
UC Irvine
ICS Technical Reports

Title
EASe : integrating search with learned episodes

Permalink
https://escholarship.org/uc/item/6vd9x726

Authors
Ruby, David
Kibler, Dennis

Publication Date
1992-05-15

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6vd9x726
https://escholarship.org
http://www.cdlib.org/

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

,~EAS~_; Integrating Search with
Learned Episodes

David Ruby
druby@ic;,uci.~du
Dennis Kibler

kibler@ics.uci.edu

Technical Report 92-30

May 15, 1992

/!/<' <'///(/{

fo/?
c.?,
~::.;

no. 9 J

t, ~J

This research was supported by National Science Foundation grants number IRI-9001756
and IRl-9143332.

:30

;.',1
., ·,

! : '>

EASe: Integrating Search with Learned Episodes

David Ruby
druby@ics.uci.edu

Dennis Kibler
kibler@ics.uci.edu

Department of Information & Computer Science
University of California, Irvine

Irvine, CA 92717 U.S.A.
(714) 856-7557

Keywords: Learning, problem solving, weak methods, episodes, macro­
operators, cases.

Abstract

Weak methods are insufficient to solve complex problems. Constrained
weak methods, like hill-climbing, search too little of the problem space. Un­
constrained weak methods, like breadth-first search, are intractable. Fortu­
nately, through the integration of multiple weak methods more powerful prob­
lem solvers can be created. We demonstrate that augmenting a weak con­
strained search method with episodes provides a tractable method for solving
a large class of problems. We demonstrate that these episodes can be gener­
ated using an unconstrained weak method while solving simple problems from
a domain. We provide an analytical model of our approach and empirical
results from the logic synthesis domain of VLSI design as well as the classic
tile-sliding domain.

1 INTRODUCTION

Search has proven to be an excellent metaphor for understanding and gener­
ating intelligent behavior. Researchers have discovered several different types
of fundamental search methods. These weak methods form a core under­
standing of how to search within a problem space. Unfortunately, these weak
methods alone cannot solve complex problems.

Weak methods fall into two general classes, constrained and unconstrained.
Constrained weak methods, like hill-climbing or beam-search, remain largely
tractable while searching within a problem space. But, they search so little
of the problem space that they seldom solve difficult problems. The search
conducted by an unconstrained weak method like breadth-first search or it­
erative deepening (Korf, 1985a) is assured to include a solution, but is often
intractable.

Case-based search (Lehnert & Bradtke, 1988; Ruby & Kibler, 1988) demon­
strates how cases can constrain search within a complex problem space, keeping
it tractable. Solving problems by reusing previous cases is an approach that is
unaffected by the branching factor of the problem or the depth of a solution.
Its major limitation is the need for enough cases to cover the problem space.

Each weak method can only solve a small class of problems. What is needed
is a way to enlarge this class by integrating these existing methods.

1.1 Importance of Integrating Methods

The potential power from integrating the right approaches is understood
within the problem-solving community. SOAR (Laird, Newell, & Rosenbloom,
1987), for example, provides a general problem-solving framework that in­
cludes a mechanism for integrating multiple methods. Multiple problem spaces
in SOAR allows it to use several different weak methods while solving a prob­
lem. What is not understood about problem solving is which methods should
be integrated and how they should be organized.

What we want is an integrated problem solver that tractably finds solutions
to problems in complex domains. One way to accomplish this is to begin
with an intractable unconstrained method and learn to improve it, speedup
learning. An alternative is to begin with a tractable constrained method and to
increase its capabilities. This is the approach we take. Thus, we must integrate
methods that are tractable. In addition, the methods must complement one
another so that their integration provides a more powerful approach than either
of the them alone. The question remains, though, which particular tractable
methods do we integrate.

Problem decomposition is a classic approach to problem solving. Breaking
a large problem into simpler subproblems is almost always useful. This ap­
proach is tractable and makes a good choice for integrating with other search
methods. Hill-climbing is tractable and makes another good choice for inte­
gration. It uses a global evaluation function and is thus complemented well by
a technique that uses local knowledge. Cases provide a representation for local
knowledge. Case-based problem solving is tractable as long as the number of

1

cases needed remains low and few modifications are required to reuse them. It
too makes a good choice for a tractable method. The complementary nature
of these methods make them excellent choices for integration.

The cases needed for case-based problem solving must somehow be learned.
An unconstrained weak method must be used to generate these cases to en­
sure that any one needed is learnable. Since these methods are generally
intractable, an additional technique is needed to make learning the required
cases tractable. When people learn to solve problems in a new domain they
usually begin by solving simple ones. After learning to solve these simple prob­
lems they transfer their knowledge to larger and more complex ones. These
simple problems provide them with the opportunity to acquire the knowledge
needed to solve the various other problems in the domain. We use an approach
similar to this to make learning tractable for our problem solver.

Simple problems are characterized by a smaller branching factor and depth
of solution than the more complex ones from the same domain, thus they have
a smaller problem space. In these smaller problem spaces even an intractable
method like iterative deepening can find a solution. So simple problems can
essentially provide a means for making an intractable search method tractable.
The solutions found can then be used by a case-based method while solving
more complex problems where the problem space is too large for unconstrained
search.

These then are the basic tools that we bring together to form our prob­
lem solver: (1) goal decomposition to decompose a problem into simpler sub­
problems, (2) hill-climbing for tractably searching through much of the prob­
lem space, (3) case-based problem solving for handling the exceptions to hill­
climbing, and (4) iterative deepening for solving the simple problems needed
to learn the required cases.

1.2 Importance of Evaluation

Before examining our approach in more detail there is one important ques­
tion to answer. How are we to evaluate our problem solver? Using a critical
theory of problem solving we could evaluate it, but no agreed upon theory
exists. Given this inability to properly evaluate it theoretically, an alternative
is an empirical evaluation. Probably the best way to empirically evaluate a
problem solver is against problems of known difficulty. A set of scaled bench­
marks can measure the power of a problem solver. Unfortunately, there is
no agreed upon measure of problem difficulty and no benchmark set of scaled
problems.

Minton (1988) with his work on Prodigy demonstrated that the difficulty
of problems within a domain can be roughly determined. For example, in the
blocks world the number of blocks in a problem is a rough measure of their
difficulty. These rough measures when combined with large sets of random
problems provide a fairly accurate measure of the average difficulty of a set of
problems. Using these rough measures it is possible to generate a set of scaled
benchmark problems within a domain. These scaled problems then provide

2

Memory
Episode

Learning

Goal
Solution Context Solution Context

Goal Ordered Constrained
Search

Context 1------U nconstrained
Decomposition Subgoals olution Search

~----~

Goal Solution

Figure 1: Overview of EA Se

a means for evaluating a problem solver. The use of multiple domains for.
evaluation adds further validity to the results.

The evaluation required of the solutions produced by a problem solver
can vary across domains. In some cases, any solution that meets the goal is
equally acceptable. In other cases, the quality of the final solution is impor­
tant. In domains where the quality is important, comparisons with the best
alternative for solving the same type of problem is also needed. Not only must
learning be compared against not learning within the same approach, but also
against an independent quality metric. In addition, since our goal is to dis­
cover approaches for solving problems that currently require human abilities,
the domains on which we choose to evaluate our approach are those that are
also difficult for people. This adds a further test of the power of our approach.

Finally, the best form of evaluation is an analytical one. An analysis of
the power of an approach that can tell us when it will and will not work is
by far the best means for evaluating it. Unfortunately, such strong results are
seldom possible. We will provide analytical results for a simplified model of our
approach. We use these analytical results to qualitatively explain our empirical
results. This helps in both understanding and evaluating our approach.

In the following sections we will describe our approach, which we call
Episode Augmented Search or EASE. We provide empirical evidence from
the classic tile-sliding domain, and the logic synthesis task of VLSI design.
We provide an analytical model for explaining the behavior of our approach,
and provide a description of the mechanisms that come together to provide
the power for EASe.

