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TherapeuTic advances in 
cardiovascular disease

Enhancing coronary artery plaque 
analysis via artificial intelligence-driven 
cardiovascular computed tomography
Jeffrey Xia, Kinan Bachour, Abdul-Rahman M. Suleiman, Jacob S. Roberts, Sammy Sayed 
and Geoffrey W. Cho

Abstract: Coronary computed tomography angiography (CCTA) is a noninvasive imaging 
modality of cardiac structures and vasculature considered comparable to invasive 
coronary angiography for the evaluation of coronary artery disease (CAD) in several major 
cardiovascular guidelines. Conventional image acquisition, processing, and analysis of CCTA 
imaging have progressed significantly in the past decade through advances in technology, 
computation, and engineering. However, the advent of artificial intelligence (AI)-driven 
analysis of CCTA further drives past the limitations of conventional CCTA, allowing for greater 
achievements in speed, consistency, accuracy, and safety. AI-driven CCTA (AI-CCTA) has 
achieved a significant reduction in radiation exposure for patients, allowing for high-quality 
scans with sub-millisievert radiation doses. AI-CCTA has demonstrated comparable accuracy 
and consistency in manual coronary artery calcium scoring against expert human readers. 
An advantage over invasive coronary angiography, which provides luminal information only, 
CCTA allows for plaque characterization, providing detailed information on the quality of 
plaque and offering further prognosticative value for the management of CAD. Combined 
with AI, many recent studies demonstrate the efficacy, accuracy, efficiency, and precision 
of AI-driven analysis of CCTA imaging for the evaluation of CAD, including assessing degree 
stenosis, adverse plaque characteristics, and CT fractional flow reserve. The limitations of 
AI-CCTA include its early phase in investigation, the need for further improvements in AI 
modeling, possible medicolegal implications, and the need for further large-scale validation 
studies. Despite these limitations, AI-CCTA represents an important opportunity for improving 
cardiovascular care in an increasingly advanced and data-driven world of modern medicine.
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Introduction
There have been significant recent advancements 
in artificial intelligence (AI)-driven cardiovascu-
lar imaging. AI techniques such as machine learn-
ing (ML) and deep learning (DL) neural networks 
are increasingly being studied to interpret the 
immense data acquired through various cardio-
vascular imaging modalities including coronary 
computed tomography angiography (CCTA).

Despite advances in diagnostics and therapeutics 
in cardiovascular medicine, heart disease remains 
the leading cause of death in the United States, 
accounting for nearly one million deaths in 2020, 
with coronary heart disease as the leading cause.1 
CCTA is a noninvasive CT imaging modality of 
cardiac structures and vasculature that is now 
considered equivalent to invasive coronary angi-
ography testing for evaluation of coronary artery 
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disease (CAD) in several guidelines. The rise of 
AI in CCTA (AI-CCTA) demonstrates promis-
ing results in several avenues, such as improve-
ments in the efficiency of image acquisition, 
post-processing time, diagnostic ability, consist-
ency, and even insight into risk stratification and 
prognostication of outcomes.2–4

This review provides an overview of recent 
updates in the applications of AI-CCTA with a 
focus on CAD including fundamentals in AI, 
CCTA image acquisition, coronary artery cal-
cium (CAC), coronary stenosis, adverse plaque 
characteristics (APCs), and fractional flow reserve 
CT (FFR-CT).

Utilization of CCTA in modern medicine
As the quality of evidence and technology for 
CCTA advances, there has been increasing inclu-
sion and expansion of CCTA utilization in inter-
national guidelines for CAD. In 2016, CCTA 
emerged as a first-line diagnostic modality for 
CAD in the UK’s National Institute for Health 
and Care Excellence (NICE) guidelines. Several 
studies investigating the utilization of CCTA 
such as the 5-year outcomes from SCOT-
HEART, CREDENCE, CONSERVE, and 
ISCHEMIA demonstrated the versatility and 
utility of CCTA for CAD.5–8 The data from these 
studies stimulated clinical change in CAD man-
agement with associated reduction in mortality, 
and with superiority to functional stress testing 
for significant coronary stenoses serving as a gate-
keeper for diagnostic invasive coronary catheteri-
zation.5–8 In 2019, the European Society of 
Cardiology updated its guidelines for chronic 
coronary syndrome management, upgrading the 
recommendations for CCTA as equivalent to 
functional stress testing as first-line diagnostic 
testing for CAD (class I recommendation) and 
CCTA as an alternative to invasive coronary 
angiography in the setting of non-diagnostic func-
tional testing if adequate imaging quality is 
achievable (class I recommendation).9 In 2021, 
the American College of Cardiology/American 
Heart Association updated guidelines for the 
evaluation and diagnosis of chest pain with a class 
I recommendation for CCTA to exclude plaque 
and obstructive CAD in intermediate-risk 
patients.10 With further alignments between 
international guidelines, the utilization of CCTA 
is expected to rise, necessitating technological 
advances to keep up with demand while ensuring 

continued safety for patients obtaining these 
studies.

