UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Constraining Interactivity: Evidence From Acquired Dyslexia

Permalink
https://escholarship.org/uc/item/6v8823x{]

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 9(0)

Author
Brown, Gordon D. A.

Publication Date
1987

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/6v8823xt
https://escholarship.org
http://www.cdlib.org/

CONSTRAINING INTERACTIVITY:

EVIDENCE FROM ACQUIRED DYSLEXIA'

Gordon D. A. Brown

Department of Language and Linguistics
University of Essex

ABSTRACT
It 1is sometimes claimed that interactive-activation models are
too powerful, and that it is difficult to constrain them adequately. I
illustrate this problem by showing that the basic interactive-activation
architecture has several different possible sources for effects of
spelling-to-sound regularity on word naming. I then show how data can

constrain the architecture. New data lead to a rather different and more
constrained version of the interactive-activation model to account for
spelling-to-sound conversion. Analysis of the errors made by patients
suffering from acquired surface dyslexia confirms the predictions of the
constrained model. It is concluded that the traditional interactive-
activation framework must be considerably constrained to account for
normal and disturbed word naming.

INTRODUCT ION

An early version of the interactive-activation (IA) model (McClelland
& Rumelhart 1981l; Rumelhart & McClelland, 1982) successfully accounted
for contextual effects on letter perception. Since then, the IA
framework has been used to account for human performance in a wide variety
of domains.

One reason for the popularity of the IA framework is that it provides
a general and powerful mechanism for ©building <cognitive models.
Some researchers have worried that the resulting models may even be too
powerful, and difficult to constrain. In this paper I show that this worry
is sometimes justified, for a number of different IA architectures can

1 This work was supported by the Economi¢c and Social Research
Counci!l (U.K.), reference number C08250011. Reprint requests to:
Department of Language and Lingulstics, University of Essex, Wivenhoe
Park, Colchester CO4 3SQ, England.
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Constralining Interactivity Brown

predict the "basic findings" in the psychology of spelling-to-sound
conversion. Nevertheless, new findings can constrain IA models in
this domain, and an appropriately constrained model makes novel
predictions that are testable.

A second reason for the popularity of the IA framework is
the compatibility of IA models with neural-level modeling techniques. It

is not always plausible to interpret IA models as neural nets
directly (McClelland, 1985); IA modelers would not always claim that there
is just one neuron per node in their IA model. Nevertheless, it is
typically assumed that an IA model could easily be cashed out in terms of
a more distributed neural network (see Smolensky, 1986). So current IA
models often come in between neural modeling and the functionalist
approach: much IA modeling is not neural-level because it is not
distributed, and it is not functionalist because it is not hardware-
independent and because it involves sub-symbolic processing.

The fact that IA models are intended to be cashed out in neural
terms means that they should make predictions about the behavior of
patients suffering from neurological impairment. That 1is, IA models
and their distributed implementations should not only be able to account

for graceful degradation of performance under damage; they should also
account for those cases involving severe brain injury where degradation
is not graceful and leads to quite specific symptom complexes.
Progress has already been made in this area, wusing both local and
distributed models (e.g. Cottrell, 1985; Hinton & Sejnowski, 1986;
McClelland & Rumelhart, 1986). One aim of the present paper is to
present further evidence that an IA model <can make novel predictions
about the nature of these impairments, and to show that these
predictions are upheld. The data can in turn constrain the architecture

of the IA model.

BACKGROUND

In this paper I will be concerned with one procedure: the conversion
of orthographic representations to phonological representations. This
provides us with a classic computational-level mapping problem (Marr,
1982), in which one set of representations (of printed words) must be
mapped into another set of representations (of word pronunciations). This
particular mapping problem is a difficult one, because the
pronunciation of an English word cannot reliably be predicted from its
orthography. McClelland and Rumelhart (1981) mention spelling-sound
translation as a suitable domain of application for their IA model, and
indeed refer to the work of Glushko (1979) as a source of inspiration.

Humans can derive the correct pronunciations of words, even though
some words have pronunciations that are not predictable from their
spelling. Words will ©be called exceptional or irregular here when they
contain orthographic segments of at least two letters that are pronounced
differently in several other words (see Henderson, 1985, for a
discussion of terminology). For example, the word PINT has an irregular
or exceptional pronunciation compared with its orthographic neighbors such
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as MINT, HINT, TINT etc.2 So the exception word PINT may be contrasted
with PILL, which has a pronunciation that is regular and consistent (cf.
MILL, HILL, TILL etc.).

