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ABSTRACT

:_Some lacunae in our previous aréumehtl that a single particle
can not form a self-sustaining, or "bootstrap" system are filled. .We
"propose & method of treating the "potential” which reconciles the
Mandelstam iteration procedure withvthe Regge asymptotic behavior of
"the double spectral function,bibmaking a subtraction of the S-wave
discontinuity; This leads to a more general argument that uniﬁa;ity ks
-and crossing symmetry put a very stringent limit.on the magnitude |
of the‘coupling strength, and éxclude the'pqssibility of even producing’.

the bound state correspondiﬁg to the particle.




which we used only the crossed-channel poles and the S-wave part

]l
I. INTRODUCTION

In a recent paper1 we attempted'to demonstrate that it was_

- impossible for a scalar meson to "bootstrap" itself. We showed that

there was no solution to the N/b equations fon'a crossing-symetric

S-matrix which had the required bound-~state pole corresponding to

‘the meson. The residue of the direct-channel pole produced in the

solution, g, was much greater than the residues of ?he_crbssed-
channel poles, g', which were needed to produce a bbund state of the
correct energy. Bub our result depended upon three assumptions
which we now wish to examine more closely.

" The first was the dominance of nearby singularities, oﬁ Ry

- of the two-particle elastic unitary cut. Because of the very

large coupling constant which was needed, there is some doubt as

to the velidity of this assumption, especially in view of results

vobtained in a simiiar non-relativistic potential problem, where

i . . :
- comparison with the exact solution is possible. We refer to:the

careful analysis of the N/b ‘method by L'uming.,-2 We have thus been

led to try to obtain a better‘understandlng of the limitations to

 our approximation to the "potential."

The second assumption was’ that one could neglect the fact

that the input poles should be continuable in angular momentum,

'and could use a potential function corresponding to the exchange
of an elementary particle. ‘This would not be a good approximation: -

| if the trajectory on which the particle lay continued to high



e
| valugs of the anguiar momentum, producing perhaps 8 é%gond particlejfv
of spinie. There was also ‘the possibility that theré}@ight be'

a fbméranchuk trajecfory, with the meson lying on & secondaryv
trajectbry:"This would correspond mére closely to the real world,’

- where cross sections tend to constants at high energies. Though

" we have not been able to use "Reggeized" potentials, we hayé-examined -

4

the output trajectories, and find that neither of these possibilities

seems ﬁo bring ﬁs nearer ﬁo a. "bootstrap" solution.§
v We do,:howevef, take note of the conflict bétWeen'the :
. Mandelétam iteration procedure for obtaining the elastic double

spectral functions, and the requirements of Regge asymptotic behavior.

We &emonsﬁrate a method for resolving the'ConfliCt‘in.practical- . ’zh

' calculations, by explicitly subtracting the S-wave discontinuity.

Finally, in the last section we show that unitarity and
. > v

, croSsing‘symmetry put a geﬁeral constraint. on the coupling;cbnstants,‘_

‘which 1s stringent enough to exclule the values that were necessary . :

" to produqe the meson bound state. We thus have & new reason for
. : v st ave ew reas g

%
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‘rejecting the possibility of a "bootstrap! solution. 3 .
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II. FIRST BORN APPROXIMATION

Because we wish to examine complete trajectories, we remove

the threshold behavior and instead of the partial-wave amplitude

k N Aﬂ(s) consider the function B!,(S) = qs'z'e Az(s);, This is

S i o necessary because the N/D method will not guarantee the correct

threshold behavior for A‘é\ unless, "per impossible," we know the

| complete left~hand cut. IQ the usual way we set
Bys) = Wy(s)/Dyle) s o (@)

’vwhere N,(s) has the left-hand, ‘\z\and D,(s) ‘the right-hand,’ cuts of |
~‘}3 (s) , and take B, (s) to have \the same left-hand singularities

as the poten’cial f‘unction,' V (s) ,, to be derived subsequently.

