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Topics

After a short overview of reliability and structural equa-
tion modeling, 2 new reliability methods are presented:

e Specificity-enhanced coefficients for improved
lower-bound reliability determination

e Covariate-free and covariate-dependent
reliability coefficients for eliminating spurious
sources of internal consistency



Reliability

Let X be anitem or a composite score. Test theory posits

that Xis the sum of 2 uncorrelated latent variables
X=T+E.

Thus we have additive variances ¢ = o? + ¢ and define
2

Pxx = O-_;

Oy

Such a coefficient holds for an item, or a test/scale, here

P
taken simply as X = Z X, . Today, | concentrate on the

reliability of a scale or test, based on the qualities of its
items (internal consistency). For simplicity, | assume
that errors on different items are uncorrelated.



Factor Analytic Decomposition in a Picture

There are 4 variables A, B, C, D. Each has Common,
Specific, and Error Variance, grouped variously:

Factor analysis approach:
Common = True - Specific.
Unique = Specific + Error.

Test theory approach:
True = Common + Specific
Error= Unique - Specific






Equations for FA Variance Decomposition
X=T+E, but
T =C+S (common plus specific, uncorrelated), so
X=C+S+E=C+U,
with o = ¢ +0f +0f . Thus (Bentler, 1968, 2009, 2015)

2 2 2 2 2
(0} O, O- (0} O
_-“C _1_~U T _ S _1_~"E _
/Oxx_ 2 _1 2 < 2 _pxx+ 2 _1 2 _IOXX'
O'X GX GX GX GX

All internal consistency coefficients -- whose history goes
back to 1910 (Spearman and Brown) -- are of the formp,, .

Today, | introduce estimators of 052 to yield specificity-
enhanced reliability that will improve these coefficients.
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Coefficient Alpha
Let X =E(X—u)(X— )" be the population covariance

matrix of X. (i=1,...,p). If 1is a unit vector, the
P
variance of the sumX =1'X; = > X, is oy =1'S 1. Let

2 2= . .
o, = P°0;, where o is an off-diagonal element of X |
and o;is the average of all ;. Then

2 —
_PY _
a = 2 Pxx -
O-X

In practice, the sample covariance matrix S, (not R ) is
used. Model-based coefficients get closer to o and
hence p,, (e.g., Bentler, 2009; Cho & Kim, 2015).



Model-based Coefficients

Applying X =C+S+ E =C+Uto a set of items, and
assuming zero means, the vector of item scores has
decomposition

X=C+S+e=cCc+U,
This leads to the covariance structure

2, =2=2_+A +A =2+,

where X _is the covariance matrix of common scores

and Wis a (typically diagonal) unique variance matrix.
Typically, the ¢ are functions of latent variables - in the
factor model c=A¢& so . = ADA" -- but could arise

from LISREL, Bentler-Weeks, or other models.
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When X _is well-structured (e.g., £. = A®A’), improved
estimates of 62 =1'S_1 and hence p, =c’/c; are
possible.

Note that p  (RHO in EQS) is one of many coefficients.
If X, =AA’", this is Heise & Bohrnstedt’s (1970) 2 and

McDonald’s (1970) 4. If Ais a 1-factor model, this is
Joreskog’s (1971) coefficient (McDonald’s 1999 w.) If
2. is based on an arbitrary — but fitting -- SEM model

(Bentler, 2007), it is a unique coefficient that has no
added special name.

Essentially always a < p, < p, . Next, | show how to
obtain o and p,, suchthata <o and p, < p, .
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Specificity-enhanced Reliability
The Kaufman Assessment Battery for Children (Kline,
2011, p. 235) has correlation matrix

1.0000 0.3300 0.3500 0.2100 0.3200 0.4000 0.3900 0.3900
0.3300 1.0000 0.6700 0.1100 0.2700 02900 0.3200 0.2300
0.3500 0.6700 1.0000 0.1600 0.2900 02800 0.3000 0.3700
0.2100 01100 0.1600 1.0000 0.3800 0.3000 0.3100 0.4200
0.3200 0.2700 0.2900 0.3800 1.0000 0.4700 0.4200 0.5800
0.4000 02900 0.2800 0.3000 0.4700 1.0000 0.4100 0.5100
0.3300 0.3200 0.3000 0.3100 0.4200 0.4100 1.0000 0.4200
0.3900 0.2900 0.3700 0.4200 0.5800 0.5100 0.4200 1.0000