The Dbasic experimental finding is that it takes longer to
prepare pronunciations of exception words like PINT than to prepare
pronunciations of consistent words like PILL (Glushko, 1979). This
exception-word effect is more likely to be obtained when the words are
low in frequency and when subjects process the words more slowly

(Seidenberg, Waters, Barnes & Tanenhaus, 1984; Seidenberg, 1985a).
So subjects do sometimes make use of spelling-to-sound correspondence
information in word naming, and this is more likely to happen when
processing is slow and there is more time for phonological
information to become activated (Seidenberg et al., 1984;

Seidenberg, 1985a).

A variety of more detailed findings has been obtained, and many
different models have been put forward to account for the findings (for
recent reviews, see Humphreys & Evett, 1985; Kay, 1985). Many of the
models are basically IA in orientation, although as most of them have not
been implemented it is not always clear exactly what predictions they
make. The model that accounts for the widest range of data is that of
Seidenberg and his colleagues (Seidenberg et al., 1984; Seidenberg,
1985a; 1985b; in press; Waters and Seidenberg, 1985). This model can
account for the basic effects of spelling-to-sound characteristics on
word naming and lexical decision time, and the interactions of such effects
with word frequency and subject speed, within the IA modeling tradition.
Seidenberg (in press) has developed and extended this model to account
for effects of morphological and syllabic structure on lexical
processing. Sejnowski and Rosenberg (1986) have implemented a
connectionist system, NETtalk, which exhibits great success in learning
the spelling-to-sound constraints in English using the back-propagation
algorithm described in Rumelhart, Hinton and Williams (1986) (see also

Rosenberg & Sejnowski, 1986). So the basic IA framework is apparently
very successful in accounting for a wide variety of sophisticated
experimental data and task performance. But it may be that this is

because the framework is insufficiently constrained in certain respects,
as we see below.

How do interactive-activation models predict the exception word
effect, whereby words 1like PINT with exceptional pronunciations take
longer to pronounce than matched words like PILL with regular consistent
pronunciations? Figure One 1is similar to the full version of the IA
model set out in McClelland and Rumelhart (1981), although it
differs in that it contains separate lexical levels for orthography and
phonology and does not include a feature level. Any such a model
can easily be extended to include intermediate levels between words
and letters, representing sub-lexical letter and phoneme clusters (Brown,

2 For discussion purposes, we consider just the pronunciation of
terminal trigrams in four-letter words. Of course, some letter
clusters in an exception word will be pronounced regularly; the model
to be discussed takes account of this.
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Phonology
output

, 1

Word Whole word
level phonology
Letter Sublexical
level phonology
Orthograpy
input

Figure One

1987; Seidenberg, in press). Note that the model has inhibition flowing
from words to letters, letters to words, phonology to orthography and
orthography to phonology, as well as mutual inhibition within each
level®”. If an IA model contains both orthographic and phonological
levels, with connections between them, there are at least two ways in
which exception-word effects will be predicted. One way is by
inhibition flowing from the phonological to the orthographic levels
(pathway A in Figure One). This would operate in the following way. A

node for an orthographic segment with more than one possible
pronunciation will activate more than one node in the corresponding
phonological level,. For example, the intermediate-level orthographic

node for -INT (as in PINT and MINT) will activate phonology nodes

3 Although the letter-to-letter inhibition and the word-to-
letter inhibition were both set at zero in the simulation reported

by McClelland and Rumelhart (1981). Furthermore, McClelland
(1985) reports a problem with letter-to-word inhibition, which is
that if three competing letter nodes are all equally active, two

of them will produce enough inhibition to <cancel out excitation
from the remaining candidate.
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corresponding to pronunciations /aint/ and /int/ (not shown on Figure One).
These sub-lexical phonology nodes will then cause activation to spread to
lexical-level phonology nodes such as /paint/, /mint/, /lint/ etc. If
these lexical-level phonology nodes can inhibit lexical-level orthography
nodes (pathway A), the result will be that lexical-level nodes for
exception words like PINT will build up activation more slowly than nodes
for consistently-pronounced words like PILL. This is mainly because
PINT's orthographic neighbors cause inconsistent phonology to be
activated, and this inconsistent phonology indirectly inhibits activity
in PINT's lexical-orthographic node, wvia phonology-to-orthography feedback.