As a noninvasive imaging modality capable of 
both anatomical characterization of plaque (quan-
titative and qualitative) and functional testing 
(FFR-CT), CCTA now makes it simpler and 
safer for temporal tracking of plaque while opti-
mizing medical therapy through long-term serial 
CT exams compared to intravascular ultrasound 
for plaque analysis. Examples of the application 
of serial CCTA include the PARADIGM and 
EVAPORATE studies.11,12 PARADIGM demon-
strated the phenotypic changes of coronary plaque 
associated with statins including increased plaque 
calcification and reduction of high-risk plaque 
features over an interscan interval ⩾2 years.11 
EVAPORATE demonstrated significant regres-
sion of low-attenuation plaque (LAP) volume due 
to icosapent ethyl with an interscan interval of 9 
and 18 months.12 Furthermore the noninvasive 
nature of CCTA may allow for reduced proce-
dural risks as in the DISCHARGE trial that dem-
onstrated a reduced rate of procedure-related 
complications in patients receiving CCTA prior 
to undergoing invasive coronary angiography.13

AI sub-types in cardiac CT
AI is the generalized term describing computa-
tional processes that aim to imitate human intel-
ligence, such as learning, reasoning, and 
decision-making.14 ML is a subset of AI and uti-
lizes sophisticated statistical analysis of an input 
data set to produce output predictions or 
decisions.14

There are four types of ML algorithms: super-
vised learning, unsupervised learning, semi-
supervised, and reinforcement learning.14 
Supervised learning involves the use of human-
labeled data to evaluate outcomes which the ML 
algorithm learns from. Unsupervised learning is a 
more independent ML sub-type in which ML 
occurs without the use of labeled data. Semi-
supervised learning occurs when a model uses a 
hybrid approach of both methods. Reinforced 
learning utilizes rewards and penalties within the 
algorithm to maximize cumulative rewards.14,15

DL is a sub-type of ML and uses all types of 
learning in a hierarchical structure called neural 
networks allowing for improved analysis of vari-
ous features of an image presented to the model. 
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Convolutional neural networks (CNNs) utilize 
layers of neural nodes when processing an input 
image to allow for enhanced pattern recognition. 
DL paired with CNN allows for potentially 
advanced interpretation of images than conven-
tional supervised learning models.16,17 The limita-
tions of AI include the necessity for high-quality 
datasets to train AI models (time intensive to 
accrue), difficulty with novel or rare imaging find-
ings, interpretation of multidimensional or non-
linear images, and the ability to externally validate 
results from one dataset to larger populations.15

Currently in cardiovascular imaging, supervised 
learning is the most common method for the 
interpretation of images, allowing for human 
labeling of specific imaging features such as 
plaque characteristics and degree of stenosis 
which trains the ML model.18 Once trained with 
the learning dataset, the model attempts to inter-
pret new CCTA images. The application of 
AI-CCTA is rapidly expanding due to the inher-
ently graphical nature and data-driven aspects of 
CT imaging.

AI in technical image acquisition and quality 
in CCTA
One of the greatest theoretical risks of CCTA is 
ionizing radiation exposure which may predispose 
to cancer. PROTECTION VI was an interna-
tional radiation dose survey on CCTA which 
revealed a 78% reduction in radiation dosage 
when compared to a prior survey in 2007.19 
During this 10-year interval, the primary strate-
gies to reduce radiation were non-AI, comprising 
hardware (CT gantry modifications, tube voltage 
adjustments), software (iterative image recon-
struction), and procedural (ECG-gating) optimi-
zation techniques.19 Further reduction in 
radiation dose and image quality is limited by 
increasing image noise and processing time. 
Studies utilizing AI-driven denoising techniques 
have been shown to decrease the amount of radia-
tion needed for CCTA without sacrificing image 
quality (Table 1). Almost all studies in Table 1 
achieved sub-millisievert and dose length product 
(DLP) <100 mGy*cm radiation doses utilizing 
AI processing of CCTA data with no significant 
difference, or even improved, image quality com-
pared to higher radiation doses. In comparison, 
the median DLP in 2017 from PROTECTION 
VI was 195 mGy*cm (IQR: 110–338 mGy*cm) 

which is equivalent to 2.7 or 5.1 mSv using effec-
tive dose conversion factors of 0.014 or 0.026 mSv/
mGy*cm, respectively.19 In addition, some stud-
ies achieved lower doses of contrast administered 
with AI-CCTA data processing without compro-
mising image quality.20,21 Limitations to these 
studies include variability of CT scanners, varia-
bility in study protocols, lack of randomization, 
small sample sizes, and variability in human adi-
pose distribution.

