
Lawrence Berkeley National Laboratory
LBL Publications

Title
Anthropogenic aerosols mask increases in US rainfall by greenhouse gases.

Permalink
https://escholarship.org/uc/item/6v700508

Journal
Nature Communications, 15(1)

Authors
Collins, William
OBrien, Travis
Huang, Huanping
et al.

Publication Date
2024-02-22

DOI
10.1038/s41467-024-45504-8

Copyright Information
This work is made available under the terms of a Creative Commons Attribution 
License, available at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6v700508
https://escholarship.org/uc/item/6v700508#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


Article https://doi.org/10.1038/s41467-024-45504-8

Anthropogenic aerosols mask increases in
US rainfall by greenhouse gases

Mark D. Risser 1,9 , William D. Collins2,3,9, Michael F. Wehner 4,
Travis A. O’Brien1,5, Huanping Huang 1,6 & Paul A. Ullrich7,8

A comprehensive understanding of human-induced changes to rainfall is
essential for water resource management and infrastructure design. However,
at regional scales, existing detection and attribution studies are rarely able to
conclusively identify human influence on precipitation. Here we show that
anthropogenic aerosol and greenhouse gas (GHG) emissions are the primary
drivers of precipitation change over theUnited States. GHGemissions increase
mean and extreme precipitation from rain gauge measurements across all
seasons, while the decadal-scale effect of global aerosol emissions decreases
precipitation. Local aerosol emissions further offset GHG increases in the
winter and spring but enhance rainfall during the summer and fall. Our results
show that the conflicting literature on historical precipitation trends can be
explained by offsetting aerosol and greenhouse gas signals. At the scale of the
United States, individual climate models reproduce observed changes but
cannot confidently determine whether a given anthropogenic agent has
increased or decreased rainfall.

Daily accumulated precipitation, including precipitation associated
with extreme events, is an important part of the global water cycle1.
Precipitation is particularly important considering decreases in natural
water storage, including snowpack2, glaciers3, and groundwater4. As a
result, a comprehensive understanding of precipitation change is cri-
tical to human systems, including agriculture, water resource man-
agement, and infrastructure design. Such knowledge can underpin
mitigation policies and adaptation in response to changing risks of
natural hazards such as flooding and droughts5 within a nonstationary
global climate6.

While anthropogenic influence has been identified for many
aspects of the Earth system7–12, robust conclusions regarding the
human influence on regional (sub-continental) precipitation
remain difficult to obtain. Existing studies primarily address changes at
the global scale13, zonal land-averages14–16, or continental-scale

averages17–20. Such large-scale statements about anthropogenic influ-
ence on precipitation are highly useful but do not provide the infor-
mation needed to understand the nature of local climate change, for
example, the magnitude and direction (increasing or decreasing) of
the change. Attempts to attribute local-scale precipitation trends have
proven to be largely inconclusive21–23 even over the continental United
States (CONUS) where there are well-documented century-length
trends in seasonal mean and extreme precipitation24–26. A recent
study27 identifies a statistically significant human influence on regional
precipitation over Europe, but only for mean precipitation and only in
winter. Oneof theprimary reasons existing studies struggle to robustly
assign human influence is due to their reliance on global climate
models, and climate model uncertainty is one of the primary factors
that limit confidence in regional attribution for precipitation28. For
example, anthropogenic aerosols have a significant influence on
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regional precipitation change over the CONUS29; however, the signal-
to-noise (SNR) ratio for individual ensemblemembersof single-forcing
anthropogenic aerosol climate model runs ranges from –5 to +3
(indicating that aerosols drive both statistically significant increases
and decreases in precipitation; see Supplementary Fig. 1). As such, new
methods are needed to attribute human influence on regional pre-
cipitation, ideally approaches that reduce direct reliance on global
climate models, explicitly model natural drivers of precipitation, dis-
entangle the complex causes of regional precipitation change, and
account for anthropogenic aerosols28,30,31.

The purpose of this study is to implementmethods developed for
regional detection and attribution (D&A) that provide robust conclu-
sions regarding the human influence on seasonal mean and extreme
precipitation over the CONUS. Despite dense measurements of long-
term rain gauge records, the Sixth Assessment Report of the Inter-
governmental Panel on Climate Change indicates low to medium
confidence at best and no agreement at worst in the nature of pre-
cipitation change over much of North America [Figure SPM.3;32]. Here,
we explicitly decompose the uncertain combined anthropogenic sig-
nal into separate contributions from twoof themost important forcing
agents. This decomposition allowsus to conclusively attribute changes
to these forcing agents. Importantly, our approach utilizes climate
model simulations indirectly to identify an appropriate formula for
modeling a time series of precipitation [ref. 29, see Eq. (2)] using Pearl-
causal inference33. Climate model output is then set aside, and we
interrogate in situ records from rain gaugemeasurementswhich yields
Granger-causal34 attribution statements. Definitive conclusions
regarding the spatial patterns and time-to-emergence of human
influence on regional precipitation are made possible by simulta-
neously accounting for both anthropogenic aerosols (globally and
locally) and greenhouse gas emissions [much like the two- and three-
way analyses in ref. 27]. Complementary analyses of climate simula-
tions assess the degree to which observed relationships can be
reproduced by physical models.

Our approach to regional D&A has both similarities and important
differences relative to more traditional D&A methods that rely on
optimal fingerprinting35. A detailed comparison is provided in the
Methods (see “Comparisonwith optimal fingerprintingmethods”), but
at a high level the important points are as follows. For example, our
implementation can be seen as analogous to a two-way regression
analysis with single-forcing greenhouse gas-only and anthropogenic
aerosol-only experiments. However, unlike optimal fingerprinting, the
regressors or so-called “fingerprints” are not model-simulated quan-
tities but instead fixed forcing time series that are reconstructed from
observations. The primary motivation of this work is that model
uncertainty is a major barrier to regional D&A for precipitation, and
hence our methodological choice to not rely on model-simulated
responses or inter-model differences is intentional. Also, unlike opti-
mal fingerprinting, we explicitly model part of the internal variability
via climate drivers and estimate the magnitude of the internal varia-
bility directly from observations, such that uncertainty in this estimate
is propagated through to the attribution conclusions. Finally, unlike
traditional optimal fingerprinting, we suppose that attribution state-
ments are localized and vary over space (as opposed to a single con-
clusion for the entire domain), such that D&A statements with
uncertainty quantification can bemade for either individual grid boxes
or spatially-aggregated grid boxes [e.g., all of CONUS or attribution
subregions such as in ref. 36] in a single framework. It is also note-
worthy that recent research has identified serious problems with the
traditional implementation of optimal fingerprinting, namely that it
underestimates uncertainty and yields overconfident attribution
statements37,38 and furthermore produces biased estimates of the
scaling factors39.

Over the last century, the principal anthropogenic forcing
agents for precipitation over the CONUS are well-mixed greenhouse

gases (GHGs) and aerosols29. Best estimates of the five GHG
concentrations (carbon dioxide, methane, nitrous oxide, and
chlorofluorocarbon [CFC] 11 and 12) are available from the
boundary condition files used in the sixth phase of the Coupled
Model Intercomparison Project (CMIP6)40 and can be converted to
their corresponding radiative forcing on the atmosphere41,42; see
Supplementary Fig. 2(a). The reconstructed GHG forcing time series
used in our analysis involves a time lag to account for the lagged
response of sea surface temperatures (SSTs) to GHGs (see the red
line in Supplementary Fig. 2d), which dominates the effect of GHGs
on precipitation43,44 (see “Analysis of GHCN in situ records” in
Methods). Based on ref. 45, we assume the GHG forcing is spatially
uniform across the CONUS.

