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Testing long-term earthquake forecasts:
likelihood methods and error diagrams

Yan Y. Kagan1∗
1 Department of Earth and Space Sciences

University of California, Los Angeles, California, USA

December 10, 2008

Abstract

We propose a new method to test the performance of a spatial

point process forecast based on a log-likelihood score for predicted

point density and the information gain for events that actually oc-

curred in the test period. The method largely avoids simulation use

and allows us to calculate the information score for each event or set

of events as well as the standard error of each forecast. As the num-

ber of predicted events increases, the score distribution approaches the

Gaussian law. The degree of its similarity to the Gaussian distribution

can be measured by the computed coefficients of skewness and kurto-

sis. To display the forecasted point density and the point events, we

∗Yan Y. Kagan, Department of Earth and Space Sciences, University of California, Los
Angeles, California, 90095-1567, USA; (e-mail: ykagan@ucla.edu)
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use an event concentration diagram or a variant of the Error Diagram

(ED). We find forward relation between the error diagram curve and

the information score as well as inverse relation for one simple model

of point spatial fields. We again show that the error diagram is more

informative than the likelihood ratio.

We demonstrate the application of the method by using our long-

term forecast of seismicity in two western Pacific regions. We com-

pare the ED for these regions with simplified diagrams based on two-

segment approximations. Since the earthquakes in these regions are

concentrated in narrow subduction belts, using the forecast density as

a template or baseline for the ED is a more convenient display tech-

nique. We also show, using simulated event occurrence, that some

proposed criteria for measuring forecast effectiveness at EDs would be

strongly biased for a small event number.

Key words: Probabilistic forecasting; Spatial analysis; Fractals

and multifractals; Probability distributions; Earthquake interaction,

forecasting, and prediction; Statistical seismology.
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1 Introduction

This paper continues our analysis of stochastic point process forecast ver-

ification (Kagan 2007b). There (ibid.) we had discussed two interrelated

methods for measuring the effectiveness of earthquake prediction algorithms:

the information score based on the likelihood ratio (Kagan 1991) and the

“Error Diagram” (ED). These methods have been applied (Kagan 2007b) to

1-D temporal renewal stochastic processes, but only for very long processes

with the number of events approaching infinity.

In this work we extend our analysis by

1) discussing spatial (not temporal) random processes (fields);

2) considering forecast testing if the number of events is relatively small;

3) applying newly developed techniques to long-term earthquake forecasts.

Two issues are related to the problem of testing point process forecasts:

• 1) Spatial random point fields density evaluation and its prediction is a

mature discipline with many publications. Baddeley et al. (2005), Baddeley

(2007), Daley & Vere-Jones (2003, 2008) provide reviews. As we explain

below, the earthquake forecasting problem is different in many respects from

regular density evaluation and requires special treatment. However, some

results of this paper can be applied to test the forecast of a random spatial

pattern.

• 2) Well-developed application methods exist in weather and climate pre-
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diction; their reviews have been recently published by Jolliffe & Stephenson

(2003), Palmer & Hagedorn (2006), DelSole & Tippett (2007). These pre-

diction methods consider continuous processes and fields; however, with nec-

essary modifications some of these methods can be used for stochastic point

processes.

Our main focus here is on the two most widely used approaches to as-

sessing earthquake prediction methods (Zaliapin & Molchan 2004). Both

approaches evaluate how a prediction method reveals new information about

impending earthquake activity. The first approach starts by estimating the

expected spatio-temporal distribution of seismicity and uses the classical

likelihood paradigm to evaluate predictive power. Accordingly, it uses the

nomenclature of statistical estimation. The second one applies the results by

Molchan (1990, 1997; see also Molchan & Keilis-Borok 2008 and Molchan,

2008) who proposed error diagrams for measuring prediction efficiency. The

EDs plot the normalized rate of failures-to-predict (ν) versus the normalized

time of alarms (τ). The ED can be considered as a time-dependent analog

of the Neyman-Pearson lemma on making a decision: should we expect an

earthquake within a given spatio-temporal region? Consequently, it uses the

language of hypothesis testing.