2 AUGMENTING SEARCH WITH EPISODES

EASe consists of five general components: (1) goal decomposition, (2)
constrained search, (3) memory, (4) unconstrained search, and (5) learning.
Each of these components operates largely independently from the others. The
architecture of EASe is outlined in Figure 1.

EASe uses a generalization of the problem-solving architecture developed
for SteppingStone (Ruby & Kibler, 1989; Ruby & Kibler, 1991). The previ­
ous work with this architecture was dependent upon the use of steppingstones

3

as the representation for the learned knowledge. EASe removes this depen­
dency and demonstrates that the representation of the learned knowledge is
not as important as the general problem-solving architecture. In the following
subsections we will describe the functionality of each component of EASe.

2.1 Goal Decomposition

EASe assumes a state-space representation for problems that consist of a
goal, a set of operators, and an initial state. The goal consists of the con­
junction of a set of subgoals. EASe decomposes the problem of solving the
goal to that of solving each of the individual subgoals and protecting them
once solved. The subgoals are ordered so that when solved successively, the
likelihood a solved subgoal will need undoing is reduced. Note in Figure 1 how
problem solving begins with the goal decomposition component decomposing
a goal into an ordered sequence of subgoals.

As problem solving proceeds, the protection of solved subgoals increasingly
constrains the remaining search. The protection of some subgoals constrain
search more than others. For example, solving the center tile of an 8-puzzle
problem constrains the moves of a state much more than solving a corner tile.
Previous work on ordering subgoals (Cheng & Irani, 1989) have focussed on
determining required orderings of subgoals. In many domains there are no
required subgoal orderings, but some orderings are still preferable to others.
For example, generally the more constrained search becomes, the less likely it
will contain a solution. A good ordering of the subgoals is one that keeps the
state as unconstrained as possible as each subgoal is solved. Finding such an
ordering requires some measure of the degree of constraint in a state.

We developed the domain independent heuristic openness (Ruby & Kibler,
1989) to measure the degree of constraint within a state or partial state. It
operates similarly to an idea loosely outlined by Korf (1985b) for ordering
subgoals. Openness estimates the likelihood of solving a subgoal given a set
of solved subgoals are protected.

We begin by defining openness over a single unsolved goal and a set of
solved goals. Let Gs denote a set of solved goals, Gu a set of unsolved goals,
and g a single goal in Gu. The openness of g with respect to Gs is defined as:

Openness(Gs,g) = Number of operators for moving from a state where goals
Gs are solved and g is not, to a state where Gs and g

are both solved.

Openness can be computed in several different ways. For STRIPS style oper­
ators, the Openness(Gs, g) is computed by counting the number of operators
for solving g whose preconditions are not contradicted by the assertion of goals
Gs. For domains with invertible operators, we count the number of operators
for undoing g that also maintain Gs given a state where g and goals Gs are
solved. It any case, openness estimates the likelihood of solving goal g given
goals Gs are solved and protected. It is only an estimate since it ignores in­
teractions arising when solving preconditions of the operators. The openness

4

of the set Gu of unsolved goals with respect to the set Gs of solved goals is
now defined as:

Openness(Gs, Gu)= l:9 eau Openness(Gs,g).

Given a goal set G consisting of gi,g2 , ••• ,gn, the desired ordering maximizes
the sum:

n-1

L: Openness(g1 ... 9i, 9i+t ... 9n)·
i=l

Rather than finding a subgoal sequence that maximizes this sum, we in­
stead find one with a simple hill-climbing search. We begin by assuming all of
the subgoals are solved and test which subgoal if unsolved would most open the
state. This is selected as the final subgoal in the sequence. The next subgoal is
chosen in the same way until all of the subgoals are included in the sequence.
Currently subgoal orderings are not learned. The subgoal ordering is found
for each problem with this hill-climbing search. The cost of this search is then
included in the cost of solving the problem. These orderings could be learned
to further improve problem solving performance.

2.2 Constrained Search

The constrained search component takes as input an ordered set of sub­
goals. It then attempts to solve each subgoal successively. Once solved, a
subgoal is protected, so that constrained search cannot undo it. Constrained
search attempts to solve each of these subgoals with hill-climbing.

Each subgoal is assumed to have a measure for evaluating its closeness to
being solved. For example, in the 8-puzzle domain a subgoal consists of getting
a particular tile into its goal position. In this domain, the Manhattan distance
a tile is from its goal position serves as its measure of completion. For those
subgoals that are either true or false, improvement is possible only by solving
them.

When hill-climbing for a particular subgoal, only its distance from comple­
tion is used. This differs from standard hill-climbing where the metric used
is the sum of the distances of each of the subgoals of the problem. When
hill-climbing cannot solve a subgoal without undoi.ng a previously solved one,
an impasse occurs. When and only when an impasse occurs is the memory
component called.

Constrained search uses operator subgoaling. Operators may or may not
have preconditions. If an operator for improving upon the current subgoal has
preconditions, EASe is recursively called on them. The new context will in­
clude all of the protected subgoals of the previous levels. Memory and learning
may be called at any level of this recursion.

Allowing operator subgoaling is dangerous since it can make constrained
search intractable. We choose to allow it because it provides a means for
defining operators that are much more natural to the problem. For example,
in the tile-sliding domain it allows defining operators for moving any tile,
instead of just the blank. To ensure that it remains tractable we limit the

5

CONTEXT

CURRENT
position-1-3(blank)

PROTECTED
position-1-1 (1)
position-1-2(2)
position-2-3_{_31

STATE

ttl;m
Figure 2: Example Context and State from 8-puzzle

depth of the recursion to be linear in the size of the problem. This ensures
that subgoaling will not continue indefinitely, and ensures the tractability of
constrained search.

2.3 Memory of Problem Solving Episodes

The memory component of EASe takes as input a context and produces as
output a solution to the impasse. A context consists of the subgoal currently
being solved and the currently protected subgoals. Figure 2 gives an example
context from the 8-puzzle along with the current state. In this example, the
final goal is to have the tiles in the standard numeric order. Currently, tile
1 and tile 2 have been placed into their final position. The final position for
tile 3 is the upper right corner, position-1-3(3) 1. Tile 3 is protected in its
current location, posi tion-2-3 (3), since it is a precondition for moving the
tile up from there to its goal position. The other precondition for the move
up is that the blank be in the destination position, position-1-3(blank).
Once the blank is correctly placed all of the preconditions for the move up
will be satisfied. Their protection will be removed, and the 3 tile will be
moved up into its final position and protected. Unfortunately, the subgoal
position-1-3(blank) cannot be solved while maintaining the protected sub­
goals. To resolve this impasse EASe looks to its memory of problem solving
knowledge.

Memory consists of a set of problem solving episodes. An episode is a
piece of a problem solving case where reducing the current subgoal required
undoing protected subgoals. It encodes an exception to the problem solving
conducted by the constrained problem solver. Episodes act as exceptions to
the constrained problem solver much as Golding & Rosenbloom (1991) use
cases to encode exceptions to their rule-based system.

PET also learned episodes for improving upon a subgoal (Kibler & Porter,
1983). Like EASe, PET only learned episodes when problem solving required
going against the standard measure of improvement. The episodes of PET,
though, consisted of a group of rules. These rules operated as a loosely packed

1Note that position-X-Y(Z) refers to tile Zin row X and column Y

6

CONTEXT

CURRENT
position-1-3(W)

PROTECTED
position-1-1 (X)
posi tion-1-2(Y)
position-2-3J..Zl

IMPASSE SOLUTION

(1) left (2) up (3) right
(4) right (5) down (6) left
(7) up (8) left (9) down
(10) right (11) right (12) up

Figure 3: Example Episode from Memory

macro-operator for improving upon a subgoal. The episodes of EASe are
represented and used in a much different way.