A model for 5 visual-spatial reasoning variables V4-V8 is:

+ =
;+
—h-‘_ =

=

4_ =
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It fits the covariances well (g, = 2.3,CFl =1.0). The

unstandardized factor loadings are
[1.000 1.421 1.950 1.144 1.675]

with factor variance o7, =1.956 and unique variances
[5.334 3.341 10.200 5.280 3.510]
We have 67 =27.665, 6 =128.789, p, =.785.

Next, keep this model as is, with fixed parameters. We
augment it with V1-V3 that may correlate with the
unique scores E4 to E8. If the unique scores are just
random residuals, they won’t correlate with V1-V3. If
they do correlate, the uniguenesses must contain true
scores — that is, specificity. Definite nonzero rs obtain:
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V1 V2 V3 E4 E5 E6 E7 ES
1 1.0000 0.3830 0.3500 0.2480 0.4740 0.5140 0.4720 0.6330
W2 0.3890 1.0000 0.6700 0.1250 0.4000 0.3680 0.3850 0.4740
W3 0.3500 0.6700 1.0000 0.1830 0.4270 0.3580 0.3700 0.5980
E4 0.2480 0.1230 0.1830 1.0000 0.0000 0.0000 0.0000 0.0000
E5 0.4740 0.4000 0.4270 0.0000 1.0000 0.0000 0.0000 0.0000
E6 0.5140 0.3680 0.3580 0.0000 0.0000 1.0000 0.0000 0.0000
E7 0.4720 0.3830 0.3700 0.0000 0.0000 0.0000 1.0000 0.0000
ES 0.6330 0.4740 0.5880 0.0000 0.0000 0.0000 0.0000 1.0000

Can the E’s be predicted from the auxiliary Vs? Doing
stepwise regression of each Ei on V1-V3 yields:

R|§4.v1 =.061, Rés.v1,v3 =.302, Réa.v1,v3 =.300,

Ré?.Vl,VZ =.292, Rés.v1,v3 =.562

Next we compute, for each E4-E8, the proportion of
unique variance that is actually specificity (= R* x O'UZ)
and error variance(={1- R*}x ). Computations give
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specific, error, and original unique variances:

{ or

Vi o +ol =V,
V4 0.325 |5.009 |5.334
V5 1.009 [2.332 |3.341
V6 3.060 |7.140 |10.2
V7 1.542 |3.738 |5.280
V8 1.973 |1.537 |3.510
SUM |7.909 |19.756 |27.665
Having the new estimate 6 =7.909, RHO" is
A2
At A 7.909
P = Py T3 =. 1852+
. 52 19.756
P T A2 = —
62~ 128789



The specificity-corrected p, (= ®") improves the
reliability estimate by almost 8%.

Next, consider a 2"® approach to specificity-corrected
reliability: We augment the original model with doublet
factors. Each doublet factor is associated with a given
item and an auxiliary variable, and its variance is 7.

This expanded model reproduces exactly the same S as
the original one that yields p,_ .

We also add constraints so that each factor &° plus
unique &°in the augmented model equals the fixed
unique o’ from the original model. We specify:
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/EQUATIONS

V1l = *F1l

V2 = *F1

V3 = *F1

V4 = 1.000F2 + F4

VS = 1.421F2 +F'5
V6 = 1.950F2

V7 = 1.144F2

V8 = 1.675F2
/VARIANCES

F1 = 1; F2 = 1.956;

F4 TO F8 =*; E1 TO E8 =*
/COVARIANCE

Fl,6,F2=%;

/CONSTRAINTS
(F4,F4)+(E4,E4)=5.334;
(F5,F5)+ (E5,E5)=3.341;
(F6,F6)+(E6,E6)=10.2;
(F7,F7)+(E7,E7)=5.280;
(F8 ,F8) + (E8,E8)=3.510;

.
’
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+ F4 +F5 +F6 +F7 +F8

El;
E2;
E3;
E4;
E5;
E6;
E7;
ES8;