Starting with Molchan’s (1990) paper, previous EDs were almost exclu-

sively time-dependent. We apply the ED to time-independent 2-D spatial

earthquake distributions. In some respects, the earthquake spatial pattern is
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more difficult to analyze than the temporal distribution. In the latter case,

we have a reasonable null model (the uniform in time Poisson process) which

can be compared to any test model. In the spatial case, the simple model

of uniformly distributed seismicity can hardly serve as an initial approxi-

mation; even large earthquakes (which often can be well-approximated by a

Poisson temporal process) are strongly clustered in space. This property of

seismicity is caused by the fractal nature of earthquake spatial distribution

(Kagan 2007a). Although in our forecast (Kagan & Jackson 2000) we use a

projection of earthquake centroids on the Earth surface which smoothes their

spatial distribution (Kagan 2007a), the spatial distribution still preserves a

self-similar fractal pattern with large parts of the Earth practically aseismic.

Diagrams similar to EDs have been used previously to describe spatial

distribution of seismicity: Rong & Jackson (2002, their Fig. 3); Kagan et al.,

(2003, their Fig. 5.3); Helmstetter et al., (2007, their Fig. 4); and Shen et

al., (2007, their Figs. 1B, 2B) created spatial “Concentration Diagrams” to

characterize the agreement (or lack thereof) between the predicted seismicity

distribution and future earthquakes. These diagrams plot the fraction of

the event success rate (equivalent to 1 − ν) versus the normalized area (τ),

sorted by probability density. The sorting is largely analogous to water-level

threshold analysis (Zechar & Jordan 2008). These concentration diagrams

can easily be converted to EDs by adding an ascending diagonal and then

reflecting the plot in the line ordinate (ν = 1/2).
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The error diagram is related to the Relative Operating Characteristic

(ROC) (Swets 1973; Mason 2003, pp. 66-76), used in signal detection and

weather prediction efforts. In the ROC diagrams the success rate of an event

prediction is compared against the false alarm rate.

In principle, ED diagrams can be treated like ROC plots where cells

(bins) with events are considered as success and empty cells as false alarms.

However, this interpretation encounters difficulties when the cells are not

infinitesimally small, so some may contain more than one event. Even for

very small cells due to the fractal nature of earthquake spatial distribution

(Kagan, 2007a) several events may be located in a single cell. However,

in our forecast we use a projection of earthquake centroids on a 2-D Earth

surface; this transformation smoothes out earthquake spatial pattern, thus

for a sufficiently dense grid the probability of more than one event falling

into the same bin can be kept low. Moreover, as we show below, for a point

process on a sphere it is difficult to define cells of equal size. A usual sphere

subdivision yields cells of unequal size that are larger at the equator and

smaller towards the poles. Below we discuss the techniques for overcoming

these difficulties.

Characterizing prediction performance is a major challenge for ED anal-

ysis. Since prediction results are represented by a function (curve), it is

important to find a simple one-parameter criterion (a functional) that briefly

expresses the efficiency value. Several functionals have been proposed as
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a measure of ED forecast efficiency: the minimax strategy (Molchan 1997;

Molchan & Keilis-Borok 2008), the sum of errors (ν +τ) (ibid.), the area skill

score (Zechar & Jordan 2008), etc. Each of these criteria has some advan-

tages or disadvantages. For example, Kagan & Jackson (2006, Section 5) in

their discussion of Kossobokov’s (2006) paper, show that two ED trajectories

with a very different behavior have the same ‘sum of errors’ value.

In this work, as well as in our previous paper (Kagan, 2007b), we advo-

cate the use of the log-likelihood to characterize the ED performance. The

advantage of the likelihood score is that it is well-known in statistics and its

properties are discussed in many statistical treatises. Moreover, as Kagan &

Jackson (2006, Section 5) argue, the likelihood score yields a better measure

of forecast performance in terms of possible earthquake warning strategies

and their cost.