But IA models will normally predict exception effects even if there
is no feedback from phonological to orthographic levels (Brown, 1987;

Seidenberg, in press). A model will still predict exception-word
effects if there is mutual inhibition within the phonological levels,
even if pathway A does not exist, because there will be slower
activation of phonology whenever inconsistent phonology is active. An
example is the case above where the two different phonological nodes
activated at the same level are /aint/ and /int/. Because of mutual
inhibition, both of these will become activated more slowly than they
would have on their own. This is because of the reciprocal nature of the
inhibition: the most highly activated member in a "winner take all"

network will always win eventually (Feldman & Ballard, 1982), ©but when
inhibition is mutual the winner will win more slowly if it has more

competition. Just how much more slowly it wins will of course depend on
the precise nature of the mutual inhibition function. So, IA models
will predict delayed pronunciation of exceptionally-pronounced words

even when there is no feedback from phonological to orthographic
levels.

Yet another interactive-activation architecture has been put forward
to account for exception effects (e.g. Glushko, 1979; Kay & Marcel, 1981;
Marcel, 1980). This allows phonology to be activated only as a result of
activation within the 1lexical-level orthographic levels. If there is
downward inhibition from phonology to orthography, or if there is mutual
inhibition within the phonology levels, exception effects will be
predicted. The way this works will depend on whether only whole-word or
sublexical phonology is represented, but either case will lead to
inhibition for words with orthographic neighbors pronounced differently.
Some implementations of this possibility will be equivalent to the
architecture in Figure One (see Marcel, 1980 for a detailed discussion).

CONSTRAINING THE ARCHITECTURE

The previous section demonstrated that interactive activation

models could account for the exception-word effect in a number of
different ways. This suggests that the architecture is underdetermined by
the data. However, Brown (1987) has claimed that the reason an

exception word like PINT takes longer to pronounce than a consistent
word like PILL is not in fact due to interference coming from the
activation of inconsistent phonology associated with PINT's orthographic
neighbors. Rather, it is because of the low frequency of .the
spelling-sound correspondence -INT -> /aint/ compared with the high-
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frequency correspondence -ILL -> /1l/. The contrast can easily be seen
by considering a word like SOAP. This word is not inconsistently
pronounced, because there are no orthographic neighbors
pronounced differently. SOAP is the only four-letter English word
ending in =-0OAP (remember, we are considering just the pronunciations
of the last three letters in four-letter words). And it turns out

that words 1like SOAP are delayed in pronunciation just as much as
exception words (PINT) compared to consistent words 1like PILL, even
though SOAP does not have differently-pronounced orthographic neighbors

to cause interference. What this strongly suggests is that the
frequency of, not the number of exceptions to, a spelling-to-sound
correspondence in a word determines the speed with which that word is
pronounced by normal adults. Brown (1987) therefore suggested that the

strength of a 1link between an orthographic node and corresponding
phonology nodes will depend on the frequency of that spelling-

sound correspondence in the language (Seidenberg, in press, makes
the same suggestion). The implemented version of the model also
contains spelling-sound correspondences at many different levels

(letters, bigrams, trigrams etc).

What I want to do now is to outline the implications of these data
for the architecture of interactive activation models. As discussed
above, the standard IA model has between-level inhibition, and
within-level mutual inhibition, both of which predict that there should
be effects of a word's spelling to sound regularity on the time taken to

pronounce that word. Yet no such effect exists: effects that have
previously been attributed to this variable are in fact due to the
frequency of spelling-to-sound correspondence. The inhibitory mechanisms
that predict the effect must therefore be removed. (1 ignore the
unattractive alternative possibility that the inhibition is simply too
small to be detectable experimentally.) It is a simple matter to
remove feedback from phonological to orthographic levels. This

involves removing the relevant excitatory and inhibitory <connections
between phonological and orthographic levels from the full version of the
model set out by McClelland and Rumelhart (1981). But the second
mechanism that predicts exception-word effects is mutual inhibition
within the phonological 1levels. Many previous researchers have
attributed exception effects to this source. It seems undesirable to
remove this mutual inhibition, because of the possible saturation if too
many nodes at a given level can be active at the same time.

