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ARTICLE

A novel SARS-CoV-2 related coronavirus in bats
from Cambodia
Deborah Delaune 1,2,3,14, Vibol Hul 4,5,14, Erik A. Karlsson 4,14, Alexandre Hassanin 6, Tey Putita Ou 4,

Artem Baidaliuk 1, Fabiana Gámbaro1,7, Matthieu Prot1, Vuong Tan Tu6,13, Sokha Chea8, Lucy Keatts9,10,

Jonna Mazet10, Christine K. Johnson10, Philippe Buchy 4,11, Philippe Dussart 4,12, Tracey Goldstein 10,

Etienne Simon-Lorière 1,15✉ & Veasna Duong 4,15✉

Knowledge of the origin and reservoir of the coronavirus responsible for the ongoing COVID-

19 pandemic is still fragmentary. To date, the closest relatives to SARS-CoV-2 have been

detected in Rhinolophus bats sampled in the Yunnan province, China. Here we describe the

identification of SARS-CoV-2 related coronaviruses in two Rhinolophus shameli bats sampled

in Cambodia in 2010. Metagenomic sequencing identifies nearly identical viruses sharing

92.6% nucleotide identity with SARS-CoV-2. Most genomic regions are closely related to

SARS-CoV-2, with the exception of a region of the spike, which is not compatible with human

ACE2-mediated entry. The discovery of these viruses in a bat species not found in China

indicates that SARS-CoV-2 related viruses have a much wider geographic distribution than

previously reported, and suggests that Southeast Asia represents a key area to consider for

future surveillance for coronaviruses.
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Over a year has passed since the emergence of Severe Acute
Respiratory Syndrome coronavirus 2 (SARS-CoV-2)1,
responsible for the ongoing coronavirus disease 2019

(COVID-19) pandemic. However, information on the origin,
reservoir, diversity, and extent of circulation of ancestors to
SARS-CoV-2 remains scarce. Horseshoe bats (genus Rhinolo-
phus) are believed to be the main natural reservoir of SARS-
related coronaviruses also named Sarbecoviruses2. Indeed, a high
diversity of coronavirus species have been found in Rhinolophus
bats collected in several provinces of China3. To date, the closest
relatives to SARS-CoV-2 were identified from horseshoe bats
sampled in the Yunnan province, southern China1,4,5. RaTG13
was sequenced from a Rhinolophus affinis bat in 2013, RmYN02
from a Rhinolophus malayanus bat in 2019, and RpYN06 from a
Rhinolophus pusillus in 2020. Two viruses were also detected in
Sunda pangolins (Manis javanica) seized in two provinces of
southern China6. More distant and highly mosaic recombinant
viruses were also sampled from bats in the Zhejiang province, in
eastern China in 2015 and 20177. Southeast Asia is considered a
hotspot for emerging diseases8. More than 25% of the world’s bat
diversity is found there9, and a close relative of SARS-CoV-2 was
identified in bats captured in a cave in Thailand in June 202010.
In this work we report the identification and characterization of
two coronaviruses closely related to SARS-CoV-2 in bats sampled
in Cambodia in 2010, indicating that this viral lineage circulates
in a much wider geographic area than previous reported.

Results
Testing of archived samples. Following the emergence of
COVID-19, to search for putative SARS-CoV-2-like betacor-
onaviruses (betaCoVs) in Cambodia, 430 archived samples from
six bat families and two carnivoran mammal families, including
162 oral swabs and 268 rectal swabs, were retrospectively tested
with a pan-coronavirus (pan-CoV) hemi-nested RT-PCR11

(Supplementary Table 1). Sixteen rectal swabs out of 430 (3.72%)
samples tested positive for CoV by pan-CoV hemi-nested PCR.
Eleven were classified as alphacoronaviruses and five as betaCoV.
Two of the five betaCoV samples further tested positive using a
RT-qPCR targeting the RdRp gene of sarbecoviruses12. Both
samples came from rectal swabs of Shamel’s horseshoe bats
(Rhinolophus shameli) sampled in December 2010 in the Steung
Treng province in Cambodia. Oral swabs from these same R.
shameli bats tested negative for the presence of betaCoV RNA,
despite the high proportion of reads matching the coronavirus
(23%) in the rectal swab of RshSTT200.

