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ABSTRACT

Analyzing 3D Objects in 2D Images

by

Mohsen Hejrati

Ph.D. In Computer Science

University of California, Irvine, 2015

Professor Deva Ramanan, Chair

Robots are mechanically capable of doing many tasks, carrying loads, precisely ma-

nipulating objects, picking and packing or collaborating with humans. However, they

require accurate 3D perception of objects and surrounding environment to do these

tasks autonomously. Traditional methods build 3D representation of the scene using

structure from motion techniques or depth sensors, while more recent approaches use

statistical models to learn geometry and appearance of 3D objects and scenes. This

thesis investigates approaches to represent, learn and analyze 3D objects in natural

images. We first propose two new methods for 3D object recognition and pose esti-

mation in single 2D images. Second, we study various geometric representations for

the novel task of primitive 3D shape categorization.

We propose two novel approaches for recognizing 3D objects: (1) Aligning a

3D model to detected 2D landmarks, where we propose a novel method based on

deformable-part models to propose candidate detections and 2D estimates of shape,

then these estimates are refined by using an explicit 3D model of shape and viewpoint.

(2) An analysis by synthesis approach where a forward synthesis model constructs pos-

sible geometric interpretations of the world, and then selects the interpretation that

i



best agrees with the measured visual evidence. We show state of the art performance

for detection and pose estimation on two challenging 3D object recognition datasets

of cars and cuboids.

3D object recognition methods focus on modeling 3D shape of the objects, how-

ever, many objects may have similar 3D shape (washing machines, cabinets and

microwave are all cuboidal), thus recognizing them require reasoning about appear-

ance and geometry at the same time. The natural approach for recognition might

extract pose-normalized appearance features. Though such approaches are extraor-

dinarily common in the literature, in this thesis we demonstrate that they are not

optimal. Instead, we introduce methods based on pose-synthesis, a somewhat simple

approach of augmenting training data with geometrically perturbed training sam-

ples. We demonstrate that synthesis is a surprisingly simple but effective strategy

that allows for state-of-the-art categorization and automatic 3D alignment.
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CHAPTER I

Introduction

“ There are things known and there

are things unknown, and in between

are the doors of perception. ”

Aldous Huxley

Perception is crucial for intelligence. Visual perception is inevitable to build in-

telligent agents that are capable of understanding and interacting with the world as

we humans do. A large body of work is focused on classifying an image into one of

many labels, for instance [13, 61, 46, 40]. Object detection methods aim to provide

location of objects, pedestrians, faces, etc in the image [15, 12, 68, 30]. Many meth-

ods build spatial understanding of images by reasoning about surfaces (horizontal,

vertical, etc.) in the images [28, 26, 23], while other are use geometric alignment in

order to reconstruct indoor scenes or buildings [27, 25]. A grand challenge in machine

vision is the task of understanding 3D structures from 2D images and creating rich

3D representation and reconstruction of the images (Figure 1.1).

3D computer vision has been studied for decades. A plethora of work focus on

3D reconstruction from multiple images by finding consistent interpretation across

images. On the other hand, many single-image approaches are based on learning

structure in natural images or objects. Also, the advancement of depth sensors paved

the way for more recent approaches that are more focused on 3D representation and

recognition instead of reconstruction.
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Figure 1.1: A large body of work is focused on classifying an image into one of many
labels (a), object detection methods aim to provide location of objects
in the image (b). Many methods build spatial understanding of images
by reasoning about surfaces in the images (c), while other are based on
aligning geometric shapes in order to reconstruct indoor scenes or build-
ings (d). Understanding 3D structures from 2D images and creating rich
3D representation and reconstruction is a defining challenge in machine
vision (e).

In this thesis, we concentrate on single images. A category of single image 3D

reconstruction methods work by analyzing small image patches and then form a

coherent global reconstruction. On the other hand, some approaches fit geometric

shapes to the whole scene to estimate coarse 3D structure of the scene. We focus on

3D recognition, reconstruction and categorization of objects.

In this thesis we study 3D object recognition, reconstruction and categorization in

single 2D images. In Chapter 2 and 3 we propose two novel approaches for 3D object

recognition and reconstruction and in Chapter 4 we investigate various representation

methods for 3D object categorization.

Various approaches for 3D object recognition and reconstruction from single im-

ages exist in the literature. Historical methods based on geometric indexing work by

aligning 3D models to image data. They typically detect a sparse set of local features

and treat alignment as a feature correspondence problem. [19, 37, 22]. View-based

modeling is another popular approach which partition a 3D object into view-specific
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Figure 1.2: A large body of work focus on 3D reconstruction from multiple images.
In this thesis we concentrate on single images. Some methods reconstruct
3D structure of single images by analyzing small image patches or pixels.
Some approaches are based on fitting geometric shapes to the whole scene.
We focus on 3D recognition, reconstruction and categorization of objects.

2D sub-categories and a model is then trained separately for each of these categories.

[41, 24, 18, 68, 54]. We will discuss the related work more deeply inside each chapter.

In Chapter 2 we propose a two-stage model for 3D recognition which is first

localizes 2D landmarks by reasoning about 2D shape and appearance and the

aligns a 3D model to these 2D landmarks using non-rigid structure from motion

techniques.

In Chapter 3 we introduce a new approach for 3D recognition based on an anal-

ysis by synthesis strategy. A synthesis model constructs possible geometric inter-

pretations of the world and then selects the interpretation that best agrees with the

measured visual evidence. One benefit of such an approach is that recognition is

inherently (re)constructive.

In Chapter 4 we address the question of how to use the geometric-reasoning engines

studied in Chapter 2 and 3 for categorical recognition, focusing on cuboidal object

categories. We evaluate both categorization and 3D shape estimation using a variety

of representations capturing both appearance and geometry.
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Chap 2: 3D Recognition with 
2D Alignment

Chap 3: 3D Recognition with 
3D Synthesis

Chap 4: 
3D Categorization

Figure 1.3: We focus on 3D object recognition, reconstruction and categorization in
single 2D images. Chapter 2 and 3 present two novel approaches for 3D
object recognition and reconstruction and Chapter 4 investigates various
representation methods for 3D object categorization.

1.1 3D Recognition with 2D Alignment

In Chapter 2 we propose a novel approach for 3D object recognition based on

aligning a 3D morphable model to 2D landmarks. Contemporary recognition methods

tend to build statistical models of 2D appearance, consisting of classifiers trained with

large training sets using engineered appearance features. Successful examples include

face detectors [60], pedestrian detectors [11], and general object-category detectors

[18]. Such methods are usually limited to coarse 2D output, such as bounding-boxes.

We develop a model that detects objects, estimates camera viewpoint, and recovers

3D landmarks configurations and their visibility with state-of-the-art accuracy. It

does so by reasoning about appearance, 3D shape, and camera viewpoint through the

use of 2D structured, relational classifiers and 3D geometric subspace models.

While deformable models and pictorial structures [18, 63, 21] are known to suc-

cessfully model articulation, 3D viewpoint is still not well understood. The typical
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Figure 1.4: Chapter 2 introduces a two-stage model for detecting and analyzing the
3D shape of objects in unconstrained images. In the first stage, our model
reason about 2D appearance and shape using variants of deformable part
models (DPMs). Our 2D model localizes even fully-occluded landmarks,
shown as hollow circles and dashed lines in (top-middle). We feed this
output to our second stage, which directly reasons about 3D shape and
camera viewpoint. We show the reconstructed 3D model on (top-right).
The bottom 3 viewpoints.

solution is to “discretize” viewpoint and build multiple view-based models tuned for

each view (frontal, side, 3/4...). We introduce a two-stage approach that first rea-

sons about 2D shape and appearance variation, and then reasons explicitly about 3D

shape and viewpoint given 2D correspondences from the first stage.

2D shape and appearance: Our first stage models 2D shape and appearance

using a variant of deformable part models (DPMs) designed to produce reliable 2D

landmark correspondences. Our approach differs from traditional view-based models

in that it is compositional; it “cuts and pastes” together different sets of local view-

based templates to model a large set of global viewpoints. We use global mixtures of

trees with local mixtures of “part” or landmark templates. Global mixtures capture

constraints on visibility and shape (headlights are only visible in certain views at

certain locations), while local mixtures capture constraints on appearance (headlights

look different in different views).

3D shape and viewpoint: Our second layer processes the 2D output of our
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Figure 1.5: In Chapter 3 we propose an analysis by synthesis approach for 3D object
recognition. We describe a method for synthesizing a large set of discrim-
inative templates, each associated with a candidate 3D reconstruction of
an object, then the interpretation that best agrees with the test image is
selected.

first stage, incorporating global shape constraints arising from 3D shape variation

and viewpoint. To capture viewpoint constraints, we model landmarks as weak-

perspective projections of a 3D object. To capture within-class variation, we model

the 3D shape of any object instance as a linear combination of 3D basis shapes. We

use tools from nonrigid structure-from-motion (SFM) to both learn and enforce such

models using 2D correspondences.

1.2 3D Recognition with 3D Synthesis

In contrast to Chapter 2 where a two stage model is used to recognize and re-

construct 3D objects, in Chapter 3, we describe a single model that simultaneously

detects instances of general object categories, and reports a detailed 3D reconstruc-

tion of each instance. Analysis by synthesis strategy works by synthesizing possible

geometric interpretations of the world, and then selecting the one that matches best

with the measured visual evidence.

“Inverse rendering” approach to computer vision is wildly challenging for two pri-

mary reasons. (1) It is difficult to build accurate generative models that capture

the full complexity of the visual world. (2) Even given such a model, inverting it

is difficult because the problem is fundamentally ill-posed (different reconstructions

may generate similar images) and full of local minima. Our approach addresses both

difficulties. (1) Instead of generating pixel values, we synthesize visual templates
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defined on invariant (HOG) features. (2) We describe a “brute-force” approach to in-

ference that efficiently searches through a large number of candidate reconstructions,

returning the optimal one (or multiple likely candidates, if desired).

1.3 3D Categorization

Chapter 4 focuses on the question of how to use the geometric-reasoning engines

studied in Chapter 2 and 3 for categorical recognition. We evaluate both categorization

and 3D shape estimation using a variety of representations capturing both appearance

and geometry.

Dryer Cardboard BoxCargo ContainerCabinet

Cuboidal object dataset
Pose-normalized

Pose-retargeting/synthesis

Figure 1.6: In Chapter 4 we examine how to use the geometric-reasoning engines
proposed in Chapter 2 and 3 for categorical recognition. We evaluate 3D
shape categorization of cuboidal objects (left). Such objects share simi-
lar shape, so conventional folk wisdom might advocate the use of shape-
invariant (or pose-normalized) representations for recognition (top) that
are attractive because they (1) factor out shape (which seems uninforma-
tive when classifying objects with similar shape) and (2) can generalize
to novel shapes not encountered in training data. We show that this ap-
proach is not optimal. We demonstrate that pose-synthesis (bottom),
a simple approach of augmenting training data with geometrically per-
turbed training samples, is a surprisingly effective strategy that allows for
state-of-the-art categorization and automatic 3D alignment.

The most natural approach would use the estimated alignment to extract pose-

normalized appearance features. For a cuboidal object, one might represent the ap-

pearance of each cuboidal face in a fronto-parallel view (Figure 1.6). Many state-of-
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the-art systems for recognition (such as faces [52, 35], cars [36],animal species [8, 17],

or general attributes [65]) similarly normalize landmarks/keypoints into a canonical

coordinate frame during training and or testing. For example, the vast majority of

face recognition systems work by detecting landmarks, warping the image such that

landmarks are aligned into a canonical frontal view, and classifying the warped (pose-

normalized) appearance [66, 31]. Importantly, normalization allows one to (1) factor

out “nuisance” variables such as viewpoint and aspect/shape during recognition, and

(2) generalize to poses not seen in training data.

We demonstrate that pose-normalization is not the optimal strategy for dealing

with appearance variation due to pose. One explanation maybe the inaccuracy of

current systems for pose estimation - small misalignments in the predicted pose may

cause large errors in the pose-normalized appearance. We show that even with ground-

truth alignment on test images, pose-normalization is still not optimal. In short, pose-

normalization (a) removes geometric cues that maybe helpful for recognition (washing

machines may have differing aspect ratio from microwaves) and (b) artificially re-

weights foreshortened regions of the objects. To address these limitations, we describe

an approach that warps (or retargets) training examples to the shape and viewpoint of

a particular detected instance, and performs recognition using this retargeted training

set.