Each episode consists of a context and the impasse solution. The impasse
solution of an episode generated improvement on the current subgoal when it
was learned. The protected subgoals of an episode's context are those that
were protected when it was learned that were undone and resolved by the
impasse solution. The episode is a piece of the entire previous problem solving
case. Only those pieces of a case where an impasse was resolved are learned.
The rest of the case is discarded. The learned episodes are then indexed by
their context. Unlike the rules of PET that are tried on every problem solving
cycle, an episode is only indexed when an impasse occurs. Figure 3 gives an
example episode from the 8-puzzle domain. The moves listed in the impasse
solution for this episode refer to the direction the blank is moved.

If the current context matches the context of an episode from memory, its
impasse solution is returned to the constrained search method. For the current
context to match the context of an episode, the current subgoal of the episode
must bind to the current subgoal of the inputted context. The protected
subgoals of the episode must also bind to some subset of the protected subgoals
of the inputted context.

When the memory component returns an impasse solution to constrained
search it is applied again. If its application produces an improvement upon
the current subgoal as well as maintaining all of the protected subgoals, then
problem solving continues. If the new state generated does not meet all of those
constraints, then the changes are undone and other episodes from memory
matching the current context are tried. During testing, when memory no
longer has any additional episodes that are relevant to the current impasse,
problem solving ends. This ensures that problem solving will remain tractable.
When learning is enabled, like during training, unconstrained search is called
after the memory component fails.

7

2.4 Learning New Episodes with Unconstrained Search

Unconstrained search is only called during training, since in the general
case it is intractable. It stays tractable during training only because simple
problems are used. These simple problems provide an opportunity for EASe
to learn its needed episodes.

Unconstrained search takes as input a context, like the memory component.
It then searches the problem space for a sequence of moves that generate im­
provement upon the current subgoal while ensuring that all protected subgoals
that are undone are resolved. For this we use iterative deepening depth-first
search (Korf, 1985a).

If an impasse solution is found, unconstrained search passes it and the
context to the learning component. It also passes the impasse solution back to
constrained search so problem solving can continue. If unconstrained search
cannot solve an impasse, it passes a null solution to constrained search, which
then has no recourse but to end problem solving.

The learning component takes as input a context and an impasse solution.
The learning component uses the solution and context to determine what part
of the current context is relevant to the episode. Figure 4 illustrates an example
context and solution from the 8-puzzle.

The learning component determines the relevant portions of the context
by. replaying the impasse solution. After replaying the sequence of moves, the
learner determines which of the protected subgoals were undone during the
solution. Only these subgoals are included in the context for the episode in
memory. To make the indexing of the episodes explicit, constants are then
variablized. This can lead to overgeneralization, but can be tolerated since
it is only used to index the episode. Figure 3 illustrates the episode that is
generated from the context and solution of Figure 4.

The assumption that the episodes learned on one problem will transfer to
other ones is integral to EASe. Langley (Langley, 1985) outlined three forms
of transference possible with learned problem-solving knowledge. The simplest
transference is scaling up. This allows applying knowledge learned on simple
problems to more complex ones of the same type. It is this type of transference
that we are using to make learning tractable by enabling us to learn only on
simple problems. The second form of transference outlined by Langley allows
knowledge learned on one type of problem to apply to other types. We make
use of this transference as well by learning episodes for subproblems. As long
as the learned subproblems recur in problems, regardless of their type, the
knowledge will transfer. Langley actually outlines a third type of transferance
as well, learning by analogy. Although clearly important, we do not currently
make use of it.

3 PROBLEM SOLVING WITH EASE

To demonstrate our approach scales to problems with large search spaces
and many subgoal interactions we chose to test it on a classic problem-solving
domain. The classic 8-puzzle and 15-puzzle are well known in the problem-

8

CONTEXT

CURRENT PROTECTED
position-1-3(blank) position-1-1 (1)

position-1-2(2)
position-2-3_(_31

IMPASSE SOLUTION AND STATES GENERATED

(1) left ifil(2)
2
u~ [fi(~) rig~t

1 4 3 1 4 3
5 7 6 5 7 6

{4' right
2 8
1 4 3
5 7 6

__{_71 up
2 3
1 8 4
5 7 6

(
6
10) right

4
6

5 down
2 8 3
1 4
5 7 6

_(_8l left
2 3

1 8 4
5 7 6

(~11) right

4
6

_(_6l left
2 8 3
1 4
5 7 6

9l down
1 2 3

8 4
5 7 6

Figure 4: Example Context and Solution from 8-puzzle

9

solving literature. We chose to use a generalization of these domains to test
our approach.

We define the general tile-sliding problem to consist of moving from a
random initial tile-sliding state to some random achievable final state. A state
consists of an NxN matrix of tiles. Operators are defined as moving a tile or a
blank either left, right, up or down. The precondition for an operator moving
a tile is that the new location for the tile be occupied by a blank. Operators
for moving the blank have no precondition.

The goal for an N xN tile-sliding problem consists of N 2 -1 subgoals defining
the final position for each of the tiles. The total number of states are N 2 !.
From each of these, there are N 2 !/2 reachable states. Therefore, there are
N 2 ! * (N2 !/2) different solvable problems in a NxN tile-sliding domain. The
large problem space and strongly interacting subgoals of this domain makes it
difficult.

Earlier learning research with this domain (Ruby & Kibler, 1989; Korf,
1985b; Iba, 1989) operated only on tile-sliding problems with a fixed goal.
Korf (1985b) describes how any approach for solving the fixed goal problem
can also solve a subset of the random goal problems. If a path from the random
start state and final state can be found to the fixed goal, these solutions can
be combined to form one for the entire problem. By inverting the path from
the random goal to the fixed goal and attaching it to the end of the path from
the start state to the fixed goal, a path is created from the start state to the
random final state. This approach, though, only works on problems where
both the start state and random final state are reachable from the fixed goal.
In addition, using this approach to solve the random goal problem is not the
same as learning the knowledge needed to solve it.

These earlier approaches were also limited in the generality of their knowl­
edge. Only lba's system, Maclearn, applied its knowledge learned on one size
of problem to any other size. Maclearn's limitation was that it always tried
all of its knowledge. Since it learns macro-operators, each newly learned one
increases the branching factor of the problem. Since Maclearn used best-first
search, an intractable unconstrained method, the potential benefit of these
new operators were offset by their cost. Given these limitations the largest
problem solved by any of these earlier methods was the 6x6 35-puzzle. EASe
does not have any of these limitations.

3.1 Indexing an Episode from Memory

For an episode learned on an 8-puzzle to apply to a 15-puzzle or 24-puzzle
it must be indexed when it can be embedded within one of these larger prob­
lems. This is possible with many representations. The state representation we
chose was that of an NxN matrix. A fixed offset for the row and column when
indexing allows matching within a state. These offsets are bound when match­
ing the current subgoal with the current subgoal for the context of an episode
in memory. The effects of this offset are on indexing only. No modification to
the impasse solution is made.

10

CONTEXT

CURRENT PROTECTED
position-1-4(blank) position-1-1 (1)

position-1-2(2)
position-1-3(3)
position-2-4(4)

STATE
1 2 3 7

15 5 4
10 12 9 13
8 6 14 11

Figure 5: Impasse Example from the 15-puzzle

An example will better illustrate how the indexing takes place. Figure 5
gives an example impasse from a 15-puzzle problem. Here the goal is again
to get the tiles in numeric order. Currently, tiles 1, 2, and 3 are solved and
protected. To move tile 4 into its goal position requires a move up from
its current location. The precondition for this move requires that tile 4 re­
main in its current position and that the blank be in the upper right corner,
posi tion-1-4(blank).

In this example, the blank cannot be hill-climbed from its current posi­
tion to its goal position while protecting all of the solved subgoals. Figure 3
illustrates an episode from memory indexed for this impasse. The episode is
indexed by binding the current subgoal, position-1-4(blank), to the cur­
rent subgoal of the episode, posi tion-1-3 (W). This binding results in W being
bound to the blank with a row offset of 0 and a column offset of -1. Since all of
the solved subgoals of the episode also bind to currently solved subgoals using
this same offset, the impasse solution of the episode is returned to constrained
search. In this example, this episode will successfully solve the impasse.