Anthropogenic aerosols are more difficult to account for since
their effects on precipitation are multi-faceted46 and relevant
century-length observed quantities are significantly limited. For
example, while GHG forcing imposes primarily a lagged effect (the
“slow” precipitation response) on the climate system, the effects of
anthropogenic aerosols on precipitation have non-negligible lagged
components due to cooling of SSTs aswell as fast components due to
aerosol-cloud interactions. In order to account for the slow pre-
cipitation response to anthropogenic aerosols, we utilize an obser-
vationally constrained time series of historical aerosol effective
radiative forcing47,48, denoted “AER-glob”; see Supplementary
Fig. 2(c). This forcing time series describes the effects of all non-local
anthropogenic aerosols, including remote aerosol emissions from
Asia and Europe. AswithGHG radiative forcing, we apply a time lag to
account for the SST-mediated response on the climate system (see
the blue line in Supplementary Fig. 2d). Even though SO2 is the
dominant aerosol species for changes in precipitation in the CONUS
[Hypothesis 4a of ref. 29, see also Supplementary Table 1], it is
nontrivial to explicitly characterize the fast precipitation response to
local sulfates in an observational analysis. Without long-term,
spatially-resolved observations of, e.g., atmospheric concentrations
of SO2, we must rely on climate models. However, the diversity in
chemical and physical parameterizations and in atmospheric dyna-
mical formulations across multi-model ensembles yield vastly dif-
ferent concentration and surface deposition rates49. Even CONUS-
mean SO2-related quantities across simulations from climate models
in the Aerosol Chemistry Model Intercomparison Project
[AerChemMIP;50] differ significantly [see FigureG3of ref. 29]. Aerosol
emissions are a prescribed quantity in historical simulations and are
hence consistent across climate models, and ref. 29 show that
regionally-averaged time series of SO2 emissions can be used to
appropriately quantify the fast precipitation response in each season
to anthropogenic aerosols over CONUS. Note that our results are
insensitive to the specific method used to derive localized estimates
of emissions’ influence on precipitation (see Supplementary Fig. 4).
Supplementary Fig. 2(b) shows best estimates of CONUS-wide sea-
sonal emissions trajectories from the last century obtained from
refs. 51,52, denoted “AER-local”. These estimates show that SO2

emissions trend upwards over the first two-thirds of the 20th century
(much like GHG forcing) but then, following the introduction of clean
air regulations in themid-1960s, decline sharply to their low present-
day levels.

Ultimately, we use the sum-total lagged GHG and AER-glob for-
cing time series (see the black line in Supplementary Fig. 2d) to
quantify the slow precipitation response to anthropogenic influence,
and we employ regionally-averaged local SO2 emissions (AER-local) to
quantify the fast precipitation response to anthropogenic aerosol
forcing. Each of these forcing time series are actually proportional to
the fast and slow precipitation response. Statistical attribution coeffi-
cients are estimated from rain gauge data to translate the forcing time
series to the corresponding rainfall response (see “Analysis of GHCN
in situ records” in Methods).
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Results
We analyze in situ measurements of daily precipitation from rain
gauges in the Global Historical Climate Network [GHCN;53,54], using a
set of approximately 2500 high-quality stations with records dating
back to 1900. Equipped with the general D&A formula and its simpli-
fication for analyzing seasonal mean and extreme daily precipitation
over the CONUS presented by [ref. 29, see Eq. (2) in Methods], we
generate best estimates of the fast (AER-local) and slow (combined
GHG andAER-glob forcing) statistical attribution coefficients, denoted
βFast and βSlow, for 0.25° × 0.25° longitude/latitude grid boxes (see
“Analysis of GHCN in situ records” in Methods). Uncertainty quantifi-
cation allows us to attribute the observed changes to seasonal mean
and extreme precipitation for both individual grid boxes and aggre-
gated subregions while accounting for multiplicity in testing (see
Methods, ibid.). We further use the attribution coefficients (and their
uncertainties) to examine time-to-emergence for each anthropogenic
forcing agent (see Methods, “Summarizing the GHCN analysis”).

Spatial scales of attribution: fast versus slow response
The detection and attribution of anthropogenic climate change is
inherently a signal-to-noise problem, and a common approach for
increasing the signal-to-noise ratio (SNR) is spatial aggregation. Given
the general challenges associated with attributing changes to pre-
cipitation for individual grid boxes21 and limited success with attribu-
tion for sub-continental scales22,23,27, our first result examines the
spatial scales for which we can confidently attribute changes to
regional precipitation using our D&A framework. Starting with the
entire CONUS, we subsequently divide the CONUS into two, four, 13,
and 75 nested subregions [using the attribution regions defined in
ref. 36, see Supplementary Fig. 3 and the right-sidepanel of Fig. 1]while
also assessing individual 0.25° × 0.25° grid boxes. The attribution
regions correspond to spatial scales of ≈8Mm2 (all of CONUS), ≈4Mm2

(two subregions), ≈2Mm2 (four subregions), ≈0.5Mm2 (13 subregions),
and ≈0.1 Mm2 (75 subregions), where 1 Mm2 = 1 million km2; the grid
boxes are ≈600 km2. For each set of subregions, we area-average the
statistical attribution coefficients, test the two subregion-specific null
hypotheses H0,f:βf =0 for f∈ {Slow,Fast} (one for each response), and
after applying a multiple testing adjustment, identify the subregions
for which we can confidently attribute changes in both the slow and
fast precipitation response to external forcing.

Figure 1 tallies the fraction of CONUS for which we can attribute
changes with bothmoderate and strong significance aswell as the sign
of the attributed change (i.e., if the forcing agent or agents drives
increases or decreases in precipitation) across the spatial scales con-
sidered. When considering the entire CONUS, we can attribute chan-
ges to the fast and slow response with confidence across many
seasons, although in some cases attribution can only be made for
moderate significance. Note that there is a nearmonotonic decrease in
the fraction of CONUS with significant attribution as we move from
large to small scales across forcings, seasons, and precipitation type.
For individual grid boxes, the slow response is significant for at least
some grid boxes for spring, summer, and autumn for both mean and
extremeprecipitation. The fast responsehas a highly significant drying
effect for CONUS-averagemean precipitation in the winter; in summer
and autumn, the fast response instead results in (primarily) enhance-
ments to mean and extreme precipitation, as found in prior multi-
model experiments concerning the response of precipitation to sul-
fates (see below for further detail). In JJA and SON, the enhancements
in extreme precipitation are significant for ≈0.1 Mm2 (and larger)
regions for extreme precipitation and ≈0.5 Mm2 (and larger) regions
formeanprecipitation. These attribution conclusions, which are based
on the relative comparison of the signal (βf) and the noise (comprised
of uncertainty from precipitation vs. f relationships and from internal
variability of the climate system), imply that the SNR for the slow
precipitation response (AER-glob plus GHG forcing) remains large for

very small spatial scales,while the SNR for the fast response (AER-local)
is detectable down to spatial scales of ≈ 0.1-0.5 Mm2. Furthermore,
since uncertainty due to internal variability of the climate system is the
same for all forcing agents and the magnitude of the signal is com-
parable for the fast and slow precipitation response (see Fig. 2), this
implies that we have higher certainty for quantifying the slow pre-
cipitation response relative to the fast precipitation response at the
finest spatial scales considered here.

Grid-box attribution for precipitation change
Because both GHG and AER forcing have an attributable human
influence on mean and extreme precipitation response for individual
0.25° × 0.25° grid boxes in at least one season (Fig. 1), we first explore
the statistical attribution coefficients and their significance for GHG,
AER-glob, and AER-local forcing at these very small spatial scales.
Figure 2 shows the product of the attribution coefficients and the
range of each forcing agent such that the plotted units describe the
effect of each forcing agent on precipitation (see “Summarizing
the GHCN analysis” in Methods); hatching indicates a statistically sig-
nificant attribution (i.e., that the null hypothesis of no anthropogenic
influence is rejected; determined with both moderate and strong sig-
nificance). The anthropogenic signal is strongest for theGHG influence
on 20-year return values of extremedaily precipitation (Fig. 2b), where
there is evidence that human-induced GHG forcing causes changes in
extremes in all seasons except winter, ranging from 21% of CONUS in
summer to 36% of CONUS in spring. GHG forcing primarily causes
present-day extreme values to exceed their early-1900 totals by as
much as 10 mm day−1, with the largest increases in the central US (in
winter, spring, and summer), the northern Great Plains (in spring), the
southeast (in autumn), and the northeast (in spring and autumn).GHG-
driven changes in mean precipitation (Fig. 2a) have similar patterns to
those present in extreme precipitation, as evidenced by the high pat-
tern correlationbetween the effect onmeanand extremeprecipitation
ranging from 0.65 in winter to almost 0.9 in autumn. These relatively
strong correlations are noteworthy since changes in means and
changes in extremes are driven by different dynamical and thermo-
dynamic mechanisms, such that there is no guarantee of any corre-
spondence in these spatial patterns. Finally, with at least moderate
significance we can also conclude that GHGs cause average daily pre-
cipitation totals to increase by as much as 1 mm day−1 in many places
(ranging from 6%of CONUS in spring to 18% of CONUS in autumn).We
cannot ascribe statistical significance to grid box mean changes in the
winter.