Phylogenetic characterization of RshSTT182 and RshSTT200.
RNA samples were then processed for next-generation metage-
nomic sequencing, using a ribosomal RNA depletion approach
and randomly primed cDNA synthesis13. Reads assembly
reconstructed two nearly identical coronavirus genomes, named
BetaCoV/ Cambodia/RshSTT182/2010 (RshSTT182) and Beta-
CoV/Cambodia/RshSTT200/2010 (RshSTT200), respectively. The
two sequences are closely related to SARS-CoV-2, exhibiting
92.6% nucleotide identity across the genome (Supplementary
Table 2) and identical genomic organization. Phylogenetic ana-
lysis using full genome sequences shows that RshSTT182 and
RshSTT200 represent a sublineage of SARS-CoV-2 related viru-
ses, despite the geographic distance of isolation (Fig. 1). Genetic
similarity with SARS-CoV-2 is maintained across the genome,
with the exception of a portion corresponding to the spike N
terminal domain (NTD; Fig. 2 and Supplementary Fig. 1). In
several sections of the genome, including the region spanning

nsp4 to nsp8 within orf1a, RshSTT182, and RshSTT200 are
genetically closer to SARS-CoV-2 than any other closely related
viruses discovered to date. Similarity is further evidenced when
inferring phylogeny based on the sequence coding for these
proteins.

Extensive evidence exists on numerous recombination events
in the evolutionary history of the sarbecoviruses14–16. Consistent
with this, we found that both RshSTT182 and RshSTT200 are also
mosaic viruses (Fig. 2 and Supplementary Fig. 1); however, most
regions identified as recombinant in origin appear to have
involved close relatives within the SARS-CoV-2 sublineage. Only
a region encompassing the Spike N terminal domain (NTD) is
closer to more distantly related betaCoVs. In all other regions of
the genome, the viruses detected in Cambodia consistently
branch as a sister clade to SARS-CoV-2 and RaTG13, with minor
swaps in the subtree topology. Interestingly, both regions showing
high similarity to SARS-CoV-2 (nsp4 to 8 within orf1a and
orf8) overlap with regions identified as recombinant. All these
elements suggest a co-circulation of ancestors to these viral
sublineages with both a wider geographic area and more distinct
bat species than those previously identified. Of note, the current
geographic distribution of R. shameli bats does not include China
(Supplementary Figs. 2 and 3)17. However, the distributions of R.
affinis, R. pusillus, and R. malayanus overlap with R. shameli
distribution area in Southeast Asia, and extend into China,
including the Yunnan province where the other viruses closely
related to SARS-CoV-2 were detected. R. affinis and R. malayanus
bats were concomitantly captured in the same northern karst
region where these R. shameli bats were sampled in 2010, and
transmission of coronaviruses is common among Rhinolophus
species, especially when co-roosting in the same cave18,19. Finally,
the haplotype network of R. shameli CO1 sequences shows a
typical star-like pattern, suggesting that populations of R. shameli
found between northern Cambodia and northern Laos are not
genetically isolated20.

Analysis of RshSTT200 receptor binding domain and function.
Further risk assessment is needed to understand the host range
(including humans) and pathogenesis associated with this SARS-
CoV-2 sublineage. Homology modeling suggests that the external
subdomain of the spike receptor binding domain (RBD) structure
is highly similar to SARS-CoV-2 (Fig. 3a). We note the short-
ening of a loop at the beginning of the receptor binding motif and
the presence of a conserved disulfide bond. Interestingly, five of
the six amino acid residues reported to be major determinants of
efficient receptor binding of SARS-CoV-2 to the human
angiotensin-converting enzyme 2 (hACE2) receptor21 are con-
served. However, pseudoviral particles expressing the
RshSTT200 spike were not able to infect HEK293T cells expres-
sing hACE2 (Fig. 3c), while they were able to infect HEK293T
expressing R. shameli ACE2 (RshACE2). The HEK293T cells
expressing RshACE2 also allowed entry of pseudoviral particles
expressing the SARS-CoV-2 spike (Fig. 3d) although to a lesser
extent than hACE2, and in accordance with its reported wide
tropism22. Finally, the poly-basic (furin) site present in SARS-
CoV-2 is absent in both RshSTT182 and RshSTT200.

