attention task, a white central fixation dot (0.2° 

diameter) on a dark grey central dot (105 cd/m2, 2° diameter) was used as a central fixation 

point. There were also placeholders for target locations present throughout the task, which 

consisted of 12 black circular lines equidistant from the center of the screen, marking the 12 

possible target locations. The placeholders tiled a donut-shaped annulus with a thickness of 5° 

visual angle, spanning 4.5 – 9.5° from the center of the screen, with three placeholders 

positioned in each of the four quadrants. Placeholders were used to facilitate attentional selection 

of the cued location(s). Each trial started with the white fixation dot flickering to indicate the 

trial onset and 300 ms later, followed by a cue presented for 500 ms (Figure 1.1a). One of two 

attention cues was presented on the dark grey central dot. The cue was either a diffuse cue or a 

focused cue; the diffuse cue was a filled, white arc covering a quadrant of the dark grey dot, 

indicating the quadrant that contains the upcoming target, and the focused cue was a 0.08° thick 

white line extending from the center to the outer edge of the dark grey dot, indicating the exact 

target location out of the 12 possible locations. The cues always validly predicted the target 

location, and the participants were explicitly instructed to covertly attend to the cued location 

while maintaining fixation at the white fixation dot.  

There was a delay period between the cue and the target which, in 24 trials (non-catch) 

out of 27 trials in a single run, varied between 6-8 s in steps of 400 ms, and in the remaining 3 

trials (catch), was fixed at 2 s. These different lengths of delay period were used to ensure that 

we had enough time points during the delay period to estimate neural response patterns before 

the onset of the target, and at the same time to force participants to direct attention right after the 

presentation of the cue in anticipation of the rare 2-s delays. The 2-s delay catch trials were 
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excluded from all analyses, behavioral or fMRI. During the delay period, a donut-shaped 

Fourier-filtered noise stimulus, which spanned 4.5 – 9.5° from the center of the screen, covering 

all possible target locations, counterphase flickered at 4 Hz. The noise stimulus consisted of 

white noise filtered to include only spatial frequencies between 1 and 4 c/°. During the first 

second of the delay period, the contrast of the noise ramped up linearly from 0% to the contrast 

of the target grating for that trial and continued flickering until target offset. The noise stimulus 

served as a dynamic continuous bottom-up input and also reduced transient signals caused by 

abrupt onset or offset of the target (68). 

After the delay, one of the placeholders switched to the target grating for 150 ms. 

Participants were instructed to report whether the orientation of the target was closer to a vertical 

or a horizontal orientation with a button press with their right index or middle finger, within 2 s 

after the target onset. The target stimulus was a circular sinusoidal grating (2.7° radius) with a 

smoothed edge (filtered through a 2.7° radius, 0.9° sd Gaussian kernel), presented at the 

eccentricity of 7° from the center fixation. The grating was presented in a phase that was chosen 

at random on each trial, and at one of five possible contrast levels (0, 5, 10, 20, 50% Michelson 

contrast). The grating had a spatial frequency of 0.91 c/° and an orientation that was tilted 

clockwise or counter-clockwise from 45° or 135° by variable offsets. The tilt offsets for each of 

the cue and the contrast conditions (10 conditions in total) started at the orientation threshold 

values measured from the pre-scan behavioral training session (see section Pre-Scan Training 

Session) and were adjusted manually by the experimenter between every run to match the 

cumulative accuracies across all conditions around 75%. For example, if the cumulative accuracy 

for a given condition (i.e., 5% contrast, focused cue condition) was lower than 75%, the tilt offset 



22 

for that condition was adjusted to a higher value, making it easier to detect the tilted direction. 

The response mapping was counterbalanced between participants. 

The ITI between the offset of the target and the onset of the next trial varied between 5-7 

s in steps of 400 ms. Each run consisted of 27 trials, a 12.8-s and 8-s blank period at the 

beginning and the end of the run, respectively, adding up to 383.2 s. Two cue conditions (diffuse 

or focused), five levels of contrast, and 12 target locations were fully counterbalanced across 5 

runs. The reference orientation (45° or 135°) and the direction of tilt from the reference 

(clockwise or counter-clockwise) were balanced for each of the cue, contrast, and target location 

combinations across the total of 20 runs carried out across two separate sessions. Due to 

technical difficulties, in one of the participants, behavioral and fMRI data for 20% contrast level 

in one session and behavioral responses for two runs were not collected.  

Pre-scan training session 

Before the scanning sessions, participants were trained on the top-down attention task in 

a separate pre-scanning session in the lab using the same task with the following exceptions. The 

cue-to-target delay period was shortened to 1 s, and there was no ITI between trials so that the 

next trial started as soon as the response for the current trial was made. Responses were made by 

pressing one of the two keys on a keyboard. The target grating was shown at lower contrast 

levels (2, 3, 5%), and tilt offsets were fixed at five levels (0, 5, 10, 15, 20°). There were 24 trials 

for each of the cue, contrast, and tilt offset combinations, and a total of 720 trials were split up 

into 12 blocks with short breaks in between. 
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Analysis of behavioral data 

To assess the effect of the attention cue and the contrast of the target on behavior, we 

performed a two-way ANOVA on the behavioral accuracy and the tilt offset. Cue was 

considered as a categorical factor, and contrast was considered as a continuous factor. First, we 

tested the main effect of the two factors on accuracy. P-values were computed using 

randomization testing to avoid assumptions that usually accompany parametric tests. Thus, to 

test the effect of cue, cue labels were shuffled across trials, restricted within each contrast level 

and participant, and then accuracy was averaged across trials to obtain the mean accuracy for 

each condition. Then, we performed the ANOVA on this data with the two factors, only testing 

for the main effects without the interaction term, to obtain the F-value for the main effect of cue. 

This procedure was repeated 1000 times, yielding a distribution of 1000 F-values under the null 

hypothesis that cue type did not affect the behavioral accuracy. A p-value was obtained by taking 

the proportion of F-values from this null distribution that exceeded the F-value obtained using 

the data with the unshuffled labels. The same procedure was repeated to test the main effect of 

contrast, but shuffling the contrast labels instead of the cue labels. 

Next, we tested the interaction effect between cue and contrast. We first performed an 

ANOVA on the accuracy data with only the main effects and obtained the residual from this test. 

This was done to exclude the variance explained by the main effects. To test the interaction 

between cue and contrast, we shuffled the labels of the residual data, restricted within each 

participant. Then, we performed the two-way ANOVA on the residuals, testing for the two main 

effects and the two-way interaction effect, to obtain the F-value for the interaction effect between 

cue and contrast. This procedure was repeated across 1000 iterations, yielding a distribution of 

1000 F-values, and a p-value was obtained by taking the proportion of F-values from this null 
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distribution that exceeded the F-value obtained using the data with unshuffled labels. The same 

series of the randomization tests was repeated on the tilt offset.  

Localizer task 

To localize voxels that maximally respond to the target locations in the bottom-up spatial 

mapping task and the top-down attention task, we presented a flickering checkerboard stimulus 

at full contrast shaped as a circular annulus, spanning 4.5 – 9.5° radius from the center fixation 

point (corresponding to the spatial locations of the bottom-up mapping stimuli and the attention 

target stimuli). The flickering localizer stimulus was presented on a uniform grey background 

with the same background luminance as in the top-down attention task, and a 0.2° central 

fixation point was present throughout the task. Each trial consisted of a 13-s stimulus 

presentation followed by a 13-s blank ITI. The task for the participants was the same as the 

bottom-up mapping task in which participants reported occasional changes in the contrast of the 

fixation point. Each run consisted of 12 trials and a 12.8-s blank period at the beginning of the 

run, adding up to 324.8 s. 

Magnetic resonance imaging 

All MRI scanning was performed on a General Electric (GE) Discovery MR750 3.0T 

research-dedicated scanner at the UC San Diego Keck Center for Functional Magnetic 

Resonance Imaging. Functional echo-planar imaging (EPI) data were acquired using a Nova 

Medical 32-channel head coil (NMSC075-32- 3GE-MR750) and the Stanford Simultaneous 

Multi-Slice (SMS) EPI sequence (MUX EPI), with a multiband factor of 8 and 9 axial slices per 

band (72 total slices; voxel size = 2-mm3 isotropic; 0-mm gap; matrix = 104 x 104; field of view 

= 20.8 cm; TR/TE = 800/35 ms; flip angle = 52°; in-plane acceleration = 1). Image 
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reconstruction procedures and unaliasing procedures were performed on local servers using 

reconstruction code from CNI (Center for Neural Imaging at Stanford). The initial 16 TRs 

collected at the onset of each run served as reference images required for the transformation from 

k-space to image space. Two short (17 s) “topup” data sets were collected during each session, 

using forward and reverse phase-encoding directions. These images were used to estimate 

susceptibility-induced off-resonance fields (69) and to correct signal distortion in EPI sequences 

using FSL (FMRIB Software Library; http://www.fmrib.ox.ac.uk/fsl) topup (70). 

During each functional session, we also acquired an accelerated anatomical scan using 

parallel imaging (GE ASSET on a FSPGR T1-weighted sequence; 172 slices; 1 x 1 x 1-mm3 

voxel size; TR = 8,136 ms; TE = 3,172 ms; flip angle = 8°; 1-mm slice gap; 256 x 192-cm matrix 

size) using the same 32-channel head coil. We also acquired one additional high-resolution 

anatomical scan (172 slices; 1 x 1 x 1-mm voxel size; TR = 8,136 ms; TE = 3,172 ms; flip angle 

= 8°; 1-mm slice gap; 256 x 192-cm matrix size) during a separate retinotopic mapping session 

using an Invivo eight-channel head coil. This scan produced higher quality contrast between gray 

and white matter and was used for segmentation, flattening, and visualizing retinotopic mapping 

data. 

Preprocessing 

All imaging data were preprocessed using software tools developed and distributed by 

FreeSurfer (https://surfer.nmr.mgh.harvard.edu) and FSL. Cortical surface gray-white matter 

volumetric segmentation of the high-resolution anatomical image was performed using the 

“recon-all” utility in the FreeSurfer analysis suite (71). Segmented T1 data were used to define 

regions of interest (ROIs) for use in subsequent analyses. The first volume of every functional 

https://surfer.nmr.mgh.harvard.edu/
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run was then coregistered to this common anatomical image. Transformation matrices were 

generated using FreeSurfer’s manual and boundary-based registration tools (72). These matrices 

were then used to transform each 4D functional volume using FSL FLIRT (73, 74), such that all 

cross-session data from a single participant was in the same space. Next, motion correction was 

performed using the FSL tool MCFLIRT (73) without spatial smoothing, a final sinc 

interpolation stage, and 12 degrees of freedom. Slow drifts in the data were removed last, using a 

high pass filter (1/40 Hz cutoff). No additional spatial smoothing was applied to the data apart 

from the smoothing inherent to resampling and motion correction. Signal amplitude time-series 

were normalized via z-scoring on a voxel-by-voxel and run-by-run basis. Z-scored data were 

used for all further analyses unless mentioned otherwise. Because trial events were jittered with 

respect to TR onsets, they were rounded to the nearest TR. The analyses performed after 

preprocessing were all carried out in MATLAB 9.1 using custom in-house functions (code to be 

posted on osf.org). 

Identifying Regions of Interest (ROIs) 

To identify voxels that were visually responsive to the target locations, a general linear 

model (GLM) was performed on data from the localizer task using FSL FEAT (FMRI Expert 

Analysis Tool, version 6.00). Individual localizer runs were analyzed using BET brain extraction 

(75) and data prewhitening using FILM (76). Predicted BOLD responses were generated for 

blocks of annulus stimulus by convolving the stimulus sequence with a canonical gamma 

hemodynamic response function (phase = 0 s, sd = 3 s, lag = 6 s). The temporal derivative was 

also included as an additional regressor to accommodate slight temporal shifts in the waveform 

to yield better model fits and to increase explained variance. Individual runs were combined 

using a standard weighted fixed effects model, and spatial smoothing was applied (2-mm 
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FWHM). Voxels that were significantly activated by the localizer stimulus (p < 0.05; FDR 

corrected) were defined as visually responsive and used in all subsequent analyses (see 

Supplementary Table 1.2 for the number of selected voxels for each ROI). Note that the voxels 

in each ROI were identified based on their responsiveness to bottom-up stimulus drive. 

However, this should not lead to the identification of voxels that are less sensitive to top-down 

modulations given that top-down and bottom-up factors are known to target the same regions of 

retinotopically organized visual areas (29, 77–79). Supplementary control analyses were 

conducted by selecting voxels based on activations during the top-down attention task, and the 

results are shown in Supplementary Figures 1.8 and 1.9. 

Retinotopic mapping stimulus protocol 

Retinotopic mapping data were acquired during an independent scanning session, 

following previously published retinotopic mapping protocols to define the visual areas V1, V2, 

V3, V3AB, V4, IPS0, IPS1, IPS2, and IPS3 (80–85). The participants viewed a contrast-

reversing checkerboard stimulus (4 Hz) configured as a rotating wedge (10 cycles, 36 s/cycle), 

an expanding ring (10 cycles, 36 s/cycle), or a bowtie (8 cycles, 40 s/cycle). To increase the 

quality of data from parietal regions, participants performed a covert attention task on the 

rotating wedge stimulus, which required them to detect contrast-dimming events that occurred 

occasionally (on average, 1 event occurred every 7.5 s) in a row of the checkerboard. This 

stimulus was limited to a 22° x 22° field of view. 

Anatomical and functional retinotopy analyses were performed using a set of custom 

wrappers around existing FreeSurfer and FSL functionality. ROIs were combined across left and 

right hemispheres and across dorsal and ventral areas (for V2–V3) by concatenating voxels. 
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Only visually responsive voxels, selected using the localizer procedure described in the 

section above, were included in each of the retinotopically defined ROIs. For MVPA analyses, 

IPS0, IPS1, IPS2, and IPS3 were combined into a single “IPS” ROI for each participant, because 

some IPS ROIs of some participants did not have enough number of visually responsive voxels 

to train and test classifiers (less than 50). 

Multivariate pattern analysis (MVPA) decoding 

The purpose of MVPA analysis was to compare the precision of bottom-up stimulus-

driven representations of spatial location and the precision of top-down attentional modulations 

based on the amount of information in voxel activation patterns in each ROI. 

Before performing MVPA, we first shifted all timepoints by 4 seconds to account for the 

hemodynamic lag. Then, we averaged voxel activation patterns for each trial across the 

timepoints of the whole trial from the bottom-up mapping task (3-s duration) and the cue-to-

target delay period from the attention task (6-8 s duration). To make sure that we were measuring 

information related to the relative pattern of activation across voxels in each ROI rather than 

information solely related to mean signal changes across conditions, we mean-centered each 

single-trial voxel activation pattern: For each trial and within each ROI, we calculated the mean 

amplitude across voxels and subtracted that value from the amplitude of each voxel, which 

resulted in trial-wise voxel activation patterns that have the across-voxel mean value at 0.  

We performed all decoding analyses using a linear support-vector machine (SVM). First, 

to measure the precision of bottom-up representations, the classifier was trained and tested on the 

bottom-up spatial mapping task data in a leave-one-run-out manner. Critically, data points for 

two adjacent wedges were grouped together under the same location label to match the 12 target 
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locations in the attention task. Decoding accuracy was calculated as the proportion of trials 

where the location predicted by the classifier matched the location where the wedges were 

presented. Next, to measure the precision of top-down attentional modulations, we used cross-

generalization in which the classifier was trained using all data from the bottom-up mapping task 

and then tested on the top-down attention task data. Decoding accuracy was calculated as the 

proportion of trials where the location predicted by the classifier matched the location where the 

target was presented, separately for cue conditions. Finally, as a control analysis, the classifier 

was trained and tested on the top-down attention task data in four folds, as task conditions were 

counterbalanced across five runs. That is, the first 15 out of 20 runs were used to train the 

classifier, using the target location as the labels, and then the classifier predicted the target 

location for each trial in the five runs that were left out. This procedure was repeated four times 

leaving out a different fold (five counterbalanced runs) each time. Decoding accuracy was 

calculated as the proportion of trials where the location predicted by the classifier matched the 

location where the target was presented, separately for cue conditions. As it was not our focus of 

the present study, contrast levels in the top-down attention task were not considered as a factor, 

and data were collapsed across contrast levels (see Supplementary Figures 1.3-1.4 for analysis 

results with contrast as an additional factor; also see Supplementary Figure 1.2 for univariate 

BOLD response changes across contrast). 

Assessing spatial precision of top-down and bottom-up representations with decoding 

errors 

To make further inferences on the qualitative aspects of the spatial representation based 

on the decoding errors in the above analyses, we acquired classifier predictions in each trial for 

each ROI and sorted them by the stimulated (in the bottom-up mapping task) or the cued (in the 
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top-down attention task) locations and organized the output into 12 x 12 matrices (Figure 1.4). 

For analysis and visualization purposes, we labeled spatial positions arbitrarily from 1 to 12, 1 

being the leftmost position in the first quadrant and the number increasing in clockwise direction. 

To make quantitative comparisons between these confusion matrices, we performed a linear 

regression on each matrix with a diagonal and an off-diagonal regressor (Figure 1.5a). Both 

regressors were 12 x 12 matrices, and the diagonal regressor was created by assigning ones in the 

cells on the diagonal and zeros in the rest. The off-diagonal regressor was created by first 

assigning ones in the 3 x 3 groups of cells reflecting the quadrants of the spatial locations and 

zeros in the rest, and then subtracting the diagonal regressor from it so that there was no overlap 

between the two regressors. These regressors and a constant term were used as predictors in the 

linear regression model, which was fit to individual confusion matrices to obtain beta weights for 

each participant and regressor. Then, to compare these beta weights across ROIs and 

tasks/conditions, we computed ratios by dividing the diagonal beta weight by the off-diagonal 

beta weight and then log transforming the result (Figure 1.5b).  

