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ABSTRACT OF THE DISSERTATION

Equilibrium & Nonequilibrium Fluctuation
Effects in Biopolymer Networks

by

Devin Michael Kachan
Doctor of Philosophy in Physics
University of California, Los Angeles, 2014

Professor Alexander Levine, Chair

Fluctuation-induced interactions are an important organizing principle in a
variety of soft matter systems. In this dissertation, I explore the role of both
thermal and active fluctuations within cross-linked polymer networks. The sys-
tems I study are in large part inspired by the amazing physics found within the
cytoskeleton of eukaryotic cells. I first predict and verify the existence of a ther-
mal Casimir force between cross-linkers bound to a semi-flexible polymer. The
calculation is complicated by the appearance of second order derivatives in the
bending Hamiltonian for such polymers, which requires a careful evaluation of the
the path integral formulation of the partition function in order to arrive at the
physically correct continuum limit and properly address ultraviolet divergences.
I find that cross linkers interact along a filament with an attractive logarithmic
potential proportional to thermal energy. The proportionality constant depends
on whether and how the cross linkers constrain the relative angle between the two

filaments to which they are bound.

The interaction has important implications for the synthesis of biopolymer
bundles within cells. I model the cross-linkers as existing in two phases: bound to
the bundle and free in solution. When the cross-linkers are bound, they behave

as a one-dimensional gas of particles interacting with the Casimir force, while the
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free phase is a simple ideal gas. Demanding equilibrium between the two phases,
I find a discontinuous transition between a sparsely and a densely bound bundle.
This discontinuous condensation transition induced by the long-ranged nature
of the Casimir interaction allows for a similarly abrupt structural transition in
semiflexible filament networks between a low cross linker density isotropic phase
and a higher cross link density bundle network. This work is supported by the
results of finite element Brownian dynamics simulations of semiflexible filaments
and transient cross linkers. I speculate that cells take advantage of this equilibrium
effect by tuning near the transition point, where small changes in free cross-linker
density will affect large structural rearrangements between free filament networks

and networks of bundles.

Cells are naturally found far from equilibrium, where the active influx of en-
ergy from ATP consumption controls the dynamics. Motor proteins actively gen-
erate forces within biopolymer networks, and one may ask how these differ from
the random stresses characteristic of equilibrium fluctuations. Besides the trivial
observation that the magnitude is independent of temperature, I find that the
processive nature of the motors creates a temporally correlated, or colored, noise
spectrum. I model the network with a nonlinear scalar elastic theory in the pres-
ence of active driving, and study the long distance and large scale properties of
the system with renormalization group techniques. I find that there is a new crit-
ical point associated with diverging correlation time, and that the colored noise

produces novel frequency dependence in the renormalized transport coefficients.

Finally, I study marginally elastic solids which have vanishing shear modulus
due to the presence of soft modes, modes with zero deformation cost. Although
network coordination is a useful metric for determining the mechanical response of
random spring networks in mechanical equilibrium, it is insufficient for describing
networks under external stress. In particular, under-constrained networks which

are fluid-like at zero load will dynamically stiffen at a critical strain, as observed in

111



numerical simulations and experimentally in many biopolymer networks. Drawing
upon analogies to the stress induced unjamming of emulsions, I develop a kinetic
theory to explain the rigidity transition in spring and filament networks. De-
scribing the dynamic evolution of non-affine deformation via a simple mechanistic
picture, I recover the emergent nonlinear strain-stiffening behavior and compare
this behavior to the yield stress flow seen in soft glassy fluids. I extend this theory
to account for coordination number inhomogeneities and predict a breakdown of
universal scaling near the critical point at sufficiently high disorder, and discuss

the utility for this type of model in describing biopolymer networks.
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Left: Quantum Casimir effect. Right: Thermal Casimir effect — As
the two plates are brought closer together, fluctuations between the
plates are suppressed while the entropy of the surrounding medium

increases resulting in an attractive interaction between the plates.

Two semiflexible polymers are linked by two sliding rings. Ther-
mal fluctuations of polymer segments in between the rings are con-
strained. By reducing the separation D between the rings, degrees
of freedom transferred from in between the rings to the exterior
increase the entropy of the system. This generates an attractive

interaction between the rings. . . . . . . ... ... ...

A semi rigid filament of projected length d characterized by the
height field h(z). The filament has a bending rigidity ~ and may
be under an external tension 7, as well as being contained in a
confining potential of strength k. The deformations are exagger-
ated for clarity—we treat stiff filaments so that the small bending

approximation is appropriate. . . . . . ... ...

Elastic rod subject to a torque is bent into the shape of a circular
arc. The radius of curvature of the arc is R and the angle subtend-
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Slicing the function into a set of interpolating straight line segments
is the first step towards direct evaluation of the path integrals. As
the slice width € — 0 the approximation is expected to approach the
exact answer. While the straight lines are appropriate for function-
als with first order derivatives, it is clearly problematic for higher

order functionals because the derivatives will be undefined at the

The Casimir force for cross-linkers which fix the slope of the fila-
ment. At small distances the repulsive elastic interaction always

overwhelms the attractive fluctuation force. . . . . . . . . . . ..

As the angular stiffness « is increased the Casimir force transitions
from a network cross-linker into one which prefers bundling fila-

ments. ..o . e

For separations greater than the characteristic tension length scale
\/£/7 the Casimir force is weakened. At small separations, neglect-
ing any elastic repulsion due to preferred tangent angles, all curves

with finite tension collapse onto the bundling linker result.
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dle cross linkers enforce filament slopes that introduce a nonzero
mean torque (magenta), the interaction becomes repulsive at short
distances due to the forced bending of the filament. The effect of
finite tension is explored for the case of fixed tangent angles of zero
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tion at lengths greater than \/I{_/T, as can be seen by comparing

the low tension (green) and high tension (blue) results. . . . . . .
Three interacting sliding linkers on a single fluctuating filament
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Pinning sites are marked by black dots. The blue horizontal lines
show the initial geometry. The zoomed part shows the smooth-
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lation of the pinning site is completely inhibited. Rotations are
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computed (%) from finite element simulations for different time

discretizations. . . . . . . . .

xii

46

47

25



2.12

2.13

2.14

3.1

3.2

The Fourier amplitude covariance matrix of the first 10 modes
obtained via finite element simulation for a filament pinned at
D = 4L The area of each element represents its log normalized
magnitude, while its shape represents the sign with rectangles be-
ing positive, circles negative. The color bar indicates the % error
relative to Eq. 2.99. The error magnitude is consistent across dif-
ferent pinning locations and supports the existence of a casimir

effect between crosslinkers in semiflexible polymers. . . . . . . ..

Levine plots for nine different values of the single pinning location
D-See Fig. 2.10. Errors are consistently on the order of 10%.
Please see Fig. 2.12 for details regarding the Levine plot.

Levine plots for nine different values of the two pinning locations
D; and Dy—See Fig. 2.10. Errors are consistently on the order of
10%. Please see Fig. 2.12 for details regarding the Levine plot.

A single filament, shown in blue, is attached to a background elas-
tic network. The cross-linkers, highlighted in yellow, experience
a Casimir interaction due to their modification of the fluctuation
spectrum of the filament away from it’s equilibrium form. It is es-
sential that the filament is pinned to the background: An isolated
filament with bound linkers will not generate a Casimir interaction—

see Sec. 2.2.3 .

Pressure of a 1-D gas of particles interacting via the Casimir force
versus line fraction. The hard core only Tonks gas a = 0 is shown
for reference. The attractive interaction dramatically reduces the
pressure at small line fraction relative to an ideal gas. Inset: The
hard core repulsion dominates at large densities and all curves will
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4.7 Schematic of filamentous network that is globally under constrained.

4.8

The network is divided into mesoscopic “blocks”, and a nearly iso-
static network under no external stress has regions that are locally
under constrained (a). When the whole network is subjected to a
local stress o, under constrained areas are free to deform without
any stress response. This is displayed schematically by rotation
(or non-affine deformation) of the blocks (b). At a critical strain
v, however, the fully stretched regions now must propagate strain

throughout the system in order to maintain stress equilibrium (c).

Red curve: An under constrained network displays fluid-like be-
havior for small strains, but the system rigidifies above the criti-
cal strain v*. The continuous transition from fluid-like to elastic
behavior is seen in experiments and simulations, and the scaling
arguments we derive here correspond to the numerical results of
[WLKO08]. Black curve: Comparison of the stress-strain relations
for the kinetic theory for soft glassy flows [BCA09] and the kinetic
theory for isostatic spring networks presented here. Jammed emul-
sions must build up a finite yield stress before the flowing state is
achieved. In this case, the initial static response is elastic, since
the material is jammed, but in the presence of an applied dynamic
external stimulus the system displays fluid behavior. This corre-
spondence arises from the intrinsic dependence on the underlying

contact network that these disparate systems share. . . . . . . ..
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CHAPTER 1

Introduction

This thesis concerns both the equilibrium and non equilibrium properties of cross
linked semi-flexible polymer networks, a class of soft matter system. In order to
properly pose the research question, it is necessary to briefly describe the distin-
guishing features of soft condensed matter so as to illustrate where my research
fits within this broader scope. The introduction is organized as follows: I will first
discuss soft matter systems, with a focus on the forces and energy scales that are
generally relevant to a physical description. Polymers and networks of polymers
will be introduced along the way, with brief sections on their elasticity and ease
with which their non-equilibrium states may be explored. I will then describe the
often overlooked fluctuation or Casimir forces and review their importance within
nematic liquid crystals, as well as propose their existence and role in cross linked
polymer networks. Finally, as physics is an experimental science, I will introduce

the cytoskeleton as an accessible realization of the physics I study.

1.1 Soft matter physics

Soft matter physics is quite literally the study of squishy matter. More precisely, it
is concerned with systems governed by weak energy scales relative to the covalent
bond energies typically found in hard matter systems. This means that while
hard matter systems tend to be quite exotic, many household items constitute
interesting soft matter systems. The mayonnaise on your sandwich and whipped

cream on your ice-cream sundae are respectively examples of emulsions and foams,



both of which are active fields of research. A more progressive culinary student
may be familiar with the spherification technique, where droplets of liquid, such
as orange juice, are stabilized and made to resemble caviar. The process, and it’s
cousin reverse-spherification, relies on the formation of a calcium ion cross-linked
polymer network of sodium alginate around the droplets and is a realization of

the class of systems I will study in this thesis.

Soft matter physics is also ubiquitous in the study of biological systems, a point
which will be discussed in more detail in Sec. 1.2. The typical cellular length scale
puts many interaction energies on the order of kgT', where kg is Boltzmann’s
constant, so that thermal fluctuations must be considered in any description.
Cellular systems thus offer the soft matter physicist an opportunity to borrow
mathematically from results in quantum mechanics. The analogy, although purely

formal, is still of considerable interest.

The building blocks of soft matter systems include colloids, liquid crystals,
polymers, and membranes, to name a few. The fundamental forces between these
constituents are fairly weak when compared to their hard matter counterparts
and tend to be short ranged. Electrically charged colloids in water, for example,
experience a strongly screened Coulomb interaction which is only on the order of
kgT, allowing competition with entropy. In the absence of a stabilizing charge the
colloids will aggregate due to very short ranged Van der Waals forces which are
balanced by even shorter range steric repulsion. Membranes and polymers earn
the soft classification in a slightly different sense than colloids: they are elastic,
meaning that the characteristic energy scale of excitations vanishes as the system
grows. In other words, thermal fluctuations are able to excite long wavelength
modes with appreciable amplitude for sufficiently large systems. In addition to

elasticity, hydrodynamic couplings are often present in soft matter systems.



