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ABSTRACT 
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Some lacunae in our previous arguinentJ. that a single IS:i:'ticle 
l 

I 
[ 

can not form a self-sustaining, or "bootstrap" system are filled. .We I 
I 

propose a method of treating the "potential" which reconciles the I 
t 

I 
Mandelstam,iteration procedure with the Regge asymptotic behavior of I 

j 

thedouble spectral function_,by making a subtraction of_the S-wave_ 
t 
' I 
I 

discontinuity. This leads to a more general argument that unitarity ; 

· and crossing symmetry put a very stringent limit on the ma.gni tude 

of the coupling strength, and exclude the-possibility of even producing 

L 
I 

I 
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the bound state corresponding to the particle. ! 
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I. INTRODUCTION 

In a recent paper1 we attempted to demonstrate that it was 

impossible for a scalar meson to 11bootstrap11 itself. We showed that 

there was no solution to the N/D equations for a crossing-symretric 

S-matrix which had the required bound-state po~e corresponding to 

the meson. The residue of the direct-channel pole produced in the 

solution, g1 was much greater than the residues of ~he crossed­

channel poles, g' 1 which were needed to produce a qound state of the 
'ir · 

correct energy. But our result depended upon threr assumpti?ns 

which we now wish to examine more closely. 

,, The first was the dominance of nearby singularities, o~ . !: 
' ' . 

which we used only the crossed-channel poles and. the S-wave part 

of the two-particle elastic unitary cut. Because of the very 

large coupling constant which was needed, there is some-doubt as 

to the validity of this assumption, especially in view of results 

obtained in a similar non-relativistic potential problem, where 

I 
comparison with the exact solution is possible. We refer to;the 

careful analysis of the N/D method by Luming.2 We have thus been 

led to try to obtain a better understanding of the limitations to 
\ . : 

our approximation to the 11potential. " · 

The second assumption was that one could neglect the fact 

that the input poles should be continuable in ~ngular momentum, 

. and could use a potential functi·on corresponding to the exchange 
• I. . 

of an elementary particle. This would not be a goOd approximation 

if th~ trajectory~: o~ which the particle lay continued to h_igh 
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values of the angular momentum, producing perhaps a s~r,ond :Farticle 

of spin 2. There wa~·also the possibility that there might be 

a Pomeranchuk trajectory, with the meson lying on a secondary 

trajectory:· ·This would correspond more closely to the real woz:ld1 · 

where cross sections ·tend to constants at high energies. Tho'Llgh 
( 

we have not been able to use 11Reggeized'1 potentials, we have examined 

the output trajectories, and find that neither of these possibilities 

seems to bring us nearer to a. "bootstrap" solution.,( 

We do, however; take note of the conflict ~etween the 

Mandelstam it~ration procedure for obtaining the elastic double 

spectral functions, and .the.requirements of Regge asymptotic behavior: 
!, 

We demonstrate a method for resolving the conflict in .practical· !1, 
.. i 

calculations, by explicitly subtracting the S-wave discontinuity. 

Finally, -in the last section we show that unitarity and· 
,) -

crossing symmetry put a general constraint on the coupling-constants,· 

which is stringent enough to exclude the values 'that were ne~essary .• 

to produce the meson bound state.· We thus have a new reason for 
I \ . 

. rejecting the ;possibility of·a ''bootstrap!~ solution. :i, 
i··_. 

,.-.· 

.. ... · 
,·' ')· · ... , 

-.:'' ·.: .>~. -~ .. /. ~~ : 

. ' . . . ·.. ~: .. • r 
?" •. : ' . . ·~ ~:· 

t .......... . 
. , .. ,_'_···' 

' . 

.. ~ \ . 

' .. -
~-. 

\. 
•, 

·.:·' ~· 

':: ·,. 

\ 
\ 

.... 
...: .. '.- .. 

' : ·,~ " I' 

. ;, ,, (' :. > ,-' 
) ·i!': . 

· .. "· 

'·.·. 

.. , '. 
I· • 

'~ .... . -~ .. 

. >;. • . 
. ' . ·.• ·-,~ .. . .... . :., . " 

' -, 

' \· 
~,: 

\''', ., . 
. . ~ 

. ' 

. . . 
• # '· .\ ·t 

. '>/; 
. ~;: . 

. \~. 

.. 



' 

• 

.... 

-3-

II. FmST BORN APIROXIMATION 

Because we wish to examine complete trajectories, we remove 

the threshold behavior and instead of the ,J;Brt.ial-wave amplitude 
. . 