2 Long-term earthquake forecasts

Kagan & Jackson (1994, 2000) present long-term and short-term earthquake

forecasts in several regions using the CMT catalog (Ekström et al. 2005;

http://www.globalcmt.org/). The forecasted earthquake rate is calculated

as a spatially smoothed earthquake location distribution. The spatial kernel

used in the smoothing has units of earthquakes per unit area and time. In

our studies it applies to all shallow (depth less or equal 70 km) earthquakes

with moment M = 1017.7 Nm (magnitude 5.8) and greater. The kernel
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is elongated along the fault-plane, which is estimated from available focal

mechanism solutions.

To take into account the impact of earthquakes outside the boundaries of

the region, we allow events up to 1000 km outside the region to contribute to

the rate density inside the forecast region. The additional rate density from

outside events is on average balanced by a contribution ‘leakage’ from many

‘insider’ earthquakes close to the boundaries.

An important feature of Kagan & Jackson’s (1994) method is a procedure

similar to the jack-knife (Silverman 1986) for testing the predictive power

of the smoothing. It optimizes the kernel parameters choosing those values

which best predict the second half of a catalogue, using a maximum likelihood

criterion, from the first half. We argue that because the seismicity pattern

exhibits a long-term clustering (Kagan & Jackson 1991), such a procedure is

better suited than the standard density estimation techniques to predicting

the future earthquake rate. We also assume on an ad hoc basis (Kagan &

Jackson 1994, 2000) that the background rate density is uniform over the

whole region and integrates to 1% of the total earthquake rate

(Background rate) = ε × (Total rate) , (1)

with ε = 0.01. A quantitative determination of the ε-value would require an

extensive study not of a regional but the global spatial earthquake distribu-

tion, a task for future work.
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Kagan (2007a) shows that the fractal dimension of earthquake hypocen-

ters, δ, strongly depends on the earthquake catalog time interval. For tem-

porally short catalogs δ is close to zero and approaches the asymptotic value

δ ≈ 2.3 for catalogs of decades length. In a more intuitive setting, this result

signifies that in short time intervals, hypocenters are concentrated in a few

point clouds. With increased time, seismicity spreads over a fault system or

seismic belt length, eventually occupying a set with the dimension in excess

of the 2-D plane. Therefore, if one uses a set of earthquake epicenters in

a relatively short catalog to predict the future seismicity rate, the optimal

forecast kernel should spread beyond the presently available event points,

i.e., to be smoother than the standard density estimators (Silverman 1986)

would suggest.

The forecasts are expressed as the rate density (that is, the probability

per unit area and time). They are updated every day and posted for two

western Pacific regions at

http://scec.ess.ucla.edu/∼ykagan/predictions index.html (see FORECAST

TEST FOR 2004-2006:). Table 1 displays a slightly modified small extract

of the forecast tables available at the Web site. The values of earthquake

rate densities (column 3) or cell rates (column 5) are calculated at the end

of year 2003 and they are used as a forecast for 2004-2006 earthquakes. In

this Table we sorted (ordered) entries by the values of earthquake forecast

densities (column 3).
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In Fig. 1 we display the long-term forecast map computed for the north-

west (NW) Pacific region using the CMT catalog for 1977-2003. Shallow

earthquakes in 2004-2006 are shown in white. Similar maps for NW and

southwest (SW) Pacific are shown, for instance, in Figs. 8a,b by Kagan &

Jackson (2000). The NW Pacific region boundaries are: latitude limits from

0.25◦S to 60.25◦N, longitude limits from 109.75◦E to 170.25◦E. The SW Pa-

cific boundaries are: latitude limits from 0.25◦N to 60.25◦S, longitude limits

from 109.75◦E to 169.75◦W.