We demonstrate that pose-retargeting is the optimal approach given ground-

truth alignment, but falls short given the accuracy of current systems that estimate

cuboidal alignments. To address this limitation, we evaluate another approach that

pre-synthesizes a large set of possible target poses. The synthesized set is used to

train a practical system that jointly performs categorization and 3D alignment, at a

level of accuracy that surpasses the current state-of-the-art. Importantly, synthesis

also allows our system to generalize to unseen viewpoints and shapes not seen in the

training set without requiring pose-normalization.
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CHAPTER II

3D Recognition with 2D

Alignment

“ We can only see a short distance

ahead, but we can see plenty there

that needs to be done. ”

Alan Turing

2.1 Introduction

In this chapter, we propose a novel approach for 3D object recognition based on

aligning a 3D morphable model to 2D landmarks. Classic approaches based on 3D geo-

metric models [4] could sometimes exhibit brittle behavior on cluttered, “in-the-wild”

images. Contemporary recognition methods tend to build statistical models of 2D

appearance, consisting of classifiers trained with large training sets using engineered

appearance features. Successful examples include face detectors [60], pedestrian de-

tectors [11], and general object-category detectors [18]. Such methods seem to work

well even in cluttered scenes, but are usually limited to coarse 2D output, such as

bounding-boxes.

We attempt to combine the two approaches, with a focus on statistical, 3D geomet-

ric models of objects. Specifically, we focus on the practical application of detecting

and analyzing cars in cluttered, unconstrained images. We refer the reader to our
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Figure 2.1: Overview

results (Figure 2.5) for a sampling of cluttered images that we consider. We develop

a model that detects cars, estimates camera viewpoint, and recovers 3D landmarks

configurations and their visibility with state-of-the-art accuracy. It does so by rea-

soning about appearance, 3D shape, and camera viewpoint through the use of 2D

structured, relational classifiers and 3D geometric subspace models.

While deformable models and pictorial structures [18, 63, 21] are known to suc-

cessfully model articulation, 3D viewpoint is still not well understood. The typical

solution is to “discretize” viewpoint and build multiple view-based models tuned for

each view (frontal, side, 3/4...). One advantage of such a “brute-force” approach

is that it is computationally efficient, at least for a small number of views. Fine-

grained 3D shape estimation may still be difficult with such a strategy. On the other

hand, it is difficult to build models that reason directly in 3D because the “inverse-

rendering” problem is hard to solve. We introduce a two-stage approach that first

reasons about 2D shape and appearance variation, and then reasons explicitly about

3D shape and viewpoint given 2D correspondences from the first stage. We show that

“inverse-rendering” is feasible by way of 2D correspondences.
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2D shape and appearance: Our first stage models 2D shape and appearance

using a variant of deformable part models (DPMs) designed to produce reliable 2D

landmark correspondences. Our approach differs from traditional view-based models

in that it is compositional; it “cuts and pastes” together different sets of local view-

based templates to model a large set of global viewpoints. We use global mixtures of

trees with local mixtures of “part” or landmark templates. Global mixtures capture

constraints on visibility and shape (headlights are only visible in certain views at

certain locations), while local mixtures capture constraints on appearance (headlights

look different in different views). We use this model to efficiently generate candidate

2D detections that are refined by our second 3D stage. One salient aspect of our 2D

model is that it reports 2D locations of all landmarks including occluded ones, each

augmented with a visibility flag.

3D shape and viewpoint: Our second layer processes the 2D output of our

first stage, incorporating global shape constraints arising from 3D shape variation

and viewpoint. To capture viewpoint constraints, we model landmarks as weak-

perspective projections of a 3D object. To capture within-class variation, we model

the 3D shape of any object instance as a linear combination of 3D basis shapes.

We use tools from nonrigid structure-from-motion (SFM) to both learn and enforce

such models using 2D correspondences. Crucially, we make use of occlusion reports

generated by our local view-based templates to estimate morphable 3D shape and

camera viewpoint. Such morphable models are typically learned by applying subspace

methods (such as PCA or an SVD) directly to 3D landmarks or mesh vertices [5].

We show that similar methods can also be applied to 2D projections under an affine

camera model that can view “occluded” landmarks.Because our tree models report

the 2D location of such occluded parts, we are able to learn and estimate morphable

3D shape using off-the-shelf tools from nonrigid structure-from-motion (SFM) [57].

Because directly evaluating 3D output is difficult (due to lack of ground-truth), we
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Figure 2.2: A two-stage models for detecting and analyzing the 3D shape of objects
in unconstrained images is proposed. In the first stage, our models rea-
son about 2D appearance and shape using variants of deformable part
models (DPMs). We use global mixtures of trees with local mixtures
of gradient-based part templates (top-left). Global mixtures capture
constraints on visibility and shape (headlights are only visible in certain
views at certain locations), while local mixtures capture constraints on
appearance (headlights look different in different views). Our 2D mod-
els localize even fully-occluded landmarks, shown as hollow circles and
dashed lines in (top-middle). We feed this output to our second stage,
which directly reasons about 3D shape and camera viewpoint. We show
the reconstructed 3D model and associated ground-plane (assuming its
parallel to the car body) on (top-right). The bottom row shows 3D
reconstructions from four novel viewpoints.

qualitatively show that our approach produces accurate 2D landmark localization and

visibility labels, particularly-so for occluded landmarks.

Because our model is very efficient, we are still able to train it discriminatively

in a structured prediction framework using massive training data sets (hundreds of

positives and hundreds of millions of negative examples). This allows us to outperform

even state-of-the-art methods in detection accuracy [18], while obtaining accurate 3D

estimates “for free”.

Partial occlusions: Most approaches for occlusion “zero-out” responses of oc-

cluded regions within a visual template [59, 20]. Our model differs in that we explicitly

search for visual evidence consistent with an occlusion (say, T-junctions), and perhaps

more importantly, look for occlusions that are consistent with relational constraints
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between local templates.

2.2 Related Work

We focus most on recognition methods that deal explicitly with 3D viewpoint

variation.

Voting-based methods: One approach to detection and viewpoint classifica-

tion is based on bottom-up geometric voting, using a Hough transform or geometric

hashing. Images are first processed to obtain a set of local feature detections. Each

detection can then vote for both an object location and viewpoint. Examples include

[22] and implicit shape models [1, 53]. Our approach differs in that we require no

initial feature detection stage, and instead we reason about all possible geometric

configurations and occlusion states.

View-based models: A popular approach is to partition an object category into

view-specific sub-categories, and train a detector for each. Early successful approaches

included multi-view face detection [48, 33]. Recent approaches based on view-based

deformable part models include [41, 24, 18]. Our model differs in that we use a single

representation that directly generates multiple views. Finally, one can share local

parts across views [68, 54].

Aspect-based models: One can augment view-based models to share local parts

across views [54, 43, 67]. This typically requires reasoning about topological changes

in viewpoint; certain parts or features can only be visible in certain view due to self-

occlusion. One classic representation for encoding such visibility constraints is an

aspect graph [7]. [68] model such topological constraints with global mixtures with

varying tree structures. Our model is similar to such approaches, except that we use a

decomposable notion of aspect; we simultaneously reason about global and semi-local

changes in visibility using local part mixtures with global co-occurrence constraints.
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3D models: One can also directly reason about local features and their geometric

arrangement in a 3D coordinate system [47, 50, 70]. Though such models are three-

dimensional in terms of their underlying representation, run-time inference usually

proceeds in a bottom-up manner, where detected features vote for object locations.

To handle non-Gaussian observation models, [39] evaluate randomly sampled model

estimates within a RANSAC search. Our approach is closely related to the recent

work of [44], which also uses a deformable part model (DPM) to capture viewpoint

variation in cars. Though they learn spatial constraints in a 3D coordinate frame,

their model at run-time is equivalent to a view-based model, where each view is

modeled with a star-structured DPM. Our model differs in that we directly reason

about the location of fully-occluded landmarks, we model an exponential number of

viewpoints by using a compositional representation, and we produce continuous 3D

shapes and camera viewpoints associated with each detection using only 2D training

data.

Finally, we represent the space of 3D models of an object category using a set of

basis shapes, similar to the morphable models of [5]. To estimate such models from

2D data, we adapt methods designed for tracking morphable shapes to 3D object

category recognition [57, 55].

2.3 2D Shape and Appearance

We first describe our 2D model of shape and appearance. We write it as a scoring

function with linear parameters. Given training data of images and ground-truth

landmark locations (in 2D), we show how to learn parameters in a linear classification

framework.

Our model can be seen as an extension of the flexible mixtures-of-part model [63],

which itself augments a deformable part model (DPM) [18] to reason about local

mixtures. Our model differs its encoding of occlusion states using local mixtures,

14



as well as the introduction of global mixtures that enforce occlusions and spatial

geometry consistent with changes in 3D viewpoint. We take care to design our model

so as to allow for efficient dynamic-programming algorithms for inference.

Let I be an image, pi = (x, y) be the pixel location for part i and ti ∈ {1..T} be

the local mixture component of part i. As an example, part i may correspond to a

front-left headlight, and ti can correspond to different appearances of a headlight in

frontal, side, or three-quarter views. A notable aspect of our model is that we estimate

landmark locations for all parts in all views, even when they are fully occluded. We

will show that local mixture variables perform surprisingly well at modeling complex

appearances arising from occlusions.

Let i ∈ V where V is the set of all landmarks. We consider different relational

graphs Gm = (V,Em) where Em connects pairs of landmarks constrained to have

consistent locations and local mixtures in global mixture m. We can loosely think of

m as a “global viewpoint”, though it will be latently estimated from the data. We

use the lack of subscript to denote the set of variables obtained by iterating over that

subscript; e.g., p = {pi : i ∈ V }. Given an image, we score a collection of landmark

locations and mixture variables

S(I, p, t,m) =
∑
i∈V

[
αt

i

i · φ(I, pi)
]

+
∑
ij∈Em

[
βt

i,tj

ijm · ψ(pi − pj) + γ
ti,tj
ijm

]
(2.1)

Local model: The first term scores the appearance evidence for placing a tem-

plate αtii for part i, tuned for mixture ti, at location pi. We write φ(I, pi) for the

feature vector (e.g., HOG descriptor [11]) extracted from pixel location pi in image I.

Note that we define a template even for mixtures ti corresponding to fully-occluded

states. One may argue that no image evidence should be scored during an occlusion;

we take the view that the learning algorithm can decide for itself. It may choose to
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learn a template of all zeros (essentially ignoring image evidence) or it may find gra-

dient features statistically correlated with occlusions (such as t-junctions). Unlike the

remaining terms in our scoring function, the local appearance model is not dependent

on the global mixture/viewpoint. We show that this independence allows our model

to compose together different local mixtures to model a single global viewpoint.

Relational model: The second term scores relational constraints between pairs

of parts. We write ψ(pi − pj) =

[
dx dx2 dy dy2

]
, a vector of relative offsets

between part i and part j. We can interpret β
ti,tj
ijm as the parameters of a spring

specifying the relative rest location and quadratic spring penalty for deviating from

that rest location. Notably, this spring depends on part i and j, the local mixture

components of part i and j, and the global mixture m. This dependency captures

many natural constraints due to self-occlusion; for example, if a car’s left-front wheel

lies to the right of the other front wheel (in image space), than it is likely self-occluded.

Hence it is crucial that local appearance and geometry depend on each other. The

last term γ
ti,tj
ijm defines a co-occurrence score associated with instancing local mixture

ti and tj, and global mixture m. This encodes the constraint that, if the left front

headlight is occluded due to self occlusion, the left front wheel is also likely occluded.

Global model: We define different graphs Gm = (V,Em) corresponding to dif-

ferent global mixtures. We can loosely think of the global variable m are captur-

ing a coarse, quantized viewpoint. To ensure tractability, we force all edge struc-

tures to be tree-structured. Intuitively, different relational structures may help be-

cause occluded landmarks tend to be localized with less reliability. One may ex-

pect occluded/unreliable parts should have fewer connections (lower degrees in Gm)

than reliable parts. Even for a fixed global mixture m, our model can generate an

exponentially-large set of appearances |V |T , where T is the number of local mixture

types. We show such a model outperforms a naive view-based model in our experi-

ments.
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2.3.1 Inference

Inference corresponds to maximizing (2.1) with respect to landmark locations p,

local mixtures t, and global mixtures m:

S∗(I) = max
m

[max
p,t

S(I, p, t,m)] (2.2)

We optimize the above equation by enumerating all global mixtures m, and for

each global mixture, finding the optimal combination of landmark locations p and

local mixtures t by dynamic programing (DP). To see that the inner maximization

can be optimized by DP, let us define zi = (pi, ti) to denote both the discrete pixel

position and discrete mixture type of part i. We can rewrite the score from (2.1) for

a fixed image I and global mixture m with edge structure E as:

S(z) =
∑
i∈V

φi(zi) +
∑
ij∈E

ψij(zi, zj), (for a fixed I and m) (2.3)

where φi(zi) = αtii · φ(I, pi) and ψij(zi, zj) = β
ti,tj
ijm · ψ(pi − pj) + γ

ti,tj
ijm

From this perspective, it is clear that our model (conditioned on I and m) is a

discrete, pairwise Markov random field (MRF). When G = (V,E) is tree-structured,

one can compute maxz S(z) with dynamic programming [63].