1.1.1 Polymers

Polymers are the main actor in this thesis and require a sufficient introduction.
First, a definition: A polymer is a macromolecule composed of repeating subunits
known as monomers. Polymers occur naturally in biological systems (see Sec. 1.2),
and are also easily synthesized and used extensively in industrial applications. Al-
though exotic branched configurations involving different monomers exist and are
easily synthesized, I will restrict my attention to simple single monomer linear
chains whose length is many times the monomer size. In this limit the chemical
details of the underlying monomer cease to matter and the polymer may be mod-
eled as a continuum object. The simplest model is the so called freely jointed or
ideal chain, which ignores all bending and stretching by describing the polymer as
a chain of N independent rigid rods of length [. The assumption of independent
chain segments associates [ with the contour length over which the chain loses
orientational order. Typical values of [ vary greatly between a few monomers
to over a thousand, reflecting the great diversity of monomeric building blocks.
Mathematically the ideal chain is equivalent to a random walk with N steps of
size | and this gives the predicted scaling R ~ v/NI for the typical size of the

polymer.

The ideal chain is of course an unrealistic model: Changes in orientation in-
troduce strain into the polymer which tends to subsequently relax due to internal
stresses. The simplest extension incorporating elasticity is the worm like chain
model, which considers the polymer as a thin, inextensible elastic rod with bending
modulus . The assumption of incompressibility is appropriate for most polymers
because the underlying monomers are much more compliant to axial rotation than

to longitudinal stretching. The bending energy of a particular chain configuration

E= g/ds (j—i)z, (1.1)

is given by



where ¢ is the local tangent vector and the integral is taken along the contour

length of the polymer [RC03, DE86]. The derivative j—ﬁ is simply 1/R, where R is

the local radius of curvature. The ground state configuration is perfectly straight
and one may wonder how this could ever describe the highly unordered states
predicted by the ideal chain. The resolution is that these systems are observed
at finite temperature and, depending on the modulus k, thermal fluctuations can
severely distort the chain. A quantitative measure of orientational order at finite
temperature is given by the tangent vector autocorrelation function (£(0) - #(z)),
which one can easily show is an exponentially decaying function within the worm-
like chain model. The characteristic decay length, known as the persistence length,
is [, = Bk, where § = 1/kgT. This persistence length intuitively diverges at
zero temperature when the polymer is expected to be straight, and grows with
increasing chain stiffness. It furthermore neatly classifies polymers at a given
temperature: Short polymers (L < [,) are typically straight and are referred to as
semi-flexible, while long polymers (L < [,) are very flexible and are appropriately
modeled as ideal chains. In fact, an ideal chain with segment length [ = 21,
(known as the Kuhn length) will display the exact same end to end statistics as

a worm-like chain of persistence length [,,.

It is reasonable to ask how the persistence length of a thin rod is related to
its cross sectional dimension, and to see if these numbers allow for both flexible
and semi-flexible polymers at room temperature. The bending modulus of a rod
is given by k = EI, where FE is the Young’s modulus and [ is the area moment of
inertia [LL86]. The Young’s modulus has units of an energy density and since the
modulus is derived from microscopic covalent bonding the characteristic scale is
E ~ nN/nm?* ~ GPa. For an object of radius r the area moment of inertia scales
as [ ~ 1, giving the persistence length at room temperature I, ~ 100r* /nm3. The
strong scaling with cross sectional dimension suggests that thermal fluctuations

are irrelevant for majority of macroscopic objects. A human hair, for example,



would need to reach a length of ~ 100 kilometers before thermal fluctuations
reached an appreciable levell Typical polymers, however, have r ~ nm and thus
are expected to have persistence lengths on the order of micrometers. This allows
different polymers to display both flexible and semi-flexible behavior at room

temperature.

1.1.2 Polymer Networks

The natives of the Amazon basin were some of the first to take advantage of the
remarkable properties of polymer networks: They collected sap from the hevea
tree and, after letting it harden upon their feet, created the world’s first rubber
boots. The sap is comprised of long flexible polymers which are able to bond
to one another in the presence of oxygen, a process responsible for changing the
phase of the network from fluid-like sap state to a rubber which is able to support
elastic stresses. Sensitive mechanical dependence on chemical composition, and
more generally on the microscopic details of the system, is a general feature of net-
works, which is surprising given the macroscopic number of constituent polymers.
For example, a network of semi-flexible polymers (created by the introduction
of small molecules known as cross-linkers which bind the polymers) will display
highly non-linear elastic response stemming from the asymmetric elastic response
of the individual polymers to an applied longitudinal load: They can support large
tensile stresses but buckle easily under compression [MKJ95]. In the presence of
cross linkers, which are necessary to transmit stresses, the macroscopic network
will be observed to rapidly strain stiffen and develop negative normal stresses

[HLMO03, CMS13] when subjected to external shear stress.

Cross-linkers allow for the formation of secondary structure within otherwise
amorphous semi-flexible networks. Depending on the type of cross-linker and
the concentration, polymers may order into one dimensional bundles of parallel

filaments or into two dimensional lamellar structures. Naturally, the elasticity



of these objects are significantly different than the amorphous network, and in
this way the cross-linkers may play a key role in determining the macroscopic

mechanical properties of the network.

1.1.3 Soft Matter out of Equilibrium

An additional feature of polymer networks, and in fact nearly all soft matter, is
that they may be driven out of equilibrium in a controlled fashion. Hard matter
systems offer no such luxury: The characteristic energy scale of the system is also
responsible for holding the constituent particles together (for example atoms in
a crystal lattice), and non equilibrium forcing of this magnitude will necessar-
ily lead to catastrophic failure of the sample! Soft matter systems have no such
limitations as they are often elastic and naturally robust to fluctuations of order
kgT and can be easily driven actively at those energy scales without destroying
the system. Polymers, for example, can be driven continuously out of equilib-
rium by stretching or compression while still retaining their microscopic integrity.
While the effect of thermal fluctuations on macroscopic network elasticity has
been studied extensively [GSMO04], much less progress has been made towards
understanding these systems in the presence of active noise. When the noise is
small, the fluctuation-dissapation theorem may be used to relate non-equilibrium
properties to known equilibrium ones, but the question of how to deal with sys-
tems far from equilibrium remains. Additionally, one may ask what types of noise
even allow for a near equilibrium description: Certain active processes necessarily

drive the system far out of equilibrium.

1.2 The cytoskeleton as a model soft matter system

Biology offers the soft matter physicist a tremendous set of ready made systems

to explore. For the purposes of studying semi-flexible polymer networks in and



out of equilibrium, one could not ask for a better realization than the cytoskeleton
present within nearly all eukaryotic cells, shown in Fig. 1.1. The cytoskeleton is a
network of interconnected polymers responsible for providing structural integrity
to the cell, as well as being essential for mitosis and for cell motility. The cytoskele-
ton is made up of many different polymers, but the two most prevalent and well
studied are filamentous actin (often referred to simple as actin) and microtubules,
both of which are easily observed invivo and synthesized in a controlled manner
tnwvitro. Actin is by far the softer of the two filaments, with a persistence length
of about 17um, whereas microtubules have [, on the order of millimeters. This
implies that only actin will experience appreciable thermal fluctuations at cellular
length scales; microtubules in contrast will appear perfectly straight. Chapters
two and three will focus on the role filament fluctuations play in the distribution of
network cross-linkers and will be directly applicable to the actin component of the
cytoskeleton. Both filaments are easily deformed, however, and serve as valid ex-
amples of networks driven out of equilibrium, which is the focus of Chapter four.
Different network morphologies are observed within the cytoskeleton, including
bundles and lamellar networks. These structures are made possible by the great
variety of biological cross-linking proteins, and often many proteins are present
at once, giving rise to incredibly complex networks. Generally speaking, cross-
linkers may be categorized into two groups: bundling” and "network.” Bundling
cross-linkers, such as a-actinin for actin and tau proteins for microtubules, prefer
to bind filaments parallel to one another and offer very little angular compliance.
This naturally is responsible for bundle formation within the cytoskeleton. Net-
work cross-linkers, conversely, either have no angular preference or bind filaments
at right angles to one another, facilitating the formation of two dimensional pla-
nar structures. Examples of network linkers are filamin for actin networks and
biotin-streptavidin for microtubules. The distinction between angle constraining

and compliant cross-linkers will turn out to have dramatic implications on the



Figure 1.1: The cytoskeleton. Red: Actin filaments, Green: Microtubules, Blue:

Intermediate filaments



fluctuation induced forces proposed in Chapter 2.

The living cell is, of course, strictly out of equilibrium; When that cease to
be true the cell is unfortunately dead. Biopolymer networks are actively driven
out of equilibrium through the presence of molecular motors such as myosin,
which binds to actin, and the microtubule version kinesis. These motors play a
huge role, respectively, in muscular function and cellular transport. When viewed
as a mechanics problem, the motors are a form of stochastic noise which exert
active forces upon the underlying network, driving it potentially very far from

equilibrium.

1.3 Casimir forces

Vacuum
fluctuations

Figure 1.2: Left: Quantum Casimir effect. Right: Thermal Casimir effect — As
the two plates are brought closer together, fluctuations between the plates are
suppressed while the entropy of the surrounding medium increases resulting in an

attractive interaction between the plates.



There is an additional class of forces known as fluctuation, or Casimir forces
after the pioneering work of H.G. Casimir [Cas48] who studied a system of two
parallel conducting plates in vacuum, as shown in Fig. 1.2. According to the
classical theory the plates should not experience an electrostatic interaction since
they are uncharged, however this treatment neglects the effect of the plates on the
quantum vacuum fluctuations of the electromagnetic field. Because the plates are
perfect conductors they impose boundary conditions which quantize the otherwise
continuous vacuum fluctuation spectrum between the plates. The quantized mode
spectrum, not surprisingly, depends on the distance between the plates and thus
there is an effective interaction which turns out to decay as 1/D*, where D is the

plate separation.

Casimir’s discovery sparked a vast amount of research on fluctuation mediated
interactions in quantum field theories at zero temperature [Wei89, DS93], but the
idea of a fluctuation force is in fact much more general. Casimir type forces are
present whenever an object modifies the spectrum of a background fluctuating
field by imposing boundary conditions. The background fluctuations can arise
from quantum mechanics, as in the original Casimir problem, or from thermal
fluctuations which excite modes in systems at finite temperature. The resulting
interactions are pronounced in systems with massless modes such as those associ-
ated either with broken continuous symmetries (Goldstone modes) in e.g., liquid
crystals [ABD92], or at a critical point — see Refs. [Kre94, MT97, KG99]. As a spe-
cific example within soft matter physics, two plates surrounding a nematic liquid
crystal will attract because of boundary conditions they impose on the fluctuating

nematic order field. [ABD92].

The Casimir interaction between two plates is reminiscent of a depletion force,
whereby an attractive osmotic pressure is generated by the exclusion of particles
beyond certain size from the interior region, see Fig. 1.2. In analogy, the boundary

conditions on the plates restrict fluctuations of a certain size, i.e. wavelength,
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from existing within the plates, resulting in an effective pressure or depletion
type force pushing the plates together. This analogy, while instructive, is not
exact, as can be inferred from the observation that the Casimir interaction can
be either attractive (as suggested by the above analogy) or repulsive, depending
on the boundary conditions imposed on the fluctuations by the embedded objects

[DLP61], whereas the depletion interaction is necessarily attractive.

Casimir forces are often obscured by stronger, direct interactions, but not al-
ways. For example, the Casimir force between membrane proteins — and other
membrane inclusions — interacting through thermally excited membrane undula-
tions are important because this interaction decays as a power law with distance

whereas direct protein-protein interactions are short ranged [BGP94, ZPZ98|.