The slow AER response has the opposite sign to that of the slow
GHG response by construction (see Methods) since the AER-glob and
GHG forcings have opposite signs and the magnitudes of both
monotonically increaseovermostor all of theGHCN record. Therefore
significance statements for the slow precipitation response to aerosols
are identical to the GHG hatching. As expected from atmospheric
theory, the slow precipitation response to aerosols is negative almost
everywhere, with only limited areas (and generally non-significant)
showing increases to precipitation.

While GHG- and AER-glob-driven increases in precipitation are in
line with model-based analyses55,56, the fast precipitation response to
local aerosols (as quantified by SO2 emissions) is muchmore nuanced.
In the winter and spring, increases in SO2 emissions result in drying for
both mean and extreme precipitation over 60–75% of the CONUS (see
Table 1). This is consistent with the global-mean drying seen in single-
aerosol-forcing historical model runs57. On the other hand, increased
SO2 emissions enhance both mean and extreme precipitation during
the summer and autumn. Multi-model mean estimates of the seasonal
fast and slow precipitation response to sulfate aerosols (see “Fast
versus slow precipitation response to aerosols” in Methods) derived
from experiments in the Precipitation Driver and Response Model
IntercomparisonProject [PDRMIP;43,57] reveal that the best estimates of
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the fast response to aerosols averaged over the CONUS are increases
to precipitation, especially in the summer (see Supplementary Fig. 5a).
In summer, the spatial patterns of the fast precipitation response to
aerosols estimated from PDRMIP (Supplementary Fig. 5b) show strong
correspondencewith our GHCN-based estimates in Fig. 2: decreases in
the eastern U.S. with large and statistically significant increases in the
central and northwest U.S. (Supplementary Fig. 6 shows a side-by-side
comparison of the spatial patterns).

It is important to note that while our best estimates sometimes
indicate SO2 enhancements to both mean and extreme precipitation,
in nearly all cases these local changes are often not statistically sig-
nificant. This lack of statistical significance is because, as mentioned
previously, the fast precipitation response to local aerosols is simply
much more uncertain than the slow precipitation response.

Lastly, it is clear fromFig. 2 that the the fast and slowprecipitation
responses are of comparable magnitude, up to ±1 mm day−1 for mean
precipitation and ± 10 mm day−1 for 20-year return values. Table 1
summarizes the joint distribution of the statistical attribution coeffi-
cients for the fast versus slow precipitation response: in winter and
spring, it ismost common for the slow response (Slow+) to be offset by
the fast response (Fast−; for both mean and extreme precipitation),
although for roughly 20–30% of the CONUS increases in the slow
response are enhanced by additional local AER-driven increases in the
fast response (Fast+). For summer and fall, the dominant category is
slow response increases further enhanced by fast response increases
(again for both mean and extreme precipitation), although the Slow
+/Fast − category maintains 20–26% of the domain. The fact that these
two anthropogenic agents have an equal effect on precipitation while
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(b) Attribution by spatial scale: 20−year return values
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(0.1 million sq. km)

13 subregions
(0.5 million sq. km)
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(2 million sq. km)
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(5 million sq. km)

CONUS
(10 million sq. km)

    Spatial scale

Fig. 1 | Fraction of the contiguous United States (CONUS) with a significant
attribution conclusion for the slow and fast precipitation response in each
season across spatial scales. a, b show results for precipitation rate and 20-year
return values, respectively. Conclusions are based on null hypothesis tests of no
effect for the fast and slow response, and we show results for successively

subdividing the CONUS into one, two, four, 13, or 75 regions36 as well as 0.25° ×
0.25° grid boxes. Testing individual subregions or grid boxes accounts for the
effect of internal variability, and we include a multiple testing adjustment to
yield statistical significance with both moderate and strong significance (see
“Methods”).
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both their joint behavior and the fast vs. slowprecipitation response to
aerosols vary by season reiterates that D&A studies must account for
both forcings when attempting to interpret the historical record [as
discussed in28,30.

GHG signal emergence masked by aerosols
We next show CONUS-average anomalies for each forcing agent rela-
tive to the early 20th century climate in Fig. 3 to assess anthropogenic
influence as a function of time. While spatial averaging disguises
important heterogeneity in the statistical attribution coefficients
(shown in Fig. 2), assessing CONUS-wide averages allows us to evaluate
the overall trajectories of precipitation change over the last century.
Furthermore, while we are best able to identify anthropogenically-
induced changes at the ≈ 8 Mm2 scale (i.e., all of CONUS), we also
explore smaller spatial scales later in the section. An important con-
clusion of ref. 29 was that the total anthropogenic response (denoted
ANT) can be represented by summing the individual effects of GHG,
AER-glob, and AER-local forcing; hence, we can also compare the
CONUS-wide trajectory of the combined anthropogenic influence on
precipitation. For both GHG and ANT trajectories we can then identify
the year in which each signal emerges (see “Summarizing the GHCN
analysis” in Methods; “emergence” is shown by dashed vertical lines in
Fig. 3).Wedonot identify an emergence time forAER-globorAER-local

because their trajectories are not monotonic over 1900-2020. Note
that uncertainties involved in identifying an emergence year in Fig. 3
are different than uncertainties involved in attribution conclusions in
Fig. 1: the latter involve a formal hypothesis test for the attribution
coefficients (and do not depend on the forcing agents F(⋅)(t)), while the
former are a direct function of the forcing agents.

There are three important outcomes regarding the emergence of
the isolated GHG signal and combined ANT signal. The first is exem-
plified by cases where the combined ANT signal emerges very late in
the record while the isolated GHG signal emerges much earlier in the
record. Thus the emergence of the combined ANT signal is obscured
or masked by AER forcing while in fact the expected GHG-induced
increases in precipitation have been clear for much of the last half
century. This occurs formean precipitation in autumn and for extreme
precipitation in spring and autumn. Second, for mean and extreme
precipitation in summer, the GHG-only signal emerges relatively early
in the recordwhile the combined ANT signal either never emerges (for
mean precipitation) or does not remain above zero by the end of the
record (for extreme precipitation). Third, in the two cases where
the ANT signal emerges before the GHG signal for mean precipitation
in spring and extreme precipitation in winter, it does so only
after 2010.

How do issues of aerosol masking the GHG signal play out for
spatial scales smaller than ≈8Mm2 (all of CONUS)? For comparison, we
show corresponding time-to-emergence plots for the ≈4Mm2 (dividing
CONUS into two subregions) and ≈2Mm2 (dividing CONUS into four
subregions) scales in Supplementary Figs. 7 and 8. To summarize these
and even smaller spatial scales, where CONUS is divided into 13 sub-
regions, for each season and precipitation type, we identify the
emergence time for the isolated GHG signal and sum-total ANT signal
as in Fig. 3 for each CONUS subregion and calculate the difference
between the two emergence times (ANT minus GHG). These differ-
ences are shown in Fig. 4; we also note cases where only one or neither
of the GHG/ANT signals emerge. For all spatial scales where either
signal emerges, local aerosols mask the GHG signal. This outcome is
actually more common for extreme precipitation relative to mean
precipitation, indicating that masking from the fast precipitation
response to local aerosols is more prominent for extremes. There are

Table 1 | Area-weighted fraction of CONUS for which the
statistical attribution coefficients βSlow and βFast are the same
sign (positive or negative) or differing sign for each season
and precipitation type

Winter Spring Summer Autumn

Fast − + − + − + − +

Mean Slow − 0.33 0.07 0.20 0.05 0.17 0.14 0.22 0.09

Slow+ 0.41 0.19 0.45 0.30 0.22 0.48 0.25 0.43

Extreme Slow − 0.25 0.07 0.20 0.11 0.12 0.11 0.07 0.09

Slow+ 0.38 0.30 0.32 0.38 0.20 0.57 0.26 0.58

The “+” symbol indicates that the coefficients arepositive,while the “−” symbol indicates that the
coefficients are negative.
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of course some cases where only the ANT signal emerges, but in all
cases this occurs at the very end of the record (2010 or later).

