
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Enhanced Sampling Methods for the Computation of Conformational Kinetics in 
Macromolecules

Permalink
https://escholarship.org/uc/item/6vc6q9m7

Author
Grazioli, Gianmarc

Publication Date
2016
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6vc6q9m7
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA,
IRVINE

Enhanced Sampling Methods for the Computation of Conformational Kinetics in
Macromolecules

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Chemistry

by

Gianmarc Grazioli

Dissertation Committee:
Professor Ioan Andricioaei, Chair

Professor Craig C. Martens
Professor Douglas J. Tobias

2016



Appendix A c© 2015 American Institute of Physics
All other materials c© 2016 Gianmarc Grazioli



DEDICATION

To my mom, my grandparents Emilio and Maria Grazioli, Lucien the fuzzy wonder, and to
the love of my life, Kristina.

ii



TABLE OF CONTENTS

Page

LIST OF FIGURES v

LIST OF TABLES xiii

ACKNOWLEDGMENTS xiii

CURRICULUM VITAE xv

ABSTRACT OF THE DISSERTATION xviii

1 Introduction 1
1.1 Langevin Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Fokker-Planck/Smoluchowski Diffusion Equations . . . . . . . . . . . . . . . 6
1.3 Rate Theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.1 Transition State Theory . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.2 First Passage Times . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3.3 Milestoning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 A Smoluchowski Equation for Force-Modulated Chemistry in Single
Molecule Pulling Experiments 22

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3 Concluding Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Advancements in the Milestoning Technique: I. Enhanced Sampling
via “Wind” Assisted Re-weighted Milestoning (WARM) 36

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3 Numerical Demonstration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.4 Concluding Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.5 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

iii



4 Advancements in Milestoning II: Calculating Autocorrelation from
Milestoning Data Using Stochastic Path Integrals in Milestone Space 63

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.3 Analytical Solution for 1D Harmonic Oscillator . . . . . . . . . . . . . . . . 69
4.4 Numerical Demonstration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.5 Application to Calculating Long-Time RDCs in Atomistic Simulations . . . . 76
4.6 Concluding Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.7 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5 An Algorithm for Automated Definition of Hyperplane Interfaces for
Measuring Conformational Kinetics of Macromolecules Using Machine

Learning 88
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.2 Milestoning Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.3 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.4 Application to Atomistic System . . . . . . . . . . . . . . . . . . . . . . . . 96
5.5 Concluding Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.6 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6 Conclusions and Future Research 107

Bibliography 111

A Rate turnover in mechano-catalytical coupling: A model and its
microscopic origin 121

A.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
A.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
A.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
A.4 Concluding Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
A.5 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
A.6 Supplementary Information . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

iv



LIST OF FIGURES

Page

2.1 Different stages of external force application (a) Force applied on the na-
tive titin I27 with an engineered disulphide bond at Cys32-Cys75. (b) Force
applied to exposed disulphide bond through the extended C- and N-termini
“handle” (viewed from the opposite direction relative to panel (a)). (c) Force
applied on titin “handles” while the exposed disulphide bond is in close prox-
imity to the active site of enzyme thioredoxin, shown in green (PDB : 1XOB). 24

2.2 (a) Sketch of a potential energy surface distorting under an applied force
(green arrow) with vector components along the ‘protein coordinate’ (red ar-
row) and ‘reaction coordinate’ (blue arrow). The red surface corresponds to
an applied force of smallest magnitude, with blue being larger, and purple
being the largest. The small increase in applied force magnitude going from
the red surface to the blue surface causes an increase in well depth for the re-
action coordinate, but little change in energy for the non-bonded state along
the reaction coordinate, while the highest magnitude applied force shows a
pronounced decrease in energy for the non-bonded state (compare the po-
sitions of the parabolic cross-sections of the surfaces). This is analogous to
the turnover behavior observed in force-modulated disulphide bond reduction,
where smaller magnitude forces favor the bound state, while higher magnitude
forces increase the rate of bond breakage, i.e., favor the unbound state. (b)
Cartoon representation of thioredoxin in complex with the substrate protein
(titin) at the transition state as modeled during atomistic simulations carried
out by M. Roy (see Appendix A). The arrows represent the same orthogonal
coordinates as in part (a), and employ the same color scheme. . . . . . . . . 28

2.3 Curves generated by numerically solving and integrating the Agmon-Hopfield-
Smoluchowski equation for increasing values of applied force and fit to experi-
mentally measured disulphide bond reduction rates from Perez-Jimenez et al.
(fit parameters given in Table A.1). Color coding scheme same as in Fig. A.3. 32

3.1 Shown here is calculation time as a function of the Fwind force for all K(τ)
distributions in both directions for six subspaces ranging from -2 to 2 on the
bistable harmonic potential. The calculation took 507 seconds for Fwind =
0pN and just 44 seconds for Fwind = 12pN . . . . . . . . . . . . . . . . . . . 44

v



3.2 Shown in this figure is the transition probability distribution K23(τ), i.e. the
transition probability from milestone 2 to milestone 3 as a function of lifetime,
calculated using Fwind forces ranging from 0 to 12 pN. The plots indicate that
the rapid decrease in computation time due to the added Fwind force has
almost no effect on accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 The plot at the top of this figure shows plots for one of the transition proba-
bility distributions K(τ) for the bistable 1D potential with different values of
Fwind implemented. Note that although the distributions distort considerably
for higher values of τ when the system is pushed with high magnitude Fwind,
the equilibrium flux values in the plot below remain fairly constant. The color
scheme legend applies to both plots. . . . . . . . . . . . . . . . . . . . . . . . 52

3.4 Here we show effects of applying higher magnitude Fwind which are strong
enough to significantly distort the K(τ) functions. This figure facilitates a
direct comparison of gain in computational speed with the accuracy of the
equilibrium flux values (measured as X2). Note that while there is no ap-
preciable change in accuracy, calculation time drops from 1109 s to 26 s, a
speedup by a factor of nearly 40. . . . . . . . . . . . . . . . . . . . . . . . . 53

3.5 Show here are the potentials used in the 2D WARM calculations. In the
first case, the primary barrier to crossing from one well to the other is the
height of the barrier relative to the strength of the “kicks” from the random
force in the Langevin equation. In the second potential [33], the barrier to
crossing between wells is entropic, in that a trajectory which results in a
transition between wells must find its way through the gap at the center, i.e.
the likelihood of a transition is not limited by any sort of uphill battle, but
instead by decreased degeneracy in the number of possible trajectories which
result in a transition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.6 Shown in this figure is the transition probability distribution K12(τ), i.e. the
transition probability from milestone 1 (the line x = −1) to milestone 2 (the
line x = 0) on the the 2D potential with the energetic barrier as a function
of lifetime, calculated using Fwind forces ranging from 0 to 12 pN. The plots
indicate that the rapid decrease in computation time due to the added wind
force has almost no effect on accuracy. . . . . . . . . . . . . . . . . . . . . . 55

3.7 Shown here is calculation time as a function of the Fwind force for all K(τ)
distributions in both directions for two subspaces ranging from -1 to 1 on the
x axis of the 2D potential with the energetic barrier. All trajectories were run
using β = .123. The highest value of Fwind yielded a faster computation time
by a factor of 4.17 than the unassisted calculation with very little distortion
to the K(τ) function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.8 Shown in this figure is the transition probability distribution K12(τ), i.e. the
transition probability from milestone 1 (the line x = −.5) to milestone 2 (the
line x = 0) on the the 2D potential with the entropic barrier as a function
of lifetime, calculated using Fwind forces ranging from 0 to 1 pN. The plots
indicate that the rapid decrease in computation time due to the added Fwind
force has almost no effect on accuracy. . . . . . . . . . . . . . . . . . . . . . 56

vi



3.9 Shown here is calculation time as a function of the Fwind force for all K(τ)
distributions in both directions for two subspaces ranging from -.5 to .5 on
the x axis of the 2D potential with the entropic barrier. All trajectories were
run using β = 3.0 so as to ensure that transitions over the barrier instead of
through the small gap were highly unlikely. The highest value of Fwind yielded
a faster computation time by a factor of 4.78 than the unassisted calculation
with almost no distortion to the K(τ) function. . . . . . . . . . . . . . . . . 56

3.10 Show here is a 2D representation of the 11D coupled potential. The y in the
second term (red) has been left as a parameter in this plot. The surfaces shown
are for values for the parametric y of 0,±1, and ±1.5, where the deepest well
corresponds to y = 1.5 and the shallowest corresponds to parametric y = 0.
Just as the well becomes deeper, the further from the system wanders from
the origin in the y direction in this 2D model, the 11D system also encounters
deeper wells in the xn dimensions the further it wanders from the origin in
each xn dimension. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.11 This plot shows CPU time as a function of the magnitude of the Fwind in 11D.
The maximum speedup measured was a factor of 4.5. . . . . . . . . . . . . . 58

3.12 Shown in this figure are the K(τ) functions generated for each data point in
the CPU time vs. Fwind plot for the 11D system. . . . . . . . . . . . . . . . . 58

3.13 Shown here is a representation of the vector field approach to applying Fwind to
push milestoning trajectories between two nearly orthogonal planes, subject to
our Gaussian potential. The green milestone is defined as the plane for which
y
44
− x = −.7 and the red milestone is defined as the plane for which y =

1.5. The vector wind is configured to show the Fwind scheme for accelerating
trajectories going from red to green. . . . . . . . . . . . . . . . . . . . . . . . 59

3.14 This plot shows the same milestone placement and Fwind scheme as the Gaus-
sian potential example applied to the Muller potential and with a direction-
ality for accelerating trajectories from the green milestone to the red one. . . 60

3.15 This plot shows CPU time as a function of Fwind magnitude for the Gaussian
potential. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.16 This plot shows the K(τ) functions corresponding to different magnitudes of
Fwind as applied to the Gaussian potential. . . . . . . . . . . . . . . . . . . . 61

3.17 This plot shows CPU time as a function of Fwind magnitude for the Muller
potential. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.18 This plot shows the K(τ) functions corresponding to different magnitudes of
Fwind as applied to the Muller potential. . . . . . . . . . . . . . . . . . . . . 62

4.1 This figure shows the approximate time correlation functions calculated using
equation 4.8 for 3, 6, and 9 milestones overlaid on top of the exact analytical
function C(t). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

vii



4.2 This plot demonstrates a successful implementation of our method for ap-
proximating time correlation functions in continuous space by summing over
time dependent joint probabilities of transitions between discrete states, as
obtained in Milestoning simulations. The red rings mark the data points
from implementing equation 4.6, the blue data points indicate the positions
where the full nested sum approximation of equation 4.8 was implemented,
and the green ring is the data point for C(0) calculated from equilibrium prob-
abilities which is used to replace the value of C(0) generated using equation
4.8. The data is shown superimposed over the time correlation function C(t),
represented by a solid black line, calculated using the traditional method of
equation 4.14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3 This figure shows a graphical comparison between the time evolution of a
discrete probability distribution for a set of 5 milestone configurations sub-
jected to the two well 1D potential found in the Numerical Demonstration
section using our random walk / path integral methodology (part A), and the
manifold representing the time evolution of a continuous probability density
function of configurations for the same two well system subjected to Fokker-
Planck diffusion (part B). Part A is the set of probabilities as a function of
time for the system being found at each milestone configuration, given that
the system was in configuration x = −1 at time t = 0, and part B shows
Fokker-Planck diffusion on the same two well system. Note that the random
walk in part A began at the milestone located at x = −12, thus we see a decay
from {P1(0) = 0, P2(0) = 1, P3(0) = 0, P4(0) = 0, P5(0)} to the equilibrium
distribution, the same way our initial continuous distribution, a normalized
Gaussian centered at −1, decays to the equilibrium probability distribution
predicted by the Bolzmann distribution for the two well potential, and both
evolve in time on about the same time scale. . . . . . . . . . . . . . . . . . . 81

4.4 Shown here are time correlation functions calculated using equation 4.8, where
the conditional probability as a functions of time, Ps(t|x(0)), are calculated
using our random walk / path integral methodology, represented graphically
in figure 4.3A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.5 Shown here are time correlation functions which were calculated by first gener-
ating one long random walk using the method introduced in this article, then
linking each point in the trajectory using linear interpolation, and finally using
equation 4.14 to calculate C(t). . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.6 Shown in this figure is the alanine dipeptide molecule used as our model
system. The two atoms shown in yellow were held fixed in space while the
rest of the molecule was subjected to Langevin dynamics. The purple arrow
gives the orientation of the bond vector which served as the measurable in our
time correlation function calculations. . . . . . . . . . . . . . . . . . . . . . 84

viii
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for measuring the time correlation function of the alanine dipeptide bond
vector. Although the bond vector, shown as many thin, purple arrows, posses
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5.2 Figure A is a plot of the potential energy surface f(x, y) = − 3.5
x2+y2+0.5

+
30

x2+y2+2
+ x2 + y2 − 7.5, which features two concentric stable regions, a motif

that could pose problems for a hyperplane-based milestoning methodology.
The plot labeled B shows the configurations space points visited during a
Langevin dynamics simulation of 2 million time steps for six non-interacting
copies of our system beginning at the point {0, 0}. Note that under the
conditions these simulations were run, without a bias, our system is trapped
in the central minimum. Plot C shows tthe results of another 2 million step
Langevin simulations where the current locations of 6 MRCs were saved as
repulsive nodes every 40, 000 steps, and all other conditions were the same
as in plot B. In plot D, we show the results of a simulation where repulsive
nodes, or VSs, were used, but there was no repulsion between the clones. Note
that, in this case, leaving out the mutual repulsion between active simulations
of MRCs was in no way detrimental to the sampling of configuration space.
Again, the advantage of calculating repulsion from VS configuration space
points only is that all simulations can be run in parallel on separate processors. 100
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5.4 Shown here are the results of running a Euclidian distance clustering algorithm
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5.6 Shown here are the results of running a Euclidian distance clustering algorithm
on the configuration space points generated using an artificially high temper-
ature to allow sampling over high barriers (figure 5.1, upper right). Note that
the blurring of the energetic landscape caused by running Langevin dynamics
at an artificially high temperature has led to the same clustering method, run
with the same parameters, to identify only three distinct regions. By lumping
together regions with multiple local minima into the same subspaces in this
manner, we would obtain a simplistic connected graph of three states repre-
senting the kinetics instead of the much richer representation shown in figure
5.5. Although a more stringent clustering method could be applied to this
particular data set to yield better classification into clusters, the motivation
behind this example is to demonstrate that sampling techniques that main-
tain the integrity of the energetic landscape, like our mutually repulsive clone
method, can yield better results by providing the clustering algorithms with
more physically relevant data sets. . . . . . . . . . . . . . . . . . . . . . . . 103

5.7 This figure displays the results of first applying a clustering algorithm to the
data from figure 5.4, and then using the clustering data as a training set for
a Support Vector Machine methodology for dividing the configuration space
into a set of subspaces. The more opaque points display the configuration
space points visited in the simulation, and the colored shading indicates the
partitioning of configuration space into subspaces suitable for Milestoning.
These results demonstrate our fully automated methodology for subdividing a
configuration space in such a way that measuring transition kinetics between
subspaces corresponds to transitions between local minima in the potential
energy surface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
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5.9 Here we have a demonstration of automated partitioning of configuration
space into convex hulls. In this particular case, we have defined a three di-
mensional configuration space comprised of the pairwise interatomic distances
between three labeled carbons shown as red, green, and blue (top left). In the
interest of keeping our demonstration visualizable, only three dimensions were
defined in the configuration space; however, the method can be easily gener-
alized to any number of dimensions, for example the set of pairwise distances
between all alpha carbons in a protein. . . . . . . . . . . . . . . . . . . . . . 106
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Calculating the kinetics of conformational changes in macromolecules, such as proteins and

nucleic acids, is still very much an open problem in theoretical chemistry and computa-

tional biophysics. If it were feasible to run large sets of molecular dynamics trajectories that

begin in one configuration and terminate when reaching another configuration of interest,

calculating kinetics from molecular dynamics simulations would be simple, but in practice,

configuration spaces encompassing all possible configurations for even the simplest of macro-

molecules are far too vast for such a brute force approach. In fact, many problems related

to searches of configuration spaces, such as protein structure prediction, are considered to

be NP-hard. Two approaches to addressing this problem are to either develop methods for

enhanced sampling of trajectories that confine the search to productive trajectories without

loss of temporal information, or coarse-grained methodologies that recast the problem in re-

duced spaces that can be exhaustively searched. This thesis will begin with a description of

work carried out in the vein of the second approach, where a Smoluchowski diffusion equation

model was developed that accurately reproduces the rate vs. force relationship observed in

the mechano-catalytic disulphide bond cleavage observed in thioredoxin-catalyzed reduction

of disulphide bonds. Next, three different novel enhanced sampling methods developed in

the vein of the first approach will be described, which can be employed either separately or in
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conjunction with each other to autonomously define a set of energetically relevant subspaces

in configuration space, accelerate trajectories between the interfaces dividing the subspaces

while preserving the distribution of unassisted transition times between subspaces, and ap-

proximate time correlation functions from the kinetic data collected from the transitions

between interfaces.
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Chapter 1

Introduction

Ours is a truly exciting era in the history of science. We have the privilege of witness-

ing powerful digital implementations of ingenious numerical methods, some even predating

the invention of the transistor, employed toward solving problems with staggering large de-

grees of complexity. This explosion in computational power has allowed for unprecedented

computational exploration into the underlying physics behind the physical properties of im-

portant macromolecules such as proteins and nucleic acids. There are three main categories

of applications of molecular dynamics to the study of macromolecules: configuration space

sampling, obtaining equilibrium descriptions of systems, such as the calculation of thermo-

dynamic properties, and the study of dynamical properties, which require not only adequate

sampling in configuration space for accurate Boltzmann statistics, but also adequate sam-

pling of the relevant time scales between configurations [54]. The research described in this

work belongs in the third category. Two different types of approaches to addressing the chal-

lenge of calculating dynamical properties of macromolecules were explored. In one vein, a

coarse-grained methodology was developed, where the mechano-catalytic property of thiore-

doxin in single molecule pulling experiments [4] was modeled as diffusion in a reduced space

using a Smoluchowski formalism. The approach taken was similar in spirit to that of Liu and
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Ou-Yang’s model for catch slip bonds [69]. In the other vein, three different novel enhanced

sampling methods were developed, which can be employed either separately or together to

1) autonomously define a set of energetically relevant subspaces in configuration space, 2)

accelerate trajectories between the interfaces dividing the subspaces while preserving the

distribution of unassisted transition times between subspaces, and 3) approximate time cor-

relation functions from the kinetic data collected from the transitions between interfaces.

Although these three methods are not exclusive to the Milestoning method, introduced by

Faradjian and Elber in 2004 [33], the Milestoning method was chosen as the theoretical foun-

dation and was also utilized in the accompanying proof of concept numerical demonstrations.

Since detailed background information specific to each of the four distinct research projects

is provided within each respective chapter, this chapter will be devoted to reviewing the more

fundamental theoretical underpinnings in the field of non-equilibrium statistical mechanics

which provide the unifying foundation for the collective work. Although multiple texts are

available on the subject, this description will draw most heavily from Nonequilibrium Statis-

tical Mechanics by Robert Zwanzig [132] and Chemical Dynamics in Condensed Phases by

Abraham Nitzan [75].

1.1 Langevin Dynamics

The seed from which Langevin dynamics grew was planted in 1827, when the botanist

Robert Brown first observed pollen grains in water moving along random trajectories under

the microscope. With further contributions from Albert Einstein, Jean Perrin, and others,

the theory of Brownian motion was developed, which provided a mathematical formalism for

using statistics to approximate the complex interactions between a system of interest, like

the pollen grain, and a “bath” comprised of numerous objects, in this case water molecules.

Due to the fact that this thesis is rooted in classical non-equilibrium statistical mechanics,
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we begin our discussion of Langevin dynamics with Newton’s famous equation for obtaining

the total force on a classical object as a function of its trajectory in some configuration space

x:

m
∂2x

∂t2
= FTotal(t) (1.1)

Now if our system is in the presence of a conservative field, i.e. the non-dissipative dynamics

of our system are defined in such a way that the work needed to move it from one point in a

configuration space to another is independent of the path taken, the force can be expressed

as the negative gradient of the potential dictating the dynamics in our configuration space

x:

m
∂2x

∂t2
= −∇U(x) (1.2)

An example of such a system would be a harmonic oscillator. Now if we want to consider

a dissipative system, for example a damped harmonic oscillator, we need to include some

sort of dissipative term. Mathematical models of dissipation, whether due to the viscosity

of a liquid, or air resistance, or any other dissipative force, can quickly grow in complexity

depending on the level of accuracy desired. The general trend, however, is that the faster

an object moves through a dissipative medium, the stronger the dissipative force will resist.

This trend is commonly observed in the automotive industry, where vehicles designed to

travel at top speeds of maybe 50 miles per hour, like mail delivery trucks, would exhibit

minimal performance gains if given a more aerodynamic shape, hence their boxy shape,

while cars intended to travel at top speeds of 200 miles per hour must overcome tremendous
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forces due to air resistance, and must be designed with great attention to aerodynamics.

Given this overall trend in the magnitude of dissipative forces, let us define our dissipative

resistive force term as being linearly dependent but opposite in sign to the velocity of our

object by a coefficient of ζ:

m
∂2x

∂t2
= −∇U(x)− ζ ∂x

∂t
(1.3)

At this point, we have a deterministic equation of motion, but the Langevin equation is a

stochastic differential equation, where the total force must include a random term represent-

ing a force applied to the system by the bath. These random forces are colloquially referred

to as kicks, and represented by the term δξ(t):

m
∂2x

∂t2
= −∇U(x)− ζ ∂x

∂t
+ δξ(t) (1.4)

where a delta function is used to indicate that these random kicks occur as instantaneous

pulses in time. Since the random force shows no directional bias, the mean value of the

random force is zero. Additionally, since each random kick supplied by the random force is

completely independent of all previous kicks, the time correlation function is a delta function

multiplied by a constant factor dependent on the strength of the fluctuating force for any

given lag time:

〈δξ(t)〉 = 0, 〈δξ(t)δξ(t′)〉 = 2Bδ(t− t′) (1.5)
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Our Langevin equation is now complete in mathematical form, however; we must develop

it further in order to ensure physical relevance. Given that both the random kick term and

the dissipative force term are due to interactions between our system of interest and the

bath, it seems apparent that there ought to be some relationship between the two terms.