However, there are several ways to preserve the desirable
inhibition within a level without the undesirable side-effect of predicting
non-existing experimental findings. In a typical IA model a node on a
given level is connected to all the other nodes on the same level. A node
i with activation a; will sum the inhibitory evidence reaching it, and
(ignoring decay and incoming activation) its activation at time (t+8t)
will be given by something of the form:

aj(t+st) = a;(t) (l-nj(t))
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where n; is the summed incoming inhibition (assumed less than 1.0) from
other nodes in the same layer, and the node has a resting level of zero.
This has the effect that even the node with the highest activation

level will be inhibited to some extent by its neighbors, 1i.e., mutual
inhibition. What 1is needed, however, is a case where the highest-
activated  node receives no inhibition itself, but inhibits all the
other nodes in the level (non-mutual inhibition). Shastri and Feldman

(1984) discuss suitable types of unit, with which it is possible for
each participating node to receive inhibition dependent on the highest
activation of any participating node. This kind of scheme has two quite
independent advantages. The first advantage is that the number of
connections needed is drastically reduced. In a non-distributed layer
with N nodes, the number of connections needed to serve a mutual
inhibition process will be a quadratic function of N. But using the
Shastri and Feldman "max-calculator"™ wunits, the number of connections
needed will be only a linear function of N, because there 1is a master
node which receives activation from each node in the layer, and sends
the maximum activation it receives back to each node as inhibitiom.
Furthermore, the existence of a separate master node provides a means

of control over the within-layer inhibition. This feature 1is useful
for strategic purposes (see Cottrell, 1985).

In our implemented version of such a system, the effect of
inhibition is given by the following form of equation, which gives

the new activation of a participating node after a cycle of inhibition:

aj(t+8t) = a;(t) (1 + plaz(t) - M(t)])

where M(t) is the maximum activation at time t of any node participating
in the WTA system, and f§ is a constant.

In other words, each node is inhibited to an extent that depends on
the difference between its activation and the activation of the most
active node in the layer. For the most active node itself, of course,
this difference is zero, and so there will be no inhibition. This is
then a WTA network par excellence (because the rich get richer without
paying tax on the way).

In terms of the model of phonological processing, this 1is what

is necessary. The within-level inhibition prevents saturation of the
network, without slowing down in any way the activation of the winning
node. In the currently implemented version of the model, the
inhibition works in this way (although the only within-level
inhibition is at the lexical-level orthographic and phonological
levels in the implemented version of the model, see Brown, 1987). So,
according to the constrained model, the reason that PINT is named more
slowly than PILL is because of the low frequency of the spelling-sound
correspondence in PINT, and not because of interference from PINT's

differently-pronounced orthographic neighbors.,

We therefore have a resolution in which a different inhibition
scheme, which may be independently preferred on the grounds that it
requires fewer nodes and allows the possibility of strategic control over
inhibition, also provides a better account of the data.
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The IA model is therefore considerably constrained. The data
suggest that there is no feedback from phonological to orthographic levels,
and that the within-level inhibition is not mutual inhibition.

SURFACE DYSLEXIA

We have claimed that the powerful IA architecture needs to be
constrained to account for empirical data from normal subjects. But a
crucial test of the newly-constrained model is its ability to make novel
predictions. We now examine the predictions made by the constrained IA
model for the performance of patients suffering from various forms of
acquired dyslexia. The syndrome most relevant to the present model is
that of surface dyslexia.

Surface dyslexic patients are able to synthesize pronunciations of non-
words, but have difficulty in pronouncing many words with
exceptional pronunciations. Furthermore, these patients have
difficulty in defining homophones (see accounts in Marshall & Newcombe,
1973; Shallice & Warrington, 1980; Coltheart, Masterson, Byng, Prior &
Riddoch, 1983; Shallice, Warrington & McCarthy, 1983; Kay & Lesser, 1985;
Patterson, Marshall & Coltheart, 1985). These symptoms lead naturally to
the suggestion that surface dyslexics are making use of sub-lexical
spelling-to-sound correspondence information, and that their access to
a semantic lexicon is often via a phonological representation.
Most surface dyslexics can pronounce some exception  words, especially

when they are high-frequency (Bub, Cancelliere & Kertesz, 1985)
suggesting that some lexical-level correspondences are preserved. Also
they show lexicality effects (Marcel, 1980), suggesting lexical-level
involvement (although not all patients show lexicality effects: Shallice

et al., 1983; Kay & Lesser, 1985).