Discussion
The data presented here further indicate that SARS-CoV-2 rela-
ted viruses have a much wider geographic distribution
than previously understood, and likely circulate via multiple
Rhinolophus species. Our current understanding of the geo-
graphic distribution of the SARS-CoV and SARS-CoV-2
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lineages14 possibly reflects a lack of sampling in Southeast Asia,
or at least across the Greater Mekong Subregion, which encom-
passes Myanmar, Laos, Thailand, Cambodia and Vietnam, as well
as the Yunnan and Guanxi provinces of China, linking the
sampling area of the closest viruses to SARS-CoV-2 identified to
date. Finally, pangolins, as well as members of order Carnivora,
especially the Viverridae5, Mustelidae6, and Felidae7 families are
readily susceptible to SARS-CoV-2 infection, might represent
intermediary hosts for transmission to humans, and should not be
ignored in future surveillance efforts in the region. Viruses of the
SARS-CoV-2 sublineage, with one exhibiting strong sequence
similarity to SARS-CoV-2 in the RBD, were recently detected in
distinct groups of pangolins seized during anti-smuggling opera-
tions in southeast China6. While it is not possible to know where
these animals became infected, it is important to note that
the natural geographic range of the pangolin species involved
(Manis javanica) also corresponds to Southeast Asia and not China.

Southeast Asia, which hosts a high diversity of wildlife and
where exists extensive trade in and human contact with wild hosts
of SARS-like coronaviruses, may represent an area to consider in
the ongoing search for the origins of SARS-CoV-223, and cer-
tainly in broader coronavirus surveillance efforts. The region is
undergoing dramatic land-use changes such as infrastructure
development, urban development, and agricultural expansion,
that can increase contacts between bats, other wildlife, and
humans. Continued and expanded surveillance of bats and other
key wild animals in Southeast Asia is thus a crucial component of
future pandemic preparedness and prevention.

Methods
Ethics statement. The study was approved by the General Directorate of Animal
Health and Production and Forest Administration department of the Ministry of
Agriculture Forestry and Fisheries in Cambodia. Sampling was conducted under a
University of California, Davis Institutional Animal Care and Use Committee
approved protocol (UC Davis IACUC Protocol No. 19300). The bat capture and
sampling in 2010 was authorized by UNESCO and the National Authority of Preah
Vihear.

Sampling. Testing was performed on archived samples from several programs and
field missions (Supplementary Table 1). In 2010, the Muséum national d’Histoire
naturelle (MNHN, Paris, France) was mandated by UNESCO and the National
Authority of Preah Vihear to conduct a mammal survey in northern Cambodia.
During this mission, bats were captured using mist nets and harp traps in two
provinces, Preah Vihear and Ratanakiri, to compare bat diversity on the two sides
of the Mekong River. One site of bat capture was later identified using GPS
coordinates to in fact be a cave in Stung Treng province, close to the border of
Preah Vihear province. Bats were morphologically identified at the species level by
AH and VTT.

More recent sampling efforts were supported by the USAID-funded PREDICT
project, which aimed to strengthen global capacity for detection and discovery of
viruses with pandemic potential that can move between animals and people. From
2012 to 2018, samples from bats and carnivorans were collected from free-ranging
animals, private animal collection, restaurant, or hunted animals in Battambang,
Kampong Cham, Mondulkiri, Preah Vihear, Pursat, Ratanakiri, and Stung Treng.
Mist nets were used to catch free-ranging bats. Oral and rectal swabs were collected
from live animals which were released immediately after sampling.