Cross-linkers in semi-flexible polymer networks have only very short ranged
direct interactions and thus constitute a system where fluctuation forces could
be important. When they bind a polymer to a background elastic network they
restrict the thermal fluctuations of the polymer, or in other words they impose
boundary conditions. It is easy to imagine that when two cross-linkers are bound
to the same filament they will experience a Casimir type interaction acting along
the contour of the filament. This interaction is expected to be proportional to
temperature since it is a direct consequence of the cross-linkers impact on the
configurational entropy of the filament. Because of the lack of competing en-
thalpic interactions, the Casimir force is able to play a significant role in the
equilibrium distribution of cross-linkers within the network, and furthermore is
able to favor bundling and other higher order structure formation. The inter-
action also sharpens the deposition curves, or Langmuir isotherms, of a solution
of cross-linkers onto semi-flexible filaments. Cells may take advantage of this in-
creased sensitivity to use overall cross-linker concentration as a control parameter

for network morphology.
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1.4 Thesis Outline

In chapter 2 T will propose the Casimir force between a small number of cross-
linkers joined to the same semi-flexible polymer, and calculate its form directly
with different mathematical approaches. I will also present simulation based evi-
dence for its existence and discuss implications for biological networks Chapter 3
will focus on extending the interaction to many cross-linkers with a statistical me-
chanical approach, and explores the implications for fine tuned bundle formation
within the cytoskeleton. Finally, chapter 4 will discuss the mechanical properties
of networks out of equilibrium. First I will imagine homogenous polymer net-
works subjected to active correlated noise, which is meant to model the effect
of molecular motors within cytoskeletal networks. Secondly, I will present work
which explains the nonlinear strain stiffening observed in biopolymer networks

under external strain.
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CHAPTER 2

Casimir Effect Between Cross-linkers in

Semi-flexible Polymers

2.1 Introduction

Fluctuation-induced, or Casimir interactions been studied extensively in the limit
of highly flexible polymers [DE86, RC03|, and are responsible for the entropic
elasticity present in rubbers and polymer melts. In this chapter I propose and
verify the existence of Casimir interactions between cross-linkers in the opposite
limit of semiflexible polymers, which have contour lengths shorter than or com-
parable to the thermal persistence length [, and are naturally observed in nearly
straight configurations. Figure 2.1 shows an example of two polymers held to-
gether by sliding linkers. The existence and sign of a Casimir-type force between
the linkers can be understood intuitively: Imagine that one pins two points along
an otherwise free filament to a background substrate. The addition of a fixed
point reduces the number of conformational degrees of freedom, and hence also
the entropy. Two fixed points at finite separation result in a further reduction
of the number of available states over a single fixed point, and the system will
therefore find it entropically favorable to place both fixed points at the same po-
sition. This argument holds at arbitrary separations and it is natural to expect
the resulting Casimir interaction to be long-ranged, and in fact it is logarithmic

in the separation—see Sec. 2.3.

The physical interest of this problem lies in possible applications in polymer
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Figure 2.1: Two semiflexible polymers are linked by two sliding rings. Thermal
fluctuations of polymer segments in between the rings are constrained. By re-
ducing the separation D between the rings, degrees of freedom transferred from
in between the rings to the exterior increase the entropy of the system. This

generates an attractive interaction between the rings.

networks. Thermal fluctuations have long been known to play a central role for the
viscoelastic properties of networks of polymers [HLMO3]. In particular, the force-
extension curve 7(D) of a polymer of fixed length connecting two points separated
by a distance D is believed to determine the elastic properties of polymer network.
This force-extension curve is determined largely by thermal fluctuations. There is,
however, a fundamental difference between this form of entropic elasticity and the
thermal Casimir effect of Fig. 2.1: if two permanent nodes of a polymer network
are brought closer there is no transfer of degrees of freedom from the polymer
section between the nodes to the rest of the network. When the two linkers of
Fig. 2.1 are brought together, degrees of freedom are transferred from the section
in between the linkers to the surrounding system. In addition, the computation
of the Casimir effect typically requires the regularization of infinities associated
with summations over all fluctuation modes. No such divergences appear in the

calculation of entropic elasticity.

There are interesting examples of biopolymer networks, for example F-actin
cross-linked with a-actinin, where linker proteins bind reversibly to the protein

filaments, allowing them to effectively slide along the filament and sample con-
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figuration space. Such proteins might exhibit a Casimir interaction due to their
modification of the thermally excited transverse undulations of the filaments to
which they are bound. A first objection against this idea is that, for typical
biopolymer networks, the persistence length is much greater than the separation
between linkers. On length scales small compared to the persistence length, ther-
mal shape fluctuations must have a low amplitude, so the Casimir interaction is
expected to be very weak. Secondly, biopolymer networks often are under ten-
sion, either intrinsic or externally applied. Tension introduces a length scale in
the problem beyond which thermal fluctuation are suppressed. In this chapter,
I will demonstrate that the Casimir interaction between sliding linkers on length
scales smaller than the persistence length cannot be neglected, both in networks
with and without tension. I will show that neither effect suppresses the Casimir
interaction. Finally, we show that if the linker molecules imposes angular con-
straints on the filaments at the cross link, then this generates repulsive elastic
stresses, which overwhelm the Casimir interaction. Thus, I propose that distinc-
tion between between flexible cross linkers and stiff ones, associated with filament
bundling has important consequences for the equilibrium distribution of these

molecules in semiflexible filament networks.

The chapter is outlined as follows: In Sec. 2.2 we discuss the calculation of
the partition function that is required for the derivation of the Casimir force.
Because of the appearance of higher-order derivatives in the Hamiltonian H, the
standard method for evaluating Gaussian functional integrals by path integration
is questionable. We will apply a technique introduced by H. Kleinert [Kle86] for
field-theoretic problems to define the integration measure for path integrals with
actions that contain higher-order derivatives. In Sec. 2.3 we compute the Casimir
interaction using this functional integral technique, examine a few special cases,
and review the results in the context of biopolymer networks. Finally, in Sec. 2.4

I introduce evidence supporting the existence of a Casimir force from large-scale
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numerical simulations.

2.2 Partition function of a pinned semi-flexible polymer

2.2.1 System geometry & Hamiltonian

The basic building block of a cross-linked polymer network is two filaments joined
by a single cross-linker. The fluctuation interaction can be probed by allowing an
additional cross-linker to bind these two filaments at a separate location. Specifi-
cally, as shown in Fig. 2.1 let two cross linkers placed along the z axis and z =0
and z = D permanently bind two semiflexible polymers, each having bending
modulus ~ and thus persistence length [, = Sk > D, where § = kBLT and kg
is Boltzmann’s constant. The cross linkers fix the position and direction of the
polymer at the linker locations but the length of the polymer between the linkers
is not fixed. As a simplification the filaments are assumed not to interact with one
another, i.e. steric interactions are neglected. In this case the filaments decouple

and it is sufficient to study a single filament pinned by two cross linkers, see Fig.

2.2.

The elastic energy of the filament is given by

W)= [ (Z) o ()] e

where s is an arc length variable traversing the filament from z = 0 to z = D
and 7(s) specifies the filament position. The first term gives the contribution to
filament curvature while the second term accounts for a tension 7 applied to the
polymer. Because the polymer can freely slide through the linkers, the linkers do
not absorb this tension. In principle there is also a contribution from torsional
deformations but these modes are generally much stiffer and are neglected. For
D <1, the filament will be nearly straight and the energy functional Eq. 2.1 may

be expanded in the small gradient expansion in term of a displacement field ﬁ(z)
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Tension T

Figure 2.2: A semi rigid filament of projected length d characterized by the height
field h(z). The filament has a bending rigidity x and may be under an external
tension 7, as well as being contained in a confining potential of strength k. The
deformations are exaggerated for clarity—we treat stiff filaments so that the small

bending approximation is appropriate.

measured from the z axis:
T i)\ (de)\
q z
— 2.2
2/dz R( d22>+T<dz> , (2.2)
0

Within the small gradient approximation it is clear that the two transverse

polarizations h,,(z) of the filament undulations decouple, so that the resulting
partition sum is simply the product of two copies of the partition sum over a scalar
field h(z) representing one transverse mode, but still obeying the Hamiltonian
Eq. 2.2. The equation may be nondimensionalized by introducing a rescaled length
z = (B/{)%é = lg Z. Finite tension introduces a length scale, which we write in
terms of a wave number ¢ = (ﬁT/l;l;/3)1/2. We note that the rescaled length z has

physical dimensions of Ls q has dimensions of inverse z. After this change of
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variables, the filament Hamiltonian reduces to

1
2

/ dz [h"(2)* + ¢*H (2)?], (2.3)

where here and unless stated otherwise we remove the tildes from all rescaled

lengths and we measure energies in units of 371

As discussed in 1.3, fluctuation forces are generated by the boundary conditions
external objects generate on the fluctuating field. In the simplest version of this
problem the cross linkers impose exact local boundary conditions on the displace-
ment h(z = 0) = hy, h(z = D) = hy and direction h/(z = 0) = v,,h'(z = D) = v
of the filament, as shown in Fig. 2.2 These boundary conditions correspond to
perfect pinning cross linkers, i.e. , ones that can provide arbitrary constraint forces
and torques to perfectly fix the filament’s position and slope, respectively. In any
physical biopolymer system, however, the cross linking molecules have some finite
elastic compliance and are of finite size and such molecules cannot precisely pin
the filament at a point. The use of perfect cross linkers allows one to better isolate
the role of filament fluctuations on the Casimir interaction of two cross linkers.
The finite size of the cross linkers may be considered within this framework by
modeling them as rings that enforce the boundary conditions only when the fila-
ment’s transverse displacement becomes larger than the rings’ radius—see Fig 2.1

and Sec. 2.3.5 for more details.

2.2.2 Calculation Details
2.2.2.1 Decomposition into classical and fluctuation paths

The partition function contains all the relevant statistical mechanical information
of a system and is defined as the sum over all states weighted by the Boltzman
factor e F» where E,, is the energy of the nth state (measured in units of 371). For

a continuous distribution of states, appropriate for a polymer, the sum becomes
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an integral over all configurations of the field
Z= / Dhe MM, (2.4)

and is known as a functional integral. The partition function for a filament pinned
by cross-linkers will have the Hamiltonian H given by Eq. 2.3. Any dependence of
the partition function on the distance between cross linkers, D, will be indicative
of a fluctuation force between the cross linkers. The integration measure Dh
represents the sum over all configurations of the filament satisfying the given
boundary conditions. The mathematical representation of such an object can be

difficult and will be discussed in greater detail later.

In analogy to the standard presentation of the path integral approach to classi-
cal quantum mechanics [FH65], the height field h(z) is first decomposed as a sum
of the classical solution h¢(z), which minimizes the energy, and the fluctuations
dh(z) around it, writing

h(z) = ha(z) + 6h(z). (2.5)

The stationarity condition %—7; = 0, which imposes the force balance condition for

a flexible beam, requires the classical trajectory to satisfy the differential equation
o~ hy =0, (2.6

The classical solution is required to explicitly satisfy the boundary conditions at
the end points z = 0 and z = D. By choosing the appropriate coordinate system,
i.e. by rotating the z axis, one may always set h(0) = h(D) = 0. The initial and
final tangents are defined to be: h'(0) = v,, M (D) = v, as shown in Fig. 2.2.
Because the classically solution satisfies all boundary conditions the fluctuation
field 0h(z) and its first derivative are required to vanish at the endpoints, i.e.
dh(z) satisfies homogeneous boundary conditions. The general solution of Eq. 2.6
is

he(z) = asinh gz 4+ beosh gz + ¢z + d, (2.7)
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with undetermined constants, a, b, ¢, d.

Using the decomposition Eq. 2.5 and integrating by parts, one finds that the
energy of a configuration separates into a classical path contribution and one from
the fluctuations about that path: H = H. + Hg. The energy associated with the
classical trajectory is given solely by the boundary term:

1 W (D)=uvy

B [ whe — hha + q2h/czhcl} . (2.8)
h'(0)=vq

Hcl =

Since the initial and final values of h were chosen to be zero, only the first term
makes a non-vanishing contribution to the elastic energy of the curved filament.

