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Abstract 

Using a combination of dynamical and statistical downscaling techniques, we projected 

mid-21st century warming in the Los Angeles region at 2-km (1.2-mile) resolution. To 

account for uncertainty associated with the trajectory of future greenhouse gas emissions 

and other factors affecting the planet's energy balance, we examined projections for both 

"business-as-usual" (RCP8.5) and "mitigation" (RCP2.6) emissions scenarios of the Fifth 

Coupled Model Intercomparison Project. To account for the considerable uncertainty 

associated with choice of global climate model, we downscaled results for all available 

global models. For the business-as-usual scenario, we find that by the mid-21st century, 

the most likely warming is roughly 4.6°F averaged over the region's land areas, with a 

95% confidence that the warming lies between 1.7 and 7.5°F.  The high resolution of the 

projections reveals a pronounced spatial pattern in the warming: High elevations and 

inland areas separated from the coast by at least one mountain complex warm 20 to 50% 

more than the areas near the coast or within the Los Angeles basin.  This warming pattern 

is especially apparent in summertime. The summertime warming contrast between the 

inland and coastal zones has a large effect on the most likely expected number of 

extremely hot days per year.  Coastal locations and areas within the Los Angeles basin 

see roughly two to three times the number of extremely hot days, while high elevations 

and inland areas typically experience approximately three to five times the number of 

extremely hot days. Under the mitigation emissions scenario, the most likely warming 

and increase in heat extremes are somewhat smaller. However, the majority of the 

warming seen in the business-as-usual scenario still occurs at all locations in the most 

likely case under the mitigation scenario, and heat extremes still increase significantly.  

Therefore adaptation to a changing climate over the next few decades is likely to be 

inevitable in the Los Angeles region.  



! %!

1 Project Background  

The greater Los Angeles area is home to nearly 18 million people, who together account 

for nearly $750 billion in economic activity every year (U.S. Metro Economies -- Gross 

Metropolitan Product with Housing Update, 2007). It is therefore critical to assess 

climate change in the region and determine its impacts at space and time scales relevant 

for municipal planning and policymaking. The “Climate Change in the Los Angeles 

Region” project is meant to facilitate this assessment activity, and provide a quantitative 

foundation for a regional action plan in the areas of climate change adaptation and 

mitigation. The project relies on output from publicly-available global climate change 

simulations. These simulations are state-of-the-art, but because they are global, their 

resolution (roughly 200 km on average) is too coarse to provide meaningful information 

about climate change at the regional scales of interest for this project. Therefore we 

undertook additional high-resolution simulations to regionalize the climate change 

signals implicit in current global simulations. This particular study focuses on the 

changes in near-surface temperature and associated heat extremes. Other critical aspects 

of climate change in the region, including those related to precipitation, snowpack and 

surface hydrology, Santa Ana winds, and low clouds are presented in companion studies.  

2 The Global Climate Simulations 

The global climate model simulations noted above are widely used for understanding and 

projecting future global climate change resulting from increases in atmospheric 

concentrations of greenhouse gases and other factors affecting the planet’s energy 

balance. We rely on a recently-released data archive of coordinated global climate change 

experiments, known as the Fifth Coupled Model Intercomparison Project (CMIP5). At 

the time of this study, CMIP5 contains output from roughly two dozen state-of-the-art 

global climate models (“general circulation models” or GCMs) developed at leading 

climate research centers around the world. This data set allows the scientific community 

to address outstanding questions surrounding climate change. It also forms the basis of 

the forthcoming Fifth Assessment Report (AR5) of the United Nations Intergovernmental 

Panel on Climate Change (IPCC). CMIP5 provides a multi-model context for 

understanding the relationship between the factors affecting the planet’s energy balance, 
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including greenhouse gas emissions and climate change. It also provides a range of 

climate responses across the different GCMs under multiple greenhouse gas emissions 

scenarios (Taylor et al., 2009).  

A set of future emissions scenarios known as Representative Concentration 

Pathways (RCPs) has been adopted by the organizers of the CMIP5 archive (Moss et al., 

2008, Meinshausen et al., 2011). Four RCPs have been chosen, RCP2.6, RCP4.5, RCP6, 

and RCP8.5. The names of the scenarios correspond to the approximate radiative forcing 

they would produce at the end of the 21st century (2.6, 4.5, 6.0, and 8.5 watts per square 

meter [W!m-2], respectively). The radiative forcing up to the year 2100 is shown in Fig. 

1a for each scenario, with the historical forcing also shown up to the year 2005. RCP2.6 

is representative of a “mitigation” scenario in which greenhouse gas emissions peak 

roughly within the next two decades. The resulting carbon dioxide (CO2) equivalent 

concentrations, encompassing the net effect of all anthropogenic forcing agents, reach a 

maximum level of approximately 460 parts per million by volume (ppmv) around 2050 

and decline thereafter to approximately 420 ppmv by 2100 (Fig. 1b). Total radiative 

forcing relative to pre-industrial levels peaks at about 3 W·m-2 in the middle of the 21st 

century and declines to 2.6 W!m-2 by 2100. In stark contrast to RCP2.6, RCP8.5 

represents a “business as usual” scenario, where greenhouse gas emissions continue to 

increase throughout the 21st century. The result is a total radiative forcing of 8.5 W!m-2 

and CO2-equivalent concentrations greater than 1200 ppmv by 2100. While RCP8.5 is the 

most aggressive emissions scenario, it corresponds most closely to emission trends over 

the past decade. Between the “mitigation” scenario of RCP2.6 and the “business as 

usual” scenario of RCP8.5 are two “stabilization” scenarios, RCP4.5 and RCP6. In this 

study, however, we focus on the climate response to the two end-member scenarios at 

either extreme, i.e., RCP8.5 and RCP2.6, to sample efficiently the full range of climate 

outcomes associated with potential future emissions.  

The global-mean surface air temperature response to the RCP2.6 and RCP8.5 

scenarios seen in the CMIP5 GCMs is shown in Fig. 1c. (Table 1 summarizes the 

available global climate models used in this study from the CMIP5 archive.) For both 

scenarios, there are clearly significant model-to-model differences in the warming 
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response over the course of the 21st century. These variations arise principally from 

differences in the GCMs’ spatial resolutions and physical parameterizations. These 

parameterizations are formulated at the various modeling centers. They represent 

processes occurring at scales smaller than the GCM grid scale, especially those 

associated with cloud, the atmospheric boundary layer schemes, and oceanic eddies. Thus 

the outcomes seen in Fig. 1c approximately represent the range of possible warming that 

results when the various ways of constructing a physically-based model of the climate 

system are implemented in a climate change projection. For this reason, we interpret the 

range of warming outcomes as the climate change uncertainty associated with a given 

emissions scenario. We also interpret the average response of all the GCMs for a given 

emissions scenario (the “ensemble mean”) as the most likely outcome for that scenario. 

This assumes the GCMs randomly sample the uncertainty space associated with the 

simulated response to anthropogenic forcing.  This approach to likelihood and climate 

change uncertainty quantification has been used in previous IPCC reports (Meehl et al., 

2007) and will be used by the IPCC-AR5. 

We focus on two time periods in this study: A “baseline” (1981-2000) and a 

“future” (2041-2060). These two periods are shaded in Fig. 1. Mid-century climate 

change relative to the late 20th century can be quantified by calculating the differences 

between the future and baseline periods. By this metric, the GCMs generally show 

significant warming in both the RCP2.6 and RCP8.5 scenarios at the global scale. This 

validates our choice for the future time period, which must be far enough in the future to 

allow for unambiguous climate change signals, but still within a time horizon appropriate 

for policymakers and local stakeholders. There is a visible systematic difference between 

the two scenarios in the typical global-scale warming. However, the least sensitive GCMs 

show about as much warming under the RCP8.5 scenario as the most sensitive ones 

under RCP2.6. Thus at mid-century the uncertainty range associated with the RCP8.5 

scenario overlaps that of the RCP2.6. As we will see in Section 7, this behavior is 

reproduced when the GCMs are downscaled to the Los Angeles region. It is not until the 

latter third of the 21st century that the range of simulated climate change associated with 

RCP8.5 becomes entirely distinct from that associated with RCP2.6.  
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3 The Need for Dynamical and Statistical Downscaling 

The typical resolution of current GCMs (~200 km, see Table 1) is much too coarse to 

accurately characterize climate variability and change at scales relevant to municipal 

planning and policymaking. This is especially true in regions with complex topography 

and meandering coastlines, such as the Los Angeles region. Because of their relatively 

coarse resolution, GCMs simulate regional-scale climate dynamics poorly, including 

local circulations shaped by topography, land-sea breezes and mountain/valley circulation 

systems, and orographic precipitation. All of these phenomena have significant 

manifestations in the Los Angeles region.  Indeed, previous studies have confirmed that 

taking into account climate processes with spatial scales of a few km is important for 

simulating and understanding current climate variability in the region and in the rest of 

the state of California (e.g., Cayan 1996, Conil and Hall 2006, Hughes et al., 2007, 

Lundquist and Cayan, 2007, Cayan et al., 2008, Hughes et al., 2009). 

To obtain reliable climate change information at the regional-scale, we employ 

both dynamical and statistical techniques to downscale the relatively coarse-resolution 

climate information from GCMs to much finer spatial scales. Dynamical downscaling 

refers to the use of regional numerical models to solve the equations of the atmosphere 

(and in some cases the ocean) over a limited-area at high resolution, typically a few to 

tens of km. Apart from their regional focus and higher resolution, these models are very 

similar to GCMs. The regional models are typically driven by coarse-resolution GCM 

output or reanalysis data along the boundaries. This allows for simulations of fine-scale 

physical processes that are consistent with the evolution of the atmosphere encoded in the 

larger-scale data product. Dynamical downscaling has been widely applied over many 

regions to examine a range of climate change impacts (Leung and Ghan, 1999, Giorgi et 

al., 2001, Wang et al., 2004, Chin 2008). This approach has already proven valuable in 

providing information on California climate change, including impacts on temperature, 

snowpack, and the hydrologic cycle (Leung et al., 2003, Cayan et al., 2008, Caldwell et 

al., 2009, Qian et al., 2010, Pan et al., 2011). The other downscaling technique we use—

statistical downscaling—relies on empirical mathematical relationships between the 

large-scale climate predictors and the climate variables at regional scale. These 
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relationships are then used to project regional climate change given the change at larger-

scales (von Storch et al., 1993, Wilby et al., 2004).  