Observed from survey data from PROTECTION 
VI, the use of iterative reconstruction (IR) in 
CCTA imaging surpassed the conventional fil-
tered back projection (FBP) technique in 2017, 
with 83% of surveyed centers utilizing IR. IR 
incorporates an FBP estimate and compares 
CCTA data in an iterative process while applying 
denoising models to improve image quality. This 
iterative process is attractive within the AI space 
as it is data driven with parameters easily adjust-
able using DL models, meshing the iterative pro-
cess with multiple processing layers of neural 
networks. The current status of DL iterative 
reconstruction (DLIR) is early but rapidly evolv-
ing. In a study that formally assessed DLIR in 
comparison to conventional statistical reconstruc-
tion (ASiR) with invasive coronary angiography 
as a standard reference, DLIR achieved 43% 
noise reduction while increasing image quality by 
138%; and there were no significant differences 
in accuracy (82% vs 80%), AUC (0.826 vs 
0.802), sensitivity (92% vs 88%), and specificity 
(72% vs 73%) with high inter-reader and intra-
reader reliability (ICC 0.90 and 0.86, respec-
tively).28 There is great potential for DLIR in a 
number of applications, as demonstrated in Table 
1 by the studies utilizing DLIR to reduce radia-
tion dose per scan. Another application is the uti-
lization of DLIR to evaluate in-stent restenosis by 
correcting for stent-related blooming artifacts. In 
one study, CCTA with DLIR was used to assess 
in-stent restenosis with invasive coronary angiog-
raphy as the reference standard; sensitivity was 
moderate (50%–62.5%) with high specificity 
(90.1%–95.5%) and comparable positive predic-
tive value (PPV) (71.4%–80%) and negative pre-
dictive value (NPV) (84%–87%).29

Imaging a dynamically moving organ such as the 
heart may result in the occurrence of motion 
artifact, especially when the heart rate is not low 
enough or the CT scanner has a less efficient 
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Table 2. Studies investigating motion artifact reduction efficacy of artificial intelligence processing of coronary CT angiogram data.

Study Year N Network Generator Discriminator Peak signal-
to-noise ratio 
[IQR]

Structural 
similarity (SSIM) 
[IQR]

Dice similarity 
coefficient [IQR]

Hausdorff 
distance [IQR]

Zhang 
et al.30

2022 313 CNN, 
GAN

U-Net PatchGAN 26.1 [24.4–27.5] 0.860 [0.830–0.882] 0.783 [0.714–0.825] 4.47 [3.00–7.07]

Ren 
et al.31

2022 97 CNN, 
GAN

U-Net PatchGAN N/A 0.87 ± 0.06 0.84 ± 0.08 N/A

Deng 
et al.32

2022 60 CNN, 
GAN

U-Net CNN 24.96 ± 1.54 0.769 ± 0.055 N/A N/A

CNN, convolutional neural network; GAN, generative adversarial network.

Table 1. Studies investigating the radiation dosage reduction efficiency utilizing artificial intelligence in the processing of coronary 
CT angiogram data.

Study Year N Focus Tube 
voltage 
(kV)

Networks Algorithm Comparison 
group

Effective 
dose 
(mSv)

Effective 
dose 
(DLP, 
mGy*cm)

Degree of 
radiation 
dose 
reduction 
(%)

Liu et al.22 2020 70 Image 
quality

80, 100 DCNN DL-GAN IR N/A 66 55

Bernard et al.23 2021 296 Image 
quality

120 DCNN AiCE AIDR-3D 1.5 106.4 40

Benz et al.24 2022 50 Image 
quality

120 DCNN DLIR-H ASiR-V 0.8 31 43

Li et al.20 2022 100 Image 
quality

70, 120 DCNN DLIR-H ASiR-V 0.75 53.44 54.5

Wang et al.25 2022 60 (all 
BMI ⩾ 30)

Image 
quality

100, 120 DCNN DLIR-M
DLIR-H

ASiR-V 1.8 69.4 40

Wang et al.26 2022 80 Image 
quality

70 
(BMI < 26), 
80 (BMI⩾ 
26)

DCNN DLIR-M
DLIR-H

ASiR-V
FBP

0.93 (70)
2.35 (80)

63.17 (70)
168 (80)