Applying the boundary conditions to set the undetermined constants in Eq. 2.7,

one finds
1 .
@ =7 [(vg — vp)(cosh gD — 1) — qDuv, sinh ¢ D]
1
b = 1Y [(vy — vq) sinh gD + qdv, cosh ¢D — qDuy]
1
¢ = [q(ve + vp)(cosh gD — 1)]
1
d = - [(vg — vp) sinh ¢D + qgDv, — gDv, cosh ¢D] , (2.9)

where M = ¢[2(cosh gD — 1) — gD sinh ¢D] is the determinant of the boundary

condition matrix. The corresponding energy is given by

_ 1q(gD(v? + v§)cosh(gD) — (v, — vp)?sinh(¢D) — 2qDv,vy)

Ha 2 2(1 — cosh(gD)) + gDsinh(¢D)

(2.10)

The above result reduces to a particularly simple form in the limit of zero tension
(¢ = 0) in which case the elastic energy of the filament depends on the initial and

final tangents through the expression

2 kT

%Cl D

(Uz + Ug + Uavb) ) (211)

where the answer has been expressed in the original units. In response to choosing
symmetric imposed tangent angles, v, = —v, = 6/2, and defining a radius of

curvature R via § = D/R, the energy minimizing filament trajectory is an arc of
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xkD

a circle with radius R and the stored elastic energy is 55

(again in the original
units), as is expected. This solution is shown in Fig. 2.3. Of course, for much larger
bends, where the replacement of the curvature by the second derivative in the

Hamiltonian is inappropriate, a more complicated solution is obtained involving

elliptic functions [LL86].

Figure 2.3: Elastic rod subject to a torque is bent into the shape of a circular arc.

The radius of curvature of the arc is R and the angle subtending the arc is 6.

The energy of the fluctuation piece Hy is simply given by

D

/dz (61" (2)* + ¢*6R'(2)%)] | (2.12)

0

Haloh] =

N —

The partition function Eq. 2.4 may now be written as a functional integral over all

configurations of dh(z) with vanishing displacement and slope at the boundaries
Z =2 2 =e M /Déh(z) e~ Haloh], (2.13)

The factor Z4; depends only on the nature of the fluctuations and is aptly named

the fluctuation factor in path integral literature. Section 2.2.2.3 will detail an
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explicit evaluation of Zy, but first I will explore the validity of a less formal

approach to understanding the statistical properties of a pinned filament.

2.2.2.2 Naive mode analysis of the fluctuation factor & divergences

The direct evaluation of the functional integral Eq. 2.13 is quite involved and
it is reasonable to ask if there is a simpler method. Because the Hamiltonian is
quadratic in the field it is straightforward to evaluate the partition function and
corresponding free energy as a sum over the quantized eigenmodes. The theory

requires a short distance cutoff which is parametrized by € = where N is

N1
the number of included modes, and in polymer systems one typically imagines
this length to be related to the monomer size. For the continuum approach to
be meaningful, intensive quantities, including the Casimir force defined as the
derivative of the free energy with respect to D, should not depend on the precise
formulation of this cutoff. On the other hand, extensive thermodynamic proper-
ties, such as the heat capacity, necessarily depend on the number of degrees of
freedom and thus retain an € dependence. The partition function of the segment
can be evaluated by expanding the fluctuation displacement field dh into a series

of harmonic modes which automatically satisfy the vanishing displacement and

slope boundary conditions

5 N
Ohy, = SN D) mzlAm(cos(kmzn) - 1), (2.14)

with wavenumber k,, = 2mm/D. The normalization of the harmonic modes in
Eq. 2.14 has been chosen so as to set the Jacobian of the transformation to unity.
The calculation of the remaining Gaussian integrals is straightforward. The an-
swer can be inferred directly by noting that the energy stored in the m** mode in

thermal equilibrium is found by equipartition to be

Un = 5kt + *K2) A2, (2.15)
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which is the energy of a harmonic oscillator having spring constant K, = g(k:ﬁI +
¢*k2)). Since these harmonic modes are decoupled, the free energy of the N modes

with spectrum w(k,,) o< /K, is given by the sum

F(D) =) I[lw(k,)] (2.16)

m=1
of their free energies. Here I' is a phase space factor which does not depend on
D. Converting the summation to an integration, one may write

D 27 /e

B 27 2w /D

F(D) dk In(Tw(k)). (2.17)

At zero tension this reduces to

[N

F(D) = DIn(Te) <% - %) +2D <% In(27/e) — %1H(27T/D) - % + %) :

(2.18)
The free energy is formally divergent in the limit e — 0 and it would appear
meaningless to consider this expression in the continuum limit. Nevertheless,
one is able to extract finite results by using the following procedure: Consider a
filament of total length L > D, which, to avoid additional complexities associated
with the choice of boundary conditions at the free ends, is assumed to be linked
into a loop. Then the total free energy of the loop with two cross links is Frr(D) =
F(D)+F(L—D). The Casimir force —dFr(D)/dD is then fo(D) = f(D)— f(L—
D), where I have introduced f(D) = —dF(D)/dD. Each of the two fluctuation-
induced interactions between the linkers takes the form

F(D)=—1n (%) ) (% In(27/€) + % - 1)) | (2.19)

€ €

Each force is still formally divergent as ¢ — 0, however, after the subtraction of
the two fluctuation-induced interactions within the loop the residual Casimir force

is finite and, in the limit % — 00 is given by

fe(D) ~ — (2.20)

2
D
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It is essential to recognize that the finite Casimir force between the two cross
linkers on the loop was produced by the subtraction of the two fluctuation-induced
interactions, each of which diverged in the continuum limit of ¢ — 0. This naive
mode analysis is not capable of separating the finite Casimir force from these cutoff
dependent terms, which diverge in the continuum limit. Although this result is
shown for the case of a filament at zero tension, the same issue appears for all
finite tension. That tension, of course, can be employed as a Lagrange multiplier
in order to fix the mean arc length of the filament. Controlling mean length in

this way does not eliminate the divergences associated with naive mode analysis.

Of course, physical polymers have a natural short distance cutoff related to
their monomer size. By fixing ¢ the naive mode analysis gives the free energy
of a polymer of N = D/e degrees of freedom. The variation of that free energy
with length D (necessary to calculate the Casimir force) changes the total num-
ber of degrees of freedom making the analysis of the problem complicated. This
procedure gives a Casimir force with cutoff-dependent contributions. The precise
nature of the cutoff, however, should not determine the physical force between
distant pinning sites on the polymer. The subtraction scheme used above masks
our ignorance by removing this cutoff dependence and, although it does in fact
reproduce the correct Casimir force (see Sec. 2.3 for the rigorous result), it is not
inherently satisfactory. The appearance of infinities in the Casimir force calcula-
tion raises questions as to the reliability of our result, as it is far from clear that

our procedure properly separates the divergent and non-divergent terms.

As mentioned, the appearance of divergences is a signature of calculations
of the Casimir force [ABD92|, and more broadly of path integral calculations.
Additional care must be employed in taking the continuum limit in the Casimir
force calculation than is generally necessary in computing other physical quanti-
ties associated with semiflexible filaments. For example, one may compute the

force extension curve of such a filament and take the continuum limit without
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encountering the infinities discussed above. We review that calculation briefly.

Including a finite tension on the filament, we may compute the thermal expec-
tation values of the squared amplitudes — see Eq. 2.14 — of the various undulatory
fluctuations on the filament. Using the equipartition theorem and Eq. 2.15 we
immediately obtain

2
< A% >= (kb 4+ k2 (2.21)
€

The arc length L of the filament between two points separated by D is

L= /D dan/T+ (22, (2.22)

where we again only consider one polarization state for the fluctuations. Using
Eqgs. 2.21 and 2.22 we find the mean arc length between those points to be given
by

L/D—1 % > (kg (2.23)

The key observation is that the summation converges in the limit ¢ — 0. In
that continuum limit, changing from summation to integration leads to the force-
extension relation (L/D—1) oc 1/7%/2 for semiflexible polymers in the limit of high
tensions. This is a well-known result that has been verified by micromechanical

experiments [BMS94].

2.2.2.3 Direct evaluation of the fluctuation factor

Given the difficulties encountered in the naive approach of the previous section,
we now return to the direct evaluation of the path integral in Z¢ (Eq. 2.13). The
natural way to compute functional integrals is to slice each path into N infinites-
imal straight line segments of width e-See Fig. 2.4. The paths are represented
mathematically by N independent height fields dh;, and the measure Ddh may
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then be defined as the product of N standard integral measures

N o
Doh =[] / déh,,. (2.24)
n=1 s

To specify Hg on a particular spatial slice, one must know the value of dh(z)
on both adjacent slices so that the derivatives may be evaluated. This naturally
induces a dependence on the width of the slices and requires an e dependent
"measure factor” (see [FH65]) to be included in Déh so that the path integral
is well defined in the limit ¢ — 0. The correct (insofar as it produces a finite
result as € — 0) measure factor is known for functionals with a single derivative,
but this factor is not appropriate for Hamiltonians with higher order gradients.
The statistical mechanics of a semi-flexible polymer should be well defined in
the continuum limit (it’s mechanical description certainly is!), and the lack of a

suitable path integral representation of the partition function is disconcerting.

A related problem is the specification of the discrete form of Hamiltonians with
second (or higher) order derivatives in the sliced representation. The piecewise
construction naturally invites replacing h'(z) by by (h(zi41) — h(z;))/€, but it is
unclear how to represent h”(z). These terms, representing curvature energy, would
be infinite at the cusps of a piece-wise linear trajectory. Replacing the curvature by
a discrete second derivative avoids this divergence but that introduces additional
interactions between slices that are not adjacent, with mathematically unclear

consequences.

One solution, introduced by Kleinert [Kle86], is to rewrite H in terms of four
independent canonical functions. The value of H on each slice will be determined
by the four functions evaluated locally on that slice, with no dependence on ad-
jacent slices, and therefore no ambiguity in defining the curvature energy. The
measure in terms of these functions will therefore be independent of the slicing
procedure and may easily be written down up to an overall normalization constant.

The method is actually quite general, and in particular it is able to reproduce the
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z=0 z=L

Figure 2.4: Slicing the function into a set of interpolating straight line segments
is the first step towards direct evaluation of the path integrals. As the slice
width € — 0 the approximation is expected to approach the exact answer. While
the straight lines are appropriate for functionals with first order derivatives, it
is clearly problematic for higher order functionals because the derivatives will be

undefined at the kinks.

"measure factor” Feynman introduced for first order gradient functionals. The
next section will introduce the main idea in the context of a simple tense string
(the mechanical analogue of a free particle), and also expose the reader to an
explicit functional integral calculation before diving into the more complicated

pinned semi-flexible polymer system.
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2.2.2.4 A warmup problem: The partition function of a string

Feynman [FH65] showed the proper way to evaluate path integrals in the context
of the quantum mechanical propagator for a particle with classical action S
S

K (xp, ty; Tayte) = Dx(t)en. (2.25)

a—b

The propagator K is the amplitude for the process of a free particle starting at
x, at time t, being observed at x; at time ¢,. The simplest example is of course

the free particle, described by the action
1 [*
S = 5/ dt mi?. (2.26)
ta

Aside from the factor of ¢ which may be removed by a Wick rotation, there is
mathematically no difference between the propagator of a free particle and the

partition function of a string under tension

Z = /Dh(z)e—”, (2.27)

where the energy functional is

H= %/O dz b/ ()% (2.28)

Time has been replaced by the string’s arc length variable z, position by the
height field h, and mass by the inverse length S7. For continuity with the semi-
flexible polymer partition function I will outline the calculation in terms of the
string system instead of the free particle. As mentioned, the basic approach
Feynmann introduced was to split the interval D into N + 1 slices of width €
such that (N + 1)e = D. Supposing straight line paths between the different
slices, the spatial derivative may be replaced by h'(z) ~ (h(zi+1) — h(z;))/e. The
integration over all paths requires integrating over each discrete height field h; =

h(z;) independently , so that the measure becomes

o =] /%, (2.29)



where Ah is a constant with units of length necessary to make the measure di-
mensionless. Since it is constant it will supply an overall prefactor to the partition
function which is independent of any system parameters, and thus will not con-
tribute physically. It is now straightforward to evaluate this discretized path

integral analytically since it is a product of coupled gaussian integrals. The result

B 1 e\ 7 (hy — hi)?

where h; and hy are the initial and final heights of the filament, respectively.

is

We immediately come across a serious issue: There is no well defined continuum
(e — 0) limit to this expression! The source of the divergence is the dependence
of the derivative on the slicing procedure, which couples adjacent slices. While
it’s possible to call upon the correspondence with the quantum mechanical free
particle and invoke normalization arguments, it is more instructive for the purpose
of this thesis to introduce a more general method suggested by Kleinert [Kle86].
The resolution is to evaluate an equivalent canonical path integral written in terms
of the phase space variables ¢ and p. To do so I introduce an auxiliary functional
which is the Legendre transform of Eq. 2.28. By all rights it should be called
the Hamiltonian and be labeled H, but as H typically represents configurational

space energy functionals within soft mater physics I will call the new functional L.