Notice that:

F4, F5, F6, F7, F8 are common factors in the
space of all variables

F4 - F8 are not common factors in the space of
the items V4-V8 making up our scale

In principle, there are as many possible doublets
as the product of # auxiliary vars x # items
Doublets whose variances are not significant
should be removed, to avoid capitalizing on chance
If a doublet variance is constrained at zero, a
reparameterization should be considered to
allow a possibly negative doublet correlation

The model fits well (5,, =13.2,CFI =1.0).
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Specific, error and original unique variances are:
Vi Fi,Fi  |+Ei,Ei =¥, (fixed)
V4 872 4.462 |5.334

V5 1.259 |2.082 [3.341

V6 3.111 |7.089 |10.2

V7 2.073 |[3.207 |5.280

V8 1.952 |1.558 |[3.510

SUM 9.267 |18.398 |27.665

5. =1—(27.665/128.789) =.785
57 —1—(18.398/128.789) = .857,
about a 9% improvement. The specific 65,, = 62,is not

significant — if we set it to zero, we get
O, =1—(19.704/128.789) = .847 (a .01 reduction)
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We may similarly compute & and a”. The runs are
identical to the above (keeping all 5 specific factors),
except that to get  from a factor model rather than
just the sample covariances:
1. The 1-factor model has all fixed 1.0 loadings
2. METHOD = LS; (least squares estimation).
The model fits s0-50 (g5 = 21.6,CFI =.95)

. 29.11

128.854
The enlarged model fits s0-50 (5,5, = 56.2,CFI =.93)

or_q 19786 _ o

7128854
These are almost as high as those from the unrestricted

1-factor model.
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These approaches also extend to various other
coefficients. An important example is the greatest lower
bound (glb) (Bentler, 1972; Woodhouse & Jackson,
1977; Bentler & Woodward, 1980). This is based on a
factor model with an unspecified # of factors that
explains all covariances.

Using the doublet approach as before, we get:
,[)g,b =.805
,5g+,b =.876

The new glb* exceeds the glb by about 9%.
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Covariate-free and Covariate-dependent Reliability
Coefficients

Is p, . invariant to changes in populations? The APA Task
Force on Statistical Inference (Wilkinson & APA, 1999): “...a
test is not reliable or unreliable. Reliability is a property of the
scores on a test for a particular population of examinees.”
This implies there may be several, or even dozens, of reliabi-
lity coefficients [of any fixed definition] for a given scale: for
males (females), old (young), low (high) SES, highly (little)
educated, etc.

Not a new idea: Generalizability theory has long held that
various sources of error may imply different variance ratios.
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How serious is this problem, and how can influences on p_,

be evaluated? In a previous talk (Bentler, 2014), |

reviewed several possible approaches to this problem:

1.Reliability generalization. This is a meta-analysis
method that seeks correlates and predictors of p,,
size, such as gender.

2.Multiple group models. Invariance or near invariance
of parameters implies (near) invariance of p, across
groups.

3.Multilevel models. These provide both Between-
group (Z;) and Within-group (X,,) covariance
matrices that can be used to obtain p,, coefficients.
Within-group p,, eliminates cluster differences.

| also proposed a new covariate-based methodology.

21



A Covariate-based Approach to Reliability

As before, we start with
X=T+E

and make the usual assumptions to obtain
2

Po =1

Ox

(For simplicity, | drop the distinction between p, , and

Py - Context will clarify.) Now assume there is a set of

covariates Z, which may be one or many variables,

latent or observed, categorical or continuous, and

consider the regression (linear or nonlinear) of T on Z

such that there exists the orthogonal decomposition
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T=T+T,
with T =T(Z) the covariate-dependent part of T, and
T =T —T(Z) the covariate-free part of T. It follows that

2 2 2
o7 =0: +0- and hence

2 2
o7 _O: O
= = +
pxx 2 2 2
Oy Oy Oy

_ 1
=Py + P
() is covariate-dependent reliability and

pXX I
P is covariate-free reliability.

In practice, the score decomposition T =T +Tis not
needed; only the variance decomposition is necessary.
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This decomposition can be applied to each of multiple
T scores, or to T s that are based on a factor model,
and hence a linear compound of factors F.