N/A

Demircioglu 
et al.27

2023 298 Delimitation 90, 120 CNN Cascade 
R-CNN
VFNet
YOLOX

Radiologists 7.3 N/A 12.6

Li et al.21 2023 100 (all 
BMI > 26)

Image 
quality

80, 120 DCNN DLIR-H ASiR-V 1.01 71.42 45

AiCE, advanced intellegent clear-IQ engine; AIDR, advanced interative dose reduction; ASiR, adaptive statistical interative reconstruction; BMI, body 
mass index; CNN, convolutional neural network; DCNN, deep convolutional neural network; DLIR, deep learning iterative reconstruction; DLP, dose 
length product; IR, iterative reconstruction.

temporal resolution. ML provides the opportu-
nity to correct for motion artifacts in post-pro-
cessing. One ML method for motion artifact 
reduction is utilizing generative adversarial net-
works (GAN; Table 2). With GAN in the con-
text of CCTA motion reduction, a discriminator 

neural network attempts to decipher whether an 
image is a real motion-free image supplied by a 
domain versus a generated artificial image with-
out motion artifact. These inputs reiterate and 
train opposing networks for which the param-
eters can be used for post-processing motion 
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artifact reduction. In one study involving paired 
motion-affected and motion-free CCTA 
images, GAN-driven motion artifact reduction 
significantly improved quantitative quality 
analysis measures including peak signal-to-
noise ratio, structural similarity (SSIM), dice 
similarity coefficient, and Hausdorff distance 
with significantly improved rater subjective 
assessment for motion improvement.30 
Furthermore, this study compared GAN-
generated CCTA images and motion-affected 
CCTA images to invasive coronary angiographic 
reference standards, finding significant improve-
ment in accuracy for diagnosing no coronary ste-
nosis (40%–81%), <50% stenosis (47%–85%), 
and ⩾50% stenosis (62%–70%).30 The limita-
tions of current studies regarding AI motion arti-
fact reduction include the retrospective nature of 
studies and small sample sizes.

Another area of interest in AI-CCTA image pro-
cessing is segmentation. Image segmentation is 
the process of separating an image into regions of 
interest (ROI) to allow for more efficient and 
meaningful image analysis (Table 3).33 In AI, 
neural networks can be programmed to analyze 
CCTA images and analyze minute details of cor-
onary pathologic anatomy including localization 
of atherosclerotic plaques/stenoses, morphologic 
features of plaque, and degree of plaque calcifica-
tion. In CLARIFY, the performance of CNN-
analyzed coronary atherosclerosis on CCTA 
images was compared to level 3 expert CCTA 
readers, finding 78% overall agreement in CAD-
RADS with the greatest discrepancy at CAD-
RADS 0 and AI CAD-RADS 1.34 In lesions with 
potential interventional treatment (>70% steno-
sis), there was >99% consensus between AI and 

level 3 expert readers, with a per-patient sensitiv-
ity of 88.9%, specificity 99.6%, PPV 88.9%, and 
NPV 99.6%.34 Furthermore, the AI system pro-
cessed CCTA images in 9.7 ± 3.2 min.34 
Improvement of efficiency by AI-assisted CCTA 
analysis has been estimated to be 69%–80% from 
human analysis.35,36 These outcomes of high 
diagnostic performance and efficiency were also 
seen in a post hoc analysis of CREDENCE.37 
Limitations of these studies include lack of stand-
ard reference with invasive coronary angiography, 
and unknown prognostic implications of CCTA 
at the time of study.

AI in CAC scoring and calcified plaque 
analysis
The quantification of CAC, a key component of 
atherosclerosis, is thought to predict the severity 
of CAD.40–43 Historically, chest radiography and 
fluoroscopy were the most common modalities 
used to detect CAC.41 However, it was not until 
the advent of CT that allowed for the feasibility of 
CAC quantification.41 Several major studies, 
such as multi-ethnic studies of atherosclerosis, 
Heinz Nixdorf Recall (HNR), and Framingham 
Heart have shown that high CAC scores are asso-
ciated with the presence of CAD and indepen-
dently predict cardiovascular events.44–46 The 
most common method of scoring CAC is known 
as the Agatston score, which is a semi-automated 
tool that grades CAC using calcium density and 
area. This method can be time-consuming, likely 
preventing widespread clinical application.41,43,47

AI algorithms are increasingly being studied to 
improve the efficiency of CAC scoring. Historically, 
CAC scores were obtained using ECG-gated 

Table 3. Studies investigating the data processing efficiency of artificial intelligence segmentation analysis of 
coronary CT angiogram data.

