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Image-guided minimally invasive percutaneous interventions, including needle-based 

targeted biopsy and focal therapy, play key roles in cancer diagnosis and treatment. With excellent 

soft tissue contrast and the absence of ionizing radiation, magnetic resonance imaging (MRI) has 

become a promising imaging modality for intra-procedural and real-time guidance of percutaneous 

interventions. However, MRI-guided percutaneous interventions still face two main challenges: 

limited access to patients inside the scanner and tissue displacement due to physiological motion.  

MRI-compatible remotely controlled systems for instrument manipulation inside the scanner are 

being developed to address the first challenge. To address the second challenge, computer-assisted 

navigation methods using intra-procedural and real-time MRI are being investigated to provide 

essential information regarding tissue and instrument positions to guide percutaneous interventions. 
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Accurate tissue motion tracking and automatic needle localization techniques are the core 

components for computer-assisted navigation. Respiratory motion remains the main challenge for 

procedures in abdominal organs. The tissue target tracking accuracy is negatively impacted by the 

system latency of the MRI acquisition, reconstruction, and processing pipeline. In addition, passive 

needle tracking using MR images is challenged by variations of the needle-induced signal void 

feature in different situations. Discrepancies between the needle feature position on MRI and the 

underlying physical needle position could increase needle localization errors during procedures. 

Therefore, this dissertation aims to address these challenges by establishing new computer-assisted 

navigation techniques for MRI-guided interventions, including prediction of tissue motion due to 

respiration using fusion-based multi-rate Kalman filtering and deep learning-based needle 

localization methods. 

Firstly, this work investigated image-based and surrogate-based motion tracking methods 

using real-time golden-angle radial MRI to achieve real-time MRI guidance for interventions in 

organs affected by respiration (e.g., liver). Images with different temporal footprints were 

reconstructed from the same golden-angle radial MRI data stream to simultaneously enable image-

based and surrogate-based tracking at 10 Hz. Phantom experiments confirmed that the median 

online tracking error of image-based tracking was lower than surrogate-based methods, however, 

with higher median system latency. This work proposed a new fusion-based respiratory motion 

prediction framework to combine the lower tracking error of image-based tracking with the lower 

latency of surrogate-based tracking. The fusion-based method was evaluated in retrospective 

studies using in vivo real-time free-breathing liver MRI. The motion prediction accuracy of the 

proposed framework achieved low-latency feedback with improved accuracy compared with 

image-based and surrogate-based methods. 
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Next, to develop an automatic needle tracking algorithm for MRI-guided interventions, this 

work adapted the Mask Region Proposal-Based Convolutional Neural Network (R-CNN) to 

localize the passive needle features on MRI. Mask R-CNN was adapted and trained to segment the 

needle feature using intra-procedural images from MRI-guided prostate biopsy cases and real-time 

images from MRI-guided needle insertion in ex vivo tissue. The segmentation masks were passed 

into a needle feature localization algorithm to extract the needle feature tip location and axis 

orientation. The proposed algorithm was evaluated on MR images from in vivo intra-procedural 

prostate biopsy cases and ex vivo real-time MRI experiments with a range of different conditions. 

It achieved pixel-level tracking accuracy in real time and has the potential to assist MRI-guided 

percutaneous interventions.  

Lastly, to overcome in-plane and through-plane discrepancies between the needle feature 

position on MRI and the underlying physical needle position, this work developed a deep learning-

based framework to automatically localize the physical needle position using single-slice and 3- 

slice MRI. The proposed framework consists of two Mask R-CNN stages. Physics-based 

simulations were performed to generate single-slice and 3-slice images with needle features from 

a range of underlying needle positions and MRI parameters to form datasets for training the single-

slice and 3-slice physical needle Mask R-CNN models. Using the single-slice model, the proposed 

physics-driven Mask R-CNN framework achieved sub-millimeter physical needle localization 

accuracy on single-slice images aligned with the needle. The 3-slice model further reduced the 

through-plane physical needle localization error in situations where the imaging plane may be 

misaligned with the needle. Both frameworks can achieve physical needle localization in real time 

for interventional MRI. 
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Chapter 1 Introduction 

1.1 Significance 

Diagnostic and therapeutic image-guided minimally invasive percutaneous interventions 

are becoming routine in clinical cancer management1,2. Procedural accuracy for needle-based 

targeted biopsy and focal therapy is essential for safe and effective clinical outcomes of these 

interventions. Conventional imaging modalities such as computed tomography (CT) and US 

(ultrasound) lack the consistent lesion visualization required to precisely localize tumors3,4. 

Fortunately, magnetic resonance imaging (MRI) provides excellent soft tissue contrast, which 

enables proper identification of both target lesions and structures that are critical to avoid (i.e., 

blood vessels). In addition, MRI has no ionizing radiation exposure for both physicians and 

patients, which could support continuous image guidance5. 

However, performing continuous guidance using MRI during an interventional procedure 

is currently impractical because conventional closed-bore MRI scanners restrict physicians' access 

to patients. Existing clinical workflows leverage MRI for intra-procedural guidance with in-bore 

device manipulations using freehand or step-and-shoot workflows. The generalizability of 

freehand procedures is limited because a specialized MRI scanner choice (i.e., open bore or short 

bore) may be required6. In the meantime, step-and-shoot workflows are widely adopted at multiple 

clinical sites for different types of procedures in the conventional MRI scanner7-9. These 

approaches may often require prolonged procedural time with iterative needle adjustment to 

achieve adequate targeting accuracy since they lack continuous image guidance. 

Remotely controlled systems for manipulating instruments inside the MRI scanner, such 

as MR-compatible needle actuators and robotic systems, are being developed to address this 

challenge10-12. With improved imaging sequences and reconstruction speed, real-time MRI enables 
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continuous visualization of target lesions and needles to provide timely visual feedback13,14. 

However, tissue displacement due to physiological motion could increase manual needle operation 

error, undermining the overall accuracy and time efficiency of procedures. Therefore, with the 

development of computer-assisted navigation methods, key information regarding tissue and 

instrument positions can be acquired through real-time MRI feedback to achieve dynamic 

guidance and control of the instrument to treat moving targets, thus further expanding clinical 

applications of MRI-guided percutaneous interventions. 

1.2 Image-Guided Percutaneous Interventions 

Image-guided percutaneous interventions play key roles in cancer diagnosis and treatment. 

Under image guidance, physicians manipulate needles to access targets in suspected lesions for 

different purposes. These include well-established needle-based targeted biopsy approaches that 

allow for retrieval of tissue specimens for cancer diagnosis in multiple organs of the body such as 

brain, breast, liver, lungs, prostate, etc.2.  In addition, image-guided focal therapies, including 

needle-directed procedures such as laser ablation and radiofrequency ablation, have gained 

popularity for cancer treatment15. Compared with other established treatment options like surgical 

resection, ablation can preserve tissue and treat localized cancer with low rates of morbidity16.  

Overall, medical imaging can help to precisely localize target lesions and device positions 

to guide targeting procedures for percutaneous interventions. However, for targets in the abdomen, 

there are extra procedural challenges caused by physiological motion. CT and US are the most 

commonly used intra-procedural image modalities to guide a variety of procedures17,18. However, 

the overall effectiveness of CT and US guidance is still limited for multiple reasons. US is an 

established modality for dynamic procedural guidance, however, low signal-to-noise ratio (SNR) 

and acoustic window restrictions limit visualization of deep and small tumors using US4. Non-
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contrast CT lacks direct visualization of small and artifact-obscured lesions, while enhancement 

of lesions from injected contrast materials is only temporary and cannot last over the whole 

procedure3. Although CT fluoroscopy (CTF) has the potential to provide dynamic visualization of 

interventional devices and moving targets to improve guidance and allow fast response to 

intraoperative complications19, continuous image guidance using CTF is not widely accepted due 

to the concern about radiation exposure to both patients and physicians. 

1.3 MRI-Guided Percutaneous Interventions  

MRI has become an essential medical imaging technique to create qualitative and 

quantitative images that capture anatomical and physiological information of the human body. 

Conventional MRI has been performed as a non-invasive diagnostic test for different types of 

diseases. With excellent soft tissue contrast, MRI can visualize different types of cancerous lesions 

and critical structures to avoid during interventions20. These advantages position MRI as a 

powerful pre-procedural imaging modality to identify lesion targets and create a roadmap for 

procedures in the planning stage21. Image fusion methods have been developed to register rapid 

intra-procedural images such as from US or X-ray fluoroscopy (XRF) to the planning roadmap on 

MRI. However, the overall targeting accuracy may suffer from errors due to misregistration 

between different modalities22. 

MRI can also provide needle visualization based on the passive signal void feature on the 

MR images caused by needle-induced susceptibility effects to guide needle manipulation during 

procedures. For example, during intra-procedural or real-time MRI-guided interventions, needle-

in scans are used to visualize both the needle feature and the target to assist needle position 

adjustment7. Thus, with additional advantages of MRI, including multiplanar volumetric imaging 
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and no ionizing radiation exposure to both physicians and patients, it has emerged as a promising 

intra-procedural imaging modality. 

One major limitation of MRI guidance is insufficient access of physicians to patients inside 

the scanner because of the long and narrow size of the conventional MRI bore (diameter ≤ 70 cm, 

length in the range of 125–160 cm). Open-configuration low-field MRI systems have been 

developed for certain patient groups with claustrophobia and extreme obesity or to dedicate to 

interventional purposes23-25. Freehand in-bore device manipulation with interactive MRI guidance 

can be performed. However, it has not become a clinical routine because this unique scanner type 

is rarely available at clinical sites, as open-configuration designs could lower signal-to-noise ratio 

(SNR) and amplify field inhomogeneity, further impairing the image quality. A variety of studies 

using the freehand approach were performed on short-bore MRI such as Siemens Espree 1.5T MRI 

system with a wide bore of 70 cm diameter and 125 cm length5,26,27. However, the advantages of 

clinical translation are unclear as short-bore scanners are not widely installed, so the general 

learning curve of the freehand approach is also not well understood. The freehand approach with 

step-and-shoot workflow in conventional high field scanners (e.g., 3T) has emerged in prostate 

biopsy, as the pelvis is relatively easier to access28. Though the proposed workflow is feasible, it 

may remain limited to regions of the body that are more accessible and experience less motion. 

In the physical space of conventional MRI scanners, physicians have established the step-

and-shoot workflow for multiple procedures in more clinical sites to adapt the MRI advantages for 

percutaneous interventions. A conceptualized diagram summarizes the workflow (Figure 1-1), 

which is consistent among several types of procedures in different organs using different MRI 

protocols and guidance systems. For example, MRI-guided in-bore prostate biopsy has become a 

clinical routine in prostate cancer diagnosis. Several cohort studies demonstrated higher prostate 
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cancer detection rates than conventional biopsy by applying MRI-guided procedures7,29,30. In the 

UCLA medical center, the standard step-and-shoot workflow of in-bore prostate biopsy included 

several key steps: identify suspicious region(s) based on pre-procedural structural and diffusion 

MRI; initialize needle trajectory planning by localizing fiducial reference markers and target 

position(s); adjust alignment parameters of an MRI-compatible and visible needle guide based on 

the planned trajectory; advance the patient into the MRI bore to acquire intra-procedural images 

to confirm the needle position. If the needle is not on target, further adjustment is required for the 

needle guide. Such workflow is quite time-consuming because physicians need to repeatedly 

transfer patients into and out of the scanner bore to adjust the needle position between intermittent 

imaging. The cumbersome step-and-shoot steps mainly result from separate needle manipulation 

steps and image guidance steps, which may lead to inadequate targeting accuracy or prolonged 

procedure time because there is no instant feedback. 

 

Figure 1-1 Conceptual diagram of a standard step-and-shoot workflow. Blue dashed box indicates 
the most time-consuming part of iterative needle adjustment and confirmation. 

1.4 Emerging Technologies for MRI-Guided Interventions 

1.4.1 Remote Controlled Robotic System 

To address challenges of restricted space in the conventional close-bore MRI scanner, MRI 

compatible remote-controlled systems are being developed to achieve needle insertion and rotation 

inside the scanner controlled by operators outside the scanner. For example, a 2 degree of freedom 

(DOF) remotely actuated needle driver was developed on a body mounted robotic system. Remote 
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needle actuation by human master could be performed with sufficient accuracy via a beaded chain 

transmission system11,31. A novel hydrostatic actuation and transmission network system was 

developed based on rolling diaphragm fluid actuators to create a needle manipulation module that 

allows remote needle actuation with collaborations between human and robot masters12. These 

types of systems can benefit from simultaneous MRI guidance, which enables the system to serve 

as an extended “arm” for freehand or robotic needle manipulation32.  

1.4.2 Real-Time MRI Pipeline 

For both freehand and robotic-assisted needle manipulation during percutaneous 

interventions, continuous imaging guidance with real-time MRI provides essential dynamic 

motion information about the target tissue and needle33. The imaging frame rate of real-time MRI 

is a crucial factor for dynamic procedural guidance34. Compared with other established 

interventional modalities such as the US, XRF, and CTF, MRI has limitations of imaging 

acquisition and reconstruction speed, which lead to compromises in the image quality, spatial-

temporal resolution, temporal footprint, and/or system latencies14.  

Recently, multiple technical developments are being pursued to improve real-time MRI. 

Steady-state sequences including T1-weighted spoiled gradient echo (GRE) and T2-like balanced 

steady-state free precession (bSSFP) with short repetition time (TR) can achieve fast image 

acquisition. However, using conventional Cartesian sampling trajectories for steady-state 

sequences could reduce the acquisition speed and be sensitive to artifacts caused by motion and 

undersampling35-37. A unique non-Cartesian golden-angle (GA) ordered radial acquisition scheme 

samples a new readout (radial spoke) every repetition time (TR) by continually rotating the 

sampling spoke by a golden-ratio angle increment of 111.25°. GA-ordered radial MRI has higher 

robustness to physiological motion and undersampling effects compared to Cartesian MRI, due to 
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the radial k-space sampling pattern35-37. In addition to rapid MR image acquisition, rapid or real-

time MR image reconstruction at the scanner is required to provide imaging feedback to the 

physician throughout a procedure. To implement fast online image reconstruction, an open-source 

reconstruction platform can be used for the non-Cartesian sequence with GPU acceleration to 

establish a customized imaging pipeline using GA radial MRI38.  

1.4.3 Real-Time Workflow with MRI-Guided Computer-Assisted Navigation  

By combining a comprehensive real-time MRI pipeline and remote-controlled system for 

device manipulation, a new workflow can be established to achieve device placement under 

simultaneous MRI guidance, which has the potential to improve the overall procedural accuracy 

and efficiency (Figure 1-2). However, two challenges remain for this new workflow: for tissue 

targets experiencing motion, especially respiratory motion in the abdomen, target tissue 

displacement may cause mistargeting during interventional procedures39; Active device tracking 

(e.g., tracking coil40 or fiber Bragg grating sensors41) used in existing interventional workflows 

can be adapted to a real-time workflow14. However, the specialized hardware requirements may 

increase the cost and additional instrument set-up time for the procedural workflow. Alternatively, 

MRI-guided computer-assisted navigation methods that extract target tissue motion information 

and needle position directly from the images can be used to provide the real-time feedback 

necessary to assist the needle manipulation42-44. These methods include various computer vision 

algorithms specific to MRI to automatically perform object detection, registration, segmentation 

by taking advantage of the tissue and passive device visualization on MRI14,45,46.  
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Figure 1-2 Conceptual diagram of a new MRI-guided intervention workflow with real-time MRI 
guidance. Device placement can be achieved using manual control or by using a remote-controlled 
robotic system with real-time MRI feedback. 

 
1.5 Technical Challenges of MRI-Guided Computer-Assisted Navigation  

MRI-guided computer-assisted navigation has potential to improve needle-based 

percutaneous interventions with a real-time workflow. However, computer-assisted navigation 

faces multiple challenges that may undermine the overall procedure accuracy and efficiency. 

Image-based and surrogate-based tracking are two main categories of computer-assisted 

navigation methods to extract spatial coordinates of target tissue feature motion under respiration 

from real-time MRI for procedural guidance. Image-based tracking can obtain accurate results, but 

the motion feedback accuracy is negatively affected by the system latencies, including 

computational time for MRI reconstruction and image processing47,48. Surrogate-based tracking 

has lower latency but introduces additional tracking errors due to the lower-quality surrogate signal 

and discrepancies in the correlation motion model49,50. Temporal prediction techniques for tracking 

respiratory motion, such as Kalman filtering, are being developed to reduce the tracking error by 

considering and accounting for the latency51. However, the trade-off between tracking accuracy 

and system latency in the existing methods could limit the respiratory motion prediction accuracy 

and there is a lack of studies exploring new ways to overcome this trade-off. 

Passive needle visualization based on the signal void feature on the MR images caused by 

needle-induced susceptibility effects can be applied to localize and track the needle for MRI-

guided procedures without additional hardware7. The automatic tracking methods using hand-
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crafted pre-determined feature extraction are challenged by signal void feature variation and 

contrast difference between the needle feature and surrounding tissues based on different MRI 

sequence types and parameters, needle materials, and the needle’s orientation relative to the main 

magnetic field (B0) direction52. Supervised deep learning using convolutional neural networks 

(CNN) achieved better performance to overcome the challenges, but residual errors of existing 

pixel-based segmentation methods using CNNs degrade the instance level detection of the needle 

feature53,54. Additional ensemble methods were required to remove residuals errors that could 

introduce extra processing time that may lower the overall procedural efficiency54. 

Lastly, discrepancies between the MRI needle feature position and the underlying physical 

needle position could lead to additional needle tracking errors. This includes both in-plane 

discrepancies when the imaging plane is perfectly aligned with the needle and through-plane 

discrepancies. Theses discrepancies may induce errors on the order of 5-10 mm55, which may lead 

to mistargeting during procedures (e.g., clinically relevant targets may have diameters of 5-10 

mm56). Existing approaches to overcome these discrepancies include using special sequences that 

reduce needle-induced artifact sizes57 and inverse reconstruction of the physical needle source 

from multiple images58,59, but both require substantial increases in acquisition and/or 

reconstruction time, which is not suitable for interventional procedural guidance.  