Shallice et al. (1983) show that their patient, HTR, 1is affected
by "degrees of irregularity", and can pronounce many "mildly irregular"

words correctly. Mildly irregular words are defined as words that
contain a spelling-to-sound correspondence that is the second most
frequent in the language. Note that although this is a measure of the
relative frequency of a spelling-sound correspondence, it is likely to be
correlated with the absolute frequency of that correspondence. It 18
therefore difficult to tell which of the two factors is causing the
effects. The data lead Shallice et al. to conclude that surface

dyslexics fall on a continuum according to the size of orthographic units
they can translate to phonology. In general, the consensus view is that

surface dyslexics are impaired on "irregular" words, where regularity
is in some way defined in terms of other words containing the same
orthographic segment pronounced differently. In terms of an interactive

activation model with spelling-sound links at many different levels, it
is reasonable to conclude that surface dyslexics have preserved
low-level correspondences but have lost most high-level
spelling-to-sound correspondences. Indeed, Shallice et al. give an
account very similar to this, and point out that if higher frequency or
early-acquired correspondences were more likely to be preserved, surface
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dyslexia could result. This is because level of correspondence
is confounded with frequency of correspondence, because high-level
correspondences will occur in fewer words.

What I want to do now is examine the predictions of the newly-
constrained IA model for the nature of the errors made by these surface
dyslexic patients. The main relevant properties of the constrained
version of the model are that (a) connections between orthographic and
phonological nodes are weighted according to the frequency of that
spelling-sound correspondence in the language; (b) there is no feedback
from phonological to orthographic levels, and (¢) within-level inhibition
is not mutual inhibition.

When higher-level correspondences are abolished, it is reasonable
to suppose that the highest frequency correspondences within that level are

most likely to be disrupted. Therefore, words that contain low-frequency
spelling-to-sound correspondences are most likely to be pronounced
incorrectly or not at all, because the correct pronunciation of these
words relies on the use of high-level (i.e. lexical or trigram level)
correspondences. Most previous models have assumed in contrast that

words with exceptional or irregular pronunciations will be susceptible
to disruption.

The prediction made by the constrained IA model is, then,
that surface/semantic dyslexics will be more 1likely to make errors
on word containing unusual spelling-to-sound correspondences at  high
levels. The regularity of the word, where regularity is defined (as it
normally is) in terms of the number of a word's neighbors that are
spelt similarly but pronounced differently, should have no effect.

THE ANALYSIS
Several researchers have examined the prediction that surface
dyslexics should make more errors on irregular words. Most have used

the 1lists of regular and irregular words published by Coltheart et al.
(1979), and many have published full listings of the words that
their patient pronounced wrongly. It 1is therefore possible to re-
analyse these data to determine whether it is in fact the number of
differently-pronounced but similarly-spelled words that impairs
performance, or whether it is in fact the frequency of the spelling-to-
sound correspondence in the word. There are six complete published
corpora of errors on the Coltheart et al. words. These are found in
Coltheart et al. (1983); Shallice et al. (1983), Kay and Lesser (1985),
and Saffran (1985). A number of other papers do include corpora, but these

either contain only a subset of the errors made errors (e.g. Margolin,
Marcel & Carlson, 1985; Masterson, Coltheart & Meara, 1985) or are
based on different sets of regular and irregular words (e.g. Newcombe &
Marshall, 1985). We therefore analysed the six complete corpora,
although two are from one patient. This patient was tested on two
occasions two months apart (Saffran, 1985); on the first occasion 31
errors were made, on the second occasion 17 of those 31 words were
misread along with 10 other words. This is similar to the normal overlap
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between two different patienta.‘ One of the corpora came from a
"developmental surface dyslexic" ("C.D." in Coltheart et al., 1983); five
from acquired surface dyslexics.

For each four-letter and five-letter monosyllabic word in the

Coltheart et al. (1979) lists (N=54) we calculated a measure of the
frequency of the spelling-to-sound correspondence, and the exceptionality
of the spelling-to-sound correspondence. These were calculated by

looking at the phonology asociated with each of the trigrams in the word.
The exceptionality of each trigram within a word was calculated as the
cumulative Kucera & Francis (1967) frequency of all same-length words
containing the same trigram in the same position but pronounced
differently. The exceptionality of each word was the sum of its trigram
exceptionalities. The spelling-sound frequency of each trigram was
calculated as the cumulative frequency of all same-length words
(including the word in question) containing the same trigram pronounced
the same way. The spelling-sound frequency of a word was then obtained by
summing the spelling-sound frequencies of the trigrams within that word.
There are therefore two measures for each word, one relating to the
frequency of the spelling-sound correspondences contained in the word, and
the other relating to the exceptionality of the word (i.e. the number of

