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In short, YES 

(sometimes) 



Outline 
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• Item Response Theory 

• Rasch Models 
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Total Scores as Quantifications 
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Let Xi be a variable, often an item on a scale.   

We concentrate on binary items where Xi takes  

on only 2 values, such as “correct” vs “incorrect”  

or “endorsed” vs “not endorsed”. The values 1  

and 0 will be used to denote these values 

 

Let XT be the sum or total score across a set  

of p items 

 

Does XT give the best possible quantification of  

the item responses? My goal is to describe  

methods that improve on XT via Y=f(X1,X2,…,Xp)  

1 2 ...T pX X X X   



What is a “best possible” quantification? 

1. One where differences between two Y values 

at different magnitudes of Y have the same 

meaning. This is an “interval” –level scale 
 

2. One that permits intended statistical operations. 

This may involve linear transformations as well 

as mean and variance comparisons and 

correlational analysis 
 

Requiring, achieving, and evaluating #1 is contro- 

versial (see e.g., Velleman & Wilkinson, 1993) 
 

We will require #2, but aim to achieve #1 
5 



A Total Score XT Can be Acceptable 

 
when XT has a distribution that is consistent  

with the theory of the attribute being measured 

 

Usually, this is when XT  is normally distributed. 

Then relations with other normal variables 

will all be linear (assuming mv normality) and 

standard statistical analyses are meaningful 
 

Even if XT  is really ordinal, “if it walks like a 

duck, swims like a duck, and quacks like a 

duck..,” i.e., acts interval-like, meaningful 

conclusions are possible 
6 



If XT Is Not Normal: 

Normalizing Transformations 

Two main kinds: 

 

1. Apply an explicit nonlinear function  

Y= f(XT) so that the new score Y is normal 
 

2. Refer XT to a table of the normal (0,1)  

distribution to get a normal z score 



Normalizing Transformations in SAS 
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Normalizing Transformation via 

the Normal Curve 

 
1. Get the frequency distribution of XT , say f(x) 

2. Smooth f(x) if desired 

3. Get the cumulative frequency distribution F(x)  

4. Find the percentile ranks P(x) of the F(x) 

5. Using a table/calculator for N(0,1), do an 

inverse normal transformation of P(x) to get 

 z-scores  

6. Do a linear transform of the z-scores to get 

another mean and SD if desired 

9 



Red area is 

cumulative 

P(x)=.975 

 

z-value is 

1.96 
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http://www.stat.tamu.edu/~west/applets/normaldemo.html 



11 



If we accept that probabilities can be  

transformed to z-scores 
 

Then we obtain scores that we can treat as 

interval: 

• Linear transformations are allowed – they 

just change the mean and SD 
 

• A fixed difference between 2 z-scores has 

the same meaning everywhere along the  

scale* 

 

*Some theorists may also require empirical 

verification of equal meaning of differences 
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How can such a transformation mislead? 

If the “true” underlying distribution is not  

the one we use, e.g., if it is not continuous 

and/or not normal 

 

• It might be an ordered categorical 

distribution  

o Piaget’s concept of conservation 

(e.g. quantity) in children 

o “Stages” of Alzheimer’s progression 

• It might be a skewed distribution, e.g. 

depression in the U.S. population  

 13 



Application to Binary Data 

The data must be unidimensional in some  

well-defined manner, and the number of items 

must be large enough 

• If data are Bentler-Guttman scalable (defined 

below), the previous theory can be applied 

• If the data fits a unidimensional Item  

Response Theory (IRT) model, the previous  

theory can be applied 

• If the data fits a Rasch IRT model, the  

previous theory is not necessary but an 

interval scale is obtained 
14 



Guttman (1944) Scale 

00000 

00001 

00011 

00011 

00011 

00111 

00111 

00111 

01111 

11111 
 

• Example of 10 subjects, 5 items 

• “1” means correct (keyed) response 

• Items ordered from hard to easy 

 

Key point: If person gets a “hard” item 

right, he/she gets all easier items right 

 

Largely abandoned – no clear 

statistical estimation and testing 

machinery 
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Absolute Simplex Theory (AST) 
(Bentler, 1971) 

• An absolute simplex is an n by p data matrix 

 (n>p) that can be generated completely  

from one parameter per item  

• It is a parameterization and estimation  

machinery for Guttman and near-Guttman data 

• Approach used today is based on recent  

developments, including structural equation 

modeling (Bentler, 2009, 2011) 
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Moment Matrix: Average Sums of Squares 

and Cross-Products (SSCP Matrix) 

Based on means and covariances, in the  

population this is equivalent to:  

m   

In a sample it is:  

mS S XX  
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 Under AST,     is a patterned matrix. With  
m

1 2 3
...   