A£(s) consider the function B£(s) = qs-
2

£ A£(s). This is 

necessary because ·the N/D method Will not guarantee the correct 

threshold behavior for A.£, unless, "per impossible; 11 we know the 

complete lef't-hand cut. I\e usual way we set 

1 

Bt(s) = ~£(s) / Dt(s), {2,1) 
\ 

' 

· where N.t ( s) has the left-hand, \and D t ( s) the. right-hand,\ cuts of l: 

'B t ( s) , . and take B 
2
(s) to ha vi.\ the same lef't~hand singularities 

' . . \ . . 
as the potential f:unction, · V,e(s) 1\ to be derived subsequently. 

and 

where 

Thus in)dispersion form we have 

B 
0 

. Joo Im { D £

6

(s .. '_) V

6

t. (s' )} 
= V t ( s ) D t ( s ) . - ~ ds ' 

= 1 + 1. 
:1{ 

s . 
0 

Im { D t(s' )} 

s' - s · · ds' , 

= 4 m2 is the elastic threshold. 

The unitarity relation is 

Im {nt(s)} = -pt(s)·N.t(s) , 
' 

(2,2) 

(2, 3) 

(2, 4) 



... 

... 

,_·;,. 

.where the phase•space factor is 

P t (s J - (• s 4) t ~ ~ :Y 
with relativistic ltlnema tics, or P t ( s J . = 0 - ·4'\ t + t . 

4 / ... ;· .. with non• 

r.ela ti vis tic kinematics. , .. 

. . 
Combining '(2, 2 )1 (21 3) and (21 4 ), we obtain, .. 

' 

co 

1 y· ·V (s') - Vt(s) 
Nt(s) Vt(s) ds' 

£ 
P,e{s') ~£ (s') ·= +-

s' J 1\ - B s :.~ 

0. -~: 

t_ ~ 
'i. 

00 
P.e(s') N£(s') 

D£(s) 1 ~ .. J ds·' = .. 
s' • .. s 

so 

This form of the N/D equations has been preferred tb that 
. 

used in I. The equations have been programmed for the computer by .. 

(2, 5) 

(2, 6) . ., ., ,, 
\ 

, . 

: D. G. and V. L. Teplitz, 3 and in the following caic~tio~s :we ha.V'e . 

used a modified form of their program. .. ' -

I 
If we consider the force· from the exchange of a spin•zero , 

particle in both the t and u channels we have 

.• 1 

·= 2~ .2:t. J d(cos ~)P£(cos 
s . -1 . 

. '. 

.. ~- ~ . 

. _,. !' 

' . .. ~ 
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(2, 7) 
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'-ti 

This is the first Born approximation to the ~eft-hand cut, and, 
~ . 
= m~ we require as in I, we find that to produce a bound state at s 

g/m2 = 16.5 1 but that then the residue of the output pole is 105, 

or very far .from a "bootstrap" solution. !n Fig. 1 we plot the 

position of the bound state versus the coupling constant, and in 

Fig. 2 we show the trajectory on which the particle lies. It will 

be noted that the trajectory does not rise to large values of .£ 1 

but has a cusp at the threshold. Because the traj~ctory has a 
' 

branch point atthreshold,' the path of the second zero of the real . ~ 

part of the D .... function (plotted as a dotted line in Fig. 2) can 

not be identified with the falling trajectory, but is probably 

reasonably close to it just above threshold. We believe that the 

contribution' of this sort of trajectory to the potential is well 

represented by the .£ = 0 "elementary" particle form wh:Ic h we 

have used (21 7). 

However, Luming2 has shown that in the non-relativistic case 

the solutiion obtained with such large coupling constants is very 

far from the correct solution of the SchrOdinger equation with a 

Yukawa pote,ntial g e -mr /r. (:libte that Lumirig uses g2 where we 

use g.) 

The main differences between the non-relativistic and 

relativistic·cases are that the phase-space fa~tor P,t(s) is 

changed in the way explained above, and, since there 'is only one 

crossed. channel, we replace g by g/2. The change of @:.£ means 

that whereas relativistically one can integrate (21 5) to infinity 

. ·~ . 

·.• 

-I 
i 
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for ·I. < 1 ~d still have a. Fredholm equationJ in thei;non-rela.tivistic 

situation this is true only of I. < ~ ·• Otherwise one ~must use a 

cut-off, but, as LUm.ing shows,the results·are very little dependent 

on the magnitude of the cut-off if it is large. We took an upper 

limit of ·200m2 ip all the calculations reported here,· but have 

verified the-insensitivity of the results to the value of this 
' . I 

parameter in both the relativistic and non~relativistic cases. 