The main advantage of dynamical downscaling is that the regional numerical 

model produces a climate change response driven purely by its own internal dynamics. 

Unlike a climate response produced by statistical downscaling, a dynamically 

downscaled response is in no way pre-determined by any assumptions about the 

relationship between regional climate and climate at larger scales. However, this benefit 

of dynamical downscaling must be balanced against its very high computational cost. 

Generally a regional climate change simulation will require several months of computer 

time. Since it is highly impractical to dynamically downscale every global climate model 

forced by each emissions scenario, it is nearly impossible to fully characterize climate 

change uncertainty with dynamical techniques alone. For this reason we employ 

statistical techniques, which have the advantage of negligible computational costs, in 

conjunction with dynamical downscaling. The basic idea is undertake dynamical 

downscaling for a single GCM and a single emissions scenario (RCP8.5), and then use 

that simulation to diagnose mathematical relationships between the large-scale climate 

change seen in the GCM and the dynamically-downscaled response. These relationships 

then become the foundation of a statistical model that efficiently downscales the other 

GCMs forced by RCP8.5, as well as all the GCMs when they are forced by RCP2.6. 

Combining dynamical and statistical downscaling techniques in this way allows us to 

incorporate the most important dynamical processes shaping regional climate change and 

quantify approximate uncertainties associated with the various global climate projections 

and the two end-member emissions scenarios. 

4 Dynamical Downscaling Methods 

4.1 WRF Modeling Framework  

To perform the dynamical downscaling, we use the Weather Research and Forecasting 

Model (WRF; Skamarock et al., 2008) version 3.2. WRF is a community mesoscale 

model, developed by the National Center for Atmospheric Research (NCAR). It is 

designed for use on regional grids for a range of applications, such as weather forecasts 

and climate simulations. It consists of a fully compressible nonhydrostatic dynamical 
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core with high-order, conserving numerical techniques, and a full suite of physics 

parameterizations. We optimized this regional model for the California region with 

sensitivity experiments using various parameterizations, paying particular attention to the 

model’s ability to simulate low cloud in the marine boundary layer off the California 

coast. Our parameterization choices are the follows: Kain-Fritsch (new Eta) cumulus 

scheme (Kain, 2004); Yonsei University boundary layer scheme (Hong et al., 2006); 

Purdue Lin microphysics scheme (Lin et al., 1983); Rapid Radiative Transfer Model 

longwave radiation (Mlawer et al., 1997); Dudhia shortwave radiation schemes (Dudhia, 

1989). We also use the Noah land surface model (Chen and Dudhia, 2001) to simulate 

land surface processes including vegetation, soil, snowpack and exchange of energy, 

momentum and moisture between the land and atmosphere. 

The domains for the simulations are shown in Fig. 2. To gradually bridge the 

scales of the coarser resolution datasets used to force regional model at its lateral 

boundaries, successively higher resolution domains must be nested within one another. 

Each of the outer domains provides lateral boundary conditions to the domain nested 

within it, until eventually the region of interest is covered at the highest resolution. In the 

configuration used for this study, there are 3 nested domains. The outermost domain 

covers the entire state of California and the adjacent ocean at a horizontal resolution of 18 

km, the middle domain covers roughly the southern half of the state at a horizontal 

resolution of 6 km, while the innermost domain encompasses Los Angeles county and 

surrounding regions at a horizontal resolution of 2 km. In each domain, all variables in 

grid cells closer in the horizontal than five cells from the lateral boundary are relaxed 

towards the corresponding values at the boundaries separating the domains. This 

procedure ensures smooth transitions across these boundaries. Each domain has 43 

sigma-levels in the vertical. To provide a better representation of surface and boundary 

layer processes, the model’s vertical resolution is enhanced near the surface, with 30 

sigma-levels below 3 km. Fig. 3 shows a blow-up of the topography and coastlines for 

the innermost domain at its native 2-km resolution. The main features of both the 

topography and coastlines are represented well at this resolution.  
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Using this model configuration, we performed a “baseline” simulation whose 

purpose is two-fold: (1) to validate the model’s ability to simulate regional climate, and 

(2) to provide a baseline climate state against which a future climate simulation could be 

compared. This simulation is a dynamical downscaling of a publicly-available, coarse-

resolution (32 km) archive of the weather and climate variations over North America 

during the baseline period (1981-2000). The simulation is designed to reconstruct the 

actual regional weather and climate variations that occurred during this time period at 2-

km resolution, and its output can be compared to available observations for model 

validation purposes. The coarse-resolution archive used to force the regional model is the 

National Centers for Environmental Prediction 3-hourly North America Regional 

Reanalysis (NARR) data. This dataset provides lateral boundary conditions at the outer 

boundaries of the outermost domain (shown in Fig. 2). It also provides surface boundary 

conditions over the ocean (i.e., sea surface temperature) in each of the three domains. 

Using the same model configuration, we also performed a second dynamical 

downscaling experiment whose purpose is to simulate a regional climate state during the 

“future” period (2041-2060). The output of this experiment can be compared to the 

baseline simulation to measure simulated regional climate change. As noted in Section 2, 

the goal of this study is to provide information about regional climate change for a time 

slice centered at the middle of the 21st century for the RCP8.5 and RCP2.6 emissions 

scenarios. Accordingly, we downscale future coarser-resolution global climate simulation 

output corresponding to this time period and the RCP8.5 emissions scenario. (We recover 

the RCP2.6 results with statistical downscaling techniques, as discussed in Section 5.2 

below.) The global model we chose is NCAR Community Climate System Model version 

4 (CCSM4, Gent et al., 2011). 

To produce future climate boundary conditions for the regional model, we 

quantified the differences in CCSM4 monthly climatology between the future and 

baseline periods. These differences are the climate change signals of interest that develop 

in the CCSM4 simulation. All variables are included in the calculation of the climate 

change signal (i.e., 3-dimensional atmospheric variables such as temperature, relative 

humidity, zonal and meridional winds, and geopotential height and 2-dimensional surface 
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variables such as temperature, relative humidity, winds and pressure). On a monthly-

varying basis, we add these climate change signals to the NARR reanalysis data 

corresponding to the baseline period. Thus, we perturbed the NARR baseline data with 

climate change signals provided by CCSM4. We used this perturbed NARR data to 

construct the boundary conditions imposed on the outermost domain of the regional 

model. The resulting simulation can then be compared directly with the baseline regional 

simulation to assess the impact of the CCSM4 climate change signals when they are 

downscaled. It should be noted that because we downscaled the climate change signal in 

CCSM4 rather than the raw CCSM4 data, we did not regionalize the hour-to-hour and 

day-to-day variability in CCSM4. Accordingly, we cannot provide any information about 

how climate change may affect higher order statistics of variability such as skewness and 

kurtosis, except insofar as those variability statistics are affected by the internal 

atmospheric dynamics of the regional model.  CO2 levels were also increased in WRF to 

match the changes in CO2-equivalent radiative forcing in the RCP8.5 scenario averaged 

over the future period compared to the baseline.  

For both baseline and future climate simulations, the model output consists of 

snapshots of 2-dimensional variables every 3 hours and 3-dimensional variables every 6 

hours.  

4.2 Validation of Baseline Climate Simulation  

In this section, we validate the regional model’s ability to reproduce climate variations 

within the innermost domain when the available coarse-resolution information about the 

actual history of the atmosphere is imposed on it. This is done by comparing the baseline 

climate simulation output to available point measurements. The network of point 

measurements is shown in Fig. 3. Quality-controlled, hourly, near-surface meteorological 

observations from 24 weather stations were obtained from the National Climatic Data 

Center (NCDC; http://www.ncdc.noaa.gov/oa/ncdc/html). These observations include 

land and ocean buoy locations. Since the focus of this study is the warming component of 

climate change, the validation exercise is limited to comparison of simulated and 

observed temperature variations. Validation of other aspects of the simulation is reserved 

for studies examining their response to climate change.  
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Fig. 4 shows the baseline simulation’s geographical distribution of temperature 

for each phase of the seasonal cycle. The values presented here are climatological 

averages over the entire baseline simulation period (1981-2000). A distinct seasonal cycle 

is simulated, with the coldest temperatures occurring throughout the region during the 

winter and the warmest during the summer. Temperature generally decreases with 

elevation in all seasons, so that mountain areas are easily discernible in all four panels of 

Fig. 4. The most dramatic seasonal temperature fluctuations occur in the southern San 

Joaquin Valley and Mojave Desert, ranging from approximately 45°F during the winter 

to above 80°F during summer, followed by the mountains, which typically have a 

seasonal range of about 25°F. During the summer, the Southern California Bight is cooler 

than the southern San Joaquin Valley and high desert, while the opposite is true in winter. 

Thus, a reversal in the land-sea temperature contrast between summer and winter is 

simulated. This land-sea temperature contrast has important weather and climate 

implications for the region, and is involved in the region’s temperature response to 

climate change, as we will discuss. Moderated by marine air periodically flowing inland, 

inter-seasonal temperature ranges in the coastal regions are relatively small (15°F). As we 

will also discuss below, the moderating influence of the ocean on the temperature of the 

coastal zone also affects the future warming this area experiences.  

The network of available point measurements seen in Fig. 3 is far too sparse to 

adequately characterize spatial patterns such as those seen in Fig. 4. Still, it can be used 

to assess the realism of the spatial patterns of Fig. 4. The point measurements are located 

in a variety of elevations and distances from the coast, and are numerous enough to 

provide a sampling of the range of temperatures seen across the region. However, both 

the length and completeness of the observational temperature record vary by location. All 

observational points have relatively complete records after 1995. Because the baseline 

simulation ends in 2000, we focus on the period between 1995 and 2000 in our 

comparison between observations and model.  