Statistical procedures for MVPA 

To be conservative, all statistics reported regarding the MVPA results were based on non-

parametric randomization tests over 1000 iterations (note that all results reported as significant 

are also significant using standard parametric approaches). To assess the significance of 

decoding accuracy in the bottom-up mapping task (Figure 1.2a), within each iteration of the 

leave-one-run-out procedure, the location labels for the test data were shuffled when computing 

the decoding accuracy for each ROI. Then, average decoding accuracy for each ROI was 

obtained by taking the mean across all runs. We repeated this procedure 1000 times to compute a 

distribution of decoding accuracies for each participant and each ROI under the null hypothesis 
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that the location of the stimulus had no impact on voxel activation patterns. To assess the 

significance of decoding accuracy at the group level, we then performed t-tests between the 

shuffled decoding accuracies across all participants and chance accuracy (1/12) to obtain a single 

distribution of 1000 t-values. We obtained p-values for each ROI by calculating the proportion of 

iterations on which the shuffled t-values exceeded the real t-value that was obtained using the  

 

Figure 1.2 (a) Decoding accuracy based on fMRI activation patterns in the bottom-up spatial 
mapping task (white bars) and the top-down spatial attention task (Diffuse and Focused 
condition; light and dark gray bars). In the bottom-up mapping task, decoding accuracy was 
highest in V1 and decreased in later visual areas. In the top-down attention task, decoding 
accuracy was generally higher in the focused than in the diffuse condition. While top-down 
decoding accuracy was much lower than bottom-up decoding accuracy in V1, accuracy in the 
bottom-up mapping task and the focused condition was comparable in later areas (e.g. V3AB, 
V4, IPS), leading to an interaction between task type (bottom-up vs top-down) and visual areas. 
Filled, colored dots represent data from individual participants, and error bars represent ±1SEM. 
The dotted line indicates chance performance (1/12 or ~.083). (b) To better visualize the 
interaction between task type and visual areas, we computed the ratio between bottom-up and 
top-down decoding accuracies for each ROI. To obtain this ratio, the top-down decoding 
accuracy was divided by the bottom-up decoding accuracy within each ROI, separately for the 
diffuse and the focused conditions. A low ratio score indicates that an ROI had higher decoding 
accuracy in the bottom-up mapping task, consistent with higher precision of bottom-up 
representations. A high ratio score indicates that an ROI had higher decoding accuracy in the 
top-down task, consistent with higher precision of top-down representations. While V1 showed 
higher bottom-up precision, later areas showed comparable level of bottom-up and top-down 
precision. Colored dots represent data from individual participants. Error bars are ±1SEM. 
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unshuffled data. To assess whether decoding accuracies were significantly different across ROIs, 

we shuffled the ROI labels within each participant and performed one-way repeated measures 

ANOVA on the decoding accuracies with ROI as a factor to obtain 1000 F-values under the null 

hypothesis that ROI had no impact on decoding performance. The p-value was calculated as the 

proportion of shuffled F-values that exceeded the real F-value. 

To assess the precision of top-down modulations in the attention task (Figure 1.2a), we 

first assessed the significance of classifier decoding performance in each ROI by collapsing data 

across cue conditions and comparing it to chance (1/12). We performed a randomization test by 

shuffling the location labels in the test (attention task) data 1000 times, and then we computed 

paired t-tests on the decoding accuracy against chance. The p-value for each ROI was obtained 

by computing the proportion of shuffled t-values that exceed the real t-value.  

To evaluate the impact of the attention cue on the top-down precision, we performed a 

randomization test for three-way ANOVA on the decoding accuracy with cue and ROI as 

factors. First, we tested the main effect of the two factors. To test the effect of cue type, cue 

labels were shuffled across trials, restricted within each ROI and participant, and then the 

classifier correctness for each trial was averaged to obtain decoding accuracy for each condition. 

Then, we performed an ANOVA on this data, only testing for the two main effects without the 

interaction terms, to obtain the F-value for the main effect of cue. This procedure was repeated 

across 1000 iterations, which yields a distribution of 1000 F-values under the null hypothesis that 

cue conditions did not affect the decoding accuracy. A p-value was obtained by taking the 

proportion of F-values from this null distribution that exceeded the F-value obtained using the 

data with unshuffled labels. The same procedure was repeated to test the main effects of ROI. 
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Next, we tested the interaction effects between the two factors. We first performed an 

ANOVA on the decoding accuracy with only the main effects and obtained the residuals. This 

was done to exclude the variance explained by the main effects. To test the interaction between 

cue type and ROI, we shuffled the labels of the residual data, restricted within each participant. 

Then, we performed an ANOVA on the residuals, testing for the two main effects and the 

interaction effect, to obtain the F-value for the interaction effect between cue type and ROI. This 

procedure was repeated 1000 times, yielding a distribution of 1000 F-values, and a p-value was 

obtained by taking the proportion of F-values from this null distribution that exceeded the F-

value obtained using the data with unshuffled labels.  

To further examine the significant interaction effects between cue type and ROI from the 

above analysis, we tested the effect of cue type within each ROI. We first shuffled the cue labels 

across trials within each ROI and participant, and averaged classifier accuracy across trials to 

obtain decoding accuracy for each cue condition. Next, we performed a paired t-test between the 

decoding accuracies from each cue condition to obtain the t-value for each ROI. This procedure 

was repeated across 1000 iterations, yielding a distribution of 1000 F-values for each ROI, under 

the null hypothesis that cue conditions did not affect decoding accuracy. Then, a p-value for each 

ROI was calculated by taking the proportion of iterations where shuffled t-values exceed the real 

t-value, the proportion of iterations where the real t-value exceeded the shuffled t-values, and 

then taking the minimum value and multiplying it by two for a two-tailed test.  

To compare the difference between the precision of bottom-up and top-down 

modulations across ROIs (Figure 1.2b), we divided the decoding accuracy for each cue condition 

in the top-down attention task by the decoding accuracy in the bottom-up spatial mapping task, 

for each ROI. To assess the effect of cue and ROI on these ratio scores, we performed a 
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randomization test using a two-way ANOVA on the ratio scores with cue type and ROI as 

factors. First, we tested the main effect of the two factors on the ratio score. To test the effect of 

cue type, cue labels were shuffled across trials in the attention task data, restricted within each 

participant and ROI, and then the accuracy on each trial was averaged to obtain average accuracy 

for each condition. Then, decoding accuracies for each condition in the top-down attention task 

were divided by the decoding accuracy from the bottom-up mapping task. We performed the 

two-way ANOVA on this ratio scores, only testing for the main effects of cue and ROI, to obtain 

the F-value for the main effect of cue. This procedure was repeated 1000 times, yielding a 

distribution of 1000 F-values under the null hypothesis that cue conditions did not affect the ratio 

scores. A p-value was obtained by taking the proportion of F-values from this null distribution 

that exceeded the F-value obtained using the data with unshuffled labels. The same procedure 

was repeated to test the main effect of ROI, in which ROI labels for each trial were shuffled 

within each cue condition and participant, instead of cue labels. Next, we tested the interaction 

effect between cue and ROI. We first performed a two-way ANOVA on the ratio scores with 

only the main effects and obtained the residuals. This was done to exclude the variance explained 

by the main effects. To test the interaction between cue and ROI, we shuffled the labels of the 

residual data, restricted within each participant. Then, we performed the two-way ANOVA on 

the residuals, testing for the two main effects and the two-way interaction effect, to obtain the F-

value for the interaction effect between cue type and ROI. This procedure was repeated 1000 

times, yielding a distribution of 1000 F-values, and a p-value was obtained by taking the 

proportion of F-values from this null distribution that exceeded the F-value obtained using the 

data with unshuffled labels. 
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To assess the significance of difference between task conditions and ROIs on the beta 

weight ratios from the confusion matrices obtained from the previous section, the same 

procedure of the two-way ANOVA as described in the above paragraph was applied to the beta 

weight ratios, but using task labels (Bottom-up, Diffuse, and Focused) instead of cue types.  

Additional control and single-subject analyses 

In all analyses reported, we performed MVPA using all visually responsive voxels from 

each ROI as defined using the functional localizer (the circular annulus stimulus, see section 

Localizer task). In the interest of making classification performance more comparable across 

ROIs, we also repeated all analyses after restricting the voxels to the top 300 voxels that were 

most responsive to the functional localizer in each ROI (ranked by F-values). Overall, reducing 

the number of voxels did not lead to significant changes in the pattern of decoding performance 

across ROIs (see Supplementary Figure 1.5).  

In addition, to assess how many individual subjects also showed the same effects that we 

report in the group data, we also performed the randomization tests described above within each 

participant. This was done by shuffling the condition labels corresponding to the effect we want 

to test 1000 times, performing statistical tests (t-test or ANOVA) on the single-trial data, and 

then calculating the proportion of shuffled t- or F-values that exceed the statistical values from 

real data. We counted how many participants showed a significant result for each test and 

reported them in addition to the group-level statistics (Supplementary Table 1.1). 

  



36 

Results 

We first report the behavioral results of the top-down attention task. Then, we present 

fMRI results from the bottom-up mapping task, estimating the precision of stimulus-driven 

responses in each visual area. Finally, we present fMRI results from the top-down attention task 

and compare them with the precision of the stimulus-driven responses to estimate the relative 

precision of both types of modulation.  

To be conservative with our statistical tests, we evaluated significance using non-

parametric randomization tests over 1000 iterations (see sections Analysis of behavioral data and 

Statistical procedures for MVPA analysis in Methods). In addition, we performed statistical 

analyses on single-subject data and reported the number of participants that showed significant 

results in the same direction as in the group-level analyses (see section Additional control and 

single-subject analyses in Methods and Supplementary Table 1.1).  

Behavior 

Participants (n=5), analyzed at the single-subject and group level, performed a top-down 

spatial attention task in which they were cued to the quadrant (Diffuse condition) or the exact 

location (Focused condition) of the target. When the target grating appeared, participants 

indicated whether its orientation was closer to a horizontal or a vertical orientation (Figure 1.1a). 

During a 6-8 second cue-to-target delay period (2 seconds on catch trials), a spatially uniform 

noise stimulus was presented. The contrast of the noise stimulus matched the contrast of the 

target, which varied across 5 different levels (0, 5, 10, 20, 50% Michelson contrast). To equate 

task difficulty across all cue and contrast conditions, we adjusted the task difficulty (tilt offset of 

the target relative to 45° or 135°; see section Top-down spatial attention task in Methods for 
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detail). Task difficulty adjustments were performed separately for each condition between every 

run to maintain accuracy at approximately 75% across all conditions.  

Since there was no interaction between contrast and other factors (see Supplementary 

Figures 1.3-1.4), behavioral data were collapsed across contrast (see section Analysis of 

behavioral data in Methods). In addition to the scanning sessions, participants completed an 

additional eye-tracking session in which they performed the same attention task, and data from 

the eye-tracking session and the scanning sessions were combined (see Supplementary Figure 

1.1 for behavioral results of individual sessions and Supplementary Figure 1.7 for eye-tracking 

results). A paired t-test between cue types (Diffuse vs. Focused) was performed separately on the 

accuracy and the tilt offset. The effect of cue on the tilt offset was significant, as the tilt offset 

was larger in the diffuse compared to the focused condition (p < 0.05; Figure 1.1d). Accuracy in 

the diffuse condition was also slightly higher compared to the focused condition (by 2% 

difference, p < 0.01; Figure 1.1c). These results indicate that participants were able to detect 

smaller perceptual changes in the focused condition compared to the diffuse condition. That said, 

there was a small change in accuracy that may contribute to the observed effect of attention on 

the size of the tilt offset. However, this tradeoff was not a major concern as the focus of the 

fMRI analyses was on the comparison of the relative precision between top-down and bottom-up 

representations as opposed to focused vs. diffuse attention.  

Bottom-up spatial mapping task: estimating the precision of bottom-up stimulus-driven 

representations 

To measure the spatial precision of stimulus-driven representations in retinotopically 

defined regions of interest (ROIs) in occipital and parietal cortex, we performed a separate 

bottom-up spatial mapping task in which participants viewed a series of small stimuli presented 
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in one of 24 locations around an imaginary circle centered on fixation (Figure 1.1b). To equate 

the number of spatial positions across the bottom-up and the top-down attention task, the bottom-

up task data from adjacent wedges were collapsed to match the 12 target locations in the top-

down attention task (analysis results without collapsing reported in Supplementary Figure 1.6). 

To control for any differences in the mean signal level across tasks, we calculated and subtracted 

the mean amplitude across all voxels on a trial-by-trial basis separately for each ROI, which 

centered the average amplitude across voxels on zero for both tasks. We then trained and tested a 

linear classifier on the activation patterns extracted from each visual area to decode the spatial 

location of the stimulus on each trial using leave-one-run-out cross-validation (see section MVPA 

decoding in Methods).  

Decoding accuracy was above chance in all ROIs (Figure 1.2a, white bars; one-tailed t-

test, all p’s < 0.02, p-value computed via randomization test, see section Statistical procedures 

for MVPA analysis in Methods). However, decoding accuracy was significantly different across 

ROIs, and was numerically highest in V1 and numerically lower across subsequent areas of the 

visual hierarchy (one-way ANOVA on decoding accuracy across ROIs, p < 0.001). This pattern 

is consistent with prior reports indicating that the spatial precision of bottom-up sensory 

representations is most precise in V1, less precise in mid-level occipital regions, and lowest in 

IPS (see 22, 86). 

Top-down attention task: estimating the spatial precision of top-down attentional 

modulations 

Next, to estimate the spatial precision of top-down attentional modulations, we trained a 

classifier on the bottom-up mapping task and cross-generalized that classifier to decode attended 
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spatial locations during the cue-to-target delay period in the top-down attention task. We 

performed this cross-generalization analysis with the assumption that training the classifier using 

precise and focal mapping stimuli would allow us to estimate the spatial precision of top-down 

attentional modulations relative to the precision of bottom-up representations. Thus, a high 

degree of cross-generalization would suggest that top-down attentional modulations are as 

precise as bottom-up stimulus-driven representations. In contrast, a lower degree of cross-

generalization would suggest that top-down modulations are less precise than the bottom-up 

representations observed in the bottom-up mapping task. Note that this logic holds only if the 

neural codes for spatial position share a common format across the bottom-up and top-down 

tasks. To account for a case in which this is not true, in a later section we report a 

complementary decoding analysis performed within the top-down attention task.  

As with behavioral results reported above, all statistical analyses were performed after 

collapsing across contrast levels (analysis results without collapsing reported in Supplementary 

Figures 1.3-1.4). First, all ROIs showed cross-generalized decoding performance that was above 

chance when collapsed across cue conditions (Figure 1.2a, light and dark gray bars; one-tailed t-

test against chance, p’s < 0.01; see Supplementary Table 1.1 for the number of participants who 

showed significant effect when tested within individual participants). A two-way ANOVA on 

decoding accuracies with cue type (Diffuse vs. Focused) and ROI as factors revealed significant 

main effects of both factors (both p’s < 0.001). There was also a significant interaction between 

cue type and ROI (p < 0.001). To further explore the cause of this interaction, we tested the 

effect of cue type within each ROI. Decoding accuracy was significantly higher in the focused 

than in the diffuse condition in all ROIs except V1 (two-tailed t-test, V1: p = 0.07, other ROIs: 

p’s < 0.05).  
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To directly assess the interaction between ROI and the precision of top-down and 

bottom-up modulations, we next computed the ratio between the bottom-up and top-down 

decoding accuracy. For this analysis, top-down decoding accuracies were divided by the bottom-

up accuracies for each ROI (Figure 1.2b). A low ratio score means higher bottom-up decoding 

accuracy compared to top-down decoding accuracy, consistent with higher precision of bottom-

up representations. A high ratio score means higher top-down decoding accuracy compared to 

bottom-up decoding accuracy, consistent with higher precision of top-down representations. As 

shown in Figure 1.2b, V1 had the lowest ratio score, indicating that the bottom-up decoding 

accuracy was much higher than top-down decoding accuracy in V1. Critically, there was a 

gradual decrease in the magnitude of ratio scores across the visual hierarchy, with later regions 

showing a similar level of top-down and bottom-up decoding accuracy. For instance, the ratio 

scores in V3AB, V4, and IPS were close to or above one, demonstrating that top-down decoding 

accuracy is comparable to or even slightly higher than the bottom-up decoding accuracy in these 

areas. We also found that there was a relatively higher top-down decoding accuracy across areas 

in the focused cue condition. A two-way ANOVA on the ratio scores with cue type and ROI as 

factors revealed significant main effects of both factors (both p’s < 0.001; see Supplementary 

Table 1.1 for the number of participants who showed significant effect when tested within 

individual participants), and a significant interaction between these factors (p < 0.001). Thus, 

even though the absolute value of decoding accuracies cannot be compared within a single ROI 

given differences in task parameters, the relative precision of bottom-up and top-down 

modulations changes systematically across visual areas.  

Finally, to control for the possibility that top-down and bottom-up information about 

spatial position might be represented in different formats, we performed an additional analysis in 
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which the classifier was trained and tested using only data from the top-down attention task. V1 

still yielded the lowest top-down decoding accuracy (Figure 1.3), and other ROIs followed the 

similar pattern observed in the cross-generalization results presented in Figure 1.2.  

 

Figure 1.3 Similar to Figure 1.2 but only using data from the top-down attention task to train and 
test the classifier for the top-down decoding accuracy. (a) Decoding accuracy based on fMRI 
activation patterns in the bottom-up spatial mapping task (white bars) and the top-down spatial 
attention task (Diffuse and Focused conditions; light and dark gray bars). For comparison, 
bottom-up decoding accuracies from Figure 1.2a are plotted together. The general pattern of 
results followed Figure 1.2a: decoding accuracy in the top-down attention task was generally 
higher in the focused than in the diffuse condition, albeit to a lesser degree. Comparing across 
ROIs, while V1 showed much lower top-down decoding accuracy relative to bottom-up 
decoding accuracy, later areas (e.g. V3AB, V4, IPS) showed comparable decoding accuracies 
across tasks, leading to an interaction between task type and visual areas. Filled, colored dots 
represent data from individual participants, and error bars represent ±1SEM. The dotted line 
indicates chance performance (1/12 or ~.083). (b) Ratio of decoding accuracies between top-
down attention and bottom-up mapping task. To obtain this ratio score, the top-down decoding 
accuracy for each ROI was divided by the bottom-up decoding accuracy in that ROI, separately 
for the diffuse and the focused conditions. A low ratio score indicates that an ROI had higher 
decoding accuracy in the bottom-up mapping task, consistent with higher bottom-up precision. A 
high ratio score indicates that an ROI had higher decoding accuracy in the top-down task, 
consistent with higher top-down precision. While V1 showed relatively higher bottom-up 
precision, later areas showed comparable level of bottom-up and top-down precision, showing a 
similar pattern of results to Figure 1.2b. Colored dots represent data from individual participants. 
Error bars are ±1SEM. 
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Complementary approach to comparing bottom-up and top-down spatial precision 

As an additional assessment of bottom-up and top-down precision, we next quantified the 

confusability of decoded spatial positions in the bottom-up mapping and the top-down attention 

tasks because classifier errors should track the similarity between the activation patterns 

associated with nearby spatial positions. Thus, the pattern of decoding errors provides a more 

nuanced description of the relationship between voxel activation patterns associated with 

different spatial positions and the precision of those representations.  