In summary, our results show that uncertainties related to the
emergence of a detectable and attributable human influence on
regional precipitation over the CONUS over the historical record
[Figure SPM.3;32] can in most cases be explained by decomposing the
combined ANT signal into the fast precipitation response to local
aerosol forcing and the slow precipitation response to both GHG and
AER-glob forcing. Furthermore, we find that the emergence of the
isolated GHG signal is masked by local aerosols for spatial scales as
small as ≈0.5 Mm2.

Challenges in model-based attribution
Turning to an assessment of global climate models (GCMs), we apply
our general D&A formula to individual ensemble members from the
CMIP6-historical experiment58 and apply a weighting scheme that
emphasizes internal consistency of historical results relative to pre-
industrial and single-forcing runs (see “Analysis of the CMIP6 historical
multimodel ensemble” in Methods). Figure 5 summarizes weighted
averages of CONUS-wide estimates (including uncertainties) of fast
precipitation response to aerosols and the GHG and AER-glob con-
tributions to the slow precipitation response from 316 individual
ensemblemembers representing 25 distinctGCMs. Figure 5 also shows
corresponding CONUS-wide estimates from the GHCN rain gauge
analysis. As in the previous section, we again focus on CONUS-wide
averages for both to simplify presentation and to focus on the outer-
most scale at which GCMs should have the maximum skill in attribut-
ing human-induced changes to precipitation. A large fraction of the
multimodel ensemble (MME) captures the expected GHG-driven
increases in mean and extreme precipitation, particularly in winter,
spring, and autumn. However, it is noteworthy that a non-negligible
fraction of the MME cannot rule out GHG-driven drying, particularly
for mean and extreme precipitation in the summer. Furthermore, for
extremes in the summer, even the best estimate from the average

across the MME suggests that GHG forcing results in drying. The slow
precipitation response to aerosols (summarized by AER-glob forcing)
is generally drying, although the effect on precipitation is generally
smaller for Slow-AER versus Slow-GHG since the maximum forcing
range is reduced (−0.89 W m−2 for AER-glob versus +2.61 W m−2 for
GHG, see Supplementary Fig. 2).

A similar result holds for the MME estimates of the fast pre-
cipitation response to aerosols, where large numbers of ensemble
members suggest that increased SO2 emissions lead to either increases
or decreases in mean and extreme precipitation. The station-data-
based 90% confidence intervals shown in Fig. 5 have at least some
overlap with the central 90% of the weighted CMIP6 MME across all
seasons, precipitation type (mean and extreme), and anthropogenic
forcing agent. This implies that climate models are consistent with
GHCN-based estimates, although themodel uncertainty is so high that
the sign of the trend cannot bediscerned (whereas it can forGHCNdue
to lower uncertainty). The degree of consistency between climate
models and observations is of course differentiated, with higher con-
sistency for GHG-driven changes in extreme precipitation in winter
and spring than local AER-driven changes in extreme summer
precipitation.

Our analysis of the large CMIP6 MME reiterates that if one is to
pursueD&Aof regional precipitationwith climatemodels (a pursuitwe
advise against with current models), it is important to use multiple
climate models. The weighted summaries of individual ensemble
members in Fig. 5 illustrate the broad range in GCM-simulated
responses to anthropogenic forcing, meaning that individual climate
models cannot confidently attribute even the sign of the effect of AER
andGHG forcingonCONUSprecipitation up throughpresent day. This
is particularly true for aerosols, although (as previously mentioned) in
some cases individual ensemble members indicate that increases to
GHG forcing result in drying. The implication is that D&A for regional
precipitation based on a single-model can yield opposite results rela-
tive to identical assessments using other climate models in the MME,
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Fig. 3 | In situ-based, United States-average trajectories of seasonalmean (top)
and extreme (bottom) precipitation anomalies from a pre-industrial climate
for isolated forcing agents and the combined anthropogenic (ANT) response.
The combined ANT response is the sum of three anthropogenic agents: the slow
response from greenhouse gases (GHG; red), the slow response from aerosols

(AER-glob; blue), and the fast response from aerosols (AER-local; green). Each tra-
jectory includes a 90% bootstrap confidenceband. Dashed vertical lines denote the
year of emergence for the isolated GHG signal (red) and combined ANT response
(black), defined as the first year in which the 90% confidence band departs from
zero and does not return to zero by 2020.
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including GHG-driven drying and AER-driven moistening (sometimes
“conclusively”; see Supplementary Fig. 9). Reassuringly, the weighted
CMIP6 multimodel ensemble means are much more consistent with
the observations (also shown in Fig. 5), although the ensemble means
appear to be overconfident in their assessment of uncertainty [as has
been observed elsewhere, e.g.,59]. A notable exception is in forced
changes to summer precipitation, particularly for GHG-driven changes
to extremes, where the multimodel mean indicates, seemingly erro-
neously, high confidence in GHG-induced CONUS-wide drying rather
than moistening.

Discussion
The combination of large observational uncertainty, model uncer-
tainty, and internal variability havemade it difficult for traditional D&A
methods to obtain conclusive statements regarding the human influ-
ence on regional precipitation change. Here, we have explicitly quan-
tified the composition of forced precipitation changes over the United
States by developing and implementing methods that use model
simulations offline from observational analysis and simultaneously
account for multiple anthropogenic agents. We anticipate that the
results in this paper, which provide Granger-causal statements34, will
provide a foundation for more traditional Pearl-causal D&A studies33,
much in the same way that Risser and Wehner (2017)60 provided
motivation for Patricola and Wehner (2018)61.

The assumptions underlying Eq. (2) are strictly limited to the
historical period, and therefore we cannot extrapolate our results to
compare with, e.g., CMIP-based projections. However, the CMIP6
analysis summarized in Fig. 5 can be used to compare GCM-based
spatial patterns of the sum-total forced change over 1900-2014 (the
period for which our assumptions are justified) with corresponding
observational quantities. Supplementary Fig. 12 shows the spatial
patterns of change for 2014 forcing conditions (GHG and SO2 emis-
sions) versus 1900 levels, both for the GHCN data and also the
weighted multimodel mean (stippling for these figures now indicates
where the changes are indistinguishable from zero). As with the mul-
timodel mean results shown in Fig. 5, the GCM-based spatial patterns
appear to be overconfident, but otherwise show relatively good
agreement with the observations (again except for summer changes).
This result is both reassuring and in line with previous examples of the
multimodel mean yielding much better agreement with observations
than any individual ensemble member or model62.

Our conclusions underscore the importance of considering both
century-length records and multiple anthropogenic forcing agents
when calculating observed trends and conducting regional D&A ana-
lyses. For example, Fig. 3 shows that at the scale of CONUS, the overall
trajectories of mean and extreme precipitation in the summer and
autumn are essentially flat from 1960-2020 (despite ANT emergence
early in the record for extremes) while winter means and extremes
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show strong increases over 1960-2020 (despite there being no overall
ANT signal for winter means). This shows that our results are actually
quite consistent with, e.g., [ref. 63, see their Figure 10], who found that
over 1980–2020 the risk of rainfall extremes is unchanging in the
summer and fall but increasing in the winter. Considering regional
precipitation trends, it is notable that the peak effect of SO2 emissions
onmean summer precipitation (Fig. 2a) is approximately 0.7mmday−1

in the Pacific Northwest while the effect of GHG forcing is negligible in
the same area. Since forcing due to SO2 emissions peaked in 1966 and
has been declining since, this implies that a simple time series analysis
ofmean precipitation in this region for the last half of the 20th century
(e.g., from 1950 onward) might show a negative trend. This example
demonstrates that our results provide an important foundation for
understanding regional trends in precipitation (see also Supplemen-
tary Figs. 7 and 8).