If covariate-free reliability o is large compared top,_,

we have high reliability generalization. Reliability then
hardly depends on covariates.

If covariate-dependent reliabilityp(z) is large compared

XX

to p,, (alternatively, absolutely large), reliability is highly

population-dependent. Separate coefficients would be
needed for different populations.
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Covariate-free & Covariate-dependent Alpha

Based on X, the population covariance matrix among
items, we have already encountered

2 —
P o
2

X

o =

o o ZXX ZXZ
With covariates, we also have = The
7

ZX

regression of X. on Z yields the matrix identity

X2 77 ) + (ZXZ ZZZZX)

the residual and predictable parts of X.. Hence, their
off-diagonal elements obey the equality

=, -3
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mean{offdiag(Z, )} = mean{offdiag(Z, - = > )}

+ mean{offdiag (=, =%, )}
and specifically,

-  =lz —(2)

It follows that alpha can be decomposed into

a=a*+a?,
where
a™* = p°c;* | o, is covariate-free alpha and

(2) 2 =(2)

a'? = p’6," | oy is covariate-dependent alpha.
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Model-based Coefficients

We also have already seen the decomposition

>, =x=2_+Y¥,
based on orthogonal common and unique px1random
vectors in deviation form x=c+uU. Now we would like
to partial the g x1 vector of covariates z out of C.

Similarly as before, we may write the partial covariance
identity

ch — (zcc _ZCZZEZJ-ZZC) + (2 z“_1220) .

CZ— 7z

To make this operational, we assume that E(uz') =0
and we obtain
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E(xz)=E(cz)or X =XZ_.
Now we can substitute X in the previous formula:

5. =2, =(S, -2 28 )+ (2,2

X2 77— IX

> )=Z7+3®,

X2 77 IX

It immediately follows that
'>1 1371 . 1291
1'>1 131 131

(2)
pxx T P

P =

where

o is covariate-free reliability

P is covariate-dependent reliability.
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¥_represents the common score covariance matrix for
many models, such as

EFA: X, = AA’

CFA: I = ADA’

FA/SEM: £ =A(l —B)'®(1 -B) ™" A’

blb (Bentler, 1972): min tr(X_) psd, ¥ diagonal

glb (Woodhouse & Jackson, 1977; Bentler &
Woodward, 1980): min tr(Z_) psd, Wdiagonal & psd

Also, 2 may be a submatrix of a much larger structural
model X(8). The rank of X_-- the number of factors -- is

typically greater than 1. But the 1-factor case is
interesting:
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Covariate-based 1-Factor Reliability

Let Xx=A,& + ¢ be the factor model withZ_ = A,gA, .
The factor variance ¢is a scalar (possibly ¢ =1). Hence
I'A,)°
Pxx = P11 = ¢( 0_21) (: Q) )

X

Now let the factor& be predicted by covariates z, with
the R’ for predicting & being Rf(z) It follows that

§(z)¢ +(1- Rg(z))¢ = (05(2) +

With the factor variance partitioned, we may write
(LA g AA)° L
Pr1 = 2 T+ 7 = /01(12) + 01

X X
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This partition of reliability can be obtained in two ways:

(1) a simultaneous mimic-type setup such as

.
g
N
where the equation predicting F1 yields Rg(z) and ¢ins the

variance of D1;

(2) a 2-step approach, where p,, is first obtained from

only the factor model (no covariates); in step 2, the model is
run with loadings and error variances fixed at step-1 values,
and other parameters free.
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Covariate-based Reliability with LISREL

The LISREL model easily permits a covariate-based partitioning of
reliability. Assume we want the reliability of the endogenous Y

variables, and X variables and its factors are covariates.

o ¢
- A i E&j{‘
NS 1\ T
Nx Ay
- 1
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The covariance matrix of the y is
S, =A,(1-B) (oI +¥)(I-B) A, +6,.