In fact, the two terms are related by what is known as the fluctuation dissipation theorem.

In demonstrating this relationship, there is no need to consider force due to the potential

U(x), so let us consider diffusion of a free particle, for which U(x) is a constant making its

gradient term equal to zero:

m
∂2x

∂t2
= −ζ ∂x

∂t
+ δξ(t) (1.6)

Since the demonstration will require us to invoke the equipartition theorem, which relates

the temperature of a system to the mean squared velocity of the particles that make up that

system, let us next recast our Langevin equation in terms of velocity instead of acceleration:

∂v

∂t
= − ζ

m
v +

1

m
δξ(t) (1.7)

This first order linear inhomogeneous differential equation can then be solved using substi-

tution to obtain the solution:

v(t) = e−ζt/mv(0) +

∫ t

0

dt′e−ζ(t−t
′)/mδξ(t′)/m (1.8)
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By squaring both sides and integrating over time, the two cross terms go to zero as a result

of the random kicks averaging to zero. The second squared term contains an integration

over time of the square of the random force, which we know from equation 1.5 is simply a

delta function multiplied by a factor of 2B. After integration of the two squared terms, we

obtain the expression for the mean squared velocity:

〈v(t)2〉 = e−2ζt/mv(0)2 +
B

ζm
(1− e−2ζt/m) (1.9)

Notice that for long times, i.e. times long enough for equivalence between a time average

and an ensemble average, known as ergodicity, to be reached, the exponential functions will

approach zero, yielding a long time average of 〈v(t)2〉 = B
ζm

. Given that the equipartition

theory states that the mean squared velocity of an ensemble of particles is equal to kBT
m

, the

constant B representing the strength of our random force must be equal to B = ζkBT , and

we have established the fluctuation dissipation condition relating our random force to our

dissipative force.

1.2 Fokker-Planck/Smoluchowski Diffusion Equations

The Langevin equation provides a description of individual trajectories moving through a

configuration space subject to both deterministic and stochastic forces. It is possible to

construct time dependent probability density functions, that are a function of both time and

initial conditions by running numerous Langevin trajectories, for a system of interest and

then constructing time dependent histograms using a stochastic path integral approach. A

more direct approach to calculating these same time-dependent probability density functions

is to solve the partial differential equations, called Fokker-Planck equations, that directly
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describe the time evolution of these probability density functions. This is indeed a very

powerful approach, but as usual, there are no free lunches, and so it should be noted that

this approach can be very difficult to execute for systems with more than a few degrees of

freedom. For this reason, applications of this approach are best when the degrees of freedom

for the system can be projected onto some reduced space.

Given some normalized initial probability density function for a system in a configuration

space, that spans all possible configurations, at time t = 0, ρ(x, 0), we want to solve a

differential equation that describes the time evolution of ρ(x, t). Since the configuration

space spans all possible configurations for our system, ρ(x, t) must maintain its normalization

condition for all time, i.e. the manifold describing probability density does not “leak.” This

implies a conservation law resembling that of an incompressible fluid, where if probability

density is lost in one region, the exact same volume must be gained in some other region. In

more mathematical terms, the change in probability density over time is exactly balanced

by the divergence of flux:

∂ρ

∂t
= − ∂

∂x
·
(
∂x

∂t
ρ

)
(1.10)

It should be noted that if x is defined as a phase space, where the elements of the vector x

include both all spatial coordinates of configuration spaces, as well as all momenta, and the

appropriate substitutions of equivalent partial derivatives with respect to the Hamiltonian

are made, this is equivalent to the Liouville equation. Using the conservation law of equation

1.10 as a constraint for the probability density, the Fokker-Planck equation describing an

ensemble of diffusive systems can be derived from the Langevin equation used to describe

individual trajectories. For diffusive systems like the ones described in this thesis, collision

frequencies are very large compared to the frequencies describing the molecular motions of
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the systems of interest, leading to dynamics where the effects of inertia are drowned out by

the forces due to the potential and the random kicks from the random force [80]. In these

cases, where the effects of inertia are negligible, it is a suitable approximation to set the

mass equal to zero in our Langevin equation, and solve for velocity as a function of time,

also known as Brownian Dynamics:

∂x

∂t
= −1

ζ

∂U

∂x
+

1

ζ
δξ(t) (1.11)

Taking a cue from Abraham Nitzan [75], it is best to take on this derivation using an operator

approach. In order to simplify the application of that approach, let us define a scaled velocity

ν(t) ≡ 1
ζ
v(t). Next this scaled velocity is substituted into the conservation law, equation

1.10:

∂ρ

∂t
=

∂

∂x

(
∂U

∂x
ρ− δξ(t)ρ

)
(1.12)

If an operator L̂(t) is defined:

L̂(t) ≡ ∂

∂x

(
∂U

∂x
− δξ(t)

)
(1.13)

where the time dependence of the operator is due to its stochastic term, then equation 1.12
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can be recast in operator form as:

∂ρ

∂t
= L̂(t)ρ (1.14)

Integrating equation 1.14 over a very small span of time from t to t+∆t yields the expression:

ρ(x, t+ ∆t) = ρ(x, t) +

∫ t+∆t

t

dt1L̂(t1)ρ(x, t1) (1.15)

This result is an indication that time evolution of the probability density function ρ(x, t) from

time t to t+ ∆t is equivalent to adding the integral over time of the operator L̂(t) operating

on ρ(x, t) to ρ(x, t). Further, this implies that the time evolution shown in equation 1.15 is

really just the first step of an expansion of iterative integration:

ρ(x, t+ ∆t)−ρ(x, t) =

[ ∫ t+∆t

t

dt1L̂(t1) +

∫ t+∆t

t

dt1

∫ t1

t

dt2L̂(t1)L̂(t2) + ...

]
ρ(x, t) (1.16)

The other important realization at this step is that since the Smoluchowski equation describes

the time evolution for the probability density function in configuration space representing

all possible manifestations of the overdamped Langevin equation, a stochastic differential

equation, it is necessary that all operations be time averaged:

ρ(x, t+∆t)−ρ(x, t) =

[ ∫ t+∆t

t

dt1〈L̂(t1)〉+
∫ t+∆t

t

dt1

∫ t1

t

dt2〈L̂(t1)L̂(t2)〉+...
]
ρ(x, t) (1.17)
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Consider now the two terms in the operator L̂(t). The first term is deterministic, and the

second term is stochastic. Since the first term of the expansion is first order in the operator,

and given that the mean value of the random force ξ(t) is zero, the effects of the stochastic

term in the operator average out to zero for the first term of the expansion. This leaves only

the time independent deterministic term, which can be factored out of the time integral to

yield, what we’ll refer to as the deterministic operator Â:

Â ≡ ∂

∂x

∂U(x)

∂x
∆t (1.18)

Moving on to the second order term of the expansion, we first note that the time independent

deterministic term will get integrated over time twice, resulting in a factor of ∆t2. Given

that ∆t was defined as being infinitesimally small, any terms second order or higher in ∆t

will become vanishingly small. This leaves the effects of the stochastic term in the operator

to dictate the value of the second term in the expansion. Since the stochastic term of the

operator is the random force ξ(t) multiplied by the differential operator ∂
∂x

, the second term

in the expansion simplifies to:

∫ t+∆t

t

dt1

∫ t1

t

dt2〈ξ(t1)ξ(t2)〉 ∂
2

∂x2
=

∫ t+∆t

t

dt1kBT
∂2

∂x2
= kBT

∂2

∂x2
∆t (1.19)

Since all other terms in the expansion are of order two or higher in ∆t, they can be truncated.

Having carried out all the non-zero integrals within the square brackets in equation 1.17, that

portion can be replaced with the integrands representing the deterministic and stochastic
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terms of the operator:

ρ(x, t+ ∆t)− ρ(x, t) =

[
∂

∂x

∂U(x)

∂x
+ kBT

∂2

∂x2

]
ρ(x, t)∆t

ρ(x, t+ ∆t)− ρ(x, t)

∆t
=

[
∂

∂x

∂U(x)

∂x
+ kBT

∂2

∂x2

]
ρ(x, t) (1.20)

All that is left to do now is realize that this is an expression for a finite difference deriva-

tive for an infinitesimally small time step, i.e. a derivative, and remember to put the scaling

factor of 1
ζ

back into our velocity expression, and we have fully demonstrated that the Smolu-

chowski equation is the natural consequence of noise averaged Langevin dynamics subject

to the conservation law equation 1.10, which is really just a statement that normalization is

maintained in time:

∂ρ(x, t)

∂t
=

[
1

ζ

∂

∂x

∂U(x)

∂x
+
kBT

ζ

∂2

∂x2

]
ρ(x, t) (1.21)

1.3 Rate Theories

1.3.1 Transition State Theory

We now turn our focus toward applying Langevin dynamics and Fokker-Planck diffusion

equations toward calculating the conformational kinetics of macromolecules using various
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rate theories, such as Transition State Theory (TST) [37] [121], Kramers Theory [60], and

Transition Path Sampling [16].

Transition State Theory is a method for calculating reaction rates using transitions over

energetic barriers between two subspaces in phase space (let’s call them A and B), and is

one of the earliest theoretical treatments for chemical kinetics. A necessary element in any

formalism for describing such transitions is a rigorously defined interface that separates the

two regions in phase space. The approach utilized in TST is to first determine an appropriate

reaction coordinate along a single dimension in configuration space x, for which there should

be two well-defined minima separated by a barrier, then assign a value of zero to the point

along this coordinate corresponding to the top of the barrier, allowing all points in phase

space for which x > 0 to be classified as being in state A and all points in phase space for

which x < 0 to be classified as being in state B. This treatment allows for a step function Θ(x)

to be defined, where Θ(x) = 0 for state A and Θ(x) = 1 for state B. By multiplying the time-

dependent probability density function in phase space f(p1, x1,X; t) by this step function,

only the portion of phase space within state B remains, which can then be integrated over

all phase space variables to obtain the probability of finding the system in state B at time t:

PB(t) =

∫ ∫ ∫
dx1dp1dXΘ(x1)f(p1, x1,X; t) (1.22)

Since the goal is obtaining the rate of formation of B, the time derivative of PB(t) is the

function of interest, which can be taken by operating on the probability density function
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f(p1, x1,X; t) with the Liouville operator introduced in equation 1.10.

d

dt
PB(t) = −

∫ ∫ ∫
dx1dp1dXΘ(x1)L̂f(p1, x1,X; t) (1.23)

Much like the way the expectation value of an observable as a function of time can be

calculated from the vantage point of averaging either time-dependent operators and static

quantum states, or static operators operating and a wavefunction evolving in time, depending

on whether the Heisenberg or Schrodinger picture is being employed, the fact that the

Liouville operator is anti-self adjoint in phase space can be leveraged here to greatly simplify

this integral [132]. Instead of operating on the time-dependent probability density function,

we apply it to the step function:

d

dt
PB(t) =

∫ ∫ ∫
dx1dp1dX(L̂Θ(x1))f(p1, x1,X; t) (1.24)

Since the derivative of a step function is a delta function, we can write:

L̂Θ(x1) =
p1

m1

∂

∂x1

Θ(x1) =
p1

m1

δ(x1) (1.25)

Substituting this delta function expression into equation 1.24 serves to select only the slice of

the probability density function in phase space for which x1 = 0 upon integration over dx1.

Also, suppose we are interested in calculating the rate of our chemical species going from

state B to state A (moving with a momentum in the negative direction, given the convention
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of our step function), implying integration limits of −∞ to 0 for dp1, our expression becomes:

(
d

dt
PB(t)

)
B→A

=

∫ 0

−∞
dp1

∫
dX

p1

m1

f(p1, 0,X; t) (1.26)

Since the shape of the distribution in state B should have the same shape as the equilibrium

distribution, the time dependence of f(p1, 0,X; t) can be factored out as a ratio of the

probability of the system being found in B as a function of time divided by its equilibrium

value:

(
d

dt
PB(t)

)
B→A

=

∫ 0

−∞
dp1

∫
dX

p1

m1

f(p1, 0,X)
PB(t)

PB(eq)
(1.27)

With the time dependence now confined to a factor of PB(t), the phase space integral can

be carried out, yielding our desired rate equation:

(
d

dt
PB(t)

)
B→A

= −kABPB(t) (1.28)

Although TST is a venerable formalism that provided the foundation upon which other im-

portant theories of chemical kinetics could be built, it does have an Achilles heel. Notice

that the multiplication of Θ(x1) by f(p1, x1,x; t) in the initial statement of equation 1.24

implies separability between the function that determines which state the system is in and

the function describing the density of states in phase space. Implicit within this detail of

the formalism is a statement that the time scale on which the probability density function
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f(p1, x1,x; t) equilibrates is very fast compared to the amount of time needed for a transition

to take place so that the two events are completely uncorrelated. To make another compari-

son to quantum mechanics, this has a similar feel to the Born-Oppenheimer approximation,

where the motion of electrons is so fast compared to the motion of nuclei, that the two mo-

tions can be approximated as being separable. Unfortunately, the difference in time scales for

transitions between states and probability density function equilibration time for physically

relevant classical systems is often not large enough for this separability approximation to be

valid.

1.3.2 First Passage Times

Since probability distributions of the incubation times for transitions from one region of

phase space or configuration space to another, known as first passage times, are central the

Milestoning method, upon which much of this thesis is built, this section will delve into

first passage times and their application to the Kramers theory for the rate of escape from

potential wells by diffusive systems. First, let us establish a shorthand for the Smoluchowski

operator shown in square brackets in equation 1.21.

∂ρ(x, t)

∂t
= Dρ(x, t) (1.29)

which then allows for the operator solution:

ρ(x, t) = etDδ(x− x0) (1.30)
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where the initial condition for the probability distribution in configuration space x = x0 is

represented be a delta function centered at x0. If we are interested in the amount of time it

takes for trajectories to leave a given region of volume V , we must first know the amount of

probability density remaining there after a given time t. It is important to note that since

we are addressing first passage times, there must be an implicit assumption of absorbing

boundary conditions for V . From here, a function for the probability density within V after

time t, given an initial configuration x0 can be defined:

S(t, x0) =

∫
V

dxρ(t, x) (1.31)

If we now consider k(t, x0), a probability distribution function of transition times out of

volume V , we can write an expression for the change in S(t, x0), given an infinitesimal

change in time dt:

S(t, x0)− S(t+ dt, x0) = k(t, x0)dt (1.32)

which can easily be rearranged via finite difference to arrive at a differential equation for

k(t, x0):

k(t, x0) = −dS(t, x0)

dt
(1.33)

Mean first passage τ(x0) can then be obtained from the distribution in the usual way of
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calculating an average from a distribution:

τ(x0) =

∫ ∞
0

tk(t, x0)dt (1.34)

This expression can then be rewritten in terms of the Smoluchowski operator D using integra-

tion by parts, equations 1.33, and 1.30, and the fact that the absorbing boundary conditions

imply that S(∞, x0) = 0 (given infinite time, all trajectories will find their way out of V ):

τ(x0) = −
∫ ∞

0

t
dS(t, x0)

dt
dt

τ(x0) = −tS(t, x0)

∣∣∣∣∞
0

+

∫ ∞
0

dtS(t, x0)

τ(x0) =

∫ ∞
0

dtS(t, x0)

τ(x0) =

∫ ∞
0

dt

∫
V

dxetDδ(x− x0) (1.35)

Interestingly, the fact that the adjoint of the Smoluchowski operator is defined, allows us
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to commute the exponential of the Smoluchowski operator with the delta function, causing

the Smoluchowski operator to operate on the factor to the right of the delta function, the

number 1:

τ(x0) =

∫ ∞
0

dt

∫
V

dxetDδ(x− x0) =

∫ ∞
0

dt

∫
V

dxδ(x− x0)(etD
†
1) (1.36)

This strategy allows for a trivial integral in x:

τ(x) =

∫ ∞
0

dtetD
†
1 (1.37)

The differential equation for calculating mean first passage time of a diffusive system can be

obtained from this expression by operating on both sides with the Smoluchowski operator,

taking the well known integral of the form
∫
dtaeat, and applying the absorbing boundary

condition, which mandates that the function be equal to zero at time t =∞:

D†τ(x) =

∫ ∞
0

dtetD
†
1 =

∫ ∞
0

dt
d

dt
etD

†
1 = −1 (1.38)

Thusly, it is shown that mean first passage time for Smoluchowski diffusion can be expressed

as a differential equation with boundary condition:

D†τ(x) = −1 τ(x) = 0 on ∂V (1.39)
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where mean first passage time on the surface element ∂V must be equal to zero because it

takes no time to complete a journey that begins at the destination.

1.3.3 Milestoning

Included among the computational methods developed to address the challenge of calculat-

ing chemical kinetics thus far are transition state theory (TST) [37] [121], transition path

sampling (TPS) [16], transition path theory (TPT) [71], and transition interface sampling

(TiS) [113]. As previously shown, although TST has been successfully employed in the

determination of kinetics for many systems with well-defined reactant and product states,

interesting problems in biophysics and elsewhere are frequently encountered where the as-

sumption implicit in TST that equilibration of stable states occurs on a much faster time

scale than transition events to the point where the two can be considered uncorrelated cannot

be made. In contrast, transition path sampling approaches require no intuition for reaction

mechanisms or advance knowledge of transition state, although the requirement of a ”dy-

namical bottleneck” does persist [16] [114]. In this category of methods is the Milestoning

algorithm created by Ron Elber et al., which is a method for calculating kinetic properties,

where the fundamental objects are the first passage time distributions KAB(τ), as described

in equation 1.33, between adjacent protein configuration milestone states (configurations A

and B in this case), where the milestone states do not necessarily need to be meta-stable

states as in transition state theory. The key feature of the Milestoning method is that the

kinetics of configuration changes which occur over trajectories well outside the time scale of

standard molecular dynamics simulations can be accessed by subdividing either configura-

tion space or phase space into subspaces that are small enough for shorter trajectories to

be run between the interfaces separating the subspaces. This results in a linear network of

transition probabilities between milestones, which can then be solved for such quantities as

first passage time between any pair of milestones, including those at the extreme ends of the
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space, and the flux through a given milestone, s, as a function of time. Some of the compu-

tational gains from this treatment are that breaking up these long trajectory pathways into

a network of shorter trajectories leads to increased sampling of the would-be under-sampled

areas, and that gains in computational efficiency are possible due to the capacity to run

these short trajectories in parallel [33].

The central quantity in milestoning is the flux through a given milestone [33]; it is prescribed

by the probabilities

Ps(t) =

∫ t

0

Qs(t
′)

[
1−

∫ t−t′

0

Ks(τ)dτ

]
dt′

Qs(t) = 2δ(t)Ps(0) +

∫ t

0

Qs±1(t′′)K∓s±1(t− t′′)dt′′, (1.40)

where Ps(t) is the probability of being at milestone s at time t, (or, more specifically, arriving

at any time t′ < t and not leaving before time t [33]), Qs(t) is the probability of a transition

to milestone s at time t and Ks(τ) is the probability of transitioning out of milestone s after

an incubation time of τ . Thus
∫ t−t′

0
Ks(τ)dτ is the probability of an exit from milestone s

anytime between 0 and t−t′, which makes 1−
∫ t−t′

0
Ks(τ)dτ the probability of there not being

an exit from milestone s over that same time period. Since the probability of two independent

simultaneous events happening concurrently is the product of the two events, the equation

for Ps(t) is simply integrating the concurrent probabilities of arriving at milestone s and

not leaving over the time frame from time 0 to t. In dissecting the meaning of Qs(t), the

first term, 2δ(t)Ps(0), simply represents the probability that the system is already occupying

milestone s at time t = 0, where the factor of 2 is present since the δ function is centered
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at zero, meaning only half of its area would be counted without this factor. Qs±1(t′′) is the

probability that the system transitioned into one of the two milestones adjacent to s at an

earlier time t′′. K∓s±1(t − t′′) is the probability of a transition from milestones s ± 1 into

milestone s. Thus the second term of the second line of the milestoning equation is another

concurrent probability: the probability of the system entering an adjacent milestone at an

earlier time, and then transitioning into milestone s between time t and 0. It is important

to note that all functions Ps(t) and Qs(t) are calculated using the respective values of Ks(τ)

between adjacent milestones, thus the set of Ks(τ) between all milestones of interest contains

all the information needed to calculate kinetics using the milestoning method.
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Chapter 2

A Smoluchowski Equation for

Force-Modulated Chemistry in Single

Molecule Pulling Experiments

2.1 Introduction

The material presented in this chapter is meant to first provide context for and then highlight

my contribution to the research project described in detail in Appendix A, which is a reprint

of an article published by Roy, Grazioli, and Andricioaei in the Journal of Chemical Physics

under the title “Mechano-chemical coupling in force-catalyzed single-bond cleavage kinetics:

Modeling and simulations of single-molecule pulling” [92].

Single-molecule manipulation techniques are increasingly often revealing important biomolec-

ular conformational changes, one molecule at a time. Thereby, they enable one to identify

intermediates and to characterize heterogeneity in conformational pathways, properties that
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otherwise would be masked by the averaging inherent in usual bulk experiments. Typi-

cal techniques include pulling by atomic force microscopy (AFM) and by optical or mag-

netic tweezers to probe individual folding in biomolecules or binding in biomolecular com-

plexes [55, 23, 35]. Other examples include applying forces and torques to study super-

coiled DNA [68, 97] and DNA-protein [24, 72] or DNA-nanoparticle complexes [91], to unzip

[27, 49, 118] or generate novel forms of DNA[119, 21], to reveal the details of viral packing

[99, 20], or to probe the interaction of proteins with lipid membranes [5]. An area of related

work concerns understanding how chemical steps, such as ATP hydrolysis, can lead to the

generation of force and to the movement of biomolecular machines. Single molecule tech-

niques have here been crucial in detecting and estimating mechano-chemical coupling i.e.,

the coupling between movement and the chemistry of ATP hydrolysis in molecular motors

[3, 93, 127, 44, 52, 76, 31]. Application of external forces induces conformational motion and

motion couples to chemistry. It is therefore relevant to seek ways in which applied forces

modulate chemistry. This is precisely what has been explored recently by Fernandez and

coworkers [66, 43, 59, 123, 87, 65], who, in a novel experiment, have studied how external

forces affect the the quintessential chemical act of catalysis. The technique used was single

molecule force clamp spectroscopy (SMFCS), a method of precise constancy in the force

application [22, 96, 79, 39], that has proved particularly useful previously in the characteri-

zation of the mechanical unfolding/refolding of proteins. They revealed a coupling between

mechanically applied forces and the chemistry of bond cleavage in a catalytic reaction, i.e.,

the rate of force-catalyzed chemical reactions at the single molecule level. In particular, they

studied the force dependence of the reduction of disulphide bonds in a protein substrate,

titin when catalyzed by the enzyme thioredoxin [4] (reduction which occurs in-vivo), and

when catalyzed by different small nucleophiles [123, 43, 66, 102]. Two opposing mechanical

forces were applied via AFM to pull apart the C- and N-termini of the immunoglobulin-like

domain number 27 (I27) of titin, which had an engineered disulphide bond between residues

32 and 75 (see Fig. A.1). The protein unfolded from the two termini up to the sequestered
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disulphide bond, which, from being buried inside the folded protein, now became both ex-

posed to the nucleophilic moiety and stretched by the same mechanical force that caused the

unfolding of the intervening protein backbone “handles” 1 − 32 and 75 − 89 (Figure A.1).