Throughout the scientific literature on D&A, “human-induced” or
“anthropogenic” is used to refer to a combined anthropogenic effect,
including GHG emissions, aerosols, and other human influences taken
together. An important contribution of this paper is our ability to use
in situ observations to explicitly identify and isolate how the anthro-
pogenic signal is composed of both GHG and AER forcing. Recall that
we previously showed that other sources of external forcing do not
have a meaningful effect on seasonal precipitation over the CONUS,

including land use/land cover change, natural forcings (including solar
and volcanoes), and stratospheric ozone29. While uncertainties
regarding the combined anthropogenic influence on regional pre-
cipitation summarized in, e.g., Figure SPM.3 of ref. 32 remain, our
ability to isolate the GHG-only trajectory is nonetheless useful from a
communications standpoint. For example, we posit that the public
interprets the phrase “human-induced climate change” as primarily
involving GHG emissions; hence, it is useful to highlight that the
combined anthropogenic signal would have emerged (in some cases)
much earlier if not for the counteracting (in some cases) effects of AER
forcing. Understanding the relative contributions of individual forcing
agents, particularly GHG forcing, is also highly useful for characteriz-
ing different scenarios of future projections.

While the analyses in this paper focus on precipitation, our results
contribute tomounting evidence of GHG-driven increases inflood risk,
particularly in the western United States. A recent study by ref. 64
shows that increases in flood hazard have been “masked” over the past
fifty years by internal variability, which agrees with the more general
conclusion in ref. 65 regarding the amplification of internal variability
under climate change. Ultimately, a combination of the increased
moisture-holding capacity of the atmosphere forced by GHGs,
decreasedmasking by anthropogenic aerosols, and an amplification of
internal variability from large-scale warming points toward dramatic
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Fig. 5 | Comparison of theUnited States-average effect of each forcing agent on
precipitation for historical Coupled Model Intercomparison Project Phase 6
(CMIP6) simulations and rain gauge measurements from the Global Historical
Climate Network. a, b show results for seasonal precipitation rate and 20-year
returnvalues, respectively, andwe showboth individualCMIP6-historical ensemble
members and the ensemble mean. Estimates compare maximum versus minimum

levelsof each forcingagent (see "Methods"), and the y-axis shows the fraction of the
multi-model ensemble that is consistent with each value on the x-axis. CMIP6
estimates involve weights based on the internal consistency of each global climate
model (see "Methods"), and error bars overlaid on each density summarize the
central 90% and median area under each curve.
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increases in flood risk in the near future. As described in ref. 66, these
increases will negatively affect many aspects of human society.

Methods
Analysis of GHCN in situ records
The central results of this paper are based on an analysis of in situ
measurements of daily precipitation from the GHCN-daily database
[GHCN;53,54]. Specifically, we use measurements from a set of n = 2480
high-quality weather station records in the contiguous United States
(CONUS) that have at least 66.7% non-missing daily values over
December 1, 1899 to November 30, 2020. This set of stations is a
subset of themore than 21,000 total GHCN stations in the CONUS; the
geographic distribution of the high-quality stations is shown in Sup-
plementary Fig. 11. For each station, we calculate seasonal mean pre-
cipitation rates (mm day−1) and seasonal maximum daily precipitation
rates (mm day−1, often referred to as Rx1Day) in each year so long as
there are no more than 33.3% missing measurements in the season-
year29. Developed a general framework for modeling a time series of
seasonal mean or maximum daily precipitation {P(t)}, where the tem-
poral units t refer to a year. For simplicity, we suppress notation for
geographic location; we later apply this formula to seasonal pre-
cipitation from each of the GHCN gauged locations. Our approach
statistically models precipitation as

PðtÞ= P0|{z}
Pre�ind:

+ PF ðtÞ|ffl{zffl}
Forced

+ PDðtÞ|ffl{zffl}
Low�freq:Drivers

+ PW ðtÞ|fflffl{zfflffl}
Weather|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Internal variability

ð1Þ

where the time series is decomposed into a pre-industrial component
P0 that represents an overall average uninfluenced by external forcing,
an externally forced component PF(⋅), and an internal variability
component comprised of a “driven” term PD(⋅) that describes year-to-
year variability due to known modes of large-scale oceanic and
atmospheric drivers together with a term PW(⋅) associated with short-
term weather variability. One strength of this framework is that it
explicitly characterizes part of the internal variability via PD(⋅) [as
advocated by ref. 28]. The various analyses in ref. 29 (summarized in
Supplementary Table 1) verified that the additive framework of Eq. (1)
is appropriate and can safely be simplified when considering seasonal
precipitation over the CONUS in the historical record (1900-present)
as follows:

PF ðtÞ≈βSlow FSlowðt,τSlowÞ+βFast FFastðt,τFastÞ,
PDðtÞ≈

X
d =D

βd dðtÞ,

VarPW ðtÞ= σ2ðtÞ≈V0 × expfV 1tg,

1� VarPW ðtÞ
VarPðtÞ ≈Constant:

ð2Þ

Historically, the principal anthropogenic forcing agents for CONUS
precipitation are well-mixed greenhouse gases (GHGs) and aerosols
(AER), which collectively define a fast and slow precipitation response:

FSlowðt,τSlowÞ= FGHGðt,τSlowÞ+ FAER�globðt,τSlowÞ,
FFastðt,τFastÞ= FAER�localðt,τFastÞ,

τSlow = 14,τFast = 0:

ð3Þ

Here, FGHG(t, τSlow) is the lagged GHG forcing time series shown in
Supplementary Fig. 2)(a), FAER-glob(t, τSlow) is the lagged aerosol
effective radiative forcing [which applies globally, hence “AER-glob”;47]
shown in Supplementary Fig. 2)(c), and FAER-local(t, τFast) is the
regionalized (local, hence “AER-local”) SO2 emissions. All forcing time
series are reconstructed from observations and considered fixed.
Equation (2) specifies that the forced component can then be
described by a linear sum of a coefficient β(⋅) multiplied by the forcing

time series F(⋅). We henceforth denote βSlow and βFast as the “statistical
attribution coefficients,” since in our approach these are the analog of
scaling factors in an optimal fingerprinting analysis, e.g., ref. 35 (see
below for additional details). Furthermore, note that the attribution
coefficients (which are estimated fromdata) translate the fixed forcing
time series into the corresponding fast and slow precipitation
response. Following ref. 29, we set τFast = 0 years, and for the GHCN
analysis we use τSlow = 14 years [the CMIP6 multimodel ensemble
average of the lagged response to GHG forcing; see Appendix A of29].
Note that we use stochastically regionalized (i.e., spatially-varying) SO2

emissions data to characterize FAER-local(t, τFast); again see ref. 29.
Following ref. 67, the driven component PD(t) can be well-
approximated by a linear function of climate drivers D, comprised of
the El Niño Southern Oscillation (ENSO) Longitude Index (ELI), the
Arctic Oscillation (AO), the North Atlantic Oscillation (NAO), the
Pacific-North American pattern (PNA), and the Atlantic Multidecadal
Oscillation (AMO).Note that, as described in ref. 67, theAO is excluded
from the December/January/February (DJF) analysis due to its strong
coupling (and high correlation) with the NAO in this season. The
residual weather variability term PW(t) is modeled statistically as
following either a Gaussian distribution for the seasonal mean (with
mean zero and variance σ2(t)) or a Generalized Extreme Value
distribution for the seasonalmaxima (centered on zerowith variability
described by σ2(t) and time-invariant shape parameter). The seasonal
time series of the drivers for the GHCN analysis are calculated from
various observational products; see Section 2 of ref. 67. The variability
of PW(t) is modeled as the product of a “baseline” or pre-industrial
variance V0 and a time-varying quantity expfV 1tg, but the PW(⋅) are
otherwise statistically independent (i.e., we assume that all autocorre-
lation in the time series is fully captured by PF(⋅) and PD(⋅)). Finally
ref. 29, shows that the signal-to-noise ratio of the time series is
approximately constant.