Figure 1.4 shows the group-averaged confusion matrices for the actual target locations 

plotted against the classifier-predicted locations in the bottom-up mapping and the top-down 

attention tasks. For the attention task, confusion matrices from the cross-generalization analysis 

(reported in Figure 1.2a) are plotted, and data were collapsed across contrast levels as well. Each 

cell within a matrix is color-coded to indicate the proportion of trials for which the classifier 

predicted the spatial position labeled by the row, out of all trials in which the target was 

presented at the spatial position labeled by the column. For example, for the bottom-up mapping 

task, in the most upper-left cell of the V1 confusion matrix, the high value marked with light 

green color (50.17%) indicates that out of all trials in which the target was presented at position 

1, the classifier correctly predicted approximately half of those trials as position 1.  

In the bottom-up mapping task and the focused condition in the top-down attention task, 

predictions were centered on and around the main diagonal, consistent with the classifier 

inferring the correct spatial position. In contrast, predictions in the diffuse condition showed a 

clustering pattern within the quadrant of the presented target. This clustering indicates that the  
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Figure 1.4 Confusion matrices of classifier predictions for the presented stimulus location in the 
bottom-up mapping task and the cued location in the top-down attention task. For analysis and 
visualization purposes, spatial locations were arbitrarily labeled from 1 to 12, 1 being the 
leftmost position in the first quadrant with numbers increasing in the clockwise direction. Each 
cell within the matrices was colored based on values within the range of 0-80% for the bottom-
up mapping task and 0-50% for the top-down attention task conditions, as indicated in the color 
bars on the right (this was done to make patterns easier to discern). The vertical dotted white 
lines in the diffuse condition matrices (middle row) divide the 12 spatial locations into the 4 cued 
quadrants. In the bottom-up mapping task (top row), classifier predictions were clustered on the 
diagonal, where the predicted location closely tracked the actual stimulus location. In the focused 
condition of the top-down attention task (bottom row), the diagonal pattern was visible but to a 
lesser degree than that in the bottom-up mapping task. In the diffuse condition of the top-down 
attention task (middle row), classifier predictions were clustered within the cued quadrant, 
indicating that the attentional modulation was spread across the whole quadrant, consistent with 
subjects using the diffuse cue as intended. 

 

classifier was distributing guesses more uniformly across the three locations within each 

quadrant, corresponding to the cued locations in the diffuse condition.  

To quantify differences in representational precision reflected in the confusion matrices 

between tasks and task conditions, we used a general linear model with a diagonal and off-
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diagonal predictors (Figure 1.5a). The diagonal predictor captures a narrow, precise spatial 

representation and the off-diagonal predictor captures a broad, quadrant-wide spatial 

representation. These two predictors were used as regressors on each of the confusion matrices in 

Figure 1.4 to calculate beta weights in each task/condition, separately for each participant. We 

then computed a ratio between the two beta weights by dividing the diagonal beta weight by the 

off-diagonal beta weight and log-transforming the resulting value. Thus, the ratio value should 

be near zero if both beta weights are similar, larger than zero if the diagonal weight is higher 

than the off-diagonal weight, and below zero if the diagonal weight is lower than the off-

diagonal weight (Figure 1.5b).  

The results were consistent with our earlier comparison of bottom-up and top-down 

decoding accuracies. Representations in the bottom-up mapping task were highly precise, with 

the beta weight ratios highest in V1 and gradually decreasing in later areas. Compared to the 

bottom-up representation, top-down spatial representations in the focused condition were less 

precise in earlier areas, especially in V1, but reached a comparable level of precision in later 

areas. Finally, top-down representations in the diffuse condition were not precise and spread 

across a quadrant, showing beta weight ratios close to zero across all ROIs. A two-way ANOVA 

on the beta weight ratios with task condition (Bottom-up vs. Diffuse vs. Focused) and ROI as 

factors supports this trend, with significant main effects of task condition and ROI, as well as a 

significant interaction between these factors (all p’s < 0.001). 
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Figure 1.5 (a) Diagonal and off-diagonal regressors used to fit the confusion matrices shown in 
Figure 1.4. Cells colored black were assigned ones, and cells colored white were assigned zeros. 
(b) Ratio of beta weights in the bottom-up mapping task and the diffuse and focused conditions 
from the top-down attention task. The beta weights for the diagonal regressor were divided by 
the beta weights for the off-diagonal regressor and then plotted on a logarithmic scale. Beta 
ratios above zero indicate that the diagonal beta weight was larger than the off-diagonal beta 
weight, and beta ratios below zero indicate that the off-diagonal beta weight was larger than the 
diagonal beta weight. Beta weight ratios in the bottom-up mapping task were all above zero, with 
the highest value in V1 and gradually decreasing in later areas. Beta weight ratios in the diffuse 
condition from the top-down attention task were close to zero across all ROIs. Beta weight ratios 
in the focused condition from the attention task were above zero for all ROIs, but when 
compared to the ratios from the bottom-up task, the ratios for earlier areas were much smaller 
while ratios for later areas were at a similar level. Colored dots represent data from individual 
participants. Error bars are ±1SEM. 
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Discussion 

Although top-down attention is critical for selecting and enhancing the processing of 

relevant sensory stimuli, the role of anatomical constraints in frontal and parietal areas (e.g., 

larger receptive fields) in determining the precision of top-down attentional modulations is not 

well understood. Here, we used a bottom-up mapping task and a top-down attention task to 

assess decoding accuracy based on voxel activation patterns in human visual areas. Because the 

tasks were – by necessity – different, we cannot directly compare decoding accuracies within a 

single visual area. However, the pattern of relative decoding accuracy across areas is revealing: 

Bottom-up decoding accuracy was significantly higher than top-down decoding accuracy in V1, 

but decoding accuracy was comparable in mid-level occipital areas and in IPS. These 

observations are consistent with the idea that the representational precision of the areas 

generating top-down control signals, coupled with the precision of mid-level areas that are the 

primary targets of these signals (61, 87), limits the precision of modulations in early parts of the 

visual system that have the highest bottom-up fidelity.  

As a measure of precision, we used decoding accuracy to quantify the information 

content of spatial representations and the associated confusion matrices to provide a more 

descriptive assessment of the representational precision. Note that our measure of precision, 

decoding accuracy, and the pattern of decoding errors might be impacted by several different 

single-neuron modulations like a change of gain and/or tuning bandwidth in individual neurons. 

However, these underlying single-unit modulations jointly contribute to the overall amount of 

spatial information in the voxel activation patterns, and thus the decoding accuracy provides an 

overall assessment of aggregate changes in the representational precision in a visual area. In 

addition, the low degree of cross-generalization from the bottom-up mapping task to the top-
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down attention task in V1 might be due to differences in stimulus attributes, such as spatial 

frequency, between the two tasks. However, Figure 1.3 reveals that the same pattern is observed 

even when evaluating top-down decoding accuracy using only data from the top-down attention 

task, in which all low-level stimulus attributes are equated. Furthermore, our decoding methods 

do not rule out the possibility that differences in the signal-to-noise ratio across brain areas or 

tasks contributed to the observed pattern of results. That said, we consider noise as one key 

factor that is partially responsible for the differences in spatial precision across ROIs. On this 

account, it should be noted that lower signal and/or higher noise could both contribute to lower 

overall spatial precision in this study. 

Our initial hypothesis was that the spatial resolution of attentional modulations in early 

visual cortex would be limited due to the large receptive field sizes in attentional control areas 

where the top-down signals presumably originate. However, the precision of a spatial 

representation in a population of neurons is not just limited by the size of receptive fields. 

Instead, the spatial precision of a given area can be substantially higher than that of individual 

neurons via pooling information across many neurons (88–93) . However, even if precision gets 

higher with pooling, the precision of neural codes in areas with smaller RFs (and more neurons, 

such as V1) is still likely to reach a higher theoretical asymptote than areas with larger RFs (and 

fewer neurons). That said, this logic relies on assumptions about how the information is pooled 

and utilized by subsequent stages of processing (e.g., pooling may be sub-optimal, thus 

undercutting the theoretical upper limit of precision). 

At first glance, our results may seem contradictory to previous studies that have reported 

evidence for highly detailed representations in V1 that rely on top-down feedback. For example, 

studies of visual working memory have shown that mnemonic representations held over a long 
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period of time can be highly precise in V1 and less so in later cortical regions, which is opposite 

to the pattern we observed here (e.g., 94–97). However, in these working memory studies, the 

initial presentation of the to-be-remembered sample stimulus likely evoked a highly precise 

bottom-up response that could be maintained with high fidelity during the delay period via top-

down modulatory signals. In contrast, the present task provides a more direct assessment of the 

precision of purely top-down modulations, as there was no initial stimulus that evoked a spatially 

specific bottom-up response. Instead, participants were only given a symbolic central cue to 

guide the deployment of spatial attention, which enabled us to measure top-down attention that is 

not contaminated by bottom-up stimulus drive.  

Our results likewise provide more information about the precision of top-down 

modulations by requiring attention to one of 12 contiguous locations, which is a more fine-

grained manipulation of top-down attention than commonly used. For example, previous studies 

that focused on pure top-down processes have reported univariate BOLD modulations in early 

visual cortex, even before any physical stimulus is presented (26, 29). However, in these studies, 

univariate BOLD responses were averaged over a relatively broad region of visual cortex and 

participants attended to one of only few possible locations (e.g., left visual field vs right visual 

field, or one of the four quadrants). Thus, these prior studies do not directly reveal information 

about the precision of top-down modulations in situations where highly focused attention is 

required. Similarly, other studies of mental imagery have reported that multivariate activation 

patterns in early areas like V1 carry item-specific information even in the absence of a bottom-up 

stimulus (35, 38, 41–43). However, these mental imagery studies typically used a small set of 

categorical images, which means that the activation patterns only need to be sufficiently precise 

to successfully discriminate coarsely related exemplars. More recently, Breedlove et al. (98) used 
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an encoding model and found that identification accuracy for 64 visual images was higher for 

presented versus imagined images in early visual areas and comparable in later areas of the 

visual hierarchy such as IPS. Furthermore, Favila et al. (99) modelled population receptive fields 

(pRF) to map evoked responses during cued memory recall of spatial locations and found that 

recalled representations had lower spatial precision compared to representations during stimulus 

presentation in earlier areas of the visual hierarchy, while their precision was comparable in 

areas such as hV4 and later. These recent reports from studies on mental imagery and memory, 

which also involve top-down feedback signals, appear to converge with the present results that 

focus on spatial attention to specific locations in the visual field.  

Finally, for the decoding analysis of spatial position on the diffuse cue trials, we used the 

presented target locations as the “correct” labels to compute the decoding accuracy. This would 

naturally lead to lower decoding performance for the diffuse cue condition, given that the 

attention manipulation results in a broad modulation across the whole quadrant, and the 

participant, unlike the classifier, does not know the target location until the target is presented. 

Thus, it is not surprising, due to the setup of the classifier, that the decoding accuracy for the 

exact target position is lower in the diffuse compared to the focused condition. However, we do 

not view this as problematic for several reasons. First, the results indicate that the classifier 

confused locations within a quadrant with about equal probability, consistent with participants 

spreading spatial attention appropriately across a quadrant in response to the diffuse cues (see 

Figure 1.4, middle row). Therefore, lower decoding accuracy in the diffuse condition accurately 

reflects lower spatial precision of the top-down representation. Second, our primary focus was on 

the comparison between bottom-up and top-down precision across visual areas, so the key 

findings rely primarily on the bottom-up mapping task and the focused cue trials.  
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In conclusion, our findings reveal an interaction between visual areas and the relative precision 

of bottom-up and top-down modulations, suggesting that top-down modulations are not as 

precise as bottom-up modulations in early visual areas compared to later areas. This is important 

because these early areas, particularly V1, have small receptive fields and are thus ideal 

candidates for high-fidelity top-down modulations. This comparative lack of top-down precision 

may be the result of relatively coarse spatial coding in frontal and parietal cortex and the 

anatomical pattern of feedback projections that primarily target mid-level visual areas as opposed 

to earlier areas with the highest potential for spatially focal representations.  
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Supplementary Methods and Results 

Quantifying univariate BOLD response changes in the attention task 

To measure the change in the average magnitude of the BOLD response across all voxels 

in each ROI as a function of stimulus contrast and cue condition, we averaged BOLD responses 

from attended quadrants only. First, we selected voxels within each ROI that responded 

significantly to the stimulus locations in each quadrant. Using the mapping task data, we labeled 

the trials based on the quadrant that the wedge was presented in, and then using a similar 

procedure for identifying ROIs from the localizer task, performed a GLM with FSL FEAT. We 

contrasted beta estimates for one quadrant against estimates for all other quadrants and repeated 

this across all quadrants to select significant voxels for each quadrant (p < 0.05; FDR corrected). 

Next, we shifted all timepoints in the attention task by 4 seconds to account for the 

hemodynamic lag. Then, we averaged voxel responses during the cue-to-target delay period (6-8 

s window after cue offset) for each trial in the attention task from the voxels that are selective for 

the cued quadrant, within each retinotopically defined ROI (Supplementary Figure 1.2). 

To evaluate the impact of the attention cue and the contrast of the noise stimulus on the 

mean amplitude, we performed a randomization test for a three-way ANOVA on the mean 

BOLD responses with cue type, contrast level, and ROI as factors. Cue and ROI were considered 

as categorical factors, and contrast was considered as a continuous factor. First, we tested the 

main effect of the three factors. To test the effect of cue, cue labels were shuffled across trials, 

restricted within each contrast condition, ROI, and participant, and then averaged for each 

condition. Then, we performed ANOVA on this data, only testing for the three main effects 

without the interaction terms, to obtain the F-value for the main effect of cue. This procedure 
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was repeated across 1000 iterations, yielding a distribution of 1000 F-values under the null 

hypothesis that cue conditions did not affect the mean amplitude. A p-value was obtained by 

taking the proportion of F-values from this null distribution that exceeded the F-value obtained 

using the data with unshuffled labels. The same procedure was repeated to test the main effects 

of contrast and ROI. 

Next, we tested the interaction effects between the three factors. We first performed an 

ANOVA with only the main effects and obtained the residuals. This was done to exclude the 

variance explained by the main effects. To test the interaction between cue and contrast, we 

shuffled the labels of the residual data, restricted within each ROI and participant. Then, we 

performed ANOVA on the residuals, testing for the three main effects and the three two-way 

interaction effects, to obtain the F-value for the interaction effect between cue and contrast. This 

procedure was repeated across 1000 iterations, yielding a distribution of 1000 F-values, and a p-

value was obtained by taking the proportion of F-values from this null distribution that exceeded 

the F-value obtained using the data with unshuffled labels. The same procedure was repeated to 

test interaction effects between cue and ROI, and contrast and ROI. Finally, to test the three-way 

interaction between cue type, contrast level, and ROI, we first performed an ANOVA with the 

main effects and the three two-way interactions and obtained the residuals. Then, we shuffled the 

labels of the residual data without restriction and subjected the data to a full three-way ANOVA 

with the three main effects, three two-way interactions, and the three-way interaction. This 

procedure was repeated across 1000 iterations, yielding a distribution of 1000 F-values, and a p-

value was obtained by taking the proportion of F-values from this null distribution that exceeded 

the F-value obtained using the data with unshuffled labels.  
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To further examine the interaction effect between cue type and contrast level, we 

performed a one-way ANOVA on the mean response amplitude with contrast level as a 

continuous factor, separately for each cue condition and within each ROI. We evaluated the 

statistical significance of this effect with a randomization test by shuffling the contrast label 

within each participant and each ROI and repeating the one-way ANOVA to obtain an F-value. 

Repeating this procedure 1000 times yielded a distribution of F-values under the null hypothesis 

that contrast had no impact on the responses. P-values were calculated by taking the proportion 

of F-values from the shuffled data that exceeded the F-value obtained using the unshuffled data. 

We also tested the effect of cue within each ROI by performing paired t-tests after collapsing 

across all contrast levels. We then repeated the t-test after shuffling the cue labels across 1000 

iterations to obtain 1000 t-values under the null hypothesis that the attention-cue label had no 

effect on the mean BOLD responses. We then obtained p-values by calculating the proportion of 

shuffling iterations on which the shuffled t-value exceeded the real t-value, and the proportion on 

which the real t-value exceeded the shuffled t-value. We then took the minimum value between 

the two and multiplied it by two for a two-tailed test. 

Assessing the effect of stimulus contrast on the top-down attentional representation 

While not our primary manipulation of interest, we included the noise stimulus during the 

cue-to-target delay period in the attention task to determine if the precision of top-down 

attentional modulations interacted with the strength of concurrent bottom-up sensory drive. For 

example, a focused attention cue is expected to produce a more precise spatial representation 

than a diffuse cue. However, this relative increase in precision with focal attention might be 

further amplified (or dampened), if the top-down attention signals interact with the strength of 

bottom-up stimulus drive.  
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To evaluate the impact of the attention cue and the contrast of the noise stimulus on the top-

down precision, we performed a randomization test for three-way ANOVA on the decoding 

accuracy with cue, contrast, and ROI as factors. Cue and ROI were considered as categorical 

factors, and contrast was considered as a continuous factor. First, we tested the main effect of the 

three factors. To test the effect of cue type, cue labels were shuffled across trials, restricted 

within each contrast condition, ROI, and participant, and then the classifier correctness for each 

trial was averaged to obtain decoding accuracy for each condition. Then, we performed an 

ANOVA on this data, only testing for the three main effects without the interaction terms, to 

obtain the F-value for the main effect of cue. This procedure was repeated across 1000 iterations, 

which yields a distribution of 1000 F-values under the null hypothesis that cue conditions did not 

affect the decoding accuracy. A p-value was obtained by taking the proportion of F-values from 

this null distribution that exceeded the F-value obtained using the data with unshuffled labels. 

The same procedure was repeated to test the main effects of contrast and ROI. 