The conjugate momentum is defined with an ¢ for convenience, p = ¢ 5,‘:,7:2) =18Th

and the new functional is defined as

2
L(h,p) :H—I—/dziph' - /dz I (2.31)
20T

The functional H in terms of the conjugate variables is
P
h,p) = [ dz —— —iph’. 2.32
Hihp) = [ s i (232

The Legendre transforms have allowed us to write the energy functional in terms

of two independent functions h and p. The path integral measure is now DhDp

29



and the time sliced version is unambiguous: it cannot depend on the short distance
cutoff since the state of the string is determined by the entirely local functions h

and p. We thus find

ﬂ]o /Qi]zp { ;[2@;; an(hn+1—hn):|}. (2.33)

We may relate this to the original naive form Eq. 2.27 by integrating out the

momentum degrees of freedom to find

N [dh, [ Br BT (hosr — n3)?
Z= / Ah \| 2meAp? P {_ ; <7 € ) ’ (2:34)

which is identical to Eq. 2.27 except for an additional piece Feynmann called a

measure factor. In his treatment this served as a fudge factor to allow for finite
evaluations of path integrals, but we see that it can in fact be derived and emerges
naturally in the canonical treatment of the problem. It is easy to check that this
measure factor produces the € dependence to precisely cancel the divergent portion

of Eq. 2.30 and we arrive at an answer which is well defined in the continuum

1 Br \? (hy — h;)?
2= ARNApY (%D) eXp{ NV (2.35)

which was the original aim. Note that for fixed hy = h; = 0, which may always

limit

be accomplished by a simple rotation of the system, we predict that the partition
function depends on the length of the string as Z o< D=2 and thus the free
energy is

T
F = Elog D. (2.36)

We find that there is a fluctuation induced Casimir interaction between pinning
sites on the string, with the force going as T'/2D. This form carries over to the
semi-flexible polymer system, although with a different, cross-linker dependent

prefactor.
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2.2.2.5 Fluctuation factor of the semi-flexible polymer

We now return to the evaluation of the semi-flexible polymer fluctuation factor,
Eq. 2.13. In the spirit of the previous section, we need to replace the Hamiltonian
Eq. 2.12 with a canonical version which may be evaluated locally on each spatial
slice. For notational convenience we will replace dh by h in this section. We first
introduce an auxiliary field, v(z) = h'(2), and rewrite our Hamiltonian in terms
of h, v, and v'. We add a Lagrange multiplier py to ensure the correct relation

between h' and v and define this new functional as

- 1 .
o] = [ as {5 (062 + @+ BOE) + @) — im( -0 237
The new Hamiltonian (2.37) is equivalent to (2.3) in that both produce the

same equation for the classical configuration of the filament, found by setting

oH _ oA

5 = 5o = 0. The advantage is that our Hamiltonian now depends only on

first derivatives of h and v, at the expense of the Lagrange multiplier. We next

introduce the variables p and p, which are conjugate to h and v respectively:

O
p = Z(Sh/(Z) = Do
. OH .,

Pv = Z—(Sv’(z) =, (2.38)

and play the role of canonical momenta. An i has been included in the definition
of p and p, in order to make subsequent integrals convergent. We now define a

new functional £ as

L(h,v,p,p,) = /dz (iph' +ip,v') +H

- /dz {z’pv + % (%12’ + q%?ﬂ : (2.39)
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Our Hamiltonian (2.37) in terms of the new variables is
Hlh,v,p,ps] = /dz [—iph' — ip, 0]+ L
= /dz [—ip(h’ —v) —ip,v + % (p2 + qQUQ)} . (2.40)
The fluctuation factor is

Zy = /DhDUDprUX

exp {/dz [ip(h' —v) +ipv — % (p2 + q2v2)] } .

If one were to drop the first two terms of the argument of the exponential, the

(2.41)

functional integral would resemble the path integral expression of the density
matrix of a quantum harmonic oscillator, with p, playing the role of the canonical
momentum. It should be kept in mind that in classical statistical mechanics
momentum integration produces the partition function of the ideal gas. The
variable p, is only a mathematical aid and should not be viewed as a physical

momentum variable.

To explicitly evaluate the functional integral, slice the spatial coordinate z into
N + 1 pieces of width € such that z, = ne and (N + 1)e = D. The boundary

conditions translate into the requirements

hoZO hN+1:0

V1 = Vg UNL1 = Up (2.42)

There are no boundary conditions imposed on p and p,. A piecewise linear path
is now defined by the values of (h,,, vy, pn, pu, ) at each slice, with a straight line
path in four-dimensional phase space interpolating between adjacent slices. Since
the phase space coordinates are independent, we recover all possible paths by

integrating over each variable at each slice. The measures Dh, Dv, Dp, andDp,, in

32



the partition function are defined to be

N N
dh,, dvy,
N ©0 N o0
Dp = ff / b Dp, = ff / . (2.43)
vt 2w Ap vt 2w Ap,

The factors Ah, Av, Ap, andAp, are included in the definition of the elementary
volume in the four-dimensional phase space to construct a partition function that
is dimensionless, just as a factor with the dimensions of A% must be included in the

partition function of classical systems. The phase-space factors can be combined

into the term A= = AR N Ap= N+ Ap=N=1Ap V.

All first order derivatives in the Hamiltonian can be discretized:

iy h h v v 1
7 . n -1 o n — Un—1 Z (2 2,2
H=c¢ ; { 1Pn (— vn) 1Dy, (—) + 5 (pvn +q vn)

(2.44)

1
First, perform the Gaussian integrals over p,, . This gives one factor (2me)™2 for

l(vn*:n—l )2

5 inside the square brackets. Next, perform the

every n and a term
integrals over p,,. This produces one delta function §(h, — h,—1 — €v,) for every n.
Finally, the integrals over v, combined with the delta function means replacing
v by % Finally, a factor of 1/e€ is generated by each of the N — 2 integrals

over v, through the ¢ functions. The final result is

1| & T dh
20 = 5ny H / An 8 (hy — evp) & (1 — evy) ™™, (2.45)
€2 n:l_oo
where the Hamiltonian is given by
N
. € — 2 2 2
"= ; (VYR + ¢ (Tha)’] (2.46)

Here, V and V, are the forward and backward lattice derivatives:

Vh(z) = h(z+€) — h(2)

Vh(z) = . (2.47)
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Note that h(z) in the functional integral is here allowed to have a slope at the
end points that differs from the imposed boundary condition with the boundary
condition enforced by the two delta functions. Furthermore, Eq. 2.45 implies that
e 3N/2+1 is the correct “measure factor” for the semi-flexible polymer Hamiltonian.

To explicitly compute Zy;, it is convenient to leave the integral over p; and pyi

in place. We begin by expanding the displacement in a sine series:

N
[ 2
m=1

with k,, = “5*. This decomposition differs from that of the naive mode analysis
in that the sine series imposes only the zero displacement boundary conditions
ho = hy11 = 0 at the ends, but does not constrain the angles there. The remaining
boundary conditions on the angles are imposed afterwards through the integral

over p; and pyy1. The fluctuation Hamiltonian is

N
_ € 4 2 2\ 42
Here
0 - 2 — 2(3028 (kme) (2.50)

€

is the mode dispersion relation of a linear chain. Eq. 2.48 is an orthogonal trans-
formation with unit Jacobian. Finally, we express the height fields h; and hy in

exp {ip1h1 — ipy+1hy} in terms of the sine series:

) . . 2
exp {ip1hy — ipny1hn} = exp {2\/ N1

+ (P +DpN11) Z AmSin(k‘mE)] } (2.51)

meven

N
(p1 — pn41) Z Asin(kpe)

m odd
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The functional integral over the fluctuations, after the change of variables, is then
/ dpy / de+1
\/ 27T€ €
expq i\ —— — msin (ke
p N1 P1— DPN+1) e

+  (p1+DpN+1) Z Amsin(kme)] }

meven

N [e.9]
Zfl = EAiNH

X

X exp {g > @+ q2)2A$n} . (2.52)

m=1
The integrals over the mode amplitudes A,, are Gaussian. Evaluation produces

the product of a prefactor
N

[[(€@% + )™ (2.53)

m=1

that includes a factor ﬁ, and a piece which depends on p; and pyy1:

d d 1
L5 [ 5ol oo,

+ (p1 + pvi1)’ 2] } (2.54)

where

Te= ) (81“2(% (2.55)

m even ngl, + q2)
m odd

The infinite product (Eq. 2.53) and the sums Y. can be evaluated in the limit

N — oo giving

(2.56)

(see Refs. [Klel0] and [GR94]). The remaining momenta integrals (Eq. 2.54)

are Gaussian. After evaluation and combination with Eq. 2.53, the fluctuation
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contribution to the partition function is

1 q2

2y = :
T on AN V/2(1 — cosh ¢D) + gD sinh gD

(2.57)

2.2.2.6 Partition function

The final result for the pinned semi-flexible polymer functional integral is found
simply by multiplying the classical contribution with Eq. 2.57

q2

Z = ¢ M '
2rAN | /2(1 — cosh ¢D) + ¢D sinh ¢D

(2.58)

, where H, is given by Eq. 2.10. This function does not depend on the short
distance cutoff and provides the appropriate statistical description of the filament
in the continuum limit. In particular, it correctly extracts the fluctuation induced
Casimir interaction valid at length scales much larger than the monomer size. This
description will naturally fail, however, if one is interested in statistical properties
of the polymer viewed as a chain of individual particles. In that limit, there is
nothing unphysical about the dependence of the free energy on the microscopic
cutoff. In fact, —T%, where F is the Helmholtz free energy, must equal the
Dulong-Petit heat capacity %kB in the limit of large N according to classical sta-
tistical mechanics. To recover this result, one must reinsert the cutoff dependence
into the partition function through the semi-flexible filament measure factor:

2
—Her € q

Z iscrete — € ) 2.59
diseret 2m(e¥2A)N | /2(1 — cosh ¢D) + qDsinh gD (2:59)
The free energy of the discrete polymer equals
2 A2e3
Ly m < a ) + NIny/=— — In(e/2r).
ksT V/2(1 — cosh¢D) + gD sinh gD ksT
(2.60)

The first term, the classical Hamiltonian, is the elastic energy of the polymer in the
absence of thermal fluctuations. It is, of course, independent of the microscopic

cutoff. The second term is also independent of the short distance cutoff and it
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will be the source of the Casimir force. The third term, which depends explicitly
on the cutoff, is extensive in the number N of microscopic degrees of freedom
and dominates in the large N limit. Now, the finite and divergent terms are
cleanly segregated in the free energy: the dependence on the small distance cutoff
— which stands for dependency on microscopic variables — only appears in the free
energy per monomer. The third term (with the explicit temperature dependence

restored) ensures that the Dulong-Petit relation holds even as € is taken to zero.