1
'

! » ‘I'hus in dispersion form we have

. K - h -l f Im{Dz(s') V],(s’)} R

! - - = . '

‘i Nz(s) = v‘e(s) Dz(s) " B-"‘ - g ds : : (2,2)

1 S e By '

and e
. . . o0 Im{D (S )} .
Dﬂ(s) = 1 '*"" J' - (2J5)
- . . so .v . X )
~ “where 8. = Lu® is the élastié threshold.

‘The ﬁnitarity reldtion is

. Im{D(s)} pz<s)m(s>,‘ o @w



Co "whe_re_' the phase-space faotor ‘is ; _ R

k3

pz(S) 2 (} ~ ,) '<lﬂ§;))‘

o ' _ b+ 2 ER v
with relativistic kinematics, or p [,(S ( - ) ~ with non--

ot

relativistic kinematics. ~ ~ - - o EEEN

Combining (2,2), (2,5) and (2, L), we o'b'bain

| 1
V(S)';'r' PY

2 sV 1) -v.(s) -
f VAT B (e (e S
o ] \‘ ‘- . )

Hy(e) -

[

}
"
¥

) ; Dé(s) . 8! - s

% fds pﬂ(s')’mﬂ(s",),l

This form of the N/D equations has been preferred to that

(2,5)

 used in I, The equations have been programmed for the computer by .

| ©D, C. and V. L. fIJe_'plitz.*,-3 and in the following calcu.‘lations e have :

.,used a modified form of their program.
S If we consider the force from the exchange of a spin-zero

;particle in both' the t and u channels we have

vz(s> ——7 fd(cos e)P (cos ol — '+

s + 2q (l+cos 6) . m2+_ 2q32(l~cos 8)

@

R
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This is the first Born approximation to the left-hand cut, and,

-

as.in'I,.we f£ind that to produce a bound state at s

g/b? = 16,5, ©but that then the residue of the output pole is 105,

or very far from a "bootstrap" solution. In Fig. 1 we plot the
position of the bound:state versus the coupling constant, and in

Fig. 2 we show the trajectory on which the particle lies. It will

be hoted'that the trajectory does not rise tollarge values of £ ,

but has a cusp at the'threshdld. Because the traj§¢tory has a
branch point abthreshold,’ the path of the second zero of the real
part of the D function (plotted as a dotted line in Fig. 2) can
not be identified Viﬁh the falling‘trajectoryy but is probably
reasonably close to it just above threshold. We believe that the
contribution'of'this'sort of trajectory to the potential is well

represented by the £ = O "elementafy" particle form which we

have used (2,7).

However, Luming2 has shown that in the non-relativistic case

the solution obtained with such large coupling constants 1is very

'_ far from the‘correét solution of the'SchrBdinger equation with a

- Yukawa, potential g e /}. (Note that Luming uses gg' where we

use g.)

The main differences between the non-relativistic and

‘relativistic cages are that the phase- s;ace factor pz(s) is

.1changed in: the way explalned above, and, since there is only one

“crossed.channel, we replace g by g/b. The change of 91 means

" that wheréas.relativistically one can integrate (2,5) té infinity

m- we require

e e+ o




be

for £<1 and still have a Fredholm equation, in the non—relativistic
_ situation this is true only of Z <1

Otherwise one’ must use a _4 
cut-off, but, as Luming shows, the results are very little dependent

on the magnitude of the cut-off if it is large.