Study Year N Processing time (min)

Choi et al.34 2021 232 9.7 ± 3.2

Griffin et al.37 2023 303 10.3 ± 2.7

Liu et al.36 2021 165 2.3 ± 0.6

Jonas et al.38 2022 303 10.3 ± 2.7

Meng et al.39 2023 256 4.97 [IQR: 4.60–5.42]
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 cardiac CT. However, an emerging concept  
is AI-CAC scoring utilizing non-gated, non- 
contrasted general CT chest imaging. A study 
investigating DL-assisted CAC scoring on both 
non-gated and ECG-gated non-contrasted chest 
CT revealed a strong correlation coefficient of 
0.964 suggesting DL-assisted CAC scoring of 
non-gated CT chest imaging may be comparable 
to ECG-gated studies.48 Another study compared 
an AI-CAC scoring model against the gold stand-
ard of blinded radiologists with 5 years of experi-
ence and demonstrated that the AI model both 
reliably and accurately calculated CAC scores 
and classified patients into the appropriate risk 
stratification groups.49 In addition, even com-
pared to expert human level 3 CT readers, it was 
shown that the AI platform performed equally 
well, and even additionally captured some cal-
cium missed by human analysis.50 The applica-
tion of AI-CAC extends into CNNs which one 
study demonstrated a correlation coefficient of 
0.93 between CNN-assisted Agatston calculation 
compared to known human-calculated CAC 
scores without the need for prior data segmenta-
tion of CAC.51

AI may also be useful in calculating CAC from 
CCTA studies. One study compared CNN-
assisted CAC scoring of CCTA against paired 
manual CAC scoring of dedicated coronary cal-
cium scans which revealed a strong correlation 
between these modalities with comparable risk 
stratification outputs.52 Another study compared 
DL-assisted CAC scoring against manual CAC 
scoring of CCTA imaging data only and demon-
strated that the DL algorithm was highly sensi-
tive, specific, and with strong diagnostic accuracy 
>90%.53 These findings suggest that AI-CAC 
scoring may be useful in optimizing efficiency in 
CAC scoring.

Aside from CAC scoring, AI-assisted analysis of 
calcified plaque is an area of ongoing research. A 
recent study performed in patients with pre-
existing end-stage renal disease and a mean 
CAC greater than 2000 found that plaque calci-
fication did not significantly affect the specificity 
of CCTA. In addition, over 94% of samples 
were deemed analyzable using automated 
AI-enabled software despite a significant CAC 
burden.54 Another study tested a 3D CNN 
used for plaque segmentation and classification 

on a pre-existing dataset of CCTA volumes. 
AI-assisted analysis of calcified plaque was found 
to have a dice score of 0.83 suggesting strong 
overlap between AI-assisted analysis and manual 
analysis.55 Aside from direct AI assistance in the 
analysis of calcified plaque, AI models may indi-
rectly assist through calcium de-blooming via 
GANs. A recent study utilized GAN-processed 
images for calcium de-blooming of 50 patients 
with calcified plaques found a significant reduc-
tion in false-positive rates compared to the origi-
nal, unprocessed images. The study also found a 
significant improvement in the specificity and 
PPV of CCTA.56

AI and coronary stenosis in CCTA
Historically, CAD was assessed through invasive 
coronary angiography. However, the rapid devel-
opment of CCTA allows for increasingly advanced 
visualization of coronary anatomy, the identifica-
tion of luminal stenosis, plaque burden, and high-
risk plaque features.57,58

The findings of the CLARIFY trial are particu-
larly important given the large variability in the 
manual quantification and categorization of 
severe stenosis. This is particularly evidenced in 
the PROMISE trial which compared local site 
interpretations with blinded, off-site interpreters 
with variable CCTA reading experience which 
demonstrated significant variability in the inter-
pretations of CCTA particularly in the off-site 
interpreters blinded to clinical data.59 PROMISE 
highlighted the difficulty of standardized and 
accurate human interpretations of CCTA partic-
ularly at high-volume centers where incorpora-
tion of clinical data may not always be feasible for 
the interpretation of the study.59 Aside from 
CLARIFY, several other studies have validated 
the use of AI in the interpretation of CCTA.39,60 
One study found that AI-assisted analysis using 
DL was non-inferior to manual interpretation as 
it relates to stent segmentation >90% sensitivity, 
specificity, PPV, and NPV for the diagnosis of 
⩾50% stenosis in the internal dataset with com-
parable performance in external validation test-
ing.39 Another study compared ML techniques to 
expert CCTA interpretation for the detection of 
coronary stenosis ⩾25% and demonstrated the 
ML techniques had high sensitivity (93%) and 
specificity (95%; Figure 1).60
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AI-driven quantification and prognostication 
of APC
Invasive and pathologic studies have determined 
high-risk anatomic plaque features central to the 
processes of acute coronary syndromes (ACS) 

and sudden cardiac death.61 Among high-risk 
plaque lesions, common characteristics include 
plaque burden, thin-cap fibroatheroma, positive 
arterial remodeling, necrotic cores, and spotty 
calcifications.62 Invasive data demonstrated that 