3.2 Generality of the Learned Episodes

In testing the capability of our system in the tile-sliding domain we were
interested in investigating several issues. First, whether or not a small set of
knowledge exists with enough generality to allow solving all problems. Second,
whether or not this knowledge can be learned by training only on simple
problems. These two issues question whether the transference assumption
mentioned in section 2.4 holds in this domain. The final issue is whether or
not the knowledge needed can be acquired tractably with iterative deepening
search. To explore these issues a series of tests were conducted.

We began by training EASe in the tile-sliding domain. In training our
system we developed an approach that we call convergence training. In it we
train the system on one size of problem until it solves some number of them
successively without learning anything new. This is the convergence test. Once
passed, the size of the problem is increased and training continues. For our

11

Problem Problems Episodes Episode Length Search Required
Size Solved Learned Min Max Min Max

3x3 88 21 3 15 12 6831
4x4 98 10 3 20 23 17,342,971

Table 1: Tile-Sliding Learning Results

experiments we used 50 as the number of problems for the convergence test.
Each of the training problems were generated by first beginning with a

state where all of the tiles were in numeric order. A new initial state was
generated from this state by randomly applying some number of permutations.
A permutation swaps any two tiles in a state. A random walk was then taken
from this new initial state to generate the new goal state. For the 3x3 and
4x4 training problems 1000 permutations were applied to generate the initial
state, and a random walk of 1000 moves used to generate the goal state. Note
that a new initial state and final state was generated for each problem.

For the tile-sliding domain, EASe was trained on the 3x3 sized 8-puzzle
and the 4x4 sized 15-puzzle. After this, when training on larger problems
no further learning occurred. The episodes learned while training on these
smaller problems proved sufficient to solve all additional ones. Table 1 gives
information on the episodes learned. In total, 31 episodes were learned after
training on 186 problems. Most of these were learned on the simpler 8-puzzle.
The episodes learned varied in length from 3 moves to 20 moves. The cost to
find the longest episode was more than 17 million nodes.

All of the episodes learned involved the placement of the blank as the
current subgoal. The episodes varied in the number of protected subgoals
that needed to be undone for further progress. The simplest episodes did not
require undoing any protected subgoals. These episodes moved a blank around
a protected tile. These were needed because the blank cannot be hill-climbed
from behind a tile to in front of a tile. The most complex episodes required
undoing as many as five protected subgoals.

To test the power of our approach before and after learning we conducted a
series of tests with problems of varying size. We generated 10 random problems
each from the 3x3, 4x4, 5x5, lOxlO, 15x15, and 20x20 sized problems. We
generated the problems as before, using random permutation for the initial
state and a random walk for the final state. For the 3x3 and 4x4 puzzles,
2000 permutations and 2000 moves were used. For the 5x5, lOxlO, 15x15, and
20x20 problems 10000 permutations and 10000 moves were used.

We then tested EASe on these problems with and without the learned
episodes. When testing without the learned episodes, we allowed EASe to fall
back on unconstrained search but did not allow it to learn. This allowed us to
determine the amount of reduction in search provided by the learned episodes.
For comparison, iterative-deepening A* (IDA*) using the Manhattan distance

12

Nodes Expanded
1010
109

108
101
106
10s
104
103
102
101
10°-.........-~~~~~~~~~~~

5x5 lOxlO 15x15 20x20
IDA*
EASe Without Learned Episodes
EASe With Learned Episodes

Figure 6: Performance Improvement from Learning

metric was also tested on the same problems. Note, that this comparison is
somewhat unfair since IDA* finds optimal solutions. Still, it provides a nice
base from which to compare the results. The results are plotted in Figure 6.

With the 31 episodes learned, EASe solved all of the problems from each
of domains tested ranging from the 3x3 size to the 20x20 size. This demon­
strates that for this domain the knowledge learned on the simpler 3x3 and 4x4
problems was sufficient for solving all addition~l problems. It is this charac­
teristic of the domain that keeps it tractable. Without the learned episodes,
only problems up to the 5x5 size were solvable. This clearly demonstrates that
learning not only speeds up problem solving, but also increases the number of
problems solvable.

The rate of growth in the search required for EASe without learning was
still much smaller than that of ID A*. This is somewhat surprising given that
EASe relied upon iterative deepening depth-first search to solve the impasses.
This reduction was due solely to the effects of the subgoal decomposition and
the use of hill-climbing for the simpler parts of the problem. This subgoal
decomposition reduced the length of the subgoal solution, thus reducing the
amount of search required. Note that with the 8-puzzle there is little difference
between the performance without episodes and IDA*. The difference in the
performance is only encountered when scaling to larger problems.

4 OPTIMIZATION WITH EASE

Our approach towards problem solving is well suited to optimization. In
fact, we view all problem solving as an incremental process of taking varying
sized steps towards completion. With an optimization problem, though, it
may not be possible to actually generate the optimal solution. The goal for
these problems is merely to find the best solution possible.

Finding optimal solutions to design optimization problems is in most cases
intractable. It was our hypothesis, though, that a small set of knowledge would
allow generating good solutions. We were interested in discovering whether or

13

not learning on simple problems would again provide us with this knowledge.
To test EASe's capabilities with optimization problems we chose the logic
synthesis and optimization task of VLSI design. This is a classic optimization
task that is difficult both for people and computational approaches. Several
application systems have been developed for this task and a wide variety of
benchmark problems exist.

4.1 Logic Synthesis and Optimization

In logic synthesis, a functional specification of a circuit is mapped into
combinational logic using a library of available components. These components
are taken from a technology-specific library. The components available in
a library as well as the performance characteristics of the components will
vary depending upon the technology and particular manufacturer chosen. The
synthesized circuit can be optimized for a variety of constraints. In testing our
approach we chose to optimize the circuits for their critical path delay.

Each component in a library computes some boolean function. It has some
number of inputs and one output. To compute the delay of a circuit requires
a model of the delay of each component. Earlier work with this domain (Ruby
& Kibler, 1991) used a simplified component model that consisted of a single
delay value for each component. We elaborate this model to include for each
input to a component its rise delay, fanout rise delay, fall delay, fanout fall
delay, and load. This level of detail is necessary to operate on the benchmark
problems developed in the logic synthesis research community.

A functional specification for a problem consists of a set of inputs, a set
of outputs, and a definition for each of the outputs as a boolean function of
some of the inputs and other outputs. The boolean operations allowed are
and, or, and not. Operators in this domain map boolean expressions into
the component for computing it. Other operators map components into their
boolean expression. An operator for removing two successive inverters is also
included. Although these operators are procedural, our approach operates as
easily with them as it does STRIPS style operators.

The goal of a problem is then represented as the conjunction of two sub­
goals: (1) find a circuit that is realizable with components from the selected
library, realizable and (2) optimize the circuit for the critical path delay
time, opt imize-cp. Hill-climbing finds a circuit that is realizable. Initially,
the system has no knowledge of any operators for improving the critical path
delay. It must learn how to optimize for the critical path delay time.

Figure 7 gives an example impasse from the logic synthesis domain. The
initial state of this problem was the Boolean equation f = a /\ b /\ c. In
the current impasse state, the subgoal realizable is solved and protected.
The current subgoal is to optimize for the critical path delay, opt imize-cp.
Unfortunately, it is not possible for constrained search to improve upon the
subgoal optimize-cp without undoing the protected subgoal realizable.