S - ..
We took an upper '
1limit of '200 m~ in all the calculations reported here, but have .
. . verified the-insensltivity of the results to the value of ‘this
' parameter in both the relativistic and non-reiativistic cases., |
In Fig 3 we show the plot of bound-state energy versus
coupling constant in the nonnrelatlvistic smtuation and compare it
x'_with ‘the exact solution of the Schrodinger equation obtained by .
" Hulthén and Laﬁrikaiﬁerh.‘ This agrees with Luming's Fig} 10, It~ ;‘ I
: v ’ ’ e S
will be observed that there is a-considerable discrepancy between . .f
the two curves for s = m?. However, Luming also shows that
there is a great improvement if the éecOndbBorn‘appfoximation tovl"'kﬂ .{
the left-hand cut is used, and we. may expect this also to be true .
o for the relativistic case. AR {Qﬁf
. : %':x\ E
e
it o
RS i .
:sl .:_'\\\.rrl . *
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III. THE SECOND BORN APFROXIMATION

bl

Figure b4 - shows the Mandelstam representation /for the amplitude, .

kS

‘ \ .
o ' : CN ® A (s,t") A (s,u?)
. O A(s,8) = g § + 1 kDI IR B du' ,
| . ASy et mee u (7 = t) LR (u’ - u) ?
) t N .

e N , ; ° Yo (3,1) |

. . 5

: ‘or‘5 ‘ '. \-,«,

~ : A(S:ZS) = AR(S’ZS) + %(S;zs) ) '

where A, bas only the right-han\q singwlarities, AL the left~hand,

and z_ 1s the scattering angle in the .s channel. We define

even and odd negafive' amplitudes by

| t - .. R ,
: A (S:ZS) AR(S"ZS) ¥ AL(SJ ' Zs) . 3 (352)
- and find, because of the symmetry in 's, t, and u,
,. ‘A+(S,}t) = ?
R . m - t \
2 ’ ds® dt' -
+ =5 [[ pst(sl,tl) , + _ - B
P k- k) (st - s) o (%= t) (8'+ tT-bts) ‘
where Pt is the double spectral function.
Making the partiasl-wave projection of '(3,3) =,:"'we.find
v




B

e ) N
4, (8) = =5 l+—3 | ~ |

o | o "-(s;h)
However, the second term in (3,&) has both left-hand and

v'j right—hand cuts in s, and to obtain the potentia}" from this

exPression we must subtract the contribution of the right-hand cut

= & ) Along this cut the imaginary part is %1:quf: w
. : & R

2qs

Qz 1+

FPgp(et’) —>—m=L T

50 the contribution to A, 1s j;f__ f 2‘fﬁl

2 J]’ °st(s ;) 6') <E;+ ,:>
z

| ds! dt' =;fﬂ‘

Thus the final expression for v, (s) is, when we remember

“the threshold factor," | ' _ -‘J;g‘ . ~uf?_' ;g"f{:;~'

’.Vz‘(s)" i ;‘275‘5_9 s ) ff pst(s' t')"

* 7 H Pplelrt)) i[(s'--s) TEE- +.s)] W\ o 2>ds' ae’ .

oo

o . i
I o S TR S e
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For’ the second Born approximation we require to know the

elastic part of the double spectral function, which may be obtained

by iterating the pole, or first Born approximation, with elastic

unitarity.

The first Born approximation gives

?

At(l)(s,t) =

Then p:f‘(s,t) =

xg 8t - n°)

=31

o

(v}

(See, for example, reference 6.)

(3,6)

at' as" At(l)(s,t’) At(l)(s,t")

AL 2
2
Ki (qs

s Bt ,t")

du' au" Au(l)(s, u') Aﬁ<l)(sL u')

+

#here'K(qse,t,t',t")

K2

T

+ t!

2
(ag

"
» 5, u';u")

2

"2 o (t '+t t"+ t" t) -

{ : . S :
COml?ining (3,6), (3,7), and (3,8) glves

L

with a boundary at s = (E—:—x3+»h.

o, PO

(3,75‘

t ! t"

Ve use (3,9) substituted in (3,5) to give the "potential.” -

et - g

-2 : )
q'S B S
(3,8
5 (3,9)
2 |
4y
. (3,10)

[ e e Lo S
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©The corresponding non-relativistic expressions arev '_f'ﬁ
v o W

‘, Qq *}lf_‘;ﬁf

22 + 2 . vfr'J.F:*TIGL;;:El “z'ijll)w
s _ .s' ' o ‘ - :

with

Pt (s,t) = 5e— S , A . (3,12)
' s 2 2 to' , e o
6T bt e S . c .