Next, we tested the interaction effects between the three factors. We first performed an 

ANOVA on the decoding accuracy with only the main effects and obtained the residuals. This 

was done to exclude the variance explained by the main effects. To test the interaction between 

cue type and contrast level, we shuffled the labels of the residual data, restricted within each ROI 

and participant. Then, we performed an ANOVA on the residuals, testing for the three main 

effects and the three two-way interaction effects, to obtain the F-value for the interaction effect 

between cue type and contrast level. This procedure was repeated 1000 times, yielding a 

distribution of 1000 F-values, and a p-value was obtained by taking the proportion of F-values 

from this null distribution that exceeded the F-value obtained using the data with unshuffled 

labels. The same procedure was repeated to test the other interaction effects between cue type 
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and ROI, and contrast level and ROI. To test the three-way interaction between cue, contrast, and 

ROI, we first performed ANOVA on the decoding accuracy with the main effects and the three 

two-way interactions and obtained the residuals. Then, we shuffled the labels of the residual data 

without restriction and subjected the data to a full three-way ANOVA with the three main 

effects, three two-way interactions, and the three-way interaction. This procedure was repeated 

across 1000 iterations, yielding a distribution of 1000 F-values, and a p-value was obtained by 

taking the proportion of F-values from this null distribution that exceeded the F-value obtained 

using the data with unshuffled labels. 

To further examine the significant interaction effects (between cue type and ROI, contrast 

level and ROI) from the above analysis, we tested the effect of cue type and contrast level within 

each ROI. To test the effect of cue in individual ROIs, we first shuffled the cue labels for across 

trials within each ROI and participant, and averaged classifier accuracy across trials to obtain 

decoding accuracy for each cue condition. Next, we performed a paired t-test between the 

decoding accuracies from each cue condition to obtain the t-value for each ROI. This procedure 

was repeated across 1000 iterations, yielding a distribution of 1000 F-values for each ROI, under 

the null hypothesis that cue conditions did not affect decoding accuracy. Then, a p-value for each 

ROI was calculated by taking the proportion of iterations where shuffled t-values exceed the real 

t-value, the proportion of iterations where the real t-value exceeded the shuffled t-values, and 

then taking the minimum value and multiplying it by two for a two-tailed test. A similar 

procedure was repeated to test the effect of contrast level within each ROI, but we shuffled the 

contrast labels and used a one-way ANOVA with contrast as a continuous variable. In this case, 

the p-value for each ROI was calculated as the proportion of shuffled F-values that exceeded the 

real F-value. 
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Eye-tracking session 

Eye-tracking data were collected in an entirely separate session to the MRI scanning 

session from four out of five fMRI participants who were available to come into the lab. An SR 

Eyelink 1000+ eye-tracker (SR Research) was used to collect continuous gaze-position data at a 

sampling rate of 1000 Hz. Participants performed only the top-down attention task and 

completed the same number of trials as in the scanner. All aspects of the task were the same, 

except that it was self-paced, which means that each trial terminated when the response was 

made, and participants initiated the next trial. Tilt offset for each condition was manually 

adjusted after every 27 trials to keep accuracies around 75%. 

Analysis of eye-tracking data 

Gaze positions during each run were preprocessed by first removing data points during 

blinks and filling in those data points by interpolating between eye positions before and after the 

blink. Then, separately for each run, gaze positions were detrended, high-pass filtered at 0.1Hz, 

and low-pass filtered at 10Hz. Next, gaze positions for each trial were corrected by subtracting 

the mean position during the last 200-ms in the pre-cue period, to account for task-unrelated 

drifts between trials and runs. 

To examine eye movement away from fixation, average gaze positions during pre-cue, 

cue, delay period, and target presentation was calculated for each trial. To test if the eye 

movement away from fixation was in the direction of the cued location in each trial, the gaze 

position vector was projected onto the vector of the cued location to attain the magnitude of the 

projected vector (Supplementary Figure 1.7a).  

 



57 

Control analysis for voxel selection using data from the top-down attention task 

Our main analysis used a separate localizer task to select visually responsive voxels for 

the decoding analyses. Because the localizer task used flickering checkerboard stimuli, there is a 

chance that this process might have biased our pool of selected voxels in favor of bottom-up 

processing/representations that could have inflated bottom-up decoding accuracy in early visual 

areas. To address this possibility, we conducted control analyses with two alternative voxel 

selection methods using only the top-down attention task to select the voxels. First, we re-labeled 

the trials of the top-down task based on the quadrant that was cued and used all runs to run one-

way ANOVA for individual voxels within each retinotopically defined ROI and found voxels 

that were significantly modulated across the cued quadrants during the delay period between the 

cue and the target (p < 0.05; FDR corrected; see Supplementary Table 1.2 for the number of 

selected voxels). After a single set of voxels has been selected for each ROI, the same procedure 

for the decoding analysis described in the main text was carried out. Note that this method is 

circular because data from all runs were used in the ANOVA to select the most selective voxels. 

This was done intentionally as we wanted to bias this analysis in favor of finding high-precision 

representations in the top-down attention task (see Supplementary Figure 1.8 for decoding 

results). In addition to this circular analysis, we also used a second method of voxel selection that 

avoided this circularity by using a leave-one-run-out procedure: All but one run of the top-down 

task was used in the voxel selection process and the decoder was tested only on the left out run, 

and this was repeated leaving out a different run on each iteration (20 iterations total). The 

bottom-up decoding, in this case, was done on every set of selected voxels and the resulting 

decoding accuracy was averaged across iterations (see Supplementary Figure 1.9 for decoding 

results). 
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Supplementary Figure 1.1 Behavioral data for the top-down spatial attention task during the 
scanning and the eye-tracking session plotted separately. (a, b) Behavioral performance for the 
top-down spatial attention task during the scanning session. (a) Mean behavioral accuracy. 
Accuracy was comparable between the diffuse and the focused conditions. (b) Mean tilt offset. 
Tilt offsets were higher in the diffuse than in the focused condition. The effect of cue type on 
accuracy (p = 0.33) and on the tilt offset (p = 0.12) was not statistically significant. (c, d) 
Behavioral performance for the top-down spatial attention task during the eye-tracking session. 
(c) Mean behavioral accuracy. Accuracy was comparable between the diffuse and the focused 
conditions. (d) Mean tilt offset. Tilt offsets were higher in the diffuse than in the focused 
condition. The effect of cue type on accuracy and on the tilt offset were both significant (p’s < 
0.001). Colored dots represent data from individual participants. Error bars represent ±1 standard 
error of the mean (SEM).   
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Supplementary Figure 1.2 (a) Univariate BOLD amplitude changes in the top-down spatial 
attention task. Mean BOLD amplitude was higher in the diffuse than in the focused condition, 
and it increased as a function of the contrast level of the noise stimulus that was presented during 
the cue-to-target interval. Mean response amplitude increased as a function of stimulus contrast. 
A three-way ANOVA on the mean BOLD amplitude with cue condition, contrast level, and ROI 
as factors revealed significant main effects of all three factors (all p’s < 0.01, p-values computed 
via randomization test, see Supplementary Methods, section Quantifying univariate BOLD 
response changes in the attention task). There were also significant interaction effects between 
cue and contrast (p < 0.001) and contrast and ROI (p < 0.001), but other interaction effects did 
not reach significance (cue X ROI: p = 0.13; cue X contrast X ROI: p = 0.81). To determine the 
direction of the interaction between cue and contrast, we performed a one-way ANOVA with 
contrast level as a continuous factor, separately for each cue condition within each ROI. This 
revealed a significant effect of contrast in all ROIs for both diffuse and focused conditions, 
except for IPS in the diffuse condition (all ROIs except for IPS in both cue conditions: p’s < 
0.001; IPS in diffuse: p = 0.16; IPS in focused: p < 0.01). Colored dots represent data from 
individual participants. Error bars represent ±1SEM. (b) Univariate BOLD amplitude changes in 
the top-down spatial attention task for IPS sub-regions. When collapsed across cue conditions, 
the effect of contrast was significant in IPS0 and IPS1 in both cue conditions (p’s < 0.05) and 
IPS2 and IPS3 in the focused condition (p’s < 0.05). However, stimulus contrast did not have a 
significant effect in IPS2 and IPS3 in the diffuse condition (p = 0.67 and p = 0.51, respectively). 
When collapsed across contrast levels, the effect of cue was significant in IPS1 (p < 0.001) but 
did not reach significance in the rest (IPS0: p = 0.13, IPS2: p = 0.12, IPS3: p = 0.13). Colored 
dots represent data from individual participants. Error bars represent ±1SEM. 
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Supplementary Figure 1.3 Decoding accuracy in the top-down spatial attention task, plotted 
separately in each area for each contrast level and cue condition. For comparison, the same 
values for bottom-up decoding accuracies from Figure 1.2a are plotted together (white bars). 
Decoding accuracy in the attention task were generally higher in the focused than in the diffuse 
condition, and decreased as a function of contrast in V2, V3, V3AB, and IPS. While top-down 
decoding accuracy was much lower than bottom-up decoding accuracy in V1, accuracy in the 
mapping task and the focused condition were comparable in later areas (e.g. V3AB, V4, IPS). A 
three-way ANOVA on the mean decoding accuracies with cue condition, contrast level, and ROI 
as factors revealed significant main effects of all three factors (all p’s < 0.01). There were also 
significant interactions between cue type and ROI (p < 0.01) and between contrast level and ROI 
(p < 0.05). Other interaction effects did not reach significance (cue X contrast: p = 0.10; cue X 
contrast X ROI: p = 0.12). To further explore the cause of the significant interactions, we tested 
the effect of cue and contrast within each ROI. When collapsed across contrast levels, decoding 
performance was significantly higher in the focused than in the diffuse condition in all ROIs 
except V1 (two-tailed t-test, V1: p = 0.07, other ROIs: p’s < 0.05). Next, we evaluated the impact 
of the noise stimulus contrast presented during the cue-to-target delay period, by performing a 
one-way ANOVA with contrast level as a continuous variable after collapsing across cue 
conditions. This revealed a significant decrease in decoding accuracy as a function of contrast in 
V2, V3, V3AB, and IPS (p’s < 0.05). This effect may have been due to higher contrast noise 
stimuli functioning as distractors that interfered with the maintenance of attention at the cued 
location(s). Colored dots represent data from individual participants. Error bars represent 
±1SEM. The dotted line indicates chance performance (1/12, or ~.083).   
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Supplementary Figure 1.4 Ratio of decoding accuracies between top-down attention and bottom-
up mapping task, plotted separately for each contrast level. Ratio scores were obtained following 
the same procedure as described in Figure 1.2b but done separately for each contrast level 
instead of collapsing across the contrast levels. Low ratio scores indicate that the ROI had higher 
decoding accuracy in the mapping task, consistent with higher bottom-up precision. High ratio 
scores indicate that the ROI had higher decoding accuracy in the top-down task, consistent with 
higher top-down precision. Ratio scores for each contrast level showed a similar pattern to the 
collapsed result (shown in Figure 1.2). Colored dots represent data from individual participants. 
Error bars are ±1SEM.  
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Supplementary Figure 1.5 (a) Decoding accuracy from top 300 voxels in each ROI in the 
bottom-up spatial mapping task (white bars) and the top-down spatial attention task (Diffuse and 
Focused conditions; light gray and dark gray bars). Decoding accuracies showed a similar pattern 
to when the number of voxels were not restricted (shown in Figure 1.2a). Filled, colored dots 
represent data from individual participants, and error bars represent ±1SEM. The dotted line 
indicates chance performance (1/12 or ~.083). (b) Ratio of decoding accuracies from top 300 
voxels in each ROI between the bottom-up mapping task and the top-down attention task in each 
ROI, obtained using the same procedure as in Figure 1.2b. While V1 showed higher bottom-up 
precision, later areas showed comparable level of bottom-up and top-down precision, similar to 
Figure 1.2b. Colored dots represent data from individual participants. Error bars are ±1SEM.  
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Supplementary Figure 1.6 Similar results to Figure 1.2 when using 24-way decoding of the 
mapping task. Classifiers were trained on the mapping task data without combining the wedges. 
Decoding accuracy for the mapping task was calculated by comparing the predicted location and 
the presented location. Decoding accuracy for the attention task was calculated by comparing the 
predicted location and the attended location, and a given trial was marked as correct if the 
predicted location from the 24-way decoder was included in the attended location. The general 
pattern of results was similar to Figure 1.2. (a) Decoding accuracy based on fMRI activation 
patterns in the bottom-up spatial mapping task (white bars) and the top-down spatial attention 
task (Diffuse and Focused; gray and dark gray bars). Note that the chance level of decoding 
accuracy is different across tasks: 1/24 for mapping (red, dash-dot line), 1/12 for attention task 
(black, dashed line). While top-down decoding accuracy was much lower than bottom-up 
decoding accuracy in V1, accuracy in the mapping task and the focused condition was 
comparable in later areas (e.g. V3AB, V4, IPS), leading to an interaction between task type 
(bottom-up vs top-down) and visual area. Filled, colored dots represent data from individual 
participants, and error bars represent ±1SEM. (b) Ratio of decoding accuracies between top-
down attention and bottom-up mapping task, obtained using the same procedure as in Figure 
1.2b. While V1 showed higher bottom-up precision, later areas showed top-down precision that 
is comparable or even higher than bottom-up precision. Colored dots represent data from 
individual participants. Error bars are ±1SEM.  
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Supplementary Figure 1.7 Eye-tracking results from an independent eye-tracking session 
conducted outside of the scanner. Eye-tracking data were collected form four out of five fMRI 
participants. (a) An example of the vector projection calculation. A vector for average eye 
position was projected onto the vector for the cued location for that trial. The magnitude of the 
projected vector (orange) was calculated for each period (pre-cue, cue, delay, and target) within 
each trial. (b) Average magnitude of the projected vector towards the cued location. A larger 
value means that the gaze moved away from fixation in the direction of the cued location. 
Although overall eye movement away from fixation was larger for focused condition compared 
to diffuse condition during delay and target presentation, these eye movements were not 
systematically related to the cued location (all p’s > 0.1).  
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Supplementary Figure 1.8 Similar results to Figure 1.2 when using another way to select voxels 
based on the top-down task. To bias the selection in favor of the top-down decoding as much as 
possible, all runs of the top-down task were used to select voxels that changed their response 
significantly across the cued quadrants during the delay period. The general pattern of results 
was similar regardless. (a) Decoding accuracy based on fMRI activation patterns in the bottom-
up spatial mapping task (white bars) and the top-down spatial attention task (Diffuse and 
Focused; gray and dark gray bars). While top-down decoding accuracy was much lower than 
bottom-up decoding accuracy in V1, accuracy in the mapping task and the focused condition was 
comparable in later areas (e.g. V3AB, V4, IPS), leading to an interaction between task type 
(bottom-up vs top-down) and visual area. Filled, colored dots represent data from individual 
participants, and error bars represent ±1SEM. The dotted line indicates chance performance 
(1/12 or ~.083). (b) Ratio of decoding accuracies between top-down attention and bottom-up 
mapping task, obtained using the same procedure as in Figure 1.2b. While V1 showed higher 
bottom-up precision, later areas showed comparable level of bottom-up and top-down precision, 
similar to Figure 1.2b. Colored dots represent data from individual participants. Error bars are 
±1SEM. 
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Supplementary Figure 1.9 Similar results to Figure 1.2 when selecting voxels based on the top-
down task. As a control analysis, instead of using the separate localizer task to define visually 
responsive voxels, voxels that changed their response significantly across the cued quadrants 
during the delay period in the top-down attention task were used in the decoding analysis. To 
avoid circularity in the top-down decoding accuracy, a leave-one-run-out method was used, in 
which the run that was not used in the voxel selection step was used as a test dataset in the 
decoding analysis (see section Control analysis for an alternative voxel selection method in the 
Supplementary Methods). (a) Decoding accuracy based on fMRI activation patterns in the 
bottom-up spatial mapping task (white bars) and the top-down spatial attention task (Diffuse and 
Focused; gray and dark gray bars). While top-down decoding accuracy was much lower than 
bottom-up decoding accuracy in V1, accuracy in the mapping task and the focused condition was 
comparable in later areas (e.g. V3AB, V4, IPS), leading to an interaction between task type 
(bottom-up vs top-down) and visual area. Filled, colored dots represent data from individual 
participants, and error bars represent ±1SEM. The dotted line indicates chance performance 
(1/12 or ~.083). (b) Ratio of decoding accuracies between top-down attention and bottom-up 
mapping task, obtained using the same procedure as in Figure 1.2b. While V1 showed higher 
bottom-up precision, later areas showed comparable level of bottom-up and top-down precision, 
similar to Figure 1.2b. Colored dots represent data from individual participants. Error bars are 
±1SEM.  
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Supplementary Figure 1.10 Average timecourse of decoding accuracy during bottom-up 
mapping task and top-down attention task. For the decoding analyses presented in the main text, 
we opted to shift the timecourse of the BOLD response by 4 seconds to account for the 
hemodynamic delay of the BOLD signal based on prior fMRI studies, based on the assumption 
that a canonical HRF peaks around 4-6 seconds after the stimulus onset. However, as actual HRF 
may differ by task and brain area, it is possible that our choice of the time window might have 
not captured relevant signals. Therefore, we looked at the un-shifted timecourse of the decoding 
accuracy for both bottom-up and top-down tasks. The timecourse was calculated by performing 
the decoding analyses on a sliding window of three TRs (2.4 s) and averaging across all trials 
(excluding short-delay catch trials for top-down task). In the upper panels, the grey shaded area 
indicates the duration of wedge stimulus presentation (0-3 s from trial onset) in the bottom-up 
spatial mapping task. In the lower panels, the blue bar indicates the onset of the cue (0.8 s from 
trial onset), and the green bar indicates the earliest onset of the target stimulus (6.95 s from trial 
onset). Shaded area around each line indicates ±1SEM. 

  

0 4 8 12
Time from trial onset (s)

0

0.5

1
D

ec
od

in
g 

ac
cu

ra
cy V1

0 4 8 12

0

0.5

1
V2

0 4 8 12

0

0.5

1
V3

0 4 8 12

0

0.5

1
V3AB

0 4 8 12

0

0.5

1
V4

0 4 8 12

0

0.5

1
IPS

Bottom-up

0 6 12 18 24
Time from trial onset (s)

-0.2
0

0.2
0.4

D
ec

od
in

g 
ac

cu
ra

cy V1

0 6 12 18 24
-0.2

0
0.2
0.4

V2

0 6 12 18 24
-0.2

0
0.2
0.4

V3

0 6 12 18 24
-0.2

0
0.2
0.4

V3AB

0 6 12 18 24
-0.2

0
0.2
0.4

V4

0 6 12 18 24
-0.2

0
0.2
0.4

IPS
Diffuse
Focused



69 

Supplementary Table 1.1 Number of participants (out of 5 total) who showed significant effects 
(p < 0.05) from the main statistical tests reported when analyzed at a single-subject level with 
trial as the unit of variance. 