Figure 1. Study design flow schematic of an artificial intelligence CCTA investigation of coronary artery 
stenosis.
Source: Reused with permission from Griffin...Earls et al.37

CCTA, coronary computed tomography angiography.
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the majority of plaques implicated in ACS are 
non-obstructive in terms of stenosis severity, with 
high-grade stenoses comprising less than one-
third of culprit lesions.63 Therefore, characteris-
tics beyond the severity of stenosis are needed to 
identify high-risk plaques, which is achievable 
with CCTA.

Quantitative evaluation of APCs on CCTA can 
identify patients at risk for cardiac events result-
ing from high-risk plaque ruptures. In addition to 
measuring luminal diameter narrowing to detect 
coronary stenoses, advances in CCTA have 
allowed for the development of APC analysis 
including aggregate plaque volume, positive 

arterial remodeling, LAP as markers for necrotic 
lipid-laden intra-plaque core, and spotty intra-
plaque calcification. One study identified low-
attenuation plaque burden as the strongest 
predictive APC for fatal or non-fatal MI.64 
Studies have demonstrated that even in non-
obstructive lesions, APCs correlated with adverse 
outcomes.65–67

Studies have demonstrated that APCs by CT 
improve early identification of coronary lesions 
that cause ischemia supporting a potential pre-
ventative role.68 Studies have further demon-
strated that CT perfusion imaging and APCs 
identified on CCTA can detect ischemic stenosis 

Figure 2. Example of adverse plaque characteristic analysis in a patient with end-stage renal disease. Three 
groups of two images of the right coronary artery (RCA), left main/left anterior descending (LM/LAD), and 
circumflex are presented. Each group’s left image is a curved MPR of the CCTA, and the right images are 
straightened MPR with color plaque overlay (red = LDNCP, yellow = NCP, blue = CP). A 20 × 3.0 mm2 stent is 
present in the proximal RCA and was excluded from QCT analysis (purple overlay with “N” markers, second 
image from left). This is the only exclusion in this patient, and it represented 2.82% of the coronary vessels 
measuring 2 mm or greater. Note that a 51% stenosis was depicted distal to the stent (arrow). Two moderate 
stenoses of 61% and 55% were depicted in the mid LAD (fourth image, arrows). Non-obstructive disease was 
present in the circumflex. The patient’s plaque volume was high at 1289.4 mm3, CP 384.8 mm3, NCP 904.6, total 
PAV was 29.8%, and four two-feature HRPs were depicted.
Source: Reused with permission from Cho et al.54

AUC, area under curve; CCTA, coronary computed tomography angiography; CP, calefied plaque; HRP, high risk plaque; MI, 
myocardial infarction; MPR, multiplanar reformat; LDNCP, low-density non-calcified plaque; NCP, non-calcified plaque; 
PAV, plaque atheroma volume; QCT, quantitative computive tomography.
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when using single-photon-emission CT as a refer-
ence for these lesions.69

While APCs have proven clinically useful in pre-
dicting high-risk plaque lesions, the parameters 
measured to assess these characteristics cannot be 
readily determined due to time-consuming calcu-
lations. As a result, studies have investigated the 
utility of AI-CCTA to evaluate plaque character-
istics. Several programs have been developed to 
further develop AI-CCTA. Among programs 
with FDA approval are Cleerly and HeartFlow 
which serve as AI-based digital platforms to 
improve clinician identification of high-risk 
plaques. Studies by Cho et al.70 using these plat-
forms demonstrate that it is possible to perform 
serial analysis of APC changes over time to pro-
vide insight into the prognostication of cardiovas-
cular events. Furthermore, it was also shown that 
plaques that would otherwise be difficult to quan-
tify by human reading due to high calcium and 
plaque burden can be characterized accurately via 
AI interpretation.54 Other approaches to 
AI-CCTA utilize a radiomics approach to analyze 
APC. Through radiomics, quantitative data are 
analyzed by extracting numerous features from 
images by focusing on the ROI and quantifying 
textural information by extracting spatial distri-
bution of Hounsfield or signal intensities and 
relationships.71–73 This radiomics approach has 
been shown to increase the diagnostic accuracy of 
CCTA in the identification of high-risk plaque 
characteristics.73–75 The segment involvement 
score (SIS) has also been developed as a semi-
quantitative measure of the extent of atheroscle-
rosis burden by CCTA. Studies have demonstrated 
that the extent of CAD as quantified by SIS on 
CCTA provides strong predictors of cardiovascu-
lar events (Figure 2).76