Fig. 5a compares climatological temperature for observational locations and the 

nearest model grid point, providing an assessment of the realism of the spatial and 

seasonal patterns seen in near-surface temperature climatology of Fig. 4. The seasonal 
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cycle of temperature simulated by the model is highly consistent with observations. The 

seasonal shifts in temperature are nearly identical at the observational locations and the 

nearest model grid points. In addition, within each season, the observed climatological 

temperatures are highly correlated with their simulated counterparts across the region. 

This confirms that for each season, the model simulates the spatial variations in 

climatological temperature reasonably well. The model quality is particularly high in 

summer and winter. During the transition seasons, the model and observations are still in 

broad agreement, though the correlation is somewhat lower. In Fig. 5b, we validate the 

model’s ability to simulate temporal variability in temperature at monthly time scales and 

longer, with the seasonal cycle removed. At each observational location, the observed 

near-surface temperature variations are very well-correlated to the corresponding 

simulated variations, often with nearly perfect correlations greater than 0.90.  

Fig. 5 demonstrates that the model gives approximately the right spatial and 

temporal variations in near-surface temperature at specific point locations where 

trustworthy observational data area available. This gives a high degree of confidence that 

the model is also producing the correct temperature variations in the rest of the region, 

where observations are absent. And most importantly for this study, it gives confidence 

that when it comes to near-surface temperature, the model provides a realistic 

downscaling of the regional pattern implicit in the coarser resolution data set. Thus the 

dynamically-downscaled climate change patterns we will present here are very likely a 

true reflection of the regionalized climate signal of the global model.  Of course, we have 

only evaluated the quality of the near-surface temperature fields in the baseline 

simulation, and this is but one aspect of overall model quality.  

4.3 Dynamically-Downscaled Surface Warming Patterns 

In this section, we examine the climatological difference in near-surface air temperature 

between the baseline and future dynamical downscaling simulations. This is the regional 

expression of the CCSM4 RCP8.5 climate change signal, as generated by the WRF 

model.  

The annual mean near-surface warming is illustrated in Fig. 6. The warming 

magnitude generally increases with distance from the coastline. It is about 1.5°F in the 
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Southern California Bight, 2°F in the urban coastal zone, 3°-3.5°F in the desert interior, 

and up to 4°F at the higher elevations of the region’s mountain complexes. A striking 

feature of Fig. 6 is that the warming is somewhat suppressed in the coastal zone 

compared to the other land areas. This is likely due to the same factors that moderate the 

seasonality of temperature in the coastal zone in the baseline climate. These factors 

include, but are not limited to: (1) The land/sea breeze, which brings marine air and its 

characteristics to the coastal zone on a daily basis and (2) The fact that marine air passes 

more easily over this relatively low-elevation zone simply because of the absence of 

topographic barriers. Clearly the ridges of the mountain complexes ringing the coastal 

zone create a formidable barrier to the penetration of marine air masses, as the warming 

becomes larger passing over these ridges to the interior. Aside from topography, land 

surface characteristics could be another key factor influencing the warming. It seems 

likely that the dryness of the desert interior is a large contributor to the warming there, as 

the increased energy input from the anthropogenic forcing is mostly balanced by an 

increase in sensible heat fluxes and hence is associated with a large temperature increase. 

It is plausible that the unique surface thermal properties of urban areas (e.g. heat capacity, 

emissivity, conductivity) could also affect the warming there.  While these properties are 

included in the Noah land surface model, there is little evidence that they result in a  

differentiated urban effect, because the warming in the urbanized coastal zone is so 

similar to that over the coastal ocean. 

The overwhelming impression is that the warming pattern is controlled by three 

factors: (1) the warming over the ocean, essentially inherited from CCSM4, (2) the 

warming over the desert, also inherited from CCSM4 but modulated by the Noah land 

surface model’s calculation of surface energy balance there, and (3) WRF’s simulation of 

local atmospheric dynamics, especially the land/sea breeze and the effect of local 

topography on air masses as they make their way through the region. This final factor 

determines the outcome of the competition between the ocean and desert warming signals 

at every location within the region. There is one additional noteworthy element of the 

warming pattern in the WRF downscaling of CCSM4. The warming pattern at high 

elevations is generally larger. In fact the greatest warming of the entire region is seen at 
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the tops of the San Gabriel and San Bernadino mountain complexes. We discuss the 

origin of this signal below. 

Seasonality of the near-surface warming is shown in Fig. 7. Over the ocean, the 

warming is about 1.5°F all year round. Over land, by contrast, much more warming is 

seen in summer and fall compared to the other two seasons. The spatial distributions of 

warming in summer and fall also resemble another, with a large contrast between land 

and ocean. The main reason the most warming over land is seen in summer is that the 

land surface has dried out at this time of year. Increase in sensible heat fluxes is virtually 

the only way for the land surface to balance the extra energy it receives from the 

atmosphere in conjunction with climate change. Thus surface and surface air temperature 

must increase significantly. This effect increases going away from the coast, as the 

influence of marine air masses and soil moisture both decrease. In the coastal zone, the 

warming is about 2.5°F, increasing to 5°F in the Mojave Desert. This pattern persists 

throughout the fall months. The overall warming over land in the fall may be less than in 

the summer because the land surface occasionally becomes moistened toward the end of 

the fall as storms begin to arrive in the region, and evaporative processes offer additional 

ventilation of the surface. In both summer and fall, the warming is somewhat greater at 

high elevations. This signal arises because in CCSM4, the overall summer and fall 

warming in the entire subtropical atmosphere increases with height (not shown). 

Locations in the Los Angeles region high enough to rise above the main portion of the 

atmospheric boundary layer are affected by this enhanced warming signal.  

The continuing moistening of the land surface as the wet season proceeds further 

reduces the warming contrast between land and ocean in the winter and then spring. 

During these two seasons, a small warming (~2°F) is simulated in the San Joaquin Valley 

and coastal regions with an additional ~0.5°F warming in inland areas. Greater warming 

at high elevations is also seen in winter and spring. This may be partly due to the greater 

warming with height in the global simulations, an effect noted previously. However, it 

may also be due to local snow albedo feedback. At high elevations snow is often found in 

the baseline climate during winter and spring, mainly over the San Gabriel, San 

Bernadino and San Jacinto Mountains. There is less snow in the future climate mainly 
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because of less snowfall and more snow melt (not shown). The decreased snow cover 

leads to more surface absorption of solar radiation, and hence more local warming. The 

strong warming signals over the mountains in spring, when there is more solar radiation 

and snow starts melting, are particularly likely to be linked to local snow albedo 

feedback. The warming at these high-elevation locations is as large as 3.5°F.  

5 Statistical Downscaling Methods 

5.1 Statistical Model Development 

The warming patterns of Figs. 6 and 7 illustrate the necessity of dynamical downscaling 

to obtain information about climate change in the Los Angeles region. Several dynamical 

effects clearly influence the warming pattern, and these are therefore very difficult to 

assess without a dynamical model. They include: (1) the local topographically-modified 

atmospheric circulation, which plays a key role in determining the relative influence of 

marine and desert air masses and their warming characteristics at any particular location, 

(2) the geographical and seasonal variation in surface properties, especially the seasonal 

variation in soil moisture, which plays a large role in the seasonality of warming in the 

desert interior, and (3) the degree to which high-elevation locations rising above the main 

portion of the atmospheric boundary layer are influenced by the enhanced warming with 

height found throughout the subtropical atmosphere in the global model. Ideally we could 

quantify the spread in our prediction of the regional warming signal by dynamically 

downscaling all of the GCMs in the CMIP5 archive. However, this is highly impractical, 

as discussed in Section 1. Instead we use the dynamical downscaling we have done to 

develop a statistical model describing the mathematical relationship between the low-

resolution CCSM4 warming signal and its high-resolution dynamical-downscaled 

counterpart. This relationship can then be used to downscale the other global models, 

approximating the warming pattern that would occur if the other global models were 

downscaled dynamically with WRF.  

Consistent with the discussion in Section 4.3, we identified three principal 

characteristics in the global model simulation that govern the high-resolution spatial 

pattern of the warming in the WRF downscaling of the global model. The first and most 

obvious is the surface warming in those few grid points in the global simulation nearest 
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to the WRF 2-km domain. WRF inherits this overall warming directly from the global 

model. The second characteristic is the surface warming contrast between ocean and 

desert areas. The overall contrast is largely controlled by the global model, but local 

mechanisms described in the above paragraph determine whether a particular location has 

warming that is more “ocean-like” or “desert-like”. For elevations below the main part of 

the atmospheric boundary layer, these first two characteristics are the main factors 

controlling the temperature change. However, for elevations above the main part of the 

atmospheric boundary layer, the temperature change is strongly controlled by the change 

in warming with height in the global model throughout the subtropical atmosphere, a 

third principal global model characteristic. The assumptions of our statistical model 

therefore reflect our belief that the WRF warming is determined by these three 

characteristics of the global model.  

To state these assumptions more explicitly: (1) If a different GCM were 

dynamically downscaled, the regional mean of resulting warming pattern would differ 

from the regional mean of the CCSM4-WRF warming pattern by the difference in the 

regional means of the GCM and CCSM4. (2) The resulting warming pattern would share 

the same distribution of ocean and desert influences as CCSM4-WRF, because the local 

surface and atmospheric dynamics creating that pattern will be very similar, but that 

pattern will be scaled by ratio of the other GCM’s land-sea warming contrast to that of 

CCSM4. (3) At elevations above the main part of the atmospheric boundary layer (greater 

than 1200 m), the warming pattern would reflect the differential warming with height in 

the GCM. Thus our statistical model takes as input the following parameters extracted 

from the GCM warming pattern: the regional mean warming, the land-sea warming 

contrast (i.e., the difference in warming between the inland and ocean regions), and the 

change in the lapse rate at high elevations. The output is a warming pattern whose 

regional average is higher or lower than that of CCSM4-WRF depending on how much 

higher or lower the global model’s regional warming is relative to CCSM4, and whose 

spatial pattern of warming has been “dialed up” or “dialed down” depending on how 

large the GCM’s land-sea warming contrast and lapse rate change are compared to 

CCSM4. A schematic of the statistical model is shown in Fig. 8, and a more detailed 

description of the statistical model is provided in the Appendix.  
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5.2 Regional Surface Warming Patterns associated with other GCMs 

In this section, we apply the statistical model described in the previous section to 

compute regional warming patterns for each GCM under the RCP8.5 emissions scenario. 