Our analysis of the GHCN records proceeds in three steps,
following the methodology developed in refs. 68 and 26. First,
independently at each station, we obtain maximum likelihood
estimates of all unknown statistical parameters in Eq. (2), including
the statistical attribution coefficients βSlow and βFast. Second, uti-
lizing all stations, we apply a spatial statistical approach using
second-order nonstationary Gaussian processes to interpolate
each statistical parameter to obtain best estimates of each field for
a high-resolution 0.25° × 0.25° longitude-latitude grid over CONUS.
Third, we quantify uncertainty via resampling methods, specifically
a block bootstrap for estimating standard errors and confidence
intervals [as in ref. 68] and a permutation/reshuffling approach for
ascribing statistical significance to spatial patterns [as in ref. 26].
Once we have the best estimates and uncertainty quantification for
the statistical attribution coefficients, the attribution exercise
proceeds by testing the null hypothesis H0,f : βf = 0, f∈ {Slow, Fast}
for either individual grid boxes or spatially-aggregated grid boxes
(e.g., the nested attribution regions defined in36). Rejecting H0,f

implies that there is a significant relationship between forcing
agent(s) f and seasonal precipitation, i.e., we can conclusively
attribute changes in precipitation to the human activity described
by agent f. Note that for a given spatial location we can only attri-
bute the sum-total GHG and AER-glob slow precipitation response
(via statistical inference on βSlow); however, we can separate the
individual effect of GHG and AER-glob forcing on precipitation over
time when assessing emergence times (see “Summarizing the
GHCN analysis” below). As in refs. 26,67, the statistical significance
of each H0,f : βf = 0 is determined with both “moderate” and
“strong” significance; furthermore, when a set of simultaneous
tests is conducted (e.g., for a set of CONUS subregions) we apply a
multiple testing adjustment that bounds the proportion of type I
errors at 0.33 (for moderate significance) and 0.1 (for strong
significance).
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Comparison with optimal fingerprinting methods
In contrast with our approach, traditional D&A methods rely on opti-
mal fingerprinting [OF;]35], which regresses an observed quantity onto
a linear combination ofmodel-simulated responses to a set of external
forcings. OF-based analyses comprise the large majority of attribution
statements cited in the IPCC but, as mentioned in the introduction,
have yielded largely inconclusive results for attributing changes to
regional precipitation. The OF approach proposes the following sta-
tistical model:

Y=
X
f2F

βf ðFf � ef Þ+ e0 ð4Þ

where Y represents an observed quantity, F is a set of relevant
experiments involving one or more external forcings, the Ff are cor-
responding model-simulated quantity from experiment f (often called
the “fingerprints” and typically representing some sort of model
ensemble average), ef represents sampling uncertainty in the model-
simulated Ff, e0 quantifies the effect of internal variability on the
observations, and the βf are scaling factors used to make causal
statements. Specifically, a fingerprint Ff is “detected” in the observa-
tions if the uncertainty limits on βf do not include zero, and Ff is
furthermore attributable if the uncertainty limits on βf are consistent
with one. In Eq. (4), Y and the Ff are typically vectors representing
values indexed over space and/or time as anomalies from some
baseline period. Typical applications explore either so-called “one-
way” regression analysis wherein k F k = 1 (considering only an all-
forcings experiment or only a single-forcing experiment) or “two-way”
regression analysis with k F k =2 where one attempts to separate the
total anthropogenic and natural responses [using two single- or
multiple-forcing experiments; see, e.g., ref. 27].

Our approach (Eq. (2)) can be seen as a special case of Eq. (4).
First, we implement a two-way regression where we consider two
individual forcing agents, namely GHGs and AER, separated into fast
and slow response components; i.e., F = fSlow,Fast g, where Slow =
GHG + AER-glob and Fast = AER-local. Recall that29 explicitly showed
that a two-way regression is appropriate by verifying that (1) including
only GHG and AER is sufficient for D&A over CONUS and all other
external forcings are negligible; and (2) the total anthropogenic
response can be represented by the sum of GHG and AER forcing
(global and local). The observed vector in Eq. (4) represents yearly
measurements of seasonal mean and maximum precipitation over
time from a single geospatial location, i.e., Y = {P(t):t = 1,…, T}. Unlike
Eq. (4), in our implementation the Fi are not model-simulated pre-
cipitation but instead fixed forcing time series that are reconstructed
from observations. The mechanisms for how GHG forcing impacts
precipitation are relativelywell understood and the forcing time series
FGHG(⋅) has relatively lowuncertainty; however, unlikeGHG forcing, the
AER-glob forcing time series has non-negligible uncertainty, such that
we must account for non-zero eSlow. Similarly, while the SO2 emissions
are well-observed, their influence on precipitation is less certain,
making it important to also account for non-zero eFast. Both sources of
uncertainty are handled in a Monte Carlo sense via (1) probability-
weighted trajectories of AER-glob forcing for eSlow [the 5th, 16th, 50th,
84th, and 95th percentile trajectories; see Supplementary Fig. 2
and47,48] and (2) an ensemble of regionalized emissions for eFast29. Since
the units of the Ff are no longer mmday−1, the βf are no longer unitless
(as they are in Eq. (4)) and instead have units mm day−1 per unit
increase in the forcing time series. Therefore, in our case the D&A
exercise is reduced to assessing a single null hypothesis test (i.e.,
rejectingH0,f : βf =0 both detects and attributes forcing(s) f), such that
larger βf (in absolute value) implies a stronger influence of forcing f. An
important feature of our implementation is thatwe partiallymodel the
internal variability via the driven component, as advocated in ref. 28:
while the elements of e0 = [e0(1),…,e0(T)] describe all non-externally-

forced variability, in our approach the non-forced variability is
explained by both the driven term PD(t) and the weather variability
term PW(t). In otherwords, one can relate e0(t) = PD(t) + PW(t), such that
by definition we have VarPW(t) ≤Var e0(t). Since uncertainty in βf is
largely a function of the magnitude of internal variability (here
VarPW(t) vs. Var e0(t)), our approach will increase the signal-to-noise
ratio relative to a more traditional approach. Unlike Eq. (4), where the
variance-covariance matrix of e0 is estimated offline from a set of pre-
industrial control runs, the variance-covariance matrix of the weather
variability PW(t) is estimated using only the observations and simulta-
neously with the βf. Finally, our methodology proposes that the βf is
not a scalar quantity but instead a spatial process, i.e., varying across
the spatial domain of interest. Critically, this allows us to estimate
different βf values for a high-resolution 0.25° × 0.25° grid, such that
D&A statements can be made for either individual grid boxes or
aggregated grid boxes in a single framework. In otherwords, it is trivial
to generate spatially aggregatedD&A statements across various spatial
scales.

Summarizing the GHCN analysis
While the results presented in this paper focus on the statistical attri-
bution coefficients from the forced component, i.e., βSlow and βFast, for
the sake of interpretability and cross-comparison we convert each of
these values to an effect on precipitation. These summaries directly
account for uncertainty in the aerosol forcing time series FAER-glob
and FAER-local. For each season and precipitation type, the relevant
output of our statistical analysis are estimates of the attribution
coefficients

bβa,r

SlowðgÞ,bβa,r

FastðgÞ : a= 1, . . . ,5; r = 1, . . . ,100
n o

ð5Þ

at each grid cell g, for AER-glob trajectory a = 1,…,5 and regionalized
SO2 emissions trajectory r = 1,…,100. (Note that there are correspond-
ing estimates for bootstrap and permutation resampling; these are
used to quantify uncertainty.) For the “Slow-AER” (AER-glob) maps
shown in Fig. 2, each grid cell shows the best estimates

ΔbPGHCN

AER�globðgÞ=
1

100
1P
awa

X5
a= 1

waΔ
a
AER�glob

X100
r = 1

bβa,r

SlowðgÞ, ð6Þ

where Δa
AER�glob is the change in lagged AER-glob forcing for 1900 vs.