The disulphide bond was subsequently reduced (cleaved) by thioredoxin or, in their subset

of experiments, by the small nucleophiles, and the cleavage resulted in further extension of

titin.

(a)

(b)

(c)
FF

F F

F F

Figure 2.1: Different stages of external force application (a) Force applied on the native
titin I27 with an engineered disulphide bond at Cys32-Cys75. (b) Force applied to exposed
disulphide bond through the extended C- and N-termini “handle” (viewed from the opposite
direction relative to panel (a)). (c) Force applied on titin “handles” while the exposed
disulphide bond is in close proximity to the active site of enzyme thioredoxin, shown in
green (PDB : 1XOB).

When the small nucleophiles were present, the disulphide reduction followed the kinetics

of an SN
2 reaction with a first order dependence of the reaction rate on the nucleophilic
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concentration and an exponential dependence on the force as in Bell’s model [12],

rate = A exp(−(Ea − F∆xr)/kBT )[Nu], (2.1)

where [Nu] is the concentration of the nucleophile and Ea is the activation energy barrier,

lowered by the external force, F by an amount F∆xr, with ∆xr the distance to the transi-

tion state along the reaction coordinate, identified as the elongation of the disulphide bond

[66, 89, 59]. By and large, the rate of reduction by small nucleophiles was exponentially ac-

celerated by the force on titin. However, when thioredoxin was the catalyst, disulphide bond

reduction exhibited a biphasic force dependence [4, 122, 86] in the form of a turnover in the

rate-force plots. Both eukaryotic and bacterial thioredoxins were studied. While all thiore-

doxins showed a negative force sensitivity at lower forces (the rate decreased with force), this

was followed, at larger forces, by a force independent behavior for eukaryotic thioredoxins

and an increase in the rate with the force for bacterial thioredoxin. The distinct chemical

mechanisms underlying the catalytic activity of the two types of thioredoxin enzymes not

seen in small nucleophiles was rationalized to be modulated by the highly conserved active

site in the enzyme, defined by two “vicinal” cysteine residues at the 32 and 35 positions

[48, 38], as well as the surface and depth of the substrate binding groove [87, 50, 9, 25].

Molecular dynamics simulation studies for thioredoxins of different origins attributed the

biphasic kinetics in E-coli thioredoxin (bacterial) to the shallow binding groove controlling

the chemistry of the reaction at lower forces [87] (substrate binding being the rate limiting in

the absence of the force), according to a Michaelis-Menten mechanism. At higher forces, the

reaction proceeds according to a simple SN
2 mechanism, and the formation of the enzyme

substrate complex is no longer the rate determining step. The force independent behavior in

the case of eukaryotic thioredoxin can be explained on the basis of a single-electron transfer

reaction [100] taking place irrespective of the orientation of the disulphide bond [90]. The

experimental and molecular dynamics simulations of peptide bound enzymes also confirmed
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that the eukaryotic thioredoxins have a deeper binding groove which can lock the substrate

disulphide bond, preventing further conformational variability. Even though the reduction

rate was found to be force accelerated, following a Bell model (or generalizations thereof)

in the case of the small nucleophile, this was not the case for the biphasic turnover in the

force-dependence of the thioredoxin catalyzed chemical rate. This points to the idea that

the force also modulates the behavior of the protein environment surrounding the cleaved

disulphide.

The force dependence observed in titin’s disulphide cleavage reaction is reminiscent of an

otherwise unrelated class of complexes with similarly biphasic rate-vs-force profiles. The

prime feature of this class is a so-called “catch-slip” transition, seen when pulling apart

certain adhesive supramolecular complexes, such as the binding to P-selectin and L-selectin

of the P-selectin glycoprotein ligand-1(PSGL-1) [10, 94, 104] or the adhesion of the protein

FimH to bacterial host cells [107]. The concept, introduced by Dembo et al. in 1988 [30],

describes rates of dissociation of the ligand that, counterintuitively, first decrease with the

pulling force, a range for which interactions are coined “catch bonds” (although no actual

covalent bond exists). Subsequently, rates increase with force beyond a certain threshold,

a force regime termed “slip bonds”. Theories and phenomenological models explaining the

dynamic transitions in catch-slip bonds have been developed, chiefly based on the existence

of an energy landscape with two bound states or two pathways [106, 128, 83, 11, 130, 105,

36, 85].

A natural framework –perhaps the simplest– to rationalize the qualitative change in the re-

action rate for disulphide cleavage with the force applied to the protein is a two-dimensional

reaction-diffusion model. An earlier incarnation of a related approach is the venerable

Agmon-Hopfield model [2] (see also Ref. [8]), which describes a first-order kinetic process

(more precisely, CO binding to a protein) whose rate depends on the “protein coordinate,”

i.e., on a variable that diffuses in time [81]. The protein coordinate can be thought of, in ef-

26



fect, as a displaced normal mode, or some linear combination of normal modes, of the protein

[131]. An essentially similar description, with the chemistry being this time electron transfer,

is the Sumi-Markus model [100]. In any case, in such models, the reaction coordinate, r,

is the one along which chemistry occurs and it is coupled to an orthogonal coordinate, the

conceptual protein coordinate, x, which evolves according to a Smoluchowski-based reaction-

diffusion equation,

∂ρ(x, t)

∂t
= D

∂2ρ(x, t)

∂x2
+

D

kBT

∂

∂x
(ρ(x, t)

∂V

∂x
)− k(x)ρ(x, t), (2.2)

where ρ(x, t) is the probability density of x, D is the diffusion coefficient and the last term

relates to the rate of the reaction.

Herein we pursue a description of the force-modulated kinetics of disulphide cleavage using a

framework inspired by the Agmon-Hopfield or Sumi-Markus models embodied by Eq. (A.2).

Our approach is, in spirit, similar to the treatment of catch-slip bond transitions proposed

by Liu and Ou-Yang [69], who assume that the distribution of protein conformations in-

volved in the adhesive complex is modulated by the external force, which also couples to

the catch-slip detachment coordinate. A quasiharmonic analysis of the substrate protein

titin was carried out by Dr. Mahua Roy in order to evaluate candidate modes that can de-

scribe the collective motion of the protein coordinate. Our study highlights the importance

of involving force-dependent protein modes in theoretical descriptions of mechano-chemical

coupling. A novel treatment of the applied force in force-modulated enzyme-catalyzed disul-

phide bond reduction experiments is introduced, where the force is represented as a vector

with components in the reaction coordinate and protein coordinate, and a Smoluchowski-

based formalism for reaction-diffusion in this two dimensional space, which can be routinely

solved using numerical methods, is presented.

27



(a)

(b)

Protein Coordinate 

x

Reaction Coordinate  
r

Applied Force, F

Energy

TRX-S32

TIT-S32

Thioredoxin

Titin

(a)

(b)

x

r

F

Figure 2.2: (a) Sketch of a potential energy surface distorting under an applied force (green
arrow) with vector components along the ‘protein coordinate’ (red arrow) and ‘reaction coor-
dinate’ (blue arrow). The red surface corresponds to an applied force of smallest magnitude,
with blue being larger, and purple being the largest. The small increase in applied force
magnitude going from the red surface to the blue surface causes an increase in well depth for
the reaction coordinate, but little change in energy for the non-bonded state along the reac-
tion coordinate, while the highest magnitude applied force shows a pronounced decrease in
energy for the non-bonded state (compare the positions of the parabolic cross-sections of the
surfaces). This is analogous to the turnover behavior observed in force-modulated disulphide
bond reduction, where smaller magnitude forces favor the bound state, while higher magni-
tude forces increase the rate of bond breakage, i.e., favor the unbound state. (b) Cartoon
representation of thioredoxin in complex with the substrate protein (titin) at the transition
state as modeled during atomistic simulations carried out by M. Roy (see Appendix A). The
arrows represent the same orthogonal coordinates as in part (a), and employ the same color
scheme.

2.2 Results

As described above, a diversity of mechanisms for the thioredoxin-catylized disulphide bond

cleavage of titin, as it was subjected to pulling forces, were experimentally observed. There

were two distinct rate-force dependencies observed, depending on the variety of thioredoxin

present [87]. The two types of dependences corresponded to the two distinct families of

thioredoxins studied, i.e., eukaryotic vs. bacterial. A prime role in this dichotomy was
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played by the binding groove, which was different in the two families, and which controlled

the force application on the active site and hence on catalysis. However, a quantitative

description of the rate remained to be obtained. Here, we investigate a model in which the

diversity in the rates of disulphide cleavage is shown to result from a different force response

of the protein coordinate, which in turn affects the reaction coordinate by modulating its

energy barrier and transition state position.

To correlate the collective motions the enzyme-substrate complex to the biphasic kinetics

of the enzymatic disulphide reduction reaction, we propose to use a force modulated dif-

fusion model - a “bounded diffusion” orthogonal to the reaction coordinate, bound by a

force-modulated harmonic potential. The conformational variations corresponding to low

frequency vibrations give rise to a fluctuating intrinsic energy barrier, which being modu-

lated by force is revealed as a biphasic behavior in the rate. The particular force-modulated

reaction-diffusion equation utilized here is the generalization of the Agmon-Hopfield model

[2] by Liu and Ou-Yang [69], which is in effect, an expanded form of the Smoluchowski

dynamics in an external field [124].

∂ρ(x, t)

∂t
= D

∂2ρ(x, t)

∂x2
+Dβ

∂

∂x
ρ(x, t)

∂V (x, F⊥)

∂x
− koff(x, F‖)ρ(x, t) (2.3)

where, ρ(x, t) is the probability density of finding the value x at a time t, and the two

components of the pulling force F along the protein and reaction coordinate are, respectively,

given by

F⊥ = F · x̂ = F sin θ (2.4)

F‖ = F · r̂ = F cos θ, (2.5)
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with θ the angle between the applied force and the reaction coordinate, r; D is the diffusion

coefficient and β the inverse temperature. V (x, F⊥) is the force-modulated potential acting

on the system (relatedly, a reduced two-dimensional version of a multi-dimensional analytical

free energy function was proposed by Suzuki and Dudko [101]), which is a function of both

the position along the protein coordinate, x, and the perpendicular component of the applied

force. The potential is expressed as:

V (x, F⊥) = V0 +
1

2
κ(x− x0)2 − F⊥x, (2.6)

with V0 the minimum value of the potential of force constant κ, and x0 the location of

the minimum along the protein coordinate, x. The term −F⊥x models the amount by

which the component of the force along the protein coordinate x tilts the energy along

x. Herein we define the protein coordinate x as a conformational coordinate along which

the motion of the system is orthogonal to the reaction coordinate r; x can be thought of

as a linear combination of protein “breathing” modes, a physical correlation to a second

degree of freedom affecting kinetic turnover [61]. The final, sink term in the Smoluchowski

equation, Eq. (A.3), consumes probability density directly proportionally to the reaction

rate coefficient, koff . The rate coefficient is itself a function of the protein coordinate (via

the x−dependent energy barrier height), as well as of the parallel component of the applied

force:

koff(x, F‖) = k0 exp[−β(∆V ‡(x)− F‖r‡)] (2.7)

The component of the force parallel to the reaction coordinate r tilts the energy surface by

the amount −F‖r‡, with r‡ the distance to the barrier, namely the separation between the

bound state and the energy barrier for disulphide cleavage. Following Liu and Ou-Yang [69],

the shape of the reaction energy barrier height ∆V ‡ as a function of the protein coordinate

x was modeled as a piecewise function, initially with a positive slope until an equilibrium
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distance, after which it assumed a zero slope. The Smoluchowski equation was then solved

numerically for ρ(x, t) using the partial differential equation solver in Mathematica [125], with

Dirichlet boundary conditions ρ(xmax, t) = 0 and ρ(xmin, t) = 0, and the initial condition:

ρ(x, 0) =
1√
π
e−(x−1)2

. (2.8)

Although Neumann boundary conditions (which cancel the flux at the boundaries) are also

possible, the simpler to implement Dirichlet boundary conditions were employed here without

loss of precision by placing them at values of xmin and xmax which corresponded to states

energetically inaccessible to the system at room temperature (we chose xmin = −22 and

xmax = 22). Thus the potential itself keeps the system bounded in the x direction, and the

boundary conditions merely serve to define zero-valued endpoints for the numerical method.

The ultimate goal of generating the ρ(x,t) surfaces is to integrate them over all space and

time, in order to generate τ , the disulphide bond lifetime:

τ =

∫ ∞
0

∫ ∞
−∞

ρ(x, t)dxdt. (2.9)

The sink term in the Smoluchowski equation ensures that the probability density decays to

zero at long times. In the numerical implementation, integrating the surface over infinite

time was made tractable by setting the upper limit of the time integral to a value larger

than the time t at which ρ(x, t) has decayed more than a cutoff of 10−13 of the initial-time

value integrated over all x. Since ρ(x, t) decays to zero long before reaching the boundaries,

integrating between the boundary conditions is equivalent to integrating over all space. The

above process of numerically solving for ρ(x, t) and then integrating it with Eq. (A.9) was

repeated for increasing values of force from 0 to 600 pN, and the resulting values for lifetime

τ were inverted to find the numerical values of the reaction rates. These reaction rates could

then be plotted as a function of the applied pulling force and was fitted to the experimental

data of Perez-Jimenez et al. [4] by collectively varying the distance to the reaction barrier
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r†, the reaction attempt frequency k0, and the force constant for the effective harmonic

potential of the protein coordinate κ. Goodness of fit was monitored using a cost function

which summed the squared differences between the experimentally measured rates and the

calculated rates for each given force value.
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Figure 2.3: Curves generated by numerically solving and integrating the Agmon-Hopfield-
Smoluchowski equation for increasing values of applied force and fit to experimentally mea-
sured disulphide bond reduction rates from Perez-Jimenez et al. (fit parameters given in
Table A.1). Color coding scheme same as in Fig. A.3.

Varying the force constant κ of the force-modulated potential V (x, F⊥) varied the rate,

reinforcing the importance of the “softness” of the underlying protein coordinate. The

matching protein coordinates were subsequently identified atomistically from the the low

frequency modes of the quasi-harmonic analysis. i.e., when the distribution of the protein

coordinate was bound by a harmonic potential of different force constants κ for each enzyme-

substrate complex. The variability in the low frequency quasi-harmonic modes in the inset to
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Fig. A.3 originates from the different protein environment engulfing the substrate disulfide

in each binding groove pictured in Fig. A.2(b) and results in the variety of curves for the

rates in Fig. A.4.

The two key parameters that strongly control the shape of the force-rate curves in Fig. A.4

are κ, the force constant defining the force modulated harmonic potential along the protein

coordinate and r†, the distance along the reaction coordinate from the bottom of the reac-

tant well to the transition state. The values for κ ranged from 8 pN nm-1 (2TRX) to 24 pN

nm-1 (1XOB), and r† ranged between 0.008 nm (1UVZ) and 0.02 nm (2TRX). Adding to

the information obtained through low frequency normal modes, we used molecular dynamics

simulations to capture the conformational transitions within the substrate in the presence

of force [42, 122] that occur in close proximity to the enzyme thioredoxin, proximity being a

measure of r, the distance to the transition state. The force constant, κ, is the key parameter

in establishing a connection between the Smoluchowski model for force-modulated chemistry

and the atomistic simulations presented herein. Quasi-harmonic mode analysis of the pro-

tein/substrate system resulted in a matching distribution of low frequencies from less than 1

to around 30 cm-1. Upon solving for κ from ω =
√
κ/m, where ω is the frequency and m the

reduced mass of the oscillator, a value of κ can be identified. This relates the force constant

of the Smoluchowski model to a particular region of the spectrum of quaisharmonic modes.

For example, for a total mass of the atomistic system in the simulation of roughly 15,000

amu, the larger reduced mass is 7500 × 7500/15000 = 3570 amu, which would correspond

to a large scale oscillation of two portions of equal mass. This establishes the upper limit

for reduced mass, with lesser values possible, (all the way down to 1 amu, corresponding

to a single hydrogen atom oscillating against the rest of the system). As an example, if we

assume that the normal mode which best corresponds to our protein coordinate is a low

frequency mode approximated as motion involving about 5% of the full structure oscillating

from the remainder of the structure, then we can use the previously stated relationships to

establish a range for κ of around 10 pN/nm corresponding to frequency = 0.5 cm-1 to around
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27 pN/nm for frequency = 0.8 cm-1. In comparison, for the Smoluchowski equation used to

generate the rate vs. force curves in Fig. A.4, the κ parameter was varied between 8 and

24 pN/nm to produce the fits. Although this matching strategy does not generate a unique

mode identification, it does provide a reasonable picture of the protein coordinate, and it

invites further exploration into ascribing physical meaning to motion along it using linear

combinations of low-frequency normal modes.

κ (pN/nm) r† (nm) θ (rad) k0 (s−1)
Blue 9.9798 0.008 0.1 6.0× 106

Red 23.9798 0.01215 0.166 2.8× 106

Black 11 0.016 0.1 2.0× 106

Brown 8 0.02 0.1 1.1× 106

Table 2.1: Parameter values from the Smoluchowski equation used to fit the curves repre-
senting disulphide bond cleavage rate as a function of the applied force to the experimentally
measured values for different forms of Thioredoxin, as color coded in Fig. A.4.

2.3 Concluding Discussion

Recent single molecule experiments on thioredoxin-catalyzed thiol-disulphide exchange un-

veiled a nontrivial rate-force dependence. The rate initially decreased for forces F below 200

pN and increased at higher forces. In principle, the initial decrease could formally be consid-

ered as a consequence of an effective distance-to-barrier increase with force, modeled by ∆xr

and F having opposite signs if the Bell model (Eq.(A.1)) is imposed [83]. This is would be

then followed by a subsequent increase at larger forces, caused by a coupling of the force with

the elongation in bond length (a regular, positive ∆xr). Such a force-reaction coupling mod-

eled à la Bell is necessarily one-dimensional. In the case of complex macromolecular systems,

as are protein-enzyme complexes, the force applied to the substrate protein is more likely

to act along directions other than the reaction coordinate. Hence the factors dictating the

distance to the transition state and subsequent kinetics cannot be identified by a single bond

elongation, ∆xr, but by a combination of several parameters. Here we offered evidence that
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such parameters arise naturally from internal protein coordinates, that vary or are modulated

by force as the system progresses from the reactant to the transition state. We modeled an

internal protein coordinate as a linear combination of low-frequency quasi-harmonic modes

which differ in different active site environments, as represented by complexes of the same

substrate with different enzymes. Accordingly, rates of different complexes exhibited a slight

difference that was in agreement with experiments and the measured the biphasic behavior

observed in all bacterial complexes. We successfully reproduced the biphasic force depen-

dency of rates by simultaneously propagating the protein coordinate and reaction coordinate

along the two components of a force modulated potential by solving a generalized version of

a reaction-diffusion equation.

To conclude, we provided microscopic evidence of the protein conformational coordinate

through our simulations and quahiharmonic mode analysis which successfully validated our

model of force modulated diffusion of protein and reaction coordinate along two perpendic-

ular dimensions. Similar descriptions are also relevant for the force and torque effects on the

activity of enzymes on nucleic acid substrates during genetic transactions [6]. We expect our

study to be important as more experimental examples of mechano-chemical coupling, new

sono-chemical coupling [26, 47] or coupling to electrical fields [41] become available.
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Chapter 3

Advancements in the Milestoning

Technique: I. Enhanced Sampling via

“Wind” Assisted Re-weighted

Milestoning (WARM)

3.1 Introduction

The task of calculating kinetic properties from molecular dynamics simulations is a complex

problem of considerable interest [29] [28]. In contrast to computational methods designed

for equilibrium calculations, in which the basic observables are thermodynamic averages

over conformational points (structures) generated over an invariant measure without the

need to obey exact dynamical equations, studies of kinetics require physically correct time-

ordered trajectories to obtain time-correlation functions as the basic objects [57]. Since each

time-correlation function describes the relaxation under investigation as an average over
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all relevant trajectories, adequate sampling for accurate calculation of long-time kinetics

can quickly become computationally intractable via direct simulation [14]. This is because

a direct, brute force method of this type would require sufficiently long simulation times

such that the system would be able to transition between states of interest enough times

that a statistically significant distribution of first passage times could be generated. Several

computational methods have been developed to address the challenge of calculating chemical

kinetics, starting with the venerable transition state theory (TST) [37] [121], and continuing

with more recent developments, such as, transition path sampling (TPS) [16], transition

path theory (TPT) [71], and transition interface sampling (TiS) [113]. Although transition

state theory has been successfully used in the determination of the kinetics for many systems

with well-defined reactant and product states, for which the “dynamical bottleneck” can be

identified [110], there are many interesting problems in biophysics, and elsewhere, for which

these assumptions do not hold. In contrast, transition path sampling approaches require

no intuition for reaction mechanisms or advance knowledge of transition state, although

the requirement of a ”dynamical bottleneck” does persist [16] [114]. In the same category

of methods is the milestoning algorithm created by Ron Elber et al., which is a method

for calculating kinetic properties, where the fundamental objects are the first passage time

distributions KAB(τ) between adjacent protein configuration milestone states (configurations

A and B in this case), where the milestone states do not necessarily need to be meta-stable

states as in transition state theory. The key feature of the milestoning method is that long

trajectory pathways for large scale configuration changes can be broken up into shorter

trajectories for which a linear network of transition probabilities between milestones can be

devised. The aforementioned linear networks of transition probabilities can then be solved

for such quantities as first passage time between any pair of milestones, including those at

the extreme ends of the space, and the flux through a given milestone, s, as a function of

time, written as Ps(t) (equation 3.1). Some of the key gains from this treatment are that

breaking up these long trajectory pathways into a network of shorter trajectories leads to

37



increased sampling of the would-be under-sampled areas, and that gains in computational

efficiency are possible due to the capacity to run these short trajectories in parallel [33].