To provide some background on the GCMs’ range in the first two critical input 

parameters for the statistical model, Fig. 9 shows a scatterplot of the regional-mean 

warming vs. the land-sea warming contrast in the 18 CMIP5 models. The regional-mean 

warming ranges from about 2°F to 6.5°F—a large intermodel spread. Models differ so 

much in the overall warming for two reasons. First, global climate sensitivity may vary 

across the models. Simulated transient global climate sensitivity is primarily determined 

by how radiatively-active components of the global climate system such as snow, ice, 

cloud and water vapor respond to a changing climate. Second, the rate of oceanic heat 

uptake may play a large role in determining how much transient warming occurs. Models 

used in the previous IPCC assessment reports exhibit a large intermodel spread in all 

these processes, creating a spread in transient global climate sensitivity (Bony et al., 

2006, Boé et al., 2009, Winton et al., 2010). We expect the CMIP5 models to behave 

similarly. At the regional scale, GCMs may also differ in the way the large-scale 

atmospheric and oceanic circulation distributes the warming throughout the globe. This 

could cause a difference between two GCMs in the overall warming in the Los Angeles 

region, even if the two GCMs have the same global-mean warming.  

In the vicinity of the Los Angeles region, warming over land is greater than 

warming over ocean in all models (Fig. 9). The land-sea contrast in mid-latitude warming 

is a feature of anthropogenic climate change that is well-known and well-understood. The 

smaller warming over ocean is generally attributed to the consistent availability of water 

for evaporative damping of surface temperature, and the very large effective heat 

capacity of seawater. Over land, by contrast, the effective heat capacity is relatively 

small. Also, when the soil is unsaturated, the surface temperature response to 

anthropogenic forcing must become large enough to generate enough sensible heat flux to 

balance the additional forcing. This is what leads to the well-established mid-latitude 

summertime drying and warming signal in GCMs (e.g., Manabe et al., 1981, Sutton et al., 

2007). Climate feedbacks over either land or ocean may also enhance or attenuate this 
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contrast, depending on the model. For example, summertime warming over mid-latitude 

land areas is largely controlled by snow albedo feedback, whose strength varies 

significantly across GCMs (Hall et al., 2008). Warming over the subtropical North 

Pacific, by contrast, is likely affected by large intermodel variations in low cloud 

feedback (Bony et al., 2006), and their footprint in this zone. Together, these factors lead 

to a large intermodel spread in the land-sea warming contrast of about 1°F to 3.5°F. 

The dots in Fig. 9 are also color-coded by the value of the third parameter—the 

annual-mean change in the lapse rate over the North Pacific adjacent to the California 

coast. These values vary from almost no lapse rate change to a greater warming at 

elevations corresponding to the top of the highest mountains in the region of more than 

1°F (compared to the top of the atmospheric boundary layer). The large-scale lapse rate 

generally decreases because subtropical air parcels above the boundary layer mostly 

originate as air parcels detrained from tops of tropical convective towers, much higher in 

the atmosphere. Because of the decrease of the moist adiabatic lapse rate with 

temperature within the tropical convective towers, anthropogenic warming at these 

altitudes is larger than at lower altitudes. Due to their mostly tropical origin, subtropical 

air parcels above the boundary layer retain this signature of enhanced tropical warming 

aloft. (See Held and Soden (2000) for more details on this process.) Thus the spread in 

this parameter may be related to intermodel variations in the typical height changes of 

tropical convective towers or other aspects of the large-scale tropical circulation. 

The ensemble-mean of the overall regional warming and the land-sea warming 

contrast over the 18 GCMs is also shown in Fig. 9. Clearly, the ensemble-mean values do 

not correspond to those of any particular model. Thus no single GCM is representative of 

the important processes shaping climate change in the Los Angeles region, and all are 

necessary to map out the uncertainty space implicit in the GCM ensemble. CCSM4 lies in 

the top-left corner of the distribution, with relatively small regional-mean warming, but a 

large land-sea warming contrast. Clearly it would be very misleading to base conclusions 

about climate change in the Los Angeles region exclusively on the dynamically-

downscaled CCSM4 results.  

Fig. 10 shows the regional-mean warming, land-sea warming contrast and lapse 
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rate change for the four seasons. In the ensemble-mean, the regional-mean warming (Fig. 

10a) is greater in summer and fall (~4.5°F) than winter and spring (~3.5°F). The 

ensemble-mean land-sea warming contrast is greatest in summer (~2.5°F), smallest in 

winter (1°F), and in between in spring and fall (Fig. 10b). Large summertime warming 

over land in most GCMs is the likely reason both the overall warming and land-sea 

warming contrast are greatest in summertime. The lapse rate change (Fig. 10c) is positive 

in nearly all models and all seasons, indicating greater warming in the free troposphere 

than in the main part of the atmospheric boundary layer of about 0.5°F. The regional-

mean warming for each season exhibits a three-to-four-fold intermodel spread, similar to 

the spread in the annual-mean warming seen in Fig. 9. The land-sea warming contrast 

likewise exhibits a significant intermodel spread. Finally, the lapse rate change also 

varies significantly from model to model, and from season to season. Again, CCSM4 is 

not generally in the center of the distributions of any of the parameters for any of the 

seasons.  

Using the three parameters from each of the GCMs as input to the statistical 

model, we derive seasonal surface warming patterns for each GCM over the Los Angeles 

region. Fig. 11 shows the resulting annual-mean surface warming patterns (i.e. when 

these seasonal patterns are averaged over the whole year). A general warming is seen 

throughout the region and in every model, and the warming is generally largest in the 

inland desert area, while smallest over the ocean, consistent with information shown in 

Figs. 9 and 10. However, the magnitude of the warming at a particular location differs 

significantly from model to model. The largest intermodel differences are seen in the 

Mojave Desert, where the warming ranges from 3°F to 6°F. The coastal region also 

exhibits a comparable intermodel variation in surface warming, ranging from 2°F to 5°F. 

The smallest differences are seen over the Southern California Bight. These variations are 

the regional expressions of the intermodel differences in the regional-mean warming and 

the land-sea warming contrast seen in Figs. 9 and 10.  
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6 Mean Surface Warming 

6.1 Annual-mean Warming Pattern 

The annual-mean warming averaged over all 18 downscaled regional patterns (ensemble 

mean) for the RCP8.5 scenario is shown in Fig. 12b.We deem the ensemble-mean 

quantity to be the most likely value for the warming in the region, as discussed in Section 

2. Figs. 12a and c provide upper and lower bounds of this warming. These bounds 

correspond to an approximate 95% confidence interval, calculated statistically based on 

the range of responses associated with the GCMs. The ensemble-mean warming shows 

that warmer temperatures are expected across the entire region, with a regionally-

averaged warming of about 4.3°F, including both land and ocean points. The least 

amount of warming (~3.5°-4°F) is seen over the ocean, while slightly larger warming 

(~4°-4.5°F) occurs across the urban coastal zone, and the greatest warming (~4.5°-5°F) is 

found throughout the interior and desert zones. The ensemble-mean temperature changes 

across the entire region are greater than the corresponding annual-mean changes 

projected in the WRF dynamical downscaling simulation (shown in Fig. 6), while the 

ensemble-mean has a weaker land-sea warming contrast. These results are consistent with 

the relationship between the large-scale climate parameters of CCSM4 and those of the 

other models illustrated in Fig. 9.  

Averaged over the region, the uncertainty in the annual-mean warming (i.e., the 

difference between the upper and lower bounds shown in Figs. 12a and c) is substantial—

5.6°F. It is possible, though not likely, that relatively mild warming of about 1.5°F on a 

regionally-averaged basis would occur, and it is equally possible, though again, not 

likely, that a rather severe regional warming of nearly 7°F would materialize.  

6.2 Seasonality of the Warming Pattern 

The seasonality of the ensemble-mean warming for the RCP8.5 scenario is shown in Fig. 

13. The patterns in this figure, and the reasons for them, are similar to those of the WRF-

CCSM4 dynamically-downscaled warming seen in Fig. 7, with two notable exceptions. 

First, the warming is generally larger in all seasons. Second, whereas the warming over 

the ocean is similar in all seasons in the WRF-CCSM4 simulation, the ensemble-mean 

oceanic warming exhibits a pronounced maximum in fall, being approximately 1.5ºF 
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greater than in the other seasons. This oceanic seasonal warming pattern is a feature 

inherited from the GCMs. Despite the greater warming over the ocean in fall, the 

ensemble-mean warming over land is somewhat larger in summer compared to fall 

because of the mechanisms enhancing summertime warming over land discussed in 

Section 4.2. As with the WRF-CCSM4 seasonal warming pattern, a striking feature of the 

ensemble-mean seasonal warming pattern is the land-sea warming contrast in 

summertime in the coastal zone. It is significant that during this warmest season of the 

year, the warming is largest in the areas where temperatures are already greatest in the 

baseline climate. As we will discuss in Section 7, this has important consequences for 

increases in the frequency of extremely hot days. Enhanced warming at high elevations is 

apparent during summer and fall, and to a lesser degree, during spring. 

The span of the 95% confidence interval for each season is shown in Fig. 14. This 

is a measure of the inter-model spread in the warming and the model-based uncertainty. 

Though substantial uncertainty is seen in all seasons, it is particularly large in fall 

(roughly 3°F to 3.5ºF). This may be understood by referring to the large-scale controls on 

warming in the GCMs (Fig. 10). Examining Fig. 10b, the spread of land-sea warming 

contrast is larger in fall, ranging from almost no warming contrast, to one of nearly 3.5ºF. 