In Fig .. 3 · we show the plot of bound--state energy versus 
I~ ' 

. ~~ 

coupling constant in the non-relativistic situation and com}:a.re it 

with 'the exact solution' of. the Schrooinger equationobtained by 
/ . ' 4 . . . . 

Hulthen and Iaurikainer •' This agrees with ·Luming's Fig. 10. It 

will be observed that there is a-considerable discrepa~cy between 

the two curves for 2 
s = m • However, Luming also shows that 

~here is a great improvement if the second Born approximation to . . . . ~ 

' . 
the lett.:.hand cut is. used~ and w.e may . expect this also to be true 

\_, . 

for the relativistic case. 
{,•' '\ 
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III. THE SECOND BORN APPRO:x:nMTION 

Figure 4 shows the Mandelstam representation for the amplitude, 
) 

00 A (s,u') 
A.(s,t) = g 

2 
+ g 

2 dt 1 + l 
1( J (~' -u} du 1 

1 

m - t m • u uo . (3, 1) 

\ 

A(s,zs) = ~(~1 z 5 ) + ~(s,zs) 1 

where "a ~s o~ the right-ha~ s:lngul.arities, ,~~ the left-hand, 
I 

and z
8 

is the scattering angle in the .s channel. We define 

even and odd negative amplitudes by' 

(3;2) 

and find, because of the symmetry in s, t, and u1 

(t .... t) 
1 J ds' 

( s '+ t • - 4+s ) 

+ ~ ff p t(s•,t•)[-·_. __ 1 __ _ 
rc JJ 8 

· · {t•- .t) (s 1 - s) 
+ 

(3,3) 

where is the double spectral function. 

Making the partial-wave projection of · (3,3) ·, · we find 

' . .rJ·. 

•. 

\ 
\ 

•• 

dt I J 

.. I 
' [ 
\' I 
I' I 
:~\I 
\J 

I 

~ 
[ 
~ 
I 

r 
I 

~ 
~ 

~ 
r: 

t 
r 



-8-. 

However, the second term in (3, 4) has both left-hand and . 

right-hand cuts in s, and to obtain the "potentiaf' from this 

expression we must subtract the contribution of the right-hand cut 
- :1 . 

:·S 

s 1 
) • · .AJ:ong this cut the imagins:~ 

0
part is z .. 

Q.e 1 + -. 2 . ~j 
2 ' . 2q 
;t" Pst(s,tl) 2 2 s 

qs 

(s -

' 

so the contribution to A is .e 

Q.e~+ tl20 CD 

:1 JJ 
pst (s I' t r) 
(s'-.s) 

. . 2q I 

--;;.._~..;;;s;.... -· - d I 2 s 
2q 1 ' ... 

'·i.s . 

·,.'' 

\; 

·;. 

... ·. 

dt' 

i 
Thus the final expression'far V.e(s) .is, when we remember 

·the threshold factor, .).' 

(3, 4) 

ll.. . ... 
. 

. · .. 

vl(s) = qs2t~ + 2 Qg ~ + 2::~ +Jff .Pst(s:,: t') >( 

t··= s)c:~: :t0~ Q:~: ~)J (s'+ t•= 4ts)~;~~:~: :q;~9 ds'.· dt' 

·., '.1 •. 

; ~- '• 

-~ • *.. . • 

' . ' ~' . ' 
i \ ;, 

;f.'..... .... '·J 

_:. ": ~ . . ·' . 
. ; ,· 

_-.-,' 

..... 
: r 
' t . , .... 

r. 
' -~ 
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For the second Born approximation we require to know the . -~: 
elastic part of the double spectral function, which rna~·. be obtained 

by iterating the pole, or first Born approximation, with elastic 

unitarity. (See, for example, reference 6.) 

The first Born approximation gives 

Then p:~ (s,t) = 
1 

1CqYs 
s 

du' 
+ 

2 .· 
where K(q ,t,t',t") ' s 

I 

d t II At ( 1 ) ( s, t' ) At ( l ) ( s, t 11 
) 

K~(q 2 tt't") s , , , 

Combining (3,6), (3, 7), ·and (3,8) gives 

wi t{l a boundary at 
4 

s = (t - 4)+ 4. 

2 
2rt: g 

qfs 
1 

. ' ~· . 
, 

·We use (3, 9) -substituted in (3,5) to give the ','potential." ·-

'. 