2.3.2 Learning

We assume we are given training data consisting of image-landmark triplet {In, pin, oin},

where landmarks are augmented with an additional discrete visibility flag oin. With

a slight abuse of notation, we use n to denote an instance of a training image. We use

oin ∈ {0, 1, 2} to denote visible, self-occlusion, and other-occlusion respectively, where

other occlusion corresponds to a landmark that is occluded by another object (or the
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image border). We now show how to augment this training set with local mixtures

labels tin, global mixtures labels mn, and global edge structures Em. Essentially, we

infer such mixture labels using probabilistic algorithms for generating local/global

clusters of 2D landmark configurations. We then use this inferred mixture labels to

train the linear parameters of the scoring function (2.1) using supervised, max-margin

methods.

Learning local mixtures: We use the clustering algorithm described in [14,

6] to learn local part mixtures. [63] obtain local mixture labels by clustering the

relative location of a landmark (part, in their language) relative to its parent in

the relational graph G. We wish to learn local mixtures in a manner agnostic to

graph structure (since that will be viewpoint dependent). Inspired by the poselet

framework [6], we construct a “local-geometric-context” vector for each part, and

obtain landmark mixture labels by grouping landmark instances with similar local

geometry. Specifically, for each landmark i and image n, we construct a K-element

vector gin that defines the 2D relative location of a landmark with respect to the

other K landmarks in instance n, normalized for the size of that training instance.

We construct sets of features Setij = {gin : n ∈ 1..N and oin = j} corresponding to

each part i and occlusion state j.

We separately cluster each set of vectors using K-means, and then interpret cluster

membership as mixture label tin. This means that, for landmark i, a third of its T

local mixtures will model visible instances in the training set, a third will model

self-occlusions, and a third will capture other-occlusions.

Learning relational structure: Given landmark positions pin and local mixture

labels tin, we simultaneously learn global mixtures mn and edge structure Em with a

probabilistic model of zin = (pin, tin). We find the global mixtures and edge structure

that maximizes the probability of the observed {zin} labels. Probabilistically speak-

ing, our spatial spring model is equivalent to a Gaussian model (who’s mean and
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covariance correspond to the rest location and rigidity), making estimation relatively

straightforward.

We first describe the special case of a single global mixture, for which the most-

likely tree E can be obtained by maximizing the mutual information of the labels using

the Chow-Liu algorithm. In our case, we find the maximum-weight spanning tree in

a fully connected graph whose edges are labeled with the mutual information (MI)

between zi = (pi, ti) and zj = (pj, tj). Hence both spatial consistency and mixture

consistency are used when learning the relational structure. Given observations of z

from labeled training data, recall that Chow-Liu finds the tree that maximizes the

likelihood of the training data with the following:

P (z) = P (z1)
∏
ij∈E

P (zi|zj) =
[∏
i∈V

P (zi)
] ∏
ij∈E

P (zi, zj)

P (zi)P (zj)
(2.4)

The second parameterization is convenient because it is symmetric. We can find

the tree structure E that maximizes the log likelihood of a set of observations by

computing

max
E

∑
ij∈E

MI(zi, zj) and MI(zi, zj) =
∑
zi,zj

P (zi, zj) log
P (zi, zj)

P (zi)P (zj)
(2.5)

The summation is over the empirial distribution encountered in a training set.

The maximization is equivalent to finding the maximum weight spanning tree in

a completely connected graph, where weights are given by the mutual information

between two variables. Let us write out the mutual information between our joint

location/mixture variables zi, zj. Their joint can always be written as:

P (zi, zj) = P (pi, pj|ti, tj)P (ti, tj) (2.6)
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We will assume the first term is a Gaussian whose mean and covariance depend

on the discrete values of ti, tj, and the second term is a discrete table of co-occurence

priors.

Since
∑

pi,pj
P (pi, pj|ti, tj) = 1, We can rewrite the MI(ti, tj):

MI(ti, tj) =
∑
ti,tj

P (ti, tj) log
P (ti, tj)

P (ti)P (tj)

=
∑
ti,tj

P (ti, tj) log
P (ti, tj)

P (ti)P (tj)

∑
pi,pj

P (pi, pj|ti, tj)

=
∑
ti,tj

∑
pi,pj

P (pi, pj|ti, tj)P (ti, tj) log
P (ti, tj)

P (ti)P (tj)

(2.7)

Plugging in (2.6) and (2.7) into (2.5):

MI(zi, zj) = MI(ti, tj) +
∑
ti,tj

P (ti, tj)MI(pi, pj|ti, tj) (2.8)

MI(ti, tj) can be directly computed from the empirical joint frequency of mixture

labels in the training set. MI(pi, pj|ti, tj) is the mutual information of the Gaussian

random variables for the location of landmarks i and j given a fixed pair of discrete

mixture types ti, tj; this again is readily obtained by computing the determinant of

the sample covariance of landmark i and j, estimated from the training data. Hence

both spatial consistency and mixture consistency are used when learning our relational

structure.

MI(pi, pj|ti, tj) =
1

2
log
|Σii|ti ||Σjj|tj |
|Σij|titj |

where Σii|ti,tj = E[pip
T
i |ti] and Σij|ti,tj = E[(pi, pj)(pi, pj)

T |ti, tj].

Learning structure and global mixtures: To simultaneously learn global

mixture labels mn and edge structures associated with each mixture Em, we use

an EM algorithm for learning mixtures of trees, following Meila and Jordan. We
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iterate between inferring distributions over tree mixture assignments (the E-step)

and estimating the tree structure (the M-step). Notably, the M-step makes use of the

Chow-Liu algorithm. Formally speaking, the global mixture model can be written as

P (z) =
∑
m

P (m)P (z|m) where P (z|m) =
[∏
i∈V

P (zi)
] ∏
ij∈Em

P (zi, zj)

P (zi)P (zj)

(2.9)

One can write the expected complete log-likelihood of the observed labels {z},

where θ are the model parameters (Gaussian spatial models, local mixture co-occurences

and global mixture priors) to be maximized and the global mixture assignment vari-

ables {mn} are the hidden variables to be marginalized:

L(q, θ) = Eq(m)[logP (z,m|θ)] (2.10)

The EM algorithm performs coordinate ascent on the expected complete log-

likelihood from (2.10), iterating the following steps:

1. E step q(mn) = P (mn|zn, θ) ∀n

2. M step (θ, {Em}) = argmax
θ,{Em}

Eq(m)[logP (z,m|θ)]

Step 1 is performed by computing the liklihood of each data example zn under

each tree, multipling by the prior of that tree mixture, and normalizing over all trees.

Step 2 computes model parameters, including springs, local mixture co-occurences,

global mixture priors, as well as the most likely tree structure for each mixture.

Model parameters are computed by weighted sample estimates of means, variances,
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and frequency counts, where weights are given by the posterior probability of an

example belonging to a particular tree mixture. The tree structures are computed

using the Chow-Liu algorithm using weighted mutual information estimates, where

weights (again) are posterior probability of an example belonging to a particular tree

mixture.

Learning parameters: The previous steps produces local/global mixture labels

and edge structures. Treating these as “ground-truth”, we now define a supervised

max-margin framework for learning model parameters. To do so, let us write the

landmark position labels pn, local mixtures labels tn, and global mixture label mn

collectively as yn.

Given a training set of positive images with labels {In, yn} and negative images

not containing the object of interest, we define a structured prediction objective

function similar to one proposed in [63]. The scoring function in (2.1) is linear in the

parameters w = {α, β, γ}, and therefore can be expressed as S(In, yn) = w ·Φ(In, yn).

We learn a model of the form:

argmin
w,ξi≥0

1

2
wT · w + C

∑
n

ξn (2.11)

s.t. ∀n ∈ positive images w · Φ(In, yn) ≥ 1− ξn

∀n ∈ negative images,∀y w · Φ(In, y) ≤ −1 + ξn

The above constraint states that positive examples should score better than 1

(the margin), while negative examples, for all configurations of part positions and

mixtures, should score less than -1. We collect negative examples from images that

does not contain any cars. This form of learning problem is known as a structural

SVM, and there exist many well-tuned solvers such as the cutting plane solver of

SVMStruct in [32] and the stochastic gradient descent solver in [18]. We use the dual
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coordinate-descent QP solver of [63]. We show an example of a learned model and

its learned tree structure in Figure 2.2.

2.4 3D Shape and Viewpoint

The previous section describes our 2D model of appearance and shape. We use

it to propose detections with associated landmarks positions p∗. In this section, we

describe a 3D shape and viewpoint model for refining p∗.

Consider 2D views of a single rigid object; 2D landmark positions must obey

epipolar geometry constraints. In our case, we must account for within-class shape

variation as well (e.g., sedans look different than station wagons). To do so, we make

two simplifying assumptions: (1) We assume depth variation of our objects are small

compared to the distance from the camera, which corresponds to a weak-perspective

camera model. (2) We assume the 3D landmarks of all object instances can be written

as linear combinations of a few basis shapes. Let us write the set of detected landmark

positions as p∗ as a 2×K matrix where K = |V |. We now describe a procedure for

refining p∗ to be consistent with these two assumptions:

min
R,α
||p∗ −R

∑
i

αiBi||2 where p ∈ R2×K , R ∈ R2×3, RRT = Id,Bi ∈ R3×K (2.12)

Here, R is an orthonormal camera projection matrix and Bi is the ith basis shape,

and Id is the identity matrix. We factor out camera translations by working with

mean-centered points p∗ and let α directly model weak-perspective scalings.

Inference: Given 2D landmark locations p∗ and a known set of 3D basis shapes

Bi, inference corresponds to minimizing (2.12). For a single basis shape (nB = 1), this

problem is equivalent to the well-known “extrinsic orientation” problem of registering

a 3D point cloud to a 2D point cloud with known correspondence [29]. Because the
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squared error is linear in ai and R, we solve for the coefficients and rotation with

an iterative least-squares algorithm. We enforce the orthonormality of R with a

nonlinear optimization, initialized by the least-squares solution [29]. This means that

we can associate each detection with shape basis coefficients αi (which allows us to

reconstruct the 3D shape) and camera viewpoint R. One

could combine the reprojection error of (2.12) with our original scoring function

from (2.1) into a single objective that jointly searches over all 2D and 3D unknowns.

However inference would be exponential in K. We find a two-layer inference algorithm

to be computationally efficient but still effective.

Learning: The above inference algorithm requires the morphable 3D basis Bi at

test-time. One can estimate such a basis given training data with labeled 2D landmark

positions by casting this as nonrigid structure from motion (SFM) problem. Stack

all 2D landmarks from N training images into a 2N × K matrix. In the noise-free

case, this matrix is rank 3nB (where nB is the number of basis shapes), since each

row can be written as a linear combination of the 3D coordinates of nB basis shapes.

This means that one can use rank constraints to learn a 3D morphable basis. We use

the publicly-available nonrigid SFM code [55]. By slightly modifying it to estimate

“motion” given a known “structure”, we can also use it to perform the previous

projection step during inference.

Occlusion: A well-known limitation of SFM methods is their restricted success

under heavy occlusion. Notably, our 2D appearance model provides location estimates

for occluded landmarks. Many SFM methods (including [55]) can deal with limited

occlusion through the use of low-rank constraints; essentially, one can still estimate

low-rank approximations of matrices with some missing entries.

We can use this property to learn models from partially-labeled training sets.

Recall that our learning formulation requires all landmarks (including occluded ones)

to be labeled in training data. Manually labeling the positions of occluded landmarks
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can be ambiguous. Instead, we use the estimated shape basis and camera viewpoints

to infer/correct the locations of occluded landmarks.

2.5 Experiments

2.5.1 Datasets

In this chapter, we focus on car detection and 3D landmark estimation in clut-

tered, real-world datasets with severe occlusions. We labeled a subset of 500 images

from the PASCAL VOC 2011 dataset [16] with locations and visibility states of 20

car landmarks. Our dataset contains 723 car instances. 36% of landmarks are not

visible due to self-occlusion, while 21% of landmarks are not visible due to occlu-

sion by another object (or truncation due to the image border). Hence over half our

landmarks are occluded, making our dataset considerably more difficult than those

typically used for landmark localization or 3D viewpoint estimation. We evenly split

the images into a train/test set. We also compare results on a more standard view-

point dataset from [1], which consists of 200 relatively “clean” cars from the PASCAL

VOC 2007 dataset, marked with 40 discrete viewpoint class labels.