2 /. - . i

N

| .reflecting the absence of the third double spectral function, and the
altered uniterity condition. ’

 Since psﬁ depends upon ge, we can- expect it to become more
_importantias g increases. Flgures 1 and 3 show the results of |
’solving the N/b equations with these . potentials.v Again in Flg.13
we have reasonable argreement with Luming's results. . l

In the relativistlc case & bound state is produced at m?

_with g => b, 5 m but g’ = 56 m s 8O ‘Wwe are no nearer- to a

. bootstrap solution. The trajectories concerned are shown in Fig. 5.

It still proves impossible to produce a secondary tragectory passing

'-through m?? at L= 0 however large g may be, so the chances of .

- _obtaining a bootstrap solution in this way ‘are negligibleo,pit”_ f - ;f,C,-"“

-'b.




‘However, one may object to the use of this fori of the double
spectral function from the point of view of continuatiéh in angular
'momentumaa ‘We know that the contribution 6f a Regge pole to the

'amplitude may be written

Coare ey o oxloalt) 2 2.,a(t) s .
A(S'Jt') =T 2 Tsin fmalt 7(17) (-q‘t ) Pa(t) é’*‘ 2%2>1 (3:13)
and our fixed 4 = O pole comes from putting
alt)—at (u°) (t - u)
St

and then using this for all t with

But (3,13) shows that the use of (3,6) for At(l)(s,t) is
not justified for large s, ' since we obtain

At(l)gg t) a; §?(t? Yo

. Substituting in (3,7) would give us - o o

\ | SRS

. o SR T - L
- P:ﬁ (s,8) = Jgrdt' at" §2(8) +alt") = 1y orng an 6,60, 87) 4
9 ' . s -d m ) . . ' " ' K : ) V J V'»'*. . o . .

3

gt



=
3
o
AL

o
 flor large

Figure 5 ghows that there is a region of t from . m?

¥

1o,m2' for which Re‘a(t) > o,r‘

. -‘120

and the integral in (3, 11) is not

WtLL approximated by our uee of a =

w111 even diverge if there

i
4

B
1

\
1

s a. region where o (%) >3

‘ 3 iteration 1s incorrect: and in fact ve. should have

iR

In the following section we present a method of increa51ng

0 in this region, and it

- But

In other words, the elastiC\double spectral»function does L

f,'not represent the behavior of the total double spectral function L

8 and in fact (3,11) shouid converge providing that
i Re aft) <o | . " |

N 'the convergence of the integral (3,11) whereby only the near ,

"(small s) region of the double spectral function is important,

and the aéymptotic region, where the elasticfdouble spectral function

‘we - also know that the asympt tic behavior given by the first Mandelstamg
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1  IV. A SUBTRACTION DETERMINED BY REGGE ASYMPTOTTC BEHAVIOR
| : t

| In the previous woi'k1 we tried to represent thé’effect of
'. v' Lhe double spectral functiﬁﬁs by including the force from the S-wave
iart of the elastic discontinuity in the crossed channels. The
double spectral function, of course, gives the sum of all the
bartial‘waves, but it is still convenient to subtract the SQnge
part, and then add it back in the same manner a.sin‘lf. We know.: that
the'Regge asymptotic behavior of the double spectr%l function
determines the number of sgbtractions needed to mgge integrals like '
(3,3) converge, and in .our case,where a(t) < 1;-1?? need only

make one subtraction’'a of the S-wave discontinuity; |

The total discontinuity in the t channel is

@'-s)+@'+t J1'+s) _ (41)

o = Lfaer ,
A (st) = st pst(s %)

. Q {1+
' - &t =0 2 I ' © aqta | ;
‘and A - (t) = =~ |ds pst(s ,; t) 5 : ds' (%,2)

| 29"