We immediately see that covariate-based reliability is

00— I'A, (I -B)*(Tor’)(1-B)~A,1
& 1'%, 1

and covariate-free reliability is

’ -1 r—1 /
I -B) (I -B)AT
” 1y 1
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Example: Brain Size and 1Q
Did you know that “Big-brained people are smarter”
(McDaniel, 2005)? He reported:

Table 2
Meta-analytic results for in vivo brain volume and intelligence

Distribution Number of studies Sample size Observed mean correlation Mean correlation corrected
for range restriction
All correlations 37 1530 029 0.33

Analyses by whether the degree of range restriction was interpolated
Interpolation 21 963 029 0.32
No interpolation 16 567 0.30 0.34

Analyses by sex

Females 12 438 0.36 0.40
Males 17 651 0.30 0.34
Mixed sex 8 441 0.21 0.25

Analyses by age
Adults 24 1120 0.30 0.33
Children 13 410 028 0.33

Analyses by age and sex

Female adults 8 327 0.3% 0.41
Female children 4 111 0.30 0.37
Male adults 11 470 0.34 0.38
Male children 6 181 021 0.22
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Are intelligence measures mainly indirect measures of

brain size? Posthuma et al. (2003) found:
Table 2

Pearson Correlations Between Gray Matter Volume, White Matter
Volume, CerebellarVolume, Verbal Comprehension, Working Memory,
PerceptualOrganizationand Processing Speed. Individual Scores on
Each Variable Are Adjusted for the Effects of Sex, Age and Cohort

GMV WMV CBY VC WM PO
WMV 0.59*%
CBY 0477  049%*
VC 0.06 0.01 0.03

WM 0.27**  0.28**  0.27**  0.54*
PO 0.20* 0.08 0.18* 0.49%* 0.51%*
PS 0.16 025 0.1 0.28%* 0.40**  0.34**

Note: Intra-domain correlations Printed in normal text, Inter-domain correlations are
printed in bold.

* significant at the 0.05 level; ** significant at the 0.01 level. { = 258 for brain
volumes, N = 135 for inter—domain correlations; A =688 for WAIS lll dimensions).
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What is the internal consistency reliability of the 4
intelligence measures? Is the total score still reliable if
we partial out the effects of the brain matter volumes?
We run EQS with the setup:
/RELIABILITY

SCALE =V4 TO V7;

COVARIATES =V1 TO V3;

The covariates here are observed variables. They affect
an |Q factor. Since there are only 4 intelligence mea-
sures, we may not get a very high internal consistency
reliability.

We get as output:
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RELIABILITY COEFFICIENTS USING DEPENDENT VARIABLES
ONLY

CRONBACH'S ALPHA

= 0.749
COVARIATE-FREE ALPHA = 0.695
COVARIATE-BASED ALPHA = 0.053

We also get results for 1-factor reliability:
RELIABILITY COEFFICIENT RHO = 0.754
COVARIATE-FREE RHO = 0.678
COVARIATE-BASED RHO = 0.076

The intelligence measures retain 93% and 90% of their
reliability when the brain volume measures are
controlled. But the model fit is a bit marginal.
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If we structure the covariates, we obtain better fit and
similar p,, results, even when models vary somewhat.

VERBAL [M—— E4

El— GRAYMY
WORKMEM —— —ES
F2 . —
E2 —— = WHITEMV
\ PERCORG [&——— —E&

F1
D1

E3 —3» CEREBV

PROCSPEE ME—— E7

P, =.763, o7 =698, p? =.065

(Note: F2->F1—>Verbal is positive, but F2—>Verbal is
negative)
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Another model also fits well.

VERBAL ME—— E4

El ———» GRAYMY
f WORKMEM ——ES
EZ——_}. A f E :
WHITEMV __\_\_‘_"‘——\—._b
PERCORG ME—Ff

B3 —— ' ceresy

PROCSPEE M———FE7

D, =.761, p.7 =.709, pi¥ =.052
(Note: F2 has no effect on Verbal)
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Concluding Comments

The proposed specificity-enhanced and covariate-based

reliabilities provide new ways to evaluate the quality of
tests and scales.

Like anything else, these methods can probably be
misused, e.g.,
e when meaningless auxiliary variables or
covariates are used
e when assumptions are not met

e when models ¥ used to define coefficients do
not fit the data.
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Your feedback is most welcome.

That’s All.
And, thank you again.
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