2.5.2 Implementation

We modify the publicly-available code of [63] and [55] to learn our models, setting

the number of local mixtures T = 9, the number of global mixtures M = 50, and

the number of basis shapes nB = 5. We found results relatively robust to these

settings. Learning our 2D deformable model takes roughly 4 hours, while learning

our 3D shape model takes less than a minute. Our model is defined at a canonical

scale, so we search over an image pyramid to find detections at multiple scales. Total

run-time for a test image (including both 2D and 3D processing over all scales) is 10

seconds.
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2.5.3 Evaluation

Given an image, our algorithm produces multiple detections, each with 3D land-

mark locations, visibility flags, and camera viewpoints. We qualitatively visualize

such output in Figure 2.5.

To evaluate our output, we assume test images are marked with ground-truth

cars, each annotated with ground-truth 2D landmarks and visibility flags. We mea-

sure the performance of our algorithm on four tasks. We evaluate object detection

(AP) using using the PASCAL criteria of Average Precision [16], defining a detec-

tion to be correct if its bounding box overlaps the ground truth by 50% or more.

We evaluate 2D landmark localization (LP) by counting the fraction of predicted

landmarks that lie within .5x pixels of the ground-truth, where x is the diameter

of the associated ground-truth wheel. We evaluate landmark visibility predic-

tion (VP) by counting the number of landmarks whose predicted visibility state

matches the ground-truth, where landmarks may be “visible”, “self-occluded”, or

“other-occluded”. Our 3D shape model refines only LP and VP, so AP is deter-

mined solely by our 2D (mixtures of trees) model. To avoid conflating the evaluation

measures, we evaluate LP and VP assuming bounding-box correspondences between

candidates and ground-truth instances are provided. Finally to evaluate viewpoint

classification (VC), we compare predicted camera viewpoints with ground-truth

viewpoints on the standard benchmark of [1] which has fine viewpoint labels for 200

images from PASCAL 2007. To evaluate landmark localization/visibility and view-

point, we assume correspondences between candidate detections and ground-truth

instances are given.

2.5.4 Viewpoint Classification

We first present results for viewpoint classification in Figure 2.3 on the benchmark

of [1]. Given a test instance, we run our detector, estimate the camera rotation R,
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Figure 2.3: We report histograms of viewpoint label errors for the dataset of [1]. We
compare to the reported performance of [1] and [22]. Our model reduces
the median error (right) by a factor of 2.

and report the reconstructed 2D landmarks generated using the estimated R. Then

we produce a quantized viewpoint label by matching the reconstructions to landmark

locations for a reference image (provided in the dataset). We found this approach

more reliable than directly matching 3D rotation matrices (for which metric distances

are hard to define).We produce a median error of 9 degrees, a factor of 2 improvement

over state-of-the-art. This suggests our model does accurately capture viewpoints. We

next turn to a detailed analysis on our new cluttered dataset.

2.5.5 Baselines

We compare the performance of our overall system to several existing approaches

for multi-view detection in Figure 2.4(a). We first compare to widely-used latent

deformable part model (DPM) of [18], trained on the exact same data as our model.

A supervised DPM (MV-star) considerably improves performance from 63 to 74%

AP, where supervision is provided for (view-specific) root mixtures and part locations.

This latter model is equivalent in structure to a state-of-the-art model for car detection

and viewpoint estimation [44], which trains a DPM using supervision provided by a

3D CAD model. By allowing for tree-structured relations in each view-specific global

mixture (MV-tree), we see a small drop in AP = 72.3%. This model is equivalent to

a state-of-the-art model for view-based face detection and pose estimation [68].

Our final model is similar in term of detection performance (AP = 72.5%), but
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Figure 2.4: We compare our model with various view-based baselines in (a), and
examine various components of our model through a diagnostic analysis
in (b). We refer the reader to the text for a detailed analysis, but our
model outperforms many state-of-the-art view-based baselines based on
trees, stars, and latent parts. We also find that modeling the effects of
shape due to global changes in 3D viewpoint is crucial for both detection
and landmark localization.

does noticeably better than both view-based models for landmark prediction. We

correctly localize landmarks 69.5% of time, while MV-tree and MV-star score 65.7%

and 64.7%, respectively. We produce landmark visibility (VP) estimates from our

multi-view baselines by predicting a fixed set of visibility labels conditioned on the

view-based mixture. We should note that accurate landmark localization is crucial for

estimating the 3D shape of the detected instance. We attribute our improvement to

the fact that our model can model a large number of global viewpoints by composing

together different local view-based templates.

2.5.6 Diagnostics

We compare various aspects of our model in Figure 2.4(b). “Local” refers to

a single tree model with local mixtures only, while “Global” refers to our global

mixtures of trees. We see a small improvement in terms of AP, from 69% for “Local”

to 72.5% for “Global”. However, in terms of landmark prediction, “Global” strongly

outperforms “Local”, 69.4% to 57.2%. We use these predicted landmarks to estimate

3D shape below.
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Figure 2.5: Sample results of our system on real images with heavy clutter and occlu-
sion. We show pairs of images corresponding to detections that matched
to ground-truth annotations. The top image (in the pair) shows the out-
put of our tree model, and the bottom shows our 3D shape reconstruction,
following the notational conventions of Figure 2.2. Our system estimates
3D shapes of multiple cars under heavy clutter and occlusions, even in
cases where more than 50% of a car is occluded. Our morphable 3D
model adapts to the shape of the car, producing different reconstructions
for SUVs and sedans (row 2, columns 2-3). Recall that our tree model
explicitly reasons about changes in visibility due to self-occlusions ver-
sus occlusions from other objects, manifested as local mixture templates.
This allow our 3D reconstructions to model occlusions due to other ob-
jects (e.g., the rear of the car in row 2, column 3). In some cases, the
estimated 3D shape is misaligned due to extreme shape variation of the
car instance (e.g., the folding doors on the lower-right).

2.5.7 3D Shape

Our 3D shape model reports back a z depth value for each landmark (x, y) posi-

tion. Unfortunately, depth is hard to evaluate without ground-truth 3D annotations.

Instead, we evaluate the improvement in re-projected VP and LP due to our 3D shape

model; we see a small 2% improvement in LP accuracy, from 69.4% to 71.2%. We
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further analyze this by looking at the improvement in localization accuracy of ground-

truth landmarks that are visible (73.3 to 74.8%), self-occluded (70.5 to 72.5%), and

other-occluded (22.5 to 23.4%). We see the largest improvement for occluded parts,

which makes intuitive sense. Local templates corresponding to occluded mixtures will

be less accurate, and so will benefit more from a 3D shape model. Our 3D model

accurately estimates self-occlusion, but cannot reason directly about occlusions due

to other objects in the scene.
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Figure 2.6: Sample results of our system on real images with heavy clutter and occlu-
sion. We show pairs of image corresponding to a detection that matched
to a ground-truth annotation. The top image (in the pair) shows the out-
put of our tree model, and the bottom shows our 3D shape reconstruction,
following the notational conventions of Figure 2.5. Our system estimates
3D shapes of multiple cars under heavy clutter and occlusions, even in
cases where more than 50% of a car is occluded.
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Figure 2.7: Sample results of our system on real images with heavy clutter and occlu-
sion. We show pairs of image corresponding to a detection that matched
to a ground-truth annotation. The top image (in the pair) shows the out-
put of our tree model, and the bottom shows our 3D shape reconstruction,
following the notational conventions of Figure 2.5. Our system estimates
3D shapes of multiple cars under heavy clutter and occlusions, even in
cases where more than 50% of a car is occluded.
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2.6 Conclusion

We have described a geometric model for detecting and estimating the 3D shape

of objects in heavily cluttered, occluded, real-world images. Our model differs from

typical multi-view approaches by reasoning about local changes in landmark appear-

ance and global changes in visibility and shape, through the aid of a morphable 3D

model. While our model is similar to prior work in terms of detection performance,

it produces significantly better estimates of 2D/3D landmarks and camera positions,

and quantifiably improves localization of occluded landmarks. Though we have fo-

cused on the application of analyzing cars, we believe our method could apply to

other geometrically-constrained objects.
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CHAPTER III

3D Recognition with 3D Synthesis

“ Evolve solutions; when you find a

good one, don’t stop. ”

David Eagleman

3.1 Introduction

In Chapter 2, we described a two stage model to recognize and reconstruct 3D

objects. In this chapter we describe a single model that simultaneously detects in-

stances of general object categories, and reports a detailed 3D reconstruction of each

instance. The proposed approach is based on an analysis by synthesis strategy. A for-

ward synthesis model constructs possible geometric interpretations of the world, and

then selects the interpretation that best agrees with the measured visual evidence.

The forward model synthesizes visual templates defined on invariant (HOG) fea-

tures. These visual templates are discriminatively trained to be accurate for in-

verse estimation. We introduce an efficient “brute-force” approach to inference that

searches through a large number of candidate reconstructions, returning the optimal

one. One benefit of such an approach is that recognition is inherently (re)constructive.

We show state of the art performance for detection and reconstruction on two chal-

lenging 3D object recognition datasets of cars and cuboids.

Challenges: Though attractive, an “inverse rendering” approach to computer

vision is wildly challenging for two primary reasons. (1) It is difficult to build accurate
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Figure 3.1: Overview

generative models that capture the full complexity of the visual world. (2) Even

given such a model, inverting it is difficult because the problem is fundamentally ill-

posed (different reconstructions may generate similar images) and full of local minima

(implying local search will fail).

Our approach: Our approach addresses both difficulties. (1) Instead of gener-

ating pixel values, we use forward models to synthesize visual templates defined on

invariant (HOG) features. These visual templates are discriminatively trained to be

accurate for inverse estimation. (2) We describe a “brute-force” approach to infer-

ence that efficiently searches through a large number of candidate reconstructions,

returning the optimal one (or multiple likely candidates, if desired).

Latent-variable object models: Our model is related to approaches that recog-

nize objects with latent variable models, such as the state-of-the-art deformable part

model (DPM) [18]. [69] point out that DPMs implicitly synthesize a set of deformed

templates by searching over possible latent values. The deformation set is limited to

obey sparse 2D spring constraints, making the search amenable to dynamic program-

ming. In contrast, we explicitly synthesize a massive set of templates by enumerating
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Figure 3.2: We describe a method for synthesizing a large set of discriminative tem-
plates, each associated with a candidate 3D reconstruction of an object
(in this case, cars). Our model makes use of a generative 3D shape model
to synthesize a large collection of 2D landmarks, which in turn specify
rules for composing 2D templates out of a common pool of parts.

over latent parameters in an arbitrarily-complex forward model (that explicitly con-

structs 3D objects and cameras). We perform a brute-force search through these

(re)constructions. Surprisingly, by making use of part indexing, our search can be

even faster than a DPM.

Our model produces state-of-the-art benchmark performance for detection and

reconstruction of cuboids in indoor images [62] and cars from the PASCAL dataset

(introduced in Chapter 2). We also present a diagnostic analysis that shows that, in

some cases, our synthesis model is close to optimal (given our feature space).

We introduce our shape synthesis model in section 3.3 and specify the forward

rendering process for generating 2D templates in section 3.4. We then describe our

algorithms for inference in section 3.5 and learning in section 3.6. We conclude with

experimental results in section 3.7.

3.2 Related Work

3D categorical models: Many approaches represent object categories using

local features and their geometric arrangement in a 3D coordinate system [47, 50, 70].

Most related to us are approaches based on view-based part models [41, 24, 44, 18].

In particular, [44] learn view-based car models making use of a geometric CAD model
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to generate synthetic training images. Instead of synthesizing images, we synthesize

feature templates (an easier task). We synthesize templates that are detailed enough

to perform 3D reconstruction, while this may be difficult for view-based approaches

(since many views may be needed).

Geometric indexing: Historically, many model-based recognition systems pro-

ceeded by aligning 3D models to image data. Typically, a sparse set of local features

are initially detected, after which alignment is treated as a feature correspondence

problem. Efficient correspondence search is implemented through affine/projective

invariant indexing [19], geometric hashing [37], or simple enumeration [22].

Hough transforms use sparse feature detections to vote in a shape parameter space

[2], resulting in 2D implicit shape models [1, 53]. Our part indexing scheme is similar

in spirit, except that we use a dense set of part responses to cast votes for a discrete

set of candidate 3D reconstructions.

Model synthesis: Synthetic parametric models of object-categories is an active

area of research in the graphics community. Approaches include procedural grammars

[42], morphable basis shapes [5], and component/part-based models [34].

