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Topics 
 
After a short overview of reliability and structural equa-
tion modeling, 2 new reliability methods are presented: 

 

 Specificity-enhanced coefficients for improved 
lower-bound reliability determination 

  

 Covariate-free and covariate-dependent 
reliability coefficients for eliminating spurious 
sources of internal consistency 
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Reliability 

Let X  be an item or a composite score. Test theory posits 
that X is the sum of 2 uncorrelated latent variables  

X T E  . 

Thus we have additive variances 2 2 2

X T E     and define  
2

2

T
XX

X





 . 

Such a coefficient holds for an item, or a test/scale, here 

taken simply as 
p

i

i

X X . Today, I concentrate on the 

reliability of a scale or test, based on the qualities of its  
items (internal consistency). For simplicity, I assume 
that errors on different items are uncorrelated. 
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Factor Analytic Decomposition in a Picture 

 
There are 4 variables A, B, C, D. Each has Common, 
Specific, and Error Variance, grouped variously:  
 
Factor analysis approach: 
Common = True - Specific.  
Unique = Specific + Error. 
 
Test theory approach: 
True = Common + Specific 
Error= Unique - Specific 
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Equations for FA Variance Decomposition 
X T E  , but 
T C S   (common plus specific, uncorrelated), so 
  
X C S E C U     ,  

with 2 2 2 2

X C S E       .  Thus (Bentler, 1968, 2009, 2015) 

 

22 2

2 2

2 2

2 22
1 1C U

xx

X X

ST E
xx XX

X X X

 


 


 


  
      . 

All internal consistency coefficients -- whose history goes 
back to 1910 (Spearman and Brown) -- are of the form

xx . 

Today, I introduce estimators of 2

S  to yield specificity-

enhanced reliability that will improve these coefficients.   
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Coefficient Alpha 

Let ( )( )xx E x x       be the population covariance 

matrix of 
iX  ( 1,..., )i p . If 1 is a unit vector, the 

variance of the sum
p

i i

i

X 1 X X   is 2

x xx1 1   . Let 

2 2

c ijp  , where 
ij is an off-diagonal element of 

xx

and 
ij is the average of all 

ij . Then  
2

2
.

i

x

X

j

X

p 



  

In practice, the sample covariance matrix 
xxS (not 

xxR ) is 

used. Model-based coefficients get closer to 2

c  and 

hence 
XX  (e.g., Bentler, 2009; Cho & Kim, 2015). 
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Model-based Coefficients 

Applying X C S E C U     to a set of items, and 
assuming zero means, the vector of item scores has 
decomposition  

x c s e c u     , 
This leads to the covariance structure 

xx c s e c       , 

 
where 

c is the covariance matrix of common scores 

and  is a (typically diagonal) unique variance matrix.  
Typically, the c  are functions of latent variables - in the 
factor model c    so 

c
    -- but could arise 

from LISREL, Bentler-Weeks, or other models.  
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When 
c is well-structured (e.g., 

c
   ), improved 

estimates of 2

c c1 1    and hence 2 2/xx c x    are 

possible.   
 

Note that 
xx (RHO in EQS) is one of many coefficients. 

If 
c

    , this is Heise & Bohrnstedt’s (1970)  and 

McDonald’s (1970)  . If is a 1-factor model, this is 
Jöreskog’s (1971) coefficient (McDonald’s 1999  .) If 

c  is based on an arbitrary – but fitting -- SEM model 

(Bentler, 2007), it is a unique coefficient that has no 
added special name. 
 
Essentially always 

xx XX    . Next, I show how to 

obtain  and xx   such that     and xx xx  . 
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Specificity-enhanced Reliability 
The Kaufman Assessment Battery for Children (Kline, 
2011, p. 235) has correlation matrix  

 
A model for 5 visual-spatial reasoning variables V4-V8 is:  
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It fits the covariances well 2

5( )( 2.3, 1.0)ML CFI   . The 

unstandardized factor loadings are 
[1.000  1.421  1.950  1.144  1.675]’ 

with factor variance  2

1 1.956F   and unique variances 

 [5.334  3.341  10.200  5.280  3.510] 

We have 2ˆ 27.665u  , 2ˆ 128.789x  , ˆ .785xx  . 