-·--·,_.-., -i.': ·~ 

(3, 6) 

(3, 7)' 

(3, 8) 

j (3, 9) 

' (3, 10) 

i 
i 
I 

, I 
' ! 
I 
I 
I 
I 
f 

f 
I 

I 
(. 

f. 
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The corresponding non-relativistic expressions are 

with 7. 

= 

· · e.t (s, t) 
:Pst 

1 4)1 2 tm 2. 
4t m - "'-2 . 

q . s . 

J. '. 
it'. 

... 

.I (3,11). 

(3,12), 

lJ. r 

I . . t 

. reflecting the absence of the third double spectral function, and'the 

altered unitarity condition. 

Since e.t 2 pst depends upon g we can expect it to become more· 

important as g increases. Figures 1 and 3 show the results of 
. I 

· solving the N/D equations With these. ";potentials." Again in Figo ~3 

we have reasonable argreement with Luming's results. 

2: 
In the relativistic case a. bound state is produced at m 

With g 
2 ·.. 2 

= 4.5 .m but gr = 56 m , so ·we are no· near.er ·to a 

bootstrap solution. The trajectories concerned are shown in Fig. 5• 

It stillproves impossible to produce a secondary trajec~ory ,Passing 

2 : ' ·. 
·through m · at .t · = 0 · however ·large · g · may be, so the chances of 

. .8·"'· . 
. . 

obtaining a bootstrap ~elution in this way:arenegligibl:e~ ._.; ... 
' ... . . .. ~ ... 

I·. 

. '. 

., .... , 

,. 
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However, one may object to the use of this fo~ of the double 

spectral function from the point of view of continuation in angular 
8 ' , 

momentum. We know that the contribution of a Regge pole to the 

amplitude may be written 

A(s, t) = 

and our fixed ~ = 0 pole comes from putting 

and then using this for all t with 
\ 

= 1 r(m
2

) 
g 2 (iiTzii2j ~ 

But (3,13) shows that the use of (3,6). for At (l)(s,t) is 
I 

not justified for large s, · since we obtain 

cc 
s-+· oo. 

Substituting in (3,7) would g ve us 

'· I 
.) 
I 
\ 

e£ 
p · (s,t) .,st = if dt' 

S -+ CD 

dt" 

\ 

o:(t') + o:(t") 

s \ 

\ . 
\ 

. 1 
.. X( terms in t, t ', t") 

- .... ~ 

\. 

... 
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2 ~.:~ ~ . Figure· 5 shows that there is a region of · t from . m r·;,to about 
']' 

10 m
2 

for which Re a(t) >O, and the integral in (3,ll) is not 
; . 

well approximated by our "'se of a = · 0 in this region, and it 
I 

will even diverge if there s a region where a ( t) > i . .But 

_,' we ·also know that the asympt :tic behEi:v:I.or given by the first Ma.ndelstam 

f' 

' ' . ' 

~ ··~ i~eration --is. i~co:rreCt, ··arid ·in :fact we shou.ld-·have 
I ,,,;' ,. 

I 

' .l 
\ 

·; 

1 
1. 

.. ,.. ;" \ 
'I 

Pst(s,t) ~sa(t) . 

In other· words, the elastic\ double 
'• 

. ' 
, .. . , 

does 
~ l ' ~ I · 

not represent the behavior' -of 'the total double spectral function 
. I 
.lor· large a, 

·R.e a(t) < o. 

and in fact (3,11) should converge providing that 

I 

In the following section 'lie present a method of .increasing 

· the convergence of the integral (3, 11) whereby only the .near 

.. :. (small s) region of the double spectral function is important, 

and th~, aJymptotic region, where the el~sti~·do'u91~ spectral_functi~n. 

. , : .. :, :>· ·is not rel:i.abl~;-; has littld'-.i~luence~; f. •.· •.•. : . · ·· :. ~--; / ..• ,_ ~A·· .. • 
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IV. A SUBTRACTION DErERMINED BY REGGE As~pTIC BEHAVIOR 
i} 

1 ' the previous work we tried to represent the effect of 

l 
In 

I he double spectral functions by including the force from the S•wave 

' 
part of the elastic discontinuity in the crossed channels. The 

double spectral functio~, of course, gives the sum of all the 

partial waves, but it is still convenient to subtract the s~wave 

part, and then. add it back in the same manner as :in :(1. We know,: that 

the Regge asymptotic behavior of the double spectr~l function 

determines the number of subtractions needed to make integrals like 
~.~.~ 

(3, 3) ,converge, and in our case, where a( t) < 1; .\i~e need only 
~ t 

make one subtracti.on:- of the S-wave discontinuity. 