Thus we may write

- L =0 , ol ' '
ot 1f, (s, 8) | _1 1
Alet) = AT (8) +ﬂjpst>. ¥ [(s,_ S ETE

- , and since

"-}‘5 Q'O 1+ S;)}ds_'_ » - : | Av (h’:E)

G e




. -
e L2\, 2 W

. "‘:q_s - n 2q_s

it

Ai(s)e

[

' we have

A\

dt'

1L +

)f v (t')q

| g 1 1 e 5
pst(s > # ) (s'-,s)_+(§'+ -4 + s) 4 42 Q 1 * .%i)

"jA (s) = -5~ Q (E’+

‘.gqt'

Qe SN

b |

Fihally}jremoving the right-hand cut in analogy with Section III,

we_haVeV'

T Pey(s’s 8" (s'- s) FFE-Fie) 2 _Qo<£f* 2 )

vl

. £t Sl T
S 2 2/ . A L Co Lk
L 2q, _ 2q 5 - e Le) j
S ‘ e e e S
We can immediately see that the convergence of the double integral ‘ .
' N EERY s R k L BRI ?4
has been improved since i ' ' ' o '

e

e .

. ‘. :

q « i

v I " .

. e e .
. - ;}‘

t

)




h\ 15e

. which cancels with the first term in the expansion of E

o . §

1 1

. 'l ‘

‘ 2_ 1 1 oy .
- pst(s s )X(erms o\\order "?) ds' dt' ,

which will converge if a(t) < 1. Figure 5 shows that in fact a. is

always less than "1, and so we have removed the difficulties

: qescribed in the previous section, though at the expense of some

computational complexity. The second term in (4, 6) 1s to be

evaluated by the same sort of cyciing procedure we described in I, ip

whereby we impose equality upon the discontinuities in the s and

't channels.

As in the previous section we shall make the approximation

of replaceing p st by peﬁ « Since only the low s part is now

7v1mportant, this should be a good approximation.-:
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V. THE CONFLICT WITH UNTTARITY '

On evaluating the double integral in (4,6) we find that its

contribution to V, is negative, indicating that the S-wave (t~-channel)

.part which we have removed is greater than the contribution of the

double spectral function, if we subtract from the double spectral

function's contribution that part which gives rise to the right-hand

cut (in the s channel). Of course the S-wave part is smaller than

the total contribution of the dOuble‘spectral'fﬁnction, since the

individual partial waves are positive,.and it is only because of the

removal of the right-hand cut part that the result is negative.

i_ The partial-wave serie; does not coﬁvergé alongtthehright-hand cut.
o Since ?:ﬁ dépends on gg; ﬁhis negative contribution
vfapidly increases with the coupling. If we could achieve self-
consistency, the second term in (h;6) would outwéigh the'paft
subtracted,.so_that total potential would be.positive. ,Bﬁt'thié
'.téfm is l?mitedAby.unitarity in'ﬁhé t channel, whereas tﬁg doublev
' spectral function is calculsted with the use of unitarity in the

‘s channel only.

When we solve the equations we find that, except for small -

values of g-, the negaﬁive contribution'bf_the double spectral

function. dominates, producing a repulsive potential. Thus except -

,forivery small- g the elastic double spéctral function, obtained
by iterating the t-channel poles with elastic unitarityvihvthelL

s channel;‘conflictéwiﬁh'the requiréhent of ‘unitarity in the +t

ﬁ channél."A'unitary1érossiné-symmetfié;S-métfix Canenotlbgzbbtainedf o

‘ . - . R g e
o i A . ER . ' !

LEl

P P A NS g
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 The values of g which do not produce this cdﬁflict are too
small for a bound state to be formed at s = m? s so 1t 1is not
possible to make the S-matrix crossing symmetric even with regerd

to the positions of the poles, as we had supposed in I.

-

b
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