 
Next, keep this model as is, with fixed parameters. We 
augment it with V1-V3 that may correlate with the 
unique scores E4 to E8. If the unique scores are just 
random residuals, they won’t correlate with V1-V3. If 
they do correlate, the uniquenesses must contain true 
scores – that is, specificity. Definite nonzero r s obtain:  
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Can the E’s be predicted from the auxiliary Vs? Doing 
stepwise regression of each Ei on V1-V3 yields: 

2 2 2

E4.V1 E5.V1,V3 E6.V1,V3

2 2

E7.V1,V2 E8.V1,V3

.061, .302, .300,

.292, .562

R R R

R R

  

 
 

Next we compute, for each E4-E8, the proportion of 

unique variance that is actually specificity 2 2( )uR    

and error variance 2 2( {1 } )uR    . Computations give  
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specific, error, and original unique variances: 
Vi 2

is
   + 2

ie  = 
ii   

V4 0.325 5.009 5.334 
V5 1.009 2.332 3.341 
V6 3.060 7.140 10.2 
V7 1.542 3.738 5.280 
V8 1.973 1.537 3.510 
SUM 7.909 19.756 27.665 

 

Having the new estimate 2ˆ 7.909s  , RHO+ is  
2

2

ˆ 7.909
ˆ ˆ .7852 .847

ˆ 128.789

s
xx xx

x


 



       or 

2

2

ˆ 19.756
ˆ 1 1 .847

ˆ 128.789

e
xx

x






      . 
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The specificity-corrected ˆ ˆ( )xx    improves the 

reliability estimate by almost 8%. 
 
Next, consider a 2nd approach to specificity-corrected 
reliability: We augment the original model with doublet 
factors. Each doublet factor is associated with a given 

item and an auxiliary variable, and its variance is 2ˆ
s . 

  

This expanded model reproduces exactly the same ̂as 
the original one that yields ˆ

xx . 

  

We also add constraints so that each factor 2̂  plus 

unique 2̂ in the augmented model equals the fixed 

unique 2 from the original model. We specify:  
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/EQUATIONS 

V1 = *F1        + F4 +F5 +F6 +F7 +F8 + E1; 

V2 = *F1                             + E2; 

V3 = *F1                             + E3; 

V4 =    1.000F2 + F4                 + E4; 

V5 =    1.421F2      +F5             + E5; 

V6 =    1.950F2          +F6         + E6; 

V7 =    1.144F2              +F7     + E7; 

V8 =    1.675F2                  +F8 + E8; 

/VARIANCES 

F1 = 1; F2 = 1.956; 

F4 TO F8 =*; E1 TO E8 =*; 

/COVARIANCE 

F1,F2=*; 

/CONSTRAINTS 

(F4,F4)+(E4,E4)=5.334; 

(F5,F5)+(E5,E5)=3.341; 

(F6,F6)+(E6,E6)=10.2; 

(F7,F7)+(E7,E7)=5.280; 

(F8,F8)+(E8,E8)=3.510; 
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Notice that: 

 F4, F5, F6, F7, F8 are common factors in the 
space of all variables 

 F4 - F8 are not common factors in the space of 
the items V4-V8 making up our scale 

 In principle, there are as many possible doublets 
as the product of # auxiliary vars  # items 

 Doublets whose variances are not significant 
should be removed, to avoid capitalizing on chance 

 If a doublet variance is constrained at zero, a 
reparameterization should be considered to 
allow a possibly negative doublet correlation 

 

The model fits well 2

24( )( 13.2, 1.0)ML CFI   . 
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Specific, error and original unique variances are: 
Vi Fi,Fi + Ei,Ei = 

ii  (fixed) 

V4 .872 4.462 5.334 
V5 1.259 2.082 3.341 
V6 3.111 7.089 10.2 
V7 2.073 3.207 5.280 
V8 1.952 1.558 3.510 
SUM 9.267 18.398 27.665 

 

ˆ 1 (27.665 /128.789) .785xx        

ˆ 1 (18.398 /128.789) .857xx     , 

about a 9% improvement. The specific 2 2

V4 F4
ˆ ˆ

s  is not 

significant – if we set it to zero, we get 
ˆ 1 (19.704 /128.789) .847xx      (a .01 reduction) 
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We may similarly compute ̂  and ̂  . The runs are 
identical to the above (keeping all 5 specific factors), 
except that to get   from a factor model rather than 
just the sample covariances: 

1.  The 1-factor model has all fixed 1.0 loadings 
2.  METHOD = LS; (least squares estimation). 

The model fits so-so 2

9( )( 21.6, .95)LS CFI    

29.11
ˆ 1 .774

128.854
        

The enlarged model fits so-so 2

24( )( 56.2, .93)LS CFI    

19.786
ˆ 1 .846

128.854
     . 

These are almost as high as those from the unrestricted 
1-factor model.  
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These approaches also extend to various other 
coefficients. An important example is the greatest lower 
bound (glb) (Bentler, 1972; Woodhouse & Jackson, 
1977; Bentler & Woodward, 1980). This is based on a 
factor model with an unspecified # of factors that 
explains all covariances. 
 