In practice, previous milestoning calculations have been limited to calculating the constant

flux values representative of the system at equilibrium, which can be thought of as the long

time flux values limt→∞ Ps(t). A method for calculating the time-dependent flux through a

given milestone Ps(t) can be found in chapter 4. The aim of the technique we present in

this paper is to increase the computational speed of the milestoning method via the addition

of an artificial constant force (Fwind) along the vector pointing from the initial state to the

final state for each pair of milestones in the simulation, causing the system to arrive at the

destination configuration in far fewer time steps than if it were left to Brownian dynamics

alone. The key idea which makes this possible is the use of a re-weighting function we have

introduced previously [77] [126] [51] [78], which generates a re-weighting coefficient for each

trajectory, thus allowing the true distribution of first passage times to be recovered from the

artificially accelerated trajectories. Preliminary calculations conducted on model systems,

described in the Numerical Demonstration section, have demonstrated a computation time

speedup by a factor of nearly 40 using this method.

3.2 Theory

The central quantity in milestoning is the flux through a given milestone [33]; it is prescribed

by the probabilities

Ps(t) =

∫ t

0

Qs(t
′)

[
1−

∫ t−t′

0

Ks(τ)dτ

]
dt′
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Qs(t) = 2δ(t)Ps(0) +

∫ t

0

Qs±1(t′′)K∓s±1(t− t′′)dt′′, (3.1)

where Ps(t) is the probability of being at milestone s at time t, (or, more specifically, arriving

at any time t′ < t and not leaving before time t [33]), Qs(t) is the probability of a transition

to milestone s at time t and Ks(τ) is the probability of transitioning out of milestone s after

an incubation time of τ . Thus
∫ t−t′

0
Ks(τ)dτ is the probability of an exit from milestone s

anytime between 0 and t−t′, which makes 1−
∫ t−t′

0
Ks(τ)dτ the probability of there not being

an exit from milestone s over that same time period. Since the probability of two independent

simultaneous events happening concurrently is the product of the two events, the equation

for Ps(t) is simply integrating the concurrent probabilities of arriving at milestone s and

not leaving over the time frame from time 0 to t. In dissecting the meaning of Qs(t), the

first term, 2δ(t)Ps(0), simply represents the probability that the system is already occupying

milestone s at time t = 0, where the factor of 2 is present since the δ function is centered

at zero, meaning only half of its area would be counted without this factor. Qs±1(t′′) is the

probability that the system transitioned into one of the two milestones adjacent to s at an

earlier time t′′. K∓s±1(t − t′′) is the probability of a transition from milestones s ± 1 into

milestone s. Thus the second term of the second line of Eq. (3.1) is another concurrent

probability: the probability of the system entering an adjacent milestone at an earlier time,

and then transitioning into milestone s between time t and 0. It is important to note that

all functions Ps(t) and Qs(t) are calculated using the respective values of Ks(τ) between

adjacent milestones, thus the set of Ks(τ) between all milestones of interest contains all the

information needed to calculate kinetics using the milestoning method.

The essential connection to make in regard to combining the milestoning method with re-

weighting of artificially accelerated trajectories is that a K function between two milestones

located at x = A and x = B, KAB(τ), is nothing more than a probability distribution as a
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function of lifetime describing the conditional probability that a system found in state A at

time t = 0 will be found, for the first time, in state B at time t = τ :

KAB(τ) = P (xB, τ |xA, 0) (3.2)

Given this relationship, we can now begin to make the connection between milestoning and

re-weighting of artificially accelerated trajectories. Assuming Langevin dynamics with the

addition of a wind force:

mẍ = −γmẋ−∇V (x) + ξ(t) + Fwind (3.3)

where γ is the friction coefficient, V (x) is the potential, ξ(t) is the random force, and Fwind

is a constant force applied in the direction of the goal milestone for each run; conditional

probabilities reflecting first passage transitions from milestone A to B can be expressed as:

P (xB, τ |xA, 0) =

∫
DξW [ξ]δ(x(τ)− xB) (3.4)

In this equation, W [ξ(t)] is the probability distribution representing the joint probabilities

of all possible series of random kicks, so multiplying by the delta function δ(x(τ)− xB) and

integrating selects for only the portion of the distribution which represents a series of random

kicks which results in a transition from state A to state B given an incubation time τ . It

then follows suit that the integral in this equation is simply the expectation value for the

probability of a transition from A to B for each incubation time point τ , which, again, is
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equivalent to KAB(τ). Because of fluctuation dissipation, 〈ξ(t)ξ(t′)〉 = 2kBTmγ, the random

force in Langevin dynamics is a Gaussian distribution with variance w ≡ 2kBTmγ. Thus it

can be show that:

W [ξ(t)] = exp(− 1

2w

∫ t

0

ξ(t′)2dt′) (3.5)

With W [ξ(t)], our weighting function for joint probabilities of random kick sequences in

terms of our random force ξ(t) in hand, we can now write the noise history ξ(t) in terms of

the trajectory x(t) it generates:

ξ(t)2 = (mẍ+ γmẋ+∇V (x)− Fwind)
2 (3.6)

We are ultimately interested in measuring conditional probability distributions in configu-

ration space, x(t), not random force space, ξ(t), but since the Jacobian is built into the

measure, x, we can define S[x(t)] thusly:

S[x(t)] ≡ ξ(t)2 = (mẍ+ γmẋ+∇V (x)− Fwind)
2 (3.7)

Then, using the Ito formalism for stochastic calculus, we can express our conditional prob-
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ability using the Wiener formalism of path integrals [58] as:

P (xB, τ |xA, 0) =

∫ (xB ,τ)

(xA,0)

Dx exp

(
−S[x(t)]

2w

)
(3.8)

In this form, it is clear that the exponential function represents the weighting function for

the trajectory x(t):

W [x(t)] ≡ exp

(
−S[x(t)]

2w

)
(3.9)

With the weight of each trajectory, W [x(t)], now formally defined, we can define the re-

weighting factor for obtaining the true weight of an artificially accelerated trajectory as:

W [x(t)]

Wf [x(t)]
= exp

(
−S[x(t)]− Sf [x(t)]

2w

)
(3.10)

where the f subscript indicates a function generated under the influence of the artificial

Fwind force. In practice, once a trajectory x(t) is generated (in the presence of the wind

force), the actions are calculated in discrete numerical form using:

Sf [x(t)] ≈
∑
i

(
m

∆νi
∆t

+mγ
∆xi
∆t

+∇Vi − Fwind

)2

∆t
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S[x(t)] ≈
∑
i

(
m

∆νi
∆t

+mγ
∆xi
∆t

+∇Vi
)2

∆t (3.11)

The re-weighting factor is calculated from Eq. (10) and stored in an array. When post-

processing to compute the KAB(τ) distribution for a particular pair of milestones A and B

by histogramming trajectories by lifetime τ , instead of adding 1 to a particular bin each

time the lifetime of a particular trajectory falls within the bounds of that bin, the weight

W [x(t)] corresponding to that trajectory is instead added. It is clear from equation 10

that as Sf [x(t)] for the artificially accelerated trajectory approaches S[x(t)], the weight of

the trajectory approaches unity, thus the method reduces to an unweighted histogram for

Fwind = 0 as it should.

3.3 Numerical Demonstration

Model System in One Dimension

A simple two well potential (see inset of figure 7) of equation y = (x−1)2(x+1)2 was chosen

to be the model system upon which the wind-assisted milestoning methodology could be

developed. In running wind-assisted milestoning, the potential to which the particle is being

subjected is first divided into any number of milestones, in this case, 7 milestones, thus 6

separate spaces. Next, numerous Langevin trajectories are run both from left to right and

right to left between each pair of adjacent milestones. The number of time steps required to

go from the starting milestone to the destination milestone for each trial of each pair and

the weight of each trajectory is then stored in an array as mentioned in the theory section.

As shown in figures 1 and 2, this method has brought about a more than tenfold speedup in

43



computation time with very little sacrifice in terms of accuracy.

2 4 6 8 10 12
Windforce HpNL
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Time HsL

Figure 3.1: Shown here is calculation time as a function of the Fwind force for all K(τ)
distributions in both directions for six subspaces ranging from -2 to 2 on the bistable har-
monic potential. The calculation took 507 seconds for Fwind = 0pN and just 44 seconds for
Fwind = 12pN
.

Model System in One Dimension with Distortion

Thus far, we have approached the WARM method from the standpoint of speeding up the

calculation by pushing Fwind until the K(τ) functions begin to distort. Here we will ex-

plore the possibility that even slightly distorted K(τ) functions can yield useful information,

allowing for even greater computational speedup. The flux value for a given milestone s,

Ps(t), should approach the probability predicted by the Boltzmann distribution generated

from configurational partition function as time approaches infinity. Given a discrete space

in x, subject to our 1D potential y = (x− 1)2(x+ 1)2, the Boltzmann distribution function
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Figure 3.2: Shown in this figure is the transition probability distribution K23(τ), i.e. the
transition probability from milestone 2 to milestone 3 as a function of lifetime, calculated
using Fwind forces ranging from 0 to 12 pN. The plots indicate that the rapid decrease in
computation time due to the added Fwind force has almost no effect on accuracy.

can be obtained in the usual way, shown in equation 3.12, below:

lim
t→∞

Ps(t) =
e−βU(xs)∑NS
n=1 e

−βU(xn)
(3.12)

where Ns is the total number of milestone configurations, and xn signifies the spatial position

of each milestone. This discrete space approximation for the equilibrium flux values is utilized

below as a test for accuracy in figure 3.3 (dashed lines). The numerical demonstration in this

section consists of dividing the space for the bistable 1D potential between x = −2 and x = 2

into 11 subspaces bounded by 12 milestones. First hitting trajectories were run between each

pair of adjacent milestones, and then each pair of K(τ) functions describing a transition away

from each milestone were normalized (e.g. for milestone 3, all trajectories must terminate

at either milestone 2 or milestone 4, therefore
∫∞

0
K32(τ)dτ +

∫∞
0
K34(τ)dτ = 1). The

normalized K(τ) functions are then integrated over all time, and these values are placed
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in a matrix, K, of equilibrium transition probabilities. The equilibrium flux values for the

vector representing the set of milestones, P, is then found by numerically solving for the

eigenvector: P·K = P [32]. By using this method to determine equilibrium flux values, it is

demonstrated in figures 3.3 and 3.4, that even when Fwind is set to a value strong enough to

distort the K(τ) functions, accurate equilibrium flux values can still be calculated.

Model Systems in Two Dimensions

Two additional test systems for the WARM technique were implemented for further vali-

dating the method in two dimensions. Both systems have double well shapes, however for

one well, the barrier to transition from one well to the other is primarily energetic, while

the other is primarily entropic (see figure 3 below). The potential with the energetic bar-

rier is a generalization of the 1D potential from the previous section to two dimensions,

and the potential with the entropic barrier is the same potential implemented by Elber and

Faradjian in their original paper on milestoning [33]. As can be seen in the data below, the

WARM method successfully re-weighted first passage time distributions (K(τ)) generated

using artificially accelerated trajectories to yield the true first passage time distributions

which would have resulted from trajectories in the absence of the wind force. In both cases,

the method achieved more than 60% faster computation times with very little sacrifice in

terms of accuracy.

Model System in Eleven Dimensions

In order to demonstrate that the WARM method possesses no inherent limitations due to

scaling, the method was applied to an 11 dimensional hyperspace. For this model, the 11D
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potential was defined as:

V (x1, x2, ..., x11) = (x1 − 1)2(x1 + 1)2 − 1

2

11∑
n=2

x2
nx

2
1 +

11∑
n=2

x4
n (3.13)

where the first term is the same bistable potential in x1 used in the first one dimensional

example, the second term couples motion in the 10 dimensions orthogonal to barrier height

in x1, and the third term simply confines the system to a reasonably sized configurational

space using a quartic potential. In order to develop some intuition for this potential, see

figure 3.10, then just imagine that there are nine other dimensions which have the same

effect as y on barrier height in x1.

Accordingly, the milestones must be defined as hyperplanes, given the general definition of

a hyperplane:

a1x1 + a2x2 + a3x3...anxn = b (3.14)

To keep things simple, we set a2 through a11 equal to zero, and a1 = 1, allowing us to define

two hyperplanes as x1 = −1 and x1 = 1. In this scenario, the features of interest are the

transitions between the wells at x1 = −1 and x1 = 1, thus the 11D Fwind is applied with

zero components in all dimensions except for x1 where it is used to push the system over the

barrier between wells. The WARM method was successfully applied to this 11 dimensional

potential, and a speedup by a factor of 4.5 was observed (figures 3.11 and 3.12).
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Wind Force as a Vector Field

In all of the preceding examples, Fwind was applied to the system as a constant force applied

in a straight line, perpendicular to the parallel milestone hyperplanes, but Fwind can be

defined any way we choose. This section demonstrates a method whereby the directionality

of Fwind is defined by a vector field which allows Fwind to blow in a curved path between

two nearly orthogonal milestones (see figures 3.13 and 3.14), i.e. our wind has become a

tornado! In order to define this vector field, the point of intersection between the two planes

was determined, then a function was created which finds the straight line connecting the

current position to this point of intersection, and then defines Fwind at that point to be a

vector both orthogonal to that straight line and pointing in a clockwise direction. When first

passage times were calculated going from the milestone shown in red toward the milestone

shown in green (figure 3.13), the vector field is simply multiplied by −1 to cause our tornado

to spin counterclockwise. Using a wind force defined in this manner, we obtain an efficient

directionality for Fwind which biases the system toward both leaving its initial milestone in

the right direction and approaching its destination milestone, regardless of the positioning

of the milestones in configuration space. Another advantage of this scheme is that our

curved vector field of Fwind can be defined without any knowledge of the system itself, we

only need to know the positions of the milestones, which are always known in milestoning

calculations. Figures 3.13 through 3.18 illustrate the application and results of this method

using two different 2D potentials, the Muller-Brown potential [74], and a simpler Muller-

inspired potential with two Gaussian wells we’ll call our Gaussian potential. The Gaussian

potential is defined as:
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V (x, y) = −exp[−(2(x− .8)2 + y2)] (3.15)

−1.3exp[−((x+ 1)2 + (y − 1.5)2)]

+.2x2 + .2y2

and the Muller potential is defined as:

V (x, y) = h
4∑

k=1

exp[ak(x− x0
k)

2 (3.16)

+bk(x− x0
k)(y − y0

k) + ck(y − y0
k)

2]

where:

A = (−200,−100,−170, 15), a = (−1,−1,−6.5, .7)

b = (0, 0, 11, .6), c = (−10,−10,−6.5, .7)

x0 = (1, 0,−.5,−1), y0 = (0, .5, 1.5, 1)

h = .005

A speedup factor of 4 was observed in both the Muller potential and the Gaussian potential,

although the K(τ) functions in the Gaussian potential example displayed less distortion than

those produced in the calculations performed using the Muller potential.
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3.4 Concluding Discussion

We have presented and tested a method for accelerating milestoning calculations, whereby

the true probability density functions for first passage transition time between milestones,

KAB(τ), are recovered from artificially accelerated trajectories via the re-weighting method

described in the Theory section. These KAB(τ) functions are central to milestoning calcula-

tions, thus the WARM method presented herein shows potential for broad application.

Our method has been shown to be effective on one and two dimensional potentials with both

energetic and entropic barriers, as well as an 11 dimensional hyperspace, implying that the

method should have no scaling limitations, thus the next step will be to test the method

on chemical systems. The simplest application would be to apply a single force vector to

a single atom which pushes the system toward a configurational change of interest. In this

case, the re-weighting factors S[x(t)] and Sf [x(t)] could be calculated by summing the force

components in the x, y, and z directions both with and without the components of the

applied force, respectively.

The main limitation of the WARM method, regardless of the number dimensions are present,

is obtaining good re-weighting in the longer τ range. This is simply a matter of under-

sampling. If Fwind is pushing the system to the next milestone so quickly that longer values

of τ , relevant to the true KAB(τ) distribution, are not being sampled, then there just isn’t

enough density present (or even none at all) to re-weight. This is why the accuracy in the low

tau regime is often still quite good when too high of an Fwind has caused the latter portion

of the distribution to turn to noise. Thus far, the limitations on the WARM method appear

to be solely dependent on whether or not we’ve pushed the force so hard that trajectories

in the longer τ region of the true KAB(τ) are even being sampled. For this reason, systems

whose true KAB(τ) distribution functions possess fat tails place the greatest limitations on

the degree of computational speedup achievable by WARM. This issue can be addressed in
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a couple different ways. One approach is to simply define more milestones in the space, the

other is to combine the WARM method with some sort of artificial heating method, both

modifications which will yield KAB(τ) functions which decay more rapidly after their peak.

It should be noted that our application of the WARM method to both the high dimensional

model, and our vector field-based Fwind implementation of demonstrate that this technique

can be applied to systems too complex to intuit the placement of the artificial forces. Given

an initial and a final milestone configuration, one could determine the vectors pointing from

each atom’s initial position to it’s final position. Artificial forces, Fwind, could then be

placed upon all atoms in the system pointing in the direction of these vectors and with

a magnitude proportional to the length of the vectors. A zero cutoff could also be added

so as not to waste computational resources on applying and accounting for Fwind forces

atoms which are beginning at a position fairly close to their destination. We believe that,

upon implementation into a molecular dynamics package such as MOIL [34], the WARM

method has the potential to be a useful tool for the determination of the kinetic properties

of macromolecules.
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Figure 3.3: The plot at the top of this figure shows plots for one of the transition probability
distributions K(τ) for the bistable 1D potential with different values of Fwind implemented.
Note that although the distributions distort considerably for higher values of τ when the
system is pushed with high magnitude Fwind, the equilibrium flux values in the plot below
remain fairly constant. The color scheme legend applies to both plots.
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Figure 3.4: Here we show effects of applying higher magnitude Fwind which are strong enough
to significantly distort the K(τ) functions. This figure facilitates a direct comparison of gain
in computational speed with the accuracy of the equilibrium flux values (measured as X2).
Note that while there is no appreciable change in accuracy, calculation time drops from 1109
s to 26 s, a speedup by a factor of nearly 40.
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Figure 3.5: Show here are the potentials used in the 2D WARM calculations. In the first
case, the primary barrier to crossing from one well to the other is the height of the barrier
relative to the strength of the “kicks” from the random force in the Langevin equation. In the
second potential [33], the barrier to crossing between wells is entropic, in that a trajectory
which results in a transition between wells must find its way through the gap at the center,
i.e. the likelihood of a transition is not limited by any sort of uphill battle, but instead by
decreased degeneracy in the number of possible trajectories which result in a transition.
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Figure 3.6: Shown in this figure is the transition probability distribution K12(τ), i.e. the
transition probability from milestone 1 (the line x = −1) to milestone 2 (the line x = 0) on
the the 2D potential with the energetic barrier as a function of lifetime, calculated using Fwind
forces ranging from 0 to 12 pN. The plots indicate that the rapid decrease in computation
time due to the added wind force has almost no effect on accuracy.
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Figure 3.7: Shown here is calculation time as a function of the Fwind force for all K(τ)
distributions in both directions for two subspaces ranging from -1 to 1 on the x axis of the 2D
potential with the energetic barrier. All trajectories were run using β = .123. The highest
value of Fwind yielded a faster computation time by a factor of 4.17 than the unassisted
calculation with very little distortion to the K(τ) function.
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Figure 3.8: Shown in this figure is the transition probability distribution K12(τ), i.e. the
transition probability from milestone 1 (the line x = −.5) to milestone 2 (the line x = 0) on
the the 2D potential with the entropic barrier as a function of lifetime, calculated using Fwind
forces ranging from 0 to 1 pN. The plots indicate that the rapid decrease in computation
time due to the added Fwind force has almost no effect on accuracy.
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Figure 3.9: Shown here is calculation time as a function of the Fwind force for all K(τ)
distributions in both directions for two subspaces ranging from -.5 to .5 on the x axis of
the 2D potential with the entropic barrier. All trajectories were run using β = 3.0 so as to
ensure that transitions over the barrier instead of through the small gap were highly unlikely.
The highest value of Fwind yielded a faster computation time by a factor of 4.78 than the
unassisted calculation with almost no distortion to the K(τ) function.
.
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V(x,y) = (x - 1)2(x + 1)2 - .5 y2x2 + y4

Figure 3.10: Show here is a 2D representation of the 11D coupled potential. The y in the
second term (red) has been left as a parameter in this plot. The surfaces shown are for values
for the parametric y of 0,±1, and ±1.5, where the deepest well corresponds to y = 1.5 and
the shallowest corresponds to parametric y = 0. Just as the well becomes deeper, the further
from the system wanders from the origin in the y direction in this 2D model, the 11D system
also encounters deeper wells in the xn dimensions the further it wanders from the origin in
each xn dimension.
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Figure 3.11: This plot shows CPU time as a function of the magnitude of the Fwind in 11D.
The maximum speedup measured was a factor of 4.5.
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Figure 3.12: Shown in this figure are the K(τ) functions generated for each data point in
the CPU time vs. Fwind plot for the 11D system.
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Figure 3.13: Shown here is a representation of the vector field approach to applying Fwind to
push milestoning trajectories between two nearly orthogonal planes, subject to our Gaussian
potential. The green milestone is defined as the plane for which y

44
− x = −.7 and the red

milestone is defined as the plane for which y = 1.5. The vector wind is configured to show
the Fwind scheme for accelerating trajectories going from red to green.
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Figure 3.14: This plot shows the same milestone placement and Fwind scheme as the Gaussian
potential example applied to the Muller potential and with a directionality for accelerating
trajectories from the green milestone to the red one.
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Figure 3.15: This plot shows CPU time as a function of Fwind magnitude for the Gaussian
potential.