The sequence of states shown in Figure 7 lead from the impasse state to
one where the critical path delay is improved. This new circuit is found with

14

Critical Path Delay Impasse

:>:>
States Leading to Improvement

:>:>-"''.)>--I~_ 1
0
>

Figure 7: Example Impasse from Logic Synthesis

x

y

CURRENT
optimize-C]2

CONTEXT
PROTECTED

realizable

IMPASSE SOLUTION

Figure 8: Example Episode from Logic Synthesis

the unconstrained method of iterative deepening. These states show that only
part of the state needs to be made unrealizable for improvement on the critical
path delay. It is only those parts of the state involved in the protected subgoal
that needed to be undone, the subgoal realizable, that need to be included
in the episode learned. After editing out the portions of the state not involved
with the impasse, we end up with the episode shown in Figure 8. The impasse
solution shown is the replacement rule representing the sequence of moves used
to improve upon the subgoal optimize-cp. The variables X, Y, and Z can
be bound to any subcircuit for indexing. Whenever the impasse solution is
applied again, the bound left hand side is replaced in the circuit by the bound
right hand side of the rule. .

When indexing episodes from memory, they are ordered by the amount
they can improve upon their current subgoal. Those likely to generate the
largest improvement are tried first. These improvement values are computed
when the episode is acquired and are not revised during problem solving.

4.2 Episode Augmented Search for Logic Synthesis

To demonstrate EASe could learn optimization knowledge we conducted
a series of experiments. A component library was created with a few of the
common component.s available from the MCNC benchmark library. 2 The com-

2Several libraries are available for anonymous ftp
from "mcnc.org". The components used in the experiments were a subset of those from

15

Problem Problems Episodes Episode Length Search Required
Size Solved Learned Min Max Min Max

2-inputs 73 3 1 4 1 16
3-inputs 59 4 3 6 26 6179
4-inputs 91 13 3 8 147 25754
5-inputs 125 10 4 7 239 24680

Table 2: Logic Synthesis Learning Results

ponents included were: (1) 2-input nand, (2) 2-input nor, (3) 3-input nand, (4)
3-input nor, (5) inverter, (6) aoi21 (•(a*b+c)), and (7) oai21 (•((a+b)*c)).

We trained the system on a subset of random boolean functions with 2 to 5
inputs using the boolean connectives of and, or, and not. Functions generated
consisted of n terms connected by n - 1 binary boolean operations, where n
was the number of inputs. Each term consisted of either one of the n inputs
or one of the inputs inverted. Each input was used in only one term. Since
there were two choices for each boolean operation there are on order 2n-l
possible functions of this form with n inputs. For each of these functions each
of the inputs may or may not have been inverted, making the total number of
possible functions with n-inputs on the order of 2n-l * 2n or 22n-1 •

We trained the system again using convergence training, with 50 as the
number of problems for the convergence test. We trained on problems rang­
ing from 2-inputs to 5-inputs. A maximum of 26000 nodes were allowed for
unconstrained search during training. Table 2 gives the results of this training.

In total, 30 episodes were learned after training on over 348 problems. Most
of the episodes were learned on the larger training problems. The length of
learned episodes varied from 1 move to 8 moves with the maximum amount
of search requiring over 25000 nodes. Note that the maximum length of a
learned episode when training on problems with 4-inputs is greater than that
when training on those with 5-input problems. This was due to growth in the
branching factor given a constant maximum search of 26000 nodes.

Table 3 gives the impasse solutions from all of the episodes learned. The
table is organized with the left hand side of the replacement rule given in the
before column and the right hand side given in the after column. The terms
X, Y, and Z can be bound to any subcircuit. When reapplied, the bound
subcircuit in the before column is replaced by respective subcircuit in the after
column.

The rules are organized by the format of their before subcircuit. The first
group all involve subcircuits that consist of a single component. The second
group consist of a single inverted component. Most of the rules, 22 out of 30,
map a single component along with some inverters into some new configuration

the pub/benchmark/LGSynth89/wkslibrary /lib2.rnis2lib library.

16

Id Before After
1 aoi21(X,Y,Z) nor2(nor2(not(X),not(Y)),Z)
2 aoi21(X,Y,Z) nor2(not(nand2(X,Y)),Z)
3 nor3(X,Y,Z) nor2(not(nor2(X, Y)),Z)
4 not(nand3(X,Y,Z)) nor2(nand2(X, Y) ,not(Z))
5 not(aoi21(X,Y,Z)) nor2(nor2(X, Y) ,not(Z))
6 not(oai21(X,Y,Z)) aoi21(not(X),not(Y),not(Z))
7 not (nand2(X, Y)) nor2(not(X) ,not(Y))
8 not(nor2(X,Y)) nand2(not(X) ,not(Y))
9 not(nor3(X,Y,Z)) nand3 (not (X) ,not (Y) ,not (Z))
10 oai21(not(X),Y,Z) nand2(nand2(X,not(Y)),Z)
11 aoi21(not(X), Y,Z) nor2(nor2(X,not(Y) ,Z))
12 aoi21 (not(not(X)) ,not(Y) ,Z) nor2(nor2(not(X), Y),Z)
13 nor3(not(X), Y ,Z) nor2(nand2(X,not(Y) ,Z))
14 nor2(not(X),not(Y)) not(nand2(X, Y))
15 oai21 (not(X),not(Y),Z) nand2(nand2(X,Y),Z)
16 nand3(X,not(Y) ,not(Z)) nand2(nor2(Y ,Z),X)
17 nor3(X,not(Y) ,not(Z)) nor2(nand2(Y ,Z) ,X)
18 not(oai21(X,Y ,not(Z))) aoi21 (not(X) ,not(Y) ,Z)
19 not(nor2(not(X),Y)) nand2(X,not(Y))
20 not(nand2(X,not(Y))) nor2(not(X),Y)
21 not(nand3(not(X), Y ,Z)) nor3(X,not(Y) ,not(Z))
22 not(oai21(not(X),Y,not(Z))) aoi21 (X,not (Y), Z)
23 nand2(X,nand2(Y ,Z)) oai21(not(Y),not(Z),X)
24 nand2(X,nor2(Y ,Z)) nand3(not(Y),not(Z),X)
25 nor2(X,nor2(Y ,Z)) aoi21(not(Y),not(Z),X)
26 nand2(nand2(X,not(Y) ,Z) oai21 (not(X),Y,Z)
27 nor2 (X,not (nand2(Y, Z))) aoi21 (Y ,Z,X)
28 aoi21 (W ,X,not(nor2(Y ,Z))) nor3(Y,Z,not(nand2(W,X)))
29 not(oai21 (nand2(W,not(X),Y ,Z))) aoi21 (nor2 (not (W) ,X) ,not (Y) ,not (Z))
30 not(not(X)) x

Table 3: Learned Impasse Solutions from Logic Synthesis

17

Delay (ns)
12.0

10.0

8.0
6.0
4.0

2.0

.. ----
:= -

__ ... -- __ ..
--

• - - -e

0.0 +-----~---~---~
30-input 40-input 50-input
EASe Without Learned Episodes
EA Se With Learned Episodes
Mis II

Figure 9: Average Performance on Random Problems

of components. The remaining replacement rules involve two components or
the removal of two successive inverters.

In many ways learning in this domain was simpler than in the tile-sliding
domain. The maximum search required, length of learned episodes, and even
the number of learned episodes are all less than that required for the tile-sliding
domain. What was difficult about this domain was the complex representation
required for the problem space. The size and complexity of the program needed
to represent and process the logic synthesis problems were orders of magnitude
greater than for the tile-sliding domain. Because of the complexity of the state
and operator representations required for the logic synthesis problems, it was
not possible to search as much in this problem space as we did for the tile­
sliding domain.

The knowledge learned in this domain is not complete like it was in the
tile-sliding domain. If we were to search more of the problem space we would
learn more episodes. EASe does not require complete knowledge but merely
uses its knowledge to best effect. It uses its knowledge to generate solutions
and assumes those generated are sufficient. Thus, problem solving remains
tractable even in an intractable domain like this qne. But we must evaluate
the quality of the solutions found.