1.6 Specific Aims 

The purpose of the dissertation is to develop and evaluate new computer-assisted 

navigation techniques for MRI-guided interventions by overcoming the existing challenges in 

respiratory motion prediction and needle tracking. In the long term, these technical breakthroughs 

will form the foundation for new interventional strategies, such as using an MRI-guided robotic 

system to achieve feedback-controlled dynamic needle-based procedures in mobile organs, 
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including the liver and kidney, to realize and advance the clinical impact of MRI-guided 

interventions.  

1.6.1 Aim 1: Respiratory Motion Prediction Using Fusion-Based Multi-Rate Kalman 

Filtering and Real-Time Golden-Angle Radial MRI 

Chapter 2 presents a novel respiratory motion prediction method that can overcome system 

latencies of a real-time MRI pipeline to provide accurate feedback information for MRI-guided 

interventions. This study first investigated the respective advantages of surrogate-based tracking 

(lower latency) and image-based tracking (lower tracking error) using a custom software pipeline 

that implements real-time GA radial MRI with motion feedback. Next, a Kalman filter with an 

expectation-maximization algorithm for stochastic state-space model training was applied to adapt 

to temporal characteristics of respiratory motion that vary for different subjects and may change 

over time. Then, this work proposed a fusion-based framework that combines image-based 

tracking results as a delayed measurement with rapid surrogate-based tracking results in a multi-

rate Kalman filter to achieve accurate motion prediction.  

1.6.2 Aim 2: Automatic Needle Tracking Using Mask R-CNN for MRI-Guided 

Percutaneous Interventions 

Chapter 3 presents an automatic real-time needle tracking technique using a deep learning 

method. Mask region-based convolution neural networks (Mask R-CNN) is a fast and accurate 

method for instance-level object detection and segmentation in natural images. This study adapted 

and trained Mask R-CNN for needle feature detection and segmentation on intra-procedural 

prostate MRI and ex vivo tissue real-time MRI including variations of needle signal void feature 

with different background tissue features, different MRI sequence types and parameters, needle 

materials, and the needle’s orientation relative to the B0 direction. In addition, a postprocessing 
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needle feature localization algorithm was developed to directly use the segmentation mask from 

the Mask R-CNN model output without time-consuming ensemble methods to extract the needle 

feature tip location and axis orientation with real-time processing time.  

1.6.3 Aim 3: Physics-Driven Mask R-CNN for Physical Needle Localization in MRI-Guided 

Percutaneous Interventions 

Chapter 4 presents a physics-driven Mask R-CNN model to overcome the discrepancies 

between the needle feature on MRI and the underlying physical needle position. Physics-based 

simulated needle features that achieved a close agreement with actual MRI scans of the physical 

needle were generated to form a sufficiently large training dataset. First, this work proposed a 

single-slice physical needle Mask R-CNN model, in which the imaging plane is perfectly aligned 

with the needle. This model was combined with the needle feature Mask R-CNN in Chapter 3 to 

form a two-stage automatic physical needle localization framework that overcomes in-plane 

discrepancies between needle feature and physical needle. Furthermore, this work proposed a 3-

slice physical needle Mask R-CNN to estimate the overall 3D physical needle position by directly 

estimating through-plane physical needle position in situations where the imaging plane is not 

perfectly aligned with the needle. Both models can directly estimate the physical needle position 

based on passive needle feature on MRI within real-time processing time.  
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Chapter 2 Respiratory Motion Prediction Using Fusion-Based 

Multi-Rate Kalman Filtering and Real-Time Golden-Angle Radial 

MRI 

2.1 Introduction 

Magnetic resonance imaging (MRI) is a promising modality for intra-procedural and real-

time guidance of minimally invasive interventions, due to its excellent soft tissue contrast and 

absence of ionizing radiation14,34,60,61. However, MRI-guided interventions still face multiple 

challenges, including limited access to patients inside the scanner, tissue displacement due to 

motion, user interface design for interactive real-time imaging, and workflow optimization. 

Remotely controlled systems for manipulating instruments inside the MRI scanner, such as MR-

compatible needle actuators, are being developed to address the challenge of patient access32,62-66. 

To address the challenge of tissue motion, computer-assisted navigation methods can provide key 

information regarding instrument and tissue positions for MRI-guided percutaneous needle 

biopsy67,68, thermal ablation69,70, and radiotherapy71-74. However, respiratory motion still remains 

a main challenge, especially for procedures in abdominal organs39. The effectiveness of computer-

assisted navigation is highly dependent on the accuracy of tissue target motion tracking. In this 

study, we will focus on addressing the challenge of respiratory motion.  

Image-based and surrogate-based tracking are two main categories of methods to obtain 

spatial coordinates of target features from real-time MR imaging. The upper bound of the tracking 

performance is limited by the MRI spatial resolution. The desired tracking accuracy depends on 

the application. A representative scenario would be image-guided cancer biopsy or ablation, where 

clinicians may target tumors with a diameter of 5 mm56, hence tracking error should be 2.5 mm or 
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less. Image-based tracking methods can generate accurate spatial coordinates of the feature motion 

provided the images have sufficient geometric accuracy. Shi and Bjerre75,76 illustrated a general 

strategy of applying the intensity-based raw feature matching algorithm for both 2D and 3D motion 

tracking. The initial implementation was computationally intensive (150 ms) but was further 

improved with enhanced computing power. Bourque77 applied a particle filter to track the tumor 

contour with a processing time of around 20 ms. The Scale Invariant Feature Transform (SIFT) 

extracts internal features from MR images and localizes the features using template 

matching47,49,50, but it requires additional acceleration using graphics processing units (GPU) to 

achieve real-time processing78. Optical flow algorithms provide pixel-level tracking, which have 

been applied to target monitoring and motion correction for MR thermometry69,70,79. The error of 

these types of image-based tracking methods is around the dimensions of a single pixel and specific 

target features can be directly selected and tracked. However, the processing time for MR image 

reconstruction and motion processing introduces latencies that degrade the accuracy of the motion 

feedback information. 

Surrogate-based tracking methods take advantage of the relationship between more 

complex feature motion and rapid low-dimensional online surrogate measurements. Incoming 

surrogate signals are used as an input to a motion model to estimate the motion of specific features. 

Paganelli49 used abdominal surface markers as the surrogate and tumor motion was estimated using 

a state-augmented quadratic model based on their correlation. This tracking method introduced 

additional tracking error on the scale of one pixel. Seregni47 utilized the correlation model but 

acquired external abdominal motion measurements using the respiratory bellows of Siemens’ 

Physiological Measurement Unit (PMU) and Varian’s Real-Time Position Management (RPM) 

system. In general, surrogate-based tracking has less latency but requires a training phase and may 
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introduce additional motion tracking errors due to model inconsistency.  

The reported latency for intra-fraction motion management (i.e., gating) on the most recent 

MRI-guided radiotherapy systems ranges from 250 ms to 550 ms72,80-82. The latency varies 

depending on different techniques and different applications, which are active topics for research. 

An effective approach to overcome the tracking latency is to establish a temporal model of 

respiratory motion using prior knowledge of the motion characteristics47,48,51. For example, 

conventional Kalman filtering is robust to measurement noise and can be used to perform 

systematic estimation for respiratory motion prediction83,84. However, these prediction methods 

are still challenged by the irregularity and the quasi-periodicity of respiratory motion77. Since 

image-based and surrogate-based methods have respective advantages of higher tracking accuracy 

(lower error) and lower system latency, motion prediction can potentially be improved by 

formulating a sensor fusion problem where both methods are performed simultaneously and then 

combined83,85. Alexander86  proposed a multi-rate fusion method to correct the state estimation 

errors by incorporating an updated Kalman gain and covariance based on delayed measurements. 

Larsen87 introduced a parallel filter scheme to process sensor data simultaneously using Kalman 

filtering. 

In this study, we propose a fusion-based framework that combines image-based tracking 

results as a delayed measurement with rapid surrogate-based tracking results in a multi-rate 

Kalman filter to achieve accurate (low error) motion prediction. In real-time MRI-guided 

interventions, simultaneous image-based and surrogate-based motion tracking can be 

accomplished by using flexible data acquisition strategies. In particular, this could be achieved by 

leveraging a unique golden-angle (GA) ordered radial acquisition scheme to simultaneously 

reconstruct images and extract surrogate signals from the same data stream36. GA radial acquisition 
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samples a new readout (radial spoke) each repetition time (TR) by continually rotating the readouts 

by a golden-ratio angle of 111.25°, which provides almost equally spaced sampling in k- space 

over time. The same data stream can be flexibly reconstructed using sliding-window methods with 

different combinations of temporal footprints and temporal resolutions37. By sampling the center 

of k-space redundantly, GA radial MRI also has higher robustness to physiological motion and 

undersampling35-37.Therefore, this scheme can potentially reduce system latency, improve tracking 

accuracy, and lead to more accurate motion prediction.  

The aim of this study is two-fold. First, we evaluate the characteristics of online image-

based and surrogate-based motion tracking using real-time GA radial MRI acquisition. The 

characterization results from a programmable MRI motion phantom are used as a reference to 

design and compare different motion prediction methods. Second, we propose and evaluate a new 

fusion-based motion prediction framework that integrates simultaneously acquired image-based 

and surrogate-based tracking results from GA radial MRI into a multi-rate Kalman filter. The 

prediction accuracy is evaluated in real-time free-breathing liver MRI datasets and compared with 

image-based and surrogate-based methods. 

2.2 Methods 

2.2.1 Motion Prediction Framework using Real-Time GA Radial MRI 

We propose a motion prediction framework using real-time GA radial MRI, which 

combines image-based and surrogate-based tracking as fused measurements in a multi-rate 

Kalman filter (Figure 2-1). Parameters for the Kalman filter (F, H, Q, R) are determined using 

expectation maximization (EM) training88. The proposed framework overcomes system latency by 

using the Kalman filter to predict the motion at a future time relative to the measurement time. 
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Figure 2-1 Proposed motion prediction framework using golden-angle-ordered radial MRI. Radial 
MRI readouts (spokes) were acquired in the kx-ky plane every repetition time (TR) and continually 
rotated by the golden angle. The same stream of golden-angle radial MRI data was reconstructed 
using sliding windows with different temporal footprints (e.g., reconstruction windows 1 and 2). The 
time difference between two adjacent reconstruction windows was defined as the temporal resolution. 
Motion prediction was performed using image-based and surrogate-based methods, or by using the 
proposed multi-rate fusion-based method to combine the respective advantages of image-based and 
surrogate-based approaches. 

(1) Image-Based Tracking: Images with higher signal-to-noise ratio (SNR) and image 

quality were reconstructed with a wider temporal footprint (e.g., reconstruction window 1 in 

Figure 2-1). The target feature motion was extracted directly from the images, but the motion 

feedback may be inaccurate because of the system latency dt1 (Figure 2-2a). A template-matching 

algorithm was used to extract the 2D translational motion of the target features89,90 (Figure 2-2c). 

A two-scale multi-resolution pyramid method was applied in the template-matching algorithm to 

interpolate the images by 4-fold using k-space zero-filling91-93. The two-scale approach improved 

the computational efficiency of the algorithm and the interpolation increased the sensitivity of 

motion tracking to sub-pixel. 

(2) Surrogate-Based Tracking: At the same time, images with lower SNR and image quality 

were reconstructed with a narrower temporal footprint (e.g., reconstruction window 2 in Figure 2-

1). The overall organ motion (e.g., liver) was extracted as a surrogate signal for tissue features 
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inside the organ and input to a pre-trained motion model to estimate target feature motion (Figure 

2-3a). The motion model parameters were determined using training data, where GA radial 

readouts were retrospectively allocated into both the narrower reconstruction window for 

surrogate-based tracking and the wider reconstruction window for image-based tracking, with the 

centers of their temporal footprints aligned (Figure 2-3b). A quadratic motion model (Φ) was 

constructed based on the correlation between superior-inferior (SI) motion (y) of the target feature 

from the image-based tracking results and the surrogate (s) signals: 

Equation 2-1 

𝑦!" = 𝜙(𝑠) = 𝑎𝑠# + 𝑏𝑠 + 𝑐 + 𝑑𝑠̇ + 𝑒𝑠̇# 

The surrogate result was noisy because of the lower SNR and increased streaking artifacts in the 

narrow temporal footprint images. To improve the consistency of the model, a denoising Kalman 

filter was applied to the surrogate signals. 
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Figure 2-2 (a) Motion prediction with image-based tracking using images reconstructed with a wide 
temporal footprint (e.g., reconstruction window 1 in Figure 2-1). (b) Reference features of the target 
tissue were identified by the user based on a reference anatomical image (white box) and the expected 
maximum range of motion was specified by the user (blue box). (c) Example superior/inferior (S/I) 
and anterior/posterior (A/P) image-based motion tracking results for the features in (b). 
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Figure 2-3 (a) Motion prediction with surrogate-based tracking using images reconstructed with a 
narrow temporal footprint (e.g., reconstruction window 2 in Figure 2-1). The overall motion of the 
liver was tracked to provide a surrogate signal for tissue features inside the liver. (b) The motion 
model parameters were determined using training data, where the surrogate signal and target feature 
motion (measured by image-based tracking) were retrospectively obtained at the same time points 
by aligning the centers of reconstruction windows 2 and 1, respectively. 

(3) Multi-Rate Fusion-Based Method: To overcome system latency, the Kalman filter (see 

Appendix) was used to predict the motion state at a future time relative to the measurement time. 

Furthermore, the primary (surrogate-based) and delayed (image-based) tracking results were fused 

together in a multi-rate Kalman filter85. Figure 2-4 illustrates the fusion-based method fusing the 

delayed measurement, where z denotes the motion tracking measurements. The surrogate-based 

tracking result was designated as the primary Kalman filter (PKF) agent, since it had lower latency 
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(dτ2) for motion feedback due to its narrow temporal footprint. The state variables of the motion 

state estimated in the PKF agent are denoted as xP and yP in the state space model; tP denotes the 

discretized time step:  

Equation 2-2 

𝑥$(𝑡$) = 𝐹$𝑥$(𝑡$ − 1) + 𝑤$(𝑡$)~𝒩(0, 𝑄$(𝑡$)) 

Equation 2-3 

𝑦$(𝑡$) = 𝐻𝑥$(𝑡$) + 𝑣$(𝑡$)~𝒩(0, 𝑅$(𝑡$)) 

The initial filtered result might be suboptimal, because of increased noise in the surrogate-based 

tracking result due to model inconsistency:   

Equation 2-4 

𝑥̅$(𝑡$|𝑡$) = 𝑥̅$(𝑡$|𝑡$ − 1) + 𝐾$(𝑡$)(𝑧(𝑡$) − 𝐻𝑥̅$(𝑡$|𝑡$ − 1)) 

Alexander86 and Larsen87 proposed a one-step correction to optimize the filtered result by fusing 

the delayed measurement. This multi-rate fusion method decreases the state covariance so that the 

accuracy of the filtered surrogate-based tracking result can be improved by incorporating the 

image-based tracking result. The image-based tracking result was designated as the delayed KF 

(DKF) agent, since it has a higher latency (dτ1) for motion feedback due to its wider temporal 

footprint. The state variable of the motion state estimated in the DKF agent was denoted as xD and 

tD denotes the discretized time step in the DKF agent:  

Equation 2-5 

𝑥%(𝑡%) = 𝐹%𝑥%(𝑡% − 1) + 𝑤%(𝑡%)~𝒩(0, 𝑄%(𝑡%)) 

Equation 2-6 

𝑦(𝑡%) = 𝐻𝑥(𝑡%) + 𝑣%(𝑡%)~𝒩(0, 	𝑅%(𝑡%)) 

The filtered surrogate-based tracking result was corrected by an additional term based on the 

measurement and processing result in the DKF agent, where N denotes the number of time steps 
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covering the time delay, based on the number of steps between the primary and delayed 

measurements.	The corrected filtered result was denoted as	𝑥̅$&%:	

Equation 2-7 

𝑥̅$&%(𝑡$|𝑡$) = 𝑥̅$(𝑡$|𝑡$) + 𝑀%→$𝐾%(𝑧(𝑡%) − 𝐻𝑥̅%(𝑡%|𝑡% − 1))	

Equation 2-8 

𝑀%→$ =B(𝐼 − 𝐾$()𝐻)
*(+

),-

𝐹% ,				𝑁 = 𝑡$ − 𝑡%	

In the computation of M, if the delayed time gap contains more than a single time step, intermediate 

tracking results are required for the multiplication steps. Either type of tracking can be used in the 

intermediate step if it is available in real time. The state space model parameters (F, H, Q, R) can 

be obtained based on maximum likelihood estimation of the system. The estimation problem is 

solved using previously acquired training motion data and the expectation maximization (EM) 

algorithm88. The model parameter selection for delayed and primary KF agents are trained 

separately. 

(4) Kalman Filter-Based Motion Prediction: We overcome system latency dτ defined as 

the number of additional time steps beyond the current time (denoted as t) by using the Kalman 

filter (see Appendix) to calculate the expected motion state for a future time point t + dτ:  

Equation 2-9 

𝑦"(𝑡 + 𝑑𝜏|𝑡) = 𝐻𝐹!"𝑥̅(𝑡|𝑡),			dτ	 =
𝑙𝑎𝑡𝑒𝑛𝑐𝑦

𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙	𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 

The selection of the process state transition function F is essential to ensuring the performance of 

the prediction. In this study, we set the initial value of F as the first order linear approximation of 

the sinusoidal model proposed by Spincemaille84. Since respiratory motion may not be perfectly 

periodic, an adaptive adjustment of the model can improve the ability to predict future motion 
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states. To this end, we used the EM algorithm on training data to determine F and apply this for 

Kalman filter-based motion prediction. 

 

Figure 2-4 The proposed multi-rate motion prediction method fuses the delayed measurements from 
image-based motion tracking with surrogate-based motion tracking results to achieve high spatial 
accuracy and low latency. The system latency of the multi-rate fusion-based method (dτf) is 
determined based on system latencies of both the image-based and surrogate-based methods. 