2.2.3 A note on the importance of the embedding space

It is worth commenting that it is necessary for the cross-linkers to pin the polymer
to an embedding space for the boundary conditions to make sense. In biological
systems, this may be accomplished by pinning the filament to an otherwise static
background elastic network. One can show that cross-linkers bound to an oth-
erwise free filament will not experience an interaction. This is not immediately
obvious because the cross-linkers will locally modify the mechanical properties of
the polymer by making it stiffer, and these so called rigid inclusions have been
shown to interact with one another in membrane systems. Nevertheless, I will
show that polymers differ from their two dimensional cousins in this respect.
Consider a free semiflexible filament fluctuating in the plane with two linkers at-
tached. The Hamiltonian for the filament, parameterized by the angle of the local
tangent with respect to a reference direction (s) as function of arc length, is given

in the usual form,
Hie) = [ asets (2) 261
s)}) == sk(s)|— | - :
2 Jo ds
The role of the attached linkers is to modify the local bending stiffness of the

filament k(s); the filament has one bending modulus at the linkers’ locations and

another elsewhere. The partition function for such a system may be written as

Z= / DY ML}, (2.62)
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The above partition function is that of the one-dimensional nonlinear o model,
but with a nonuniform stiffness. The functional integration should respect the
restriction of 0(s) to the unit circle: 0 < 6 < 27. In the case of interest where
the entire chain segment is much shorter than a persistence length, the partition
sum is dominated by a small range of tangent angles so that this constraint can
neglected. Having done so, we perform the functional integral over 0(s) treating it
as a Gaussian variable. In the non-linear sigma model, this is known as the spin-
wave approximation. Discretizing the functional integral again in chain segments

of length ¢, and assuming periodic boundary conditions, we obtain

M de L
—= 2
E/_oo A eXp{_igﬁﬂn (Ont1 — On) } (2.63)

with 61 = 61. Since there are no higher-order derivatives, there are no ambigu-

Z =

ities of the kind previously discussed in the evaluation of the functional integral.
Introducing the difference variable y, = 6,,.1 — 0, and performing the Gaussian

integrals we arrive at

N
Z x H1 \/% (2.64)

It is evident from this expression that the partition function does not depend on
the separation of the two beads on the filament because the product is insensitive
to the ordering of the x;. There is no fluctuation-mediated interaction between
the beads within the spin-wave approximation. To generate a fluctuation force it
is necessary to place the system in an embedding space where displacement and

slope boundary conditions are meaningful quantities.

2.3 Cross-Linker Interaction Potential

We can now use the results of the previous section to infer the effective interaction

between transient cross-linking molecules. We start with the case of zero tension
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where the partition function Eq. 2.58 reduces to

C
Z = ﬁef%(viﬂiﬂavb), (2.65)
where C' is a constant which is independent of D and the boundary conditions,
and thus plays no role in the Casimir force. The free energy, modulo this overall

constant, is
F = —kgTlogZ
~ 2
= kT (2 log D + = (03 +0; + 6a17b)) : (2.66)
. _1 1
The tildes have been reinserted here as a reminder: D = [,*D,v = [jv. The
force between the linkers is computed, as before, by connecting the ends of the

chain into a loop of length L. and computing the derivative of the total energy

with respect to D. This produces

_ 2kpT N QK?}S + v 4 vaup

f(D) ~ D E (2.67)

assuming again L > D. The first term has the form of the Casimir interaction
that we obtained earlier. The second term is the elastic energy of the section of
the chain between the linkers. The combined expression has a stable minimum at
f(D*) = 0 with a separation D* = [,(v2 + v + v,v;) that is of the order of the
persistence length. Figure 2.5 shows the Casimir force for different fixed values of

the slopes.

The attractive Casimir interaction has a universal character: it is independent
of both the small distance cutoff and the persistence length, although the per-
sistence length partially determines the validity of the perfect pinning boundary
condition—See Sec. 2.3.5. To estimate the magnitude of this force in typical
biopolymer systems, we note that a separation of a ten nanometers, the attrac-
tive force is on the order picoNewtons, the typical force scale of motor proteins.

The work required to separate the two cross links from 100nm to one micron is

~ 9kpT.
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Figure 2.5: The Casimir force for cross-linkers which fix the slope of the fila-
ment. At small distances the repulsive elastic interaction always overwhelms the

attractive fluctuation force.
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One must now specify how the transient cross-linker molecules impose angular
restrictions on the filaments to which they are bound. There are two particular
cases of interest related to cross linked F-actin networks. Some linkers that pro-
mote filament bundling, such as a-actinin, have a strong preference for parallel
filaments, but others, such as the network-forming filamin cross linkers do not
appear to generate strong angular constraints. It is simple to examine both cases
if the linker molecules apply a harmonic restoring torque on the two filaments to-
wards parallel alignment. In that case, two final Gaussian integrals remain to be
done to perform a thermal average of the classical partition function over different

linker angles:

T dv, duv

2l
Zg = Ao, Doy exp{ —373 (vi + 2 + vavb) } (2.68)

B o 2
X e —— (v, +v ,
Xp{ 2 ( a b)
where v is a measure of the angular rigidity of the linker. The associated free

energy is

Fa(D)
kgT

_ %log B(zp/D)2 (12 + 88vD/1, + (8vD/1,)?)

This expression must replace the second term in Eq. 2.66. We will examine this
expression in the limits of weak and strong angular stiffness in the following sec-

tions.

2.3.1 Network Linkers

For the case that the linker molecule have little or no angular preference, we take
the limit of 8y <« [,/D and find the total force to be

_ksT

o (2.69)

f(D) =

The thermal average over the repulsive “classical” interaction simply cancelled one

half of the Casimir force. The net force remains attractive as long as Sy < 1,/ D.
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For very large separations, this condition fails. The attraction starts to increase
even more and is better described by the opposite limit of bundling linkers, which
have a strong angular preference. Relaxing the angle condition in going from the
result given by Eq. 2.67 to the one given by Eq. 2.69 removes precisely half of the
interaction strength. One may view the attraction in Eq. 2.67 as arising in equal
parts from the restriction of two separate degrees of freedom, the position and
slopes of the filament at the pinning sites. Alternatively, if one were to consider
the unphysical case of cross linkers which pin the slopes but not the positions of
the filaments, one should expect the same result as in Eq. 2.69. More importantly,
one may consider the case of cross linkers with no angular preference and some
intrinsic elastic compliance, modeled by a harmonic spring with spring constant
k. Based on our results for the cross linkers that generate a harmonic potential
with curvature v for the filament slope, we expect that the prefactor of unity in
Eq. 2.69 would be reduced monotonically for elastically compliant cross linkers,

and go to zero as k — 0.

2.3.2 Bundling linkers

For the case that the linker molecule have a strong angular preference for parallel

alignment, we should take the opposite limit of 5y >>1,/D. This gives

f(D) =~ —2—7—(1—-2—2+.) (2.70)

for the total force-Please see Fig. 2.6 for plots with different values of v. The
repulsive interaction amounts to a small reduction of the Casimir force. The
Casimir force is thus roughly twice stronger for bundle linkers than for network
linkers. In the limit 7 — oo the final result for the Casimir force obtained from the
correct evaluation of the path integral is identical to that obtained by the naive
approach and subtraction scheme discussed in section IIB. The naive approach to

the calculation of the free energy of the pinned filament introduces errors in its
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dependence upon the small distance cutoff e. However, by taking a derivative with
respect to the inter cross linker spacing and subtracting the remaining formally
divergent part of the resultant force as described after Eq. 2.19, one can mask the
deficiencies of the naive approach. Other derivatives of the free energy, such as
the specific heat, still retain the unphysical dependence of the naive free energy

upon €, as discussed after Eq. 2.60.

—10-

BrE,

—15- Network Linkers

— =1
- =10
—_ = 100

—20

—— Bundling Linkers

p

Figure 2.6: As the angular stiffness v is increased the Casimir force transitions

from a network cross-linker into one which prefers bundling filaments.
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2.3.3 The effect of tension

Next, consider the case of nonzero filament tension. Rewriting the earlier results
in terms of the unscaled variables, introducing the dimensionless quantity d =
%D = \/ED, and further setting the slopes v, = v, = 0 to focus on the

fluctuation contribution (H, = 0), we find the free energy

F = —kgT [log (—) + log (W(d))] +C, (2.71)
where
/21 = cosh(d)) + dsinh(d)

is a scale function. The function f(d) contains the entire correction to the free

W (d) (2.72)

energy due to tension, which enters only through the length \/§ The force

between the two linker molecules, obtained as before, is

o -t (<20 IO )Y

The factor 1/2 in the second term is the contribution to the force due to filament

fluctuations of chain material that is not between the two linkers. The second term
is strictly positive so that the inclusion of tension weakens fluctuation attraction.
For d > 1, % = —% + 2%. In that case, the total force is f(D) ~ —kBT%. The
tension-induced fluctuation repulsion thus cancels 3/2 of the tension-free Casimir
force. Figure 2.7 shows resulting force for different values of d.

For d < 1 on the other hand, the second term contributes a repulsive force

that is independent of D and equal to ’“BTT ’?—; but this is small compared to the
tension-free fluctuation attraction. For distances small compared to the “tension
scale” 1/q the full Casimir attraction is recovered. In summary, the Casimir force
is not suppressed by tension for the case of bundle linkers with strongly preferred
alignment. If slope fluctuations are included one finds a reduction of kBT% in
the attractive force for d << 1 again illustrating that tension has no effect for

distances less than the tension scale. For large distances the slope fluctuations
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are strongly suppressed and do not weaken the Casimir attraction. We plot the
Casimir force between cross linkers of the bundling and network types and explore

the effect of tension applied to the filament in Fig. 2.8.

Network Linkers
— /7/k = 0.1

— VoR=1
— Vr/r=10
— /7/k = 100

— Bundling Linkers

1850302 05 06 07 08 09 10
D/t

D

Figure 2.7: For separations greater than the characteristic tension length scale
\/K/7 the Casimir force is weakened. At small separations, neglecting any elastic
repulsion due to preferred tangent angles, all curves with finite tension collapse

onto the bundling linker result.
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Figure 2.8: The Casimir force versus cross linker separation for a filament fluctu-
ating in one transverse dimension. We compare the interaction in the tension-free
case for network cross linkers, which do not constrain the filament crossing an-
gles (black), and angle-constraining bundle cross linkers (red) with zero preferred
slope. When the bundle cross linkers enforce filament slopes that introduce a
nonzero mean torque (magenta), the interaction becomes repulsive at short dis-
tances due to the forced bending of the filament. The effect of finite tension is
explored for the case of fixed tangent angles of zero at the cross links. Increased
tension reduces the attractive interaction at lengths greater than \/R_/T, as can

be seen by comparing the low tension (green) and high tension (blue) results.
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2.3.4 Three cross-linker interaction

Consider three sliding linkers on a fluctuating filament as shown in Fig. 2.9. The
classical and Casimir contributions to the free energy in a tensionless filament in

the scaled units are

S0 ~2 .~ s 2 a9~
F = 9T (logD Y log(L — D) 4 la Tl ¥t U E”c E””“C) L@

If one assumes the linkers have no angular preference then the ; may be integrated

Figure 2.9: Three interacting sliding linkers on a single fluctuating filament

out and one finds the interaction free energy

. I 1. -
F =kgT (logD +log(L — D) + §logL> (2.75)
The Casimir force on the middle linker is
1 1
= —kpT | = — —+—— 2.
1= (550 (276)
The force on the leftmost linker is
1 1
=—kpT | =+ — 2.
F=-it (54 57) (2.77)
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As we let D — L corresponding to a single linker interacting with a cluster of

two linkers we see the force goes to —?’%T. This result highlights the fact that

tight clusters must eliminate fluctuations and therefore force the slopes to be

identically zero at the edges of the cluster. Fluctuating slopes generate repulsive

forces of strength —sz—ET so the elimination of such fluctuations increases the overall

strength of the attraction. We see that an individual linker will be preferentially
attracted to clusters over solitary linkers. This result holds for the interaction

of a single linker with any size cluster up to correction of order where a is

I
the mean spacing within a cluster and L is the separation of the single linker

with the cluster. We may also deduce that two clusters will interact with the full

fluctuation force — 2L gince there are no slope fluctuations at either end.
L

2.3.5 Applicability to Biological Systems

For the Casimir effect to be operative between two physical cross linkers, one
must be sure that the scale of transverse undulations at a location on the filament
without a cross linker is larger than the ring radius. Larger rings would have
no effect on the filament’s fluctuation spectrum and thus generate no Casimir

interaction.