The samples from these sampling missions were stored in viral transport
medium solution containing tryptose phosphate broth 2.95%, 145 mM NaCl, 5%
gelatin, 54 mM amphotericin B, 106 U penicillin-streptomycin per liter, 80 mg
gentamycin per liter (Sigma-Aldrich) and were held in liquid nitrogen in dewars
for transport to the Institut Pasteur du Cambodge where they were stored at
−80 °C prior to testing.
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Fig. 1 Phylogenetic analysis of SARS-CoV-2 and representative sarbecoviruses and geographical context. a Maximum likelihood phylogeny of the
subgenus Sarbecovirus (genus Betacoronavirus; n= 39) estimated from complete genome sequences using IQ-TREE and 1000 replicates. The coronaviruses
of the SARS-CoV-2 lineage are color coded by country of sampling as on the map. In orange, Cambodia, light orange, Thailand and blue, China. Taxa names
include the isolate name, country and province of sampling, and host. The scientific names of the hosts are abbreviated as follows: Bats: R. affinis,
Rhinolophus affinis; R. sinicus, Rhinolophus sinicus; R. ferrumequinum, Rhinolophus ferrumequinum; R. malayanus, Rhinolophus malayanus; R. acuminatus, Rhinolophus
acuminatus; C. plicata, Chaerephon plicata; R. pusillus, Rhinolophus pusillus; R. macrotis, Rhinolophus macrotis; R. monoceros, Rhinolophus monoceros; R. cornutus,
Rhinolophus cornutus; Pangolin: M_javanica, Manis javanica and human: H. sapiens, Homo sapiens. A maximum clade credibility tree is available in
Supplementary Fig. 3. b map of parts of China and Southeast Asia. Regions where viruses of the SARS-CoV-2 lineage were sampled are colored as in the
tree. A black dot indicates a sampling site when known, and the red dot shows the location of Wuhan, where the first cases of SARS-CoV-2 infection were
reported.
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The samples were selected and tested for SARS-CoV-2 related virus through an
effort to look at previously-collected samples that were not initially prioritized for
testing nor been tested with RT-PCR assays capable of detecting SARS-CoV-2
related viruses due to resource constraints.

The two bats positive for viruses closely related to SARS-CoV-2 were collected
during the MNHN mission, and were morphologically identified as Rhinolophus
shameli, with their taxonomic status were further confirmed by analyzing the
sequences of the cytb gene and the subunit 1 of the cytochrome c oxidase gene
(CO1) (Supplementary Fig. 3).

RNA extraction and qRT-PCR. RNA from rectal swabs was extracted using
QIAamp® Viral RNA kits (Qiagen). The samples were tested with a pan-
coronavirus (pan-CoV) hemi-nested RT-PCR11 and by a RT-qPCR known to
detect sarbecoviruses12, including SARS-CoV-2. A large fraction of these samples
has been previously tested with another pan-CoV RT-PCR24, which does not detect
SARS-CoV-2 like viruses. Initial viral isolation attempts were unsuccessful but
further isolation is being attempted in several bat cell lines.

Next generation sequencing. Extracted RNA was treated with Turbo DNase
(Ambion) followed by purification using SPRI beads (Agencourt RNA clean XP,
Beckman Coulter). We used a ribosomal RNA (rRNA) depletion approach based
on RNAse H and targeting human rRNA13. The RNA from the selective depletion
was used for cDNA synthesis using SuperScript IV (Invitrogen) and random pri-
mers, followed by second-strand synthesis. Libraries were prepared using a Nextera
XT kit (Illumina) and sequenced on an Illumina NextSeq500 (2 × 75 cycles).

Genome assembly. Raw reads were trimmed using Trimmomatic v0.3925 to
remove adapters and low-quality reads. We assembled reads using the metaspades
option of SPAdes/3.14.026 and megahit v1.2.927 with default parameters. Scaffolds
were queried against the NCBI non-redundant protein database28 using DIA-
MOND v2.0.429. Among other putative viruses (hits summarized in Supplementary
Table 3), the Sarbecovirus genomes identified were verified and corrected by
iterative mapping using CLC Assembly Cell v5.1.0 (Qiagen). Aligned reads were
manually inspected using Geneious prime v2020.1.2 (2020) (https://
www.geneious.com/), and consensus sequences were generated using a minimum
of 3× read-depth coverage to make a base call. The genomes are nearly identical,
presenting three nucleotides difference between them: g12196a, c20040t, and
t24572c). We used Ivar30 to estimate the frequency of minor variants (iSNV) from
the coronavirus reads. Coverage depth and iSNVs are reported in Supplementary
Fig. 4. The sequence of the spike gene of each virus was confirmed by Sanger
sequencing, using primers listed in Supplementary Table 4. The sequence of
Rhinolophus shameli ACE2 gene was similarly reconstructed from the reads.

Dataset. Complete genome sequence data and metadata of representative SARS-
like viruses were retrieved from GenBank, ViPR31, and GISAID. Sequences were
aligned by MAFTT v.7.46732, and the alignment checked for accuracy using MEGA
v733. Accession numbers of all 39 sequences are available in Supplementary
Table 5. Separate alignments were generated for the main ORFs.