The total discontinuity in the t channel is 

~Ids' P st ( 8
'' t { s '~ 1 s)] At (s, t) = + 4 + 

(4, J,.) 
S) \S 1 + t 

;e,t = 0 

~Jds' and A· (t) = pst (s ', t) ds' (4,2) 
t • 

Thus we may write 

J (4, 3) 

·' 

and since 

·~··. 

i'· 

~~ 
,. 
>\ 
\C 
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A~(s) 

we have 

I 

-~ 

!: 
" . 

(4, 4) 

Finally, removing the right-hand cut in analogy with Section III, 

we have· 

g 

.. ' 
,. 

···.·~--· .-
;.'_:· 

dsL dt', '·:'·. ·(4, 6) 

J 
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We ·can immediately see that the;c6nvergence of the.doubie integral 

·. has been improved.;·. since ·" ' .'. 
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which cancels.with the firs term in the expansion of 

[< •' 1 _ s) +(s'+ t': 4 + .r] in po 
1
ers of '~, , leading to 

~JJP•t(s' , t') X ~erms \order -~~ ds' dt' , 

which will converge if a( t) < 1. Figure 5 shows that in fact a is 

always less than 1, and so we have removed the difficulties 
l 
described in the previous ~ection, though at the expense of some 
. i 

computational complexity. The second term in (4,6) is to be 

· ' evaluated by· the s~me sort ·of cycling procedure we described in .I, 

whereby we impose equality upon the discontinuities in the s and 

t channels. 

As in the previous section we shall make the approximation 

e£ 
of replaceing p

6
t by est • Since only the low s part is now 

. important, this should be a good approximation.·: 
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· V • THE CONFLICT WITH UN!TARITY 

On evaluating the double integral in (4,6) we ~ind that its 

contribution to vl is negative, indicating that the s-wave (t-channel) 

part which we have removed is greater than the contribution of the 

double spectral function, if ~e subtract ~om the double spectral 

function's contribution that.part ~hich gives rise to the right-hand 

cut (in the s channel). Of course the S-wave part is smaller than 

the total contribution of the double .spectral function, since the 

individual partial waves are positive, and it is only because of the 

removal of the right-hand cut part that the result is negative. 

The partial-wave series does not converge along .the right-hand cut. 

el · 2· 
Since P.st depends on g ·, this negative contribution 

rapidly increases with the coupling. If ~e could achieve self­

consistencyJ the .second term in (4,6) ~ould outweigh the part 

subtracted, so that total potential would be positive. But this 

term is limited by unitarity in the t channel, whereas the double 
I . 

spectral function is calculated with the· use o~ unitarity in the 

s channel only. 

When we solve the equations we find that, except for small 

values of g 1 the negative contribution of the double spectral 

function.: dominates, producing a repulsive potential.. Thus except . 

_for very small g the elastic double spectral ~unction, obtained 

by iterating the t-chahnel poles with elastic unitarity in the 
. . 

s cpanne+~. con~lictswith the requirement ot·unitarity ·in the t' 
.f.. 

channel. A unitary crossing-symmetric .S-matrix can not be :obtained. · 

! . 

'• 1 • - ·' 

' •, 

'·· 
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The values of g which do not pr.oduce this conflict are too 

small for a bound state to be formed at s = m2 , so it is not 

possible to make the s-~trix crossing symmetric even with regard 

to the positions of the poles, as we had supposed in Io 
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FIGURE CAPriONS 

Fig. 1. Relativistic bound-state energy squared, s, vs coupling 
\ 2 ~ 

strength, g, in uqits of m 

~~ B
2 

-- second B~ n approximation, primary and secondary. 

c
1

, c
2 

first BorSnapproximation, primary and secondary. n\ 2 . 
Trajectory for g = \;16.5 m 1 relativistic first Born Fig. 2. 

approximation. 

'Fig. 3· 

\. 

Nonrelativistic bound-st\te energy squar"";; s·. 

strength, g, in units of \m2
• · ··' 

\ . ~' 

vs 'coupling 

~~ ·~ -- solution of the SchrOO.inger equaiton, primary and 

I 
~ig. 4. 

~, .. ,, 

secondary.. The other labels correspond to ·\those in Fig'. 1. 

The Mandelstam Representation. 

l; 

i 

Fig. 5· Trajectories for g = 4.5 m2, relativistic second Born 

approximation. 
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