When the statistical model regionalizes these wide variations, it likewise produces a 

variety of local warming predictions. The GCMs may exhibit such a large spread in the 

land-sea warming contrast because of fall’s position as a transition season between winter 

and summer. Very large land-sea warming contrast is consistently seen in all GCMs in 

summer, and very little is consistently seen in winter, largely because of the dryness of 

the land surface in summer and its wetness in winter, as discussed in Section 4.3. Some 

GCMs exhibit a land-sea warming contrast in fall that is summer-like, while others 

exhibit one that is winter-like, depending on how each GCM simulates the seasonal 

increase in soil moisture going from summer to winter.  

The uncertainty interval may be smallest in summertime partly because of the 

consistently large land-sea warming contrast seen in the GCMs (Fig. 10b) and also 

because the inter-model spread in the overall regional warming is relatively small during 

this season (Fig. 10a). 
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6.3 Local Warming  

In this section, we briefly discuss the implications of the RCP8.5 annual-mean warming 

pattern and its uncertainty (Fig. 12, panels a, b, and c) for various locations within the 

region. Fig. 15 shows the annual-mean, ensemble-mean warming values and their 

uncertainty intervals for locations in the city of Los Angeles, Los Angeles County, and 

the Los Angeles region (red dots and associated bars). The values are also reported in 

Table 2. The locations are shown on maps in Fig. 16. 

For most districts within the city of Los Angeles (Fig. 15a), the ensemble-mean 

warming is similar, around 4ºF, though the locations within the San Fernando Valley 

show slightly greater warming. Apparently, even the presence of the relatively low Santa 

Monica Mountains gives these locations a slightly more inland-like warming. The cities 

within Los Angeles County (Fig. 15b) are far enough apart that their warming begins to 

show the influence of the land-sea warming contrast seen in Fig. 12b to a greater degree. 

Within the coastal zone, the warming is very similar to that of the city of Los Angeles. 

However, for cities separated from the coast by a topographic barrier (Santa Clarita, 

Lancaster, and Palmdale), the warming is nearly 1ºF larger. For locations within the 

region outside of Los Angeles County (Fig. 15c), a similar pattern is seen. If the location 

is separated from the coast by a topographic barrier, its expected warming is larger. 

Desert and high elevation locations (Palm Springs, Wrightwood, and Big Bear Lake) 

show particularly large warming of 5ºF to 5.5ºF. Note that the variations in warming 

from location to location seen in Fig. 15 are somewhat enhanced in summertime (not 

shown), consistent with the larger land-sea warming contrast in this season (Fig. 13). The 

uncertainty ranges in Fig. 15—roughly ±2.5ºF to ±3ºF—are similar at all locations within 

the region. 

7 Changes in Extreme Heat  

So far we have quantified changes in the time-mean surface air temperature in the Los 

Angeles region. Next we explore the implications of these changes for extremely hot 

days. We define extremely hot days in two ways, one based the changes in the number of 

days with daily maximum temperatures exceeding a fixed threshold of 95°F, and another 

based on the number of days exceeding a geographically-varying threshold. This 
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geographically-varying threshold is based on the typical local temporal variation in 

temperature. The daily maximum surface air temperature is calculated as a combination 

of the model's skin temperature and 2-meter air temperature at 4pm local time, i.e., two-

thirds of skin temperature values plus one-third of 2-meter air temperature values. The 

time 4pm is assumed as the time at which the daily maximum temperature is reached 

albeit not always true in observations. It is chosen because of the model's output 

frequency. This metrics to define the maximum temperature has been validated in 

comparison with the measurements in 21 observational sites in the Los Angeles region. 

And it has been demonstrated a very good proxy of the observed daily maximum surface 

air temperature.  

Fig. 17 provides an illustration of how this calculation was done. The blue curves 

show the Probability Density Function (PDF) of daily maximum temperature in the 

baseline climate for all four seasons. Two representative sub-regions are chosen and 

analyzed separately, the coastal zone and land interior, for a total of eight cases. It is also 

possible to calculate temperature PDFs for the WRF-CCSM4 simulation in the future 

climate period. This involves a shift of the entire distribution to the right, since the 

climate warms (not shown). We find that the magnitude of the shift is almost identical to 

the mean warming, though there is also a slight change in the distribution’s shape. It is 

not possible to directly calculate a maximum daily temperature PDF for the future 

regional climate states associated with the other GCMs. These models were not 

downscaled dynamically, and so the required temporal resolution is not available. Instead 

we use an indirect method. We assume that the maximum daily temperature PDF changes 

in the same way as in the WRF-CCSM4 simulation, except that the shift to the right from 

the baseline climate is given by the statistically-downscaled warming associated with the 

particular GCM in question. This gives a family of new PDFs associated with every 

GCM. The average of these PDFs corresponds to the ensemble-mean future PDF, and 

uncertainty can be inferred from the spread in the PDFs. The red curves in Fig. 17 show 

the ensemble-mean PDFs of daily maximum temperature for the future climate period for 

the same eight cases noted above. The grey-shaded area provides a measure of the 

intermodel spread.  
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Using this method, we produce daily-maximum temperature PDFs of the baseline 

climate at every grid point, and the corresponding PDFs for the future regional climate 

state associated with every GCM. We then use this information to calculate how 

frequently a temperature threshold is breached every year in current and future climate 

cases. As noted above, we focus on two ways of defining this temperature threshold. In 

the first way, we choose a fixed value of 95°F as the temperature threshold beyond which 

the daily maximum is considered extreme. Fig. 18 shows the number of days per year this 

threshold is exceeded in the baseline climate at the various locations in the city of Los 

Angeles, Los Angeles County, and the Los Angeles region (green dots). Also shown is 

the projected future number of days this threshold is breached for the RCP8.5 scenario 

(red dots correspond to the ensemble-mean and associated bars represent uncertainty). 

This information is also presented in Table 3.  

By this definition, the number of extremely hot days per year increases 

dramatically at many locations. The effect is especially pronounced inland, at locations 

separated from the coast by at least one mountain complex. Examining some dramatic 

cases: the number of extremely hot days per year is projected to increase from 54 to 

97±28 in San Fernando, from 55 to 96±24 in Lancaster, from 58 to 103±27 in Riverside, 

and from 135 to 160±17 in Palm Springs. In the baseline climate, these inland cities 

experience many days whose maximum temperatures are close enough to 95°F that they 

are pushed over this threshold when warming occurs. In contrast, it is rare for coastal 

cities like Venice, Santa Monica, Torrance, and Oxnard to have summertime highs close 

to 95°F, so the same increase in mean temperature results in a relatively small increase in 

days per year with maximum temperatures above 95°F. This contrast in behavior between 

coastal and inland locations is further exaggerated by the fact that the warming itself is 

larger in the inland locations, especially in summer (see Fig. 13d).  

Choosing an absolute threshold to define heat extremes may have limited utility, 

since locations with many extremely hot days in the baseline climate may already be 

adapted to extremely hot weather. Therefore we also include an analysis where the 

threshold defining an extremely hot day varies geographically, according to the typical 

temperature variations seen in the baseline climate at the location in question. We choose 
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the 98th percentile of the daily maximum temperature PDF as the threshold. In other 

words, at any particular location, the threshold is defined so that roughly the seven hottest 

days per year will exceed it in the baseline climate. The values for this threshold at the 

various locations are shown in the first column of Table 4. Then we calculate how many 

days per year exceed this threshold in the future. Fig. 19 and the accompanying Table 4 

show the results of this exercise. As in Fig. 18, the green dots show the number of days 

the threshold is exceeded in the baseline climate. (By design, this number is the same at 

all locations, roughly seven, as noted above.) Examining the results corresponding to the 

RCP8.5 scenario (red dots and associated bars), the most likely change in the number of 

extremely hot days ranges from a doubling or tripling near the coast to a quintupling or 

sextupling at inland locations. Thus even after taking into account the fact that the 

baseline climate is cooler near the coast, the coastal locations still experience smaller 

increases in extremely hot days. Even within the relatively small area corresponding to 

the City of Los Angeles, the effect is apparent. Near the coast and south of the Santa 

Monica Mountains, the number of extremely hot days approximately triples, while in the 

San Fernando Valley, roughly four times as many extremely hot days are seen. The effect 

is even more dramatic when locations within the county and the region are considered. 

Thus the summertime land-sea warming contrast seen in Fig. 13d has a significant impact 

on the geographical distribution of heat extremes in the future climate, no matter how 

they are defined. 

8 Sensitivity to Choice of Emissions Scenario 

As discussed in Section 2, the evolution of globally-averaged surface air temperature 

over the 21st century is dependent not only of the choice of GCM, but also on the 

emissions scenario (Fig. 1c). In this section, we compare the warming outcomes when the 

GCM results of the RCP2.6 emissions scenario are regionalized to those associated with 

the RCP8.5 scenario. We regionalize the GCM responses to the RCP2.6 scenario, 

including that of CCSM4, using the same statistical model discussed in Section 5.1 and 

the Appendix.  

Fig. 12e shows the resulting ensemble-mean warming pattern associated with the 

RCP2.6 scenario. The lower and upper bounds of the warming, based on a 95% 
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confidence interval, are also shown in Figs. 12d and f for the sake of completeness. We 

find that the expected warming under RCP2.6 has a similar pattern to that of RCP8.5, and 

is about 70% as large on a regionally-averaged basis (land only). The same information 

from a different vantage point is seen in Fig. 15, which provides the local perspective 

under the RCP2.6 scenario (yellow dots). At individual locations, the warming under 

RCP2.6 is also about 70% as large as that under RCP8.5. This figure also highlights the 

substantial overlap in warming outcomes between the two scenarios, as measured by the 

model uncertainty in expected warming. All these conclusions are roughly consistent 

with the global warming outcomes of the two scenarios (Fig. 1c). We also examine the 

change in extremely hot days under the RCP2.6 in Figs. 18 and 19 at various locations. 

For those locations showing a substantial increase in extremely hot days under RCP8.5, 

there is a noticeable increase under RCP2.6, though it is typically about half to two-thirds 

as large. As with the expected warming projections, the model uncertainty estimates of 

heat extremes for the two scenarios overlap to a large degree. 

While near-term reductions in greenhouse gas emissions will likely mitigate 

anthropogenic warming in the Los Angeles region somewhat, the warming outcomes 

associated with the two scenarios seem more similar than different. The majority of the 

warming seen in the more aggressive emissions scenario would still occur by mid-century 

at all locations under RCP2.6, and heat extremes at inland locations would still increase 

noticeably. Therefore adaptation to a changing climate in the region is likely to be 

inevitable. 