Two-way ANOVA on decoding accuracy 
Cue 5      

ROI 5      

Cue X ROI 3      
       

Effect of cue within each ROI 
 V1 V2 V3 V3AB V4 IPS 
Cue 2 5 5 5 3 3 

       

Two-way ANOVA on accuracy ratio scores 
Cue 5      

ROI 0      

Cue X ROI 2      
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Supplementary Table 1.2 Average number of voxels selected for the main analysis based on the 
functional localizer task and the supplementary analyses based on the top-down attention task. 
Values are mean number of voxels selected for each retinotopic ROI across all subjects ±1SEM. 

ROI 

defined using localizer 
task (used in all main 
analyses) 

defined using all runs of 
top-down task (Supp. Fig. 
8) 

defined using top-down 
task with the leave-one-
run-out procedure (Supp. 
Fig. 9) 

V1 776.2±103.32 754±323.06 723.07±320.82 

V2 723.6±59.41 804.6±218.24 772.41±219.11 

V3 714±121.98 808.6±129.46 777.4±131.57 

V3AB 608.6±250.11 629.2±175.08 609.32±173.6 

V4 342.2±47.38 321.4±72.35 309.99±73.24 

IPS 513.4±162.44 407.6±117.03 385.75±114.93 
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Chapter 2 Consequences of relaying top-down attentional modulations via neurons with high-
dimensional selectivity 
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Abstract 

Visual search is often guided by top-down knowledge of the spatial location or features 

that define a behaviorally relevant object in the environment. In turn, sensory neurons in early 

visual cortex undergo highly selective gain modulations that reflect the location or the identity of 

the attended feature. These top-down gain modulations are thought to be mediated via feedback 

from areas of prefrontal cortex. However, neurons in many areas of prefrontal cortex (PFC) have 

high-dimensional tuning for multiple features (i.e. mixed-selectivity). This poses a fundamental 

challenge: how can PFC neurons that are simultaneously tuned to many features propagate 

highly selective top-down feedback to early sensory neurons that are tuned to specific relevant 

features? To test this, we used a spiking neural network consisting of two layers of neurons that 

have reciprocal, random projections between the layers. The first layer consisted of eight ring-

like sub-networks, in which neurons were topographically arranged by stimulus selectivity in a 

circular feature space. The second layer consisted of neurons that were randomly and 

reciprocally connected to multiple first layer neurons, which gave rise to linear mixed selectivity 

to multiple features in the second layer neurons. As a result, we could simulate top-down 

modulations by applying gain to the second layer, which excite/inhibit first layer neurons across 

many sub-networks. In spatial and feature-based attention simulations, we found that the top-

down feedback signals spread to sub-networks that did not receive any stimulus input and 

modulated their activities in a consistent, but idiosyncratic way that does not resemble stimulus-

related responses. This demonstrates the importance of random projections in canceling out 

spurious signals, preserving the fidelity of relevant top-down feedback without generating 

illusory representations. Our findings highlight previously unrecognized consequences of 
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relaying top-down feedback via neurons with high-dimensional tuning functions and how 

selective modulation can be achieved in a hierarchical neural model. 
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Introduction 

Efficient visual search requires selectively prioritizing some stimulus inputs over others 

based on top-down knowledge about the spatial location and features that define currently 

relevant stimuli (1, 2). Although it is well-established that behavioral goals can modulate the 

gain and covariance structure of sensory codes, fundamental questions remain about how such 

top-down modulations back-propagate from higher-order areas of prefrontal and parietal cortex 

to influence perception (3, 4). For instance, basic visual features such as colors or orientations 

are encoded by neurons in the striate and extrastriate visual cortex (EVC) that are tuned to 

specific feature values and that have relatively small and precise spatial receptive fields (RFs; 

Refs. 5–9). In contrast, neurons in prefrontal cortex (PFC) have much larger spatial RFs and 

encode more abstract information about behavioral goals (10–16). Moreover, neurons in PFC 

also exhibit flexible and high-dimensional tuning functions that can encode multiple feature 

values (and/or combinations of feature values, termed mixed selectivity; Refs. 17, 18). 

Nevertheless, both causal and correlational studies suggest that PFC neurons with high-

dimensional selectivity can generate highly selective modulations that target specific sub-

populations of neurons in EVC to enhance the response evoked by relevant features (19–24). 

Here we investigate how PFC neurons with high-dimensional tuning can generate precise top-

down modulatory signals to facilitate efficient information processing in the visual cortex.  

Classic studies in visual information processing demonstrate that EVC neurons are highly 

selective to specific spatial locations and visual features. For example, invasive recordings in 

non-human animal models reveal that neurons in the striate cortex and EVC exhibit small, highly 

selective spatial RFs that are retinotopically organized (7, 9, 25). Other studies have found that 

these neurons show increased firing rate for specific orientations, colors, motion directions and 
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other sets of features (7, 8, 26–32). Moreover, anatomical studies reveal a functional-anatomical 

alignment such that areas of visual cortex are organized according to circular feature dimensions 

such as orientation of motion direction (5, 6, 8, 33). Thus, visual features in different locations 

are encoded by different subsets of feature-selective neurons in EVC, and responses in these 

neurons are thought to collectively form the basis for generating increasingly complex 

representations of real-world objects and where they are in the visual scene (34–39).  

When a visual feature within the scene is behaviorally relevant, top-down attentional 

modulations can selectively increase the gain of neurons that are selective for the spatial 

positions and feature values that align with the attentional target to enhance the overall speed and 

accuracy of information processing (Refs. 23, 24, 40–54; reviewed in Refs. 2, 55). For example, 

when top-down attention is directed to a spatial location, the firing rate of neurons in EVC that 

have corresponding spatial RFs increases compared to when the attention is directed outside of 

their spatial RFs, even in the absence of an external stimulus (44, 52, 56). Similarly, searching 

for a specific feature, such as a particular direction of motion, will increase the firing rate of 

neurons in MT that are selective for that feature while simultaneously decreasing the firing rate 

of neurons tuned to other features (23, 42, 57). 

These highly specific top-down modulations of space- and feature-selective responses in 

EVC are thought to be generated in regions of frontal and parietal cortex, such as the lateral 

intraparietal area (LIP), the frontal eye fields (FEFs), and lateral prefrontal cortex (LPFC; Refs. 

1–4, 14, 58–64). For example, microstimulation of neurons in the FEF leads to a spatially 

selective increase in the firing rates in V4 neurons, mimicking the effects of spatial attention 

(19). In addition, while FEF neurons are not inherently selective for stimulus features such as 

color or orientation (13, 65, 66), they have been found to flexibly encode whatever feature is 
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currently behaviorally relevant (66–69). More recently, the ventral prearcuate (VPA) region of 

the prefrontal cortex in nonhuman primates was suggested to compute feature-selective signals 

that are relayed to FEF to guide the spatial selection of relevant features, as optogenetic 

inactivation of this area reduced feature-based selection effects in FEF and V4 (70, 71). 

Similarly, neurons in LPFC are thought to integrate sensory input and internal states (task rules, 

behavioral goals) to flexibly control selective attention as a function of current behavioral 

demands (14, 72–74). Lesion studies have long implicated LPFC in cognitive control, as damage 

to this general area leads to deficits in task switching and the use of complex rules to guide 

behavior (75–82). Temporarily disrupting activity in LPFC with transcranial magnetic 

stimulation also impairs behavioral performance in tasks that require top-down control over the 

response to the bottom-up stimulus (83, 84), and similar findings were reported for optogenetic 

inactivation of posterior LPFC (85). Human imaging studies further suggest many prefrontal 

areas appear to be involved - to varying degrees - in both spatial and feature-based attention (86–

89). For example, whereas FEF is traditionally thought to play an important role in spatial 

attention, inferior frontal junction (IFJ) has been implicated in feature-based attentional 

modulation, which is analogous to the function of VPA in non-human primates (90–95). 

It is important to note that these prefrontal areas that are suggested to be the source of 

top-down modulations in earlier visual areas have relatively low spatial selectivity compared to 

the target earlier visual areas. For example, while striate cortex and EVC neurons have quite 

small spatial RFs (e.g. in V1: smaller than 1° at fovea and ∼1° at 10° periphery; Ref. 9), parietal 

and frontal cortex neurons have much larger spatial RFs (e.g. in FEF: ∼10–20° with a large 

variance at 10° periphery; Refs. 10–13). That is, PFC neurons that are inherently less selective 

nevertheless relay feedback signals in a highly selective manner to EVC neurons.  
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Moreover, PFC neurons are found to have high-dimensional selectivity to different 

stimulus features. Some neurons exhibit linear mixed selectivity, characterized by responses to 

multiple features that linearly combine to predict the final output of the neuron. Other neurons 

exhibit non-linear mixed selectivity, where sensitivity to different stimulus features varies as a 

function of task context (17, 18). Previous empirical and theoretical studies suggest that high-

dimensional tuning supports flexible representations of different external stimuli or task 

demands, and increases the encoding capacity of population responses (17, 18, 96). That said, 

these complex, high-dimensional responses stand in contrast to the highly selective, lower-

dimensional tuning properties typically observed in EVC neurons. 

This divergence in receptive field complexity between PFC and EVC poses a challenge 

for understanding top-down attentional control for visual features: How can neurons with high-

dimensional tuning in PFC evoke highly selective attentional modulations that enhance the signal 

for a single relevant feature for a specific spatial location in EVC? In the domain of spatial 

attention, this problem might be partially overcome, as many neurons in PFC have topographical 

organization and thus there might be some consistency across the visual processing hierarchy 

that supports mapping feedback signals to specific subsets of EVC neurons (97). This broad 

feedback gain can then interact with the spatially specific bottom-up stimulus input to exhibit a 

spatially localized attentional modulation. In contrast, the backpropagation of feature-selective 

feedback signals is seemingly more complicated. For example, feedback signals emanating from 

a neuron with high-dimensional tuning, such as a PFC neuron sensitive to red and vertical, may 

cause spurious modulations of task irrelevant features if only the color red happens to be 

behaviorally relevant. Such unintended modulations may in turn interfere with the specificity of 
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top-down modulations of the target feature or even cause perceptual interference in the form of 

illusory percepts. 

One way this correspondence problem could be solved is if the neurons that control top-

down modulations collapse their response profiles from high- to low-dimensional before back-

propagating modulatory signals to EVC. However, this solution is circular as the neurons 

generating the control signals would themselves need an additional control signal about how to 

modulate their activity. Here, we propose an alternative hypothesis that randomness in the 

feedforward and feedback connections between EVC and higher-order regions can cancel out 

spurious signals that might be propagated as the result of the high-dimensional selectivity in the 

higher-order areas, leaving intact only the desired modulatory signal targeting the relevant 

feature. These random projections could be initialized from matching random, unique labels that 

are tagged by cell adhesion molecules such as protocadherin (98, 99). To test this hypothesis, we 

used a spiking neural network model to simulate a neural architecture in which the connections 

between lower-level ‘sensory’ neurons and higher-order ‘control’ neurons were random. We first 

investigate the efficacy of top-down modulatory signals in terms of targeting a relevant spatial 

location and/or a feature using spatial and feature attention tasks. Our model reproduced the 

contrast gain effects associated with top-down attention, aligning with previous experimental 

results (2, 100). Notably, feature-based attentional gain caused modulations in unstimulated sub-

networks that did not resemble coherent sensory responses, highlighting how neurons with high-

dimensional tuning can propagate idiosyncratic signals throughout the network. Our findings 

suggest that random projections in a hierarchical network can naturally enhance representations 

of relevant features while simultaneously cancelling out irrelevant signals.  
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Results 

We adapted a spiking neural network model that was previously used to model storage 

capacity and patterns of errors in visual working memory (101). The model consists of two 

layers of Poisson spiking neurons where the first layer has eight sub-networks with neurons that 

are selective for different feature values in a circular stimulus space and the second layer 

receives converging input from neurons in all eight sub-networks (Figure 2.1). Each neuron in a 

sub-network has short-range excitatory connections and long-range inhibitory connections to 

other neurons within the sub-network, which gives rise to a response profile that follows a 

circular normal distribution across the feature dimension. In the second layer, each neuron is 

randomly connected via reciprocal feedforward and feedback connections to neurons in different 

first layer sub-networks, with overall excitatory and inhibitory connections balanced to prevent 

runaway excitation in the network. This architecture gives rise to two important properties of the 

model: 1) neurons in the second layer can have high-dimensional tuning for multiple features 

through converging inputs from first layer neurons with different tuning preferences, and 2) even 

though the first layer sub-networks are not directly connected to each other, neurons in different 

sub-networks indirectly interact via overlapping feedforward and feedback connections with 

neurons in the second layer. This latter point is key to testing our central hypothesis, whether 

randomness in between-layer connections contribute to targeted feedback modulations, as the 

indirect interactions between neurons in different sub-networks can give rise to spurious sensory 

representations with the application of top-down signals that back-propagate from the second 

layer. 
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Figure 2.1. Spiking network model overview. The model comprised of two layers of Poisson 
spiking neurons. The first layer contained 8 ring-like “sensory” sub-networks consisting of 512 
neurons, simulating sensory networks that encode information in circular stimulus spaces. Every 
neuron in each sub-network had a preferred stimulus input, due to short-range excitatory 
connections (green lines within the top-right sub-network) and long-range inhibitory connections 
(red lines within the top-right sub-network) between each neuron and its neighbors around the 
ring. We conceptualized each sub-network to encode independent sensory inputs such as 
orientations presented in different spatial positions around the visual field. The second layer is 
composed of 1024 neurons that are randomly and reciprocally connected to the neurons in the 
first layer (red and green lines connecting to the bottom-right sub-network), with the connections 
balanced between excitatory (green lines) and inhibitory (red lines). While the first layer sub-
networks were not directly connected to each other, they can indirectly interact via feed-forward 
and feedback projections to the second layer. Stimulus inputs were a circular normal distribution 
centered on an angle between 1° and 360°, which we defined as the circular stimulus space that 
the sub-networks encode. 
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Applying spatially specific gain to the second layer shifts response functions in first layer 

neurons 

After setting up the network, we tested to see if the network is capable of showing 

stereotyped effects of spatial attention as reported in prior empirical work. To simulate top-down 

spatial attention, we picked top 20% of the second layer neurons that have the highest weights to 

each sub-network based on the rank-order of the feedback connection weights (i.e. connections 

from the second layer neurons to the first layer neurons) and then applied varying levels of gain 

to those. This approach was based on the premise that each of the first layer sub-networks 

represents a group of neurons encoding a visual feature presented in a different spatial position in 

the visual field. Then, we presented a single stimulus to one of the sub-networks and measured 

the average firing rates of the neurons with the highest selectivity for the presented feature 

(Figure 2.1A). We averaged these firing rates across trials when attentional gain was targeted to 

the stimulated sub-network, in which case the stimulus location matches the attended location 

(Attended condition), and when attentional gain was targeted on a different, unstimulated sub-

network, in which case the stimulus location did not match the attended location (Unattended 

condition).  

Figure 2.2B shows the average firing rates as a function of stimulus strength in order to 

visualize  attention-related shifts in the contrast response function (CRF; Figure 2.2B, 2.2D; 

Refs. 2, 56, 100, 102, 103). We found that as stronger attention gain was applied, the response 

function in the Attended condition shifted leftward, showing a stereotypical contrast gain effect 

(Figure 2.2B). As expected, there were no systematic shifts in the Unattended condition (Figure 

2.2D). To quantify the attention-related shift, we fit a Naka-Rushton equation to each response  
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Figure 2.2 Spatial attention simulations. A. An example trial from the attention task in which 
sub-network 1 was attended. Left panel shows spikes for the first layer sub-networks and right 
panel shows spikes for the second layer neurons. Spatial attention gain was applied to a subset of 
second layer neurons that have the highest connectivity weights to sub-network 1 in the first 
layer for 200ms (shaded blue; gain strength: 8). Then, a single stimulus input at 180° was 
presented to sub-network 1 for 1000ms (shaded green; stimulus strength: 7). B, D. Contrast 
response functions (CRFs) for when the stimulus was presented in the attended sub-network (B) 
and in the unattended sub-network (D). Each line represents a different level of spatial attention 
gain strength. C. Estimated contrast gain parameters from Attended (solid black line) and 
Unattended (dotted gray line) conditions. Shaded areas in B, C, D represent standard error of 
mean across network initializations. 
 

function to estimate the contrast gain parameter. The estimated contrast gain, for which a lower 

value indicates larger leftward shift in the response function, decreased with stronger attention 
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gain in the Attended condition, while the change was minimal in the Unattended condition 

(Figure 2.2C). This demonstrates that our model is able to produce enhanced stimulus 

representations with spatial attention. 

Applying feature specific gain to the second layer enhances responses to relevant over 

irrelevant stimuli in first layer neurons 

Next, we evaluated the effect of feature-based attention on stimulus representations in the 

first layer of our model. We simultaneously presented two stimuli to one sub-network and then 

applied varying levels of gain to a subset of second layer neurons to simulate top-down feature-

based attention to one of the two presented stimuli (Figure 2.3B). We then examined the 

stimulus-evoked response of second layer neurons when each stimulus was presented 

individually to that sub-network. Based on these evoked responses, we identified 20% of the 

second layer neurons that responded maximally to each stimulus. Depending on which of the two 

presented stimuli was the attentional target, the corresponding subset of second layer neurons 

received attentional gain that then back-propagated to the sensory relevant sensory neurons in the 

first layer. While this method of determining which neurons in the second layer to target with 

top-down gain required some knowledge about network connectivity, it was inspired by 

empirical demonstrations that global neuromodulators like norepinephrine interact with local 

‘hot-spots’ of stimulus-driven activity to amplify neural gain and feedback signals to early 

sensory areas (termed the GANE model; Ref. 104).  

We next measured the average firing rates of neurons that maximally prefer the attended 

stimulus (Attended condition) or the unattended stimulus (Unattended condition) for every trial 

from the stimulated sub-network and plotted them as a function of stimulus strength (Figure  
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Figure 2.3 Feature-based attention simulations. A. An example trial from the sensory task in 
which sub-network 1 was presented with a stimulus input at 157.5° for 300ms. B. An example 
trial from the attention task. Two stimulus inputs, at 90° and 270°, were presented to sub-
network 1 and at the same time (stimulus strength: 6), feature-based attention gain was applied to 
a subset of second layer neurons that have the highest selectivity to the 90° stimulus in sub-
network 1 (lower cluster of spikes; gain strength: 8) for 1000ms. C, D. CRFs for when the 
stimulus was attended (C) and unattended (D). Each line represents a different level of feature-
based attention gain strength. E. Estimated contrast gain parameters from Attended (solid black 
line) and Unattended (dotted gray line) conditions. Shaded areas in C, D, E represent standard 
error of mean across network initializations. 
 