To test the quality of solutions generated by EASe a series of tests were con­
ducted. We tested EASe on ten random problems each from a series of prob­
lems sizes. The sizes included were 30-input, 40-input, and 50-input random
boolean functions. The results of these experiments are plotted in Figure 9.
The average critical path delay of circuits generated by the system without
learning, using goal-decomposition and hill-climbing alone, are also plotted
in Figure 9 to illustrate how much using the learned episodes improved the
quality of the solutions.

In order to judge the difficulty of these problems and the quality of the so­
lutions generated we decided to compare our results to an existing application

18

system. We chose the MisII system (Brayton, Rudell, Sangiovanni-Vincentelli,
Wang, 1987) because it is the standard for comparison in the logic synthesis
research community. This system actually consists of a package of utility pro­
grams. These utility programs can be combined in different ways for different
modes of operation. These modes are defined by scripts. Two different scripts
were used for testing. The first was a default script included with the system.
The second script was the simplest one possible. The simplest script returned
the best results for the random problems, so it was the one used for testing.
The results returned from our experiments with MisII are also plotted in Fig­
ure 9. Note, that although the MisII system had capabilities that allowed it
to generate solutions not in the search space of our approach, EASe still gen­
erated circuits with critical path delay times that averaged within 13 percent
of those generated by MisII.

4.3 Augmenting Misll with Episodes

The knowledge acquired by EASe is different from that usually encoded in
an algorithm for solving a class of problems. A general algorithm encodes a
core of knowledge for handling problems in the domain. This knowledge is sim­
ilar to that used by the constrained problem solver in EASe. Learned episodes
encode exceptions to the approach followed by the constrained problem solver.
Specific episodes can also encode exceptions to a general algorithm.

To demonstrate that EASe could use the episodes learned to improve upon
the solutions generated by an application system, a second experiment was
conducted. For this second experiment we used the same library of components
and goal specification as in the previous experiment. In this case, though, the
input to EASe was a circuit that had already been optimized by MisII, not a
functional specification.

Instead of using random problems for this experiment, we used benchmark
problems from the logic synthesis community. These problems are designed
to test logic synthesis application systems. We decided that these problems
would present the best means for evaluating our approach as well. The set
of problems chosen are available along with the libraries of components for
anonymous ftp3 . There are 64 problems of various sizes in the set chosen.

The problems in this set varied considerably in difficulty. We decided to
test our approach on a subset of the problems, based on their size. The MisII
package provides several measures for the size of a problem. The two used
for the benchmark problems were: (1) the number of literals in the sum-of­
product representation, and (2) the number of nodes in the network. Given
these two measures, the problems fell into roughly 3 classes. The first class
consisted of problems where the number of nodes in the network was less than
100 and the number of literals was less than 1000. This was the largest class
and consisted of 39 problems. The second class consisted of problems where
either the number of nodes was between 100 and 1000, or the number of literals

3The problems chosen are available for anonymous ftp from "mcnc.org" in the directory
pub /benchmark/LGSynth89 /mlexamples.

19

Problem Number of Critical Path Delay (ns)

Name Nodes Literals Mis II MisII+EASe Improvement(%)

cm163a 16 69 6.30 4.40 30.2

cm42a 13 35 4.17 3.10 25.8

cht 36 374 7.62 5.72 25.0

set 40 236 5.93 4.87 17.9

cm150a 16 92 6.67 5.49 17.6

ttt2 67 719 10.0 8.3 17.0

pml 31 98 3.48 2.94 15.6

cm82a 6 28 4.48 3.82 14.8

pcler8 24 102 9.77 8.32 14.8

cm85a 24 68 6.49 5.64 13.1

cmb 14 69 5.41 4.76 11.9

9symml 44 278 11.53 10.29 10.8

x2 12 74 4.80 4.31 10.2

ldd 31 173 8.12 7.31 10.1

lal 71 258 5.61 5.05 9.9

apex7 59 352 11.30 10.22 9.5

pcle 16 78 7.10 6.43 9.4

f51m 16 327 6.54 5.93 9.3

cm162a 19 74 6.61 6.02 9.0

count 47 174 13.45 12.30 8.6

c8 48 363 5.48 5.03 8.2

z4ml 8 256 5.36 4.95 7.6

cu 23 98 4.83 4.50 6.7

cm138a 9 35 4.78 4.47 6.6

myadder 49 305 22.71 21.35 6.0

comp 55 200 14.63 13.77 5.9

unreg 32 144 3.66 3.48 4.7

frgl 3 792 8.78 8.50 3.2

parity 15 60 7.91 7.71 2.6

cc 33 110 5.48 5.41 1.3

C17 6 12 2.05 2.05 0.0

bl 12 19 2.97 2.97 0.0

majority 12 21 3.01 3.01 0.0

cm152a 1 32 4.41 4.41 0.0

cm151a 9 45 5.74 5.74 0.0

tcon 16 56 1.62 1.62 0.0

decod 18 68 3.92 3.92 0.0

mux 6 142 8.02 8.02 0.0

Average 25.18 169.4 6.86 6.21 9.0

Table 4: EASe with Learned Episodes

20

was between 1000 and 10000. The third class consisted of a single problem
with 14533 literals.

The first of these classes of problems were used to test EASe. Unfortu­
nately, these measures of problem size are not perfect measures of the size of
the circuit generated. One problem from the first class turned out to be much
more difficult than all of the rest. It could not be completed within a few cpu
hours, so it was removed from the test set.

When testing MisII on these problems we again used the two scripts (sim­
plest and default) described earlier. For these problems there was no single
best script for all of the problems chosen. Each problem was optimized by
MisII using both scripts with the best results taken as the optimized circuit.
EASe was then used to further improve these optimized circuits. Table 4
shows that significant improvements were possible on these benchmark prob­
lems. The improvements ranged from 30 percent to no improvement. The
average improvement EASe generated on these 38 benchmark problems was
9.0%.

5 MODEL OF EASE

In this section we present an analysis of the effectiveness of EASe. The anal­
ysis requires strong assumptions about the domain and the problem-solving
process. In particular, we will model the weak methods as bounded breadth­
first or hill-climbing search. Our analysis will compare the situation where
EASe has no memory to that where it has a complete memory. A complete
memory is one with sufficient coverage such that the unconstrained problem
solver is never needed. We will also demonstrate the significance of training
on simple problems. We will explore two different models to demonstrate the
generality of the results. These models differ in their choice for the constrained
search method. The first model used bounded breadth-first search, while the
second uses hill-climbing search.

5.1 Breadth-First Model

In our first model, we assume that constrained search does a breadth-first
search to depth d and unconstrained search does one to depth /. We assume
that the branching factor is the constant b. We also assume all problems can
be solved without the use of memory.

Before any learning takes place, problem solving will oscillate between con­
strained and unconstrained search. Suppose c subproblems are solved by the
constrained search, while unconstrained search solves u subproblems. The so­
lution cost for the c subproblems solved by constrained search is c * bd. Since
the u subproblems solved by unconstrained search must first be tried by con­
strained search their total solution cost is u * bd + u * b1• The total computation
cost for the model without memory is thus bounded above by:

(c + u) * bd + u * b1
• (1)

Now suppose that sufficient learning takes place such that the uncon-

21

strained problem solver need never be called. We define bm as the number
of episodes that will match an impasse and assume that it is the same for all
impasses. Since all but the last of the episodes that match might fail to resolve
the impasse, all episodes that match may need trying. The resulting search
cost is bounded above by:

(C + U) * bd + U * bm. (2)

Roughly speaking, the effect of memory is to replace the term b1 by the
term bm. This demonstrates that as long as bm is not large an appropriate
memory of past difficulties yields an exponential decrease in computation cost.
Actually, the factor bm is not as important as the likelihood that an indexed
episode will succeed in solving an impasse. In particular, if s is the likelihood
that a matched subgoal sequence from memory will succeed, then bm should
be replaced by 1/ s.