9 Summary and Discussion 

Using a combination of dynamical and statistical downscaling techniques, we projected 

mid-21st century warming in the Los Angeles region at 2-km (1.2-mile) resolution.  

Computationally-intensive dynamical techniques were used to downscale a climate 

change simulation done with a single global climate model (CCSM4).  Then a statistical 

model was developed to reproduce the downscaled temperature response of the 

dynamical model, given information from the global model.  The statistical model was 

then used to downscale other global climate simulations.   
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 To account for uncertainty associated with the trajectory of future greenhouse 

gas emissions and other factors affecting the planet's energy balance, we examined 

projections for both "business-as-usual" (RCP8.5) and "mitigation" (RCP2.6) emissions 

scenarios of the Fifth Coupled Model Intercomparison Project (CMIP5).  Under the 

business-as-usual scenario, greenhouse gas emissions continue to increase at comparable 

rates to those of the past decade, while under the mitigation scenario, emissions begin to 

decline over the next few decades, consistent with a global effort to control emissions in 

the near future.  We view these two scenarios as estimates of the maximum and minimum 

greenhouse gas emissions over the coming century.  To account for uncertainty 

associated with choice of global climate model, we downscaled results for all available 

global models in the CMIP5 archive.   This amounts to roughly 20 climate models. 

 For the business-as-usual scenario, we find that by the mid-21st century, the 

most likely warming is roughly 4.6°F averaged over the region's land areas. High 

elevations and inland areas separated from the coast by at least one mountain complex 

warm 20 to 50% more than the areas near the coast or within the Los Angeles basin.  The 

differential warming is especially apparent in summertime. The summertime warming 

contrast between the inland and coastal zones has a large effect on the most likely 

expected number of extremely hot days per year.  Coastal locations and areas within the 

Los Angeles basin see roughly two to three times the number of extremely hot days, 

while high elevations and inland areas typically experience approximately three to five 

times the number of extremely hot days. In the mitigation scenario, the most likely 

warming and increase in heat extremes are somewhat smaller. However, the majority of 

the warming seen in the business-as-usual scenario still occurs at all locations in the most 

likely warming under the mitigation scenario, and heat extremes still increase 

significantly.  Because it is very unlikely that humans will emit less greenhouse gases 

than in the mitigation scenario, adaptation to a changing climate over the next few 

decades is probably inevitable in the Los Angeles region.    

 We wish to emphasize that the main conclusions reported here for each 

emission scenario are subject to large spatially-varying uncertainties due to the variety of 

warming responses seen in the current generation of global climate models and the 
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regionalization of those responses.  For example, for a 95% confidence interval, the 

annual-mean warming at downtown Los Angeles under the business-as-usual scenario at 

mid-century ranges from 1.3 to 6.5°F.   In other words, we believe there is a 19 out of 20 

chance that the actual warming under business-as-usual would fall in this range. The 

uncertainty ranges are comparable for all other locations within the region, though they 

tend to increase going inland.  The uncertainty in the average warming leads to a 

correspondingly large uncertainty in the changes in the number of extremely hot days.  

To take the example of downtown LA again, we project with 95% confidence that the 

number of days with a maximum temperature above 95°F will rise to between 10 and 48 

days per year under business-as-usual (from a value in the baseline climate of about 5.6 

days per year).  These uncertainty ranges underscore the fact that the warming that 

actually materializes in the Los Angeles region by mid-century could be significantly less 

or more severe than the most likely outcomes reported here. 

 Since the mitigation and business-as-usual emission scenarios are extreme 

cases, the smallest possible warming under the mitigation scenario and the greatest 

possible warming under business-as-usual provide reliable estimates of the entire range 

of climate possibilities at any location, given current knowledge.  To take again the 

example of downtown Los Angeles, the lower bound of the annual-mean warming under 

RCP2.6 is 0.6°F, while the upper bound under RCP8.5 is 6.5°F.  Therefore, we anticipate 

with high confidence that the actual warming in downtown Los Angeles will be 

somewhere in this range, no matter what greenhouse gas emissions scenario unfolds 

between now and mid-century. Using this same simple method and the data provided in 

Tables 2,3, and 4, similar conclusions can be drawn for other locations. 

 Finally, we note that the baseline climate period against which the future 

climate state is compared to compute a climate change signal is not precisely the present-

day at the time of publication of this study (2012).  To the degree that the climate in the 

region has already changed since the baseline period due to anthropogenic forcing, the 

warming that materializes between 2012 and mid-century may be less than projected 

here.   However, our choice of baseline period may still be most appropriate for policy 
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planning, since local infrastructure reflects an adaptation to environmental conditions at 

the time of construction, not the present.   
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Appendix 

 

Here we provide a detailed description of the statistical model used for downscaling 

warming in the various GCMs.  

As noted in Section 5.1, our statistical model requires three input parameters from 

the GCMs: (1) The overall regional warming, (2) the land-sea warming contrast, and (3) 

the lapse rate change. To calculate the land-sea warming contrast we need to sample the 

warming in each GCM over both inland and ocean regions. It is not obvious how to do 

this because each GCM has different resolution and thus different topography. Most 

GCMs do not have a representation of the mountain complexes that clearly separate the 

coastal regions from the desert. There is simply a gradual slope from the ocean up to the 

Sierra range. So to calculate , the GCM-predicted warming over the inland area 

near the Los Angeles region, we average the warming over an inland region (116°W-

119°W, 37°N-41°N), that is as close as possible to the coast, while still representing an 

inland location regardless of which GCM is used. There are similar problems with 

selecting an ocean region. The grid boxes for the GCMs are larger than the typical 

horizontal length scales of the coastal topography. Thus depending on the exact location 

and size of the coastal grid boxes in each GCM, each box may be representing a different 

mix of ocean, low-lying coastal land, and mountains. Thus we calculate , the 

GCM-predicted warming over the ocean off the coast of the Los Angeles region, by 

averaging the warming over an ocean region (118°W-120°W, 32°N-34°N), which 

accurately represents the coastal ocean in each GCM. The land-sea warming contrast is 

the difference between the average warming over the desert region minus the average 

warming over the ocean region, .  

 To compute the overall regional warming, we use the average of the desert and 

ocean regions, . This is a more robust way to measure the 

overall warming than just taking the value of the warming at the GCM grid point(s) 

covering our domain. As mentioned above, the coastal zone is not well represented in 

GCMs because it is narrow compared to the width of a GCM grid box. So averaging the 
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warming over a grid box encompassing a coastal area is sensitive to how much ocean or 

land area it covers, which is dependent on GCM resolution and the location of the GCM 

grid box. Instead, we use the average of the warming over the inland and ocean regions, 

as specified above. With this approach, we are certain what surface type the GCMs 

represent in each of these two regions. Since our domain is approximately half ocean or 

low-lying coastal points and half desert or high-elevation points, the degree of marine or 

inland influence on the regional-mean temperature will be approximately correct.  

 To calculate the lapse rate change, we compute the GCM warming at each height 

over the region 116°W-126°W, 28°N-38°N. The output from the CMIP5 GCMs is 

archived at course vertical resolution. Most models have output at pressure levels 1000, 

925, 850, 700, 600 hPa. Because of the coarse resolution, we must interpolate between 

the levels to calculate !,-.! . 

 Now that we have discussed how to extract the regional-mean warming, the land-

sea warming contrast, and the lapse rate change from a GCM, we give a detailed 

mathematical description of how the statistical model digests these numbers to estimate 

the high-resolution warming pattern. The statistically predicted warming pattern is the 

sum of the regional mean warming, the coastal-inland contrast, and a high elevation 

correction (shown in Figure 8). Mathematically, 

, (*) 

where  

/001 

is the high elevation correction applied only to locations where z > z0. ! and " are 

constants that are fit using linear regression to minimize error between the statistical and 

dynamical patterns. The term ! represents the discrepancy of the dynamically 

downscaled regional mean compared to the regional mean estimated from the GCM. " is 

a scaling factor that dictates the size of the coastal-inland pattern. Using our dynamically 
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downscaled output, we compute that ! ranges between -0.10°C (summer) and 0.15°C 

(fall).In contrast, " varies little by season, ranging from 0.26 (winter) to 0.39 (spring). 

 We apply the high elevation correction, dThi-elev(z), for locations with elevation 

above z0 = 1200m. Below z0, the warming sampled from the GCMs is strongly linked to 

the land-sea contrast. Thus the regional mean and the land-sea contrast are sufficient to 

calculate the warming at lower elevations. Above z0, the land-sea contrast is less 

representative of the warming signal. The second term in (*) assumes a constant 

relationship between the lapse rate change at high elevations and the land-sea contrast, 

given by CCSM4. However, by comparing different models we see that some GCMs can 

have the same land-sea contrast as CCSM4, but different lapse rate warming at high 

elevations. So, we remove the warming at high elevations due to term two, and add in the 

warming at high elevations from the GCM, yielding (**). 