AI and functional flow reserve in CCTA
FFR-CT has increased importance in assessing 
ischemic lesions in arteriosclerotic plaques. 
CCTA is extremely useful in assessing vessel 
anatomy, which helps exclude significant CAD 
lesions (>50% narrowing) in low- and intermedi-
ate-risk populations.77 However, it has poor spec-
ificity in assessing obstructive CAD owing to 
calcium blooming (overestimation of calcium 
plaque) or inability to assess stenosis impact on 
flow, which is a more reliable predictor of 
ischemia.78 FFR-CT quantification addresses this 

limitation without the use of additional image 
acquisition or any stress agents. For example, in 
the landmark ADVANCE trial, the authors dem-
onstrated the addition of FFR-CT to CCTA-
modified clinical decisions in up to two-thirds of 
patients predicting the need for revasculariza-
tion.79 When compared to the standard of care in 
intermediate stenotic lesions, the TARGET trial 
showed on-site CT-FFR reduced the number of 
patients who underwent invasive angiography 
with non-obstructive CAD.80

FFR assesses the ratio of measured maximal 
hyperemic blood flow distal to a lesion in an 
artery, usually assessed invasively by infusion of 
adenosine, to a theoretical maximal hyperemic 
flow in the same artery.81 FFR-CT utilizes the 
patient-specific three-dimensional anatomic 
model of coronary vessels and mathematical data 
and algorithms to approximate CT data flow, 
resistance, and pressure during rest and hypere-
mia to calculate an FFR. The limitations of the 
conventional FFR-CT model include precision of 
three-dimensional models, and available compu-
tational power/time. Another model has been 
introduced that utilized hybrid reduced-order 
(mainly for healthy and non-stenotic regions) and 
full-order models to allow for fast flow computa-
tion in less than 1 h (Table 4).82,83

Successful utilization of AI further improves com-
putational efficiency without significantly sacrific-
ing accuracy. One study used a multilayer neural 
network with supervised learning of input of coro-
nary vascular anatomy paired with output 
FFR-CT values and demonstrated reduced com-
putation time by over 80-fold, allowing for physi-
cian-driven, near-real-time assessment of 
FFR-CT, all via standard workstations; The 
AI-FFR-CT achieved 81.6% sensitivity, 83.9% 
specificity, and 83.2% accuracy.86

A meta-analysis that included FFR-CT data from 
DISCOVER-FLOW, DeFACTO, and NXT 
multicenter trials demonstrated a combined sen-
sitivity of 0.90 (95% CI: 0.85–0.93) and specific-
ity of 0.82 (95% CI: 0.68–0.76) for ischemia 
detection, however, did not include AI-FFR-CT.87 
MACHINE compared the ML-based approach 
against computational flow dynamics (CFD)-
based FFR-CT with invasive FFR as the refer-
ence which demonstrated both ML-FFR-CT and 
CFD-FFR-CT outperformed visual CCTA 
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assessment (AUC: 0.84 compared to 0.69, 
p < 0.001) with ML-FFR-CT improving accu-
racy from 58% to 78%.88,89

Furthermore, CCTA accuracy declines in the 
setting of extensive plaque. However, with 
ML-FFR-CT, the accuracy, sensitivity, and 
specificity of FFR-CT to detect ischemia were 
not significantly different across CAC score cat-
egories.90 While FFR-CT performance declined 
as the CAC score increased, it had superior 
diagnostic performance compared to CCTA 
across CAC score ranges. In CREDENCE, the 
authors demonstrated excellent accuracy for 
AI-CCTA to detect high-grade stenosis with 
similar efficacy to lab-interpreted quantitative 
coronary angiography.37,91

Current evidence suggests FFR-CT performs 
well, given its noninvasive nature, ease of use, and 
reliability, without the need for additional imag-
ing sequences or pharmacological stress agents. It 
has strong diagnostic accuracy when compared to 
invasive FFR, and its emphasis on predicting flow 
obstruction makes it a vital tool for clinical deci-
sion-making in CAD. Limitations of FFR-CT 
include limited data for assessment of nonnative 
coronary arteries including stenting and bypass.