 
2.2.2 Real-Time MRI Software Pipeline and Online Tracking Experiments 

The proposed framework (section A) was established in a real-time software pipeline 

(Figure 2-5) on a 3 T MRI scanner (Prisma, Siemens Healthineers, Erlangen, Germany). Online 

tracking error and system latency for both image-based and surrogate-based tracking methods were 

evaluated with a programmable MRI-compatible motion phantom94.  

(1) Real-Time GA Radial MRI Software Pipeline:  Real-time MRI data acquired using the 
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golden-angle (GA) radial trajectory were reconstructed online using an open source software 

package (Gadgetron38). The reconstruction server continuously accepted imaging data during 

scanning. Data buffers were used to accumulate data for different reconstruction windows (i.e., 

temporal footprint of images) and dynamically updated for sliding-window reconstruction. A 

graphics processing unit (GPU)-accelerated k-space gridding technique and iterative non-

Cartesian sensitivity encoding (SENSE) algorithm were implemented on to reconstruct images 

from radial MRI data38,95. Imaging and reconstruction parameters for two different reconstruction 

windows (Figure 2-1) are presented in Table 2-1. The radial k-space trajectory was corrected by 

using a bulk gradient delay during sequence calibration. Geometric distortion due to gradient non-

linear effects were corrected using a vendor provided method. The reconstructed images were 

transmitted to an external image processing program, where different motion tracking methods 

were applied based on the temporal footprint of the image received.
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Table 2-1 Image acquisition parameters for the real-time golden-angle-ordered radial spoiled 
gradient echo MRI Sequence at 3T and Parameters of radial MRI sliding-window dynamic 
reconstruction using non-Cartesian SENSE 

 
 

(2) System Latency Measurement: In our implementation, the real-time MRI acquisition 

and reconstruction modules and the motion tracking modules ran on separate workstations. To 

calibrate the time delay (latency) from image acquisition to motion tracking in this pipeline, a 

trigger signal converter (Siemens Healthineers, Erlangen, Germany) was added (Figure 2-5). The 

radial MRI sequence was programmed to periodically transmit a control signal through the trigger 

converter. The imaging time at the center of the acquisition window was recorded as the ground 
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truth timestamp. The timestamp for the final motion tracking result, which experienced time delays 

in the software pipeline, was also extracted. Therefore, the system latency for every individual 

tracking result can be measured as the difference between the ground truth timestamp and the 

timestamp of the delayed motion tracking result.  

 

Figure 2-5 (a) The online real-time MRI motion tracking pipeline was implemented using custom 
software modules for real-time image reconstruction, motion tracking and prediction, and 
visualization. GPU: graphics processing unit. SENSE: sensitivity encoding. (b) System latency for the 
online tracking pipeline was calibrated using a trigger signal from the acquisition sequence and 
comparing time stamps. MRI-based tracking error was calibrated against laser encoder 
measurements of a programmable MRI-compatible motion phantom. 

(3) Motion Tracking Accuracy Assessment: To calibrate the tracking accuracy of the 

software pipeline, we imaged a motion phantom with programmable motion. A gel-filled acrylic 

phantom with an array of 10-mm circular features (Figure 2-6) was secured on an MR-compatible 

hydrostatically-actuated motion platform, which had high reproducibility for motion waveforms 

(root mean squared error [RMSE] = 0.198 mm)94. Two respiratory motion waveforms pre-recorded 

from free-breathing human subject liver MRI scans with a 25-mm peak-to-peak range of motion 

were programmed into the computer-controlled motor and learned by the platform to emulate a 



26  

free-breathing subject with target features for interventional procedures. The phantom motion 

direction was along the main magnetic field of the scanner, which was the superior-inferior (SI) 

direction in the patient's coordinate system. To obtain the actual motion of the phantom, a retro-

reflector was attached on the platform and a laser encoder was used to measure the displacement 

on a lab bench with a precision of 0.635 µm. The results were used to evaluate MRI motion 

tracking results. 

2.2.3 Evaluation of Proposed Framework for Motion Prediction 

Due to limitations in the software libraries38 currently used for online implementation 

(2.1.2), the surrogate-based and image-based methods could be performed individually but not at 

the same time for online fusion-based prediction. To evaluate the proposed motion prediction 

framework, a retrospective study that closely emulated actual online operation was conducted 

where the image-based, surrogate-based and fusion-based tracking methods were all applied to in 

vivo real-time free-breathing liver GA radial MRI datasets and compared. 

(1) In vivo Liver MRI Datasets: In an Institutional Review Board (IRB)-approved and 

Health Insurance Portability and Accountability Act (HIPPA)-compliant study, real-time 2D 

sagittal liver GA radial MRI scans were acquired in 8 healthy subjects (6 male, 2 female; 29±4.1 

years of age) on another 3 T MRI scanner (same model: Prisma, Siemens Healthineers, Erlangen, 

Germany) with body and spine array receiver coils. Images were acquired using a radiofrequency 

(RF)-spoiled gradient echo (GRE) GA radial sequence during normal, deep, and shallow breathing 

under instruction for each subject and retrospectively reconstructed. On each series of real-time 

images, two to four different regions in the liver were selected as target features to be tracked, 

resulting in a total of 75 motion waveforms (33 normal, 16 deep, and 26 shallow breathing) for 

motion prediction. The same imaging and reconstruction parameters from the online  
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Figure 2-6 (a) Design diagram of the MR compatible motion phantom. (b) Golden-angle-ordered 
radial MR images of the motion phantom reconstructed by the real-time pipeline with different 
reconstruction windows (i.e., temporal footprints). Online motion tracking was performed for the 
selected target region (red box) in the motion phantom. (c) Real-time MR image-based motion 
tracking achieves close agreement with actual motion measured by laser encoders for the motion 
phantom programmed with 2 pre-recorded respiratory motion waveforms (~0.1 Hz and ~0.3 Hz). 

real-time MRI experiments (Table 2-1) were used here. The online latency calibration method 

(2.2.2) was also applied on this scanner in one subject scan and the measured latencies were used 

to evaluate motion prediction. 

(2) Motion Prediction Evaluation: In the retrospective studies, motion tracking and 

prediction were performed offline using MATLAB. The real-time MRI data was used to emulate 

an online input data stream for the motion prediction methods. The EM algorithm used 30 secs of 

training data right before the 60-sec section of testing data to estimate the state space model 

parameters for Kalman filtering. We used the actual measured latencies of both image-based and 

surrogate-based tracking from one subject scan to evaluate the motion prediction methods. The 

latencies varied over a small range throughout the scan due to variations in reconstruction time. 

The latencies for the multi-rate fusion-based method were determined by whenever processing 
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finished for both tracking methods in each time frame. This emulation of latencies recreates 

realistic online conditions for retrospective evaluation. The same imaging parameters from the 

online experiments were applied here. For the multi-rate KF algorithm (Equation 2-7), N equals 

2 and only one intermediate measurement (from surrogate-based tracking) was used in the fusion 

algorithm.  Image-based tracking results from the retrospectively sampled image frames centered 

at each time point were used as the reference (yR) to evaluate the motion prediction results. The 

reference was interpolated to extract values corresponding to the emulated latencies.   

We compared the motion prediction results using the new fusion-based method versus the 

image-based and surrogate-based methods. The prediction error (mm) was defined as the absolute 

difference between the motion prediction result and the reference (yR) during 60 secs of motion. 

RMSE and the percentage of prediction error greater than 2.5 mm (ε2.5, %) were calculated for 

every waveform. The threshold of 2.5 mm was selected since physicians may target lesions with 

diameter ³5 mm during interventions55. These two different error metrics assess the prediction 

performance in separate aspects. RMSE measures the average prediction accuracy, while ε2.5 

evaluates the ability to remove outliers. The difference in RMSE and ε2.5 achieved by different 

prediction methods were evaluated using non-parametric statistical tests (two-sided Wilcox signed 

rank test) with p <0.05 considered significant. The comparisons were performed for all respiratory 

motion waveforms and for sub-categories based on the type of breathing motion (normal, deep, 

shallow). 

2.3 Results 

2.3.1 Online Tracking Accuracy and System Latency 

Example images for image-based motion tracking and surrogate-based motion tracking are 

shown in Figure 2-6. A reference template image and tracking region were selected before the 
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motion started. Actual motion measured by laser encoders and results from online motion tracking 

with MRI were retrospectively aligned. Example image-based tracking results are shown in Figure 

2-6. The error for image-based tracking (waveform 1: 0.3±0.2 mm, waveform 2: 0.3±0.3 mm) was 

significantly lower (p <0.05) than surrogate-based tracking (waveform 1: 0.5±0.6 mm, waveform 

2: 0.6±0.6 mm) for both waveforms. In this phantom, which had rigid body motion, both image-

based and surrogate-based tracking had sub-pixel accuracy for features of interest. The system 

latency measured for online image-based tracking (waveform 1: 360±50 ms, waveform 2: 350±50 

ms) was significantly higher (p <0.0001) than surrogate-based tracking (waveform 1: 140±30 ms, 

waveform 2: 160±50 ms) in both waveforms. These results demonstrate the respective advantages 

of image-based tracking (higher spatial accuracy, i.e., lower error) and surrogate-based tracking 

(lower latency) using images acquired from golden-angle radial MRI. The image-based tracking 

results demonstrated sufficient accuracy for rigid-body translational motion. Therefore, we used 

retrospective image-based tracking as the reference to evaluate the prediction of translational 

motion of tissue regions of interest in the in vivo studies. 

2.3.2 Motion Prediction Evaluation in Retrospective Studies 

The latencies measured from the subject scan were 320ms±20ms for image-based tracking 

and 150ms±22ms for surrogate-based tracking; this resulted in latencies of 160±23ms for the 

fusion-based method. The image-based and surrogate-based tracking latencies were similar to the 

calibration results using the motion phantom, demonstrating the robustness of the software pipeline 

for different scanners. These measured latencies were used to evaluate the motion prediction 

methods. In Figure 2-7, examples of fusion-based motion prediction are shown for 60 secs from 

normal and shallow breathing waveforms. Compared with prediction results based on either 

image-based or surrogate-based tracking, the fusion-based results showed closer agreement with 
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the reference waveform. The prediction results for all the breathing waveforms and three types of 

waveforms are summarized in Figure 2-8. Using the proposed fusion-based multi-rate method, 

the median RMSE of the prediction error was reduced from 1.18 mm and 1.3 mm to 0.97 mm and 

the median ε2.5 was reduced from 3.5% and 6.2% to 2.5%, compared to the prediction error for 

surrogate-based and image-based methods for all 75 waveforms (p = 1.61×10-8 for RMSE and 

p=1.53×10-6 for ε2.5 between the fusion-based multi-rate and surrogate-based methods; p 

=1.34×10-9  for RMSE and p = 5.24×10-10 for ε2.5 between the fusion-based multi-rate and image-

based methods). In addition, the interquartile range (IQR) of ε2.5 was reduced from 8.5% for 

surrogate-based and 14.4% for image-based to 5.5% for fusion-based prediction. No significant 

differences were found between the motion prediction results for the surrogate-based and image-

based methods based on RMSE (p = 0.079). Prediction results were slightly more accurate for the 

surrogate-based method than the image-based method based on ε2.5  (p = 0.012).  

For the three types of breathing waveforms, fusion-based prediction RMSE and ε2.5 were 

significantly lower than the prediction results based on surrogate-based and image-based tracking 

(p <0.05). Meanwhile, there were no significant differences between the prediction results from 

the surrogate-based and image-based methods in any sub-categories of the waveforms based on 

RMSE. The surrogate-based method was slightly more accurate than the image-based method 

based on ε2.5 for normal breathing waveforms. Results from the 16 deep-breathing waveforms 

showed noteworthy improvement for the fusion-based method compared with the surrogate-based 

method, where the median RMSE of the prediction error was reduced from 1.4 mm to 1.17 mm, 

the median ε2.5 was reduced from 5.4% to 3.4%, and the IQR of ε2.5 was reduced from 17.5% to 

4.1%. Results from the 33 normal-breathing waveforms showed notable improvement for the 

fusion-based method compared with the image-based method, where the median RMSE of 
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prediction error was reduced from 1.29 mm to 0.97 mm, the median ε2.5 was reduced from 5.5% 

to 2.2%, and the IQR of ε2.5 was reduced from 11.8% to 3.4%. 

 

Figure 2-7 Example motion prediction results using image-based, surrogate-based, and fusion-based 
methods compared to reference results obtained from retrospective image-based tracking. (a, b) A 
normal breathing waveform containing some irregular patterns and (c, d) a shallow breathing 
waveform.  (b, d) Zoomed-in views of a single period of the waveforms (corresponding to dashed 
boxes in a and c, respectively) illustrate the improvement using fusion-based compared to image-
based and surrogate-based prediction. SI: superior/inferior.  
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Figure 2-8 (a) Comparison of respiratory motion prediction root mean squared error (RMSE) using 
different methods for 75 respiratory waveforms, including three different types of breathing (shallow 
breathing: 26 waveforms, deep breathing: 16 waveforms, normal breathing: 33 waveforms). (b) 
Comparison of respiratory motion prediction ε2.5mm (% of data with RMSE >2.5 mm) using different 
prediction methods for all of the waveforms and three different types of breathing. In all cases, the 
fusion-based method achieved significantly lower prediction RMSE and ε2.5mm compared to image-
based and surrogate-based methods. The black dashed bars indicate maximum-minimum range, the 
blue boxes indicate 25th and 75th percentile range, the red lines indicate median value, and the red 
crosses indicate outliers. * indicates Wilcoxon signed rank test with p <0.05 for fusion-based versus 
surrogate-based and fusion-based versus image-based prediction. 

 

2.4 Discussion 

In this study, we characterized image-based and surrogate-based motion tracking 

performance in an online software pipeline using real-time GA radial MRI. In addition, we 
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proposed and evaluated a new fusion-based respiratory motion prediction framework using multi-

rate Kalman filtering and real-time GA radial MRI. We demonstrated that the prediction error of 

the new fusion-based framework is significantly reduced compared to image-based or surrogate-

based methods in a set of in vivo respiratory waveforms. 

RF-spoiled GRE and balanced steady-state free precession (bSSFP) are commonly used 

sequences for real-time MRI34,96-98. bSSFP enables short TR, high SNR, and good contrast with 

T2/T1 weighting. However, bSSFP has increased banding artifacts at 3 T compared to 1.5 T due to 

the greater B0 inhomogeneity, especially in the liver and abdomen. The bSSFP banding artifacts 

may impede visualization of devices and tissues of interest. In addition, bSSFP may lead to 

increased specific absorption rate and RF-induced device heating at 3 T13. Therefore, in this study 

at 3 T, we used an RF-spoiled GRE sequence for real-time MRI. For applications at 1.5 T or under 

acceptable conditions, bSSFP may be a desirable option for real-time MRI and would certainly be 

compatible with our proposed fusion-based framework for motion prediction. 

Using the same stream of GA radial MRI data, reconstruction windows can be flexibly 

selected to reconstruct images for image-based and surrogate-based motion tracking (Figure 2-1). 

70/16 and 16/16 radial spokes (reconstruction window-temporal footprint/sliding window-

temporal resolution) were selected as two specific examples in this work, corresponding to radial 

undersampling factors of 4 and 20. Wide temporal footprint images achieved higher SNR with less 

radial streaking artifacts and good depiction of anatomical structures around the liver. On the other 

hand, narrow temporal footprint images have lower SNR with more streaking artifacts. Detailed 

tissue features are not well visualized in these images due to streaking and only the overall 

boundaries or gross features of the organs are visualized. Therefore, we tracked the overall motion 

of the liver to provide a surrogate signal for the motion of the target regions inside the liver. We 
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used a temporal resolution of 16 spokes (corresponding to 100 ms) for the sliding-window 

reconstruction, which is comparable to the computation time for non-Cartesian SENSE 

reconstruction in the pipeline. In practice, the image temporal resolution (i.e., frame rate) should 

be similar to the reconstruction computation time to avoid congestion within the real-time MRI 

pipeline and improve the reliability of the pipeline in longer scans. The chosen temporal resolution 

of 100 ms (frame rate 10 Hz) in our experiments is able to resolve respiratory motion. During our 

selection of GA radial MRI parameters, we also tested an intermediate temporal footprint (i.e., 40 

spokes) for either image-based or surrogate-based tracking, but this did not change the findings; 

the fusion-based prediction method still demonstrated clear improvements over image-based and 

surrogate-based methods.  

To extend the current implementation of the software pipeline to provide realistic intra-

procedural and real-time MRI guidance, multiple targets (e.g., tissue targets and interventional 

devices) should be tracked and visualized for decision support. The tracking of multiple targets 

and visualization should be performed in parallel to minimize latency. In an additional evaluation, 

we parallelized the tracking of multiple targets in the pipeline and found that additional targets 

would only introduce less than 10 ms of latency for image-based motion tracking, which is 

negligible compared with the overall system latency (300-400 ms). Therefore, the current real-

time MRI pipeline and motion prediction framework can be extended to track multiple targets and 

provide motion information feedback for interventional applications. 

For the retrospective study, the in vivo liver images were reconstructed using the same 

software pipeline in offline mode. The motion tracking and prediction methods were implemented 

using the entire stream of the images with different temporal footprints retrospectively. The 

framework was emulated to receive images as if they were acquired online, using actual measured 
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latencies, and without additional information beyond the current measurement time. The actual 

measured latencies from two separate scanners with the same software pipeline were similar, 

demonstrating the stable performance of the pipeline. Using the actual latencies in the retrospective 

study provided prediction results that emulate actual online conditions. The motion coordinates 

retrospectively extracted from wide temporal footprint images using image-based template 

matching were used as the reference to evaluate the prediction of translation motion for tissue 

regions of interest. This choice was supported by the results from the online tracking experiments 

using the motion phantom, and also by the fact that non-rigid motion of organs due to breathing 

can be modeled as a set of local linear translations of smaller tissue regions99. The system and 

patient-induced geometric inaccuracies were minimized by choosing appropriate sequence 

parameters (e.g., readout bandwidth)100, applying radial trajectory correction, and using vendor-

provided gradient warping correction. The surrogate-based tracking error calibrated in the online 

tracking experiment was still underestimated due to the perfect rigid body motion of the designed 

phantom. Uncertainty of the correlation model due to non-rigid body motion for different regions 

of interest could introduce more tracking error. We extracted the surrogate signals of the target 

feature motion directly from the narrow temporal footprint GA radial MR images. No additional 

markers or system hardware components were required, which reduces the complexity of the 

online implementation. A denoising Kalman filter was applied to the surrogate signal to establish 

a robust correlation model. We also applied an EM training algorithm to the first 30-sec of the 

surrogate signals to obtain a state space model for the denoising Kalman filter. The initial 

covariance matrix R was larger than the covariance matrix during the training step for motion 

prediction since the input surrogate signal was noisier.  
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Kalman filter-based motion prediction mainly relies on the state space model. The temporal 

characteristics of respiratory motion varies for different subjects and may change over time. Based 

on a previous study of Kalman filtering89, EM training can significantly improve the prediction 

accuracy. Therefore, to adapt to motion characteristics, we used the EM training algorithm to 

estimate the model parameters (A, H, Q, R). This step required 1-5 sec of computation before real-

time processing started. Therefore, the majority of the time required for training is still the 

acquisition time of the training data (30 sec). As a result, EM training is currently a feasible 

approach to improve Kalman filter-based respiratory motion prediction.  