Using the doublet approach as before, we get: 

glb

glb

ˆ .805

ˆ .876



 




  

The new glb+ exceeds the glb by about 9%. 
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Covariate-free and Covariate-dependent Reliability 
Coefficients 

 
Is xx  invariant to changes in populations? The APA Task 

Force on Statistical Inference (Wilkinson & APA, 1999): “…a 
test is not reliable or unreliable. Reliability is a property of the 
scores on a test for a particular population of examinees.” 
This implies there may be several, or even dozens, of reliabi-
lity coefficients [of any fixed definition] for a given scale: for 
males (females), old (young), low (high) SES, highly (little) 
educated, etc.  
 
Not a new idea: Generalizability theory has long held that 
various sources of error may imply different variance ratios.   
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How serious is this problem, and how can influences on xx  

be evaluated? In a previous talk (Bentler, 2014), I 
reviewed several possible approaches to this problem: 

1. Reliability generalization. This is a meta-analysis 
method that seeks correlates and predictors of 

xx  

size, such as gender. 
2. Multiple group models. Invariance or near invariance 

of parameters implies (near) invariance of 
xx across 

groups. 
3. Multilevel models. These provide both Between-

group ( )B  and Within-group ( )W  covariance 

matrices that can be used to obtain 
xx  coefficients. 

Within-group 
xx  eliminates cluster differences. 

I also proposed a new covariate-based methodology. 
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A Covariate-based Approach to Reliability 
 
As before, we start with 

X T E   
 
and make the usual assumptions to obtain  

2

2

T
xx

X





 . 

(For simplicity, I drop the distinction between 
xx  and 

XX . Context will clarify.) Now assume there is a set of 

covariates Z , which may be one or many variables, 
latent or observed, categorical or continuous, and 
consider the regression (linear or nonlinear) of T  on Z  
such that there exists the orthogonal decomposition 
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ˆT T T  , 

with ˆ ( )T T Z  the covariate-dependent part of T , and 

( )T T T Z   the covariate-free part of T . It follows that 
2 2 2

ˆT TT
     and hence 

 

2 22
ˆ

2 2 2

( )      = .

T T T
xx

X X X

z z

xx xx

 


  

 

  



 

( )z

xx  is covariate-dependent reliability and 
z

xx  is covariate-free reliability.  

 

In practice, the score decomposition ˆT T T  is not 
needed; only the variance decomposition is necessary. 



24 
 

This decomposition can be applied to each of multiple 
T  scores, or to T s that are based on a factor model, 
and hence a linear compound of factors F . 

If covariate-free reliability z

xx  is large compared to
xx , 

we have high reliability generalization. Reliability then 
hardly depends on covariates.  

If covariate-dependent reliability ( )z

xx  is large compared 

to
xx  (alternatively, absolutely large), reliability is highly 

population-dependent. Separate coefficients would be 
needed for different populations. 
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Covariate-free & Covariate-dependent Alpha 
 

Based on 
xx , the population covariance matrix among 

items, we have already encountered  
2

2
.

ij

x

p 



  

With covariates, we also have xx xz

zx zz

  
 
  

. The 

regression of 
iX  on Z  yields the matrix identity  

1 1( ) ( )xx xx xz zz zx xz zz zx

           , 

the residual and predictable parts of 
iX . Hence, their 

off-diagonal elements obey the equality 
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1

1

{ ( )} { ( )}

     { ( )}

xx xx xz zz zx

xz zz zx

mean offdiag mean offdiag

mean offdiag





     

   
  

and specifically, 

( )z z

ij ij ij    . 

It follows that alpha can be decomposed into 
( )z z    , 

where 
2 2/z z

ij xp     is covariate-free alpha and 
( ) 2 ( ) 2/z z

ij xp    is covariate-dependent alpha. 
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Model-based Coefficients 

We also have already seen the decomposition 

xx c   , 

based on orthogonal common and unique 1p  random 

vectors in deviation form x c u  . Now we would like 
to partial the 1q  vector of covariates z  out of c .  

 
Similarly as before, we may write the partial covariance 
identity 

1 1( ) ( )cc cc cz zz zc cz zz zc

           . 

To make this operational, we assume that ( ) 0E uz   

and we obtain  
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( ) ( )E xz E cz   or 
xz cz  . 

Now we can substitute 
xz in the previous formula: 

1 1 ( )( ) ( ) z z

c cc cc xz zz zx xz zz zx c c

                 . 