Similar to Chapter 2, we make use of morphable models to represent categorical

shape variation. We show that such basis models can be learned from 2D annotations

using techniques adapted from nonrigid structure from motion (SFM) [57, 55]. The

proposed models differ from past work in that we use a geometric model to synthesize

a large set of exemplars, which are then used for “brute-force” matching. From this

perspective, our approach is similar to work that relies on a non-parametric model of

object shape [3].

3.3 Synthesis model

Let’s begin by defining a parametric model for constructing 3D shapes from a

particular object category (such as cars). We will then sample from this parametric
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Figure 3.3: We use basis shapes to model different types of cars, like sedans in the
first column and SUVs in the fourth. Since the [55] assumes orthographic
camera, another major aspect of learned shape basis is modeling perspec-
tive effect. For example the second and third column are modeling back
and front view perspective effect.

family to define a large set of candidate 3D reconstructions. Our 3D shape model

should capture nonrigid shape variation within an object category (sedans and SUVs

look different) and viewpoint variation.

Similar to Chapter 2, we make use of morphable basis models [5] that model any

3D shape instance as a linear combination of 3D basis shapes. Our shape model

should also encode changes in appearance due to geometric variation (wheels look

different when foreshortened). To do so, we learn separate local templates for land-

marks conditioned on their 3D geometry (learning separate templates for frontal vs.

foreshortened wheels).

Shape parameters: We represent the 3D shape of an object with a set of N

3D keypoints, represented as B ∈ R3×N . Given a set of nB basis shapes {Bj} and

coefficients α, we synthesize a 3D shape B as follows:

B = B0 +

nB∑
j>0

αjBj, where B,Bj ∈ R3×N (3.1)

where B0 is the mean 3D shape. We visualize our shape basis in Figure 3.3.

Camera parameters: We transform B into camera coordinates by rotating by
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R and translating by t

P = t+RB, t ∈ R3, R ∈ R3×3 (3.2)

When augmented with camera intrinsic parameters (the focal length), the set of

camera parameters are (t, R, f). We now summarize our parameters with a vector θ:

θ =

[
Shape Camera

]
(3.3)

Shape =

[
α1 α2 . . . αk

]
Camera =

[
t R f

]

Forward projection: Given a parameter vector, we generate a set of 2D key-

points, scales, and local mixtures with the following:

Render(θ) = {(zi,mi) : i = 1 . . . N} (3.4)

zi = (xi, yi, σi) = (f
pix
piz
, f
piy
piz
,
f

piz
) (3.5)

where (3.5) is a standard perspective projection model, and pi is the ith column of

matrix P . We have assumed unity-scaled pixels factors for simplicity (though they

can easily be added).

Appearance synthesis: To capture changes in appearance caused by geometry

(frontal and foreshortened wheels look different), we associate each keypoint with a

discrete mixture mi. We will use mixture-dependent local templates βmi
i to capture

such appearance variability. We now describe a simple approach for synthesizing mi

conditioned on P (the view-dependent 3D geometry). Let us define reli(P ) to be a
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vector of relative 3D landmark locations:

reli(P ) = {pj − pi : j ∈ N(i)}. (3.6)

where N(i) is the set of keypoints connected to i under the 3D mesh model. We

use the 3 other keypoints with highest spatial correlation to i. Offline, we extract

the set of {reli} from the set of synthesized shapes, and cluster them using k-means.

Given this clustering, we now can synthesize mixture labels mi by finding the closest

geometric mean:

mi = k∗ where k∗ = argmin
k∈M

||reli(P )− µik||2and rel = {pj − pi : j ∈ N(i)}.

(3.7)

where µik is defined as the average relative location of neighboring points N(i) for

cluster k.

We show 3D geometric means µik and their associated appearance-specific visual

templates βki in Figure 3.4.

Parameter quantization: We explore various strategies for producing a set of

parameters θ. One option is to use the set of parameters encountered in a set of

training images. Alternatively, we can synthesize a set of parameters θ with a grid

search over a bounded range of parameters (where bounds on the camera rotation

matrix is defined in terms of elevation and azimuth Euler angles). In either case,

we clamp camera translations to be 0 (t = 0) to ensure translation-invariance. We

do search over focal lengths f to model perspective effects during synthesis. This

produces a massive set of thousands or millions of parameters vectors, produced by

enumerating over a training set or a grid search. In our results, we experiment with
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Figure 3.4: We learn local part mixtures by clustering the relative 3D position of
keypoint i and its connected neighbors in the underlying 3D mesh. We
show keypoint cluster means µik (above), along with their associated
part templates βki (below). Each synthesized 3D pose (and associated
template) is constructed by adding together shifted copies of local part
templates, which in turn allows for efficient run-time search.

various quantized subsets. We wish to quantize together parameters that yield similar

2D projections. Specifically, we construct a vector of 2D (xi, yi) keypoint positions

for each discrete θ, and cluster this set with K-means. We denote the final set of

K-quantized parameter vectors as

ΩK = {θ1 . . . θK} (3.8)

3.4 Template model

Given a parameter vector θ and image I, we describe a method for scoring a visual

template wθ:

S(I, θ) =
∑
u∈U

wθ[u] · I[u] (3.9)

where I[u] is an image feature extracted from a pixel location and scale u = (x, y, σ)

in image I. We write U for the set of all possible discrete pixel locations and scales
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enumerated in a feature pyramid. In practice, wθ is a single-scale template with local

spatial support. For notational simplicity, we assume that templates are zero-padded

(across space and scales).

To efficiently represent our family of templates, we construct each template wθ by

adding together local keypoint templates shifted to lie at locations given by Render(θ)

(3.5). We write βmi
i for the (zero-padded) local visual template, or “part”, associated

with keypoint i, when tuned for mixture mi:

S(I, θ) =
N∑
i=1

∑
u∈U

βmi
i [u] · I[u+ zi] (3.10)

where we drop the dependence of the rendered keypoint location zi = zi(θ) and

mixture mi = mi(θ) on parameter θ. If keypoint i is occluded given the viewpoint

specified by θ, then the associated mi acts as an occlusion-specific mixture. In such

cases, the learned template βmi
i may be set to all zeros, or it may capture image

features characteristic of occlusions (such as t-junctions).

Let us define a dummy indexing variable u′ = u + zi and switch the order of

summations in the above equation. This allows us to write the global template wθ

from (3.9) as a superposition of shifted keypoint templates:

wθ[u] =
N∑
i=1

βmi
i [u− zi] (3.11)

where we have assumed keypoint templates β are zero-padded outside of their default

spatial extent.
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Figure 3.5: We search through a large collection of templates (with shared parts) by
first caching part responses, and then looking up response values to score
each template.

3.5 Inference

Inference corresponds to computing

max
θ∈ΩK

S(I, θ) (3.12)

To simplify notation, we assume that the translation-invariant set of parame-

ters θ ∈ ΩK are augmented with camera translations at run-time. This allows the

above maximization to perform a scanning-window search over image translations

and scales.

To efficiently search over scores for all θ ∈ ΩK given an image I, we first pre-

compute a response map of keypoint template responses for each location u:

Rmi
i [u] =

∑
u′∈U

βmi
i [u′] · I[u′ + u] (3.13)

We pre-compute the above response map for each keypoint i and mixture mi by

convolving the feature pyramid I with the part template βmi
i .

We now can define the score associated with a particular object parameter by
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looking up values in the cached response maps:

S(I, θ) =
N∑
i=1

Rmi
i [zi(θ)] (3.14)

The final inference algorithm, visualized in Figure 3.5, is as follows.

1. Offline, enumerate parameters θ ∈ ΩK and cache the associated set of rendered

keypoints Render(θ).

2. Online, given an image, compute the response map for all N parts and M

mixtures (3.13).

3. Evaluate S(I, θ) for each θ ∈ ΩK with N (≈ 10) table lookups (3.14).

4. Return parameters θ above a detection threshold, along with their associated

reconstructions B (3.1).

3.6 Learning

Our models require two sets of parameters; those associated with shape synthesis

θ, and those associated with local keypoint templates βmi
i . We learn both using

training images annotated with 2D keypoint locations.

Synthesis parameters: In some cases, one can use a graphics engine or CAD

models to directly synthesize a set of 3D parameter vectors θ. We can also infer such

3D parameters from 2D keypoint annotations so as to minimize 2D reprojection error.

Similar to Chapter 2, we employ nonrigid structure from motion (SFM) [55] to learn

a 3D basis. Stack all 2D keypoints from N training images into a 2N ×K matrix. In

the noise-free case, this matrix is rank 3nB (where nB is the number of basis shapes),

since each row can be written as a linear combination of the 3D coordinates of nB

basis shapes. This means that one can use rank constraints to learn a 3D morphable
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basis. We learn local appearance clusters µ by clustering view-dependent 3D shapes

obtained from the set of {θi}.

Template parameters: We will learn templates that are discriminatively tuned

for accurate detection and reconstruction on single-view training images. Assume we

are given supervised training data including positives {Ii, θi} and negatives {Ii}. Of-

tentimes supervision is more naturally specified in terms of 2D keypoint annotations

rather than 3D shapes. In such a scenario, we use the nonrigid SFM procedure from

the previous paragraph to estimate shape parameters θ given 2D keypoint annota-

tions. Combining (3.9) with (3.11), we can explicitly denote the score as linear in

keypoint templates β = {βmi
i }:

S(I, θ) = β · Φ(I, θ) (3.15)

We will learn templates that minimize the following training objective function:

min
β

1

2
||β||2 + C

∑
i

ξi (3.16)

s.t. ∀i ∈ pos, β · Φ(Ii, θi) ≥ 1− ξi (3.17)

∀i ∈ neg,∀θ ∈ ΩK , β · Φ(Ii, θ) ≤ −1 + ξi (3.18)

The above constraint states that positive examples should score better than 1

(the margin), while negative examples, for all configurations of keypoints positions

and mixtures defined by ΩK , should score less than -1. Violations of these constraints

are penalized through slack terms. We find margin violations on negative images (not

containing the object) by running the efficient inference algorithm from section 3.5

to find detections that score above -1. This form of learning is known as a structural
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SVM, and there exist many well-tuned solvers such as SVMStruct [32] and stochastic

gradient descent [18]. We use a stochastic dual coordinate-descent implementation

based on [63].

Scalability: Training time scales roughly linearly with K (the number of synthe-

sized shapes). This holds true because β is independent of K, while hard-negative

mining scales linearly with K since each shape must be enumerated. For large K, we

found that one could speed up training times by stochastically sub-sampling shapes

during hard-negative mining without sacrificing accuracy. We sub-sampled a fixed

number (50) regardless of K, making training time practically independent of K.

Our model on average takes a few hours to train on a commodity PC using full

train set of 1196 positives and 1375 negatives. We show an example of a learned

model in Figure 3.2.

Recognition vs reconstruction: The above constraints naturally corresponds

to detection accuracy. One could augment them to ensure that, for a positive ex-

ample Ii, the true shape θi outscores incorrect shapes θ 6= θi by some amount. This

corresponds to a structured prediction task that explicitly trains parameters so as to

generate accurate shapes. We found that these additional constraints did not improve

performance given a large enough negative set (we use a generic set of 1000 outdoor

images).

Data scarcity: Interestingly, the above formulation learns accurate models even

with a small number of positives that are dwarfed by the the number of templates

|pos| � |ΩK |. It may seem strange that we are learning templates for shapes that

have never been seen - but this is precisely the benefit of synthesis! We learn good

templates so long as there exist enough positives to train the local parts βmi
i . Given

this fact, one might be tempted to simply train the local parts independently, but the

above structured formulation takes advantage of contextual interactions between all

parts, defined by the entire set of parameters ΩK . Because “hard negative” margin
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violations are produced by searching across all templates in ΩK , the learning algorithm

above will tend to produce a strong set of models {wθ : θ ∈ ΩK}.

3.7 Results

Datasets: We evaluate the proposed model using two object detection datasets.

The SUN primitive dataset [62] that contains 785 images with 1269 annotated cuboids.

The UCI-Car dataset that is proposed in the Chapter 2 and contains 500 images from

PASCAL VOC2011 containing 723 cars with detailed landmark annotation. For both

datasets, we use the same train-test split provided by the curators for training and

evaluation.

3.7.1 Evaluation

Our models report back object detections with associated 3D reconstructions. Be-

cause annotating images with 3D shapes is cumbersome, we evaluate our reconstruc-

tions by evaluating 2D landmark re-projection error. This allows us to use standard

benchmarks and compare to past work. For object detection we use now-standard

average precision measure introduced in PASCAL. For landmark localization, we fol-

low [62] and plot landmark accuracy for various levels of object-detection recall. A

predicted landmark is defined to correct if it lies within t pixels of the ground-truth

location, where t = 15% of the square root of the area of the ground-truth box.