The retrospective in vivo results demonstrated that the proposed multi-rate fusion-based 

method is able to achieve significantly lower error than image-based and surrogate-based methods. 

The prediction performances using image-based and surrogate-based motion tracking were not 

significantly different based on RMSE. This was due to a trade-off between system latency (better 

for surrogate-based tracking) and motion tracking spatial accuracy (better for image-based tracking) 

for respiratory motion prediction under current imaging parameters.  However, the surrogate-based 

method was slightly better than the image-based method based on ε2.5, demonstrating its advantage 

for removing outliers. By using the fusion-based prediction method, we combined the advantages 

of low latency from surrogate-based tracking with higher spatial accuracy (lower error) from 

image-based tracking. The reduced error of the fusion-based method was demonstrated for all 

waveforms and specific types of breathing patterns (normal, shallow, deep), providing evidence 

for its robustness. In terms of RMSE, which evaluated the average performance, the relative 

improvements of the fusion-based method vs. the surrogate-based method and image-based 

method were around 18% (0.97 mm vs. 1.18 mm) and 25% (0.97 mm vs. 1.3 mm). In terms of ε2.5, 

which evaluated the ability to remove outliers, the relative improvements of the median and IQR 
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using the fusion-based method were about 30% (2.5% vs. 3.5%) and 35% (5.5% vs. 8.5%) vs. the 

surrogate-based method, and 60% (2.5% vs. 6.2%) and 62% (5.5% vs. 14.4%) vs. the image-based 

method, respectively. For shallow breathing and normal breathing, the breathing rate was relatively 

higher, and the image-based method suffered from latency issues. The fusion-based method 

incorporated rapid surrogate-based information to overcome latency and achieved notable 

improvement compared with the image-based method for shallow breathing. On the other hand, 

deep breathing typically has lower breathing rates which can be tolerable in the presence of longer 

latency for the image-based method. However, greater amplitude variations in the waveform 

during deep breathing leads to more model inconsistency related errors for surrogate-based 

tracking. The fusion process was able to reduce this error by incorporating delayed measurements 

from image-based tracking. Therefore, the fusion-based method achieved the most improvement 

compared with the surrogate-based method for deep breathing. Median RMSE and ε2.5 of the 

prediction error had relative improvements of about 16% (1.4 mm vs. 1.17 mm) and 37% (5.4% 

vs. 3.4%), respectively. Importantly, the fusion-based method markedly improved the consistency 

of reducing outliers, as evidence by a 77% relative reduction of the IQR for ε2.5 (17.5% vs. 4.1%). 

Our current study has some limitations. First, the prediction methods were only evaluated 

in one dimension, the superior-inferior (SI) direction, which is the dominant direction of motion 

caused by breathing39. The proposed framework can be readily extended into all three dimensions 

by acquiring more imaging planes (or a 3D volume) and tracking the three-dimensional target 

tissue motion in the regions of interest. An interleaved orthogonal 2-slice approach (i.e., sagittal 

and coronal) with golden-angle radial MRI can still achieve a framerate of 5 Hz, which is adequate 

for visualizing organ motion during free breathing (typically 3-5 secs/period). Second, the 75 

motion waveforms used for evaluation were obtained from 8 different subjects with 3 breathing 
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patterns and may have some internal correlation because different regions were selected from the 

same image series. Third, the current implementation and experiments only consider two different 

components in the multi-rate framework (one surrogate-based agent and one image-based agent). 

The fusion-based method need not be limited to the specific parameters we used in this study. With 

improved reconstruction algorithms for higher radial undersampling factors, such as robust 

dynamic estimation101, GPU acceleration102, or deep learning103,104, the performance could be 

further improved. Future developments could incorporate tracking results from a wider range of 

MRI acquisition and reconstruction techniques and external signals into the multi-rate prediction 

framework. In addition, even though all of the components in the fusion-based method (MRI 

acquisition and reconstruction, motion tracking, fusion, motion prediction) are designed for online 

real-time implementation without any hidden delays, the real-time performance of the fusion-

based method still needs to be evaluated by fully implementing it in our online pipeline. 

2.5 Conclusion 

In summary, we presented a fusion-based respiratory motion tracking and prediction 

framework using multi-rate Kalman filtering and real-time GA radial MRI. This framework 

combines the respective advantages of surrogate-based tracking (lower latency) and image-based 

tracking (lower tracking error). Experiments demonstrate that the fusion-based method can achieve 

temporal resolution of 100 ms (10 Hz frame rate) and overcome system latencies (~300 ms) to 

provide sub-pixel prediction error (0.97±0.49 mm) of targets in the liver during respiratory motion. 

This framework has potential to improve the tracking accuracy of tissue targets for computer-

assisted navigation, real-time MRI-guided interventions, and image-guided therapies.  
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Chapter 3 Automatic Needle Tracking using Mask R-CNN for MRI-

Guided Percutaneous Interventions 

3.1 Introduction 

Image-guided percutaneous interventions play key roles in cancer diagnosis and 

treatment1,2. Under image guidance, physicians manipulate needles to access targets in suspected 

lesions for different purposes (e.g., needle biopsy, focal ablation). With the advantages of high soft 

tissue contrast and no ionizing radiation, magnetic resonance imaging (MRI) has emerged as a 

promising intra-procedural imaging modality14,34. MRI can provide needle visualization based on 

the passive signal void feature on the MR images caused by needle-induced susceptibility effects 

to guide needle manipulation during procedures105-107. For example, during intra-procedural or 

real-time MRI-guided interventions, needle-in scans are used to visualize both the needle feature 

and the target to assist needle position adjustment7,65,66,108-110. However, there are variations in the 

signal void feature and contrast between the needle feature and surrounding tissues depending on 

the MRI sequence type and parameters, the type of needle, and the needle’s orientation relative to 

the B0 field. These variations may lead to inaccurate interpretation of the needle position and result 

in several iterations of adjustments or even errors in the final placement. 

Computer-assisted automatic needle feature localization and tracking could provide 

multiple benefits for image-guided procedures. For in-bore MRI-guided prostate biopsy, fast and 

accurate determination of the spatial relationship between the needle feature and the target has 

potential to improve the workflow for adjusting the needle guide position. Automatic needle 

tracking could provide closed loop confirmation of needle placement and improve the physicians’ 

confidence in assessing procedural accuracy7. Furthermore, the information from needle tracking 
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could be used to directly adjust the needle trajectory for future development of feedback-controlled 

robotics-assisted procedures, which is an emerging area of research111-113. The needle tracking 

algorithm could also be used as a postprocessing tool for needle path analysis using procedural 

images; this would provide more information about the needle trajectory and placement accuracy 

to improve procedure planning114. Therefore, developing algorithms that automatically and 

reliably track the needle feature on MR images has potential to improve intra-procedural guidance 

and postprocedural analysis of MRI-guided percutaneous interventions. 

The common computer-aided algorithms to locate or track the needle on images require 

detection and segmentation of the needle feature, which has a long tubular structure. Strategies for 

needle tracking have been presented in the literature for different imaging modalities (e.g., MRI, 

ultrasound), but these methods are less robust when the needle insertion length was not enough or 

confounding long tubular features were present in the image background107,115,116. Supervised deep 

learning using convolutional neural networks (CNN) is a powerful approach for image 

classification and segmentation117. Recent work in ultrasound has shown that compared with hand-

crafted pre-determined feature extraction methods, supervised deep learning-based methods have 

superior ability to overcome these challenges118. CNNs have also been applied to pixel-based 

segmentation of the needle feature on MRI. For example, a 3D fully convolutional network (FCN) 

was proposed to segment the cross-sectional needle feature in a set of 3D image planes for in-bore 

MRI-guided prostate biopsy54. Another study adapted the U-Net for dynamic in-plane needle 

feature segmentation on real-time 2D MRI53. However, the residual errors after pixel-based 

segmentation using CNNs degraded the instance detection of the needle feature53,54. Ensemble 

algorithms to accumulate detection candidates reduced residual errors, but increased the number 

of parameters for tuning and the processing time54. The region proposal based CNN (R-CNN)119, 
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which automatically integrates region of interest (ROI) localization within the network, may direct 

the strong classification power of CNNs to the proposed regions instead of each pixel and enable 

the formation of an end-to-end learning framework for improved instance segmentation of the 

needle feature. Recent developments of Mask R-CNN119 further include an additional mask branch 

to precisely determine the region containing the object feature119 while improving the robustness 

of the object feature segmentation task.  

Mask R-CNN is fast and accurate for instance-level object detection and segmentation in 

natural images119. The variations of the target objects’ features in natural images are similar to the 

challenges of passive needle tracking on MRI. Therefore, our objective in this study was to adapt 

and train Mask R-CNN for needle feature detection and segmentation on interventional MR images. 

We also developed an algorithm to automatically track the needle tip location and axis orientation 

based on the Mask R-CNN output. We evaluated the performance of the proposed automatic 

needle tracking algorithm using datasets from intra-procedural MRI-guided prostate biopsy and 

real-time MRI-guided needle insertion in ex vivo tissue. 

3.2 Methods 

3.2.1 Network Structure 

 We implemented Mask R-CNN using Keras and Tensorfow119 (Figure 3-1). The input 

grayscale 2D MR images were stacked into 3 color channels, and the needle signal void feature on 

2D MR images was defined as the only non-background class. In the output, the bounding box 

indicates the ROI corresponding to needle feature detection, while the predicted mask (within the 

bounding box) corresponds to needle feature segmentation. 
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3.2.2 Datasets 

 (1) Gel phantom dataset: A gel phantom (gelatin concentration 70 g/L) was imaged using 

a 2D real-time golden-angle (GA) ordered radial spoiled gradient echo (GRE) sequence (Table 3-

1, second column)120,121. The images were reconstructed using a non-Cartesian conjugate gradient 

sensitivity encoding (cgSENSE) algorithm38,95. Dynamic needle (10 cm, 18 gauge, Invivo) 

insertion and retraction was performed using manually controlled MRI-compatible master–slave 

hydrostatic actuators during the scan66. One degree of freedom (1-DOF) needle manipulation in 

11 different angles relative to the B0 field was performed during the scan. 145 images were 

randomly selected from all scans to form a pretraining dataset. 

 

Figure 3-1 Structure of Mask R-CNN for Needle Detection and Segmentation. In the backbone, a 
Residual Network (ResNet) and Feature Pyramid Network (FPN) extract features from the entire 
input image. The feature maps are shared with a Region Proposal Network (RPN) to generate an 
initial Region of Interest (ROI), indicated by a bounding box. In the head architecture, the proposed 
ROI and corresponding feature map are processed by the ROIAlign layer. The fixed-size ROI feature 
map is exported for ROI refinement to obtain the final class score, ROI bounding box location, and 
predicted mask. Based on the bounding box location, the mask will be transformed back into the 
original image size. The components outlined in dashed lines were used for training. Conv: 
convolution. 
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 (2) Prostate dataset: In an IRB-approved and HIPAA-compliant retrospective study, intra-

procedural T2-weighted prostate MRI using a turbo spin echo (TSE) sequence (Table 1, first 

column) was collected from 125 in-bore MRI-guided transrectal prostate biopsy cases, which were 

performed according to previous work7. A 17.5-cm 18-gauge MR-compatible biopsy needle (TSK 

Laboratory) was inserted through the needle guide, and intra-procedural TSE scans were acquired 

to confirm the needle location. Multiple parallel 2D image slices were acquired in oblique sagittal, 

coronal, or transversal plane orientations. A trained researcher selected intra-procedural images 

containing the needle signal void feature in oblique transversal and sagittal orientations and 

divided them into separate training (85 cases/250 images) and testing datasets (40 cases/208 

images). 

 (3) Tissue dataset: Firstly, ex vivo tissue samples were imaged using a 2D real-time GA 

ordered radial spoiled GRE sequence for training (Table 1, third column). Two different echo 

times (TE=1.9 ms and 3 ms) were used to generate images with different contrasts. The images 

were acquired in the coronal plane and reconstructed in the same manner as the gel phantom dataset. 

1-DOF needle (15 cm, 20 gauge, Cook Medical) manipulation in 9 different angles relative to the 

B0 field was performed using actuators during the scan. One hundred eighty images of a pork 

shoulder were randomly selected to form a training dataset. Next, different tissue samples (beef 

steak) were used to repeat the scan with free-hand 2-DOF (translation and rotation) needle 

manipulation within a 2D plane. Different contrasts (i.e., TE), slice orientations, and needle types 

(needle 1: 15 cm, 20 gauge, Cook Medical; needle 2: 10 cm, 18 gauge, Invivo) were used to acquire 

three different real-time MRI datasets. Each dataset contained 300 image frames, and 30 images 

were randomly selected from each dataset to form a testing dataset to evaluate Mask R-CNN 

needle feature segmentation (total of 90 images). 
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3.2.3 Mask R-CNN Training and Testing 

A researcher, trained and supervised by a clinical interventional radiology fellow and 

experienced interventional radiologist, manually segmented the needle signal void features on the 

MR images. All images in the training datasets underwent 16-fold image augmentation by random 

rotation (0°–360°), flipping, translation, and rescaling to mitigate overfitting. We pretrained the 

network using the common object in context (COCO)122 and gel phantom datasets to improve 

convergence during training123 for the prostate and ex vivo tissue datasets. Losses from the head 

architecture and residual proposal network (RPN) were equally weighted (Figure 3-1)119,124. The 

specific training hyperparameters are in Table 3-2.  

To evaluate needle detection and segmentation using Mask R-CNN, we studied separate 

testing datasets of intra-procedural prostate MRI (208 images) and ex vivo tissue real-time MRI 

(90 images). For images with successful needle detection, the intersection over union (IoU, 0 to 1) 

and center of mass shift (COMs, in mm) of the segmentation mask were calculated with respect to 

the reference human annotation for each individual image. 
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Table 3-1 MRI Datasets and Imaging Parameters. Intra-procedural prostate T2-weighted MRI from 
in-bore MRI-guided biopsy, real-time MRI of a gel phantom, and real-time MRI of ex vivo tissue 
were used to train and test the proposed algorithms. TR: repetition time. TE: echo time. N/A: not 
applicable.  

 
 
Table 3-2 Mask R-CNN Training Parameters. A fixed size of 56x56 pixels was used in the mask 
branch. Training was performed using Adam with Nesterov momentum on two Nvidia 1080Ti GPU 
cards with 12 GB of memory each. 
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3.2.4 Automatic Needle Feature Localization Algorithm and Evaluation for Prostate Dataset 

To automatically localize the needle feature tip location and axis orientation based on Mask 

R-CNN outputs, we developed a postprocessing algorithm (Figure 3-2). For images with a positive 

detection of the needle feature, orthogonal distance regression (ODR)125 was applied to the needle 

segmentation mask to extract the needle tip position and needle axis orientation angle in image 

coordinates (Figure 3-2). The Mask R-CNN performs instance-level segmentation and always 

detected the contiguous needle feature as one instance. In some cases, other dark features in the 

anatomical background mimicked needle features and were detected by the Mask R-CNN, albeit 

with a lower class score. We set a class score threshold of 0.99 to remove these false positive 

detection instances. This simple instance-level threshold approach had much less computational 

overhead than the test-time augmentation step used for a previous semantic segmentation method54. 

Since only one needle was used during biopsy procedures, if multiple positive ROIs were still 

detected after applying the threshold, the ROI with highest class score was considered to be 

positive detection of the needle. 

A clinical interventional radiology fellow with experience performing in-bore MRI-guided 

prostate biopsy7 annotated the needle feature tip location and axis orientation on the images of the 

intra-procedural prostate MRI testing dataset. There were only two cases in the testing dataset with 

visible needle shaft, but without visible needle tip feature due to marked obliqueness of the needle 

axis with respect to the image plane. When the expert labeled these two cases, he used the needle 

feature on the adjacent slice to estimate the needle tip position on the slice of interest. Absolute 

needle axis orientation difference (dθ, in degrees) and Euclidean distance of needle tip position 

(dxy, in mm) between the algorithm results and the human reference were calculated for evaluation. 
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Figure 3-2 Automatic Needle Tracking Algorithm. The MRI needle signal void feature caused by 
susceptibility is nearly symmetric, thus the needle axis should be along the centerline of the 
segmentation mask generated from Mask R-CNN. The location of the centerline was estimated with 
orthogonal distance regression using the entire needle segmentation mask. The signal drop along the 
detected axis was used to identify the needle feature tip (blue star) 

 
3.2.5 Dynamic Needle Feature Tracking and Evaluation for Ex Vivo Tissue Dataset 

We evaluated the needle feature localization algorithm for dynamic needle feature tracking 

in 3 ex vivo tissue real-time MRI datasets with 2-DOF needle motion. If multiple positive needle 

detection results from Mask R-CNN were reported for a frame, only the bounding box closest to 

the positively detected needle feature in the previous frame was designated as the positive needle 

detection result. The needle feature tracking results in X and Y directions in image coordinates 

were calculated by subtracting the localized needle position in the initial frame from the needle 

localization results in each subsequent dynamic frame. The image coordinate system can be 

transformed to the patient coordinate system based on slice position. A small ball-shaped needle 

feature without a well-delineated shaft may appear on the images when the needle was aligned 

with the B0 field. In this case, ODR may produce an incorrect estimation of the needle axis. 