2.3C, 2.3D). As with spatial attention, we found a contrast gain modulation such that response 

functions were systematically shifted leftward with increasing feature-based attentional gain. For  
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the unattended stimulus, the response function did not show the same pattern and instead shifted 

rightward with stronger top-down gain applied to the other stimulus. This pattern gave rise to 

diverging contrast gain parameters that decreased with higher feature attention gain for the 

attended stimulus and slightly increased for the unattended stimulus (Figure 2.3E). These results 

demonstrate that our network can capture feature-based attention effects that bias representations 

of relevant features over representations of irrelevant features that are simultaneously present. 

Having established basic space- and feature-based attentional modulations in the 

network, we next investigated the effects of backpropagated top-down signals in the 

unstimulated sub-networks to better understand the consequences of propagating gain signals 

through second layer neurons with high-dimensional tuning and connections with many neurons 

across sub-networks in the first layer. To this end, we presented the network with an additional 

sensory task, in which a single stimulus was presented to each first layer sub-network to drive 

feature-specific activity patterns across neurons in each of the eight sub-networks (Figure 2.3A). 

We then used these stimulus-driven activity patterns in each sub-network to train decoding 

models to predict the attended feature in the stimulated and unstimulated sub-networks. This 

approach allowed us to confirm that attentional gain amplified stimulus-specific representations 

of the relevant feature in the stimulated sub-network, and also if stimulus-specific 

representations incidentally arose in other unstimulated sub-networks which might be predicted 

based on studies of global feature-based attention effects (23, 105, 106).  

We first ensured that we could decode the identity of a single feature presented to a sub-

network in the sensory task. We trained a circular ridge regression model on the activity patterns 

across the neurons separately for each sub-network and quantified the decoding accuracy as the 

mean absolute error (MAE) between the presented and the predicted feature value. The average 
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MAE was 0.34°, 95% CI [0.33, 0.34], indicating that the network supports highly accurate and 

stable sensory-driven representations. 

We then cross-generalized the same regression model that was trained using data from 

the sensory task to predict stimulus identity in the attention task. We observed that when no top-

down gain was applied to the second layer, the regression model was equally likely to predict 

that either of the two presented stimuli was behaviorally relevant and attended (Figure 2.4A, top-

left panel). However, as we increased the strength of top-down gain, the model was increasingly 

accurate at predicting which of the two stimuli was the attentional target (Figure 2.4A), and this 

increase in prediction accuracy was reflected in systematically decreasing MAEs (Figure 2.4B, 

solid black line). This change was not observed in the unstimulated sub-networks (Figure 2.4B, 

dotted gray line), confirming that attentional gain of stimulus-driven signals is largely contained 

within the sub-network that is presented with bottom-up stimuli and that attention biases 

representations in a way that resembles enhanced response to the bottom-up sensory input. 

As a secondary point, we note that the stimulus strength was fixed at 10 for the sensory 

task but varied from 0 to 18 in the attention task. Thus, we next computed MAE separately for 

each stimulus strength level in the attention task (Figure 2.5). For stimulus strengths 0 to 10, 

prediction accuracy increased as a function of feature-based attention gain and with higher 

stimulus strength, as can be seen in decreasing MAE. However, when the stimulus strength was 

higher than 10, we observed that MAE decreased with higher feature-based attentional gain, 

eventually rising above chance level of 90°. This lower-than-chance prediction accuracy 

indicates that the regression model is systematically guessing the value of the unattended 

stimulus, and occurs because when a strong stimulus signal is combined with even more gain, it  
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Figure 2.4 Decoding results from feature-based attention simulations. A. Histograms of predicted 
identity of the attended stimulus for every trial in the attention task for the stimulated sub-
network, from a circular ridge regression model trained on the sensory task, collapsed across all 
network initializations. Each histogram represents predictions from different levels of feature-
based attention gain strength, as labeled above each plot. B. Average MAE between the 
predicted and actual stimulus input for Stimulated (solid black line) and Unstimulated (dotted 
gray line) sub-networks based on regression model predictions. C. Decoding accuracy of support 
vector machines (SVMs) trained and tested on the attention task for Stimulated (solid black line) 
and Unstimulated (dotted gray line) sub-networks. D. Decoding accuracy of support vector 
machines (SVMs) based on the attention task, training on one unstimulated sub-network and 
testing on another unstimulated sub-network. Shaded areas in B, C, D represent standard error of 
mean across network initializations. 
 

can diverge substantially from the sensory signal that the regression model is trained on (as 

shown in the raster plots in Supplementary Figure 2.1). This divergence from the sensory-evoked 
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response at high stimulus strengths thus led the model to predict that the unattended stimulus was 

more similar to the sensory signals that were used to train the model.  

Propagated top-down feedback signals in the unstimulated sub-networks are consistent, 

but do not resemble stimulus-driven response patterns 

In the last section, we determined that feature-based attention did not lead to modulations 

in unstimulated sub-networks that resembled highly coherent stimulus-driven responses. 

However, the high-dimensional selectivity and diffuse connectivity of second layer neurons 

might lead to idiosyncratic, but nevertheless consistent, modulations in unstimulated sub-

networks. Thus, we tested whether feedback signals induced incidental, but consistent, activity 

patterns by training a support vector machine (SVM) to decode the value of the attended 

stimulus in the stimulated sub-network based on 1) activity patterns in the stimulated sub-

network, and 2) activity patterns from each of the unstimulated sub-networks (i.e. separate SVMs 

trained/tested for each sub-network). In the stimulated sub-network, decoding accuracy increased 

with stronger top-down gain (Figure 2.4C, solid black line), consistent with the regression-based 

MAE results above. Critically, activity patterns in the unstimulated sub-networks also supported 

decoding of the attended feature, with the average decoding accuracy across all unstimulated 

sub-networks increasing as a function of increasing top-down gain (Figure 2.4C, dotted gray 

line). Indeed, decoding performance based on the activity patterns in unstimulated sub-networks 

was better than the decoding performance in the stimulated sub-network at lower feature gain 

levels. This is likely due to the competition between the attended and unattended inputs in the 

stimulated sub-network, while the unstimulated sub-networks do not have any bottom-up signals 

that might disrupt the feedback signals. Collectively, these findings demonstrate that top-down  
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Figure 2.5 Average MAE in Figure 2.4B separated by stimulus strength level, as labeled above 
each plot. Solid black lines represent Stimulated sub-network and dotted gray lines represent 
Unstimulated sub-network. Shaded areas represent standard error of mean across network 
initializations. 
 

feedback that is relayed via neurons with high-dimensional tuning functions leads to systematic 

changes that spread globally throughout the network depending on the focus of attention, but in a 

way that is idiosyncratic and different from stimulus-driven responses. 
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To confirm that this idiosyncratic change in activity from feedback signals in the 

unstimulated sub-networks are indeed structurally unrelated to the stimulus-driven responses and 

are solely driven by random patterns of feedback modulations, we further examined whether the 

attention-dependent activity patterns are consistent across different unstimulated sub-networks. 

We trained a SVM on the activity patterns from one unstimulated sub-network and cross-

generalized that classifier to a different unstimulated sub-network, repeating over all possible 

training and testing pairs. The average decoding accuracy was close to chance, even with 

stronger top-down gain (Figure 2.4D). This lack of robust cross-generalization demonstrates that 

while each unstimulated sub-network exhibited systematic attentional modulations within itself, 

the modulatory patterns were not shared across the sub-networks. Thus, relaying top-down 

modulations through high-dimensional neurons leads to systematic modulations in unstimulated 

networks, while the randomness of the feedback seems to prevent the unintended emergence of 

stimulus-like representations that might interfere with information processing.    

Applying both spatial and feature attention gain results in additive shifts in response 

functions 

Our network model was able to capture standard spatial attention and feature-based 

attention effects. Based on these results, we took a further step to investigate how the two 

attention effects would interact within our network. We presented the network with the feature-

based attention task while providing spatial attention concurrently to the sub-network where the 

stimuli were presented (Figure 2.6A). More specifically, spatial attention gain was given to the 

top 20% of second layer neurons with the highest weights for the first sub-network, then the two 

stimuli were presented, and then feature-based attention gain was given to the top 20% of the  



98 

 

Figure 2.6 Concurrent spatial and feature-based attention simulations. A. An example trial from 
the attention task. First, spatial attention gain was applied to a subset of second layer neurons 
that have the highest connectivity weights to sub-network 1 in the first layer for 300ms (shaded 
blue; spatial attention gain strength: 6). Next, two stimulus inputs, at 90° and 270°, were 
presented to sub-network 1 for 300ms (shaded green; stimulus strength: 7). Then, feature-based 
attention gain was applied to a subset of second layer neurons that have the highest selectivity to 
the 90° stimulus in sub-network 1 (lower cluster of spikes) for 1000ms (shaded red; feature-
based attention gain strength: 6). B. CRFs for when the stimulus was attended (left panels) and 
unattended (right panels). Each line represents a different level of feature-based attention gain 
strength, and each row of panels represents different level of spatial attention gain. C. Estimated 
contrast gain parameters from Attended (solid lines) and Unattended (dotted lines) conditions. 
Colors of the lines represent different levels of spatial attention gain. Shaded areas in B, C 
represent standard error of mean across network initializations. 

 
second layer neurons that maximally respond to the attentional target stimulus. The intensity of 

the gain for spatial and feature attention was independently modulated, and when both were to be 
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applied to the same second layer neuron, the intensity values were added and then applied. To 

keep the network from saturating, we limited the range of both spatial and feature attention gain 

strength to the lower half of the range we used for previous simulations (0-8 out of 0-18). We 

measured the average firing rates of neurons that maximally prefer the attended stimulus 

(Attended condition) or the unattended stimulus (Unattended condition) from the first sub-

network for every trial and plotted them as a function of stimulus strength (Figure 2.6B).  

When there was no spatial attention gain and only the feature-based attention was 

modulated, we replicated the results from feature-based attention simulations: We found the 

contrast gain effect with stronger top-down gain, in which response functions were shifted 

leftward when higher gain strength was applied for the attended stimulus (Figure 2.6B, top row, 

left panel). When we applied spatial attention on top of the feature-based attention, we could see 

that the response functions shift leftward overall with higher spatial attention gain (Figure 2.6B, 

middle and bottom row, left panels). In contrast, for the unattended stimulus, we could see a 

slight rightward shift with higher feature-based attention gain and an overall leftward shift with 

higher spatial attention gain (Figure 2.6B, right panels). To better visualize this interaction, we 

estimated the contrast gain parameter as previously described and plotted it as a function of 

spatial and feature-based attention gain (Figure 2.6C). Consistent with previous results and the 

response function plots, the contrast gain parameter decreased with stronger feature attention 

gain in no spatial attention condition. Importantly, this decreasing pattern shifted downward in a 

linear fashion with stronger spatial attention gain. This downward shift was also visible for the 

unattended stimulus albeit at a smaller scale. This is likely due to spatial attention increasing the 

overall excitability of the neurons in the targeted sub-network, regardless of which feature the 

neurons are tuned to, and therefore requiring weaker stimulus strength to show the same level of 
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firing rates for both attended and unattended stimuli. In all, this suggests that in our network 

model, spatial attention and feature attention interact additively in enhancing stimulus-driven 

signals for the attentional target.  

 

Conclusion 

While it is widely believed that top-down modulatory signals originate from the 

prefrontal and parietal cortex, neurons in these areas typically have high-dimensional tuning. As 

a result, the ability of these neurons to send highly specific feedback signals to early sensory 

areas is not well understood. Here, we used a spiking neural network to test the hypothesis that 

random connections between sensory and high-order areas support targeted top-down feedback. 

Our model recapitulated contrast gain effects with top-down attention, replicating prior empirical 

findings (2, 100). Importantly, feature-based attentional gain also led to idiosyncratic 

modulations in unstimulated sub-networks. However, these spurious signals did not resemble 

coherent sensory responses that can be mistakenly read out as a stimulus input, which is likely 

due to the random connections between the first “sensory” layer and the second “control” layer. 

Thus, in this chapter, we demonstrate that feedback signals propagated by neurons with high-

dimensional selectivity can spread and cause spurious signals in the network and suggest that 

connectivity randomness can prevent the rise of “illusory” stimulus representations that can 

interfere with perceptual processing. In Chapter 3, we test our hypothesis that random 

projections are crucial for targeted top-down modulations without disruptive spurious signals by 

parametrically modulating the randomness of the between-layer connections in the spiking 

network model.  
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Methods 

Computational model  

The model was comprised of two layers of Poisson spiking neurons, randomly and 

reciprocally connected to each other, with parameters adopted from Burak and Fiete (Ref. 107; 

see also Ref. 101). Each neuron generates spikes based on its firing rate 𝑟!(𝑡), which is 

determined by a nonlinear function of the weighted sum of all pre-synaptic inputs:  

 

𝑟!(𝑡) 	= 	𝛷 *+
"

𝑊!"𝑠"(𝑡). 

𝑠𝑝𝑖𝑘𝑒𝑠(𝑡 + 𝑑𝑡) 	∼ 	𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑟!(𝑡))  

 

where 𝑖 indexes each neuron and 𝑗 indexes all pre-synaptic neurons. Thus, Wij is the synaptic 

strength from pre-synaptic neuron 𝑗 to post-synaptic neuron 𝑖; 𝑠"(𝑡) is the activation of pre-

synaptic neuron 𝑗; and 𝛷 is a baseline-shifted hyperbolic tangent: 𝜏𝛷(𝑔) 	= 	0.4(1 +

𝑡𝑎𝑛ℎ(0.25𝑔 − 3)) (107), where 𝑔 is the total synaptic input, the sum of current synaptic 

activation, bias, and the stimulus. This function is strictly positive and saturates at an upper 

bound, just like biological neurons. The synaptic activation of neuron 𝑗 is determined by 

convolving the spike train with an exponential function: 

𝑠" +
𝑠"
𝜏 =+

#

𝛿F𝑡 = 𝑡"#G 
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where 𝑡"# are the spike times of neuron 𝑗 and the synaptic time constant 𝜏 was set to 10ms for all 

connections (107, 108). While synaptic connections could be either excitatory or inhibitory, this 

model does not contain different cell-types and neurons do not have refractory periods following 

each spike. No additional noise was added as the inhomogeneous Poisson processes that generate 

spikes in our model naturally leads to spiking variability. 

The first layer contained 8 ring-like “sensory” sub-networks consisting of 512 neurons, 

simulating sensory networks that encode information in circular stimulus spaces such as color, 

orientation or motion. Every neuron in each sub-network had a preferred stimulus input, 

operationalized here as an angle  𝜃! = 2𝜋𝑖/𝑁$!%&'. This tuning arises due to short-range 

excitatory connections and long-range inhibitory connections between each neuron and its 

neighbors around the ring, where the synaptic weight between any pair of neurons 𝑖, 𝑗 within a 

sub-network depends only on 𝜃 = 𝜃! − 𝜃" through a difference of circular normal functions:  

𝑊!"
$!%&' = 𝑤(𝜃) = 𝜆 + 𝐴𝑒𝑥𝑝(𝑘((𝑐𝑜𝑠𝜃 − 1)) − 𝐴𝑒𝑥𝑝(𝑘)(𝑐𝑜𝑠𝜃 − 1)) 

 

where 𝑘(= 1 determines the width of the excitation kernel, 𝑘) = 0.83 determines the width of the 

suppression kernel, 𝐴 = 2 is the amplitude and 𝜆 = 0.28 is the baseline. Self-excitation is set to 0 

(𝑤(0) = 0). The parameters were adopted from Bouchacourt and Buschman (101), with the 

exception that we used a higher value for 𝑘), which allowed a single sub-network to maintain 

representations for two stimuli simultaneously, a crucial feature for simulating feature-based 

attention effects with two competing stimuli in our model. 

For present purposes, we conceptualize each sub-network to encode independent sensory 

inputs such as orientations presented in different spatial positions around the visual field. Note 



103 

that sub-networks were not directly connected to each other. However, neurons in the 8 sub-

networks indirectly interacted via feed-forward and feedback projections to the second layer.  

The second layer is composed of 1024 “control” neurons that are connected to the 

neurons in the 8 sub-networks, leading to a four-fold convergence. All sub-networks converged 

onto the second layer through a weight matrix (𝑊**) that determined the feedforward 

connectivity. Then, each neuron in the second layer network fed back into the same subset of 

neurons in the first layer that provided excitatory inputs, through the feedback connectivity 

matrix (𝑊*+), which was the transpose of the feedforward connectivity matrix. This made the 

connections bi-directional. For a given pair of first layer and second layer neurons, the likelihood 

of an excitatory connection was 0.35.  

The strength of the excitatory feedforward and feedback connections were defined by the 

parameters 𝛼 and 𝛽, respectively. We adopted 𝛼 = 2100 and 𝛽 = 200 from Bouchacourt and 

Buschman (101) that yields optimal memory performance that maximizes the number of 

maintained memory items and minimizes the number of spurious memories in their task. 

The between-layer connectivity weights were balanced in two ways. First, to balance the 

total excitatory drive across neurons, the feedforward and feedback weights were scaled by the 

number of total inter-network excitatory connections (𝑁,-.) for each neuron. Second, an equal 

inhibitory weight was applied to all inputs for each neuron (−𝛼/(8 ∗ 𝑁$!%&')) so that each neuron 

receives an equal amount of excitatory and inhibitory drive (i.e., 𝛴"𝑊!"
** = 𝛴"𝑊!"

*+ = 0). This 

was to mimic the effect of local inhibitory interneurons causing a broad inhibition in the target 

network.  
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After the balancing process, excitatory feedforward connections from the sensory to 

second layer neuron 𝑖 had weight 𝑊!,,-. = (𝛼/𝑁,-.!) − (𝛼/(8 ∗ 𝑁$!%&')) while inhibitory 

feedforward connections had weight 𝑊!,!01 =	−𝛼/(8 ∗ 𝑁$!%&'). Similarly, neuron 𝑗 in the 

sensory network will receive excitatory feedback connections with weight 𝑊",,-. =	 (𝛽/𝑁,-.") −

(𝛽/𝑁&,.203) and inhibitory feedback connections with weight 𝑊",!01 =	−𝛽/𝑁&,.203. 