In this work we use the same values for a smoothing kernel as in Kagan &

Jackson (2000, see their Eq. 3): the spatial scale parameter, rs is 15 km and

2.5 km for the NW and SW Pacific, respectively. The azimuthal concentra-

tion factor (Eq. 6, ibid.) is 100 and 25, respectively. On visual inspection, the

model predicts the spatial distribution of seismic activity reasonably well. We

tested this forecast by a Monte-Carlo simulation (Kagan & Jackson 1994).

In Fig. 2 we show the forecasted earthquake density with 10 sets of syn-

thetic catalogs, each having 108 events. Earthquakes are assumed to occur at

the centers of grid cells with the rates defined by the forecast. We normalize

the cell rates as shown in Table 1 (column 5) and simulate a random number

uniformly distributed in the interval [0, 1]. The random number correspond-

ing to a particular segment of the cumulative normalized rate curve defines

the cell where an event occurs. We obtain one synthetic catalog by repeating

this procedure n times.
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Some of the grid points are occupied by more than one event. Some of

the simulated points occur in areas of low seismicity (compare Fig. 2 with

Fig. 1). As mentioned above, this feature of the forecast is used to prevent

surprises, i.e., an occurrence of earthquakes in zones where no nearby events

happened in 1977-2003.

Table 2 summarizes annual earthquake rates for both western Pacific

regions. Because events outside the region’s boundaries have influence, the

rates calculated through the smoothing procedure and evaluated by a direct

method (dividing the earthquake numbers by time interval) are close but do

not coincide. The difference between the predicted (υ0) and observed (υi)

numbers is not statistically significant; for a Poisson process the standard

error is
√

υ. Kagan & Jackson (2000) argue that the earthquake number

distribution follows a negative-binomial law which has a higher variance than

the Poisson distribution with the same mean.

3 Log-likelihood

The standard method of statistical analysis for a stochastic point process is

a likelihood function computation. For an inhomogeneous Poisson process in

which n points are observed (x1, ..., xn) in a region A, the log-likelihood can

be written as (Daley & Vere-Jones 2003, Eq. 7.1.2)

log L (x1, ..., xn) =
n∑

i=1

log λ (xi)−
∫

A
λ (x) dx , (2)
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where λ (xi) is the process rate (density) at a point xi.

The log-likelihood of an inhomogeneous Poisson process is normally com-

pared to a similar log-likelihood, L0, calculated for a Poisson process with

constant intensity (ξ) to obtain the log-likelihood ratio (Daley & Vere-Jones

2003, Ch. 7; Schorlemmer et al. 2007)

log (L/L0) =
n∑

i=1

log λ (xi/ξ)−
∫

A
[ λ(x)− ξ ] dx . (3)

In our calculations we normalize both rates (λ, ξ) by the observed event

number n, hence the integral term in (3) is zero.

Kagan & Knopoff (1977, see also Vere-Jones 1998) suggested measuring

the performance of the earthquake prediction algorithm by first evaluating

the likelihood ratio to test how well a model approximates an earthquake

occurrence. In particular, they estimated the information score, Î, per one

event by

Î =
`− `0

n
=

1

n

n∑

i=1

log2

λi

ξ
, (4)

where ` − `0 is the log-likelihood ratio, n is the number of earthquakes in

a catalog, log2 is used to obtain the score measured in the Shannon bits of

information, λi is the rate of earthquake occurrence according to a stochastic

model, conditioned by the past:

λi = Prob { an event in (ti, ti + ∆) | I(ti)} , (5)

where I(ti) is the past history of the process up to the moment ti, and ξ is

a similar rate for the event occurrence according to the Poisson process with
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a uniform rate over a region. The interval ∆ is infinitesimally small so that

the probability and the intensity (rate) are equivalent.