Therefore, since the needle manipulation speed was relatively stable, axis localization results in a 

frame were replaced by the results of the previous image frame if the change in axis orientation 

was over a threshold of 8°. For evaluation, tracking references were manually annotated by a 

researcher, trained and supervised by the interventional radiology fellow. The absolute differences 

between the algorithm tracking results and the human references were calculated. 
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3.3 Results 

3.3.1 Mask R-CNN Evaluation for Prostate and Ex Vivo Tissue Datasets 

 Representative needle feature detection and segmentation results from Mask R-CNN for 

one prostate image in oblique transversal orientation and another one in oblique sagittal orientation 

are shown in Figure 3-3a. For the prostate MRI testing dataset, needle detection was 99% 

successful; only two needle detection cases failed out of 208 images because the needle axis was 

markedly oblique in the through-plane direction (Figure 3-7). Median [interquartile range; IQR] 

of IoU was 0.737 [0.153] and median [IQR] of CoM shift was 1.25 [1.19] mm, which was about 

1.5 [1.4] pixels. Next, representative needle detection and segmentation results for ex vivo tissue 

real-time MRI with 2-DOF needle motion are shown in Figure 3-3b. Needle detection was 100% 

successful for the 90 images in the testing dataset. Median [IQR] of IoU was 0.719 [0.143] and 

median [IQR] of CoM shift was 1.65 [1.27] mm, which was about 1.4 [1.1] pixels. The inference 

time of the network was in the range of 60–68 ms per image. 
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Figure 3-3 Example Needle Detection and Segmentation Results for Intra-Procedural Prostate MRI 
and Ex Vivo Tissue Real-Time MRI. Mask R-CNN results are shown for (a) intra-procedural prostate 
MRI in different slice orientations and (b) ex vivo tissue real-time MRI with different contrasts (i.e., 
echo time, TE). The needle detection scores are reported in the middle and right columns. The 
prediction results vs. the references are reported in the right column. The processing time is also 
reported. IoU: intersection over union. CoM: center of mass. 
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3.3.2 Needle Feature Localization Evaluation for Prostate Dataset  

In the prostate MRI testing dataset, there were only 8 Mask R-CNN results that contained 

more than one positive detected ROI. With a class score threshold of 0.99, 6 of them were removed. 

Needle detection in the remaining 2 cases were successfully accomplished by selecting the ROIs 

with the highest class scores. Example human reference and algorithm localization results for intra-

procedural prostate MRI are shown in Figure 3-4. Median, IQR, mean, standard deviation (SD), 

and root mean square error (RMSE) of dxy and dθ between algorithm results and the human 

reference are reported in Table 3-3. Histograms of dxy and dθ are shown in Figure 3-5. The 

majority (>80%) of dxy were <2 mm and dθ were <3°. The median value of dxy for needle tip 

tracking was 0.71 mm (~0.82 pixels), while the median value of dθ for axis tracking was 1.28°. 

 

Figure 3-4 Example Automatic Needle Localization Results for Intra-Procedural Prostate MRI. 
Needle tip location (*) and needle axis orientation (line) were computed based on the predicted mask 
from Mask R-CNN. Example comparisons between reference results (green) and algorithm results 
(white) are shown. The Euclidean distance between the needle tip locations (dxy) and the absolute 
difference between the needle axis orientations (dθ) are reported.  
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Table 3-3 Automatic Needle Localization Results for Intra-Procedural Prostate MRI. In a testing set 
of 40 patients and 208 images, the algorithm results were evaluated with respect to a human reference 
in terms of the Euclidean distance between the needle tip locations (dxy) and the absolute difference 
between the needle axis orientations (dθ). The median and interquartile range (IQR), mean and 
standard deviation (SD), and root mean squared error (RMSE) are reported. 

 
 

 
 

Figure 3-5 Histogram of Needle Localization Results for Intra-Procedural Prostate MRI. The 
histograms show (a) needle tip localization differences (dxy) and (b) axis orientation absolute 
differences (dθ) between the automatic needle localization algorithm and a human reference.   
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3.3.3 Dynamic Needle Feature Tracking Evaluation for Ex Vivo Tissue Dataset 

For ex vivo tissue real-time MRI datasets, the needle feature tracking results for images 

with different contrasts, needle type, and imaging plane orientations are shown in Figure 3-6. The 

range of the needle tip displacement during free-hand 2-DOF manipulation was 42.6 mm, 38.1 mm, 

and 32.1 mm in Y, and 11.7 mm, 19.5 mm, and 24.3 mm in X, for the three experiments. The range 

of the needle axis orientation angle was 15.4°, 26.4°, and 11.2° for the three experiments. These 

ranges are representative of actual needle motion during procedures126. The overall tracking results 

(dxy and dθ) for all real-time MRI datasets are shown in Table 3-4. The median values of dxy for 

the three datasets were 0.90 mm (~0.77 pixels), 1.31 mm (~1.12 pixels), and 1.09 mm (~0.93 

pixels). The median values of dθ for the three datasets were 1.53°, 1.9° and 0.97°. This was 

consistent with the dxy (in terms of pixels) and dθ results in the prostate MRI testing dataset. The 

processing time of the whole algorithm for each image was around 75 ms.
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Figure 3-6 Example Automatic Needle Tracking Results for Real-Time Ex Vivo Tissue MRI. The 
needle tip motion and change in axis orientation over time were compared between the algorithm 
and a human reference in 3 real-time MRI datasets (parameters in Table 1, third column). (a) 
Coronal slice, echo time (TE) of 1.9 ms, with needle 1 (15 cm, 20 gauge, Cook Medical). (b) Coronal 
slice, TE of 3 ms, with needle 1. (c) Sagittal slice, TE of 3 ms, with needle 2 (10 cm, 18 gauge, Invivo). 
Y and X were defined in terms of the image coordinates. Overall needle tracking performance for 
each dataset is reported in Table 4.
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Table 3-4 Automatic Needle Tracking Results for Real-Time Ex Vivo Tissue MRI. 3 real-time MRI 
testing datasets were obtained with different imaging contrasts (echo time, TE) and needle types 
(Needle 1: 15 cm, 20 gauge, Cook Medical; Needle 2: 10 cm, 18 gauge, Invivo). The algorithm results 
were evaluated with respect to a human reference in terms of the Euclidean distance between the 
needle tip locations (dxy) and the absolute difference between the needle axis orientations (dθ). The 
median, interquartile range (IQR), mean, standard deviation (SD), and root mean squared error 
(RMSE) are reported. The characteristics of needle motion are also reported: total time, total number 
of frames, and range of motion in the Y and X directions in the image coordinate.  

 
 

3.4 Discussion 

In this study, we adapted and trained Mask R-CNN for needle feature detection and 

segmentation on intra-procedural and real-time MR images. Pixel-level spatial accuracy was 

consistently achieved for both needle feature tip localization in the prostate dataset (median dxy: 

0.82 pixels) and needle feature tracking in the tissue dataset (median dxy: 0.7–1.1 pixels) based on 

the Mask R-CNN results. These results were achieved by fine-tuning with relatively small training 
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datasets (prostate dataset: 250 images, ex vivo tissue dataset: 180 images) using the same training 

hyperparameters. A previous study using a 2D pixel-based deep learning method for MRI-based 

in-plane needle feature segmentation and localization had on average 3 falsely detected needle 

contours per image and error of ~4 pixels for needle tip localization53. In contrast, the detection 

errors at the instance level using Mask R-CNN were negligible and needle tip localization errors 

were substantially lower (~1 pixel) in our results. Compared with a previous study54 that used a 

3D CNN for pixel-level semantic segmentation, our study used the high in-plane resolution of 2D 

images and Mask R-CNN for instance segmentation; both methods achieved comparable needle 

localization errors. No ensemble step or test time augmentation was required for our technique, 

which enabled rapid overall processing times (75 ms per image). Therefore, our results 

demonstrate that Mask R-CNN is a deep learning framework with important advantages for real-

time needle detection and segmentation on MR images 

For the intra-procedural prostate MRI dataset, we assumed a rigid linear needle profile. 

This was supported by the fact that the transrectal approach utilizes a needle guide and has minimal 

needle bending54. 86.5% of the absolute needle tip localization error (dxy) was <2.5 mm, 

demonstrating the potential for our algorithm to support interventions in clinically relevant tissue 

targets, which typically have diameters of 5–10 mm or greater56,127. The needle position 

information provided by our algorithm has potential to improve the physician’s assessment of 

procedural accuracy during MRI-guided biopsy, or to automatically adjust the needle trajectory 

for robotics-assisted procedures54,128. In addition, our method can be adapted for needle detection 

on intra-procedural MRI of transperineal prostate biopsy, and the existing network structure could 

be extended to consider 3D prostate MRI. For the ex vivo tissue real-time MRI dataset, since the 

operator carefully maintained a straight path for needle insertion during the experiments, the 
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assumption of a rigid linear needle profile achieved accurate tracking of dynamic needle motion 

(median dxy: 0.7–1.1 pixels). These results indicate that our proposed real-time algorithm has 

potential to provide accurate feedback information for automatic needle control. 

We investigated the robustness of the Mask R-CNN for needle detection and segmentation 

on MRI with respect to different characteristics: different anatomical backgrounds from different 

subjects, different image plane orientations, different needle lengths, different needle orientations, 

and different needle feature widths and image quality due to the selection of two types of 

bandwidth for the scans. Among these characteristics, marked obliqueness of the needle axis with 

respect to the image plane is a factor that may lead to detection failure (<1%: 2 out of 208 images). 

In the prostate MRI testing dataset, we quantified the obliqueness by comparing the centerline of 

the needle feature with the cross section line of the orthogonal plane from a back-to-back scan 

(Figure 3-7). One hundred thirty-three images (out of 208) in the testing dataset had corresponding 

orthogonal plane scans acquired during the biopsy procedure for this evaluation. We found 

orientation differences to have median [IQR] of 2.6° [3.3°]. This shows that the images in our 

testing dataset have a certain range of needle axis obliqueness, and more training data with a wider 

range could be included in future work. For real-time MRI, the model trained with 9 needle 

orientations was tested in real-time MRI datasets with an expanded range of needle orientations 

(10°–30° with respect to B0). This model was trained with a single needle type, tissue type, and 

slice orientation (coronal) and tested for two different needle types, different tissue types, and two 

slice orientations (coronal and sagittal). The successful and consistent tracking results for the 

different real-time MRI datasets (Table 3-4) indicate that robust real-time tracking performance 

across multiple experimental conditions can be achieved by using a relatively limited training 

dataset. Our results show that the proposed algorithm has accurate performance in a range of 
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different situations, and further work is needed to investigate the generalization of our algorithm 

to more situations. 

There are limitations to this study. First, obliqueness of the needle axis with respect to the 

image plane could cause failure of the needle feature detection on intraprocedural prostate MRI or 

lead to tracking outliers on real-time ex vivo tissue MRI. Strategies to improve the proposed 

algorithm include training Mask R-CNN using images with a wider range of needle axis 

obliqueness, considering a stack of images encompassing the needle axis as the input to the needle 

detection algorithm, and to use orthogonal planes, in combination with our proposed algorithm, to 

systematically align image planes with the needle axis and improve the needle detection 

performance65,66. Second, the discrepancy between the needle feature on MRI and the physical 

needle position55,106 was not addressed in this study. Future work will focus on extending the 

current algorithm with an additional step of estimating the physical needle position based on the 

needle feature. Third, there was a lack of pre-clinical or clinical in vivo real-time MRI datasets in 

our study, since in vivo real-time MRI-guided interventions are not currently performed at our 

institution. The needle localization or tracking performance using our proposed algorithm would 

need to be studied for in vivo real-time MRI with different variations of the needle feature in the 

future. 
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Figure 3-7 (a) An example oblique sagittal slice (left image and green line in the right image) in the 
prostate MRI testing dataset, which was perfectly aligned with the center line of the needle feature 
(needle axis) in the corresponding orthogonal oblique coronal slice (right image). The needle feature 
in the left image was successfully detected by the proposed algorithm. (b) An example oblique sagittal 
slice in the testing dataset (left image), which was mildly oblique with respect to the needle axis in the 
orthogonal oblique coronal slice (right image). The orientation difference (OD) was 3.5°. The needle 
feature was successfully detected in the left image. (c) An example oblique coronal slice (left image) 
in the testing dataset, which was not only oblique but also shifted with respect to the needle axis in 
the orthogonal oblique sagittal slice (right image). The OD was 7.6°, which was the maximum value 
in the testing dataset. The proposed algorithm failed to detect the needle feature in the left image
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3.5 Conclusion  

In summary, we have developed an automatic needle tracking algorithm based on the Mask 

R-CNN for MRI-guided interventions. Testing results from intra-procedural prostate MRI and 

ex vivo tissue real-time MRI datasets demonstrated real-time needle tracking (processing time ~ 

75 ms/frame) with close agreement to human references (needle feature tip median dxy: 0.7–1.1 

pixels). The proposed algorithm addressed a range of feature variations in MR image-based 

passive needle tracking and has the potential to improve intra-procedural and real-time MRI-

guided interventions.  

This work has been published as: Li X, Young AS, Raman SS, Lu DS, Lee Y-H, Tsao T-C, 

Wu HH. Automatic Needle Tracking using Mask R-CNN for MRI-Guided Percutaneous 

Interventions. Int J Comput Assist Radiol Surg 2020;15(10):1673-1684. 
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Chapter 4 Physics-Driven Mask R-CNN for Physical Needle 

Localization in MRI-Guided Percutaneous Interventions 

4.1 Introduction 

The success of minimally invasive image-guided percutaneous procedures, such as targeted 

biopsy and focal ablation, depends on intra-procedural imaging to visualize tissues and devices 

(i.e., needles) simultaneously for guidance and confirmation 1,2. Automatic, accurate, and rapid 

needle localization will be required for needle adjustment under both intra-procedural and real-

time MRI guidance. Automatic needle localization based on the passive needle feature is 

challenged by variations of the needle susceptibility-induced signal void feature due to different 

situations52,110. Deep learning-based techniques show promise for accurate detection and 

segmentation of the needle feature on MRI53,54,119,129, however a major limitation is that the 

discrepancy between the needle feature and the underlying physical needle position has not been 

addressed.  

The susceptibility difference between the needle and surrounding tissue causes magnetic 

field perturbation and MR signal dephasing 110. With MR-compatible needle materials, such as 

titanium alloys, the needle susceptibility and geometry usually lead to a long tubular signal void 

feature on MR images. This needle signal void feature can have an irregular shape at the tip and 

the axis can be shifted from the physical needle axis. Therefore, even if the image plane is perfectly 

aligned with needle, there may be discrepancies between the needle feature and physical needle. 

Previous studies 55,130 have reported that this discrepancy can reach 5-10 mm and depends on the 

MRI sequence type and parameters, the needle material, and the needle’s orientation relative to 

the B0 field. For reference, clinically relevant tumors for image-guided interventions may have a 
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diameter of 5-10 mm56. Therefore, only localizing the needle feature to monitor the physical needle 

position during the procedure may cause substantial errors in needle targeting.  

There are some approaches that have potential to overcome this limitation. One approach 

is to reduce or correct the distortion of the signal void feature vs. the physical object with 

multispectral MR imaging. For example, slice-encoding metal artifact correction (SEMAC) can 

minimize the average needle tip error (~0.4 mm) with improved time efficiency using compressed 

sensing (CS) reconstruction57. However, the combined acquisition and reconstruction time of CS-

SEMAC (~30 sec) is still not appropriate for immediate updates of the needle position for feedback 

during procedures131. Another approach is to reconstruct the precise physical object shape by 

forming an inverse problem based on a set of acquired MRI signals. The forward modeling of the 

needle susceptibility-induced signal void has been reported for different sequence parameters and 

needle geometry52,132. However, due to the ill-posed nature of the inversion problem, multi-

orientation sampling and iterative computation similar to strategies for quantitative susceptibility 

mapping may be required, which are not practical for time-sensitive interventional procedures133.  

Supervised deep learning using convolutional neural networks (CNNs)is a potential 

approach to rapidly and accurately calculate solutions to ill-posed inversion problems involving 

magnetic susceptibility. For example, DeepQSM 58 and QSMNet 59 both use pixel-level semantic 

models to solve ill-posed field-to-source inversion problems and reconstruct quantitative tissue 

susceptibility maps from single-orientation MRI phase data with rapid inference time. Hence 

physical needle localization based on the needle feature may potentially be achieved using a deep 

learning-based approach. However, pixel-level semantic methods could be sensitive to false 

detection of small objects (e.g., a needle segment in a full field-of-view image). Therefore, a deep 
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learning-based framework using an instance-level method such as Mask R-CNN can have 

advantages for physical needle localization. 

In MRI-guided interventions, single-slice and multi-slice imaging are used to inform 

different aspects of the procedure. Imaging plane orientation selection for intra-procedural single-

slice and multi-slice imaging is typically performed using information from a multi-slice planning 

scan in order to ensure that the needle feature is aligned with the slices with minimal through-plane 

deviation. Single-slice MRI is usually performed to achieve dynamic needle guidance with fast 

imaging speed 5,34. However, through-plane misalignment between the image plane and needle 

could lower physical needle localization accuracy using single-slice MRI. Sequential multi-slice 

and orthogonal plane acquisitions have the potential to assist intuitive interpretation of this 

misalignment by physicians 6,7. In particular, 3-parallel-slice imaging is a recommended choice 

from previous studies6,134 and our clinical interventional radiologist colleagues.  