 We apply this statistical model to 18 CMIP5 GCMs to obtain an approximation of 

the warming pattern that would result if these GCMs were dynamically downscaled using 

WRF. Note that each season was treated independently, so the whole process was 

repeated four times. This ensures we reconstruct the seasonality of the warming signals, 

such as those seen in Fig. 7. We undertook additional dynamical downscaling 

experiments to confirm that the statistical model produces accurate results. For example, 

we dynamically downscaled year-long future climate time slices for the GFDL-CM3, 

MIROC-ESM-CHEM, and CNRM-CM5 global models and compared the warming 

patterns to those projected by the statistical model. On average, we found that the 

statistical model errors at any particular location in any particular model and season were 

less than 10%, demonstrating that the statistical model we constructed can reproduce the 

dynamically-downscaled patterns with a high degree of accuracy. 
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Fig. 1: (a) Total radiative forcing (anthropogenic plus natural) and (b) Carbon dioxide 
(CO2) equivalent concentrations for approximately the past century and four 
Representative Concentration Pathways: RCP8.5, RCP6, RCP4.5 and RCP2.6 (also 
called RCP3-PD); (c) Global-mean surface air temperature departures from 1981-2000 
mean as simulated in all AR5 GCMs used in this study for the historical forcing (black), 
and RCP8.5 (red) and RCP2.6 (blue). Grey shaded regions denote the baseline (1981-
2000) and future (2041-2060) periods used in this study. 
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Fig. 2: WRF simulation domains at 18, 6 and 2km resolution (from the outermost to 
innermost grid). Elevation (unit: feet) is also shown in color, but at the resolution of the 
outermost domain. The innermost domain (2km resolution) is used in this study, where 
Los Angeles County is outlined. Coarse-resolution atmospheric forcings are applied to 
the boundary of the outermost domain. The baseline period (1981-2000) is forced using 
NARR data, while the future (2041-2060) period is forced using NARR data perturbed by 
the CCSM4 RCP8.5 scenario run. 
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Fig. 3: Topography of the innermost domain, shown in color at the domain’s 2km 
resolution. The border of Los Angeles County is also shown. Black dots represent point 
measurement sites from which observations are used to validate our dynamically 
downscaled baseline climate simulation. 
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Fig. 4: WRF dynamically-downscaled seasonal-mean average surface air temperature 
(unit: °F) for the baseline period (1981-2000).  



! %$!

 

 

Fig. 5: (a) Validation of spatial variability of surface air temperature in WRF. This panel 
shows a comparison of the average seasonal-mean temperature observed at a point 
measurement site to the seasonal temperature simulated at the nearest grid point in the 
WRF domain for twenty-four point measurement sites. Points are color-coded by season. 
Observed temperatures are highly-correlated with simulated temperatures in each season. 
(b) Validation of temporal variability of surface air temperature in WRF. This panel 
shows correlation coefficients between observed monthly-mean temperature and 
simulated monthly-mean temperature for each of the twenty-four point measurement sites 
and the nearest model grid point. A climatological seasonal cycle was removed prior to 
calculation of a correlation. High correlation coefficients indicate that intermonthly and 
interannual variability in temperature is simulated realistically by the WRF framework.  
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Fig. 6: WRF-CCSM4 dynamically downscaled annual mean surface air temperature 
change (future minus baseline), unit: °F. Note the contrast between inland and coastal 
warming, and stronger warming at higher elevations. 
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Fig. 7: WRF-CCSM4 dynamically downscaled seasonal-mean surface air temperature 
change (future minus baseline), unit: °F. Note the strongest warming in the summer 
months (JJA) over the desert interior, and also pronounced warming in the fall months 
(SON).  
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Fig. 8: Diagram of the statistical downscaling model methodology. The statistical 
downscaling model has three parameters: the domain-averaged warming, the warming 
contrast between desert and coastal and high elevation correction. The diagram illustrates 
how the spatial patterns corresponding to the three parameters are combined to produce 
the final statistically-downscaled projection for each model. Details of the statistical 
model are presented in the Appendix.  
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Fig. 9: Scatter plot of the annual mean variations of the two parameters used in our 
statistical downscaling model for each GCM: annual mean regional-mean warming vs. 
annual-mean land-sea warming contrast, color-coded by the value of the third parameter: 
the annual-mean change in the lapse rate over the North Pacific adjacent to the California 
coast. The square represents the average parameters for the entire ensemble (ensemble 
mean). The lapse rate change is defined as the warming at the altitudes corresponding to 
the highest elevations compared to the warming at the top of the main part of the 
atmospheric boundary layer. Further information about the definition of these parameters 
is given in the Appendix.  
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Fig. 10: Seasonal variations of the three parameters used in our statistical downscaling 
model for each GCM: (a) Regional-mean warming; (b) Land-sea warming contrast and 
(c) Lapse rate change, unit: °F. The green point represents the parameters for CCSM4, 
while the red point represents the ensemble mean. The lapse rate change is defined as the 
warming at the altitudes corresponding to the highest elevations compared to the 
warming at the top of the main part of the atmospheric boundary layer. Further 
information about the definition of these parameters is given in the Appendix. 
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Fig. 11: Statistically downscaled results of annual mean surface air temperature change 
(future minus baseline) for each CMIP5 GCM, unit: °F. 
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Fig. 12: The ensemble-mean, annual-mean surface air temperature change (future minus 
baseline), and its uncertainty, unit: °F. Results from the RCP8.5 emissions scenario are 
show in the left panels, while those from the RCP2.6 emissions scenario are shown in the 
right panels. Panels (b) and (e) (the middle row) show the ensemble-mean, annual-mean 
surface air temperature change (future minus baseline) of all GCMs for the two emissions 
scenarios. The top row shows the lower bound of the 95% confidence interval of annual-
mean surface air temperature change for all GCMS for RCP8.5 (a) and RCP2.6 (d), while 
the bottom row shows the upper bound of the 95% confidence interval of annual-mean 
surface air temperature change for all GCMS for RCP8.5 (c) and RCP2.6 (f).  

RCP 8.5
(a)

lo
w

er
 b

ou
nd

 

 

120 119 118 117

33

34

35

36

(b)

en
se

m
bl

e 
m

ea
n

 

 

120 119 118 117

33

34

35

36

(c)

up
pe

r b
ou

nd

 

 

120 119 118 117

33

34

35

36

0 1 2 3 4 5 6 70 1 2 3 4 5 6 70 1 2 3 4 5 6 70 1 2 3 4 5 6 70 1 2 3 4 5 6 70 1 2 3 4 5 6 7

RCP 2.6
(d)

 

 

120 119 118 117

33

34

35

36

(e)

 

 

120 119 118 117

33

34

35

36

(f)

 

 

120 119 118 117

33

34

35

36



! &"!

 

 

Fig. 13: Ensemble-mean seasonal-mean surface air temperature change (future minus 
baseline) for the RCP8.5 emissions scenario (unit: °F).  
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Fig. 14: The 95% confidence interval of the seasonal-mean surface air temperature 
change (future minus baseline, unit: °F) for the RCP8.5 emissions scenario. Uncertainty 
is generally largest in the fall and smallest in summer. 
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Fig. 15: The ensemble-mean annual-mean surface air temperature change (future minus 
baseline), and its uncertainty, for various locations. Results from both RCP8.5 (red) and 
RCP2.6 (yellow) emissions scenarios are shown. Panel (a) shows districts within the city 
of Los Angeles, panel (b) shows cities within Los Angeles County other than Los 
Angeles, while panel (c) shows cities within our study domain but outside of Los Angeles 
County. Dots represent the ensemble-mean, and whiskers represent the 95% confidence 
interval for the prediction, based on the spread seen in the regionalization of every 
available GCM. To aid the reader, a horizontal line corresponding to 4°F has been drawn 
on each panel.  
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Fig. 16: Maps of locations in (a) the city of Los Angeles, (b) Los Angeles County, and (c) 
the Los Angeles region.  
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Fig. 17: Probability density functions (PDFs) of daily maximum surface air temperature 
averaged over coastal regions (upper) and inland regions (bottom) for each season, x-axis 
unit: °F. The coastal and inland regions are separated approximately by the summits of 
the main mountain complexes of Southern California. Temperatures are first area-
averaged and then PDFs are calculated. The blue line represents the WRF dynamically 
downscaled baseline simulation (1981-2000). The red line represents the ensemble-mean 
shift in the distribution of surface air temperature in the future period (2041-2060) under 
the RCP8.5 emissions scenario. The associated 95% confidence intervals are shaded in 
gray. 
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Fig. 18: The ensemble-mean annual-mean expected number of extremely hot days in the 
future period and its uncertainty, for various locations. The number of extremely hot days 
in the baseline period is shown with a green dot. An extremely hot day is defined as one 
where the maximum temperature is greater than 95°F. Panel (a) shows districts within the 
city of Los Angeles, panel (b) shows cities within Los Angeles County other than Los 
Angeles, while panel (c) shows cities within in our study domain but outside of Los 
Angeles County. Red and yellow dots represent the ensemble-mean for RCP8.5 and 
RCP2.6 emissions scenarios, respectively. Whiskers represent the approximate 95% 
confidence interval for the projection, based on the spread seen in the regionalization of 
every available GCM. To aid the reader, a horizontal line corresponding to 30 days per 
year has been drawn on each panel.  
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Fig. 19: Same as Fig. 18, but with a different threshold to define an extremely hot day. In 
this case, an extremely hot day is defined as a day in which the daily maximum 
temperature is greater than the 98th percentile of the daily maximum temperature PDF at 
that location. To aid the reader, a horizontal line corresponding to 30 days per year has 
been drawn on each panel.  
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Tables: 
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Table 1: Name and characteristics (country, institution, and resolution) of the 19 IPCC-
AR5 GCMs used for climate downscaling. All GCMS are statistically downscaled, while 
only CCSM4 is dynamically downscaled. The availability of the RCP2.6 and RCP8.5 
emissions scenarios is also indicated. Note: 1° is approximate 100 km.  

 

MODEL COUNTRY INSTITUTE RESOLUTION RCP2.6 RCP8.5 
CCSM4 USA National Center for 

Atmospheric Research 
1.25° x .9° ! ! 

Can-ESM2 Canada Canadian Centre for 
Climate Modelling and 
Analysis 

2.8° x 2.8° 
 ! ! 

CNRM-CM5 France Centre National de 
Recherches 
Meteorologiques 

1.4° x 1.4° 
 ! 

CSIRO-Mk3.6 Australia Commonwealth 
Scientific and Industrial 
Research Organization 

1.9° x 1.9° 
! ! 

GFDL-CM3 USA NOAA Geophysical 
Fluid Dynamics 
Laboratory 

2.5° x 2.0° 
! ! 

GFDL-ESM2M USA NOAA Geophysical 
Fluid Dynamics 
Laboratory 

2.5° x 2.0° 
! ! 

GFDL ESM2G USA NOAA Geophysical 
Fluid Dynamics 
Laboratory 

2.5° x 2.0° 
! ! 

GISS-E2-R USA NASA Goddard 
Institute for Space 
Studies 

2.5° x 2.0° 
 ! ! 