3.7.2 Baselines

We compare to previously published results as well as the approach introduced

in Chapter 2 for both datasets. In particular, we use state-of-the DPMs as baseline

for object detection [18], and supervised tree-based part models proposed in Chapter

2 as baselines for landmark prediction. In Chapter 2 we used a two-stage inference

procedure for reconstruction, where detections from a 2D tree-based part model are

47



refined to produce 3D reconstructions, in contrast, the proposed model performs both

detection and reconstruction in a single stage.

3.7.3 Implementation

For our car models, we set the number of basis shapes nb = 5. We learn a model

with N = 20 3D landmarks, each modeled with |M | = 9 local mixtures. For our

cuboid models, we manually define a 3D parametric cuboid model of varying aspect

ratios. Our model consists of N = 17 3D landmarks (consisting of cube corners and

midpoints), with |M | = 12 local mixtures.

3.7.4 Synthesis strategies

We explored numerous strategies for constructing a set of 3D shape parameters

{θi}. First, our Exemplar model uses the shapes encountered in the training set of

annotated images, augmented with synthetic camera translations.

Exemplar Synthesis augments this set with additional exemplar shapes. We im-

plement this strategy by learning a model with a subset of training images, but using

the larger (full) set of keypoint annotations. This mimics scenarios where we have

access to a limited amount of image data, but a larger set of keypoint annotations.

Parametric Synthesis constructs a shape set by discretely enumerating θi over

bounded parameter ranges. Finally, Oracle Synthesis uses shapes extracted from an-

notated test-data. We use this upper bound on performance (given the the “perfect”

synthesis strategy) for additional analysis. Note that exemplar-synthesis is a valid,

implementable strategy (that even outperforms parametric synthesis, given enough

shape exemplars) while oracle synthesis is an upper-bound that is used purely for

analysis.

48



↵1 ↵2 ↵3 ↵4 ↵5

Figure 3.6: A visualization of our interactive, morphable interface for exploring 3D
shapes and their associated templates. We display the corresponding
shape coefficients α as colored bars.

3.7.5 Interactive synthesis

We have implemented an interface for interactive synthesis (Figure 3.6). A com-

mon tool for visualizing morphable models is an interface where a user can dynam-

ically toggle/slide shape coefficients, and view the resulting model. We have con-

structed such an interface, and can use it to visualize our family of 3D shapes, cam-

era viewpoints, and associated HOG templates. We find it to be an intuitive user

experience for “understanding” the modeling capacity of our representation.

3.7.6 Anytime recognition/reconstruction

Our models have a free parameter K, the number of enumerated shapes. Both per-

formance and run-time computation increase with K. When comparing to baselines

with fixed run-time costs, we plot performance as a function of run-time, measured

in terms of seconds per image. All methods are run on the same physical system

(a 12-core Intel 3.5 Ghz processor). Recall that we obtain shape sets for smaller K

by clustering a larger set of shapes. Our plots reveal that a simple re-ordering of

shapes in a coarse-to-fine fashion (with hierarchical clustering) can be used for any-

time analysis. For example, after enumerating the first K = 20 coarse shapes, one

can still obtain 65% car landmark reconstruction accuracy (which in turns improves

as more shapes are enumerated).
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3.7.7 Box benchmark results

Figure 3.7 plots performance for box detection and localization. Exemplars almost

double the best previously-reported numbers in [62], in terms of detection (43% vs

24%) and landmark reconstruction (48% vs 38%).

Interestingly, the tree model proposed in Chapter 2 outperforms [62], perhaps due

to its modeling of local part mixtures. The proposed models even surpass the two-

stage model of Chapter 2, while directly reporting 3D reconstructions and while being

10X faster. Exemplar and Parametric Synthesis perform similarly for low numbers of

templates, but Exemplars do better with more templates, particularly with respect to

reconstruction accuracy. Moreover, both methods still fall short of the upper-bound

given by Oracle Synthesis. These results suggests that our parametric model is not

capturing true shape statistics. For example, people may take pictures of certain

objects from iconic viewpoints. Such dependencies are not modeled by Parametric

Synthesis, but are captured by Exemplars. We later demonstrate (Figure 3.8) that

Exemplar Synthesis also captures such dependencies.

3.7.8 Car benchmark results

We find similar trends when evaluating detection and landmark accuracy for cars.

The proposed models fall just shy of the tree model of Chapter 2, but directly report

3D reconstructions while being 5X faster. As before, Exemplars dominate Parametric

Synthesis for any fixed number of templates. But Parametric Synthesis can poten-

tially outperform Exemplars with additional shapes (because Exemplar is limited to

observed training data). Moreover, our upper-bound analysis reveals that both mod-

els are close to the upper bound provided by Oracle Synthesis. This suggests that

our morphable 3D model is a rather accurate description of car shapes.
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3.7.9 Diagnostic analysis

We present qualitative results for both boxes and cars in Figure 3.9. In Figure

3.8, we present further diagnostic analysis of our box model with respect to training

data size. When training on small amounts of training data, Exemplar Synthesis

noticeably improves performance by 5%. To realize this improvement, it is important

to discriminatively-train the full synthetic set of templates. These results suggest

that accurate shape statistics are crucial to realize the benefit of synthesis. Indeed,

we show that one can produce a state-of-the-art model with as little as 20 training

images.
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Figure 3.7: Detection (left) and reconstruction accuracy (right) versus running time
of our method and baselines, including DPMs [18], supervised-tree mod-
els and multi-view star models (introduced in Chapter 2). Points corre-
spond to different (constant-time) baselines, while curves correspond to
our models. Because our models can process a variable number of syn-
thesized templates, we sweep over K ∈ { 20, 50, 100, 500, 1000, 4000
} templates to generate the curves. Note that Exemplars are limited by
the number of training images. Exemplars always dominate Parametric
Synthesis (for a given K), suggesting our parametric model is failing to
capture important shape statistics. We examine this further in Figure 3.8.
Our box (top) detection and reconstruction results (43% and 48%) nearly
double the best previously-reported performance from Xiao et al.[62] (24%
and 38%), while being 10X faster. Our car (bottom) results approach
the state-of-the-art tree models proposed in Chapter 2, but directly re-
port 3D shape while being 5X faster. One can also use cascade models
and or context to reduce the number of evaluated synthesized templates,
thus spend less time for detection.

52



Box detection (diagnostics)

20

25

30

35

40

45

20 100 500 All data = 1196

A
ve

ra
ge

 P
re

ci
si

o
n

 

Number of Training 

Exemp

Exemp + Exemp Synth

Exemp + Exemp Synth + Retrain

All Training Data

Figure 3.8: We plot the performance of various synthesis approaches as a function
of the amount of training images. Exemp enumerates the set of shapes
encountered in the training set of images. +Exemp Synth uses the
learned local templates β from Exemp and instantiates new shapes ob-
tained from keypoint annotations not in the training set. This improves
performance by up to 2%. +Retrain discriminatively retrains β given
this synthesized set of shapes, further improving performance by up to
5%. Hence it is crucial to discriminatively-tune the synthesized set. Our
synthesis models outperform state-of-the-art methods [62] with orders-of-
magnitude less training data.
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Figure 3.9: Recognition + reconstructions from our method. Odd rows show the
test image and recognized + reconstructed object overlaid on it. Even
rows illustrate the associated template that triggered the detection. Our
method can recognize objects from various viewpoints, shapes and is ro-
bust to heavy occlusion. Because every synthesized template has a 3D
shape, recognition is inherently reconstruction. On the top right, we
show results for images with multiple cars. Our box results show accu-
rate reconstructions across various viewpoints, aspect ratios, and even
perspective effects. However, some images are genuinely ambiguous, like
the Rubik’s Cube (bottom-right) or the shape is very extreme and our
synthesis engine never synthesized that shape, like the container on the
last row.

54



Figure 3.10: We show an example detection for which the reconstruction problem is
fundamentally ill-posed (in our HOG feature space). Our brute-force
strategy for enumerating all reconstructions can readily return multiple
high-scoring interpretations, addressing a classic limitation of “inverse
rendering” approaches.
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3.8 Conclusions

We have introduced a new approach for recognizing and reconstructing 3D objects

in images based on an analysis by synthesis strategy. We make use of forward syn-

thesis models to synthesize a large number of possible geometric interpretations, and

efficiently search through this set with indexing schemes. Generative shape models,

while common in graphics, have been somewhat absent in recent computer vision tech-

niques based on discriminative classifiers. Our methods discriminatively train a large

set of synthetic geometric models, such that they are accurate for both recognition

and reconstruction. Constructing this set from an observed collections of exemplar

shapes does remarkably well, but one can still improve on these results with accurate

shape-driven synthesis.

Our upper-bound analysis suggests that there is much room to improve shape

statistics, and such statistics will be crucial for accurate generative synthesis.
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CHAPTER IV

3D Categorization

“ Quotation, n: The act of repeating

erroneously the words of another. ”

Ambrose Bierce

4.1 Introduction

In Chapter 2 and 3 we described how to recognize 3D objects in single 2D im-

ages. In this chapter, we address the natural question of how to use these geometric-

reasoning engines for categorical recognition, focusing on cuboidal object categories

such as washing machines, cabinets, etc. We evaluate both categorization and 3D

shape estimation using a variety of representations capturing both appearance and

geometry. Cuboidal objects are interesting since they share the same basic shape,

allowing one to explicitly explore the interplay of geometry and appearance.

Pose-normalization: Perhaps the most natural approach would use the esti-

mated alignment to extract pose-normalized appearance features. For a cuboidal

object, one might represent the appearance of each cuboidal face in a fronto-parallel

view (Figure 4.2). Many state-of-the-art systems for recognition (such as faces [52, 35],

cars [36],animal species [8, 17], or general attributes [65]) similarly normalize land-

marks/keypoints into a canonical coordinate frame during training and or testing.

For example, the vast majority of face recognition systems work by detecting land-

marks, warping the image such that landmarks are aligned into a canonical frontal
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3D Synthesis
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Figure 4.1: Overview

view, and classifying the warped (pose-normalized) appearance [66, 31]. Importantly,

normalization allows one to (1) factor out “nuisance” variables such as viewpoint and

aspect/shape during recognition, and (2) generalize to poses not seen in training data.

Pose-retargeting: First and foremost, we demonstrate that pose-normalization

is not the optimal strategy for dealing with appearance variation due to pose. One

explanation maybe the inaccuracy of current systems for pose estimation - small

misalignments in the predicted pose may cause large errors in the pose-normalized

appearance. Surprisingly, we show that even with ground-truth alignment on test

images, pose-normalization is still not optimal. In short, pose-normalization (a) re-

moves geometric cues that maybe helpful for recognition (washing machines may have

differing aspect ratio from microwaves) and (b) artificially re-weights foreshortened

regions of the objects. To address these limitations, we describe an approach that

warps (or retargets) training examples to the shape and viewpoint of a particular

detected instance, and performs recognition using this retargeted training set.

Pose-synthesis: We demonstrate that pose-retargeting is the optimal approach

given ground-truth alignment, but falls short given the accuracy of current systems

58
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Pose-retargeting/synthesis

Figure 4.2: We examine 3D shape categorization of cuboidal objects (left). Such
objects share similar shape, so conventional folk wisdom might advo-
cate the use of shape-invariant (or pose-normalized) representations for
recognition (top) that are attractive because they (1) factor out shape
(which seems uninformative when classifying objects with similar shape)
and (2) can generalize to novel shapes not encountered in training data.
We show that this approach is not optimal. One reason is that current
methods produce small errors in geometric alignment, which can result
in large fluctuations in the pose-normalized appearance. However, even
with ground-truth alignment, pose-normalization is still not optimal. We
demonstrate that pose-synthesis (bottom), a simple approach of aug-
menting training data with geometrically perturbed training samples, is
a surprisingly effective strategy that allows for state-of-the-art categoriza-
tion and automatic 3D alignment.

that estimate cuboidal alignments. To address this limitation, we evaluate another

approach that pre-synthesizes a large set of possible target poses. The synthesized

set is used to train a practical system that jointly performs categorization and 3D

alignment, at a level of accuracy that surpasses the current state-of-the-art. We

evaluate systems based on exemplar matching and discriminative template-matching.

Intuitively, geometric alignment systems (that recognize generic cuboids) must be

invariant to variation across cuboidal categories, but our system can exploit the fact

that washing machines and microwaves look different. Importantly, synthesis also

allows our system to generalize to unseen viewpoints and shapes not seen in the

training set without requiring pose-normalization.