2010 with τSlow = 14 years for each of the five trajectories shown in
Supplementary Fig. 2, the wa =ϕ(pa) are weights derived from the
standard Normal probability density function (where {pa} = (0.05, 0.16,
0.5, 0.84, 0.95)), and bβa,r

SlowðgÞ are fromEq. (5). The reference years 1900
and 2010 are chosen since these are when AER-glob forcing is at its
minimum and maximum, respectively, in the time period we are
analyzing. For the “Slow-GHG” maps shown in Fig. 2, each grid cell
shows the best estimates

ΔbPGHCN

GHG ðgÞ=ΔGHG
1

100
1P
awa

X5
a= 1

wa

X100
r = 1

bβa,r

SlowðgÞ, ð7Þ

where ΔGHG = 2.61 Wm−2 is the change in lagged GHG forcing for 1900
vs. 2020 with τSlow = 14 years and bβSlowðgÞ are from Eq. (5). The refer-
ence years 1900 and 2020 are chosen since these are when GHG for-
cing is at its minimum and maximum, respectively, in the time period
we are analyzing. For the “Fast-AER” (AER-local) maps, each grid cell
shows

ΔbPGHCN

AER�localðgÞ=
1

100
1P
awa

X100
r = 1

Δr
AER�local

X5
a= 1

wa
bβa,r

FastðgÞ, ð8Þ

where Δr
AER�localðgÞ is the change in the rth stochastically-regionalized

SO2 emissions trajectory in grid cell g for 1900 vs. 1966 and bβFastðgÞ are

Article https://doi.org/10.1038/s41467-024-45504-8

Nature Communications |         (2024) 15:1318 10



from Eq. (5). The reference years 1900 and 1966 are chosen since these
are the years in which SO2 emissions were at their minimum and
maximum, respectively, in the time period we are analyzing.
Uncertainty assessments and stippling are based on applying
Eqs. (6)–(8) to resampling-based estimates of these quantities;
see ref. 26.

The signal emergence plots in Fig. 3 also show the effect of each
forcing agent on precipitation but now over time and aggregated
spatially. When assessing temporal changes, we can now explicitly
separate trajectories over time due to GHGs, AER-glob, and AER-local.
For a given collection of 0.25° × 0.25° grid cells A, we compute area-
averaged anomalies in year t using

bPObs

GHGðtÞ=
1

k A k
X
g2A

aðgÞbβSlowðgÞ FGHGðt,τSlowÞ � FGHGðpi-clim ,τSlowÞ
� �

bPObs

AER�globðtÞ=
1

k A k
X
g2A

aðgÞbβSlowðgÞ FAER�globðt,τSlowÞ � FAER�globðpi-clim ,τSlowÞ
h i

bPObs

AER�localðtÞ=
1

k A k
X
g2A

aðgÞbβFastðgÞ FAER�localðt,τFast,gÞ � FAER�localðpi-clim ,τFast,gÞ
� �

,

ð9Þ

where a(g) is the area of grid cell g,k A k =
P

g2AaðgÞ, and “pi-clim”

refers to a pre-industrial climate (represented by the 1900-1929
average). For brevity, we omit the dependence of the attribution
coefficient estimates bβð�Þ on forcing trajectory, but note that the above
calculations involve (weighted) averages of trajectory-specific esti-
mates and forcing anomalies similar to, e.g., Eq. (6). The sum-total
anthropogenic forcing shown in Fig. 3, denoted ANT, is simply

bPObs

ANTðtÞ= bPObs

GHGðtÞ+ bPObs

AER�globðtÞ+ bPObs

AER�localðtÞ: ð10Þ

Basic bootstrap confidence intervals are calculated by applying Eq. (9)
to bootstrap estimates of the forcing coefficients.

Analysis of the CMIP6 historical multimodel ensemble
To compare our GHCN analysis with corresponding estimates from
Global ClimateModels (GCM), we apply the D&A formula described by
Eq. (2) to individual ensemble members of each GCM in the CMIP6
historical experiment58, matching the period covered by the in situ
records (i.e., 1900-present). Note that Eq. (2) is applicable to the GCMs
precisely because all hypotheses enumerated in Supplementary
Table 1 were tested using the CMIP6 multimodel ensemble. The
experimental protocol for these simulations prescribes external for-
cing agents that correspond to the historical period and hence the
forcing time series FSlow and FFast are as in Supplementary Fig. 2 (but
with GCM-specific values of τSlow). Since the historical runs are fully
coupled, each ensemble member has its own set of driver time series:
these are calculated via the Climate Variability Diagnostics Package
[for everything except ELI;69] and the Toolkit for Extreme Climate
Analysis [for ELI;70]. Our analysis of the historical ensemble members
mirrors the GHCN analysis but without the use of spatial statistical
methods: we simply (1) obtain maximum likelihood estimates of all
unknown statistical parameters at each model grid cell and (2) utilize
resampling methods to quantify uncertainty. After conducting these
analyses, we are left with coefficient estimates βSlow and βFast as well as
measures of uncertainty at each model grid cell and each ensemble
member. To explore CONUS-wide changes, we then calculate area-
weighted averages of all coefficient estimates and their uncertainties,
denoted

βf ðj,mÞ,σf ðj,mÞ : f 2 f Slow, Fast g, j = 1, . . . ,nm

n o
, ð11Þ

wherem = 1,…,M indexes climate models and j = 1,…,nm indexes the
ensemble members from model m (for brevity we again omit the
dependence of the attribution coefficient estimates bβð�Þ on forcing

trajectory). Recall that these quantities are calculated separately
for each season and precipitation type (mean and extreme). As with
the GHCN analysis, for plotting we convert the coefficient esti-
mates and uncertainties to a precipitation response following
Eqs. (6)–(8).

Model weighting. Our philosophy for combining estimates of βSlow
and βFast and their effect on seasonal precipitation across the CMIP6
historical multimodel ensemble emphasizes internal consistency of
climate models for deriving weights:

1. Down-weight ensemble members j from a given modelm with
values of βSlow and βFast that could arise purely by chance, due
to internal variability [as quantified by comparing
with estimates from CMIP6 Diagnosis, Evaluation, and Char-
acterization of Klima (DECK) pre-industrial control
runs;58], and

2. Up-weight ensemblemembers j from a givenmodelmwith values
of βSlow that are consistent with estimates from corresponding
runs of transient CO2-only forcing [i.e., the CMIP6 DECK 1pctCO2
runs;58].

All comparisons are made within-model, and note that we do not
attempt to specify which climate models are “better” or “worse” with
respect to observations. Furthermore, this approach to model
weighting emphasizes trends (as opposed to mean climatologies)
which is most relevant for this exercise.

Pre-industrial control (piControl) fitting. To deprecate “false posi-
tive” detection of trends due to anthropogenic forcing agents, we
apply Eq. (2) to i = 1,…,N overlapping 121-year segments of pre-
industrial control runs (i.e., esm-piControl and/or piControl
experiments) from each model (to mirror the length of the GHCN
observational record). In each of these fits, we use the observed
Slow and Fast forcing time series (from the historical 1900-2020
period; we again use stochastically-regionalized SO2 emissions)
but drivers corresponding to the realized conditions in each
ensemble member. As with the historical estimates, we apply the
formula in each model grid cell and then obtain area-weighted
CONUS averages. This procedure detects false positives since the
anthropogenic forcing agents are not actually present in the
simulations; the piControl estimates reveal the magnitude
of secular 121-year trends that can arise from internal
climate variability. Let {βPI,f(I,m), σPI,f(I,m)} represent pairs of area-
weighted, CONUS-averaged coefficient estimates and bootstrap
standard errors for forcing f and segment i = 1,…,N of model
m. Then, we calculate a single effect (with uncertainty) for each
model as:

βPI,f ðmÞ= 1
N

XN
i= 1

βPI,f ði,mÞ,σPI,f ðmÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N2

XN
i= 1

½σPI,f ði,mÞ�2
vuut : ð12Þ

Note that our inclusion criterion is that the esm-piControl and/or
piControl runs have at least 500 years of data; we then select the last
500 years of each run, which allows us to fit N = 19 overlapping
segments of 121 years.