The Poisson process rate can be calculated by normalizing the seismicity

level in the forecast regions. Several rates, such as shown in Table 2, can be

used in the normalization. To make our results comparable to the forecast

rate density, we use υ0 values

ξ =
π υ0

180.0× [ sin(θu)− sin(θl) ] (φu − φl)× 111.1112 × 365.25
, (6)

where υ0 is the annual rate of earthquakes in each region in 1977-2003 (Ta-

ble 2), θu and θl are the upper and lower latitudes, respectively, φu and φl

ditto for longitudes. For the NW-Pacific region ξNW = 2.6289×10−9 eq/(day

× km2); for the SW-Pacific ξSW = 3.3479 × 10−9 eq/(day × km2). Below

we use ξ without a subscript, since it is usually clear which Pacific region is

discussed.

Several methods can be used in calculating the information score for a

set of forecasted events. Using the forecasted rate values (λi for cell centers

in which earthquakes occurred) we compute

I1 =
1

nj

nj∑

i=1

log2

λi

ξ
, (7)

where nj is the earthquake number in two Pacific regions during 2004-2006

(j = 1, 2, for NW or SW, respectively, see Table 2). Below we use n without

a subscript, since it is usually clear which Pacific region is discussed.
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In Eq. 7 and in derivations below, we assume that earthquakes in the cells

are identically distributed independent (i.i.d.) events. The assumed indepen-

dence may be challenged by the clustered nature of earthquake occurrence of

which foreshock-mainshock-aftershock sequences are the most clear example

(Kagan & Knopoff 1977; Kagan 1991). However, given the high magnitude

(5.8) threshold for the CMT catalog, the clustering is less pronounced. The

dependent events on average constitute only about 20% of the total seismic

activity (Kagan & Jackson 2000, Eq. 23). Thus, we expect that earthquake

statistical inter-dependence would have relatively small influence. A more

complete investigation of this problem will be done in our future work.

As another option, instead of (7) we compute the information score for

the actual epicenter (centroid) locations (λk)

I2 =
1

n

n∑

k=1

log2

λk

ξ
. (8)

As we see from Table 3 below, the values of I1 and I2 may be significantly

different. The score I1 depends on the cell grid subdivision and therefore

is a less reliable indicator of the forecast effectiveness. On the other hand,

its calculation can be accomplished using an available forecast table such as

Table 1, whereas I2 requires new extensive computation.

The scores I1 and I2 show statistical behaviour of earthquakes that oc-

curred after the forecast was made. In our examples 2004-2006 events are

compared to the forecast based on a smoothed seismicity of 1977-2003. We
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compare these forecasts with a score estimate for an extrapolated earthquake

record based on the forecast. One way to calculate such a record is to create

synthetic earthquake catalogs (Kagan & Jackson 1994).

In simulated catalogs we generate multiple (N = 10, 000) sets of n events

(Table 2) and calculate the rate for cell centers as the earthquake location

(see Fig. 2)

I3 =
1

n

n∑

l=1

log2

λl

ξ
. (9)

and

< I3 > =
1

N
N∑

`=1

(I3)` . (10)

Similar to I1 calculation, this method has an advantage that we do not need to

compute the rate densities again (as for I2), but instead we use the previously

computed forecast tables (as shown in Table 1) to evaluate the scores. The

score < I3 > is equivalent to (the opposite of) an entropy measure (Daley and

Vere-Jones, 2003), since the summation (sum on the earthquakes, Eq. 10) is

similar to

I =
1

n

n∑

l=1

λl log λl , (11)

(sum on the cells) on ensemble average.

The score < I3 > is a measure of potential prediction effectiveness as

compared to a Poisson process with a uniform rate over a region. Although

the score is constructed using a previous earthquake record, its usefulness for

forecast purposes needs to be established – it may be argued, for example,
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that earthquakes ‘avoid’ the locations of past recent strong events (as in the

seismic gap model, see Rong et al. 2003). Therefore, we calculate the score

difference I3 − I2 or I3 − I1 to characterize the forecast properties. In

short, if the difference is close to zero, it means that future earthquakes in

a statistical sense follow the predictions. Kagan & Jackson (1994, see their

Fig. 7 and its discussion) explain the test in more detail.