1 1 1 1 1

1 2 2 2 2

1 2 3 3 3

1 2 3 4 4

1 2 3 4 5

m

    

    

    

    

    

 
 
 

   
 
 
  

• The entire matrix is a function of one  

parameter per item 

• Items can be ordered by this matrix 

• Structural equation modeling fits     via   
m

Sm

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.1 .1 .1 .1 .1

.1 .2 .2 .2 .2

.1 .2 .5 .5 .5

.1 .2 .5 .8 .8

.1 .2 .5 .8 .9

m
S

 
 
 

  
 
 
  

For the 10x5 binary data given earlier,     is  
m

S

  .1 .2 .5 .8 .9X 

The means and SSCP can be fit by 1 par./item 
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Example Moment Matrix     : 
Male Sexual Behavior (N=175) 

        V1     V2     V3     V4    V5     V6    V7     V8      

V1   .891  .771  .697  .583  .566  .497  .394  .377 

V2   .771  .789  .686  .577  .566  .491  .377  .377 

V3   .697  .686  .709  .571  .531  .497  .383  .377 

V4   .583  .577  .571  .594  .526  .463  .371  .383 

V5   .566  .566  .531  .526  .577  .429  .360  .366 

V6   .497  .491  .497  .463  .429  .509  .366  .366  

V7   .394  .377  .383  .371  .360  .366  .411  .337  

V8   .377  .377  .377  .383  .366  .366  .337  .389 

m
S

20 



There are many ways to fit the absolute simplex 

model to data. Here are four: 

 

1. A symmetric matrix with equalities 

2.                    where T is lower triangular  

with 1’s and 

3. A simplex model with variances  

 

 

 
 

4. A regression model (explained later) 
 

Model extensions allow errors, longer lags, etc.   

 

 

 

m diff
TD T


 

1 1
{ ,...( ),...}

diff i i
D diag


  


 

diff
D


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Estimation Requires Items to Be Ordered 

1 1 1 1 1

1 2 2 2 2

1 2 3 3 3

1 2 3 4 4

1 2 3 4 5

m

    

    

    

    

    

 
 
 

   
 
 
  

• Column sums order 

• Column SDs  order 

• In practice, use column sums and SDs of the 

sample SSCP (moment) matrix 

• Rank these separately, and average  

• Use average ranks; break ties using means 

• Diag (     ) is inflated in quasi-simplex, so order 

items by off-diagonal entries only, e.g., ignore 

D in    
22 

m diffTD T D
  

m



Ordered Total Scores Generate the CDF 

00000 

00001 

00011 

00011 

00011 

00111 

00111 

00111 

01111 

11111 

Motivation: Note that  

% of subjects below a pattern 

= % of subjects below total score 
 

Pattern   Score XT  % Below   CDF 

11111 5  90   1.00 

01111 4  80     .90 

00111 3  50     .80 

00011 2  20     .50 

00001 1  10     .20 

00000 0    0     .10 
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Person Ordering by XT is Free of Item 

Weights – Any Weighted Sum is OK 
 

Let wi > 0 in the sum 

 

11111      XT  =w1+w2+w3+w4+w5 

01111            =      w2+w3+w4+w5 

00111            =            w3+w4+w5   

00011            =                  w4+w5 

00001            =                        w5 

00000            =                         0 
 

The % of subjects below a pattern = % below a 

total score, no matter what the item weighting 

1 1 2 2 ...T p pX w X w X w X   



• Since XT completely orders the distribution  

of a unidimensional absolute simplex, it can  

be used to get the empirical cumulative 

distribution function (CDF) of the trait  

 

• Given the CDF, we can use the inverse normal 

distribution function to compute z-scores  

 

• This produces an interval scale if we are correct 

that the trait is normally distributed  

 

• In real data, this is an approximation. But the  

empirical CDF  true CDF as n gets large 

Data-based Interval Scale Scores 

25 



Regression Estimation of Absolute Simplex 
 

Let    = proportion below (=%below/100) 

 x’ = (x1, x2, …, xp)  

 be a person’s item responses to p items 

 ordered 1,…,p from easy to hard 

Then under the model 

 

 

where                and                     predicts    

exactly with R2 = 1.0. Adding items with         , 

   becomes continuous as          . If also 

then    approaches the population trait CDF.     

   

1 1 2 2
...

p p
x x x      

1 1
1  

1i i i
  


 



k


p n



0
i

 
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The probabilities      are then transformed to a 

normal z-statistic, the interval score of interest 
 

From this viewpoint*,     and z are formative  

measures -- they arise from the item responses.  
 

In contrast, most extant measures are best con- 

sidered reflective measures, generated by a 

latent trait or factor.  
 

See Treiblmaier, Bentler, & Mair (2011) 
 

*From an IRT viewpoint, though, Guttman scales can  

also be considered as reflective. 







• Order XT . Compute pk, the prop. below XTk , 

for each person k=1,…,n. Run the regression  

  
 

• Possibly, restrict           and               . From 

compute     . The validity of the model is 

given by     .   
 

• If the model is valid, compute 

as the model-based prop. below, get its  

CDF and obtain     scores   

ˆ
i



ˆ
i



2R̂

Absolute Simplex Interval Scores in Practice 

1
ˆˆ p

ik i ki
x 

ˆ
k

z

1
p
ik i ki k

p x  

1
ˆ  p

i i
  ˆ 0

i
 

28 



Example: Male Stature (Height) in cm (n= 1774) 

15 artificial Guttman items created from national data. 