Limitations of AI-CCTA
Limitations of AI stem from the fact that AI mod-
els are still in early investigation and need ongo-
ing optimization to ensure reliable performance 
across diverse clinical environments and patient 
populations. This is large due to the nature of 
how AI-CCTA algorithms are built, relying on 
pre-existing ML databases to extrapolate and 
interpret new images.18 AI-based systems tend to 
be less reliable when presented with rare or com-
plex imaging findings that were not adequately 
represented in the corresponding training data. 
This can lead to misinterpretations or missed 
diagnoses, reinforcing the need for human over-
sight when utilizing AI. Relying on a pre-existing 
database also opens the risk to create biases in 
data interpretation, by virtue of using training 
data not representative of the general population 
when generating models. Finally, while many 
AI-CCTA studies have demonstrated promising 
results in controlled environments, more large-
scale real-world validation studies are needed to 
fully capture the variability of actual clinical set-
tings, such as with the CONFIRM-2 database.

Such limitations have led to concerns regarding 
the capacity to rely on machine learning databases 
for CCTA interpretation across heterogeneous 

Table 4. Key trials investigating CT-FFR.

Trial Objective Study design Key findings

ADVANCE79 Evaluate the diagnostic value of 
FFR-CT in noninvasive assessment 
of CAD

Multicenter, prospective 
international registry 
(5000+ patients)

FFR-CT + CCTA improves decision-
making and outcomes, reducing 
unnecessary angiography and optimizing 
revascularization

TARGET80 Comparing CCTA/CT-FFR strategy 
(group A) versus usual care (group 
B) on intermediate- to high-risk 
patients with suspected CAD 
who undergo clinically indicated 
diagnostic evaluation

Multicenter, prospective, 
open-label, and 
randomized controlled 
trial

CT-FFR reduced patients undergoing 
invasive coronary angiography without 
obstructive disease or requiring 
intervention within 90 days but increased 
revascularization overall without improving 
symptoms or quality of life or reducing 
major adverse cardiovascular events

DISCOVER-
FLOW84

Compare diagnostic performance 
of FFR-CT versus goal standard 
invasive FFR

Prospective study, 103 
patients

FFR-CT had high sensitivity and specificity 
in identifying ischemia-causing stenosis 
when compared to invasive FFR

NXT85 Compare diagnostic performance 
of FFR-CT versus goal standard 
invasive FFR

Prospective study, 
multicenter (254 patients)

FFR-CT showed a high correlation with 
invasive FFR in identifying hemodynamically 
significant stenoses

CAD, coronary artery disease; CCTA, coronary computed tomography angiography; FFR-CT, fractional flow reserve CT.
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clinical settings, due to possible drops in perfor-
mance when facing increased variability. The 
CLARIFY trial investigated this concern by com-
paring interpretation variability using an AI-driven 
CCTA algorithm with expert human readers. 
While interpretations between AI and human 
experts were consistent within their groups, the 
trial did demonstrate higher variability across 
human readers when compared to AI-CCTA.34 
To this point, the SMART-CT trial investigated 
the potential of AI to improve CCTA interpreta-
tion in busy clinical settings. SMART-CT dem-
onstrated reduced CCTA interpretation time and 
inter-reader variability across expert readers using 
AI assistance.92 These trials reinforce how AI can 
improve efficacy by enhancing clinical perfor-
mance and reducing variability without replacing 
human expert readers.

Conclusion
With the incorporation of CCTA in several major 
national and international guidelines for cardio-
vascular disease and marked improvement in the 
quality of image acquisition, the utilization of 
CCTA in modern medicine is expected to 
increase significantly. While conventional data 
processing techniques have improved efficiency 
and radiation dose in the last decade, more recent 
studies investigating AI in CCTA data processing 
have shown even greater achievements in speed, 
consistency, and reduction of radiation exposure. 
CCTA is an imaging modality that captures a 
high bandwidth of data, and AI-assisted data pro-
cessing demonstrates great promise in compre-
hensive and objective image analysis allowing for 
higher quality and individualized decision-mak-
ing, prognostication, risk analysis, and cardiovas-
cular outcome prediction. AI presents the 
opportunity for a more complete analysis of 
CCTA data to reduce major cardiovascular 
events by better clarifying factors driving different 
plaque sub-types and their progression to worsen-
ing CAD. As AI will always need qualified human 
confirmation and validation, utilization of AI 
does not seek to replace physician contribution, 
but rather to enhance it via improvements in 
imaging innovation that drive preventative, 
periprocedural, and interventional stages of car-
diovascular care. AI remains limited due to its 
early phase in the investigation, the need for fur-
ther improvements in AI modeling, possible 
medicolegal implications, and the need for fur-
ther large-scale validation studies such as the 

ongoing CONFIRM-2 trial.93 Despite these limi-
tations, AI-CCTA represents a vital opportunity 
for improving cardiovascular care in an increas-
ingly advanced and data-driven world of modern 
medicine.
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