The main objective of this study was to develop and test a deep learning framework using 

Mask R-CNN to automatically and rapidly localize the physical needle position from the passive 

needle features on MRI. This study first established a single-slice physical needle localization 

network based on Mask R-CNN by assuming the physical needle was perfectly aligned with the 

MRI scan plane and focused on addressing in-plane discrepancies between the needle feature and 

the physical needle. In addition, this study established a 3-slice physical needle localization 

network based on Mask R-CNN to estimate the physical needle position in the in-plane and 

through-plane dimensions for 3D localization.  
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4.2 Methods 

4.2.1 Overview of the Physical Needle Localization Framework 

We developed a new needle localization framework consisting of two Mask R-CNN stages 

(Figure 4-1), with the software implementation based on Keras and Tensorflow 124. For the first 

stage, we used a “needle feature” Mask R-CNN that we previously trained to detect and segment 

the needle feature on the input MR image (Chapter 3) 129. Based on the results of the first stage, 

the image was automatically cropped to a patch centered on the needle feature. For the second 

stage, we trained two separate “physical needle” Mask R-CNN models: 1. A single-slice physical 

needle Mask R-CNN that takes a needle feature patch from a single slice as input to localize the 

in-plane 2D physical needle tip and axis (Figure 4-1b), and 2. A 3-slice physical needle Mask R-

CNN to localize 3D physical needle position (in-plane and through-plane) on three adjacent and 

parallel slices (Figure 4-1c). Single-slice and multi-slice MRI simulations and experiments were 

performed to train, validate, and test the proposed framework for physical needle localization. Ex 

vivo tissue phantom data were acquired for testing, since the tissue features resemble features on 

in vivo MRI and the phantom setup allowed us to measure the physical needle position under 

controlled conditions to serve as the reference.  

4.2.2 MRI-Guided Needle Insertion Experiments 

We used a golden-angle (GA) ordered radial spoiled gradient-echo (GRE) sequence 121 for 

real-time 3T MRI-guided needle (20 gauge, 15 cm, Cook Medical) insertion in phantoms. 

Different imaging parameters (echo time [TE] = 1.9 ms, readout bandwidth [BW] = 888 Hz/pixel; 

TE = 3 ms, BW = 888 Hz/pixel; TE = 2.8 ms, BW = 300 Hz/pixel) and needle orientations were 

used to create variations in the passive needle feature on MRI. To achieve sufficient image quality 

and signal-to-noise ratio (SNR) for needle visualization, a temporal resolution of around 1 
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sec/frame was used for real-time MRI. The imaging parameters are listed in Table 4-1. Images 

were reconstructed using non-Cartesian conjugate gradient sensitivity encoding (SENSE) with 

reconstruction window size of 200 radial spokes95,121. 

 

 

Figure 4-1 (a) The overall physical needle localization framework consisted of two stages of Mask R-
CNN. The first “needle feature” Mask R-CNN detected and segmented the needle feature on an MR 
image with field-of-view (FOV) of 300x300 mm2. Next, the single-slice image or 3-slice images with 
needle features were automatically cropped to a FOV of 75x75 mm2 centered at the detected needle 
feature tip and used as the input to the second “physical needle” Mask R-CNN, with options (b) and 
(c), which detected the 2D or 3D physical needle tip and axis. (b) The single-slice physical needle 
Mask R-CNN was trained using physics-based simulated data of single slice MRI. Ground truth 
labels for training were structured as a 2D bounding box with corners that defined the physical needle 
tip location and axis orientation. Dashed lines indicate data labels and computation steps for training. 
(c) The 3-slice physical needle Mask R-CNN was trained using physics-based simulated data of 3 
adjacent parallel slices of MRI. Ground truth labels for training were structured as a 3D bounding 
box with corners that defined the physical needle tip location and axis orientation. 
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Table 4-1 Imaging parameters for real-time radial gradient-echo (GRE) MRI of the gel phantom and 
ex vivo tissue phantom at 3T. Three combinations of repetition time (TR), echo time (TE), and 
bandwidth (BW) were used to acquire images with different tissue contrast and needle signal void 
feature. Similar imaging parameters were used to generate simulated images that form the network 
training dataset. 3-parallel-slice inputs used the same imaging parameters, but with temporal 
resolution of 2.4-3.6 sec/image to accommodate the interleaved acquisition of 3 slices. 

 
 

We performed needle insertion experiments in gel phantoms and ex vivo tissue phantoms. 

The ex vivo tissue (pork shoulder or beef chuck steak) was submerged underneath gelatin to create 

a flat surface on the top (Figure 4-2a). In gel and ex vivo tissue phantoms, an MRI-visible fiducial 

marker (MR-SPOT, Beekley Medical, Connecticut, USA) was affixed to the surface to define the 

needle entry point. To directly control and confirm the physical needle orientation and insertion 

depth during experiments, we used an MRI-compatible master-slave needle actuator system 

(Figure 4-2b) 12. We defined the orientation of the needle in terms of its rotation angle (θ) in one 

plane and tilting angle (α) in the orthogonal plane (Figure 4-2c). A linear guide on the actuator 

ensured a straight needle insertion path and a fixed length of the needle (50 mm) was inserted so 

that the physical needle tip can be in 2D image coordinates based on the position of the fiducial 

marker. These measurements were taken as the references of the physical needle tip position and 

axis orientation (Figure 4-2e-f) for single-slice physical needle Mask R-CNN. The range of needle 

axis orientation is reported in Table 4-2.  
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Table 4-2 Physics-based simulated datasets used for training and validation of single-slice physical 
needle Mask R-CNN for (top). Datasets used for fine-tuning and testing of the overall physical needle 
localization framework with two Mask R-CNN stages (bottom). θ: needle rotation angle. α: needle 
tilting angle. N/A: not applicable. *Data augmentation included rescaling, translation, and additive 
Gaussian noise. 
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In addition, a similar set-up was applied to acquire the reference physical needle position 

for 3-slice physical needle Mask R-CNN. One smaller MRI-visible fiducial marker was affixed on 

the surface to mark the needle entry point and another longer fiducial marker was attached on the 

needle shaft. 3D high-resolution T1-weighted gradient echo images with isotropic voxel size of 0.6 

mm were acquired to measure the physical needle position based on the pre-determined position 

of the entry point relative to the small fiducials and a fixed needle insertion length (60 mm) (Figure 

4-3b-d). The reference physical needle tip positions were measured in the RAS (right/left, 

anterior/posterior, superior/inferior) coordinate system using open-source software (3D Slicer)42, 

The range of needle axis orientation is reported in Table 4-3. 

 

Figure 4-2 (a) In phantom MRI experiments, the needle orientation was varied in terms of its rotation 
(θ) and tilting angle (α) relative to B0. A needle actuator system was used to insert the needle into a 
gel phantom by 50 mm without bending. The ranges of α and θ are reported in Table 2. (b) 
Experimental setup in the 3T MRI scanner. (c)-(d) An MRI-visible fiducial marker was affixed to the 
phantom to measure the physical needle position in the gel and ex vivo tissue phantoms. (e) Example 
gel phantom MR images (α=-11.1o and θ=-24o) with three different sets of imaging parameters and 
(f) example ex vivo tissue phantom MR images (α=-16.5o and θ=-13o) with three different sets of 
imaging parameters. All phantom MR images were reconstructed using conjugate gradient SENSE. 
TE: echo time. TR: repetition time. BW: readout bandwidth.  
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Table 4-3 Physics-based simulation dataset for training of 3-slice physical needle Mask R-CNN and 
ex vivo tissue datasets used for testing the overall physical needle localization framework. θ: needle 
rotation angle. α1: needle tilting angle relative to B0 field.  α2: inner tilting angle of needle relative to 
the center image slice. h: pivot point. N/A: not applicable. *Data augmentation included rescaling, 
translation, and additive Gaussian noise. 
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Figure 4-3 (a) An example diagram of sagittal view of an inserted needle misaligned with 3 parallel 
oblique coronal imaging planes.  Needle tilting angle (α1) is -49.1o, inner tilting angle (α2) is 5.5o and 
pivot point (h) is 2.5 mm. (b) maximum intensity projection of high-resolution 3D MRI in sagittal 
view displayed the fiducial markers used to locate the needle tilting angle relative to the main 
magnetic field B0 and entry point. (c) 3D rendered model of the phantom and the fiducial markers in 
a 3D environment. Physical needle tip is determined based on fixed needle insertion length (6 cm) 
and entry point that was marked at the centerline of the small fiducial marker, which was 1 cm from 
its center point. Needle rotation angle (θ) is -17.9o. (d) Corresponding 3-parallel-slice MR images in 
the actual needle insertion experiment. (e) Simulated passive needle features showed similar feature 
pattern and distribution on different imaging planes. 
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4.2.3 Needle Susceptibility Simulations and Calibration 

Training the physical needle Mask R-CNN requires a substantial amount of data with 

reliable reference needle position information. However, collecting data from the MRI 

experiments described in the previous section is expensive, time-consuming, and subject to 

experimental uncertainties. Therefore, we performed MRI physics-based simulations of the needle 

susceptibility effects to generate a large set of training images that accurately depict the needle 

feature with respect to actual intra-procedural MRI.  

We implemented the Fourier‐based off‐resonance artifact simulation in the steady state 

(FORECAST) method to calculate the susceptibility effects in steady-state GRE MRI52. The field 

inhomogeneity or field shift 𝛥𝐵-(𝑥, 𝑦, 𝑧)  was calculated as a function of different needle 

orientations and needle materials with different magnetic resonance properties using a first order 

perturbation approach to Maxwell’s equations, combined with the Fourier transformation 

technique135. In the original FORECAST method, a thin slice with the desired field of view (FOV) 

and slice thickness was modeled in 3D space, with the third dimension of 𝛥𝐵- set to be parallel to 

B0, which does not capture the tilting angle of the needle. To simulate the needle with a tilting 

angle, which is a more realistic scenario in interventional procedures, we created an expanded 3D 

model (Figure 4-4). Specifically, 𝛥𝐵-(𝑥, 𝑦, 𝑧) was calculated and re-sliced to an oblique volume 

parallel to the needle with certain excitation slice or slab thickness. A linear interpolation step was 

performed to assign the 𝛥𝐵- to each pixel of the model with the original pixel dimensions. In 

addition, a non-uniform fast Fourier transform (NUFFT) was applied for the GA ordered radial 

sampling trajectory during the simulations136. The overall k-space signal model of the needle 

susceptibility-induced effects on the discrete isochromatic grid with proton density 𝜌.(𝑥, 	𝑦, 	𝑧) 

was: 
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Equation 4-1 
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where 𝛾 is the gyromagnetic ratio and t’ is the time after RF excitation. Note that the T2* of the 

signal was decomposed into T2 (e.g., 50 ms for muscle) and the field inhomogeneity caused by the 

needle susceptibility effects. Finally, an inverse NUFFT was applied to the simulated k-space data 

to reconstruct the image, which contains the needle signal void feature. 

For these simulations, we assumed that the needle material is stiff enough137 and there was 

no deflection close to the tip. Therefore, we modeled the needle as a cylindrical rod with diameter 

of 0.9 mm (20 gauge) at different rotation (θ) and tilting (α) angles in 3D space similar to the actual 

experimental setup (see previous section). The range of θ (-30° to 30°) and α (0° to -90°) of the 

needle was set according to actual reports of needle placement in abdominal percutaneous 

interventions by other groups138-140 and our clinical colleagues.  

To ensure that the simulations matched the conditions of the needle used in experiments, 

we used actual experimental data with different needle orientations and imaging parameters to 

calibrate the susceptibility value of the needle material. The Euclidean distance between the 

physical needle tip and the needle feature tip (dxy in mm, Figure 4-5) was calculated for simulated 

data and gel phantom experimental data. The susceptibility value that achieved the minimum 

average dxy was identified and used in simulations to generate training data.  
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Figure 4-4 (a) In the original FORECAST method, the susceptibility map can only be calculated for 
an imaging slice/slab that has one direction aligned with the main magnetic field B0. (b) To calculate 
the susceptibility map for a needle model that is tilted with respect to B0, we created an expanded 3D 
model. The susceptibility map in this 3D model was interpolated to the coordinates and model 
elements in the excited imaging slice/slab, which contained the needle with a certain tilting angle. The 
gray plan represents an excitation model with single slice or a thin slab of multiple slices. At the end, 
the susceptibility map was cropped to match the size of the imaging slice/slab.  

 

Figure 4-5 The discrepancy between the needle feature position and the actual physical needle 
position was quantified in terms of the Euclidean distance between the feature tip and the physical 
needle tip (dxy), and the absolute difference between the feature axis and the physical needle axis 
orientation (dθ), both in image coordinates at 2D space. The accuracy of physical needle localization 
using the first proposed framework with single-slice MRI was also quantified in terms of dxy and dθ. 

4.2.4 Single-Slice Physical Needle Mask R-CNN Training and Validation 

The input to the single-slice physical needle Mask R-CNN is an image patch centered on 

the needle feature and surrounding tissue, obtained from the needle feature Mask R-CNN output. 

The training dataset for the single-slice physical needle Mask R-CNN consisted of simulated 
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images with the same size as the expected input patches (75x75 mm2 field of view with 256x256 

matrix size) and the needle feature tip in the center of the patch (Figure 4-1). The input 2D gray-

scale image patches were normalized and stacked into 3 color channels. We used the output 

bounding box corners to define the physical needle tip (e.g., at the top left corner) and axis (e.g., 

the line connecting the top left and bottom right corners) since the diameter of the true needle is 

less than the pixel size. Since the needle tip location and axis orientation were more important than 

the needle segmentation mask in the physical needle Mask R-CNN stage, we weighted the 

bounding box loss to twice that of the losses in other branches during training. 

We first trained and validated the single-slice physical needle Mask R-CNN for needle 

localization using simulated data. A set of 741 simulated images with the same parameters as 

phantom experiments (θ from -30° to 30°, and α from 0° to -90°) was created for training. Five-

fold data augmentation was performed by rescaling, translation, and adding Gaussian noise to form 

a training dataset with 3705 images. The training hyperparameters were based on our previous 

work on needle feature segmentation 129 and the number of epochs (480 epochs) was increased to 

accommodate the larger data size. Next, we simulated 4068 images with the same imaging 

parameters, but different θ and α within the same range as the training data to validate the network 

performance for different needle orientations. Finally, we simulated 2852 images with different 

imaging parameters (TE = 2.5 ms, BW = 888 Hz/pixel; TE = 3.7 ms, BW = 300 Hz/pixel) and 

different needle orientations to investigate the performance of the model for new imaging 

parameters. Similar data augmentation as training was adopted to form two validation datasets (v1: 

20340 images, v2: 14260 images). The Euclidean distance between the estimated physical needle 

tip position and the ground truth (dxy in mm) was calculated based on image coordinates (Figure 

4-5). The absolute difference between the needle axis orientations (dθ in degrees) was also 
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computed to evaluate the localization accuracy. Characteristics of the various datasets for training 

and validation of the physical needle Mask R-CNN are reported in Table 4-2.  

4.2.5 Single-Slice Physical Needle Mask R-CNN Testing with Gel Phantom Data 

After validation using simulated images, we combined the trained single-slice physical 

needle Mask R-CNN model with the needle feature Mask R-CNN to form a two-stage framework 

(Figure 4-1) and tested the performance in actual experimental phantom images. The physical 

needle tip and axis orientation estimation results from the two-stage framework were compared to 

the measured reference physical needle position to evaluate the accuracy in terms of dxy and dθ. 

The testing dataset included 58 actual gel phantom MR images containing the needle feature 

(Table 4-2).  

4.2.6 Single-Slice Physical Needle Mask R-CNN Fine-Tuning  

Interventional MR images acquired during actual procedural guidance have more complex 

backgrounds compared to the simulated images. In addition, certain types of tissue with off-

resonance effects (e.g., fat) may also generate signal voids (e.g., fat-water signal cancellation) that 

occlude the needle feature. These effects might degrade the accuracy of our framework. Therefore, 

after training with simulated data as previously described, we performed fine-tuning of the 

physical needle Mask R-CNN by using an additional training dataset with enriched variations of 

the background. To do this, we acquired MR images of ex vivo tissue in different slices without a 

needle. Patches were randomly cropped from these ex vivo tissue images and superimposed with 

the simulated needle images (741 images) (Figure 4-6), followed by similar data augmentation to 

increase the size of the fine-tuning dataset (3705 images) (Table 4-2). 
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4.2.7 Single-Slice Physical Needle Mask R-CNN Testing with Ex Vivo Tissue Phantom Data 

We tested the needle localization accuracy of the proposed first two-stage framework using 

ex vivo tissue phantoms, which have realistic image characteristics that are representative of 

interventional MRI. 186 images were collected from experiments to form a testing dataset with 62 

different needle orientations. This dataset had a larger range of needle tilting angles (α from -92° 

to -7°) than the gel phantom dataset (-31° to -2°) to enable a more thorough test of the framework. 

We compared the accuracy of physical needle localization using the physical needle Mask R-CNN 

models without and with fine-tuning. The same error metrics were used (dxy and dθ).  

 

Figure 4-6 (a) Two example training images generated from MR physics simulation. (b) Two example 
images for physical needle Mask R-CNN model fine-tuning, which were created by superimposing 
the simulated needle on a patch of tissue background from ex vivo MRI.  

4.2.8 Three-Slice Physical Needle Mask R-CNN Training 

In addition to the single-slice strategy, we also developed a Mask R-CNN model for 3-slice 

physical needle localization. The bounding box output was increased from 4 dimensions to 6 

dimensions to capture the 3D coordinates of the physical needle's two ends (tip and entry point). 

The input to the new network was acquired in the same approach as the single-slice network, 

except that it contains three image patches, including needle features from three adjacent parallel 

slices. The three patches were normalized and stacked into three color channels of the network 

input. Then we applied the same simulation method to generate the training dataset. The thickness 
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of the slab in the 3D model was expanded from 5 mm to 15 mm to emulate three parallel imaging 

slices without any gap. Misalignment between the needle model and 3D acquisition slab was 

characterized by two additional geometric parameters: inner tilting angle (α2) and pivot point (h) 

within the slab (Figure 4-3a).  

To quantify the range of the additional parameters in the simulation step, similar needle 

obliqueness analysis as in Chapter 3 were performed by using clinical MRI-guided prostate biopsy 

datasets (326 images from 125 cases)129. We found that the misalignment of the image plane with 

the needle feature based on orthogonal images had a median of 3.1° with IQR of 2.6°7. Around 

92% of the cases had misalignment between needle feature and imaging plane of <6°. The passive 

needle features were contained within 1 to 3 slices for each imaging dataset based on the relative 

position between the imaging plane and needle feature axis. Based on these typical ranges of needle 

angles, we can assume that the tilted needle feature would be contained within 3 parallel slices. 