other words containing the same orthographic segment pronounced
differently). And the prediction is that the number of errors made by
surface dyslexics will be related to spelling-sound frequency, in

contrast to previous claims that the relevant factor will be spelling-sound
irregularity.
The 27 of our words classified as irregular by Coltheart et al. had
a median exceptionality of 231, and a median spelling-sound frequency of
203. The words classified as regular by Coltheart et al. had a
median exceptionality of 54, and a median spelling-sound frequency of 498.
Overall, ignoring the Coltheart et al. classification, there was a clear

negative correlation between  spelling-sound frequency and error
rate: Spearman's Rho = -0.39, ¢=3.0, p<.0l. In contrast, there was no
correlation between error rate and exceptionality: Rho = 0.19, ¢t=1.4,

p>.10. This clearly supports the ©prediction made by the constrained IA
model discussed above; errors are more likely to be made on words
containing infrequent spelling-sound correspondences rather than on
words with irregular spelling-sound correspondences.

It could be argued that these correlations result from our own

definition of exceptionality, which is based only on high-level
spelling-sound correspondences. In fact this is unlikely, because
the higher-level correspondences are apparently more susceptible to
damage in surface dyslexics. Nevertheless, it could also be argued

that four-letter and five-letter words should be analysed separately,
in case word length has an independent influence on error rate (over
and above the tendency for longer words to contain less frequent
spelling-sound correspondences). Therefore, further analysis was
carried on on the 12 four-letter monosyllabic words and the 15 five-

4 The figures here are based on Saffran's corpus rather than on
the figures in the accompanying text.
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letter monosyllabic words classified by Coltheart et al. as irregular.
The results were as follows.

For five-letter irregular words, spelling-sound frequency
correlated significantly and negatively with error rate: Rho = -0.59,
t=2.7, p<.02. Exceptionality did not correlate significantly with error
rate: Rho = -0.17, t=0.6, p>.20. A similar pattern of correlation was
observed for the four-letter words, although the correlation between
spelling-sound frequency and error rate failed to reach significance:
Rho = -0.32, t=1.1, p>.20. Exceptionality again failed to correlate
with error rate: Rho = 0.05, t=0.2, p>.20.

In combination, these results clearly suggest that surface dyslexics
tend to make more errors on words containing infrequent spelling-
to-sound correspondences, rather than on words with exceptional
spelling-sound patterns. Apparent effects of exceptionality have in
fact been due to spelling-sound frequency. This is exactly the pattern
of results predicted by the constrained version of the IA model.

It should be noted that we have not controlled for the frequency of
purely orthographic regularity in our analysis; this is impossible to do
for the words for which error corpora have been reported. This is
unlikely to be a major problem, for Brown (1987) found effects of
spelling-sound frequency when orthographic regularity was controlled for,
and other authors have obtained spelling-sound effects that are not due
to orthography. And in reaction-time experiments it is unlikely that
orthographic frequency and spelling-sound regularity effects would exactly
cancel each other out across a wide range of word frequency and subject
decoding speed.

It should also be noted that the spelling-sound frequency of a word
is related to the frequency of occurrence of that word, because the
frequency of a word contributes to the frequency of the spelling-sound
correspondences contained within it. Again, a number of experiments have
found effects of spelling-sound characteristics when word frequency is
controlled. For example it is clear that surface dyslexics do make
more errors on the Coltheart-irregular than on the Coltheart-regular
words even though the two sets of words are matched for word frequency.
The claim here is just that the effects are really due to the
confounded factor of spelling-sound f£frequency. Indeed, our model
interprets effects of word frequency on word naming time as being due to
the frequency of spelling-sound correspondences in that word, including
the lexical-level spelling-sound correspondence (the strength of which
will depend directly on word frequency).

CONCLUS ION

We have shown that the full interactive activation framework
when applied to the domain of spelling-to-sound conversion is in some
respects too powerful, because many different inhibition mechanisms
could give rise to delayed processing of words with exceptional
pronunciations. Because effects which have previously been seen as
exceptionality effects are in fact simple spelling-to-sound frequency
effects, the model needs to be constrained. A more constrained IA
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model is discussed, which has no feedback from phonological to
orthographic levels and which also uses a different mechanism for within-
level inhibition. This has the dual advantages of giving a better account

of the data and requiring fewer within-level inhibitory connections. The
constrained model gives rise to novel predictions about the errors made by
surface dyslexic patients, and these predictions are confirmed. Thus it
is both possible and necessary to constrain models within the
interactive-activation framework.
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