It immediately follows that 

( )

( )      =  

z z

c c c
xx

z z

xx xx

1 1 1 1 1 1

1 1 1 1 1 1

 






    
  

    



  

where 

z

xx  is covariate-free reliability 

( )z

xx  is covariate-dependent reliability. 
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c  represents the common score covariance matrix for 

many models, such as 
 EFA: c

    

 CFA: c
    

 FA/SEM: 1 1( ) ( )c I B I B           

 blb (Bentler, 1972): min tr( c ) psd,   diagonal 

glb (Woodhouse & Jackson, 1977; Bentler &     
Woodward, 1980): min tr( c ) psd, diagonal & psd 

Also,  may be a submatrix of a much larger structural 
model ( ) . The rank of c -- the number of factors -- is 

typically greater than 1. But the 1-factor case is 
interesting: 
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Covariate-based 1-Factor Reliability 

Let 
1x      be the factor model with 1 1c      . 

The factor variance  is a scalar (possibly 1  ). Hence  
2

1
11 2

( )
xx

x

1






   (   ). 

Now let the factor  be predicted by covariates z , with 

the 2R  for predicting   being 2

( )zR . It follows that  
2 2 ( )

( ) ( )(1 ) z z

z zR R 

          . 

With the factor variance partitioned, we may write  
( ) 2 2

( )1 1
11 11 112 2

( ) ( )z z
z z

x x

1 1 
  

 


  

    . 
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This partition of reliability can be obtained in two ways: 

 (1) a simultaneous mimic-type setup such as 

 
where the equation predicting F1 yields 2

( )zR  and 
z
is the 

variance of D1; 
 

(2) a 2-step approach, where 11  is first obtained from 

only the factor model (no covariates); in step 2, the model is 
run with loadings and error variances fixed at step-1 values, 
and other parameters free.   
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Covariate-based Reliability with LISREL 

The LISREL model easily permits a covariate-based partitioning of 
reliability. Assume we want the reliability of the endogenous y  

variables, and x  variables and its factors are covariates. 
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The covariance matrix of the y  is 

      1 1( ) ( )( )yy y yI B I B 

            .     

 
We immediately see that covariate-based reliability is 

1 1

( )
( ) ( )( )y yx

yy

yy

1 I B I B 1

1 1


        



  

 
and covariate-free reliability is 

1 1( ) ( )( )y yx

yy

yy

1 I B I B 1

1 1


 


     




. 
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Example: Brain Size and IQ 
Did you know that “Big-brained people are smarter” 
(McDaniel, 2005)? He reported: 
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Are intelligence measures mainly indirect measures of 
brain size? Posthuma et al. (2003) found: 
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What is the internal consistency reliability of the 4 
intelligence measures? Is the total score still reliable if 
we partial out the effects of the brain matter volumes? 
We run EQS with the setup: 
 /RELIABILITY                                                                     
    SCALE = V4 TO V7;                                                               
    COVARIATES = V1 TO V3; 
 
The covariates here are observed variables. They affect 
an IQ factor. Since there are only 4 intelligence mea-
sures, we may not get a very high internal consistency 
reliability. 
 
We get as output:  
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RELIABILITY COEFFICIENTS USING DEPENDENT VARIABLES 
ONLY 
   CRONBACH'S ALPHA                                   =     0.749 
   COVARIATE-FREE ALPHA                            =     0.695 
   COVARIATE-BASED ALPHA                         =     0.053 
 
We also get results for 1-factor reliability: 
   RELIABILITY COEFFICIENT RHO                  =     0.754 
   COVARIATE-FREE RHO                                 =     0.678 
   COVARIATE-BASED RHO                              =     0.076 

 
The intelligence measures retain 93% and 90% of their 
reliability when the brain volume measures are 
controlled. But the model fit is a bit marginal. 
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If we structure the covariates, we obtain better fit and 
similar 

xx  results, even when models vary somewhat. 

  

 
 

( )ˆ ˆ ˆ.763,  .698,  .065z z

xx xx xx      

(Note: F2F1Verbal is positive, but F2Verbal is 
negative)  
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Another model also fits well. 
 

 
 

( )ˆ ˆ ˆ.761,  .709,  .052z z

xx xx xx      

(Note: F2 has no effect on Verbal) 
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Concluding Comments 

 
The proposed specificity-enhanced and covariate-based 
reliabilities provide new ways to evaluate the quality of 
tests and scales. 
 
Like anything else, these methods can probably be 
misused, e.g., 

 when meaningless auxiliary variables or 
covariates are used 

 when assumptions are not met 

 when models ̂  used to define coefficients do 
not fit the data. 
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Your feedback is most welcome. 
 
 

 

 
That’s All.  

And, thank you again. 
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