0 20 000 40 000 60 000 80 000
0

20

40

60

80

100

120

Lifetime Htime stepsL

F
re

q
u
en

cy
Htr

aj
ec

to
ri

es
L

Fwind = 0 pN

Fwind = .5 pN

Fwind = 1 pN

Figure 3.16: This plot shows the K(τ) functions corresponding to different magnitudes of
Fwind as applied to the Gaussian potential.
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Figure 3.17: This plot shows CPU time as a function of Fwind magnitude for the Muller
potential.
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Figure 3.18: This plot shows the K(τ) functions corresponding to different magnitudes of
Fwind as applied to the Muller potential.
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Chapter 4

Advancements in Milestoning II:

Calculating Autocorrelation from

Milestoning Data Using Stochastic

Path Integrals in Milestone Space

4.1 Introduction

The calculation of time correlation functions from time series measurements made along

molecular dynamics trajectories plays the same central role in kinetics as calculating parti-

tion functions from sets of molecular configurations and their respective energies in the realm

of thermodynamics. To put the magnitude of this task into perspective, consider a simple

system where 100 different configurations are possible, and a transition between any pair of

these configurations is possible. In this simple system, there are over 1.7× 1013 different 10

step trajectories possible (100 choose 10) without even considering the fact that the same

63



series of 10 configurations can occur with different transition times which makes the number

of possible trajectories proliferate even further! All important experimental properties can

be calculated from time correlation functions measured from molecular dynamics simula-

tions, but these effects are typically only measurable on timescales which are out of reach for

brute force molecular dynamics. An example would be calculating RDCs (Residual Dipole

Couplings) from NMR experiments from bond vector time correlation functions. The chal-

lenge of and demand for calculating kinetic properties from molecular dynamics simulations

have caused it to become a major growth area in chemical physics [29] [28], leading to the

development of several methods, spanning from early treatments using transition state the-

ory (TST) [37] [121], to more recently, transition path sampling (TPS) [16], transition path

theory (TPT) [71], and transition interface sampling (TiS) [113]. A common strategy in

measuring kinetics in molecular dynamics simulations is the measurement of fluxes of trajec-

tories through hyperplanes in phase space or configuration space [33] [112] . More recently,

the use of the hyperplanes in the Milestoning method has been generalized to subdividing

phase space into Voronoi cells, where the milestones exist as the interfaces between cells

[115]. Thus far, Milestoning has been used to calculate many useful properties, such as equi-

librium flux values through the set of milestones, rate constants [120], and other equilibrium

properties such as mean first passage times between states [13], but the method has never

before been used to calculate non-equilibrium dynamical objects such as time correlation

functions. In our first paper, Advancements in Milestoning I, we introduced a methodology

for rapid calculation of transition time density functions between milestone hyperplanes,

the central objects of milestoning calculations, by artificially pushing the system toward the

target milestone and then re-weighting the distribution to recover the true transition time

distribution [46]. In this paper, we venture into this realm by introducing a method for calcu-

lating time correlation functions from milestoning data. In order to calculate autocorrelation

from milestoning data, not only must we know the equilibrium flux values through each in-

terface, we must also know the flux through each interface as a function of time and initial

64



configuration. For this reason, it was necessary that we also introduce our stochastic path

integral approach to calculating the time-dependent fluxes, in addition to the methodology

for calculating time correlation functions from these time-dependent fluxes.

4.2 Theory

Milestoning Theory

A more in-depth overview of milestoning theory can be found in our first paper [46], or in

[120], but let us review a few of the key premises upon which our method for calculating time

correlation functions hinge. The quantity of most fundamental importance in milestoning is

the flux through a given milestone, for which the equation is [33]:

Ps(t) =

∫ t

0

Qs(t
′)

[
1−

∫ t−t′

0

Ks(τ)dτ

]
dt′,

Qs(t) = 2δ(t)Ps(0) +

∫ t

0

Qs±1(t′′)K∓s±1(t− t′′)dt′′ (4.1)

where Ps(t) is the probability of being at milestone s at time t, (or, more specifically, arriving

at time t′ and not leaving before time t [33]), and Qs(t) is the probability of a transition

to milestone s at time t. Ks(τ) indicates the probability of transitioning out of milestone s

given an incubation time of τ , thus
∫ t−t′

0
Ks(τ)dτ is the probability of an exit from milestone

s anytime between 0 and t− t′, which makes 1−
∫ t−t′

0
Ks(τ)dτ the probability of there not
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being an exit from milestone s over that same time period. Since the probability of two

independent events happening concurrently is the product of the two events, the equation

for Ps(t) is simply integrating the concurrent probabilities of arriving at milestone s and not

leaving over the time frame from time 0 to t. Turning our attention towards the meaning of

the first term, Qs(t), 2δ(t)Ps(0), simply represents the probability that the system is already

occupying milestone s at time t = 0, where the factor of 2 is present since the δ-function is

centered at zero, meaning only half of its area would be counted without this factor. Qs±1(t′′)

is the probability that the system transitioned into one of the two milestones adjacent to s

at an earlier time t′′. K∓s±1(t− t′′) is the probability of a transition from milestones s±1 into

milestone s. Thus the second term of the second line of equation 14 is another concurrent

probability: the probability of the system entering an adjacent milestone at an earlier time,

and then transitioning into milestone s between time t and 0. It is important to note that

all functions Ps(t) and Qs(t) are calculated using the respective values of Ks(τ) between

adjacent milestones, thus the set of Ks(τ) between all milestones of interest contains all the

information needed to calculate kinetics using the milestoning method. It is also important

to note that a K function between two milestones x = A and x = B, KAB(τ), is simply a

probability distribution representing the lifetime for the system remaining in state A before

transitioning to state B.

Time Correlation from Milestoning Data

This approach aims to glean the time correlation function C(t) of an observable from Mile-

stoning data. The key insight into this method is the approximation of the continuous

configuration space, which we define as x, as a discrete space of milestone configurations.

Although the formalism presented below requires that the equilibrium distribution of config-

urations occupied, f(x), is known, any successful Milestoning simulation yields the equilib-

rium flux through the set of milestones, and so this set of fluxes will serve as the equilibrium
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distribution of configurations in our discrete space. For the sake of clarity of notation, we

will be limiting our derivation to observables which are a function of configuration x, but it

should be noted that all developments presented herein can be easily generalized to observ-

ables which are a function of both position and velocity by considering our variable x as a

phase space coordinate. We begin with the usual definition for a time correlation function

for time-ordered measurements of an observable that is a function of configuration, A(x; t),

arising from the equilibrium distribution of configurations, f(x):

C(t) = 〈A(x, 0)A(x, t)〉 =

∫
A(x0, 0)A(x, t)f(x)dx (4.2)

where time t is the lag time between measurements. For time t = 0 the time correlation

function has the lower limit C(0) =
∫
A(x0, 0)A(x0, 0)f(x)dx = 〈A2〉, the variance. On

the opposite extreme, given an infinite relaxation time, the mean value of x at time t will

be equivalent to the mean at equilibrium, limt→∞〈A(x, t)〉 =
∫
A(x)f(x)dx, which implies:

limt→∞C(t) =
∫
A(x)

(∫
A(x)f(x)dx

)
f(x)dx =

∫
A(x)f(x)dx

∫
A(x)f(x)dx = 〈A〉2

So far, we have only discussed equilibrium probability distributions in configuration space,

which we defined as f(x), but let us now consider a time-dependent probability density

function of configuration, which is a function of initial configuration x(0). Keep in mind

that time-dependent probability density functions such as these are the solutions to Fokker-

Planck equations. Let us define this probability density function as g(x, t;x0, 0), and express

its mean value as a function of time and initial configuration, 〈x(t, x0)〉, in the following

manner:

〈x(t, x0)〉 =

∫
xg(x, t;x0, 0)dx (4.3)
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Following suit, the expectation value of our observable A as a function of time can be written

as:

〈A(x, t;x0, 0)〉 =

∫
A(x)g(x, t;x0, 0)dx (4.4)

We can now substitute 〈A(x, t;x0, 0)〉 for A(x, t) in the definition of a time correlation func-

tion:

C(t) =

∫
A(x)

(∫
A(x)g(x, t;x0, 0)dx

)
f(x)dx (4.5)

As stated earlier in this section, our aim is to coarse grain the continuous configuration space

of x into a discrete space of milestone configurations, from which we can calculate a time

correlation function. Our first step in constructing this model will be to approximate the

outermost integral in x with a sum over a discrete set of configurations {xi} multiplied by

the equilibrium probability of finding the system in the configuration i. If we define the

probability of the system being in configuration xi at time t given an initial configuration x0

as Pi(t;x0), then given that our system will reach equilibrium at infinite time regardless of

initial configuration, the equilibrium probability can be expressed as Pi(∞). Thus we arrive

at our first discrete approximation of time correlation:

C(t) ≈
∑
i

A(xi)Pi(∞)

(∫
A(x)g(x, x(0), t)dx

)
(4.6)

Our next task is to approximate the remaining integral in the equation with a sum over

milestone states. Equation 4.4 gives us an expression for the mean value of A(x) in a
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continuous space, given an amount of time elapsed t and an initial configuration x0. Now

consider the case where x can only occupy discrete values from the set {xs}. In this case,

the integral in equation 4.4 is replaced by a sum in a weighted average expression where each

discrete value of xi multiplied by its statistical weight as a function of time:

∫
A(x)g(x, x(0), t)dx ≈

∑
s

A(xs)Ps(t|x0) (4.7)

Next, we substitute this weighted sum approximation into equation 4.6:

C(t) =
∑
i

(
A(xi)Pi(∞)

∑
s

A(xs)Ps(t|x0)

)
(4.8)

Note that we have now arrived at a complete expression for a discrete approximation of time

correlation, with the assumption that Ps(t|x0) and Pi(∞) can be obtained from milestoning

calculations. Since the set of equilibrium fluxes, Pi(∞), have been calculated from mileston-

ing simulations since the beginning, and we will introduce a novel method for calculating

Ps(t|x0) from milestoning simulations in the Random Walk / Path Integral Methodology

subsection later in the article, we are able to demonstrate that time correlation can indeed

be calculated from Milestoning simulations.

4.3 Analytical Solution for 1D Harmonic Oscillator

In this section, we demonstrate the effectiveness of equation 4.8 in approximating the time

correlation function for diffusion in a harmonic potential, for which there is an analytical

solution. Our potential is defined as V (x) = 1
2
kx2, and it’s equilibrium distribution in x is the
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Boltzmann distribution, f(x) = e−βV (x). The closed form expression for the time-dependent

probability distribution for diffusion in a harmonic well is [1]:

p(x, t|x0, 0) =
1√

2πkBTS(t)/k
exp

[
−
(
x− x0e

−2t/τ̄
)2

2kBTS(t)/k

]
(4.9)

where S(t) = 1− e−4t/τ̄ and τ̄ = 2kBT/kD.

Given this analytical expression for p(x, t, |x0, 0), we can obtain an analytical expression for

C(t) by substituting p(x, t, |x0, 0) into equation 4.5 for g(x, xi(0), t) and integrating. This

yields the exact time correlation function C(t) for diffusion in a harmonic potential:

C(t) =
2
√
πe−

2t
τ̄(

k
kBT

)
3/2

√
kBT

(
1−e−

4t
τ̄

)
k

√
k(coth( 2t

τ̄ )+1)
kBT

(4.10)

Alternatively, we can apply equation 4.8, and obtain a general closed form expression for

approximating C(t) by summing over a discrete configuration space of N milestones rather

than integrating over a continuous one:

C(t) =
1√

2πkBT
(

1−e−
4t
τ̄

)
k

N∑
i=1

xiPi(∞)∆x
N∑
j=1

(xjQji(t)∆x+ xiQii(t)∆x)

(4.11)
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where

Qji(t) = exp

−k
(
coth

(
2t
τ̄

)
− 1
) (
xi − xje

2t
τ̄

)2

4kBT


Qii(t) = exp

(
−
x2
i k tanh

(
t
τ̄

)
2kBT

)
(4.12)

and ∆x is the distance between the evenly spaced milestones. Qji(t) represents the discrete

time-dependent probability density as a function of time that our system is in configuration

xi at time t, given that the system was in state xj at time t = 0. Likewise, Qii(t) is the

discrete probability density as a function of time that our system is still in configuration xi

at time t if it started in configuration xi at time t = 0. Thinking in terms of the assumption

of Markov statistics for transitions between milestones inherent to the Milestoning method,

it makes sense that these probabilities are added given that we are interested in the outcome

of finding our system in configuration xi whether it was already there, or it arrived there

from another configuration.

The most straightforward and intuitive way to compare equations 4.10 and 4.11 is to plot

them. In figure 4.1, we can compare the exact time correlation function for diffusion in a

harmonic potential (with parameters β = .35, k = 5, and D = .2857) with the approximate

C(t) generated using equation 4.11. Discretizing the space to three milestones is clearly too

coarse of an approximation, but the gain in accuracy in going from 6 to 9 milestones is quite

modest. As one might expect, the discrete approximation of the time correlation function is

most accurate for long times and least accurate for C(0). It turns out that this sacrifice in

accuracy is a meager one because C(0) is always available from Milestoning data because it

is equivalent to the sum approximation of the variance in configuration space at equilibrium,∑N
i=1 x

2
iPi(∞). This will be leveraged to our advantage in the following section.
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Figure 4.1: This figure shows the approximate time correlation functions calculated using
equation 4.8 for 3, 6, and 9 milestones overlaid on top of the exact analytical function C(t).

4.4 Numerical Demonstration

1D Fokker-Planck Diffusion on a Bistable Potential

In order to further validate the approach of calculating time correlation functions using

the nested sum in equation 4.8 in a discrete configuration space to approximate integrating

equation 4.2 in continuous conformation space, the method was applied to a simple two well

potential of equation y = (x−1)2(x+1)2, where the time evolution of the probability density

function in configuration space was calculated using a Fokker-Planck formalism:

∂ρ(x, t)

∂t
= D

∂2ρ(x, t)

∂x2
+

D

kBT

∂

∂x
(ρ(x, t)

∂V

∂x
) (4.13)
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By repeatedly solving equation 4.13 numerically with the using the Mathematica software

package [125], using a normalized Gaussian distribution centered at the various xi(0) values

as the initial condition, the manifolds g(x, xi(0), t) were obtained for each of the 10 milestone

configurations xi in the set {−2,−1.6, ..., 1.6, 2}. These manifolds were then used to find C(t)

using both the intermediate method described by equation 4.6 (shown as red circles in figure

4.2) as well as our fully developed discrete method described by equation 4.8 (shown as blue

circles in figure 4.2). In the case of the equation 4.6, the integral
∫
xg(x, x(0), t)dx was nu-

merically integrated directly, while in the case of equation 4.8, the manifold g(x, x(0), t) was

used to obtain values of Pi(x(0), t) by multiplying g(x, x(0), t)∆x, similar to the transforma-

tion from equation 4.6 to equation 4.8, but in reverse. The results are shown superimposed

over a plot of the time correlation function for the system obtained in the traditional manner

by running 109 steps of langevin dynamics and then calculating the time correlation function

over this one long trajectory using the equation:

C(t) =
1

n− t

n−t∑
i=1

xixt+i (4.14)

We would like to point out that, as we alluded to in the previous section, the data point

for C(0) is the only portion of the time correlation function approximated using equation

4.8 with any appreciable error. In practice, the data point for C(0) can always be replaced

with the value obtained from the sum C(0) =
∑

i x
2
iPi(∞) (shown as the green ring in figure

4.2), due to the fact that the set of equilibrium probabilities, Pi(∞) are always known from

Milestoning simulations.
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Figure 4.2: This plot demonstrates a successful implementation of our method for approx-
imating time correlation functions in continuous space by summing over time dependent
joint probabilities of transitions between discrete states, as obtained in Milestoning simula-
tions. The red rings mark the data points from implementing equation 4.6, the blue data
points indicate the positions where the full nested sum approximation of equation 4.8 was
implemented, and the green ring is the data point for C(0) calculated from equilibrium prob-
abilities which is used to replace the value of C(0) generated using equation 4.8. The data
is shown superimposed over the time correlation function C(t), represented by a solid black
line, calculated using the traditional method of equation 4.14.

Random Walk / Path Integral Methodology

In order to make use of the formalism for obtaining autocorrelation in a discrete configura-

tion space, as introduced in the Theory section, we require an expression for Ps(t|xi(0)), i.e.

the probability that our system is in configuration s at time t, given that it was in configu-

ration i at time t = 0. Since previous implementations of the milestoning method have been

“based on iterative determination of stationary flux vectors at milestones” [13], and not the

determination of non-equilibrium time dependent fluxes given some initial configuration, it

was necessary to devise a methodology for obtaining the function Ps(t|xr(0)) from mileston-

ing data. In the case of diffusive systems which can be described using a Fokker-Planck

formalism (eq. 4.13), the Fokker-Planck equation can be solved for a manifold ρ(x, t) which
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represents a probability density of configurations evolving in time, where the distribution at

time t = 0 is the distribution dictated by the initial condition and the distribution as t→∞

is equivalent to the equilibrium distribution in x. While this Fokker-Planck description can

be directly solved for the time evolution of a probability density function of configurations

(when tractable, as in figure 4.2), it is also possible to obtain the manifold ρ(x, t) via a path

integral approach using a large ensemble of trajectories generated using stochastic models

such as Langevin dynamics. This equivalence was the inspiration behind the random walk

/ path integral method introduced in this section. There are some differences however, for

example, instead of Langevin trajectories, we use random walks along the given set of mile-

stones. Very long random walks, orders of magnitude longer than time scales accessible to

molecular dynamics, can be quickly generated with minimal computational cost by taking

advantage of two data sets which are already known in any milestoning calculation: the tran-

sition matrix K (essentially a Markov matrix) and the set of all KAB(τ) functions, which

are the probability density functions of transition times between milestone A and milestone

B. The KAB(τ) functions are obtained by histogramming transition times between mile-

stones, and each element Kij of the matrix K is obtained by integrating the distributions

of transition times, kij(τ), over all time τ and then normalizing each row to impose the

constraint that the system at state i has probability 1 of transitioning to one of the states

to which it is coupled (j). Since the matrix K gives the equilibrium transition probabilities

between milestones, and the kij functions are probability density functions for the transition

time between connected milestones, these two pieces of information can be used to construct

time-dependent random walks along a set of milestones. Each step taken from some current

configuration i is chosen by selecting between each possible coupled state j, weighted by the

transition probabilities from K, next, the amount of time each selected transition from state

i to j took is selected randomly from the distribution defined by kij(τ). In this manner,

trajectories of arbitrary length in this discrete space can be very quickly generated in only

the amount of CPU time necessary to select 2N random numbers, where N is the desired
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number of steps in the random walk. Once a large set of these random walks is generated,

they can be used to calculate discrete versions of the same ρ(x, t) manifolds which would be

obtained as the solutions to the Fokker-Planck equation (see figure 4.3). To elaborate on

this, consider a single random walk along the milestone configurations. If, at each time step,

we histogram the frequency with which our system has visited each milestone configuration

up to that point in time into a normalized distribution, then we have constructed a discrete

manifold in configuration space x and time t which represents the time evolution of the

probability distribution of finding our system in a particular configuration for this particular

realization of a random walk in our discrete configuration space. From here, it only remains

to average the set of probability distributions generated from numerous manifestations of the

random walk. An alternative approach to calculating time correlation functions from these

random walks would be to “connect the dots” along the random walk using an interpolation

method, and then use the traditional approach to numerically calculating time correlation,

shown in equation 4.14, from the resulting continuous function, as shown in figure 4.5.

4.5 Application to Calculating Long-Time RDCs in Atom-

istic Simulations

Application of Discrete Space Time Correlation Methodology to

the Alanine Dipeptide Bond Vector

In this section, we describe an application of our methodology to a molecular system. Shown

in figure 4.6 is the molecular structure of our system, alanine dipeptide. After constraining

the nitrogen and carbon atoms labeled in yellow to remain fixed at their initial positions,

Langevin dynamics at T = 300K was run for 4×107 time steps with a time step size of 0.001

ps for a total of 40 nanoseconds using the CHARMM molecular dynamics software package.
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As the molecular dynamics simulation ran, the orientation of the bond vector extending from

the center of the labeled nitrogen atom to the center of the hydrogen atom indicated by the

purple arrow in figure 4.6 was recorded. Although this bond vector possesses three spatial

degrees of freedom, it’s orientation could be well approximated by a single rotational degree

of freedom, as shown in figure 4.7. By counting the number of time steps between transitions

from one milestone state to the next (shown graphically as the four colored planes in figure

4.7) over the course of the 40 nanosecond trajectory, probability distribution functions for

the transition times between neighboring pairs were constructed as histograms to obtain the

set of kij(τ) functions for each pair of neighboring milestone states. These kij(τ) functions

were then used as the basis for the random walk / path integral approach described in the

previous section. Thusly, the Ps(t|x0) functions necessary to calculate the time correlation

function using equation 4.16 were calculated by averaging 75,000 different time-dependent

probability distribution functions which each resulted from some particular manifestation

of the random walk. The time correlation functions of interest for this system are those

which can be calculated using the Lipari-Szabo formalism [67], as implemented by Xing and

Andricioaei [126], using the equation:

C(t) = 〈L2(u(0)u(t))〉 (4.15)

where L2(u(0)u(t)) refers to plugging the scalar resulting from the dot product of time series

measurements of the bond vector u into the second order Legendre polynomial. This motif

of measuring the autocorrelation of this value is then applied to equation 4.8 to yield the
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discrete space time correlation function relationship:

C(t) =
∑
i

L2

[∑
s

(ui(0) · us)Ps(t|ui(0))

]
Pi(∞) (4.16)

where the vectors ui represent the different possible values for the bond vector, given the

coarse graining of the bond vector into a discrete space. The oscillatory and slower decay

in correlation for the 4 milestone case is an effect of coarse graining the space. This is due

to a loss in entropy in going from the continuous space to the discrete one, i.e. if only four

possibilities exist for the position of the bond vector, the probability of pointing in the same

direction as that of a previous time step increases compared to a system where 8 or more

configurations are possible.

Notably, the oscillatory and slower decay in correlation for the 4 milestone case is an effect

of coarse graining the space (the oscillations are reproduceable). This is due to a loss in

entropy in going from the continuous space to the discrete one, i.e. if only four possibilities

exist for the position of the bond vector, the probability of pointing in the same direction as

that of a previous time step increases compared to a system where 8 or more configurations

are possible.

4.6 Concluding Discussion

We have demonstrated for the first time that time correlation functions for continuous pro-

cesses can be approximated using equation 4.8 to coarse grain the configuration space to a

discrete one. Additionally, we have introduced a novel method for extending milestoning into

non-equilibrium regimes by numerically calculating the time-dependent fluxes Ps(t|xi(0)).