The magnitude of the thermally generated undulations is easily estimated. For
simplicity tension is neglected and only one transverse direction is considered so

that the energy of a given configuration is given by

H = 5/0 dz [ (2)]?. (2.78)

The boundary conditions are chosen to represent a bound linker restricting
fluctuations at z = 0, specifically hinged at z = 0 and free at z = D, i.e. h(0) =
R'(0) = 0 and h"(D) = h"(D) = 0, where primes denote differentiation with

respect to z. The aim is to determine the characteristic fluctuations a distance
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[ from z = 0 and compare this with the relevant cross linker length scales. For
these boundary conditions we may integrate by parts with no surface terms to
find
. D
H= 5/ dzhoth. (2.79)
0

To determine the thermal expectation value of the filament’s transverse displace-
ment at z = [ it is convenient to decompose those displacements into eigen-
functions of the d? operator with the boundary conditions imposed above. The

appropriate eigenfunctions are

sin(k, D)

hn = Cn . kn 1
¢ |sin( Z>+smh(knD)

sinh(k,z) | , (2.80)

with corresponding eigenvalues k2, where k,, are the solutions of the transcendental
equation

tan(k, D) = tanh(k, D), (2.81)

and ¢, is a normalization constant chosen so that

/D dzh2(z) = 1. (2.82)

The analysis is further simplified by considering only the first mode, n = 1. Since
the mean square amplitudes of each mode are positive definite quantities that add
to the quantity of interest (h?(1)), this result provides a conservative underestimate

of the rms fluctuations of the filament. From the equipartition theorem

kBT

<z42>k‘4 -

(2.83)

where A; is the amplitude of the first mode. The local height fluctuations are

then given by
kBT

where we note explicitly the dependence of the eigenfunction and eigenvalue on
the filament’s length D. The ellipses represent positive terms associated with

the neglected modes. The eigenfunction scales as hy(l; D) ~ D~/?k;l due to the
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normalization factor ¢; of the eigenfunction and its dependence on [ for small [.
The eigenvalues scale as k; ~ D™!, so hy(l; D) ~ L™%?2]. Combining this with
Eq. 2.84 and recalling that [, = x/kgT', one finds

(R*(1)) ~ ——. (2.85)

The rms fluctuations are then estimated to be \/(h2(l)) ~ I\/D/l,. To put this
in a biological context imagine that the filament is a 1um F-Actin polymer, which

has [, ~ 10um), and has characteristic transverse fluctuations
(h2(1)) = .11 (2.86)

At a separation of [ = 100nm the fluctuations are approximately 10nm. If
one imagines that the hinged boundary condition at z = 0 is due to a cross
linker with no angular preference then the perfect pinning approximation should
be reasonable at a separation of 100nm since a physical cross linker should be
capable of constraining fluctuations of order 10 nm. Assuming cross linkers can
affect fluctuations on the scale of 1nm, one arrives at an estimate of 10nm for the
lower bound of validity of the approximation. This result is somewhat sensitive to
boundary conditions: A clamped boundary condition at z = 0 leads to a quadratic
growth profile and would produce fluctuations of only a few nm at [ = 100nm,

and thus the approximation is only appropriate beyond that distance.

2.4 Evidence of Casimir effect from simulations

The existence of a Casimir force between cross-linkers is verified by numerical
simulation of a pinned semi-flexible filament. The simulation free energy as a
function of pinning site separation is difficult to measure precisely because of the
macroscopic number of degrees of freedom in the system, each contributing kgT
to the total. One may easily measure the Fourier mode amplitudes, however, and

compare them to a theoretical model that is equivalent to the Casimir interaction
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previously derived. In Sec 2.4.1 I present the new calculation and prove the
equivalence. Section 2.4.2 outlines the simulation method, and the results are

stated and discussed in Sec. 2.4.3.

2.4.1 The Casimir force as a linear Fourier mode coupling

The derivation of the Casimir force in Sec. 2.2 is a direct evaluation of the

partition function expressed as a path integral
Z = / Dh e~ M, (2.87)

where the Hamiltonian H is given by Eq. 2.2. The naive approach (c.f. Sec.
2.2.2.2 ) represents the height field in terms of Fourier modes which enforce an

h = 0 boundary condition at z =0, L

N
[ 2
n=1

where k,, = “*, and N is the number of included modes which will be subsequently
taken to infinity. The boundary conditions represent network cross-linkers (see
Sec. 2.3.1) because the initial and final tangents are thermally averaged. This
transformation diagonalizes the Hamiltonian and also allows a simple form for the

path integral measure( up to a multiplicative constant) Dh:

N
Dh — H/dAn
n=1
K N - N
H — §Zk§Ai+§ZkiAi, (2.89)
n=1 n=1

This method introduces the divergences discussed in 2.2.2.2 if one attempts to
directly calculate the interaction between two crosslinkers. The divergences are
due to the transfer of degrees of freedom into the bulk region of the filament
outside the linkers, but this can be avoided with the introduction of a third linker

between the original two, as shown in Fig. 2.10. It will be shown that there are no
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divergences associated with the change in free energy as the middle linker is slid
between the outer linkers, and that this naive approach reproduces the Casimir
interaction as well as the desired Fourier amplitude matrices. Instead of restricting
ourselves to a single intermediate crosslinker we allow m linkers at positions z = D;
which constrain the fluctuations and force h(D;) = 0. This pinning condition
is handled with a product of Dirac § functions §(h(D;))d(h(D2)) -+ written in

Fourier space. The final form of the partition function is

H/dA/ dp /_ dp%exp{ BH

P Z Apsink,Dy+ -+ +ip, Z A,sink,D,, } (2.90)
n=1

The integral is straightforward to evaluate since it is a product of Gaussian inte-
grals, although there is complexity associated with a large number of additional
crosslinkers. It is also clear that the Casimir interaction involves only a linear
coupling between all the modes. For simplicity let 7 = 0 and consider only a
single intermediate linker at z = D. Completing the square for each amplitude

and performing the resulting Gaussian integrals gives

d N sin2k,D
[H ﬂﬁkﬁt % exp {— [Z—SIQHBWL ]pQ}. (2.91)
n=1 n

The prefactor diverges as N — oo, however it is independent of D and can be

ignored since it will not contribute to the Casimir force. Up to a constant we thus

have

(2.92)

n=1

—1/2
N sin® k D)

Z(D) x (Z 25724

It’s interesting to note that Z(D = 0) differs from the partition function with no
constraint by an infinite multiplicative constant. This of course must be the case

if there is to be a Casimir force. Continuing, we obtain the free energy

N .
T sin? k,, D
F(D) = 5 log (Z ST > , (2.93)

n=1

52



and the force

—1
T (& sin? k, D il 2k, sin k,, D cos k,,D
0= (L H0) (ko) gy

n=1 n=1

Setting the length of the filament to unity we are left with

N . -1/ N .
£(D) = T (Z stTZWD) (Z sin mrlzl(;os n7TD> ' (2.95)

n=1 n=1

The sums converge and we may safely take the limit N — oo. The result,

(2.96)

f(D) = wTIm[ Lig(e™7) — Lig(e ™) } ,

Li4(€z27rD) + Li4(6127rD) - 2L14<1)
is equivalent to the force calculated using the 3 body Casimir interaction, Eq.
2.76 (recalling L = 1):

f(D)=-T (% - %) . (2.97)

To calculate mode amplitude correlations it is convenient to turn the partition
function into a generating function Z(J) by including a source term »_ A;J; in
the exponent of Eq. 2.90. Correlation functions are now simple to calculate, for

example the two point function takes the form

0Z
0J;0J; o

The integrals are easily evaluated, and explicitly in the case m = 1 we find the

correlation function

sink; D sink;D

5i,j fik,‘?-‘er‘? Hk]z.-f—Tk’?

4 2y N in2kn,D
B(kki +7k7) g il

m

(Aid;)(D) = (2.99)

It D =0o0or D = L, representing the intermediate linker positioned at either
edge, the standard equipartition result emerges. Apart from those two cases, the
pinning condition modifies the shape and eigenvalues of the normal modes of the

filament. This linear coupling of the Fourier modes completely defines the Casimir

93



interaction. The simulations will also study the case m = 2 and I quote the result

here for the case of zero tension, 7 = 0, and two pinning sites at D; and Dy
B(Klkf) 4A(D1, Dl)A<D2, DQ) — A(Dl, Dg)
X [8A<D17D1)B(27D2>B<]7 DQ)

(AiAj) (D1, Do) =

+ 8A(Ds, Dy)B(i, D,)B(j, D;) (2.100)

— 4A(Dy, Dy) (B(i, D2)B(j, D1) + B(i, D1) B(j, D2))] ,

where

1 i sin k,, Dy sin k,, Do
2Bk = k4
sin k; D

A(D1, Do)

2.4.2 Simulation Details
2.4.2.1 Brownian dynamics simulations with finite beam elements

Simulations were carried out discretizing the filament with geometrically exact,
nonlinear Timoshenko beam elements [JC99, Cri03, Rom04], which account for
axial, torsional, bending, and shear deformation. Viscous drag is accounted for
by

Frise = C1E,  Myjse = €0 (2.102)

with translational and rotational damping tensors ¢; and ¢, and translational and
rotational velocities @ and 6. Stochastic forces and moments are determined in

accordance to the fluctuation-dissipation theorem and read

2 2
-fstoch =V 2kBT8ta‘/;;—é?t)a Msioch = V QkBTSrgvgg—g?t) (2103)

with damping tensors sy ,) chosen to satisfy s{tyr}s{t,r}T = cr)- YV denotes a

standard Wiener process.

Time is discretized using an Implicit- Fuler scheme, which allows for larger step

sizes and therefore much greater simulated time intervals as compared to explicit
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Figure 2.10: Snapshots of filaments pinned down at one location s =0.25L (top)
and two locations s; =0.25L, s =0.6L (center) during simulation. Pinning sites
are marked by black dots. The blue horizontal lines show the initial geometry.
The zoomed part shows the smoothness and rotational freedom of the filament
around the pinning site; mechanical supports of the filament (bottom): the ends
of the filament are movable in one translational direction only, the translation of

the pinning site is completely inhibited. Rotations are unconstrained in all cases.

schemes due to a better numerical stability. Full details on the mechanical model,
the numerical method and the discretization in time are given in [CAO09, CNG10,
CMB13].

2.4.2.2 Geometrical and mechanical properties

A filament of length L = 10pm and persistence length L, ~ 18.4pm was discretized
with N =4000 beam finite elements, which for the applied beam formulation

amounts to 24000 degrees of freedom. Its circular cross section area was set
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to A=1.9x10"°um? leading to a high axial stiffness compared to its bending
stiffness. The moment of inertia of area is set to I = 2.85x10~"um?* and the

4. The initial, stress-free geome-

polar moment of inertia to I, = 5.7x107" um
try was chosen straight and parallel to the global z-direction. Its movement was
constrained to R? allowing transverse deflections of the filament only in global
y-direction. Temperature was set to T'=293K and the dynamic viscosity of the

fluid to n =103 Pas.