Presentation of stimuli to the sensory network  

Sensory stimuli were provided as synaptic drive (𝑠,-') to the first layer sub-networks. So, 

the response of a given first layer neuron 𝑖 at a given time 𝑡 was:  

𝑟!
$!%&'(𝑡) = 𝛷* +

"∈&,.203

𝑊!"
*+𝑠"(𝑡) + +

"∈$!%&'

𝑊!"
$!%&'𝑠"(𝑡) + 𝑠!,-'(𝑡). 

Stimulus inputs were presented for varying durations, indicated by the green and red 

shaded region in Figures 2.2A, 2.3A, 2.3B, 2.6A. Inputs were a circular normal distribution 

centered on an angle (𝜇) between 1° and 360° that was chosen to best visualize the spikes in the 

raster plot. Specifically, the angle was 180° when one stimulus was presented to a sub-network, 

and 90° and 270°, when two stimuli were presented to a sub-network. The stimulus input to 

neuron 𝑖 was 

𝑠!,-' = W𝑆,-'
𝑒𝑥𝑝(𝜅	𝑐𝑜𝑠(𝑥	 − 	𝜇))

2𝜋𝐼5(𝜅)
	𝑖𝑓	𝑖 ≤ [3𝜎], 0	𝑖𝑓	𝑖	 > [3𝜎]a 

where 𝜅  = 14, approximating the shape of the gaussian function used in Bouchacourt and 

Buschman (101) for stimulus inputs. Inputs above and below three standard deviations were set 

to zero. 𝑆,-' was the strength of external sensory input that was modulated based on the task 

between 0 and 19. In cases where two stimuli were presented simultaneously, the two circular 
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normal distributions centered at different angles were summed and provided as the stimulus 

input. In all simulations, stimuli were presented to a single sub-network at a time.  

Applying Top-down attention to the second layer 

Top-down attention gain was provided as synaptic drive (𝑠6'') to the second layer. So, the 

response of a given second layer neuron 𝑖 at a given time 𝑡 was:  

𝑟!&,.203(𝑡) = 𝛷* +
"∈$!%&'

𝑊!"
**𝑠"(𝑡) + 𝑆!6''(𝑡). 

where 𝑆6'' was the strength of top-down attention gain that was modulated based on the task 

between 0 and 18, in increments of 2.  

Simulating spatial attention 

To simulate and test the effects of spatial attention, we chose a subset of the second layer 

neurons that showed preference for a given sub-network, as we consider each sub-network as 

encoding a visual feature in different spatial locations. This was done by taking the feedback 

connectivity weights between the second layer neurons and a sub-network (1024 X 512), 

averaging the weights for each second layer neuron, and then rank ordering based on the average 

weights each second layer neuron has for this sub-network. The top 20 percent of the second 

layer neurons were defined to have a preference for this sub-network.  

In the attention task for simulating spatial attention, attentional gain was applied to the 

second layer neurons with the preference for one of the sub-networks (spatial attention target) for 

200ms before a single stimulus was presented to either the attended sub-network (Attended 

condition) or an unattended sub-network (Unattended condition) for 1000ms. We varied the 
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stimulus input strength between 0 and 20 in increments of 1, and spatial attentional gain between 

0 and 20 in increments of 2. Note that these values are in arbitrary units, and these ranges were 

intentionally chosen, as they allow us to observe the attentional effects of interest within our 

model. We simulated 50 trials for each condition. 

Simulating feature-based attention 

To simulate and test the effects of feature-based attention, we chose a subset of the 

second layer neurons that showed preference for the attentional target. In a separate simulation, 

the to-be-attended stimulus feature was presented to a single sub-network for 300ms. Then, the 

firing rates of the second layer neurons during stimulus presentation were averaged for each 

second layer neuron, rank-ordered, and then top 20 percent of the second layer neurons that 

showed the highest firing rates for the presented stimulus was chosen as preferring this stimulus 

feature.  

In the attention task for simulating feature-based attention, two stimuli were presented to 

a single sub-network, and the attentional gain was concurrently applied to the second layer 

neurons with the preference for one of the two stimuli, for 1000ms. We varied the stimulus input 

strength between 0 and 20 in increments of 1 and feature attentional gain between 0 and 20 in 

increments of 2. We simulated 50 trials for each condition.  

To evaluate the similarity of representations between attention signals and sensory 

signals, we conducted simulations to record stimulus-driven signals. In the sensory task, we 

presented one of 16 different stimulus features equally spaced in the stimulus space for 300ms to 

each of the eight sub-networks. We simulated 100 trials for each stimulus and each sub-network. 
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Simulating concurrent spatial and feature-based attention 

To simulate the interaction between spatial and feature-based attention, we chose two sets 

of second layer neurons, each for spatial attention and feature-based attention following the 

procedure described above. Then attentional gain for spatial and feature-based attention was 

applied to each set. In the case where there was an overlap between the two sets of neurons, the 

sum of the two attentional gain intensities was applied to those neurons. 

In the attention task for simulating spatial and feature-based attention, spatial attention 

gain was applied to one sub-network for 300ms, then two stimuli were presented to that sub-

network for 300ms, as in the attention task for feature-based attention simulation. Next, feature-

based attention gain was applied to one of the two presented stimuli for 1000ms. We varied the 

stimulus input strength between 0 and 20 in increments of 1, and spatial attentional gain and 

feature attentional gain were modulated independently between 0 and 8 in increments of 2. Note 

that we chose a lower range of attentional gain strength to prevent the network from saturating. 

We simulated 50 trials for each condition. 

Evaluating the effects of modulation in stimulus strength and top-down attention 

To quantify and compare the stimulus- or attention-related signals in each of the eight 

sub-networks, the firing rates for each neuron was averaged across the last 250ms of each trial of 

every simulation. We defined that the neurons that the presented stimulus input (a circular 

normal distribution) was centered on as having the highest preference for that stimulus based on 

the ring-like structure of the sub-networks, and thus, averaged their firing rates to plot the CRFs. 

Specifically, to plot the CRFs for the Attended condition in the spatial attention stimulations, we 

took the average firing rates of the two neurons that have the highest preference for the presented 
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stimulus for trials in which the spatial attention was given to the stimulated sub-network, and 

then averaged across trials for each stimulus strength and attention gain level. For the 

Unattended condition in the spatial attention simulations, the same was done over trials in which 

the spatial attention was given to an unstimulated sub-network, analogous to a situation in which 

there is a mismatch between the attended spatial location and the stimulus location. For feature-

based attention and concurrent spatial and feature-based attention simulations, the Attended 

condition CRFs were drawn from averaging firing rates of the two neurons that have the highest 

preference for the attended stimulus (out of the two stimulus inputs) for every trial for each level 

of stimulus strength and attention gain. For the Unattended condition CRFs, we averaged firing 

rates of the two neurons that have the highest preference the unattended stimulus.  

To estimate the contrast gain of the CRFs, we fit a Naka-Rushton function to the CRFs 

(109): 

𝑅(𝑐) 	= 	𝐺%
𝑐0

𝑐0 + 𝐺.0
+ 𝑏. 

where 𝐺% is the multiplicative response gain, 𝐺. is the contrast gain that controls the horizontal 

shift of the CRFs, 𝑏 is the response baseline offset, and 𝑛 is the exponent that controls the speed 

at which the CRF rises and reaches asymptote. The fitting procedure was done with 𝐺. and 𝑛 as 

the two free parameters and 𝐺% and 𝑏 as fixed parameters: 𝐺% fixed to the difference between the 

highest and lowest firing rates and 𝑏 fixed to the lowest firing rates for each CRF. There were 

two steps in the curve fitting procedure. First, we performed an initial grid search to find the best 

set of the two free parameters that yields the minimum root mean squared error. Then, to fine-

tune the search, we used SciPy optimize to minimize the root mean squared error between the 

data and the fit function, with the best parameter set from the grid search as the initial seed for 
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the search. The free parameters were restricted to the range of -10 and 10 for 𝑛, with the step size 

0.1 for the grid search, and -1 and 1 for 𝐺., with the step size 0.01 for the grid search. 

Decoding analysis 

To understand the nature of the feedback signal that is propagated to the first layer sub-

networks in the feature-based attention simulations, we used a decoding method with a circular 

regression model to compare bottom-up stimulus-driven signals and signals modulated by top-

down attentional feedback. 

First, to ensure that the circular regression model that we use is able to learn the signals 

for different stimulus features and make accurate predictions on which stimulus was presented, 

we trained and tested the model on the sensory task data for the stimulated sub-network. The 

training and test data was split in such a way that one trial for each presented stimulus feature 

was assigned to the test data and the rest of the trials were assigned to the training data. Then, the 

circular regression model with empirical Bayesian ridge regression was trained on the training 

data to predict which stimulus was presented in the test data. We took the absolute difference 

between the prediction and the actual stimulus value/angle and averaged across the trials to get 

the mean absolute error (MAE) value. We repeated this procedure, looping over different subsets 

of trials for the test data so that all trials had a chance of being included in the test data. The 

resulting MAE values were averaged over these cross-validation iterations. 

Next, to see if the top-down attentional modulations result in stimulus-specific 

representational changes for the attended stimulus, we used a cross-generalization method, in 

which we trained the regression model on the sensory task data and tested on the attention task 

data to predict which stimulus feature was attended in the stimulated sub-network. This is based 
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on the logic that if the attentional feedback signals lead to changes in signals that are stimulus-

specific, resembling enhanced stimulus responses, the regression model trained on the presented 

stimulus in the sensory task will successfully predict the attended stimulus in the attention task. 

For this, we trained the model on all of the sensory task data and then generated predictions for 

each trial in the attention task data. Average MAE was calculated from taking the average 

absolute difference between the predicted stimulus and attended stimulus value for each trial and 

averaging across all trials. Since the stimulus strength was fixed at 10 for the sensory task but 

varied from 0 to 18 in the attention task, we additionally examined if this discrepancy would lead 

to any changes in the decoding performance, by averaging MAE for each stimulus strength level 

separately (Figure 2.5).  

In addition to this sensory-to-attention comparison, we wanted to understand what kind 

of signal is getting propagated to the unstimulated sub-networks with the top-down attention 

modulations. First, we wanted to test if these feedback signals in the unstimulated sub-networks 

are consistent for a given attended feature, regardless of if these signals resemble stimulus-driven 

responses. To achieve this, we trained a linear support vector machine (SVM) to classify the 

attended stimulus in the attention task. We performed cross-validations by leaving two trials out, 

one each for which of the two stimuli was attended, training the classifier on the rest of the data 

and then testing on the two left out trials, repeating until every trial had been trained and tested 

on, and then averaging the classifier performance across all iterations. This procedure was done 

separately for each of the 8 sub-networks.  

Second, we wanted to test if the attentional feedback signals were systematic across the 

unstimulated sub-networks. To do this, we used cross-generalization between the unstimulated 

sub-networks: We trained the classifier on a given unstimulated sub-network to classify which 
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stimulus was attended in the stimulated sub-network, and then tested on the data from a different 

unstimulated sub-network, to see how well the attention-related activity pattern learned by the 

classifier is generalizable between two unstimulated sub-networks. We looped over the seven 

unstimulated sub-networks, using data from each sub-network as the training dataset and testing 

on each of the remaining six, and then averaged the decoding accuracy across all combinations. 

Network Initializations 

To ensure that the effects we observe in the simulations are not due to a specific wiring or 

a connectivity weight matrix, we repeated our simulations across ten iterations using different 

random seeds to initialize each network. Importantly, this gave rise to different connectivity 

patterns and weights between the first and the second layer for each initialization. All of the plots 

show averaged data across these ten iterations with the shaded region as the standard error of 

mean. 
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Supplementary Figure 2.1 Comparison of raster plots for sensory task with stimulus strength at 
10 and attention task with stimulus strength at 12 and feature-based attention gain strength at 6. 
The presented stimulus in sensory task and the attended stimulus in the attention task is 90°. 
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Chapter 3 The role of random projections in shaping feature-specific attentional modulations 
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Introduction 

Prior empirical studies have reported the spreading of the feature-based attentional 

signals across the visual field. In these studies, the response of a neuron is enhanced according to 

the similarity between the feature it is tuned to and the attended feature, irrespective of the 

location of the neuron’s spatial receptive field (1–5). In contrast, our network model in Chapter 2 

showed that feedback signals propagated by neurons with high-dimensional tuning functions 

lead to stable activity patterns that can support decoding, but these activity patterns do not 

resemble the ‘coherent’ stimulus representations in the stimulated sub-network or the activity 

patterns of other unstimulated sub-networks.  

We hypothesized that the lack of coherent representations in the unstimulated sub-

networks was due to the randomness of connections between neurons in the first and the second 

layer. When top-down gain is provided to a second layer neuron, it sends excitatory signals to the 

currently attended feature but also sends other signals, excitatory and/or inhibitory, to other first 

layer neurons in any sub-network that it has connections to. Because this connection is random 

with regards to the tuned feature of these first layer neurons that get feedback signals, these 

incidental signals are likely canceled out through destructive interference, leaving intact 

idiosyncratic modulatory patterns that would rarely develop into coherent representations. 

To directly test this account, we modulated how likely a given ‘control’ neuron will have 

connections to similarly tuned ‘sensory’ neurons, introducing more structure to a network with 

fully random between-layer connections. As we increased the structuredness in our model, 

spurious signals appeared in a feature-specific manner with stronger top-down modulation. 

Notably, at an intermediate level of structuredness in the between-layer connections, our model 
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showed increased activity for the attended feature regardless of presented location, similar to the 

global spread of feature-based attention (1, 3, 5). In summary, our findings highlight the role of 

random connections in achieving highly selective top-down attentional modulations relayed by 

neurons with high-dimensional tuning. 
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Methods 

We used the same setup of the spiking neural network model as in Chapter 2, except the 

between-layer connections were varied in the degree of randomness as described below. 

Modulating randomness of the between-layer connections in the feature space 

To test the effect of network randomness, we parametrically modulated the connectivity 

randomness between the first and second layer. First, for every second layer neuron, we 

randomly decided how many connections the second layer neuron is going to have to neurons in 

each sub-network, following the same likelihood of excitatory connection at 0.35. Then, looping 

through each sub-network, we determined the connections between each second layer neuron 

and neurons in a given sub-network using a circular normal probability distribution function that 

was centered on a randomly chosen stimulus feature (𝜇):  

𝑝(𝜃) =
𝑒𝑥𝑝(𝜅	𝑐𝑜𝑠(𝜃	 − 	𝜇))

2𝜋𝐼5(𝜅)
 

The width of the probability distribution was determined by 𝜅, which we modulated 

between 0 and 0.4 in increments of 0.1 (Figure 3.1). When 𝜅 = 0, the probability distribution was 

uniform and every neuron in all sub-network had an equal chance of being connected to a given 

second layer neuron. When 𝜅 > 0, the probability distribution was a bell-shaped curve and the 

first layer neurons that prefer features closer to the center of the probability distribution had a 

higher chance of being connected to the given second layer neuron. Note that this process only 

changed whether a certain between-layer connection existed and not the strength of the 

connection. As a result, when 𝜅 is higher, the second layer neurons will be connected to first 



125 

layer neurons that have similar stimulus preferences, which in turn will make the second layer 

neurons develop a lower-dimensional selectivity for stimulus features.  

To test the effect of 𝜅 modulation, we simulated feature-based attention and concurrent 

spatial and feature-based attention as before using networks with varying 𝜅 levels. Critically, we 

compared feature-related signals for the attentional target from the stimulated and unstimulated 

sub-networks, to test if there is an increase in the signal for the attended feature from even in the 

sub-network where no stimulus was presented, when there is more structure in the between-layer 

connectivity. See below for details on the quantification of feature-related signals. 

Evaluating the effects of modulation in stimulus strength and top-down attention  

Using a similar procedure as in Chapter 2, we averaged the firing rates for each neuron in 

each of the eight sub-networks across the last 250ms of each trial, to quantify and compare the 

stimulus- or attention-related signals. Contrast response functions (CRFs) for the Stimulated 

condition were calculated from averaging firing rates of the two neurons that have the highest 

preference for the attended stimulus, in the sub-network that the stimuli were presented to. 

Unstimulated condition CRFs were calculated from averaging firing rates of the two neurons that 

have the highest preference for the attended stimulus, in the sub-networks the stimuli were not 

presented to. This was to test whether there is heightened activity in the unstimulated sub-

networks that corresponds to the attended stimulus feature with the changes in the randomness of 

the between-layer connectivity.  

Decoding analysis 

The same cross-generalization procedure from Chapter 2 (training support vector 

machines on the sensory task to predict the attended stimulus in the attention task; see Decoding 
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analysis in Chapter 2 Methods) was also applied to assess feature-related representational 

changes with the randomness of between-layer connections for feature-based attention 

simulations and concurrent spatial and feature-based attention simulations (Figure 3.2, bottom 

row; Figure 3.4). 

Network Initializations 

To ensure that the effects we observe in the simulations are not limited to a specific 

network initialization, we repeated the feature-based attention simulations with different 

connectivity randomness levels across ten iterations using different random seeds to initialize 

each network. This gave rise to different connectivity patterns and weights between the first and 

the second layer. All plots show averaged data across these ten iterations with the shaded region 

as the standard error of mean, except for concurrent spatial and feature-based attention 

simulations, for which we ran one network initialization per each level of connectivity 

randomness.  
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Results 

Structured connections give rise to feature-specific spurious signals while enhancing the 

response to the attended stimulus 

To test the importance of random connections, we modulated the probability that a given 

second layer neuron is connected to neurons in different first layer sub-networks that are tuned to 

a similar feature value. For example, in a highly structured network, if a second layer neuron has 

a connection with a neuron from one sub-network that was tuned to 180°, that second layer 

neuron would be more likely to have a connection with a neuron in another sub-network that is 

also tuned to 180°. In contrast, in a fully random network, as was used in the simulations in 

Chapter 2, no constraints are placed on the formation of connections between the two layers 

(except those governing the overall probability of forming connections, see Chapter 2 Methods). 