The method consists of constructing random walks in the discrete configuration space, de-
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fined by a set of milestone configurations, from transition time probability density functions

kij(τ) obtained using the milestoning method, followed by calculating time-dependent his-

tograms of milestone states occupied using the stochastic path integral method described in

the Random Walk / Path Integral Methodology section.

The time correlation function for the harmonic oscillator calculated analytically using our

discretization method showed excellent agreement with the true time correlation function

C(t), also obtained analytically, for a harmonic oscillator. There was also an excellent agree-

ment between the C(t) calculated for a discrete configuration space for a bistable potential

and the true autocorrelation function, where Ps(t|xi(0)) was obtained by numerically solving

a Fokker-Planck equation. We also obtained a promising result from applying the discretiza-

tion method of equation 4.16 in conjunction with the stochastic path integral method to an

atomistic system. The autocorrelation function C(t) for the bond vector calculated using

the methods introduced herein showed a nice agreement with the true C(t) calculated using

equation 4.15. The limitations to the methods we have introduced appear to be limited to

the challenges inherent to implementation of the milestoning method. A key advantage of

our method is that the random walks between discrete configurations can be constructed

at trivial computational cost, allowing for us to make predictions well into time regimes

inaccessible to molecular dynamics simulations. We would like to note that, although the

calculations described in this article were performed on systems where the observable of in-

terest was constant along each milestone hyperplane, the method can easily be generalized

for systems where the observable varies along each milestone hyperplane. In order to account

for such observables, one must simply construct equilibrium probability distributions of the

observable on each hyperplane, then select from this distribution at each time step of the

random walk along the milestones. In other words, at each step, the algorithm must first

choose the next step to take using the transition matrix, then select the transition time from

the appropriate transition time distribution function, then select the value of the observ-

able from the probability distribution describing the observable along that hyperplane. We
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feel that the methods introduced in this paper have the potential to allow for the calcu-

lation of experimental observables from molecular dynamics simulations that are currently

unattainable by brute force long time simulations. The method presented herein could also

be further enhanced by combining it with the enhanced sampling methodology introduced

in the companion article to this paper, also found within this publication [46].
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Figure 4.3: This figure shows a graphical comparison between the time evolution of a dis-
crete probability distribution for a set of 5 milestone configurations subjected to the two
well 1D potential found in the Numerical Demonstration section using our random walk /
path integral methodology (part A), and the manifold representing the time evolution of a
continuous probability density function of configurations for the same two well system sub-
jected to Fokker-Planck diffusion (part B). Part A is the set of probabilities as a function
of time for the system being found at each milestone configuration, given that the system
was in configuration x = −1 at time t = 0, and part B shows Fokker-Planck diffusion on the
same two well system. Note that the random walk in part A began at the milestone located
at x = −12, thus we see a decay from {P1(0) = 0, P2(0) = 1, P3(0) = 0, P4(0) = 0, P5(0)} to
the equilibrium distribution, the same way our initial continuous distribution, a normalized
Gaussian centered at −1, decays to the equilibrium probability distribution predicted by the
Bolzmann distribution for the two well potential, and both evolve in time on about the same
time scale.
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Figure 4.4: Shown here are time correlation functions calculated using equation 4.8, where
the conditional probability as a functions of time, Ps(t|x(0)), are calculated using our random
walk / path integral methodology, represented graphically in figure 4.3A.
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Figure 4.5: Shown here are time correlation functions which were calculated by first gener-
ating one long random walk using the method introduced in this article, then linking each
point in the trajectory using linear interpolation, and finally using equation 4.14 to calculate
C(t).
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Figure 4.6: Shown in this figure is the alanine dipeptide molecule used as our model system.
The two atoms shown in yellow were held fixed in space while the rest of the molecule was
subjected to Langevin dynamics. The purple arrow gives the orientation of the bond vector
which served as the measurable in our time correlation function calculations.
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Figure 4.7: Shown here is a graphical representation of the four milestone configuration for
measuring the time correlation function of the alanine dipeptide bond vector. Although
the bond vector, shown as many thin, purple arrows, posses three degrees of freedom as it
fluctuates in time, we are able to choose a frame of reference where the bulk of the motion
is taking place as a rotation about the z-axis, shown as a thick green arrow. Using the four
milestones, shown as the red, green, yellow, and blue planes, we can calculate transition time
probability distributions between each pair of adjacent milestones.
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Figure 4.8: This plot gives the probability of finding our system in each of the four milestone
configurations as a function time, given that we began the simulation with our system
in the configuration shown as the blue plane, using the same color scheme as in figure
4.7. The probability of being found in the blue milestone is equal to 1 at time t = 0
of course, but the plot range stops shy of Ps(t) = 1 in order to provide a more detailed
view. Note that the probability of the system being in any of the other three milestone
configurations is equal to zero at time t = 0, as expected. These functions were calculated
using the methodology described in the Random Walk / Path Integral Methodology section.
These functions contributed to the calculation of C(t) shown in figure 4.9. Note that the
probabilities converge to their equilibrium values on roughly the same timescale that C(t)
converges to its long time value.
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Figure 4.9: This figure shows the approximate time correlation functions calculated using
equation 4.8 superimposed over the true time correlation function, calculated using equation
4.14. The 4 milestone C(t) function was calculated with the milestones placed 90 degrees
apart as illustrated in figure 4.7, while the 8 milestone configuration was the same motif,
only with 8 planes placed 45 degrees apart.
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Chapter 5

An Algorithm for Automated

Definition of Hyperplane Interfaces

for Measuring Conformational

Kinetics of Macromolecules Using

Machine Learning

5.1 Introduction

The Milestoning method , developed by Ron Elber et al. is an algorithm whereby the kinetics

of configurational changes in complex macromolecules can be calculated from molecular dy-

namics simulations [13]. In this paper, we present an algorithm for a fully automated method

for both finding the physically important regions of a molecule’s configuration space, and

defining the milestone hyperplanes which best serve to bound these regions. It is often the
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case that only one configuration of a biomolecule of interest, typically obtained from x-ray

crystallography experiments, is known. This known configuration can be used as a starting

point for molecular dynamics simulations in order to determine other possible configurations

of the molecule, but the molecular motions from these simulations are often too complex for

a human to recognize the important configurational changes, let alone define the milestone

hyperplanes in the space that best capture the transitions. Motivated by this, we introduce

an algorithm that (1) efficiently explores the configuration space of a macromolecule, and (2)

automatically partitions the space in a fashion suitable for use with milestoning. In accord

with these two goals, our algorithm consists of two subroutines: first a search of the configu-

ration space, where mutually repulsive clones (MRCs) of the system explore the space; and

second a milestone designation step, where the superior pattern recognition capabilities of

machine learning are harnessed to first define clusters of computer-generated configurations

and then define hyperplane interfaces between these clusters to be used in identifying mile-

stones. Our approach scales well to high-dimensional spaces, and accommodates low-energy

regions of irregular (and even non-convex) shape in the configuration space.

The remainder of the paper is organized as follows: we first give a brief introduction to

the Milestoning method, next describing our algorithm for exploration of the configuration

space describing the molecular motions of our system and its subsequent partitioning into

subspaces with milestone interfaces. We then illustrate our method on a two dimensional

system, concluding with an application of our method to a simple molecular model.

5.2 Milestoning Theory

A more in-depth overview of milestoning theory can be found in [46] or [120], but we briefly

review a few of the key premises upon which our method for calculating time correlation

functions hinges. The quantity of most fundamental importance in milestoning is the flux
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through a given milestone, for which the equation is [33]:

Ps(t) =

∫ t

0

Qs(t
′)

[
1−

∫ t−t′

0

Ks(τ)dτ

]
dt′,

Qs(t) = 2δ(t)Ps(0) +

∫ t

0

Qs±1(t′′)K∓s±1(t− t′′)dt′′ (5.1)

where Ps(t) is the probability of being at milestone s at time t, (or, more specifically, arriving

at time t′ and not leaving before time t [33]), and Qs(t) is the probability of a transition

to milestone s at time t. Ks(τ) indicates the probability of transitioning out of milestone s

given an incubation time of τ , thus
∫ t−t′

0
Ks(τ)dτ is the probability of an exit from milestone

s anytime between 0 and t− t′, which makes 1−
∫ t−t′

0
Ks(τ)dτ the probability of there not

being an exit from milestone s over that same time period. Since the probability of two

independent events happening concurrently is the product of the two events, the equation

for Ps(t) is simply integrating the concurrent hazards of arriving at milestone s and not

leaving over the time frame from time 0 to t. Turning our attention towards the meaning of

the first term, Qs(t), 2δ(t)Ps(0), simply represents the probability that the system is already

occupying milestone s at time t = 0, where the factor of 2 is present since the δ-function is

centered at zero, meaning only half of its area would be counted without this factor. Qs±1(t′′)

is the probability that the system transitioned into one of the two milestones adjacent to s

at an earlier time t′′. K∓s±1(t− t′′) is the probability of a transition from milestones s±1 into

milestone s. Thus the second term of the second line of equation 14 is another concurrent

probability: the probability of the system entering an adjacent milestone at an earlier time,

and then transitioning into milestone s between time t and 0. It is important to note that

all functions Ps(t) and Qs(t) are calculated using the respective values of Ks(τ) between
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adjacent milestones, thus the set of Ks(τ) between all milestones of interest contains all the

information needed to calculate kinetics using the milestoning method. It is also important

to note that a K function between two milestones x = A and x = B, KAB(τ), is simply a

probability distribution representing the lifetime for the system remaining in state A before

transitioning to state B.

5.3 Algorithm

The efficiency of the above calculation depends upon the division of configuration space into a

set of subspaces that jointly cover the region of physical interest, while also allowing relatively

inexpensive evaluation of the transition times between each pair of subspaces which share

an interface. This is made difficult by the high dimensionality of the configuration space,

and the potentially complex boundaries surrounding optimal configuration sets. We address

this challenge via a scalable two-stage algorithm, as described below.

Configuration Space Exploration

A common pitfall in molecular dynamics simulations is the problem of broken ergodicity due

to incomplete sampling of the configuration space. This can occur when the system becomes

trapped in one particular region of configuration space. In calculating kinetics from molecular

dynamics, trapping can lead to inaccuracies if physically relevant portions of configuration

space are separated by barriers high enough that transitions over them are rare on the

time scale of the molecular dynamics simulations. Since molecular dynamics simulations

are, at their very best, on the order of a few milliseconds—while biological processes are

often on the order of seconds, minutes, or even days—enhanced sampling of configuration

space is a necessity for calculating kinetics from molecular dynamics simulations of many
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systems. Many common solutions to the problem of trapping (e.g., tempering and annealing

methods) are based on artificially raising the temperature in the simulation, leading to an

effective lowering of transition barriers and allowing a more complete sampling of the space.

Although methods such as this do allow a more complete sampling of configuration space,

the artificially low barriers can lead to unphysical transitions between minima, a blurring of

the energetic landscape, and also wasted computation time spent both exploring unphysical

transition states (see figure 5.1, top right) and oversampling low energy regions. Although,

many successful re-weighting methods, such as Umbrella Sampling, Simulated Annealing,

and high temperature molecular dynamics [109] [56] [19] have been used to recover accurate

low temperature thermodynamics from artificially elevated temperature simulations, these

methods are not ideal for our approach to calculating kinetics using Milestoning. Motivated

by a desire to efficiently sample all minima in an energetic landscape that renders them

easily discernible to a clustering algorithm, we introduce the mutually repulsive clone (MRC)

approach to configuration space exploration. In this sampling scheme, multiple copies of the

system that experience an artificial repulsive force between them are allowed to explore

an otherwise normal energetic landscape. The results of applying this method to a two

dimensional model potential can be seen in figure 5.1.

The application of this method to molecular systems is a straightforward scaling of dimen-

sions. Instead of our mutually repulsive points in a two dimensional configuration space,

molecular simulations would be performed as mutually repulsive points in, at most, a 3N

dimensional space, i.e. each atom of each clone would be repelled by its respective atom

in the other clones. In order to save on computational expense, the clones can be made to

interact via some subset of the total set of their atoms, for example allowing only the alpha

carbons of a protein to interact between clones. Using a pairwise interaction approach to

calculating the repulsion between clones scales as n2, where n is the number of clones. In

order to further cut down on computational expense, and also to facilitate parallelization,

we propose the following method whereby a k-ary tree-like motif (see figure 5.3) of repulsive
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stationary vertex structures (VS’s) is generated from iterative simulations of sets of mutu-

ally repulsive clones (for this example assume that our computing resources can comfortably

accommodate 5 MRCs per node):

1. Read initial structure

2. Store initial structure as a VS

3. Generate a family of five MRCs from VS

4. Run minimization with repulsion between MRCs and VS

5. Run MD loop below on all MRCs with mutual repulsion and repulsion from VS

MD loop for each MRC simulation:

while (stepCount < stepMax

and RMSDvar > rmsdCutoff)

(a) stepCount = stepCount + 1

(b) Save configuration to cPoints array every n steps

(c) Save RMSD from VS to rmsdArray every n steps, where rmsdArray is the array

that holds the 15 most recent RMSD measurements

(d) The variance of the 15 RMSD values is measured as soon as 15 values have been

stored, and also each time a new RMSD value is added to rmsdArray thereafter.

If this variance, RMSDvar, goes below rmsdCutoff, exit this loop in accordance

with the while statement.

6. Save final configurations from each individual MRC simulation as new VS’s in VSarray.

Additionally, these final static configurations take the place of the dynamic MRC for

any siblings within its family that are still running
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7. Each time an MD simulation of a particular MRC terminates, its resulting VS is saved

to the VS array, and then sent to a new node as a seed structure, where steps 3 through

6 are carried out with repulsion both between MRCs and away from all VSs in VSarray

(zero cutoff can be used to avoid calculating repulsion between MRCs and very distant

VS points in configuration space).

To recapitulate, our search algorithm repeatedly spawns families of MRCs on separate pro-

cessors, each family exploring configuration space in parallel, and each individual MRC MD

simulation outputting structures, i.e. points in configuration space, at a given frequency.

MD simulations of individual MRCs are terminated either when their RMSD relative to

their seed structure begins to converge (the RMSD distribution begins to narrow), indicat-

ing that they have reached a “dead end” in configuration space, or they reach an assigned

maximum number of steps, whichever comes first. There are several advantages to this algo-

rithm. One key gain in using this k-ary tree-like motif of stationary vertex structures is that

it allows for a full parallelization of our MRC search algorithm. If we were to simply keep

adding MRCs, then the number of MRC repulsion calculations would scale exponentially

on the same processor, which is obviously problematic. By using an array of static vertex

structures as nodes in a configuration space graph, we are able to include repulsion from pre-

viously visited portions of configuration space in simulations run completely independently

from the simulations used to map out these previously visited regions. This prevents “back-

tracking” into regions of configuration space which have already been explored, in a similar

fashion to the metadynamics pioneered by Parinello et al [] . In cases where our system of

interest is too large to simulate 5 copies of simultaneously interacting MRCs on the same

processor, the method can be run using only VS repulsion, allowing all clones to be run in

parallel on separate processors (figure 5.2).
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Automated Construction of Subspaces

The main purpose of our configuration exploration method introduced in the previous sec-

tion was to optimize the sampling in configuration space for efficient use of computational

resources, while maintaining the integrity of the energetic landscape. More specifically, the

goal is for the configuration search to yield a set of points in configuration space which can

easily be separated into clusters centered about minima in the energetic landscape. Once

such sets of points in configuration space are obtained, they become the training set for a

fully automated method for subdividing configuration space into a set of subspaces where

each subspace contains a single energetic minimum and transitions through the milestone

interfaces between subspaces correspond to transitions between the minima. The first step

in the process is to separate the configuration space points into groups using a Euclidian

distance clustering algorithm as shown in figure 5.4. The points can be clustered using only

spatial dimensions as in figure 5.4, or other parameters, such as the energy do to the poten-

tial, can function as extra dimensions in configuration space as shown in figure 5.8. With

each configuration space point in our set now assigned to a particular cluster, we now have

a training set which can be fed into a Support Vector Machine (SVM) kernel-based ma-

chine learning algorithm that will return the boundaries in configuration space which best

serve to partition our clustered configuration space points. These boundaries are known as

support vectors, and they function as the milestones in our proposed automated mileston-

ing approach. Following suit, an SVM classifier function is then used to determine when a

transition between subspaces has occurred during the molecular dynamics simulations used

to measure transition times between subspaces. Results indicating proof of concept for this

approach can be found in figures 5.7 and 5.8.
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5.4 Application to Atomistic System

So far, we have demonstrated our algorithm by applying it to a two dimensional model sys-

tem, with the understanding that the method will easily generalize to higher dimensional

configuration spaces. Now let us address a specific motif for defining a configuration space

for fully automated machine learning-enhanced milestoning simulations. For some molecu-

lar systems, there exists an obvious reaction coordinate for the kinetics of a configuration

change of interest. For example, if we are interested in the kinetics of transitions between the

Watson-Crick and Hoogsteen conformations, we can use the dihedral angle describing the

rotation of an Adenine residue as our reaction coordinate cite. Now consider a highly flexible

structure, like an intrinsically disordered protein. If we are interested in developing a kinetic

model for the numerous configurations it can occupy, we cannot expect to gain much insight

from measuring some predetermined reaction coordinate intuited by the person carrying out

the simulations. This is exactly the sort of system where a machine learning-based method-

ology can outperform Milestoning techniques that require definition of milestone hyperplanes

based on user input. In this case, one approach could be to define our configuration space as

the set of pairwise distances between all alpha carbons, or perhaps every 5th alpha carbon

along the backbone if the system is too large. With the dimensions of our configuration space

defined in this manner, we could then feed an initial structure into our configuration space

exploration algorithm, then feed the set of configuration space points from the exploration

step into clustering/SVM software to yield a set of hyperplanes to be used in a Mileston-

ing simulation. From such a procedure, one could obtain the transition kinetics between

energetically favored configurations of a system for which the user lacks any intuition. In

order to provide a visualizable example of this type of configuration space, we have applied

it to alanine dipeptide. For this simple molecular system, a three dimensional configuration

space, composed of the distances between the carbon atoms shown in blue, green, and red,

was devised (figure 5.9). The molecular dynamics governing the configurational fluctuations
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of this system were then simulated, and these pairwise distances were outputted. Shown

bottom right is the result of using a clustering algorithm to group the points into distinct

sets, the interfaces between which could then be used in Milestoning simulations.

5.5 Concluding Discussion

This project has served to lay the groundwork and proof of concept for a fully automated

machine learning-based method for calculating configurational kinetics from molecular dy-

namics simulations. The key advantage provided by this method is that it can be used to

explore the conformational dynamics of a macromolecule for which the user has little to no

intuition. Although, in theory, Milestoning calculations are insensitive to the placement of

the milestones [73], in practice, the efficiency of transition sampling can be improved by

initiating trajectories along maxima or saddle points between energetic minima. Addition-

ally, and perhaps more importantly, the ability to calculate fluxes through hyperplanes in

configuration space is most useful for gaining insight for a system of interest when those hy-

perplanes are placed through topologically significant regions of the potential energy surface,

such as energetic maxima. Another benefit of partitioning configuration space into subspaces

centered about individual energetic minima is that all transitions between milestones reflect

a transition between individual barriers, whereas a less careful placement of milestone in-

terfaces may contain multiple, unobserved transition barriers between them, or even none

at all. Future work will be directed toward full implementation of this method for all atom

systems.
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Figure 5.1: Shown here is a comparison between our mutually repulsive clone search,
Langevin dynamics alone (Unassisted), and running Langevin dynamics at an artificially
high temperature. In the top left is a relief map showing the shape of our potential. Each
plot shows the density of points visited in configuration space in green, given that all methods
began in the local minimum centered at approximately {.9,−.25}. The mutually repulsive
clone exploration method outperformed both unassisted sampling, which remained trapped
in two local minima, and the sampling performed at an artificially high temperature, which
did manage to sample the entire configuration space by suffered from a blurring of the
features in the energetic landscape.
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Figure 5.2: Figure A is a plot of the potential energy surface f(x, y) = − 3.5
x2+y2+0.5

+ 30
x2+y2+2

+

x2+y2−7.5, which features two concentric stable regions, a motif that could pose problems for
a hyperplane-based milestoning methodology. The plot labeled B shows the configurations
space points visited during a Langevin dynamics simulation of 2 million time steps for six
non-interacting copies of our system beginning at the point {0, 0}. Note that under the
conditions these simulations were run, without a bias, our system is trapped in the central
minimum. Plot C shows tthe results of another 2 million step Langevin simulations where
the current locations of 6 MRCs were saved as repulsive nodes every 40, 000 steps, and all
other conditions were the same as in plot B. In plot D, we show the results of a simulation
where repulsive nodes, or VSs, were used, but there was no repulsion between the clones.
Note that, in this case, leaving out the mutual repulsion between active simulations of MRCs
was in no way detrimental to the sampling of configuration space. Again, the advantage of
calculating repulsion from VS configuration space points only is that all simulations can be
run in parallel on separate processors.
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Figure 5.3: Shown here are the first, second, and third branching iterations of a k-ary tree of
degree 5. Note how a free expansion of mutually repulsive clones occupying a two dimensional
space results in the formation of a cell-like structure. If such an expansion occurred subject
to both mutual repulsion and an external potential like in figure 5.1, the result would be a
similar cell with boundaries deformed to fit the shape of the basin.