Therefore, we considered 35 representative parameter combinations of α2 = [-6°, -4°, -2°, 0°, 2°, 

4°, 6°] and h = [5, 2.5, 0, -2.5, -5] mm. The physical needle reference was defined with a 3D 

bounding box and the third dimension coordinate can be visualized from the side view of the 3D 

acquisition slab.   

We trained the 3-slice physical needle Mask R-CNN for needle localization using a set of 

2160 simulated images with the same parameters as phantom experiments (θ from -30° to 30°, and 

α1 from 0° to -90°). 10 random choices of different combinations of α2 and h ware selected for 

each imaging plane orientation. Ex vivo tissue images superimposed with these simulation images 

and 5-fold data augmentation was performed to form a training dataset with 10800 images. The 

epoch number was increased to 480 to accommodate the larger training dataset. The network 

parameters were initialized with random weights instead of using any pretrained single-slice 
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physical needle Mask R-CNN model because of the structural differences of the 3-slice network 

and different feature encoding of channel-wise information from input images.   

4.2.9 Three-Slice Physical Needle Mask R-CNN Testing 

We tested the needle localization accuracy of the proposed two-stage framework in ex vivo 

tissue phantoms using 3-parallel-slice MRI. 150 images were collected from experiments to form 

a testing dataset with 25 different needle orientations (Table 4-3). At each needle position, three 

sets of imaging parameters with two different α2 were used to acquire the imaging dataset for 

testing. We compared the accuracy of physical needle localization using the single-slice physical 

needle Mask R-CNN and 3-slice physical needle Mask R-CNN. One of the 3-parallel-slice images 

with the complete needle feature was selected as the input for the single-slice physical needle Mask 

R-CNN. The error metrics were all measured in 3D environment (tip localization error: dxyz; 3D 

orientation difference: dϕ). dxyz was calculated as the Euclidean distance between the estimated 

and reference physical needle tip positions. dϕ was calculated as the orientation difference (angular 

separation) between the estimated and reference physical needle axes in 3D space.  

4.2.10 Physical Needle Localization Error Analysis 

For tip localization error (dxy or dxyz), we considered a 2.5-mm threshold since clinically 

relevant tumors for interventions may have diameters of 5-10 mm56. In addition, the needle tip and 

axis orientation discrepancy between the needle feature and physical needle were manually 

measured by a trained researcher to serve as a baseline to assess the improvement using the 

proposed Mask R-CNN framework. The physical needle localization results using different models 

and the error from the needle feature discrepancy were first compared using a non-parametric 

analysis of variance (ANOVA) (i.e., Kruskal-Wallis test). If significant differences were detected 

by the Kruskal-Wallis test, the medians of the results were compared in a pair-wise fashion using 
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the non-parametric Wilcox signed rank test. In addition, the variances of the results were compared 

using the Brown-Forsythe test. We considered differences with p <0.05 to be significant.  

4.3 Results  

4.3.1 Needle Susceptibility Calibration 

Simulated MR images that contained the needle feature with different rotation and tilting 

angles were compared with the MR images from actual MRI-guided needle insertion experiments 

(Figure. 4-7). The characteristics of the needle feature from simulations closely matched the 

needle feature on experimental images, with one difference being the additional noise seen on 

experimental images. The physical needle position in the coordinates of the experimental MR 

images were determined based on the fiducial marker position. The spatial relationship 

(discrepancy) between the physical needle and the needle feature were almost identical for 

simulated and experimental images. During the calibration process, we found that a needle 

susceptibility value of 190 ppm (corresponding to titanium) achieved close agreement between the 

simulations and experiments for 7 different rotation angles (Figure 4-7). Therefore, we used this 

calibrated susceptibility value for subsequent simulations. Example 3-parallel-slice simulation 

images using this susceptibility value also generated needle features that are in close agreement 

with the MR images from actual experiments (Figure 4-3d-e). 
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Figure 4-7 (a) An example real-time 3T single slice MR image with needle tilting angle (α) of 11.1o 
and rotation angle (θ) of -24o with respect to B0, TE = 1.9 ms, and bandwidth (BW) = 888 Hz/pixel. 
(b) Example simulated image using a 300x300x5 mm3 field-of-view (FOV) with 1024x1024x17 model 
elements, 256 radial readout points, and a 20-gauge needle with the same orientation in (a). The 
images were reconstructed using non-uniform fast Fourier transform (NUFFT) and then cropped to 
a FOV of 75x75 mm2 with image matrix size of 64x64. (c) Calibration results of needle susceptibility 
(190 ppm) showing dxy for seven different needle rotation angles.  

 
4.3.2 Single-Slice Physical Needle Mask R-CNN Training and Validation 

We trained the single-slice physical needle Mask R-CNN using a batch size of 8 on two 

graphics cards (NVIDIA GTX 1080Ti). Generation of the simulated data for training took 10 hours. 

Training with simulated data took about 12 hours and the fine-tuning step (simulated needle 

features combined with tissue image patches) took another 12 hours. Validation was performed 
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with additional simulated data for the network model without fine-tuning. Example results of 

physical needle localization for simulated images in both validation datasets are shown in Figure 

4-8. Results for augmented images with different needle orientations and noise levels showed that 

the physical needle Mask R-CNN achieved needle localization close to the references. Overall, the 

physical needle Mask R-CNN achieved median dxy of 0.29 mm and 0.29 mm, and dθ of 0.34° and 

0.35°, for validation datasets 1 and 2, respectively (Table 4-4). In addition, 68.3% and 81.5% of 

dxy were lower than the simulation model element resolution (0.3 mm), and 94.8% and 92.8% of 

dθ were lower than 1°, for validation datasets 1 and 2, respectively. Mask R-CNN achieved 100% 

physical needle detection rate in both validation datasets.  

 
4.3.3 Single-Slice Physical Needle Mask R-CNN Testing with Gel Phantom Data 

Representative results of physical needle localization using the Mask R-CNN model 

without fine-tuning for gel phantom data are shown in Figure 4-9a-b. The processing time of the 

whole framework was about 200 ms per image, which is suitable for real-time interventional MRI 

applications. The overall results from the gel phantom testing dataset are shown in Table 4-4. Our 

proposed framework successfully localized the physical needle position on the images with 

different sequence parameters, achieving median dxy and dθ of 0.79 mm and 0.76°, respectively. 

Around 80% of the physical needle tip error and 65% of the physical needle axis orientation error 

were less than the pixel size (1.17 mm) and 1°, respectively.  
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Figure 4-8 (a-c) Example single-slice physical needle Mask R-CNN localization results in an 
augmented input image from validation dataset 1 with needle tilting (α) and rotation (θ) angles that 
were not in the training dataset. (d) Example single-slice physical needle Mask R-CNN localization 
results in an augmented input image from validation dataset 2 with needle α and θ that were not in 
the training dataset. Mask R-CNN results are shown in red and the references (cross-section of the 
needle models used in the simulations) are in blue. TE: echo time. BW: readout bandwidth. 
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4.3.4 Single-Slice Physical Needle Mask R-CNN Testing with Ex Vivo Tissue Phantom Data 

Representative results for physical needle localization in ex vivo tissue testing data using 

the fine-tuned single-slice Mask R-CNN model are shown in Figure 4-9c-e. These examples 

showed not only the needle localization accuracy of the framework, but also the improvement of 

the fine-tuned single-slice physical needle Mask R-CNN model compared to the non-fine-tuned 

model. Figure 4-9c shows an example where the fine-tuned model successfully detected the 

physical needle, but the model without fine-tuning failed to detect the needle (Figure 4-10). 

Figure 4-9b shows an example with accurate physical needle tip localization and axis orientation 

estimation using the fine-tuned model. In contrast, the tip localization results for this case had large 

errors (dxy = 5.76 mm) using the model without fine-tuning (Figure 4-10).  

The overall testing results for the two-stage framework using the single-slice physical 

needle Mask R-CNN models without and with fine-tuning are shown in Table 4-4. The framework 

using the non-fine-tuned model achieved median dxy and dθ of 0.94 mm and 0.64°, respectively, 

while the framework using the fine-tuned model reduced the median dxy and dθ to 0.81 mm and 

0.63°, respectively. In addition, the distributions of these results are summarized and compared 

using violin plots (Figure 4-11). Figure 4-11a and Figure 4-11b show dxyz and dθ using the 

proposed framework (without and with fine-tuning) and the discrepancy between the needle 

feature tip/axis orientation and physical needle tip location/axis orientation. There were differences 

in dxy (p = 8x10-78) and dθ (p = 2.7x10-11) among these three sets of results based on a Kruskal-

Wallis test. The pair-wise comparison among 3 sets of results indicated that median and variance 

of dxy are both significantly lower by using the fine-tuned model. There were significant 

differences in the median and variance of dθ between the non-fine-tuned and fine-tuned models 

compared to the discrepancy between needle feature and physical needle axis orientation, but there 
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were no significant differences between the non-fine-tuned and fine-tuned models. More details 

about significance and p value were shown in Figure 4-11.  
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Figure 4-9 (a-b) Example single-slice physical needle Mask R-CNN localization results in two gel 
phantom testing images with different imaging parameters and different needle tilting (α) and 
rotation (θ) angles. (c-e) Example single-slice physical needle Mask R-CNN localization results in 
three ex vivo tissue phantom testing images with different imaging parameters and different needle 
α and θ. The needle tip location (dxy) and axis orientation (dθ) differences compared to the reference 
(measurement during experiments) are reported in each example.  
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Figure 4-10 Comparison of physical needle localization results using the single-slice physical needle 
Mask R-CNN models without and with fine-tuning. (a) Example of much larger physical needle 
localization error using the model without fine-tuning compared to the model with fine-tuning. (b) 
Example of needle detection failure using the model without fine-tuning and success using the model 
with fine-tuning. 
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Figure 4-11 Violin plots of single-slice physical needle (a) tip localization and (b) axis orientation 
results for the ex vivo tissue phantom testing dataset using needle feature localization and the physics-
driven Mask R-CNN model without and with the fine-tuning step. In (a), The red line represents the 
2.5 mm threshold considering clinically relevant tumor sizes of ³5 mm diameter. In the pair-wise 
comparison, p1 value of Wilcoxon signed rank test is on the left and p2 value of Brown–Forsythe test 
is on the right. * indicates Wilcoxon signed rank test with p1 <0.01. ∆ indicates Brown–Forsythe test 
with p2 <0.05.  
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4.3.5 Three- Slice Physical Needle Mask R-CNN Testing with Ex Vivo Tissue Phantom Data 

Overall training time for the 3-slice network was 48 hours. Representative results of 3D 

physical needle localization projected on 2D image slices and an orthogonal side view of the 

estimated physical needle using the single-slice and the 3-slice physical needle Mask R-CNN 

models are shown in Figure 4-11. These results showed accurate physical needle localization in 

3D using the 3-slice model, compared with the reference. Physical needle axis orientation 

difference was reduced in the through-plane direction using the 3-slice model compared with the 

single-slice model. The processing time of the whole framework was about 200 ms per set of 3-

parallel-slice images, which is suitable for real-time interventional MRI applications. The overall 

results are summarized in Table 4-4. The framework using the single-slice model achieved median 

dxyz and dϕ of 2.9 mm and 2.5°, respectively, while the framework using the 3-slice model 

reduced the median dxyz and dϕ to 2.2 mm and 1.2°, respectively.  

The distributions of the results from all testing datasets are summarized and compared 

using violin plots (Figure 4-12). Figure 4-12 show dxyz and dϕ using the proposed framework 

with single-slice and 3-slice models and the discrepancy between the needle feature tip/axis 

orientation and physical needle tip location/axis orientation. There were differences in both dxyz 

(p = 1.1x10-59) and dϕ (2.8x10-28) among these three sets of results based on a Kruskal-Wallis test. 

The pair-wise comparison among three sets of results indicated that dxyz and dϕ were significantly 

lower using the 3-slice model. No significant differences of variance in dxyz were observed from 

any of these pairs. On the other hand, the variance of dϕ was significantly lower by using the 3-

slice model. More details about significance and p values are shown in Figure 4-13. 
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Figure 4-12 Example 3-slice physical needle Mask R-CNN localization results and single-slice 
physical needle Mask R-CNN localization results projected on 2D image coordinate and side view. 
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Figure 4-13 Violin plots of physical needle (a) tip localization and (b) axis orientation results for the 
ex vivo tissue phantom testing dataset with certain range of misalignment between the needle axis 
and image plane orientation (shown in Table 4-3) using needle feature localization and the physics-
driven single-slice and 3-slice Mask R-CNN models. In (a), The red line represents the 2.5 mm 
threshold considering clinically relevant tumor sizes of ³5 mm diameter. In the pair-wise comparison, 
p1 value of Wilcoxon signed rank test is on the left and p2 value of Brown–Forsythe test is on the right. 
* indicates Wilcoxon signed rank test with p1 <0.01. ∆ indicates Brown–Forsythe test with p2 <0.05.  
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Table 4-4 Physical needle localization accuracy using the proposed algorithm in the validation and 
testing datasets (see Table 4-2). Needle tip position errors (dxy or dxyz) and absolute needle axis 
orientation differences (dθ or dϕ) are reported. SD: standard deviation. IQR: interquartile range. 
Success: the physical needle Mask R-CNN detected the physical needle in the image. *Pixel size of 
the simulation model element or the acquired image.  
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4.4 Discussion 

In this study, we developed a new automatic physical needle localization framework for 

MRI-guided percutaneous interventions. The framework included two Mask R-CNN stages. First, 

the needle feature Mask R-CNN provided an initial estimate for the needle position. Next, the 

cropped image patch(es) containing the needle feature was sent to a single-slice or 3-slice physical 

needle Mask R-CNN. Firstly, we established a single-slice model taking a single-slice image as 

input, assuming the imaging plane is closely aligned with the physical needle. Secondly, we 

established a 3-slice model taking 3 parallel and adjacent slices as input, in which the imaging 

plane orientation could be misaligned with the physical needle axis. Both models were trained by 

a substantial set of physics-based simulation images that included realistic needle-induced 

susceptibility features. The cropped image patch helped to avoid false detection results and 

maintained the assumption of a rigid needle segment for the input to the physical needle Mask R-

CNN models. The reference physical needle position was measured using a fiducial marker and 

needle actuator, which achieved stable and repeatable needle placement during the experiments 12. 

Our validation and testing results demonstrated that the proposed framework with single-slice 

model accurately and rapidly estimates the physical needle position using single-slice MRI. The 

3-slice model further reduced the through-plane needle localization error due to misaligned 

imaging plane with physical needle and rapidly estimated the overall 3D physical needle position. 

As part of our framework, we developed an image-based needle susceptibility calibration 

method that compares the discrepancies between the physical needle and needle feature from 

experimental MRI data with the physics-based simulations in different situations. This calibration 

step can improve the understanding of the needle feature characteristics under specific conditions 

and on specific types of MR images. It showed that the discrepancies between needle feature and 
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physical needle varied with different needle orientations and imaging parameters; proper selection 

of the needle susceptibility minimized the differences of the discrepancies (<0.4 mm) across these 

situations and ensured the fidelity of the simulated images for training. By adding noise during 

data augmentation, the simulated images formed a sufficient dataset to train the physical needle 

Mask R-CNN while avoiding the need for expensive MRI experiments and manual annotations. 

The inverse problem of reconstructing a source object (e.g., device) based on its 

corresponding susceptibility map is an ill-posed problem, which may have indeterminate or 

incorrect solutions without additional constraints. Acquiring multiple scans with different imaging 

parameters, image orientations and larger computational resources may be required to obtain a 

reliable solution. Therefore, to determine the source object from its susceptibility-induced image 

features within the stringent time constraint of interventional procedures, we developed a 

supervised deep learning-based approach. Approaches (i.e., DeepQSM, QSMNet) to solve the 

field-to-source inversion problem for tissue susceptibility mapping adapted the CNN structure for 

semantic segmentation (e.g., U-Net). These previous U-Net-based methods aimed to solve for the 

tissue susceptibility map over the entire FOV based on the phase map, but this may not be suitable 

for the physical needle localization problem, which requires local information about the device. 

The instance segmentation network (Mask R-CNN) successfully learned the physical needle 

feature by integrating the bounding box and binary mask. 

Our extended FORECAST method for single-slice physics-based simulation took about 10 

hours and less than 100 Mbytes storage space to generate training data. This strategy was much 

more time-efficient than performing phantom MRI experiments. For model validation, the 

majority (60%-80%) of the physical needle tip localization error (dxy) was less than the simulation 

model element size (0.3 mm) and almost all (>90%) of the axis orientation estimation error (dθ) 



94  

was lower than 1°. This close agreement with the ground truth corroborates the capability of the 

physics-based model to predict the in-plane physical needle location in different situations. In 

addition, our results showed that there is no need to retrain the model by combining the validation 

dataset into the training dataset, which significantly reduced the training time. 

For gel phantom testing of the single-slice model, the proposed technique was applied to 

dynamic images with moderate temporal resolution around 1 sec, which maintained clear depiction 

of the needle feature. This temporal resolution is a reasonable choice since the physical needle 

position is mainly required during the final confirmation phase of the interventional procedure 66, 

when the needle insertion becomes slower and steps are taken to limit physiological motion (e.g., 

during a breath hold). Our gel phantom testing results achieved median dxy (0.66 mm) that was 

close to half of the pixel size (1.17 mm) and median dθ less than 1°. This demonstrates that the 

single-slice model trained by only simulation images can accurately localize the physical needle 

on phantom MR images.  

Ex vivo tissue phantom MR images have realistic noise characteristics and also tissue 

features in the background, which resemble features expected on in vivo interventional MRI 

(Figure 4-9c-e). The statistical comparisons showed that the physical needle tip localization 

accuracy was improved by using the fine-tuned singe-slice model trained by fusing simulated 

needle features with tissue background patches. Even though the overall difference of the accuracy 

is not very large, the percentage of dxy >2.5 mm using the non-fine-tuned model is three times 

larger than the fine-tuned model. The threshold of 2.5 mm is informative, as clinically relevant 

tissue targets for minimally invasive interventions have diameters of 5-10 mm or larger56. 