The first component of the model ensemble weights is then
one minus the inverse squared exponential of the standardized
difference between the piControl estimates (which have arisen
purely by chance, from Eq. (12)) and the historical estimates (from
Eq. (11)):

wPI,f ðj,mÞ= 1� expf�ZPI,f ðj,mÞ2g, ð13Þ
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where

ZPI,f ðj,mÞ= βf ðj,mÞ � βPI,f ðmÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σf ðj,mÞ2 + σPI,f ðmÞ2

q : ð14Þ

Transient 1pctCO2 fitting. Next, we prioritize climate models with
historical ensemble members that are internally consistent with Slow
coefficients estimated from transient CO2-only runs. Here, we again
apply Eq. (2) to 1pctCO2 runs (again applied to each grid cell followed
by calculating area-weighted averages over CONUS), now considering
the initialized ensemble members up through the year in which the
lagged forcing from increased CO2 equals the lagged forcing from the
collection of GHGs in the historical run, using the lag time-constant
τSlow specific to each GCM. In the fitting formula, the Slow forcing time
series FSlow(t, τGHG) is set to be the lagged CO2-only forcing (i.e., the
AER-glob forcing is omitted since these runs have no anthropogenic
aerosols), the Fast forcing FFast(t, τFast) and βFast are set to 0, and the
drivers correspond to the real conditions within each ensemble
member. This fitting procedure yields {β1%(m), σ1%(m)} for eachmodel.
For climate models that provide data for more than one ensemble
member, we average over the ensemble members as in Eq. (12). The
second component of the model ensemble weights is then

w1%ðj,mÞ= expf�Z 1%ðj,mÞ2g, ð15Þ

where

Z 1%ðj,mÞ= βSlowðj,mÞ � β1%ðmÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σSlowðj,mÞ2 + σ1%ðmÞ2

q : ð16Þ

Model ensemble weighting. Combining all of the above, we obtain a
weight for each ensemble member j = 1,…,nm of the model m = 1,…,M:

wðj,mÞ= νw1%ðj,mÞ
Y
f

wPI,f ðj,mÞ s.t.
X
m

1
nm

X
j

wðj,mÞ= 1 ð17Þ

where ν is a normalization factor that enforces the right-hand
condition (recall f∈ {Fast,Slow}). Note that including the 1

nm
in between

the summations gives eachmodel equalweight; again, recall that these
weights are calculated separately for each season and precipitation
type (mean and extreme). The number of ensemble members we have
for each of the historical, 1pctCO2, and piControl experiments
are shown in Supplementary Table 2. A total ofM = 25 climate models
have the requisite data for these three experiments; across these
models, we have 316 historical ensemble members (i.e.,PM

m= 1 nm = 316). Individual weights (wPI,f(j,m) andw1%(j,m)) are plotted
against corresponding estimates of each forcing’s influence on
precipitation (see Eqs. (18) and (19)) in Supplementary Fig. 9. The
overall (non-normalized) weights w(j,m) are shown in Supplemen-
tary Fig. 10.

Comparing weighted climate models with observations. To sum-
marize fits from the individual historical ensemble members, we con-
vert the historical coefficient estimates into their effect on
precipitation, averaged over CONUS, as follows. First, in each season
and for each precipitation type, the slow precipitation response for
ensemble member j of model m is

PSlowðj,mÞ=ΔSlowðmÞ
PGm

g = 1 amðgÞβSlowðj,m,gÞPGm
g = 1 amðgÞ

, ð18Þ

where ΔSlow(m) is the change in lagged GHG and AER-glob forcing for
1900 vs. 2014 for model m (this quantity is model-specific since each
model has its own lag τSlow), am(g) is the area of grid cell g = 1,…,Gm of

modelm, and βSlow(j,m, g) is the Slow coefficient estimate in each grid
cell g. The reference years 1900 and 2014 are chosen since these are
when the lagged GHG and AER-glob forcing is at its minimum and
maximum, respectively, in the time period bounded by the start of the
GHCN record and end of the CMIP6 historical simulations. Next, again
in each season and for each precipitation type,

PFastðj,mÞ=
PGm

g = 1 ΔFastðm,gÞamðgÞβFastðj,m,gÞPGm
g = 1 amðgÞ

, ð19Þ

where ΔFast(m, g) is the change in stochastically-regionalized SO2

emissions in the grid cell g of themodelm for 1900 vs. 1966. Note that
ΔFast(m, g) also depends on the season. The reference years 1900 and
1966 are chosen since these are the years in which SO2 emissions were
at theirminimumandmaximum, respectively, in the period of interest.
For each season and precipitation type across all ensemble members,
we obtain the best estimates, a lower 90% confidence bound, and an
upper 90% confidence bound, denoted

bPf ðj,mÞ,blf ðj,mÞ,buf ðj,mÞ
n o

, ð20Þ

of the effect on precipitation for f∈ {Slow,Fast} after applying Eqs. (18)
and (19) to best estimates and bootstrap estimates of each coefficient.

In light of the large number of ensemble members we need to
summarize (across seasons, precipitation type, and forcing), we define

hf ðxÞ=
XM
m= 1

1
nm

Xnm

j = 1

wðj,mÞ× Iðx �blf ðj,mÞÞ× Iðbuf ðj,mÞ � xÞ ð21Þ

(notation for season and precipitation type are suppressed), where

IðzÞ= 1 if z ≥0

0 otherwise.

�
ð22Þ

The function hf(x) summarizes the weighted proportion of ensemble
members for which x is included in their 90% confidence interval and
ranges between 0 and 1 by construction. Here x is the anthro-
pogenically forced change in precipitation rate caused by the forcing
agent(s) f. Given this concise summary of the model results across
seasons for each precipitation type, we can plot hf(x) for a range of x
values and compare the resulting curve with observational estimates
corresponding to Eq. (20) obtained from the GHCN analysis, denoted

bPf ðGHCN Þ,blf ðGHCN Þ,buf ðGHCN Þ
n o

: ð23Þ

Figure 5 shows our results, comparing fits obtained from the CMIP6-
historical multimodel ensemble with those from the in situ records in
the GHCN. Note that we have applied a spline-smoothing to the hf(⋅)
curves for visual appeal.

Fast versus slow precipitation response to aerosols
The analysis in ref. 43 presents amultimodel assessment of the fast and
slow precipitation response to individual climate forcings, including
sulfate aerosols (SO4). In themain text, their Fig. 3 shows geographical
patterns of multimodel mean precipitation change (fast, slow, and
total), while Fig. 4 shows the same quantities for various spatial
aggregations, including continental averages. However, their analysis
only looked at annual mean precipitation, and furthermore from their
Fig. 3 it appears that the North America land average summarized in
Fig. 4 is heavily influenced by the precipitation responses in Canada,
which is of course not included in our CONUS-specific analysis. To
explicitly evaluate the geographical patterns and CONUS-wide means
of seasonal mean and extreme precipitation responses, we repeat the
analysis described in ref. 43. Output from four modeling experiments
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is utilized, all of which are part of the Precipitation Driver and
Response Model Intercomparison Project [PDRMIP;57]:

1. base-fsst: the external forcings correspond to present-day
conditions and the sea-surface temperatures are fixed.

2. sulx5-fsst: the external forcings correspond to present-day
conditions except for sulfate aerosol concentrations, which are
multiplied by a factor of 5, and the sea-surface temperatures
are fixed.

3. base-coupled: the external forcings correspond to present-day
conditions and the sea-surface temperatures are prognostic.

4. sulx5-coupled: the external forcings correspond to present-day
conditions except for sulfate aerosol concentrations, which are
multiplied by a factor of 5, and the sea-surface temperatures are
prognostic.

The eight GCMs and number of simulated years used are given in
Supplementary Table 3. Following ref. 43, we utilize the last 10 years of
the fsst experiments and the last 50 years of the coupled experiments;
we calculate the seasonal mean daily precipitation and seasonal max-
imum daily precipitation (Rx1Day) in each grid box of each model-
experiment. The fast precipitation response is calculated as the mean
of sulx5-fsst minus the mean of base-fsst; the total precipitation
response is calculated as themeanofsulx5-coupledminus themeanof
base-coupled; and the slow precipitation response is the total pre-
cipitation response minus the fast precipitation response. To assess
geographical patterns of change, all model results are conservatively
remapped to a 1° × 1° longitude-latitude grid. For all quantities we
calculate a 90% bootstrap confidence interval to summarize uncer-
tainty. Our results are shown in Supplementary Fig. 5.

Data availability
All global climate data analyzed in this study are available in the Earth
SystemGrid Federation repository, accessible at https://esgf-node.llnl.
gov/projects/esgf-llnl/. The in situ precipitation records supporting
this article are based on publicly available measurements from the
National Centers for Environmental Information (https://www.ncei.
noaa.gov/products/land-based-station/global-historical-climatology-
network-daily).

Code availability
All data analysis in this manuscript was conducted using open-source
programming languages and software (namely, R and Python). The
primary results utilize functionality from the climextRemes72 and
convoSPAT73 software packages for R.
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