Data-augmentation: Our proposed approaches are inspired by learning archi-

tectures that apply synthetic perturbations to training data. Such “data-augmentation”
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appears to be crucial components of state-of-the-art methods like deep learning [45,

38]. However, instead of applying simple perturbations like rotations, we make use of

an image-based rendering engine to generating new training images (using piecewise-

constant homographies and affine transformations). With a rich enough synthesis en-

gine, the resulting learning algorithm does not need to generalize to unseen test poses

(because they can be directly synthesized). Indeed, we show that highly-invariant

appearance features based on contemporary CNNs [49] do not outperform traditional

gradient orientation histograms [11] when used with large synthetic training sets.

Our contributions: We compare, both theoretically and empirically, different

representations for the novel task of categorizing cuboidal objects. We begin with

a baseline pose-“agnostic” approach (that trains a categorical classifier agnostic to

the pose of training/test data). We compare such a method with pose-normalization,

pose-synthesis, and pose-retargeting (which to our knowledge, is novel).

We provide two salient conclusions: (1) The novel problem of categorical cuboid

classification provides an interesting testbed for solving a practical task while in-

vestigating the role of shape and geometry. To spur future research in this area, we

re-purpose an existing dataset [62] (designed for for cuboidal detection and alignment)

for the task of cuboidal category recognition by making use of category labels and

adding 3D landmark annotations. (2) Pose-retargeting, both at test and train-time

(through synthesis), provides a simple approach for dealing with geometric variation

that significantly outperforms the common-place technique of pose-normalization.

4.2 Image-based rendering

The core computational engine of all our studied approaches is an image-based

renderer that takes an H×W input image I, a set of N 2D landmarks P , and produces

a warped image with a retargeted set of N landmarks T . We write this engine as a

function that returns an image:
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�(I, P, T ), I 2 RH⇥W⇥3, P, T 2 R2⇥N�(I, P, T ), I 2 RH⇥W⇥3, P, T 2 R2⇥NI, PI, P

Figure 4.3: Proposed image-based rendering engine takes an image I, a set of 2D
landmarks P and a set of target 2D landmark locations T as input, then
it renders the cube in target view by warping each surface using a homog-
raphy warp.

Φ(I, P, T ), I ∈ RH×W×3, P, T ∈ R2×N (4.1)

Importantly, landmarks and their associated faces are assumed to have a semantic

ordering. For example, the first face is the front of the washing machine, while the

second is the top, etc. The warped image Φ is synthesized in three stages: foreground

synthesis, hidden surface synthesis, and background synthesis.

Foreground: By triangulating the points, one could generate a retargeted image

by applying affine warps to each triangle. Instead, we assume that the points will

always be corners of a cuboidal object, and so can be connected onto quadrilateral

faces instead of triangles. Our rendering engine applies a homography (which can be

estimated by the 4 corners of a quadrilateral) to each quadrilateral face.

Hidden-surfaces: If target pose is very different from the input pose, then pre-

viously occluded cube faces may now become visible. We assume that objects are

symmetric in appearance, and use the texture map from the opposite face as a re-

placement. One can even synthesize multiple target images by choosing different

visible surfaces as a replacement. We found that choosing one replacement performs

well.
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Figure 4.4: The image-based rendering engine works in three steps: (a) extracting
background from the image. (b) rendering object in different poses using
homography warps on object surfaces. (c) pasting the warped object on
the background and filling the the holes using interpolation.

Background: We only warp pixels inside the input object to the target pose,

leaving background pixels intact. This will result in holes in the background of the

target image. We use standard hole-filling algorithms [10]. Background provides

useful contextual cues for object categorization. It is even possible to synthesize

images using different background images of the same object category but in our

experiment we only used the input image background.

Our synthesis engine is fairly straightforward, similar in complexity to a typical

homework assignment in an undergraduate computer vision course! [51]. Nevertheless,

it produces startlingly photo-realistic images of cuboidal objects (Figure 4.2). We use

it to explore a variety of representations for geometric-invariant recognition.

4.3 Approaches

In this section, we describe a simple mathematical formalism for unifying all the

geometric representations that we will consider. Throughout this section, we visualize

the function Φ as a warped image, but to simplify notation, we assume that Φ directly

extracts a N -dimensional feature vector extracted from the warped image. We will
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Figure 4.5: We visualize various strategies for achieving geometric-invariance in recog-
nition. Please refer to the text for a detailed description of each strategy.

explore oriented gradient features and deep features. Though these features will be

used in a variety of classification engines – including nearest neighbor (NN) matching

and SVMs – we write out the mathematical formulation for a simpler NN classifier

below. We assume that we have a training set of real images where the ith image is

associated with a category label yi and ground-truth landmarks Pi. We also assume

that we have a real query image at test-time I, with an associated set of test-time

landmarks P :

Training images:{(Ii, yi, Pi)} Test image:(I, P ) (4.2)

Test-time landmarks are provided by an state-of-the-art method proposed in

Chapter 3, though we crucially also consider ground-truth landmarks.

Finally, we also consider representations that do not require 2D landmarks. To

denote such methods, we use the notation of Φ(I, P, P ) = Φ(I, ·, ·) to specify an

identity warp (where in fact, the set of points P need not be specified).
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4.3.1 Pose-Agnostic

The simplest approach would be to simply ignore pose as an explicit confounding

factor, and match using features extracted from un-warped images:

Pose-Agnostic(I) = yi∗ where i∗ = argmin
i
‖Φ(Ii, Pi, Pi)− Φ(I, P, P )‖2 (4.3)

= argmin
i
‖Φ(Ii, ·, ·)− Φ(I, ·, ·)‖2 (4.4)

where we use the second line to emphasize the fact the identity warp computed by

Φ did not require the knowledge of any landmarks. The first line will be useful

for comparison with other approaches that do make use of landmarks. Such agnostic

approaches can still be successful if the training set of images spans enough variations

in pose. However, such methods fundamentally cannot generalize to novel poses

at test-time, unless a highly invariant feature descriptor is used (e.g., bag-of-word

representations [64]), in which case discriminability may suffer.

4.3.2 Pose-Normalized

Pose-normalization warps both the training and query images into a canonical

configuration of N landmarks C:

Pose-Normalized(I) = yi∗ where i∗ = argmin
i
‖Φ(Ii, Pi, C)− Φ(I, P, C)‖2

(4.5)

We visualize our canonical configuration of cuboid face landmarks in Figure 4.6.

Pose-Normalized explicitly factors out viewpoint and shape (which is helpful if

they serve as nuisance variables for categorization), and trivially generalizes to novel
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viewpoints and shapes not seen in the training set. Our experiments will show that

normalization performs well when given highly accurate alignments. Small errors

in the estimated pose may cause large distortions in the normalized image (Figure

4.17). However, even given ground-truth landmarks, pose-normalization may still

artificially re-weight foreshortening portions of the object, sometimes resulting in

image distortion due to pixelation artifacts (Figure 4.6).

It is important to note that there are many valid and plausible strategies to

formulate a pose-normalization representation. The choice of canonical pose C can

impact the performance of the representation. Another strategy is to use multiple

canonical poses. We focus on a single canonical pose which unfolds the cube into

three squares. Analyzing other pose-normalization strategies is the subject of further

research.

4.3.3 Pose-Retargeted

Instead of warping each training image to a canonical landmark configuration C,

pose-retargeting warps each training image to the target landmarks P found on a

query image I:

Pose-Retargeted(I) = yi∗ where i∗ = argmin
i
‖Φ(Ii, Pi, P )− Φ(I, P, P )‖2 (4.6)

In some sense, pose-retargeting creates a custom-training set for this particular

query image by warping the training set into the viewpoint and shape of the query.

This tends to produce less distortions because warps are applied to training images

(which tend to be cleaner and more accurately labeled landmarks) rather than a test-

image. However, retargeting still requires accurate alignment landmarks at test-time,

and more-over, may be slower since it requires generating a custom training set for
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Synthesized Original Pose Normalized

Figure 4.6: Given an image of an object, we show novel synthesized views gener-
ated by Pose-Synthesis (left) and the normalized view used by Pose-
Normalized (right). Synthesized views look fairly realistic (because we
can explicitly control and limit the degree of view synthesis), while the
normalized views often have pixelation artifacts. The artifacts can arise
from extrapolation of heavily-foreshoretened cube faces (middle row) or
small mistakes in the predicted 2D landmarks (bottom row).

each query.

4.3.4 Pose-Synthesis

Finally, we also consider an alternative that pre-warps all training images to set

of possible target shapes and viewpoints. Pose-synthesis representation is based on

augmenting the train set with new views of the training images:

Pose-Synthesis(I) = yi∗ where i∗ = argmin
i

min
Pk
i ∈G(Pi)

‖Φ(Ii, Pi, P
k
i )− Φ(I, P, P )‖2

(4.7)

(i∗, P k∗
i ) = argmin

i,Pk
i ∈G(Pi)

‖Φ(Ii, Pi, P
k
i )− Φ(I, ·, ·)‖2

(4.8)

where G(Pi) = {P 1
i , . . . P

K
i } generates a set of candidate target landmarks. We refer

to this function as a landmark-synthesis engine, described further below. We rewrite
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the matching function as (4.8) to emphasize that (1) Pose-Synthesis does not require

landmarks to be annotated on test images and (2) Pose-Synthesis can also be used

for 3D landmark prediction (P k∗
i ).

Landmark synthesis: Landmark synthesis is used to generate a set of reasonable

target landmarks for each training image Ii, to be used by Pose-Synthesis. We assume

that each training image is labeled with 3D landmarks (in camera coordinates) and a

focal length f . Specifically, 2D landmarks P are assumed to be perspective projection

of the 3D points:

Pi = Project(Si, fi), where Pi ∈ R2×N , Si ∈ R3×N , fi ∈ R (4.9)

We use nonrigid structure-from-motion [56] to infer 3D landmarks (and affine

camera parameters) from 2D annotations. We use these estimates to then infer a

perspective camera calibration to produce fi. Given 3D shape and camera parameters,

we generate rotations along the camera x and z axis:

G(Pi) = {Project(RkSi, fj)
K
k=1}, Rk ∈ R3×3, RT

kRk = I (4.10)

Other synthesis strategies: We explored other synthesis strategies for Pose-

Synthesis. For example, one could generate aspect ratio variations in the set of shapes.

Moreover, one could extend the notion of data augmentation into the appearance

domain as well as shape. For example, we could synthesize hidden cube surfaces or

backgrounds by swapping out surfaces and backgrounds from other training examples.

Our experiments focus on viewpoint synthesis, but our encouraging results suggest

that other synthesis techniques are worth exploring.
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4.3.5 Theoretical Analysis

We now provide the theoretical motivation for Pose-Retargeted and Pose-Synthesis.

Consider a generative model of an image as

Pr(Image, Pose) = Pr(Pose)Pr(Image|Pose) (4.11)

= Pr(Pose)N (Image; Φ(I, C, Pose), σ2Id) for N (x;µ,Σ)

(4.12)

where I is image of the cuboidal faces of a training image in a canonical view C and

Id is the identity matrix.

It is straightforward to show that Pose-Synthesis matches an image using the log-

probability of that image under (4.12), (max) marginalizing over an uninformative

pose prior:

I∗, Pose∗ = argmax
I∈train,Pose

Pr(Image, Pose) (4.13)

The category label is defined by label of I∗ available in training and estimated

pose is Pose∗. One strategy to impose weak prior on the pose is to search over

perturbations of the training data. In our experiments, we uniformly sample Rk =

RzRx by ranging Rx and Rz over increments of (−15, 0, 15) degrees.

Pose-Retargeted uses the log-probability of P (Image|Pose), conditioning on the

known pose.

I∗ = argmax
I∈train

Pr(Image|Pose) (4.14)
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Intuitively, both Pose-Retargeted and Pose-Synthesis score an image reconstruc-

tion error that searches over candidate poses or conditioned on a known pose.

4.4 Experimental Results

Dataset: We re-purpose the SUN Primitive dataset [62], containing 1269 cuboid

objects (annotated with 2D corners) in 785 images. SUN Primitive was proposed to

study cuboid detection and 2D alignment. We use a subset of 543 cuboids that have

category labels, spanning a set of 9 categories (Figure 4.7). To apply our synthesis

algorithms, we generate 3D landmark annotations for this dataset using the method

described above. We use a 50-50 split for training and testing. While somewhat small

by contemporary standards, this dataset provides a starting point for evaluating this

novel problem, while allowing us to compare with previous published systems that

were used to benchmark cuboid detection and alignment accuracy. We will release

our 3D annotations to spur further research.