Therefore, the fine-tuned model has potential to reduce mistargeting during MRI-guided 

interventions, especially for precise maneuvers in smaller targets. Furthermore, the physical needle 
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localization error using the proposed network was lower than the localization error caused by the 

discrepancy between the physical needle and the needle feature. Overall, our results demonstrate 

that our proposed deep learning-based framework using single-slice model is an accurate and fast 

approach (processing time of 200 ms/image) to overcome the discrepancy, thereby achieving 

accurate physical needle localization on MRI. The fine-tuning scheme implemented in our 

framework can be used in future work to adapt it for specific in vivo applications (i.e., fine-tuning 

with additional in vivo datasets relevant for an MRI-guided procedure).  

Our extended FORECAST method for the 3-slice physics-based simulation took about 

three days and 1 Gbyte storage space to generate the training data. Since the input and output of 

the 3-slice model are different from the single-slice model and other Mask R-CNN models for in-

plane object detection and segmentation, no pretrained model was used during the training. Ex vivo 

tissue phantom images for 3-slice model testing considered a specified range of misalignment 

between the imaging plane and physical needle. Statistical comparisons of dxyz and dϕ 

demonstrated that the 3-slice model reduced the through-plane needle localization error compared 

with the single-slice model. Overall, the median 3D physical needle tip localization error was 2.2 

mm and more than 50% of the results were <2.5 mm. This corresponds to 1 to 2 pixels in-plane 

and is less than the 5-mm slice thickness. While this localization performance is not at the subpixel 

level, as we have demonstrated for the case when the imaging plane is aligned with the needle, the 

direct 3D localization accuracy already can be sufficient for certain targeting applications (e.g., 

targets around 10 mm in diameter). If subpixel accuracy is needed, the current 3-slice model can 

provide information for updating the MRI scan plane to realign it with the physical needle during 

MRI-guided procedures using standard manual adjustments or new automated methods131, 

followed by using our single-slice model for physical needle localization.  
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There are limitations in this study. Firstly, we only tested the GRE sequence with 3 different 

sets of imaging parameters that we often use in our research work. The proposed method could be 

applied to different interventional MRI sequences and imaging parameters by adjusting the 

simulation steps or by including the MRI parameters as inputs to the framework. Secondly, in vivo 

interventional MRI datasets were not included to evaluate the proposed technique. Due to 

difficulties of ground truth labeling of the physical needle position on in vivo datasets for training 

and testing, unsupervised or weakly supervised training strategies may be needed. Future work can 

acquire in vivo interventional MRI datasets from well-controlled animal experiments to further 

improve and evaluate our proposed technique.  

4.5 Conclusion 

In summary, we have developed a new physical needle localization framework based on 

physics-driven Mask R-CNN for MRI-guided percutaneous interventions. By calibrating the 

needle susceptibility value, the physics-based simulated needle feature achieved close agreement 

with actual MRI scans of the physical needle. We trained a single-slice physical needle Mask R-

CNN model, in which the imaging plane is perfectly aligned with the needle. The validation results 

showed that the single-slice model uses the 2D passive needle feature on MRI to predict the 

physical needle with accuracy on the order of the model element size. The testing results in ex vivo 

tissue phantoms demonstrated sub-millimeter accuracy of physical needle localization with real-

time processing. In addition, we trained a 3-slice physical needle Mask R-CNN model, in which 

the imaging plane is not aligned with the needle. The testing results in ex vivo tissue phantoms 

demonstrated improved through-plane needle localization accuracy compared with the single-slice 

model. Overall, the proposed framework can help to overcome the discrepancy between the 

passive needle feature and the physical needle during interventional MRI procedures.
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Chapter 5 Summary and Future Directions 

5.1 Dissertation Summary 

MRI-guided percutaneous interventions have advantages of excellent soft tissue contrast 

and absence of ionizing radiation exposure to both physicians and patients to improve needle-

based targeted biopsy and focal therapy. A variety of cancerous lesions invisible in other image 

modalities such as CT and US can be visualized on MRI to provide target visualization for 

procedural guidance during interventions21. Compared to dynamic imaging modalities such as 

CTF, continuous guidance throughout a procedure can be accomplished without radiation using 

real-time MRI. However, the existing workflow of using MRI guidance is challenged by limited 

access to patients inside the scanner and tissue displacement due to physiological motion. 

To overcome these challenges and expand the benefits of MRI guidance to more needle-

based procedures, real-time MRI can be combined with a remote-controlled system to establish a 

real-time workflow for needle manipulation. Accurate target tissue tracking in the abdominal 

region and needle tracking are both critical for this new type of workflow, where MRI-guided 

computer-assisted navigation is a potential solution that does not require additional specialized 

hardware (e.g., optical sensors). However, multiple technical challenges must be addressed: firstly, 

target tracking under respiration motion is undermined by unavoidable system latencies and 

existing temporal prediction techniques were limited by the intrinsic trade-off between tracking 

accuracy and system latency in the conventional target tracking methods; secondly, needle tracking 

based on the passive needle feature is challenged by the signal-void feature variations across 

different MRI parameters and needle orientations; lastly, discrepancies between needle feature on 

MRI and underlying physical needle position could induce additional error for targeting 



98  

procedures. This dissertation developed multiple techniques to resolve these issues and can help 

to improve MRI-guided computer-assisted navigation for percutaneous interventions.  

Chapter 2 first developed an online real-time MRI motion tracking pipeline implemented 

using custom software modules for real-time image reconstruction of GA radial MRI, target 

motion tracking and prediction, and visualization. Calibration of system latency and tracking 

accuracy of the pipeline validated the respective advantages of surrogate-based tracking (lower 

latency) and image-based tracking (lower tracking error). A fusion-based respiratory motion 

tracking and prediction framework was developed using multi-rate Kalman filtering and real-time 

GA radial MRI. The retrospective in vivo results demonstrated that the proposed fusion-based 

method could achieve sub-pixel prediction error of targets during respiratory motion. Thus, this 

framework has the potential to improve the tracking accuracy of tissue targets in mobile organs 

and provide real-time motion information feedback for computer-assisted navigated procedures 

under manual or robotics-assisted control. 

Chapter 3 adapted and trained Mask R-CNN for needle feature detection and segmentation 

on intra-procedural and real-time MR images. By applying an additional needle localization 

algorithm on the Mask R-CNN output, this automatic needle tracking algorithm consistently 

achieved pixel-level spatial accuracy for both needle feature tip localization in the prostate dataset 

and needle feature tracking in the ex vivo tissue dataset. The processing time of this algorithm is 

in real time since no ensemble step or test time augmentation was required. The needle position 

information from the algorithm has the potential to directly improve the accuracy of the needle 

manipulation by physicians in existing MRI-guided biopsy or provide accurate feedback 

information for dynamic robotics-assisted needle control with real-time MRI.  
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Chapter 4 proposed a two-stage Mask R-CNN framework for physical needle localization 

based on the passive needle feature on MRI. The initial validation and evaluation of the single-

slice physical needle model illustrated that the in-plane discrepancies between needle features and 

underlying physical needles could be addressed using Mask R-CNN trained by simulated images. 

Evaluation using ex vivo tissue phantom MR images with a more realistic tissue background 

representing interventional MRI demonstrated sub-millimeter physical needle localization 

accuracy when the needle is perfectly aligned with the imaging plane within real-time processing 

time. Furthermore, the 3-slice physical needle model used in the framework can reduce through-

plane needle localization error and rapidly estimate the overall 3D physical needle position. Both 

models in the framework can achieve physical needle localization in real-time for different 

situations. The physical needle position information obtained from this framework can be 

displayed as a virtual needle in the visual interface during the insertion and confirmation phases 

of needle-based targeting procedures. 

Preliminary versions of the real-time MRI pipeline and computer-assisted navigation 

methods were implemented as a sensing module in an MRI-guided robotic system for adaptive 

tracking control of needle position in targets undergoing one-dimensional respiration induced 

motion10. This can be the basis for a real-time workflow to continuously update the needle path 

without asking patients to hold their breath for insertion steps. The overall procedural time could 

be reduced by eliminating the waiting time needed to reach a consistent respiratory motion state 

to update the needle path during breath-holding141 Manual control of the needle to follow the target 

while avoiding cutting the tissue during free breathing is challenging. Robust and accurate robotic 

control with MRI-guided computer-assisted navigation has the potential to realize this new 

workflow. The updated navigation techniques in this dissertation have the potential to further 
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improve the procedural accuracy and efficiency of such a real-time workflow using the MRI-

guided robotic system.  

Based on the fusion-based respiratory motion prediction framework implemented in a real-

time MRI pipeline, the reduced system latency and improved in-plane target tissue tracking 

accuracy will benefit the motion-adaptive control of needle manipulation with respect to the target 

during respiratory motion, especially under fast or variable breathing patterns. With accurate 

needle feature and physical needle tracking techniques, robotics-assisted needle control relying on 

needle position feedback can be expanded to multi-degree of freedom (DOF), which is essential 

to support procedures in the abdomen. In addition, the proposed needle tracking method may also 

assist in the automatic update of needle guide geometric orientation parameters in the existing step-

and-shoot workflow of MRI-guided procedures, such as in-bore prostate biopsy at UCLA medical 

center and other clinical sites. Furthermore, there are several future directions covered in sections 

5.2 to 5.5 to address the limitations of the current techniques or improve the implementation to 

further explore the clinical impact.  

5.2 Real-Time 3D Motion Prediction Model 

Our proposed fusion-based multi-rate Kalman filter method in Chapter 2 demonstrated 

superior respiratory motion prediction accuracy in one dimension, the dominant superior-inferior 

(SI) direction. This framework can be readily extended to all three dimensions by acquiring more 

imaging planes such as interleaved orthogonal multi-slice real-time MRI5. In addition, measuring 

and providing the whole 3D deformation fields of the abdominal region has advantages to 

simultaneously monitor the deformable target tissue and surrounding critical structures to avoid142. 

However, it may be challenging to track 3D tissue deformation from real-time 2D multi-slice MRI. 

Therefore, a compelling strategy is to create a dynamic model to predict the 3D motion of the 
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essential features. In the training phase, the respiratory motion can be modeled using principal 

component analysis (PCA) of deformation vector fields (DVF) from each motion state143. In the 

training phase, the respiratory motion can be modeled using principal component analysis (PCA) 

of deformation vector fields (DVF) from each motion state144,145. Real-time 2D multi-slice MRI 

can be acquired and registered with the planning image to initialize the DVF. The dynamic model 

is defined as a transformation of DVF(1 to t-1) to DVF(2 to t), where t is the time step. The motion 

state variable, including DVF and motion model, would be processed by an extended Kalman filter 

(EKF). 2D feature motion and 1D navigator signal (i.e., center of k-space signal every TR) can be 

simultaneously measured with different sampling rates and fused to overcome the system latency10. 

5.3 Automatic Real-Time Scan Plane Control for Needle Tracking  

In the automatic needle tracking study (Chapter 3), misalignment between the MRI scan 

plane and needle can cause algorithm failure due to incomplete or missing features. Automatic 

alignment of scan planes with the needle can improve visualization to ensure procedural success 

and improve efficiency. However, existing techniques require additional hardware (e.g., fiber optic 

Bragg grating sensors) to monitor the device for scan plane alignment146,147. Recent studies have 

used deep learning (DL)-based methods to localize anatomical features for automatic cardiac MRI 

scan plane selection148. One possible approach is to develop an automatic method for MRI scan 

plane alignment with the needle using DL-based needle localization. In a preliminary study, I 

implemented a scan plane control (SPC) software module on an external workstation to 

automatically adjust and align the scan plane of the imaging sequence by leveraging accurate 

needle localization information obtained from the passive needle feature using our needle tracking 

Mask R-CNN (Figure 5-1)131. The scan plane alignment with a needle can be achieved using this 
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module by localizing the needle feature on an orthogonal image. An initial workflow is proposed 

to update the imaging plane on the final plane scan (Figure 5-2).  

 

Figure 5-1 The scan plane control (SPC) module used needle localization results from the Mask R-
CNN algorithm to automatically align the MRI scan plane with the needle. 

 
 

 

Figure 5-2 The workflow for automatic MRI scan plane alignment with the needle using Mask R-
CNN and the scan plane control (SPC) module. (I) An initial plane was manually selected based on 
the needle feature at the entry point on 3-plane localizer images. (II-IV) Scans 1-3 automatically 
started using the plane selection from the previous step. Mask R-CNN needle localization results were 
used to automatically select a new plane that aligned with the needle. 
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Figure 5-3 The needle feature at the entry point and after insertion are displayed for the initial plane. 
The incomplete needle feature after insertion was caused by misalignment between the initial plane 
with the needle trajectory. Orientation difference (dθ) and Hausdorff distance (HD) are 19.2° and 
13.9 mm. The reference needle was extracted by segmenting the needle feature on a high-resolution 
3D confirmation scan. (b) After executing the proposed automated workflow, the final plane is 
aligned with the needle and the complete needle feature is visible. dθ and HD are 1.8° and 1.8 mm. 

 
Accurate scan plane alignment results of 1-DOF needle insertion experiments (Figure 5-

3) demonstrated its potential to automatically update the image plane for each confirmation image 

of the step-and-shoot workflow. In future work, the software pipeline within the module can be 

modified to reduce both communication and processing time to fulfill the requirement of 

continuous scan plane alignment with a needle in an interactive real-time MRI sequence. 

5.4 Improvements for 3D Physical Needle Localization  

In the proposed physical needle localization framework based on physics-driven Mask R-

CNN (Chapter 4), although the 3-slice model significantly reduced the through-plane physical 

needle localization error, the overall accuracy of the 3D physical needle localization was not yet 

at the level of the sub-pixel 2D localization results from the single-slice model for perfectly aligned 

imaging planes. Therefore, improving the current network may require a weighting factor to 



104  

emphasize features on a specific channel location that is more representative of spatial information 

in the through-plane direction. One possible approach is designing a new spatial-channel attention 

to exploring spatial and channel interdependencies149 to improve the learning of through-plane 

needle position based on passive needle feature distributed on each imaging plane. 

5.5 Visual Software Interface 

To integrate all these technical developments of MRI-guided computer-assisted navigation 

to achieve accurate and time-efficient percutaneous interventions, a visual software interface is 

necessary to display tissue and needle tracking results for physicians. An example (Figure 5-4) 

shows the needle visualization combined with (a) oblique axial intra-procedural MRI with needle 

insertion and (b) axial pre-procedural MRI without the needle in the 3D environment. The 

visualization node implemented in the 3D Slicer graphical interface needs to be augmented with a 

real-time MRI display and interactive graphical toolbox42. This visual interface will become a 

pivotal component to improve the user experience of physicians as the full system proceeds 

through phantom or pre-clinical evaluation in the future.  

 

Figure 5-4 (a) Needle model (blue) integrated with pre-procedural prostate MRI. (b) Needle model (blue) 
integrated with intra-procedural prostate MRI in the display interface.  
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5.6 Conclusion 

With the improved respiratory motion prediction and needle tracking algorithms, the new 

computer-assisted navigation techniques developed in this dissertation can extract accurate tissue 

and instrument positions from MRI in real time and have the potential to realize new workflows 

for accurate and efficient MRI-guided needle-based interventional procedures. Furthermore, a 

combination of these computer-assisted navigation methods with a real-time MRI pipeline has 

been established as a platform to further assist the dynamic procedural guidance for moving targets. 

The improved targeting accuracy during dynamic guidance will be essential to realize and expand 

the clinical value of MRI-guided percutaneous interventions.
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Appendix 

The Kalman filter150 recursively solves a linear problem for stochastic estimation of an 

underlying state in a dynamic system, taking into consideration the noise in the state transition and 

measurement processes. For respiratory motion state prediction, a state space model is constructed 

based on the discretized-time dynamic system of respiratory motion and a common linear 

measurement system. F and H denote the linear matrix form of the state transition function and 

the measurement function, respectively. t denotes the discretized time step index in the dynamic 

model, x denotes the unknown true motion state, and y denotes the motion state measurement. The 

fundamental assumption of using the Kalman filter to estimate the true motion state is that the 

noise of the transition process model w and the noise of the measurement model v have Gaussian 

distribution with zero mean and covariance (Q, R), while the state space variable is also a Gaussian 

random variable with mean of 𝑥̅ and covariance of P: 

Equation A-1 

𝑥(𝑡) = 𝐹𝑥(𝑡 − 1) + 𝑤(𝑡)~𝒩(0, 𝑄(𝑡)) 

Equation A-2 

𝑦(𝑡) = 𝐻𝑥(𝑡) + 𝑣(𝑡)~𝒩(0, 𝑅(𝑡)) 

The one-step update for the estimated mean of the motion state based on the state transition model 

and previous estimation 𝑥̅(𝑡|𝑡 − 1)	is denoted as 𝑥̅(𝑡|𝑡)	and the associated covariance 𝑃(𝑡|𝑡 − 1) 

is also updated: 

Equation A-3 

𝑥̅(𝑡|𝑡 − 1) = 𝐹𝑥̅(𝑡 − 1|𝑡 − 1) 

Equation A-4 

𝑃(𝑡|𝑡 − 1) = 𝐹𝑃(𝑡 − 1|𝑡 − 1)𝐹/ + 𝑄(𝑡 − 1) 
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The linear solution to minimize mean squared error (MSE) of the estimation is described in the 

following equation, where z denotes the motion tracking measurement:  

Equation A-5 

𝒙1(𝒕|𝒕) = 𝒙1(𝒕|𝒕 − 𝟏) + 𝑲(𝒕)(𝒛(𝒕) − 𝑯𝒙1(𝒕|𝒕 − 𝟏)) 

Equation A-6 

𝑃(𝑡|𝑡) = (𝐼 − 𝐾(𝑡)𝐻)𝑃(𝑡|𝑡 − 1) 

K(t+1) is the Kalman gain, which is updated at each time step to maximize the likelihood that the 

MSE of the estimated mean approaches zero. 

Equation A-7 

𝐾(𝑡) = 	𝑃(𝑡|𝑡 − 1)𝐻/(𝑃(𝑡|𝑡 − 1)𝐻𝑃(𝑡|𝑡 − 1)/ + 𝑅(𝑡))(+ 
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