5.2 Hill-Climbing Model

Another model of constrained search is hill-climbing. As above, let us first
assume that when memoryless, the unconstrained method is sufficient to solve
problems. Let m be the length of the solution to a subgoal found using hill­
climbing. Also let l be the length of the solution to a subgoal found by the
unconstrained problem solver. In this case equation 1 becomes:

(3)

Now, after learning is complete, a bound on the computational cost is:

(c + u) * m * b + u * bm. (4)

As before, the factor bm can be replaced by 1/ s wheres is the likelihood of
success. In any case, the major effect is to replace b1 by the factor 1/ s. In this
case, a complete memory transforms an exponential search to a linear one.

5.3 Training on Simple Problems

From the previous analysis it appears that learning only speeds up problem
solving. Problems must be solvable without learning if the needed episodes
are to be learned. Fortunately, this is not the case. What is missing from the
analysis is the significance of training on simple problems. In particular, it is
unreasonable to assume that the branching factor is constant over all problems
from the simplest to the most difficult.

Assume that unconstrained search is allowed to expand approximately b1

nodes, rather than being bounded to search no deeper than /. This is a more
realistic constraint, since it is computation time that is usually bounded. This
means for problems with a larger branching factor, only a search to a lesser
depth is possible.

Assume also a domain with a range of problems of different difficulties,
where the branching factor of the easiest problems is Vb and the most difficult

22

is b2 • Given that the length of the impasse solutions is l, then learning on the
easiest problems will only require expanding on order b112 nodes. More inter­
esting is that without learning, those problems with branching factor greater
than bare unsolvable given the search bound. Solving the most difficult prob­
lems without learning requires expanding on order of b2*1 nodes, or b1 times as
many nodes as that allowed. It is only by learning these episodes on simpler
problems and reusing them that the more difficult problems can be solved at
all. Note that in many domains, like logic synthesis, there is no bound on
problem difficulty. In these cases, the savings from learning will also grow
without bound.

6 POWER OF EASE

The power of our approach stems from three sources. First, it decomposes a
problem into simpler subproblems. Second, it learns and reuses previous prob­
lem solving episodes for difficult subproblems. Third, it effectively integrates
these basic sources. We will now examine the value of these techniques.

6.1 Problem Decomposition

Simplifying a problem by decomposing it into simpler problems is a funda­
mental approach to problem solving. Problem decomposition simplifies a dif­
ficult problem into a set of subproblems. We take advantage of two different
approaches to breaking a problem into subproblems: (1) breaking conjunc­
tions, and (2) hill-climbing.

When operating on a problem that consists of a conjunction of subgoals,
we begin by decomposing the initial problem into that of solving each of the in­
dividual conjuncts. These conjuncts are ordered using the openness heuristic.
Once solved, a subgoal is protected. It is initially assumed that the ordered
conjuncts, or subgoals, can be solved in order without undoing them once
solved. Although all of the subgoals of a problem cannot usually be solved
under this assumption, some usually can.

Hill-climbing is also used to decompose a problem. We decompose the
problem of solving a subgoal to that of reducing its difference from comple­
tion. Thus a single subgoal is decomposed into several simpler subproblems
each of which moves the subgoal closer to completion. Since we assume that
any subproblem solution can be combined to form the final solution, these
subproblems are independent. This is an effective means of decomposing a
problem into simpler independent parts.

Decomposing a problem into simpler subproblems provides our approach
with a great deal of power. Decomposing a problem into independent parts
is known to greatly reduce the difficulty of a problem (Korf, 1987). Given a
problem with branching factor B and solution depth D would require uncon­
strained search to expand on order ED nodes. If this problem can be reduced
ton independent subproblems each with depth D/n, the search tree is reduced
ton search trees each with size on the order of BD/n nodes. This reduction is
possible as long as the subgoals are treated as though they were independent.

23

The techniques used by EASe to break difficult problems down into sub­
problems are relatively simple. Many additionaly techniques have been de­
veloped, such as abstraction (Knoblock, Tenenberg, Yang, 1991) and problem
reformulation (Flann, 1989; Riddle, 1990). EASe could use these methods or
any other ones to further assist in decomposing a problem. The use of ad­
ditional problem decomposition methods in EASe is an interesting area for
future research.

6.2 Memory of Previous Cases

The use of previous cases to solve problems is a well known technique
(Lehnert, 1987; Hammond, 1990; Alterman, 1988). One of its advantages
is that it can solve a problem regardless of its difficulty as long as it has
solved a similar problem before. Its difficulties arise when trying to operate on
random problems from domains with large problem spaces. Rajamoney & Lee
(1991) demonstrated that case-based problem solving could be combined with
other methods to solve novel problems from complex domains. It is through
integration with other methods that we too use case-based problem solving.

To better understand case-based problem solving we begin by characteriz­
ing the search it requires. Given a problem it must first search for a relevant
previous case. Once a relevant previous case is found, a search through a space
of case modifications must be conducted to allow the case to operate on the
current problem. Thus, case-based problem solving moves a search dependent
upon the depth and branching factor of the problem to one dependent upon
the number of cases in memory and the number of modifications required.

We use case-based problem solving to solve the difficult portions of a prob­
lem. Since we do not allow any modifications to the case, it remains tractable
as long as the number of them required is not too large. Our approach depends
upon generating the necessary cases with unconstrained search on simple prob­
lems. The cost of finding the cases is kept tractable by learning them on simple
problems. We keep the number of cases required low by only learning them
when constrained search fails to solve a subproblem.

6.3 Integrating Multiple Methods

It is through the integration of methods that our approach derives its real
power. Each of the methods individually cannot solve difficult problems. This
alone is an interesting result. It demonstrates why the evaluation of basic
methods on complex problems is not always feasible. Only through their
integration do they scale up to difficult problems.

SOAR provides us with an architecture for integrating methods through
multiple problem spaces. It allows the use of multiple problem spaces by
switching between them when an impasse occurs. For SOAR, an impasse occurs
whenever a decision cannot be made in the current problem space. We use
this same basic approach to integrate our weak methods. Constrained search
is used until it is unable to make further progress, at which point an impasse
occurs. The problem space then changes to a case-based problem solver with
the goal of improving upon the impasse. Here episodes are indexed until

24

either improvement is made or all relevant episodes are tried. If that too
fails, unconstrained search is tried and if successful a new episode learned.
Learning in EASe, like SOAR, leads to less changes between problem spaces.
After learning, EASe no longer needs unconstrained search.

EASe differs from SOAR in several ways, though. SOAR can dynamically
choose a new problem space in response to an impasse. The problem spaces in
EASe are predefined and static. EASe also learns episodes instead of chunks
and indexes its knowledge differently. SOAR learns to avoid impasses. EASe
continues to encounter impasses, but learns how to solve those encountered.
Impasses signal EASe that memory needs to be tried. Still, using the basic
SOAR concepts of multiple problem spaces and impasses to integrate the right
weak methods into the right architecture we created an approach capable of
solving complex and difficult problems.

7 RELATED WORK

To better understand our approach we compare it to other learning problem
solvers. Korf (1985b) showed that if macros are learned for solving each sub­
goal of a problem and these macros depend only on the value of that subgoal
and the previously solved subgoals, problems can be solved easily. Unfor­
tunately this approach only works if a complete set of these macros can be
le~rned. This requires that the problem state space be operator decomposable,
with states represented by a vector of discrete state variables. We use a related
approach but adopt a heuristic view. Our approach does not require complete
knowledge, since it uses search to solve some of the subgoals. In addition, we
add the use of hill-climbing to further decompose difficult problems.