Figure 5.4: Shown here are the results of running a Euclidian distance clustering algorithm
on the configuration space points generated using our mutually repulsive clone data (figure
5.1, lower right). Note that the clustering algorithm was able to define boundaries so that
each subspace contains exactly one of the local minima.
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Figure 5.5: The subspaces in configuration space generated by our algorithm are best rep-
resented as a weighted directed graph. Each subspace is a node in the graph, and a pair of
nodes share an edge if and only if they share a milestone hyperplane interface. The weight
of the i, j edge represents the rate of flow between subspaces.
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Figure 5.6: Shown here are the results of running a Euclidian distance clustering algorithm
on the configuration space points generated using an artificially high temperature to allow
sampling over high barriers (figure 5.1, upper right). Note that the blurring of the energetic
landscape caused by running Langevin dynamics at an artificially high temperature has led
to the same clustering method, run with the same parameters, to identify only three distinct
regions. By lumping together regions with multiple local minima into the same subspaces
in this manner, we would obtain a simplistic connected graph of three states representing
the kinetics instead of the much richer representation shown in figure 5.5. Although a more
stringent clustering method could be applied to this particular data set to yield better clas-
sification into clusters, the motivation behind this example is to demonstrate that sampling
techniques that maintain the integrity of the energetic landscape, like our mutually repul-
sive clone method, can yield better results by providing the clustering algorithms with more
physically relevant data sets.
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Figure 5.7: This figure displays the results of first applying a clustering algorithm to the
data from figure 5.4, and then using the clustering data as a training set for a Support
Vector Machine methodology for dividing the configuration space into a set of subspaces.
The more opaque points display the configuration space points visited in the simulation, and
the colored shading indicates the partitioning of configuration space into subspaces suitable
for Milestoning. These results demonstrate our fully automated methodology for subdividing
a configuration space in such a way that measuring transition kinetics between subspaces
corresponds to transitions between local minima in the potential energy surface.
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Figure 5.8: This plot shows a similar approach to the one in figure 5.7 applied to our
concentric minima potential. In this example, the configuration space for the clustering step
was defined in two dimensions, RMSD from the initial configuration and energy due to the
potential energy surface, two quantities easily calculated from molecular simulations. Using
the classifications of our data points generated by the clustering algorithm as a training set,
the Support Vector Machine has divided the purely spatial configuration space into 5 distinct
subspaces, one for the central minimum (dark orange), one for the transition state (blue),
one for the outer minimum (magenta), as well as two intermediate states going away from the
outer minimum (green and light orange). Note that using the kernel-based SVM has allowed
for not only curved but concentric interfaces. Further, our method has autonomously defined
5 meaningful subspaces bounded by just four interfaces. In the case of ordinary hyperplanes,
it would take four hyperplanes just to bound one of these regions by circumscribing it into
a quadrilateral. Again, the coloring scheme applies to both the classification of the data
points, shown shown using opaque points, and the subspaces, shown as lighter shading of
the same color.
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Figure 5.9: Here we have a demonstration of automated partitioning of configuration space
into convex hulls. In this particular case, we have defined a three dimensional configuration
space comprised of the pairwise interatomic distances between three labeled carbons shown
as red, green, and blue (top left). In the interest of keeping our demonstration visualizable,
only three dimensions were defined in the configuration space; however, the method can be
easily generalized to any number of dimensions, for example the set of pairwise distances
between all alpha carbons in a protein.
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Chapter 6

Conclusions and Future Research

As important as the calculation of thermodynamic properties of macromolecules is to un-

derstanding the chemistry of life at the molecular level, in no way can we describe the state

of any living thing as an equilibrium state. Every life process is a time-dependent process,

and for this reason, no description of any biochemical system is complete without address-

ing kinetics. The advancement of kinetic calculations in the field of molecular dynamics

has not trailed those of thermodynamic due to lack of interest, however; the bottleneck

has been largely due to the scaling problem fundamental to transitioning from thermody-

namic calculations to kinetic calculations. More concretely, the thermodynamic properties

of macromolecular configurations are centered around the set of all possible configurations,

which together with their energy-dependent statistical weights can be used to calculate the

partition function, while kinetic information is encoded in the set of all possible trajectories

through configuration space, from which time correlation functions can be derived, allowing

for the calculation of chemical spectra from molecular dynamics simulations. The study of

chemical kinetics then requires both the extensive exploration of configuration space inherent

to thermodynamic calculations as well as extensive sampling of the even larger set of possible

time-dependent transitions between these configurations. As daunting as this may be, access
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to dynamical representations of the configurations of macromolecules are fundamental to one

of the most broadly impactful applications of molecular dynamics: the synergistic exchange

between theorists carrying out molecular dynamics simulations and experimentalists making

spectroscopic measurements.

I feel that our work in developing Smoluchowski models for the mechano-catalytic behavior

observed in thioredoxin has good potential for further development in providing microscopic

insights into the results of single molecule pulling experiments. In this realm of scientific

inquiry, the tether between the experimental system and simulation is the reaction rate,

an incredibly expensive quantity to calculate from atomistic simulations, due to the usual

bottleneck of sampling reactive trajectories. The fact that simulating mechano-catalytic

behavior such as this requires that many data points be calculated for rate as a function

of applied force, means that one of the few tractable approaches toward calculating such

relationships are via coarse grain models, and hence the utility of our approach. The normal

modes serve as a linear space of fundamental motions at atomic resolution that can be

used to construct any motion of interest as a linear combination of normal modes, which

in turn can be used to define the diffusion coordinate for the Smoluchowski equation. I

feel that the step in this process most in need of further development is the point where

the motion of interest is fit to a linear combination of normal modes. For this reason, I

would propose future work be done to further cultivate this approach using simpler model

systems. For example a coarse grain approach could be taken to build a model a system

similar to the titin substrate with an engineered disulphide bond used in the experiments

by Jimenez et al [4]. The model would consist of a Go model type approach [111], where

there is a string of beads, bound along the length of the strand with harmonic bonds, some

weak harmonic bonds between some non-neighboring beads to introduce some secondary

structure, as well as a Lennard-Jones potential binding one pair of non-neighboring beads

to model a disulphide bond. Additionally, pulling forces could be introduced at the ends

of the string of beads. The linear space of motions would first be created by performing
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normal mode analysis in the usual way. Next, longtime Langevin dynamics could then be

run on this simple system at high enough temperatures that breakage of the Lennard-Jones

bond would occur with some regularity over some distribution of incubation times. The

trajectories encompassing the configurations just before, during, and after breakage of the

Lennard-Jones bond would then be stored as reactive trajectories. From here, a similar

approach to calculating the coefficients for basis functions representing a particular wave

function in quantum calculations could be employed, whereby the vectors representing the

reactive motions would undergo dot product multiplication with the vectors representing the

characteristic motion of each normal mode. In this manner, individual reactive trajectories

could be expressed as projections onto a linear space of normal modes. From here, the order

parameter describing motion along the characteristic linear combination of normal modes as

a function of energy in the Go type model could serve as the potential in the Smoluchowski

diffusion model (a harmonic potential could also be fit to the Go type energy potential in

each case). The rate determined by the Smoluchowski calculation would then serve as a

test for each reactive trajectory, where rates calculated close to the observed rate indicate

physically plausible trajectories which may be able to help elucidate mechanistic details of

the reaction.

I feel that the next step for the three enhanced sampling methods for calculating the kinetics

of conformational changes in macromolecules introduced in this thesis is implementation into

a molecular dynamics software package. The WARM method is broadly applicable toward

reducing computation time in any Milestoning simulation, and thus would be the best first

candidate for implementation into a molecular dynamics software package. I also feel that the

machine learning-guided approach to defining milestone interfaces introduced in this work is

ready for implementation, which will provide the decisive test for its utility. The method for

approximating time correlation functions from Milestoning simulations introduced in this

work has promising potential for development into software for calculating spectroscopic

data from Milestoning simulations, and I feel that the proof of concept calculations herein
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provide strong evidence for the utility of this approximation, but again, implementation into

molecular dynamics software will most effectively reveal the strengths and limitations of the

approximation. In the long term, I would like to implement all three methods as a suite

of enhanced Milestoning methods for calculating spectra of complex macromolecules from

molecular dynamics simulations. One area of personal interest that I would very much like

to explore using these three tools in conjunction is the study of intrinsically disordered pro-

teins. Although these proteins typically lack a well-defined minimum energy structure that

they will consistently occupy in the crystalline state [108], their structure can be understood

in a dynamical sense, and I feel that these three enhanced sampling methods could be ideal

for elucidating such dynamical models. The approach would begin by applying the search,

cluster, and subspace defining steps of the machine learning-guided method to define the set

milestone interfaces that best subdivide the configuration space. Next, the WARM method

would be applied to collect the transition time distributions necessary for Milestoning. Fi-

nally, the method for obtaining discrete approximations of time correlation functions would

be applied to calculate the relevant time correlation functions necessary for ultimately cal-

culating particular spectroscopic measurements of interest. Given a set of trajectories which

correspond to accurate spectra, one could then go back to the trajectories and mine them for

the atomistic behaviors corresponding to experimentally observed spectra. Optimistically, if

the implementation is sufficiently robust, my hope is that I can one day combine the three

methods in this fashion to form a software package that serves as a “computational micro-

scope” [62] for the study of macromolecules exhibiting complex dynamics that requires little

to no prior intuition about the chemical system from the user.
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Appendix A

Rate turnover in mechano-catalytical

coupling: A model and its microscopic

origin

A.1 Abstract

A novel aspect in the area of mechano-chemistry concerns the effect of external forces on

enzyme activity, i.e., the existence of mechano-catalytical coupling. Recent experiments on

enzyme-catalyzed disulphide bond reduction in proteins under the effect of a force applied

on the termini of the protein substrate reveal an unexpected biphasic force dependence for

the bond cleavage rate. Here, using atomistic molecular dynamics simulations combined

with Smoluchowski theory we propose a model for this behavior. For a broad range of forces

and systems, the model reproduces the experimentally observed rates by solving a reaction-

diffusion equation for a “protein coordinate” diffusing in a force-dependent effective potential.

The atomistic simulations are used to compute, from first principles, the parameters of the
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model via a quasiharmonic analysis. Additionally, the simulations are also used to provide

details about the microscopic degrees of freedom that are important for the underlying

mechano-catalysis.

A.2 Introduction

Single-molecule manipulation techniques are increasingly often revealing important biomolec-

ular conformational changes, one molecule at a time. Thereby, they enable one to identify

intermediates and to characterize heterogeneity in conformational pathways, properties that

otherwise would be masked by the averaging inherent in usual bulk experiments. Typi-

cal techniques include pulling by atomic force microscopy (AFM) and by optical or mag-

netic tweezers to probe individual folding in biomolecules or binding in biomolecular com-

plexes [55, 23, 35]. Other examples include applying forces and torques to study super-

coiled DNA [68, 97] and DNA-protein [24, 72] or DNA-nanoparticle complexes [91], to unzip

[27, 49, 118] or generate novel forms of DNA[119, 21], to reveal the details of viral packing

[99, 20], or to probe the interaction of proteins with lipid membranes [5]. An area of related

work concerns understanding how chemical steps, such as ATP hydrolysis, can lead to the

generation of force and to the movement of biomolecular machines. Single molecule tech-

niques have here been crucial in detecting and estimating mechano-chemical coupling i.e.,

the coupling between movement and the chemistry of ATP hydrolysis in molecular motors

[3, 93, 127, 44, 52, 76, 31]. Application of external forces induces conformational motion and

motion couples to chemistry. It is therefore relevant to seek ways in which applied forces

modulate chemistry. This is precisely what has been explored recently by Fernandez and

coworkers [66, 43, 59, 123, 87, 65], who, in a novel experiment, have studied how external

forces affect the the quintessential chemical act of catalysis. The technique used was single

molecule force clamp spectroscopy (SMFCS), a method of precise constancy in the force
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application [22, 96, 79, 39], that has proved particularly useful previously in the characteri-

zation of the mechanical unfolding/refolding of proteins. They revealed a coupling between

mechanically applied forces and the chemistry of bond cleavage in a catalytic reaction, i.e.,

the rate of force-catalyzed chemical reactions at the single molecule level. In particular, they

studied the force dependence of the reduction of disulphide bonds in a protein substrate,

titin when catalyzed by the enzyme thioredoxin [4] (reduction which occurs in-vivo), and

when catalyzed by different small nucleophiles [123, 43, 66, 102]. Two opposing mechanical

forces were applied via AFM to pull apart the C- and N-termini of the immunoglobulin-like

domain number 27 (I27) of titin, which had an engineered disulphide bond between residues

32 and 75 (see Fig. A.1). The protein unfolded from the two termini up to the sequestered

disulphide bond, which, from being buried inside the folded protein, now became both ex-

posed to the nucleophilic moiety and stretched by the same mechanical force that caused the

unfolding of the intervening protein backbone “handles” 1 − 32 and 75 − 89 (Figure A.1).

The disulphide bond was subsequently reduced (cleaved) by thioredoxin or, in their subset

of experiments, by the small nucleophiles, and the cleavage resulted in further extension of

titin.

When the small nucleophiles were present, the disulphide reduction followed the kinetics

of an SN
2 reaction with a first order dependence of the reaction rate on the nucleophilic

concentration and an exponential dependence on the force as in Bell’s model [12],

rate = A exp(−(Ea − F∆xr)/kBT )[Nu], (A.1)

where [Nu] is the concentration of the nucleophile and Ea is the activation energy barrier,

lowered by the external force, F by an amount F∆xr, with ∆xr the distance to the transi-

tion state along the reaction coordinate, identified as the elongation of the disulphide bond

[66, 89, 59]. By and large, the rate of reduction by small nucleophiles was exponentially ac-

celerated by the force on titin. However, when thioredoxin was the catalyst, disulphide bond
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Figure A.1: Different stages of external force application (a) Force applied on the native
titin I27 with an engineered disulphide bond at Cys32-Cys75. (b) Force applied to exposed
disulphide bond through the extended C- and N-termini “handle” (viewed from the opposite
direction relative to panel (a)). (c) Force applied on titin “handles” while the exposed
disulphide bond is in close proximity to the active site of enzyme thioredoxin, shown in
green (PDB : 1XOB).

reduction exhibited a biphasic force dependence [4, 122, 86] in the form of a turnover in the

rate-force plots. Both eukaryotic and bacterial thioredoxins were studied. While all thiore-

doxins showed a negative force sensitivity at lower forces (the rate decreased with force), this

was followed, at larger forces, by a force independent behavior for eukaryotic thioredoxins

and an increase in the rate with the force for bacterial thioredoxin. The distinct chemical

mechanisms underlying the catalytic activity of the two types of thioredoxin enzymes not

seen in small nucleophiles was rationalized to be modulated by the highly conserved active

site in the enzyme, defined by two “vicinal” cysteine residues at the 32 and 35 positions

[48, 38], as well as the surface and depth of the substrate binding grove [87, 50, 9, 25].
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Molecular dynamics simulation studies for thioredoxins of different origins attributed the

biphasic kinetics in E-coli thioredoxin (bacterial) to the shallow binding grove controlling

the chemistry of the reaction at lower forces [87] (substrate binding being the rate limiting in

the absence of the force), according to a Michaelis-Menten mechanism. At higher forces, the

reaction proceeds according to a simple SN
2 mechanism, and the formation of the enzyme

substrate complex is no longer the rate determining step. The force independent behavior in

the case of eukaryotic thioredoxin can be explained on the basis of a single-electron transfer

reaction [100] taking place irrespective of the orientation of the disulphide bond [90]. The

experimental and molecular dynamics simulations of peptide bound enzymes also confirmed

that the eukaryotic thioredoxins have a deeper binding grove which can lock the substrate

disulphide bond, preventing further conformational variability. Even though the reduction

rate was found to be force accelerated, following a Bell model (or generalizations thereof)

in the case of the small nucleophile, this was not the case for the biphasic turnover in the

force-dependence of the thioredoxin catalyzed chemical rate. This points to the idea that

the force also modulates the behavior of the protein environment surrounding the cleaved

disulphide.

The force dependence observed in titin’s disulphide cleavage reaction is reminiscent of an

otherwise unrelated class of complexes with similarly biphasic rate-vs-force profiles. The

prime feature of this class is a so-called “catch-slip” transition, seen when pulling apart

certain adhesive supramolecular complexes, such as the binding to P-selectin and L-selectin

of the P-selectin glycoprotein ligand-1(PSGL-1) [10, 94, 104, 70] or the adhesion of the

protein FimH to bacterial host cells [107]. The concept, introduced by Dembo et al. in 1988

[30], describes rates of dissociation of the ligand that, counterintuitively, first decrease with

the pulling force, a range for which interactions are coined “catch bonds” (although no actual

covalent bond exists). Subsequently, rates increase with force beyond a certain threshold,

a force regime termed “slip bonds”. Theories and phenomenological models explaining the

dynamic transitions in catch-slip bonds have been developed, chiefly based on the existence
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of an energy landscape with two bound states or two pathways [106, 129, 83, 11, 130, 105,

36, 85].

A natural framework –perhaps the simplest– to rationalize the qualitative change in the re-

action rate for disulphide cleavage with the force applied to the protein is a two-dimensional

reaction-diffusion model. An earlier incarnation of a related approach is the venerable

Agmon-Hopfield model [2] (see also Ref. [8]), which describes a first-order kinetic process

(more precisely, CO binding to a protein) whose rate depends on the “protein coordinate,”

i.e., on a variable that diffuses in time [81]. The protein coordinate can be thought of, in ef-

fect, as a displaced normal mode, or some linear combination of normal modes, of the protein

[131]. An essentially similar description, with the chemistry being this time electron transfer,

is the Sumi-Markus model [100]. In any case, in such models, the reaction coordinate, r,

is the one along which chemistry occurs and it is coupled to an orthogonal coordinate, the

conceptual protein coordinate, x, which evolves according to a Smoluchowski-based reaction-

diffusion equation,

∂ρ(x, t)

∂t
= D

∂2ρ(x, t)

∂x2
+

D

kBT

∂

∂x
(ρ(x, t)

∂V

∂x
)− k(x)ρ(x, t), (A.2)

where ρ(x, t) is the probability density of x, D is the diffusion coefficient and the last term

relates to the rate of the reaction.

Herein we pursue a description of the force-modulated kinetics of disulphide cleavage using a

framework inspired by the Agmon-Hopfield or Sumi-Markus models embodied by Eq. (A.2).

Our approach is, in spirit, similar to the treatment of catch-slip bond transitions proposed by

Liu and Ou-Yang [69], who assume that the distribution of protein conformations involved

in the adhesive complex is modulated by the external force, which also couples to the catch-

slip detachment coordinate. In our case, the parameters of our model are derived from a

set of all-atom molecular dynamics simulation of both the protein titin and titin-thioredoxin
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complex under various applied forces. A quasiharmonic analysis of the substrate protein titin

is used to evaluate candidate modes that can describe the collective motion of the protein

coordinate. Our study highlights the importance of involving force-dependent protein modes

in theoretical descriptions of mechano-chemical coupling (see Fig. A.2). The rest of the

paper is organized as follows. We continue by introducing our novel treatment of the applied

force in force-modulated enzyme-catalyzed disulphide bond reduction experiments where

the force is represented as a vector with components in the reaction coordinate and protein

coordinate, then we present the Smoluchowski-based formalism for reaction-diffusion in this

two dimensional space, followed by a description of how we used atomistic simulations to

simulate force unfolding and to compute the parameters for the force-modulated reaction-

diffusion potential; we end with a concluding discussion.

A.3 Results

As described above, a diversity of mechanisms for the thioredoxin-catylized disulphide bond

cleavage of titin, as it was subjected to pulling forces, were experimentally observed. There

were two distinct rate-force dependencies observed, depending on the variety of thioredoxin

present [87]. The two types of dependences corresponded to the two distinct families of

thioredoxins studied, i.e., eukaryotic vs. bacterial. A prime role in this dichotomy was played

by the binding groove, which was different in the two families, and which controlled the force

application on the active site and hence on catalysis. However, a quantitative description of

the rate remained to be obtained. Here, we investigate a model in which the diversity in the

rates of disulphide cleavage is shown to result from a different force response of the protein

coordinate, which in turn affects the reaction coordinate by modulating its energy barrier and

transition state position. We simulated with molecular dynamics a family of four bacterial

thioredoxin-titin complexes, used in the study by Perez-Jimenez et al. [87] to understand the
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structural dynamics at the active site of thioredoxins in proximity of the substrate prior to

bond cleavage that may affect rates of their catalytic reactions. A simple representation of

the distribution of the protein coordinate is a Gaussian resulting from diffusion in an effective

harmonic well. As such, we modeled it using quasi-harmonic analysis [53] of the protein-

enzyme complexes sampled by the molecular dynamics trajectories. In this representation,

the protein coordinate embodied collectively the global motions typically associated with

large-amplitude, low-frequency modes of the complex. Such modes are often responsible for

conformational change and function [15]. The difference in the modes and in their response to

force are meant, in the model, to modulate the reaction rates for each complex. We note that

while the protein coordinate moves in a harmonic well, anharmonicities in the protein motion

are accounted for implicitly by averaging in the quasi-harmonic approximation [64, 63], which

can also be used to estimate the effect of the force on entropy [7, 103].

The quasi-harmonic analysis of each of the four protein-enzyme complexes is featured in

Fig. A.3, showing the normalized density of quasi-harmonic states as well as the cumulative

density of states, G(ω) calculated for the 3N − 6 modes for all complexes, plotted against

the mode frequencies, ω.

To correlate the collective motions the enzyme-substrate complex to the biphasic kinetics

of the enzymatic disulphide reduction reaction, we propose to use a force modulated dif-

fusion model - a “bounded diffusion” orthogonal to the reaction coordinate, bound by a

force-modulated harmonic potential. The conformational variations corresponding to low

frequency vibrations give rise to a fluctuating intrinsic energy barrier, which being modu-

lated by force is revealed as a biphasic behavior in the rate. The particular force-modulated

reaction-diffusion equation utilized here is the generalization of the Agmon-Hopfield model

[2] by Liu and Ou-Yang [69], which is in effect, an expanded form of the Smoluchowski
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dynamics in an external field [124].