AST model fitted, z-scores obtained, and height predicted. 

Extreme binary data was all 1’s, or all 0’s – no Bayes 

29 



Example: Male Sexual Behavior 
21 parameter AST model – Distribution free, no z 
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Mimic Model Estimation 

31 

• With enough items, items can be grouped into 

sets, each with a full range of item content, item 

means, and with its own total score X1T, X2T, … 

• The several X1T, X2T, … can yield several propor- 

tions below, such as p1T, p2T, … 

• A latent factor F can be created and a mimic 

model used in place of regression estimation 
       p1T 
 

       p2T                                
 

       p3T 

           … 

 

 

1
p
i i ki k

F x  



Logistic Regression 

We have been linearly predicting a limited 

dependent variable. Everyone recommends 

logistic regression instead, bounding the DV. 

32 

www.appstate.edu/ 

~whiteheadjc/service/ 

logit/logit.gif 



 
 

Reminder: If          ,                  
 

Such a function is used in item response 

theory (IRT, Embretson & Reise, 2000). One 

curve is given for each item, say item i. It is 

usually called an item response function or 

item characteristic curve.  
 

X relates to an underlying latent trait and L(X) 

is probability of a “1” (correct, yes, or other 

keyed response). (It is not a CDF, as before) 

 

1 exp( )
( )

1 1 1 exp( )

X

X X

e X
L X

e e X
  

  

xy e ln( )x y
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In IRT, X is often taken as a linear function of 

more basic parameters of item i so that 

 

 

where Pi is the probability of a person getting item 

i correct (response “1” vs. “0”).  
 

We use a simple model for X, based on 2  

parameters 

 
 

ai is a discrimination parameter, bi is a difficulty  

parameter, and     is a latent trait. We can think 

of    as a factor of factor analysis. 

 ( )i i i iX a b a d    



( )  =( 1| other parameters)i iL X P P 


34 



exp( )
( )

1 1 exp( )

X

X

e X
L X

e X
 

 
This means that 

becomes 
exp[ ( )]

( )
1 exp[ ( )]

i i
i

i i

a b
P

a b









 

And thus  
( )

ln ( )
1 ( )

i
i i i i

i

P
a b a d

P


 



 
    

 

The logit (log-odds) of getting item i correct  

is a linear function of the trait level. It also 

depends on the 2 item features of discrimination 

and difficulty – a 2PL model.  
35 



An item response function for one 2PL item, 

showing where a and b parameters are read 

36 

Ainsworth: www.csun.edu/~ata20315/psy427/Topic08_IntroIRT.ppt 



Four 2PL item curves. The orange item is hardest 

(largest “b” parameter). The aqua item has the 

largest slope (“a” parameter) 

37 

from EQSIRT 



Here is an example of 3 items with 3 different “a”  

parameters. The green item is easiest at low ability,  

but it is hardest at high ability – a critique of 2PL 

38 
http://jalt.org/test/sic_5.htm 



If ai = 1, we get the 1PL or the Rasch (1960) Model  

exp( )
( )

1 exp( )

i
i

i

b
P

b









 

If a person has 

         , their  

probability 

of a “1” (keyed 

direction) is 

greater than .5 

 

ib 
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Partchev: VisualIRT.pdf 

 



So, IRT takes 0-1 item responses and 

explains those responses in terms of a 

latent trait (“math ability”, “extraversion,” 

etc.) and some item features. Of course 

there are more complicated models, e.g., 

they may have a “guessing” parameter, or 

deal with multicategory ordinal items, etc. 
 

In practice, the parameters of the model 

have to be estimated, and perhaps also the 

latent trait scores    for a set of persons 
 

The model also has to fit real data 


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Does IRT yield Interval Scores? 

If the model is valid, and (if necessary) the trait  

has the assumed distribution, I would say “yes”.  

Linear transformations make sense, and a fixed  

difference between two values of     has the  

same meaning along the continuum   



There a many additional features to IRT, such 

as item and test information. Those aspects 

exceed our limited goal here, which is to ask:  

41 



Others disagree.  

 

In the 2PL, “with discrimination varying from item  

to item, the very meaning of the construct  

changes from point to point on the dimension… 

Measurement in its true sense has not been  

achieved” (Salzberger, 2002) 

 

The Rasch model does not have these problems 

42 



Theorems exist for the Rasch model that 

prove interval scale status: 

 

“…the parameters     and     (b) are unique  

up to positive linear transformations with a 

common multiplicative constant i.e., they 

have interval scale properties with a 

common unit of measurement” (Fischer,  

1995, p. 21) 
 

No assumption on the distribution of the 

trait needs to be made (but is made for 

a typical estimation method)  

 
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Conclusions 

• If an absolute simplex is a relevant model for 

binary data; or  
 

• If assumptions such as unidimensionality, 

local independence (not reviewed here), etc. 

of item response theory or Rasch are met;  

and 
 

• If the chosen model fits empirical data (by 

tests with high power; by fit indices) 
 

Then it seems to me that interval-level scores 

can be obtained from binary responses. 
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