Morris (Minton, 1985) learned macro-operators for a STRIPS style problem
solver. Like our approach, it demonstrated that being selective about what
to learn can improve performance. It demonstrated performance gains over
MACROPS (Fikes, et al., 1972) by learning less. Still, each learned macro
increased the branching factor of the problem. Unlike our approach, which
reluctantly tries its new knowledge, Morris always tries its new knowledge first.
In addition, Morris used a single search mechanism, means-ends analysis. We
take advantage of two different search mechanisms, using the more costly to
provide a source of knowledge for the less costly. ·

Maclearn (Iba, 1989) was also selective about what it learned. It learned
macro-operators for a best-first algorithm that satisfied its peak-to-peak heuris­
tic. A peak occurs when reaching a state where all of the surrounding states
have worse heuristic values. While Maclearn attempts to learn how to move
from one peak to another peak, EASe attempts only to learn to make it over
difficult peaks, depending upon its constrained problem solver to move it to­
wards the next peak. Rather than learn a macro-operator that must be tried
along with all of the other operators, EASe learns an episode. These episodes
are only indexed after all of the domain operators fail to lead to improvement.

In our earlier work with SteppingStone (Ruby & Kibler, 1989; Ruby &
Kibler, 1991) we developed the basic architecture used by EASe. Stepping-

25

Stone, though, used a different representation for its problem solving knowl­
edge. It learned an abstract plan for solving an impasse, rather than the
impasse solution itself. This plan was represented as a sequence of subgoals,
or steppingstones. EASe demonstrates that the architecture developed with
SteppingStone can use other components and still generate a powerful problem
solver.

8 CONCLUSIONS

The goal of this research has been to find and understand methods for
solving difficult problems. Most well understood methods are weak and unable
to solve complex problems. With our research we have demonstrated that
when these weak methods are integrated it is possible to create a powerful
problem solver. Our goal was a tractable problem solver for complex problems,
so we combined the tractable and complementary methods of hill-climbing
(with its global knowledge) and case-based problem solving (with its local
knowledge). We made iterative deepening tractable for learning by using it
only to solve simple problems.

Solving complex problems not only requires a good problem solver, it also
requires simplifying the problem as much as possible. We used problem de­
composition to simplify difficult problems. Goals consisting of the conjunction
of subgoals were split into their component subgoals and ordered. We used
hill-climbing to further decompose problems into episodes that improve upon
the solution.

We demonstrated our approach on random problems from the tile-sliding
domain. We found that with a small memory of episodes we were able to solve
all random problems in this domain. We found a similar result with the logic
synthesis and optimization task of VLSI design. Here we found that we did
almost as well as the standard application system in the domain. In addition,
we showed we could actually improve upon the solutions generated by the
application system.

Finally, we provide analytical results with a model of our approach to
explain our empirical results. These analytical results demonstrate how an
exponential process is reducible to a linear one. These analytical results help
us to better understand our approach and the results achieved.

These results have demonstrated our approach will work whenever a prob­
lem can be decomposed into: (1) simple subproblems, and (2) difficult sub­
problems that recur. The simple subproblems are defined as those solvable
by weak methods. The difficult subproblems must not only recur, but also
be solvable. It may not be possible to find the solution to them in general,
but must be possible in at least idealized training examples. If unsolvable by
automated methods, an expert can also generate the cases needed. As long
as a small number of episodes can cover all of the difficult subproblems, this
approach will be successful.

We now intend to extend our research in two directions. First, given our
success with optimization problems from logic synthesis, we are now interested

26

in exploring scheduling optimization problems. Scheduling problems occur in
domains ranging from manufacturing to software engineering. They pose a
difficult challenge to current computational methods. Success in this domain
offers the potential for important contributions not only to machine learning
but to scheduling applications areas as well. The second direction we intend
to take this research is towards a better formalization of our results. Our
research has demonstrated the power and generality of EASe empirically, but
our analytical work has not yet fully formalized these results. A more complete
formalization will yield a better understanding of when the problem solving of
EASe will succeed.

Acknowledgments

Thanks go to Karl Schwamb, Steve Hampson, Piew Datta, Steve Morris,
Yousri El Fattah, Margaret Elliott, Caroline Ehrlich and the rest of UCI Ma­
chine Learning group for discussions and comments on earlier drafts of this
paper.

27

References

Alterman, R. (1988). Adaptive Planning. Cognitive Science, 12, 393-421.

Bradtke, S., & Lehnert, W. (1988). Some experiments with case-based search.
Proceedings of the Seventh National Conference on Artificial Intelligence
(pp. 133-138). St. Paul, MN: Morgan Kaufmann.

Cheng, J., & Irani, K. B. (1989). Ordering problem subgoals. Proceedings
of the Eleventh International Joint Conference on Artificial Intelligence
(pp. 931-936). Detroit, MI: Morgan Kaufmann.

Flann, N. S. (1989). Learning appropriate abstractions for planning in for­
mation problems. Proceedings of the Sixth International Workshop on
Machine Learning (pp. 235-239). Ithaca, NY: Morgan Kaufmann.

Golding, A. R. & Rosenbloom, P. S. (1991). Improving rule-based systems
through case-based reasoning. Proceedings of the Ninth National Confer­
ence on Artificial Intelligence (pp. 22-27). Anaheim, CA: AAAI Press.

Hammond, K, J. (1990). Explaining and repairing plans that fail. Artificial
Intelligence, 45, 173-228.

Iba, G. A. (1989). A Heuristic Approach to the Discovery of Macro-operators.
Machine Learning, 3, 285-317.

Kibler, D., & Porter, B. (1983). Episodic Learning. Proceedings of the National
Conference on Artificial Intelligence (pp. 191-196). Washington, D.C.:
Morgan Kaufmann.

Knoblock, C. A., & Tenenberg, J. D., & Yang, Q. (1991). Proceedings of
the Ninth National Conf~rence on Artificial Intelligence (pp. 692-697).
Anaheim, CA: AAAI Press.

Korf, R. E. (1985a). Depth-first iterative-deepening: An optimal admissible
tree search. Artificial Intelligence, 27, 97-109.

Korf, R. E. (1985b). Learning to Solve Problems by Searching for Macro­
Operators. Boston, MA: Pittman Advanced Publishing Program.

Korf, R. E. (1987). Planning as search: A quantitative approach. Artificial
Intelligence, 33, 65-88.

Laird, J.E., Newell, A., & Rosenbloom, P. S. (1987). SOAR: An Architecture
for General Intelligence. Artificial Intelligence, 33, 1-64.

Langley, P. (1985). Learning to Search: From Weak Methods to Domain­
Specific Heuristics. Cognitive Science, 9, 217-260.

Lehnert, W. G. (1987). Case-based problem solving with a large knowledge
base of learned cases. Proceedings of the Sixth National Conference on
Artificial Intelligence. Seattle: Morgan Kaufmann.

Minton, S. (1985). Selectively generalizing plans for problem solving. Proceed­
ings of the Ninth International Joint Conference on Artificial Intelligence
(pp. 596-600). Los Angeles, CA: Morgan Kaufmann.

28

Minton, S. (1988). Learning effective search control knowledge: An explanation­
based approach. Doctoral dissertation, Carnegie Mellon University, Pitts­
burgh, PA.

Riddle, P. (1990). Automating problem reformulation. In D. P. Benjamin
(Ed.), Change of Representation and Inductive Bias. San Mateo, CA:
Morgan Kaurmann. .

Ruby, D., & Kibler, D. (1988). Exploration of case-based problem solv­
ing. Proceedings of the Case-Based Reasoning Workshop (pp. 345-356).
Clearwater, FL: Morgan Kaufmann.

Ruby, D., & Kibler, D. (1989). Learning subgoal sequences for planning.
Proceedings of the Eleventh International Joint Conference on Artificial
Intelligence (pp. 609-614). Detroit, MI: Morgan Kaufmann.

Ruby, D., & Kibler, D. (1991). SteppingStone: An empirical and Analytical
Evaluation. Proceedings of the Ninth National Conference on Artificial
Intelligence (pp. 527-532). Anaheim, CA: AAAI Press.

Rajamoney, S. A., & Lee, H. (1991). Prototype-based reasoning: An integrated
approach to solving large novel problems. Proceedings of the Ninth Na­
tional Conference on Artificial Intelligence (pp. 34-39). Anaheim, CA:
AAAI Press.

29