Features: We evaluate oriented gradient descriptors (HOG) [11] and state-of-

the-art convolutional neural net (CNN) features [38] when defining our final image

descriptors Φ.

We resize images to 128x128 pixels before extracting features. For Pose-Normalized,

we extract a feature descriptor for each face of the normalized cuboid (concatenat-

ing them together to produce Φ). We use standard implementations of HOG and

Oxford’s Deep19 CNN model [49], as implemented in the MatConvnet library [58].

We experiment with features extracted from different neural layers, finding the third

convolutional layer to perform best.

Classifiers: We describe our representations using a nearest-neighbor (NN) for-

mulation (section 4.3), but the associated feature vectors Φ can be used with any

classification system.

We explore SVMs as an alternate state-of-the-art classifier, considering both lin-
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Figure 4.7: Our dataset of cuboidal object categories, re-purposed from the SUN
Primitive database [62]. This dataset includes variation in shapes (aspect
ratios), viewpoint, backgrounds and clutter.

ear and Gaussian kernels where hyperparameters are selected through 5-fold cross-

validation. We make use of the LIBSVM [9] library. When the category model need

not generalize across different poses (which is true for Pose-Normalized and Pose-

Retargeted), linear classifiers appear to suffice. Pose-Agnostic and Pose-Synthesis

must reason across viewpoints, and so Gaussian kernels were vital for good perfor-

mance.

Landmark prediction: We use a state-of-the-art cuboid landmark detection

method which is proposed in Chapter 3 to estimate 2D landmarks at test-time (needed

for Pose-Normalized and Pose-Retargeted). Importantly, this system has been shown

to produce state-of-the-art alignment results on the SUN Primitive dataset, outper-

forming prior work such as [62]. We show that some of our simple methods even

outperform this body of work, in terms of landmark predictions.

To simplify our analysis, we assume that a ground-truth bounding-box is provided

at test-time for all experiments. This is done by running the cuboid landmark detec-

tor, then pruning results without sufficient overlap with the ground-truth bounding

box. We then take the highest scoring detection among the remaining detections. In

our experiments, we set minimum overlap (intersection over union) to be 70%. Note

that we also evaluate results with ground-truth landmarks to provide an upper bound

analysis.
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Figure 4.8: The center red column designates a test image, while the first six cor-
respond to the NN-matches using our various representations. On the
right, we visualize both the automatically-generated and ground-truth
normalized image. Note how erroneous alignment create significant fluc-
tuations in pose-normalized image, causing wrong NN-matches. Provided
ground-truth alignment, pose-retargeting performs the best, while pose-
synthesis performs best using automatic alignment.

4.4.1 Categorization

Our primary focus is categorization accuracy of categorization. Table 4.1 evaluates

all approaches for object categorization accuracy, for both sets of features (CNN and

HOG) and classifiers (SVM and NN).

Normalization: Pose-Normalized performs the worst of all methods, no mat-

ter the feature or classifier. One immediate explanation could be that the predicted

landmarks are not of sufficient accuracy. To test this hypothesis, we also evaluate
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accuracy given ground-truth landmarks. In this setting, Pose-Normalized does per-

form the best out of all methods. Hence one immediate conclusion is that current

alignment systems are not of sufficient accuracy to realize the benefits of a pose-

normalized representation. In general, we see a significant 11% drop in accuracy in

using predicted versus ground-truth landmarks.

It is important to note that these results are based on our specific definition of

pose-normalization. Analyzing other valid and plausible pose-normalization strategies

(such as those mentioned Section 4.3.2) is subject of future research.

Feature HOG HOG CNN CNN
Classifier NN SVM NN SVM

Pose-Agnostic 43.3 58.9 42.6 56.3
Pose-Normalized 36.3 48.1 35.9 41.9
Pose-Retargeted 43 54.4 38.1 43.7

Pose-Synthesis 47.4 57.3 47 59.6
Pose-Normalized (GT) 46.7 63 44.4 54.1
Pose-Retargeted (GT) 54.8 62.2 45.9 56.7

Table 4.1: Categorization accuracy of various approaches. Chance performance on
this 9-class task is roughly 11%. The top-four methods are fully automatic,
making use of predicted landmarks estimated using the method proposed
in Chapter 3 when needed. The bottom-two make use of ground-truth
(GT) landmarks. Pose-Synthesis, although simple, consistently outper-
forms Pose-Normalized and pose-retargeting representation.

Retargeting: However, in almost all cases, Pose-Retargeted outperformed Pose-

Normalized, validating our initial hypothesis that normalization (1) is more suscepti-

ble to errors in landmark predictions and (2) artificially weights/distorts foreshortened

regions of the object.

One might think of Pose-Retargeted with ground-truth (GT) landmarks as an

upper bound of Pose-Synthesis, because a perfect synthesis strategy should generate

exactly those shapes that align with test images. Interestingly, Pose-Synthesis outper-

forms Pose-Retargeted-GT with CNN features. Because CNN features are invariant

to large spatial deformations, we posit that the learned model can still benefit from

72



a larger training set that includes shapes outside the test set.

Agnostic vs Synthesis: Overall, we find that Pose-Agnostic performs quite

well, consistently outperforming Pose-Normalized and Pose-Retargeted when using

predicted landmarks. We attribute this behavior again to the fact that highly accurate

landmarks are needed for reliable alignment. However, Pose-Agnostic will struggle

to generalize to a viewpoint or shape not seen in the training set. Pose-Synthesis

is attractive because it offers generalization without sensitivity to geometric mis-

alignment.

Feature HOG HOG CNN CNN
Classifier NN SVM NN SVM

Pose-Agnostic 43.3 58.9 42.6 56.3
Pose-Normalized 36.3 48.1 35.9 41.9
Pose-Retargeted 43 54.4 38.1 43.7

Pose-Synthesis (w/ background synthesis) 47.4 57.3 47 59.6
Pose-Synthesis (w/o background synthesis) 51.8 58.5 48.2 58.9

Table 4.2: Background synthesis effect in pose-synthesis approach. Similar to 4.1
the table shows categorization accuracy of various approaches. Chance
performance on this 9-class task is roughly 11%. One hypothesis is that
background provides useful contextual information for classification, thus
pose-retargeted and pose-normalized representations are not using it. Here
we show that the performance of pose-synthesis without background syn-
thesis is even slightly better than pose-synthesis with background synthe-
sis.

Training data: Because Pose-Normalized may perform better with limited train-

ing data (making generalization to unseen views more important), Figure 4.13 plots

the accuracy of all methods for differing amounts of real training images. As ex-

pected, all methods do better with more data. Pose-Synthesis makes the most of

additional data, producing a 15% improvement on average (probably because each

additional training sample effectively adds 9 more view-perturbed examples). Agnos-

tic, Retargeting and Normalized see average improvements of 12.7%, 9.8% and 6.5%

respectively.

Synthesis strategies: An interesting question is the role of prior in pose-synthesis
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Pose-Agnostic : 56.3% Pose-Synthesis : 59.6%

Pose-Normalized : 41.9% Pose-Retargeted : 43.7%

GT-Pose-Normalized : 54.1% GT-Pose-Retargeted : 56.7%
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Figure 4.9: Confusion matrices for various representation using CNN+SVM. Rows
and columns respectively represent ground truth and predicted label.
Ballot box, box seat, cabinet, cardboard box and toy block are harder
to categorize due to large variation in their appearance.
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Pose-Agnostic : 42.6% Pose-Synthesis : 47%

Pose-Normalized : 35.9% Pose-Retargeted : 38.1%

GT-Pose-Normalized : 44.4% GT-Pose-Retargeted : 45.9%
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Figure 4.10: Confusion matrices for various representation using CNN+NN. Rows
and columns respectively represent ground truth and predicted label.
Ballot box, box seat, cabinet, cardboard box and toy block are harder
to categorize due to large variation in their appearance.
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Pose-Agnostic : 58.9% Pose-Synthesis : 57.3%

Pose-Normalized : 48.1% Pose-Retargeted : 54.4%

GT-Pose-Normalized : 63% GT-Pose-Retargeted : 62.2%
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Figure 4.11: Confusion matrices for various representation using HOG+SVM. Rows
and columns respectively represent ground truth and predicted label.
Ballot box, box seat, cabinet, cardboard box and toy block are harder
to categorize due to large variation in their appearance.
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Pose-Agnostic : 43.3% Pose-Synthesis : 47.4%

Pose-Normalized : 36.3% Pose-Retargeted : 43%

GT-Pose-Normalized : 46.7% GT-Pose-Retargeted : 54.8%
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Figure 4.12: Confusion matrices for various representation using HOG+NN. Rows
and columns respectively represent ground truth and predicted label.
Ballot box, box seat, cabinet, cardboard box and toy block are harder
to categorize due to large variation in their appearance.
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Figure 4.13: Accuracy of all methods for differing amounts of real training images.

and pose-retargeting. As discussed in 4.3.5, pose-retargeting provides strong prior on

object pose while pose-synthesis can provide none or weak prior depending on the

synthesis strategy employed. Figure 4.14 shows categorization results with various

synthesis strategies, each providing different prior by varying perturbation interval.

We have evaluated three strategies using: (a)[-15,0,+15], (b)[-30,-15,0,+15,+30] and

(c)[-30,0,30] as perturbation intervals. Intuitively, (a) provides stronger prior and (c)

provides weaker prior than others. As expected, (a) outperforms (b) and (c) although

(b) synthesizes a much larger space.

One might conjecture from these experiments that pose-retargeting is the optimal

approach as it provides the strongest form of prior. That is true only if we have

accurate estimation of the object pose at test time. Therefore, we argue that pose-
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Figure 4.14: Analysis of various synthesis strategies. We show that synthesis based on
uninformed pose prior does not perform very well. However, imposing
weak prior through training data perturbation is very effective. The
curves show that categorization accuracy decreases as the perturbation
interval increases.

synthesis is optimal as it does not require pose estimation at test time while providing

a framework to employ pose prior from training data.

Background synthesis: One might hypothesize that background image present

in pose-agnostic and pose-synthesis representation provides useful contextual infor-

mation for categorization. We evaluated the effect of background synthesis in the

pose-synthesis representation. We have tested it by (similar to pose-retargeted) mask-

ing the background in train and test images. As shown in table 4.2, pose-synthesis

without background synthesis in fact performs slightly better than pose-synthesis

with background.

4.4.2 Landmark localization

To evaluate landmark localization, we use standard approach of counting the num-

ber of correctly localized landmarks. A landmark is correctly localized if it lies within

t pixels of the ground-truth location, where t = %15 of the square root of the area of

the ground-truth box. We use NN-variants of our Pose-Agnostic and Pose-Synthesis

models to generate landmark predictions, simply reporting back landmarks associated
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Figure 4.15: Pose estimation accuracy of Pose-Synthesis and Pose-Agnostic (where
we assume all training images have been annotated with landmarks),
compared to the method proposed in Chapter 3. Our models outperform
prior art with as little as 5 training images per class.

with the closest-matching training image (be it a real image or a synthesized one).

Figure 4.15 shows the result of our proposed approaches compared to the state-

of the art. Both Pose-Agnostic (84.2%) and Pose-Synthesis (84.5%) significantly

outperform the previously state-of-the-art method proposed in Chapter 3 (77.5%),

which itself outperformed numerous other approaches on this dataset [62, 62]. In

particular, our approaches reach state-of-the-art performance trained on only 5 images

per category.
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Figure 4.16: Samples of our landmark localization results. We compare the approach
in Chapter 3 of this thesis with pose-agnostic and pose-synthesis ap-
proaches.
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Figure 4.17: Landmark localization results using pose-synthesis approach using dif-
fering amount of training data.
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4.5 Conclusion

We provided theoretical and empirical analysis of different representations for the

novel task of categorizing cuboidal objects, examining Pose-Agnostic, Pose-Normalized,

Pose-Retargeted, and Pose-Synthesis-based models. We show that the problem of cat-

egorical cuboid classification is a useful testbed for investigating the interplay of shape

and geometry while solving a practical task.

Our empirical analysis (using HOG and CNN features and non-linear SVM and

nearest neighbor classifiers) reveals the surprising result that Pose-Retargeting and

Pose-Synthesis provides a simple approach for dealing with geometric variation that

significantly outperforms the common-place technique of Pose-Normalization.

Our empirical analysis might be somewhat restricted by our choice of classifier

and features. One might improve the performance of Pose-Normalized representation

by employing more complex non-linear classifiers that take advantage of geometric

features in addition to appearance. However, our theoretical analysis is independent

of these choices and still suggest that Pose-Synthesis provides a simple framework for

categorization and pose estimation while allowing to exploit geometric priors from

training data.
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