HadGEM2-CC UK Met Office Hadley 
Centre 

1.9° x 1.25°  ! 

HadGEM2-ES UK Met Office Hadley 
Centre 

1.9° x 1.25° ! ! 

INMCM4 Russia Institute for Numerical 
Mathematics 

2.0° x 1.5°  ! 

IPSL-CM5A-LR France Institut Pierre Simon 
Laplace 

3.75° x 1.9° ! ! 

IPSL-CM5A-MR France Institut Pierre Simon 
Laplace 

2.5° x 1.25°  ! 

MIROC-5 Japan AORI (U. Tokyo), 
NIES, JAMESTEC  

1.4° x 1.4° 
 ! ! 

MIROC-ESM-
CHEM 

Japan AORI (U. Tokyo), 
NIES, JAMESTEC  

2.8° x 2.8° ! ! 

MIROC-ESM Japan AORI (U. Tokyo), 
NIES, JAMESTEC  

2.8° x 2.8° ! ! 

MPI-ESM-LR Germany Max Planck Institute 
for Meteorology 

1.9° x 1.9° ! ! 

MRI-CGCM3 Japan Meteorological 
Research Institute 

1.1° x 1.1° ! ! 

NorESM1-M Norway Norwegian Climate 
Center 

2.5° x 1.9° ! ! 
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Table 2: The ensemble-mean, upper bound and lower bound of annual-mean surface air 
temperature change (future minus baseline, unit: °F) for districts within the city of Los 
Angeles, cities within Los Angeles County other than Los Angeles, and cities within our 
domain but outside Los Angeles County (the Los Angeles Region) for the RCP8.5 and 
RCP2.6 emissions scenarios. 

 

 RCP8.5 
ensemble 
mean 

RCP8.5 
upper 
bound 

RCP8.5 
lower 
bound 

RCP2.6 
ensemble 
mean 

RCP2.6 
upper 
bound 

RCP2.6 
lower 
bound 

City of Los Angeles 
Downtown LA 3.9 6.5 1.3 2.8 5.0 0.6 
San Pedro 3.8 6.3 1.2 2.7 4.9 0.5 
Venice 3.7 6.2 1.2 2.7 4.8 0.5 
Sylmar 4.2 6.9 1.5 3.0 5.4 0.6 
San Fernando 4.2 6.9 1.5 3.0 5.4 0.6 
Woodland Hills 4.3 7.0 1.5 3.0 5.4 0.6 
El Sereno 4.0 6.6 1.3 2.8 5.1 0.6 
Eagle Rock 4.0 6.6 1.4 2.8 5.1 0.6 
Porter Ranch 4.2 7.0 1.3 2.8 5.0 0.6 

Los Angeles County 
Pasadena 4.1 6.7 1.5 3.0 5.4 0.6 
Pomona 4.1 6.7 1.4 2.9 5.2 0.6 
Lancaster 4.9 7.9 1.4 2.9 5.2 0.6 
Palmdale 4.9 8.0 1.8 3.4 6.1 0.6 
Long Beach 3.8 6.4 1.8 3.4 6.1 0.6 
Santa Monica 3.7 6.3 1.3 2.7 4.9 0.5 
Santa Clarita 4.4 7.3 1.2 2.7 4.9 0.5 
Glendale 4.0 6.6 1.6 3.1 5.6 0.6 
Torrance 3.8 6.4 1.4 2.8 5.1 0.6 

Los Angeles Region 
Santa Ana 3.9 6.4 1.3 2.8 5.0 0.5 
Palm Springs 5.2 8.4 1.9 3.5 6.4 0.7 
Riverside 4.2 7.0 1.5 3.0 5.4 0.6 
Temecula 4.1 6.8 1.5 2.9 5.3 0.6 
Big Bear Lake 5.2 8.3 2.1 3.7 6.6 0.8 
Oxnard 3.7 6.2 1.2 2.7 4.8 0.5 
Santa Barbara 3.7 6.3 1.2 2.7 4.9 0.5 
Wrightwood 5.4 8.6 2.2 3.8 6.7 0.8 
Bakersfield 4.5 7.3 1.6 3.1 5.6 0.6 
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Table 3: Average number of extremely hot days per year for districts within the city of 
Los Angeles, cities within Los Angeles County other than Los Angeles, and cities within 
our domain but outside Los Angeles County. An extremely hot day is defined as a day in 
which the daily maximum temperature is greater than 95°F. Results are shown for the 
baseline simulation, ensemble-mean, upper bound and lower bound of the RCP8.5 and 
RCP2.6 emission scenarios.  

 

 Baseline RCP8.5 
ensemble 
mean 

RCP8.5 
upper 
bound 

RCP8.5 
lower 
bound 

RCP2.6 
ensemble 
mean 

RCP2.6 
upper 
bound 

RCP2.6 
lower 
bound 

City of Los Angeles 
Downtown LA 5.6 22.9 48.1 9.9 15.8 34.1 6.3 
San Pedro 1.7 5.2 10.3 2.4 3.4 7 1.9 
Venice 0.1 0.6 1.4 0.1 0.3 0.8 0.1 
Sylmar 53.5 96.4 122.5 67.3 81 108 55.7 
San Fernando 54.4 97 124 67.5 82.1 109.2 56.1 
Woodland Hills 35.6 70.9 100.5 46.9 58.3 83.4 37.1 
El Sereno 12.5 40.5 74 19.2 29.4 55.4 13.3 
Eagle Rock 13 41.5 73.1 20.2 29.9 55.4 13.7 
Porter Ranch 55.3 99.6 124.6 70.1 85.7 110.9 58.1 

Los Angeles County 
Pasadena 23.7 63.4 96.8 34.8 47.9 78.2 25.2 
Pomona 28.8 69 102.6 41 54 84.6 30.6 
Lancaster 54.7 95.9 118 70.2 82.5 105.1 57.4 
Palmdale 36.1 77.7 104.7 51.2 62.3 89.5 38 
Long Beach 4.4 16.5 32.6 6.7 11.4 22.6 4.8 
Santa Monica 0.4 1.2 2.7 0.6 0.8 1.5 0.5 
Santa Clarita 56.6 96.2 117.3 71.2 82.8 105.8 59.6 
Glendale 19 51.7 84.2 28.1 39.2 65.6 20.2 
Torrance 0.2 1.3 4 0.4 0.7 2.4 0.3 

Los Angeles Region 
Santa Ana 4.5 18.3 39 7.5 12.1 26.3 5 
Palm Springs 134.8 160.3 177.9 143 151.5 167.1 137.6 
Riverside 57.8 103.2 127 73.1 88.7 114.4 59.7 
Temecula 3.2 11.3 26.3 4.9 7.3 15.8 3.5 
Big Bear Lake 0 0.6 2.9 0.1 0.1 1.2 0 
Oxnard 0.1 0.6 1.9 0.2 0.3 1 0.1 
Santa Barbara 4.9 12.2 23.6 6.8 9.4 17.4 5.6 
Wrightwood 0 2.4 13.3 0.2 0.6 5.5 0 
Bakersfield 111.3 134.6 148.9 120.2 127.7 139.6 113.6 
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Table 4: Similar to Table 3, but with a local temperature threshold (unit: °F) to define an 
extremely hot day. An extremely hot day is defined one where the daily maximum 
temperature is greater than the 98th percentile of the daily maximum temperature PDF at 
that location. By this definition the number of extremely hot days is the same at all 
locations (7.3 days per year). The first column gives the temperature corresponding to the 
98th percentile at each location. 

 

 Local 
temp. 
threshold  
 

RCP8.5 
ensemble 
mean 

RCP8.5 
upper 
bound 

RCP8.5 
lower 
bound 

RCP2.6 
ensemble 
mean 

RCP2.6 
upper 
bound 

RCP2.6 
lower 
bound 

City of Los Angeles 
Downtown LA 94.5 27.6 55 11.6 18.9 39.2 7.8 
San Pedro 89.9 19.5 37.9 9.7 14.9 27 8.2 
Venice 84.6 37.3 84.8 12.7 23.3 58.8 8.6 
Sylmar 102.9 26.3 45.8 12.4 17.8 34.7 7.9 
San Fernando 103 25.9 45.1 12.2 17.9 34 7.8 
Woodland Hills 100.7 27.2 46 13.3 19.1 35.6 7.9 
El Sereno 96.4 28.7 55.8 12.3 19.5 39.6 7.9 
Eagle Rock 96.5 28 53.7 12.2 19.6 39.5 7.9 
Porter Ranch 102.5 29.8 52.4 14.1 21.2 40.6 7.9 

Los Angeles County 
Pasadena 98.6 27.1 52.1 12.4 19 37.6 8 
Pomona 99.5 26.3 49.6 11.8 18.4 36.8 7.9 
Lancaster 103.3 32.6 55.9 15.8 22.1 41.1 7.7 
Palmdale 101.3 30.7 52.8 15.1 21.5 38.6 7.7 
Long Beach 93.5 24.7 47.7 11.9 17.9 34.7 8 
Santa Monica 85.5 31.1 70.5 11.7 20.3 48.5 8.8 
Santa Clarita 104.1 26.6 45.2 13.9 19.3 33.6 7.8 
Glendale 98 25.5 48.4 11.6 17.5 35.2 7.9 
Torrance 86.9 27.2 56.8 11.5 18.7 38.8 8.1 

Los Angeles Region 
Santa Ana 93.8 25.8 53.1 11.1 18.4 37.6 8.1 
Palm Springs 113.4 44.2 73.7 18.8 27.6 57.2 7.6 
Riverside 102.3 30.8 55.9 13.4 20.3 40.3 8 
Temecula 92.1 27.5 51.9 11.8 16.9 37.3 8 
Big Bear Lake 83.9 41.4 67.1 17.9 28.2 51.8 10.4 
Oxnard 85.7 34.7 75.3 12.2 23.5 51.4 8.1 
Santa Barbara 93.3 19.3 36.5 10.1 14.5 26 8 
Wrightwood 86.9 42.3 67.8 19.3 28.8 52.5 9.8 
Bakersfield 112.6 27.4 45.1 13.4 18.7 35.4 7.5 
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