2.4.2.3 Effects of time discretization

Three different step sizes At € {107%s; 10™%s; 107%} of the time integration scheme
were chosen in order to access a broad set of geometrical configurations of the
filament. Figure 2.11 illustrates the effect of step size on the accuracy of the
simulation with respect to capturing the filament’s various eigenmodes. The left
graph features results for At=10"2s, which show excellent agreement between
theoretical prediction and simulation for slow modes n <5. However, for mode
numbers n > 5, the quality of the numerical approximation deteriorates due to At
being too large to accurately capture faster modes. Hence, additional simulations
were conducted in order to assess the behavior of the numerical model regarding
its sensitivity to step size. The effect is clearly visible in the central and right
panels of Figure 2.11. Simulations with intermediate step size At =10"*s provide
an acceptable approximation of slow modes. They exhibit an onset of deviation
from theory at higher mode numbers around n > 15. Finally at the lowest stud-
ied step size At=107%s, the trade-off in accuracy between fast and slow modes
becomes even more apparent. While results for slow modes are poor, fast modes
are approximated well. As characteristic relaxation times 7, of the modes vary
widely, the dynamics of the filament need to be sampled over a step size interval

of several orders of magnitude as well.
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Figure 2.11: Comparison of theoretical (A) diagonal mode amplitudes to those

computed (%) from finite element simulations for different time discretizations.

2.4.2.4 Boundary conditions for single-filament simulations

In case of the simulation of a single filament, the effect of linkers pinning down
the filament at a certain location s along the filament is modeled by permanently
inhibiting the translational degrees of freedom at the pinning site as sketched in
the bottom illustration of Figure 2.10. The filament is still free to rotate about
this pinning site as shown in the zoomed part of the illustration at the top of
Figure 2.10. The ends of the filament are free to slide in longitudinal direction
and rotations remain unconstrained. Two parameter studies were conducted with

transverse thermal fluctuations of the filament constrained by

(S1) a single pinning site at discrete finite element node positions s € [0; L/2].
The affected nodes are located at sites s/L € {[0.025;0.5],0} (illustration at

the top of Figure 2.10). The empty set represents the linker-free case.

(S2) two pinning sites at positions {s1, 2} € [0; L], s1 # $2, neglecting symmet-

ric configurations (illustration in the middle of Figure 2.10).

All cases with a single pinning point were simulated for ¢ > 200000 time steps for
all step sizes, while all cases with two pinning sites were simulated up to ¢ = 100000

time steps.
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2.4.2.5 Calculation of covariance matrices from simulations

Simulations provide us with filament geometries, from which we can draw the
transverse deflections of the filament y(s). Over the course of a total number of 1
time steps, we gather M < I geometrical configurations of the filament. In case of
a discretized geometry, we obviously are only able to provide a discrete signal of
length L, which in turn allows for a discrete Fourier analysis up to mode N = L/2.

The k' Fourier coefficient, i.e., the approximated amplitude of eigenmode k, is

A, = \/?; y(s)sin(nms/L). (2.104)

With this, the covariance matrix can be written as
<AkAl> = COV(Ak, Al) =E [(Ak : Al)] (2105)

with mode number indices k£ and [, providing a measure for the interdependence

of modes.

2.4.3 Results

The numerically determined mode amplitudes for the single pinning site are com-
pared with Eq. 2.99, and with Eq. 2.100 for the double pinning sites. Levine
plots encode the results and are shown for an array of single site locations in
Fig. 2.13, and double site locations in Fig. 2.13. For details on the Levine
plot please see Fig. 2.12, which explains the plot for D = .4L. FErrors are
consistently on the order of 10% and may be shown to decrease with additional
observations. The equivalence of the mode spectra between simulation and theory
suggests that ideal cross-linkers experience a fluctuation induced attraction when

bound to semi-flexible filaments.
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Figure 2.12: The Fourier amplitude covariance matrix of the first 10 modes ob-
tained via finite element simulation for a filament pinned at D = .4L The area of
each element represents its log normalized magnitude, while its shape represents
the sign with rectangles being positive, circles negative. The color bar indicates
the % error relative to Eq. 2.99. The error magnitude is consistent across dif-
ferent pinning locations and supports the existence of a casimir effect between

crosslinkers in semiflexible polymers.
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Figure 2.13: Levine plots for nine different values of the single pinning location
D-See Fig. 2.10. Errors are consistently on the order of 10%. Please see Fig.
2.12 for details regarding the Levine plot.
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2.5 Conclusions

I showed in this chapter that when semiflexible polymers are connected by sliding
linkers as in Fig.2, then thermal conformational fluctuations generate a long-range
Casimir attractive pair interaction V(D) = vkgT log D between linkers separated
by a distance D. The proportionality constant « is a number that ranges from
1/2 to 4 depending on: (i) the presence or absence of tension along the polymer,
(ii) whether or not the polymers are confined to a plane, and (iii) the rigidity of

angular constraints imposed by the sliding linkers.

For distances large compared to the persistence length, the polymers can be
treated as flexible. In that case, V(D) can be roughly approximated as the entropic
energy cost of a loop of size D, if we reinterpret D as the total polymer length
between the two linkers. In that limit, the linker pair-interaction maintains the
same form, though the prefactor v will be different (for non self-avoiding polymers,
v would equal d/2 with d the spatial dimension). It is important to stress that the
Casimir attraction between sliding linkers only is important if elastic stress does
not prevent the two linkers from approaching each other. For example, if the two
sliding linkers in Fig. 2 impose a non-zero angle then this generates an elastic stress
that amounts to a repulsive interaction that overwhelms the Casimir interaction
on length scales small compared to the persistence length. The most interesting
examples of polymer networks held together by transient linkers involve F-actin
filaments in the presence of linker proteins. F-actin has a persistence length in
the range of 20 microns. The force between two sliding linker proteins separated
by a distance of ~ 10nm is in the picoNewton range, which is the same order of

magnitude as typical forces exerted on proteins.

Any elastic compliance in the cross linkers will decrease the overall prefactor
of the Casimir interaction between them. We analyzed this effect for the case of

replacing the fixed angle boundary conditions with a harmonic potential having
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a minimum at the desired crossing angle of the two filaments at the cross linker.
As the curvature of that potential was reduced, the contribution to the Casimir
interaction coming from the pinning of the angular degrees of freedom vanished
continuously. Since slope and position variables are treated analogously within the
path integral formulation, replacing the boundary condition of the fixed filament
position at the cross linkers with a harmonic potential at those positions will
have a similar effect. Alternately, one might consider treating the cross linkers
as small rings of radius a, as represented in our figures. If that radius is finite
then undulatory modes of the filaments with an equilibrium amplitude less than
a should be essentially unaffected by the rings and not contribute to the Casimir
interaction. As the persistence length of the filaments diverges and all undulatory
mode amplitudes decrease, the Casimir interaction must vanish. We pursued our
calculation by first taking the limit of an infinitesimal ring so that our results show
a finite Casimir interaction for arbitrarily large (but finite) persistence lengths. As
mentioned above however, one can still explore the effect of softening the position
boundary condition by treating the cross linker as a spring instead of a hard

constraint.

Different values for v may lead to different equilibrium phase behavior for
networks of semiflexible polymers. Assume a stress-free network of semiflexible
polymers held together by sliding linkers. If two neighboring linkers of a given
polymer can approach each other — without generating elastic stress — then the
equilibrium probability distribution P(D) for the separation of the two linkers
would be proportional to exp[—(V(D)] o< 1/DY. The mean square separation
<D?> of the two linkers then would be infinite for v less than or equal to 2.
That would suggest that for vy greater than 2, linkers would come together into
pairs of linkers. Would this trigger decomposition of the network as a whole?
Estimate the free energy density of the linker many-body system as F'(p)/kgT =~
plog p—(z/2d)vplog p, with z the average number of nearest neighbors per linker

63



in the network and p ~ 1/D? the linker density. The critical value for v above
which the free energy density is a concave function of the density is 2d/z. For larger
values of 7, the network state is thermodynamically unstable. These arguments
assumed that the Casimir force could be treated as a pair interaction. In Sec. 2.3.4
we show that this is not quite right: three-body Casimir interactions cannot be
neglected in general. I will explore the thermodynamic stability of these networks

in much greater detail in the following chapter.

We conclude by noting an important difference between the Casimir interac-
tions in liquid membranes and on semiflexible polymers. It is essential to recognize
that the linkers in our problem constrain the filament’s position with respect to
the space in which the filament is embedded. In other words, the filament can
exchange momentum with the background system, e.g., a polymer network with
the linkers at those points. If it were not constrained in this manner, so that the
linker polymer system could collectively diffuse in the space, there would be no
fluctuation-induced interaction between the linkers. This is demonstrated in Sec.
2.2.3. This aspect of the Casimir interaction on one dimensional elastic objects is
surprising when compared to the analogous problem of rigid, disk-like inclusions
in an isolated membrane. These are known to interact via a power-law Casimir
force even if the collective disk and membrane system were allowed to freely dif-
fuse in the embedding space. One cannot simply generalize this membrane result
to the semiflexible polymer problem and this has significant biophysical implica-
tions. Based on our result, we predict that DNA binding proteins do not expe-
rience a long-ranged attractive Casimir interaction along a DNA filament, while

membrane-bound proteins do.
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CHAPTER 3

Casimir Gas & Bundle Stabilization

3.1 Introduction

Semiflexible networks with transient cross linkers form the main structural ele-
ments of the cytoskeleton of eukaryotic cells and provide an intriguing arena in
which to study nonequilibrium physics. Due to the steric interactions between
the long filaments (e.g. F-actin) these systems are typically frustrated, unable
to reach more ordered ground states [CMS13]. In spite of this steric frustration,
experiments [GSM04, WTHO06, PPH03, SLB09, LCHO7] have found that both
the statistical properties of the network’s structure and its mechanics (rheology)
can be reproducibly predicted as a function of the ratio of the concentrations
of the filaments and their cross linkers. In particular, one observes an abrupt
transition between filament networks and networks composed of small bundles of
these filaments as a function of these concentrations. This seems surprising as
one might expect there to be continuous growth of bundles with increasing cross
linker density, cutoff in the high cross linker limit only by the aforementioned

steric frustration.

In this letter we propose that one can understand the abruptness of the
bundling transition in semiflexible networks by considering the Casimir or fluc-
tuation based interaction between cross linkers bound to the same filament. The
basic physics of this Casimir interaction in semiflexible polymers has been ex-

plored previously—See Ch. 2. Here we present new calculations showing that, due
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to the long-range nature of the Casimir interaction, there is an abrupt conden-
sation transition in which a gas of free cross linkers abruptly lock nearly parallel
filaments into bundles as a function of cross linker concentration. We test the
predictions of the fundamental Casimir interaction between cross linkers and the
condensation transition based on this interaction using large-scale Brownian dy-

namics finite-element simulations of the network.

This first order condensation transition appears in spite of the one-dimensional
nature of the problem due specifically to the long-range (i.e., logarithmic) na-
ture of the fluctuation-induced interaction between cross linkers (violating the
van Hove condition [Hov50]). This allows for the abrupt condensation transi-
tion in the line density of cross linkers on the filament at a critical value of their
chemical potential. In the condensed phase one finds that the bound linker line
density is significantly enhanced relative to that expected from a simple Langmuir
isotherm [Lan18]. In fact, one rapidly reaches bound linker saturation where their
line density is limited only by their hardcore repulsion. Below the condensation
point one finds large linker density fluctuations but a small mean concentration
implying insignificant bundling. Thus, we find that Casimir interactions between
linkers produce a type of binary chemical switch controlled by linker concentra-
tion between two states: (i) free filaments and a solution of unbound cross linkers
below the transition, and (ii) bundles composed of filaments that are maximally
coated with cross linkers. One may speculate that this cooperative transition
produced by the strongly interacting linker gas is exploited by the cell to induce
such dramatic structural rearrangements in 