To implement this procedure, we modulated the connections between the sub-networks and the 

second layer neurons using a circular normal probability distribution. We adjusted the dispersion 

parameter 𝜅 that determines the spread of the probability distribution along the feature space, 

that in turn modulates how likely a given second layer neuron will be connected to similarly 

tuned first layer neurons across the sub-networks (Figure 3.1). This modulation of randomness is 

expected to change the network properties in two main ways: With higher 𝜅, 1) second layer 

neurons will have lower-dimensional tuning, as the first layer neurons they get converging inputs 

from will have similar feature tuning, and 2) stimulus input to one sub-network will likely 

modulate activity in other sub-networks through the connections with the second layer, in a 

feature-specific way and not idiosyncratically as before, since the second layer neurons will relay 

signals to neurons in other sub-networks that are tuned to the similar feature as the stimulus 

input. 
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Figure 3.1 Probability distribution of connections between a second layer neuron and first layer 
neurons as a function of preferred feature of the first layer neurons. For every second layer 
neuron, the center of the probability distribution (𝜇) was randomly chosen from the stimulus 
space. Each line represents a circular normal distribution with different levels of 𝜅, as shown in 
the legend. 

 

With varying degrees of structure in the connections between the first layer sub-networks 

and the second layer, we performed feature-based attention simulations using the same sensory 

task and the attention task from Chapter 2 (Figure 2.3A, 2.3B). We measured the average firing 

rates of neurons that maximally prefer the attended stimulus in the stimulated sub-network 

(Figure 3.2, top row) and in the unstimulated sub-networks (Figure 3.2, middle row) as a 

function of stimulus strength. We found that the response functions for the stimulated sub-

network generally shifted leftward when there was more structure in the between-layer 

connections (i.e. higher 𝜅). Importantly, in the unstimulated sub-networks, even though no 

external stimulus input was provided to these networks, the neurons that are tuned to the 

attentional target started to show an increase in structured activity (i.e. 𝜅 = 0.3, 0.4). This effect  
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Figure 3.2 Randomness modulations in feature-based attention simulations. Each column 
represents results from different level of connectivity randomness (𝜅), as labeled at the top. Top 
row shows contrast response functions (CRFs) for the attended stimulus in the stimulated sub-
network. Middle row shows CRFs in the unstimulated sub-network, based on firing rates of the 
neurons that prefer the attended feature. Colors of the lines represent different levels of feature-
based attention gain, as shown in the legend. Bottom row shows average mean absolute error 
(MAE) between the predicted and actual stimulus input for Stimulated (solid black line) and 
Unstimulated (dotted gray line) conditions based on regression model predictions. Shaded areas 
represent standard error of mean across network initializations. 

 

was most pronounced for higher feature-based attention gain conditions, for example, when 𝜅 = 

0.3 and the attention gain was 8 or higher. Interestingly, when 𝜅 = 0.4, we observed increased 

activity in the unstimulated sub-networks even when no top-down feature gain was applied. This 

suggests that due to the high structuredness in the between-layer connections, strong stimulus-

driven activity in one sub-network can indirectly increase activity in other sub-networks through 
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that structured connection without additional top-down amplification of that signal. Moreover, 

we also found a drop in the response function when stimulus strength was at a higher level and 

top-down gain at a relatively lower level. This is likely due to the strong input of the competing 

stimulus having a suppressive effect on the propagation of signals of the attentional target. In 

other words, the top-down attentional modulation is not strong enough to dominate the 

propagated signals from the competing stimulus.  

Structured between-layer connections lead to stimulus-like activity patterns in 

unstimulated sub-networks and capture global spread of feature-based attention 

To better understand the representational changes in each sub-network and to quantify the 

resemblance between the attentional modulations and stimulus-driven response patterns, we 

performed cross-generalization decoding analysis by training the circular ridge regression model 

on the sensory task to predict the attended stimulus in the attention task. When the between-layer 

connections were slightly more structured (i.e. 𝜅 = 0.1), mean absolute error (MAE) for the 

stimulated sub-network showed a similar pattern to when the connections were fully random, 

decreasing as a function of top-down attentional gain at a similar magnitude (Figure 3.2, bottom 

row). Importantly, in the unstimulated sub-networks, there was a slight decrease in MAE with 

stronger top-down gain, although it was smaller in magnitude compared to the stimulated sub-

network. This suggests that when the network has more structure in the connections, the 

feedback signals can modulate activity in unstimulated sub-networks in a way that resembles 

bottom-up feature-related signal changes, similar to the empirically reported global spread of 

feature-based attention (1, 2). As we increased the structuredness further, with 𝜅 = 0.2 and 

higher, the MAE of stimulated sub-network decreased even more with higher feature gain, 

suggesting that the activity in the sub-network closely resembles the stimulus-driven activity 
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pattern, with the MAE value dropping close to 0 when 𝜅 = 0.3, 0.4. However, the magnitude of 

decrease in MAE in the unstimulated sub-networks became more similar to that of the stimulated 

sub-network. This implies that when the connections were more structured, the feedback-

modulated activity patterns in the unstimulated sub-networks resembles the stimulus-driven 

signals, enough to support decoding of the attended stimulus.  

Overall, having more structure in the connections amplified the effect of top-down 

attention, enhancing representations of the attended stimulus. This is likely due to top-down gain 

signals that spread to other sub-networks converging on similar feature-tuned neurons, which in 

turn send signals back to the second layer neurons that receive the attentional gain, and therefore 

to the stimulated sub-network, strengthening the representation of the attended target. This 

comes at a cost, because as the feedback signals in unstimulated sub-networks converge rather 

than cancel each other out, they can form a coherent representation similar to a stimulus-driven 

activity, which might lead to incorrect readout of stimuli being present in unstimulated sub-

networks (e.g. illusory percept). Therefore, in our simulations, randomness in the between-layer 

connections play a role in canceling out these spurious signals from forming a stable feature-

related activity pattern and ensures that only the sub-network presented with the stimulus 

benefits from the attentional gain, while adding a limited amount of structure enables our 

network model to capture the global feature-based attention effect as well. 

Applying concurrent spatial and feature-based attentional modulation amplifies the effect 

of randomness modulation 

In addition to the feature-based attention simulations, we also investigated the effect of 

structuredness in connections in simulations of concurrent spatial and feature-based attention, 
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using the same task as previously shown in Chapter 2 (Figure 2.6A). We measured the average 

firing rates of neurons that maximally prefer the attended stimulus in the stimulated sub-network 

and in the unstimulated sub-networks as a function of stimulus strength. We chose 𝜅 = 0.1 and 𝜅 

= 0.3 conditions and spatial attention gain of 2 and 6 as examples to plot the response functions 

in Figure 3.3 (all results shown in Supplementary Figure 3.1). Replicating previous results, the 

response functions for the stimulated sub-network generally shifted leftward when there was 1) 

higher feature-based attention gain, 2) higher spatial attention gain, and 3) more structure in the 

between-layer connections (top rows in Figure 3.3A and 3.3B). In the unstimulated sub-

networks, when 𝜅 = 0.3, the neurons tuned to the attended feature showed increased activity 

when feature-based attention gain was high. This effect was more pronounced when stronger 

spatial attention gain was applied, showing increased activity for the attended feature even at 

lower feature-based attention gain levels.  

We also conducted decoding analyses for the concurrent spatial and feature-based 

attention simulations. We used the circular ridge regression model that was trained on the 

sensory task and cross-generalized to the attention task to predict the attended feature, separately 

for each level of 𝜅. As before, we quantified the decoding performance as MAE between the 

attended feature and the feature predicted by the model and plotted as a function of feature-based 

attention gain strength, for each spatial attention gain strength and 𝜅 value (Figure 3.4). When 

the between-layer connections were fully random (𝜅 = 0), we observed a decrease in MAE for 

the stimulated sub-network with stronger feature-based attention gain while MAE for the 

unstimulated sub-networks stayed at chance, similar to the previous results. This decrease for 

stimulated sub-network MAE was more pronounced with stronger spatial attention gain. Next, 

when the connections were more structured (𝜅 = 0.1), the stimulated sub-network MAE  
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Figure 3.3 Randomness modulations in concurrent spatial and feature-based attention 
simulations. A, B. CRFs for the attended stimulus in stimulated (top row) and unstimulated 
(bottom row) sub-networks. Colors of the lines represent different levels of feature-based 
attention gain, as shown in the legend. Left panels show results for higher randomness condition 
(𝜅 = 0.1), and right panels show results for lower randomness condition (𝜅 = 0.3). Panels in A 
show results for lower spatial attention gain, and panels in B show results for higher spatial 
attention gain. 

 

decreased by a larger magnitude with stronger feature-based attention gain, while the 

unstimulated sub-network MAE still stayed close to chance levels, decreasing slightly towards 

the strongest feature-based attention gain. This big gap in the MAE between the stimulated and 

unstimulated sub-networks suggests that while the stimulated sub-network is benefiting from the 

attentional gain, with its response pattern more closely resembling the sensory-driven responses 

for the attentional target, the unstimulated sub-networks showed marginal shift in their responses 

getting similar to coherent feature representations. When the network was even more structured 

(𝜅 = 0.2 and higher), MAE for the unstimulated sub-networks decreased at a similar rate as the 

stimulated sub-network. This suggests that the feedback modulations in the unstimulated 
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Figure 3.4 MAEs for concurrent spatial and feature-based attention simulations with randomness 
modulation. MAEs were calculated by training the regression model on the sensory task from 
feature-based attention simulations and testing on the attention task, separately for each 
randomness level (𝜅). Each column shows results for different level of connectivity randomness, 
as labeled at the top, and each row shows results for different level of spatial attention gain, as 
labeled on the left. Solid black lines represent stimulated sub-network and dotted gray lines 
represent unstimulated sub-network in each panel. 
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sub-networks were able to form a coherent representation that closely resembled sensory 

representation just as much as the stimulated sub-network, even in the absence of any stimulus 

input.  

Although not central to our hypothesis, we noticed that MAE values drop to a lower point 

with higher feature-based attention gain when 𝜅  = 0.3 compared to when 𝜅  = 0.4, contrary to 

the general trend of higher 𝜅 leading to lower MAE. This seems to be due to more structure in 

the network making it easier to fall into a self-exciting loop that is sustained by the sub-networks 

indirectly reinforcing activities in each other through the second layer neurons that they converge 

on for one of the presented features that is hard to break out of unless the feature-based attention 

gain is high enough. The example trials in Supplementary Figure 3.2 illustrate cases when the to-

be-unattended stimulus ends up dominating the activity over the to-be-attended stimulus in the 

stimulated sub-network shortly after the two stimuli are presented. When 𝜅  = 0.3 (left panel), 

this is reversed when the feature-based attention gain is applied for the attended stimulus (lower 

cluster of spikes in sub-network 1), leading to the stimulated sub-network correctly representing 

the attended feature and the unstimulated sub-networks following that shift in representation. 

However, when 𝜅  = 0.4 (right panel), the activities for the to-be-unattended stimulus quickly 

gain strength in both the stimulated sub-network and the unstimulated sub-networks shortly after 

the stimuli were presented, potentially through indirect interactions that send excitatory signals 

for the to-be-unattended stimulus and inhibitory signals for the to-be-attended stimulus. Thus, 

this robust attractor state maintained through structured connections between the first and the 

second layer neurons makes it harder for the feature-based attention to bias the activity in favor 

of the attentional target.  
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In summary, a network with fully random connections is most efficient at relaying 

targeted space and feature-based feedback signals to sub-networks that code sensory information. 

However, if some minimal structure is introduced, other empirical phenomena, such as the global 

spread of feature-based attention can also be recapitulated while a reasonable level of specificity 

in the feedback modulation is maintained.   
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Discussion 

As pointed out in previous studies, the randomness in connections between the early and 

later areas in the brain is important for flexibly encoding information in working memory (6). 

Even though the early sensory areas are more structured and lower-dimensional in their 

selectivity, random connections allow convergence from these early sensory areas to result in 

high-dimensional selectivity in the later areas, in turn endowing the ability to encode and 

integrate diverse information. Building on the idea that randomness supports the flexible 

encoding and storage of sensory information, our findings highlight the importance of the 

random projections in the context of top-down attentional modulations. Given the high degree of 

convergence from early sensory areas to high-order control areas, feedback signals propagated 

from the control neurons will inevitably spread to many early sensory neurons (7, 8). When the 

connections are structured, feedback signals can modulate the unstimulated neurons in a way that 

resembles the response patterns to a sensory input, as well as increasing the response of the 

attentional target. In contrast, we demonstrate that the randomness of these projections is crucial 

to selectively enhancing relevant information while canceling out idiosyncratic signals.  

One possible mechanism to implement random connections at the cellular level is cell 

adhesion molecules such as protocadherin that mediate self-avoidance in dendritic connections 

(9–12). These proteins are expressed in a probabilistic way in different combinations that give 

individual neurons with random, unique molecular identities. Thus, while speculative, matching 

the neurons in different brain areas with the same molecular identity may support the 

initialization of random and reciprocal connections (6, 13). 
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Based on previous literature and our simulations, maximal randomness in a network is 

desirable to achieve flexible encoding and the most targeted top-down enhancement of the 

relevant input signal. However, a fully random network cannot account for the global spread of 

feature-based attention, in which a neuron’s activity is amplified relative to the similarity 

between the neuron’s preferred feature and the attended feature regardless of whether the 

presented feature is in its spatial receptive field or not (1–5, 14). As shown in Figure 3.2, 

parametrically changing the structuredness/randomness in the between-layer connections 

revealed a balance point where the unstimulated sub-networks exhibit activity patterns that are 

similar to the stimulated sub-network, but at a lower level than the stimulated sub-network. This 

pattern emulates the spread of feature-based attention to locations where no stimulus was 

presented that would support increased sensitivity for the attended feature across the entire visual 

field (1, 2), but still not overwhelm the representation of the physically present feature. 

Alternatively, similar global feature-based attention effects might arise if each neuron in the 

second layer is connected to like-tuned neurons in different first-layer sub-networks. In addition, 

the strength of those connections could vary such that feedback would upregulate like-tuned 

neurons in one sub-network more than the others. However, this architecture would yield 

unimodal tuning in both sensory and higher-order areas. This rigid coding scheme is contrary to 

what is observed empirically, and it would not capitalize on the benefits of multiplexing, such as 

using high-dimensional codes with a smaller number of neurons to encode diverse inputs and 

solve complex tasks. Finally, global feature-based attention effects might arise due to local 

excitatory connections between similarly tuned neurons in sensory areas. This scheme would 

allow full randomness in the connections between layers while still giving rise to global feature-

based attention effects.  
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In the current study, we simulated top-down space- and feature-based attention by 

manipulating a single “second” layer of neurons conceptualized as the control area neurons. This 

simplified model was sufficient to test our hypotheses about the importance of randomness when 

relaying feedback signals via neurons with high-dimensional tuning. However, it is also possible 

that a network with two “second” layers - one with structured connections for spatial attention 

and one with less structured connections for feature-based attention - could also account for 

spatial and feature-based attention effects. For example, frontal eye field (FEF) neurons have 

spatial tuning and have been implicated in space-based attentional control (15–19). In contrast, 

the inferior frontal junction (IFJ) has been implicated in feature/object-based control in humans 

(20–25). In addition, a recent study showed that inactivating ventral prearcuate (VPA) in 

monkeys impaired the monkey’s ability to saccade to a target in a search array while the ability 

to saccade to a single target was intact, suggesting VPA’s involvement in guiding feature-based 

attention, similar to IFJ in humans (26, 27). In turn, signals in VPA may be relayed to FEF to 

modulate prioritization and orienting to the selected feature in the spatial domain. Thus, more 

complex interactions between spatial and feature-based attention may be better addressed with a 

more comprehensive network model with functionally separate spatial and feature-based control 

layers. 

The idiosyncratic signal we found in unstimulated sub-networks was consistent with 

regards to which feature was the target of attentional enhancement, enough to support the 

decoding of the attended feature without necessarily resembling the sensory response to this 

feature. This may explain some previous findings reporting successful decoding of the attended 

feature from cortical areas with receptive fields in the unstimulated part of the visual field (28). 

While feature-specific modulations (i.e. the global spread of feature-based attention) could co-
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occur with the idiosyncratic feedback signals, unless direct comparison to feature-specific 

sensory responses is done, it cannot be ruled out that the decoding in the previous studies could 

have relied on the consistent, but random, signals instead of global feature-specific modulations. 

More generally, this suggests that interpretation of decoding results such as this needs to be done 

carefully. The decoding performance will be higher than chance as long as the signals change 

systematically with the label, regardless of the nature of the signal. 

While our study focused on relaying top-down modulations, it still begs the question 

about how the modulations are initialized in the first place. For top-down modulations of 

stimulus evoked responses, norepinephrine released from locus coeruleus can interact with 

stimulus-driven local glutamatergic signaling in areas like parietal cortex or prefrontal cortex 

(PFC) to enhance high priority representations (29–31). In this “glutamate amplifies 

noradrenergic effects” (GANE) model, high levels of local glutamate for the stimulus 

representation can lead to more release of local norepinephrine to form “hotspots” of high 

norepinephrine activity, maintained through a positive feedback loop. At the same time, the locus 

coeruleus inhibits representations that do not form these hotspots, by increasing lateral inhibition 

where the hotspots form and suppressing activities where there are no hotspots, resulting in a 

widespread suppression while selectively enhancing high-priority representations. This model 

provides a viable alternative explanation for how top-down modulations can be initialized 

without the need to hypothesize a hierarchical series of control areas. However, the mechanism 

that mediates the initial prioritization of a relevant location or feature to initiate the “GANE” 

process is still unclear.  

In conclusion, our findings suggest that random connections provide a mechanism to 

relay highly selective top-down attentional modulations in a system with high-dimensional 
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tuning functions. When the connections are sufficiently random, only relevant signals are 

maintained in a coherent, stimulus-like, pattern. In contrast, feedback signals related to other 

features that are encoded by higher-order neurons largely cancel out and do not form 

representations that might be confusable with the attended stimulus. This emphasizes the 

importance of randomness in the connectivity in a hierarchical network with converging inputs 

for precise feedback modulations. 
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Supplementary Figure 3.1 CRFs for concurrent spatial and feature attention simulations for all 
levels of 𝜅 and spatial attention gain. For each level of spatial attention gain, labeled on the left 
side, solid lines represent CRFs for the attended stimulus in stimulated sub-networks (top row) 
and dotted lines represent CRFs for unstimulated (bottom row) sub-networks. Colors of the lines 
represent different levels of feature-based attention gain, as shown in the legend. 
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Supplementary Figure 3.2 Comparison of raster plots for concurrent spatial and feature attention 
simulations. Left panel shows an example trial for when 𝜅 = 0.3 and right panel is for when 𝜅 = 
0.4. In both trials, the spatial and feature-based attention gain strength was 8, stimulus strength 
was 11, and the attended stimulus was 90° (the lower cluster of spikes within sub-network 1). 
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