The nucleotide similarities shown in SimPlot34 analysis were generated by using
a Kimura 2 parameter distance model with a 1000-nt sliding window moved along
the sequence in 100-nt increments.
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Recombination analysis. We used a combination of six methods implemented in
RDP535 (RDP, GENECONV, MaxChi, Bootscan, SisScan, and 3SEQ) to detect
potential recombination events, and conservatively considered recombination
signal detected by at least five methods. The beginning and end of breakpoints
identified with RDP5 were used to split the genome into regions for further
phylogenetic analysis.

Phylogenetic analysis. Maximum-likelihood (ML) phylogenies were inferred
using IQ-TREE v2.0.636 and branch support was calculated using ultrafast boot-
strap approximation with 1000 replicates37. Prior to the tree reconstruction, the
ModelFinder application38, as implemented in IQ-TREE, was used to select the
best-fitting nucleotide substitution model. Bayesian phylogenies were also inferred
using MrBayes v3.2.739, using the GTR substitution model. Ten million steps were
run and parameters were sampled every 1000 steps.

Structure modeling. The three-dimensional structure of the RBD of RshSTT200
was modeled using the SWISS-MODEL program40, using SARS-CoV-2 (PDB:
6yla.1) structure as it was the best hit for the RshSTT200 amino acid
sequence input.

Pseudovirus entry assay. HEK293T cells (Sigma) were maintained in complete
medium (DMEM, Gibco) with 10% fetal bovine serum (Gibco) and 1% penicillin-
streptomycin (Gibco).

The sequence of Rhinolophus shameli ACE2 gene, codon-optimized for human
expression, was synthetized (GeneArt, ThermoFischer) and cloned into an
expression plasmid pLenti-puro-RshACE2. pLenti-puro was a gift from Ie-Ming
Shih (pLenti-puro, Addgene #39481)41. The sequence corresponding to the spike
gene of RshSTT200 deleted of the last 21 amino acids and codon-optimized for
human expression was de novo synthesized (GeneArt,ThermoFischer) and cloned
into the pHDM expression plasmid from the lentiviral kit. The sequence of each
insert was verified by Sanger sequencing.

Lentivirus pseudoparticles packaging a coronavirus spike were produced using
the system described by the Bloom laboratory42. The following reagent was obtained
through BEI Resources, NIAID, NIH: SARS-Related Coronavirus 2, Wuhan-Hu-1
Spike-Pseudotyped Lentiviral Kit, NR-52948, kindly contributed by Alejandro B.
Balazs and Jesse D. Bloom. Briefly, HEK293T were seeded in 10 cm dishes. The next
day, the cells were co-transfected with 10 µg of pHAGE-CMV-Luc2-IRES-ZsGreen-
W (NR-52516), 3.33 µg each of helper plasmids HDM-Hgpm2 (NR-52717), HDM-
tat1b (NR-52518), and pRC-CMV-Rev1b (NR-52519), and 5 µg of a spike

expressing plasmid expressing either the RshSTT200 spike or the complete SARS-
CoV-2 spike (NR52514) with CaCl2. Supernatants were collected 72 h of post-
transfection, clarified by centrifugation, aliquoted and frozen at −80 °C.

To assay entry, HEK293T were seeded in 96-wells plates one day prior to
transfection with pLenti-puro-RshACE2, pHAGE2-EF1aInt-ACE2-WT (NR52512)
or pLenti-puro (empty) using Lipofectamine 3000 (Invitrogen) according to the
manufacturer’s protocol. The day after transfection, media was removed and cells
were transduced with pseudoparticles expressing either spike with 5 µg/ml of
polybrene transfection reagent (Merck-Millipore) in a final volume of 150 µl. Three
days later, an equal volume of Bright Glo reagent (Promega) was added and mixed
by pipetting. After 10 min of incubation, quantification was done with a Centro XS
LB 960 (Berthold technologies). Three independent replicates were performed.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data generated in this study have been deposited in the European Nucleotide
Archive database under accession code PRJEB42502. The consensus sequences of
RshSTT182 and RshSTT200 are also available at the GISAID43 database with accession
numbers: EPI_ISL_852604 and EPI_ISL_852605 [https://www.gisaid.org/]. The sequence
of Rhinolophus shameli ACE2 gene has been deposited under GenBank accession
number MZ851782. Source data are provided with this paper.
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