∂ρ(x, t)

∂t
= D

∂2ρ(x, t)

∂x2
+Dβ

∂

∂x
ρ(x, t)

∂V (x, F⊥)

∂x
− koff(x, F‖)ρ(x, t) (A.3)

where, ρ(x, t) is the probability density of finding the value x at a time t, and the two

components of the pulling force F along the protein and reaction coordinate are, respectively,

given by

F⊥ = F · x̂ = F sin θ (A.4)

F‖ = F · r̂ = F cos θ, (A.5)

with θ the angle between the applied force and the reaction coordinate, r; D is the diffusion

coefficient and β the inverse temperature. V (x, F⊥) is the force-modulated potential acting

on the system, which is a function of both the position along the protein coordinate, x, and

the perpendicular component of the applied force. The potential is expressed as:

V (x, F⊥) = V0 +
1

2
κ(x− x0)2 − F⊥x, (A.6)

with V0 the minimum value of the potential of force constant κ, and x0 the location of the

minimum along the protein coordinate, x. The term −F⊥x models the amount by which the

component of the force along the protein coordinate x tilts the energy along x. Herein we

define the protein coordinate x as a conformational coordinate along which the motion of the

system is orthogonal to the reaction coordinate r; x can be thought of as a linear combination

of protein “breathing” modes. The final, sink term in the Smoluchowski equation, Eq. (A.3),

consumes probability density directly proportionally to the reaction rate coefficient, koff . The

129



rate coefficient is itself a function of the protein coordinate (via the x−dependent energy

barrier height), as well as of the parallel component of the applied force:

koff(x, F‖) = k0 exp[−β(∆V ‡(x)− F‖r‡)] (A.7)

The component of the force parallel to the reaction coordinate r tilts the energy surface by

the amount −F‖r‡, with r‡ the distance to the barrier, namely the separation between the

bound state and the energy barrier for disulphide cleavage. Following Liu and Ou-Yang [69],

the shape of the reaction energy barrier height ∆V ‡ as a function of the protein coordinate

x was modeled as a piecewise function, initially with a positive slope until an equilibrium

distance, after which it assumed a zero slope. The Smoluchowski equation was then solved

numerically for ρ(x, t) using the partial differential equation solver in Mathematica [125], with

Dirichlet boundary conditions ρ(xmax, t) = 0 and ρ(xmin, t) = 0, and the initial condition:

ρ(x, 0) =
1√
π
e−(x−1)2

. (A.8)

Although Neumann boundary conditions (which cancel the flux at the boundaries) are also

possible, the simpler to implement Dirichlet boundary conditions were employed here without

loss of precision by placing them at values of xmin and xmax which corresponded to states

energetically inaccessible to the system at room temperature (we chose xmin = −22 and

xmax = 22). Thus the potential itself keeps the system bounded in the x direction, and the

boundary conditions merely serve to define zero-valued endpoints for the numerical method.

The ultimate goal of generating the ρ(x,t) surfaces is to integrate them over all space and

time, in order to generate τ , the disulphide bond lifetime:

τ =

∫ ∞
0

∫ ∞
−∞

ρ(x, t)dxdt. (A.9)

The sink term in the Smoluchowski equation ensures that the probability density decays to
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zero at long times. In the numerical implementation, integrating the surface over infinite

time was made tractable by setting the upper limit of the time integral to a value larger

than the time t at which ρ(x, t) has decayed more than a cutoff of 10−13 of the initial-time

value integrated over all x. Since ρ(x, t) decays to zero long before reaching the boundaries,

integrating between the boundary conditions is equivalent to integrating over all space. The

above process of numerically solving for ρ(x, t) and then integrating it with Eq. (A.9) was

repeated for increasing values of force from 0 to 600 pN, and the resulting values for lifetime

τ were inverted to find the numerical values of the reaction rates. These reaction rates could

then be plotted as a function of the applied pulling force and was fitted to the experimental

data of Perez-Jimenez et al. [4] by collectively varying the distance to the reaction barrier

r†, the rate constant for the reaction in the absence of an applied force k0, and the force

constant for the effective harmonic potential of the protein coordinate κ. Goodness of fit

was monitored using a cost function which summed the squared differences between the

experimentally measured rates and the calculated rates for each given force value. Varying

the force constant κ of the force-modulated potential V (x, F⊥) varied the rate, reinforcing

the importance of the “softness” of the underlying protein coordinate. The matching protein

coordinates were subsequently identified atomistically from the the low frequency modes of

the quasi-harmonic analysis. i.e., when the distribution of the protein coordinate was bound

by a harmonic potential of different force constants κ for each enzyme-substrate complex.

The variability in the low frequency quasi-harmonic modes in the inset to Fig. A.3 originates

from the different protein environment engulfing the substrate disulfide in each binding grove

pictured in Fig. A.2(b), and resulting in the variety of curves for the rates in Fig. A.4.

The two key parameters that strongly control the shape of the force-rate curves in Fig. A.4

are κ, the force constant defining the force modulated harmonic potential along the protein

coordinate and r†, the distance along the reaction coordinate from the bottom of the reac-

tant well to the transition state. The values for κ ranged from 8 pN nm-1 (2TRX) to 24 pN

nm-1 (1XOB), and r† ranged between 0.008 nm (1UVZ) and 0.02 nm (2TRX). Adding to
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the information obtained through low frequency normal modes, we used molecular dynamics

simulations to capture the conformational transitions within the substrate in the presence

of force [42, 122] that occur in close proximity to the enzyme thioredoxin, proximity being a

measure of r, the distance to the transition state. The force constant, κ, is the key parameter

in establishing a connection between the Smoluchowski model for force-modulated chemistry

and the atomistic simulations presented herein. Quasi-harmonic mode analysis of the pro-

tein/substrate system resulted in a matching distribution of low frequencies from less than 1

to around 30 cm-1. Upon solving for κ from ω =
√
κ/m, where ω is the frequency and m the

reduced mass of the oscillator, a value of κ can be identified. This relates the force constant

of the Smoluchowski model to a particular region of the spectrum of quaisharmonic modes.

For example, for a total mass of the atomistic system in the simulation of roughly 15,000

amu, the larger reduced mass is 7500 × 7500/15000 = 3570 amu, which would correspond

to a large scale oscillation of two portions of equal mass. This establishes the upper limit

for reduced mass, with lesser values possible, (all the way down to 1 amu, corresponding

to a single hydrogen atom oscillating against the rest of the system). As an example, if we

assume that the normal mode which best corresponds to our protein coordinate is a low

frequency mode approximated as motion involving about 5% of the full structure oscillating

from the remainder of the structure, then we can use the previously stated relationships to

establish a range for κ of around 10 pN/nm corresponding to frequency = 0.5 cm-1 to around

27 pN/nm for frequency = 0.8 cm-1. In comparison, for the Smoluchowski equation used to

generate the rate vs. force curves in Fig. A.4, the κ parameter was varied between 8 and

24 pN/nm to produce the fits. Although this matching strategy does not generate a unique

mode identification, it does provide a reasonable picture of the protein coordinate, and it

invites further exploration into ascribing physical meaning to motion along it using linear

combinations of low-frequency normal modes.

At the atomistic level, we were interested in identifying the conformational changes at the

site of catalysis induced by the application of the external force. To this end, we used all-
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κ (pN/nm) r† (nm) θ (rad) k0 (s−1)
Blue 9.9798 0.008 0.1 6.0× 106

Red 23.9798 0.01215 0.166 2.8× 106

Black 11 0.016 0.1 2.0× 106

Brown 8 0.02 0.1 1.1× 106

Table A.1: Parameter values from the Smoluchowski equation used to fit the curves repre-
senting disulphide bond cleavage rate as a function of the applied force to the experimentally
measured values for different forms of Thioredoxin, as shown in figure A.4.

atom simulations with force applied explicitly to the system (see Methods). At this higher

resolution, we were able to identify two atomic-level parameters controlling the contribution

of the protein coordinate at the substrate level. The first is the dihedral angle at the substrate

disulphide bond and the second is the orientation of the disulphide bond with the applied

force axis, both providing the microscopic response to applied force. During the first force

pulse, the application of which initiated the unfolding of the substrate titin to expose the

buried disulphide bond, the dihedral angle maintains an equilibrium value between 100◦ to

110◦[17]. However, for larger applied forces, a flip to the other gauche conformation at 260◦,

an approximately 180◦ flip was observed (see Figure S1 (SI)). A 90◦ dihedral angle produces

a staggered low energy configuration for the carbon atoms around the S-S bond, due to

a favorable π − π overlap, which in the protein environment has an equilibrium value of

100◦-110◦.

Interestingly enough, the dihedral angle distribution exhibits a different response to force

when the disulphide is proximal to the oxidized state than it does when proximal to the

reduced state of the thioredoxin enzyme. This points towards the influence of the enzyme

in controlling the protein coordinate. The C-S-S-C dihedral bond distribution in titin is

peaked away from the equilibrium conformation and assumes the transition state geometry

at around 180◦, a flip from its stable gauche- to the trans- state. This is observed mostly

at low forces (100-200 pN), as the titin sulphur atom in CYS32 moves towards the sulphur

atom in the active site of the enzyme (S32); the distance between these atoms is, roughly,

the reaction coordinate for chemistry. This is seen more prominently when the cysteines
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at the active site of the enzyme are in thiol form (as CYS32-SH and CYS35-SH) since a

reduced state is capable of bringing about the thiol-disulphide exchange reaction [98] with

the substrate disulphide bond. The force modulated behavior of the substrate coordinate

is also reflected by the dependence of the root-mean-square deviation of the “trapped core”

residues with force and by the close proximity of the enzyme. This underlies the role of

these residues in the force-controlled reduction reaction (see also Fig.S3 [in SI]). Higher

RMS fluctuations of residues adjacent to the disulphide bond (see Fig. S1(d)[in SI]) even in

the absence of enzyme emphasize the fact that the force induced fluctuations at the single

bond or dihedral level are, in fact, a consequence of large scale conformational changes or

deformations [82, 84] of the substrate induced by force.

The second important atomic-level parameter observed through our force-dependent sim-

ulations is the orientation of the disulphide bond with respect to the force axis. The ori-

entational flexibility of the disulphide bond at the active site is influenced by the protein

coordinate, thereby modulating the reaction coordinate r. Through a study of the evolution

of the binding grove of the enzyme thioredoxin and dwell time analysis techniques [102], it

was proposed that at lower forces, the disulphide bond orients itself against the force axis

to attain a linear configuration for the SN
2 reaction, shortening its bond length and thereby

the distance to the transition state. This results in a negative force dependency [4, 102],

with the bond elongation projected onto the force axis being ∆xF = 〈| cos(θ) |〉(bTS − b),

where b and bTS are the reactant and transtion-state bond lengths and θ is the orientation

angle of the disulphide bond with respect to the force axis, i.e., the angle between the reac-

tion coordinate and the applied force in our proposed model. Hence, the chemistry is likely

controlled by the peptide binding groove in the enzyme requiring a rotation of the substrate

disulphide bond with respect to the active site of the enzyme, in accord with the proposed

Michaelis-Menten kinetics at low forces.

As the disulphide bond gets exposed upon initial unfolding, in our simulations of only the
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substrate titin under a continued force application, the disulphide bond was observed to

be aligned at either 40◦ or 140◦ (taking into account both direction of force vector) to the

force vector (see Figure A.6). With increasing proximity of the substrate titin to the active

site of the enzyme, while moving towards the enzyme active site (i.e., towards S32) along

the reaction coordinate, the disulphide bond in our simulations is seen to divert from the

equilibrium value and orient itself almost perpendicularly to the force axis at lower forces

(100-200 pN), however, aligning back to its equilibrium state at 40◦ or 140◦ when subjected

to higher forces. We hypothesize that at lower forces, and in proximity to the active state

of the enzyme, the conformational dynamics of the substrate is influenced by the binding

grove of the enzyme or, in other words, the protein coordinate of the enzyme. As the

force increases, it wins over the control aligning the bond back along the force direction.

This analysis prompts at the importance of conformational fluctuations in positioning the

disulphide bond in certain orientations relative to the external pull. As such, it is important

to generate a ensemble of conformation and analyze how the entirety of the conformations

(whose distribution itself may be affected by force) may modulate the rate at different forces.

A.4 Concluding Discussion

Recent single molecule experiments on thioredoxin-catalyzed thiol-disulphide exchange un-

veiled a complex rate-force dependence. The rate initially decreased for forces below 200 pN

and increased at higher forces. In principle, the initial decrease could formally be considered

as a consequence of an effective barrier increase with force, modeled by ∆xr and F having

opposite signs if the Bell model (Eq.(A.1)) is imposed [83]. This is would be then followed

by a subsequent increase at larger forces, caused by a coupling of the force with the elonga-

tion in bond length (a regular, positive ∆xr). Such a force-reaction coupling modeled à la
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Bell is necessarily one-dimensional. In the case of complex macromolecular systems, as are

protein-enzyme complexes, the force applied to the substrate protein is more likely to act

along directions other than the reaction coordinate. Hence the factors dictating the distance

to the transition state and subsequent kinetics cannot be identified by a single bond elonga-

tion, ∆xr, but by a combination of several parameters. Here we offered evidence that such

parameters arise naturally from internal protein coordinates, that vary or are modulated by

force as the system progresses from the reactant to the transition state. We modeled an

internal protein coordinate as a linear combination of low-frequency quasi-harmonic modes

which differ in different active site environments, as represented by complexes of the same

substrate with different enzymes. Accordingly, rates of different complexes exhibited a slight

difference that was in agreement with experiments and the measured the biphasic behavior

observed in all bacterial complexes. We successfully reproduced the biphasic force depen-

dency of rates by simultaneously propagating the protein coordinate and reaction coordinate

along the two components of a force modulated potential by solving a generalized version of

a reaction-diffusion equation.

Via atomistic simulations we also studied the conformational dynamics of the partially un-

folded core (i.e., when the handles are unfolded, but the core is held folded by the disulphide

bond). These simulations further revealed the conformational ensemble of the dihedral an-

gle geometries at distances close to the transition state. Not only was the disulphide bond

affected by the direct application of the force, but also, importantly, the residues trapped

behind the disulphide bond showed a higher degree of conformational variability with force

in the presence of the enzyme, thus additionally impacting the average transition geome-

try of the disulphide bond. Orientation of the disulphide bond away from the force axis

at lower forces and at closer distances to the enzyme emphasized the role of the peptide

binding groove in controlling the dynamics of the reaction and the rate deceleration at low

forces. The substrate was seen to be more impacted by higher forces, even in the presence

of the enzyme, in accord with the fact that the reaction is accelerated at these forces and is
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independent of the peptide binding grove [79].

While our reaction-diffusion equation used a simple model for the force-dependent kinetics,

more detailed calculations can be set up to provide from first principles a description of a

potential energy surface warping under the strain of an applied force. For example, Ribas-

Arino et al. [88] used electronic structure calculations to describe the effects of applied forces

on a simple bond cleavage reaction by directly computing force-transformed potentials. In

principle, for enzymes the possibilities exist to estimate directly force-transformed potentials

using QM/MM techniques [116, 40].

To conclude, we provided microscopic evidence of the protein conformational coordinate

through our simulations and quahiharmonic mode analysis which successfully validated our

model of force modulated diffusion of protein and reaction coordinate along two perpendic-

ular dimensions. Similar descriptions are also relevant for the force and torque effects on the

activity of enzymes on nucleic acid substrates during genetic transactions [6]. We expect our

study to be important as more experimental examples of mechano-chemical coupling, new

sono-chemical coupling [26, 47] or coupling to electrical fields [41] become available.

A.5 Methods

Protein Data Bank coordinates [PDB ID: 1TIT] were used for the substrate, the 89-residue β-

sandwich protein titin-I27, responsible for the regulation of passive elasticity in muscles. The

disulphide bond in titin-I27 was engineered by computational mutations at G32C and A75C,

sequestering the amino acids behind the disulphide bond, residues 33 to 74, in a particular

conformation that generated a “covalent trap” to impede complete unfolding, unless the bond

was cleaved. The originally present cysteines 47 and 63 were mutated to alanine (in accord

with the single molecule pulling experiment, where one needed to prevent complications
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from unnecessary disulphide bond formation). All mutations were carried out with MMTSB

package [Michael Feig, John Karanicolas, Charles L. Brooks, III: MMTSB Tool Set (2001),

MMTSB NIH Research Resource, The Scripps Research Institute]. Constant force AFM

simulations were carried out using the CHARMM27 force field in the ACE implicit solvent

model [95]. Mimicking the experimental set up of a double force protocol, the simulations

also used two-stage unfolding. The first stage of force application unfolded the native state

of the protein up to the disulphide buried in the protein core. Since forces lower than the

experimental maximum of 400 pN were unable to unfold the titin molecule from the native

state in the allotted simulation time, higher forces in the range of 400 − 800 pN had to be

applied to initiate unfolding. Because in the empirical force field the disulphibe bond is

modeled as a harmonic potential (with a force constant 173 kcal/mol/Å2), bond cleavage

was neither possible nor expected. (Incidentally, it is experimentally established that forces

less than nN cannot break a covalent bond [45].). While in principle an empirical valence

bond model [117] may be used to effect bond breakage, the main aim here was to study

the distribution of disulphide bond geometries assumed in the pulling experiment. We ran

twenty 20-ns trajectories at each force. The residues trapped behind the disulphide bond

(33 : 74) hence remain in the folded state. For the second stage, the protein was pulled

with a high force for a short duration until the disulphide bond is exposed while fixing

the coordinates of the core residues from 32 − 75 including the disulphide bond. It was

then exposed to continued application of forces in the range 100− 800 pN (since no further

unfolding was required). Twenty shorter trajectories of 10 ns each were run to sample

the conformations of the single disulphide bond under a range of forces in the absence of

the enzyme. To further model the conformational ensemble of the protein coordinate in

the presence of the enzyme (thioredoxin) when the substrate is subjected to a range of

external forces, thioredoxin [PDB ID: 1XOB] was placed at different distances from the

substrate titin with the distance between titin-S32 and Trx-S32 sulphur atoms (active site)

harmonically restrained at different distances representing the reaction coordinate. At each
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force, 20ns trajectories were run for the force range 100-600 pN applied on the two C-α atoms

of the termini (residues 1 and 89) of titin with the disulphide bond in the exposed state.

Distributions were generated for time dependent dihedral angle variation at the substrate

disulphide bond as well as the orientations of the disulphide bond with the force axis.

To identify the low frequency quasi-harmonic modes responsible for the protein conforma-

tional coordinate in the various titin-thioredoxin complexes, four thioredoxins of bacterial

origin( human mitochondrial Trx2[PDB 1UVZ], E. coli Trx1[PDB 1XOB], E.coli Trx2 (PDB

ID: 2TRX) and C.reinhardtII Trxm (PDB ID 1DBY) were complexed with the titin struc-

ture PDB ID: 1TIT and docked over a complex of human-TRX with transcription factor

NFκB[PDB 1MDI] to get the correct transition state geometry. The distance between the

sulphur atoms at the exposed disulphide bond of Cys-32 of titin and the active site of

Cys-32/Cys-31 of the enzyme was restrained at 2.02 Åaverage distance using a harmonic

potential. The structure was minimized in 200,000 steps of steepest descent followed by

200,000 steps of the adapted basis Newton- Raphson method, heated and equilibrated for

20 ns at 300 K using Langevin dynamics with implicit solvent. The two ‘handles’ in the

partially unfolded form of titin (with the ‘hidden’ disulphide bond at 32-75 position being

unsequestered), namely the residues 1− 30 and 78− 89 were deleted. Quasi-harmonic anal-

ysis was conducted on the protein core in complex with the enzyme. The trajectory was

used to converge the 3N × 3N covariance matrix of the fluctuations of the N atoms. The

global translation and rotation was removed prior to the analysis by least square fitting to

the reference structure using all heavy atoms. The average coordinates during the trajectory

were used as reference. The transformation from the Cartesian to normal coordinates was

performed by diagonalizing the mass-weighted covariance matrix [18], resulting in 3N eigen-

vectors identifying the mode motions and the corresponding 3N eigenvalues representing the

frequency of each mode. The density of states, g(ω), as well as the cumulative density of

states, G(ω) were computed and are shown in Fig. A.3 in semi-log or log-log plots against

the mode frequencies.
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A.6 Supplementary Information

Additional plots and table generated from atomistic simulations and corresponding theoret-

ical calculation are included in the Supplementary Material.
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(a)

(b)

Protein Coordinate 

x

Reaction Coordinate  
r

Applied Force, F

Energy

TRX-S32

TIT-S32

Thioredoxin

Titin

(a)

(b)

x

r

F

Figure A.2: (a) Sketch of a potential energy surface distorting under an applied force (green
arrow) with vector components along the ‘protein coordinate’ (red arrow) and ‘reaction coor-
dinate’ (blue arrow). The red surface corresponds to an applied force of smallest magnitude,
with blue being larger, and purple being the largest. The small increase in applied force
magnitude going from the red surface to the blue surface causes an increase in well depth for
the reaction coordinate, but little change in energy for the non-bonded state along the reac-
tion coordinate, while the highest magnitude applied force shows a pronounced decrease in
energy for the non-bonded state (compare the positions of the parabolic cross-sections of the
surfaces). This is analogous to the turnover behavior observed in force-modulated disulphide
bond reduction, where smaller magnitude forces favor the bound state, while higher magni-
tude forces increase the rate of bond breakage, i.e., favor the unbound state. (b) The enzyme
(thioredoxin) in complex with the substrate protein (titin, in cartoon representation) at the
transition state as modeled during atomistic simulations(see Methods). The inset shows the
detailed view at the active site with the reacting sulfur atoms CYS 32 of thioredoxin and
CYS 32 of titin colored in green aligned along the reaction coordinate. The sulphur atoms
of the proximal cysteines (CYS 75 in titin and CYS 35 in thioredoxin) are colored in yellow.
The arrows represent the same orthogonal coordinates as in part (a), and employ the same
color scheme.
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Figure A.3: Normalized G(ω), cumulative density of quasiharmonic modes for four enzyme-
substrate complexes, i.e., substrate titin with four bacterial thioredoxins. Inset shows the
semilog plot of the density of states g(ω) versus the mode frequencies, ω, (only low frequency
modes) for all four thioredoxin-titin complexes. The color code remains the same as main
figure.

142



R
ea

ct
io

n 
R

at
e(

s-1
)

Applied Force(pN)

Figure A.4: Curves generated by numerically solving and integrating the Agmon-Hopfield-
Smoluchowski equation for increasing values of applied force and fit to experimentally mea-
sured disulphide bond reduction rates from Perez-Jimenez et al. (fit parameters given in
Table A.1). Color coding scheme same as in Fig. A.3.
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Figure A.5: Reaction coordinate shown as the distance between the sulphur atoms of two
cysteine residues, one CYS (S32) in the titin substrate and another CYS (S32) at the active
site of the thioredoxin enzyme (cf. labels in Fig. A.2).
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Figure A.6: In presence of the reduced form of thioredoxin (a) The substrate disulphide
bond is seen to be aligned away and almost perpendicular to the force axis at lower forces
as the substrate approaches the enzyme (b) Dihedral angle distribution along the reaction
coordinate showing a flip to the trans- configuration with increasing proximity to the enzyme.
The reaction coordinate is shown as the decreasing distance between the active site of the
enzyme-S32 and the S32 atom of the titin substrate. At a distance of 2.25 Å, it is the closest,
corresponding to a transition state between substrate S32 and S32 at the active site of the
enzyme.
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