In Fig. 3 we display the log-likelihood function distribution differences

for the simulation as shown in Fig. 2. We simulate n earthquake locations

according to 1977-2003 forecasts for each region. For each synthetic catalog

we calculate the log-likelihood function and subtract the log-likelihood func-

tion value obtained for the real catalogue in 2004-2006. Thus, we display the

histogram of I3 − I2 (Eqs. 8 and 9).

4 Error diagrams

To display and test the long-term forecast efficiency numerically, we calculate

the concentration diagram. To make these diagrams, we divide the region

into small cells (0.5 by 0.5 degrees for west Pacific regions) and estimate

the theoretical forecast rate of earthquakes above the magnitude threshold

for each cell. We then count the events that actually occurred in each cell,

sort the cells in the decreasing order of the theoretical rate, and compute

the cumulative values of forecast and the observed earthquake rates (see
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Table 1). Similar plots have been used in several of our papers (Kagan et al.

2003; Helmstetter et al. 2007; Shen et al. 2007).

In effect, these concentration diagrams are equivalent to the error di-

agrams (EDs) proposed by Molchan (1990, 2003) and Molchan & Kagan

(1992). The error diagram evaluates how well a prediction program performs.

For any prediction algorithm, the diagram plots the cumulative fraction of

the alarm time, τ , versus the cumulative fraction of failures to predict, ν. But

in our case we use the normalized spatial area, not time, as the horizontal

axis.

4.1 Relation between the error diagram and informa-
tion score

We illustrate the ED by a sketch in Fig. 4. For the spatial point distribution,

this example is easier to construct and explain than for temporal renewal

processes (Kagan 2007b). In the plot we show a theoretical pattern for two

ED diagrams. The square’s diagonal corresponds to the uniform Poisson

distributions of the points in a region, i.e., a random guess forecast strategy

or unskilled forecast. As a test example, we assume that the region consists

of three sub-areas, their normalized surfaces τi is 0.1, 0.5, and 0.4 of the

total, and the normalized number of events νi is 0.4, 0.5, and 0.1, in each

zone respectively. Contrary to the temporal one-dimensional point process

models (as discussed in Kagan, 2007b), for a spatial field these sub-areas do
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not need to be contiguous, each of them can be subdivided in any number of

patches. It is important that coordinates of all patches be known. The points

in these zones are distributed according to the Poisson spatial process with

the density νi/τi. Then, the information score for such a point distribution

can be calculated as (see Eq. 4)

I =
3∑

i=1

νi log2

νi

τi

= 0.4 log2 4.0 + 0.5 log2 1.0 + 0.1 log2 0.25

= 0.8− 0.2 = 0.6 . (12)

For the normalized point Poisson distribution in the ED, the point density

is unity. Hence its contribution to the information rate (12) is zero.

The information score can be calculated for continuous theoretical con-

cave curves in an error diagram (Kagan 2007b; Molchan, 2008, Eq. 20)

I =
∫ 1

0
log2

(
−∂ν

∂τ

)
dν . (13)

If the ED consists of several linear segments (as in Fig. 4), then (13) converts

to a sum

I0 =
N∑

i=1

νi log2

(
νi

τi

)
, (14)

where i are cell numbers, N is the total number of grid points, and νi and τi

are the normalized rates of occurrence and cell area:

νi =
Ri∑N

i=1 Ri

and τi =
Si∑N

i=1 Si

, (15)
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see Table 1. The above formulae show that both ED components are nor-

malized, i.e.,
N∑

i=1

νi = 1, and
N∑

i=1

τi = 1 . (16)

In our ED plots, we use as abscissa and ordinate of the diagrams the cumu-

lative fraction of alarm space and failures to predict

τ =
∑

i

τi, and ν =
∑

i

νi . (17)

When calculations of τ are made for a spherical surface (as in Figs. 1-2),

the τi steps are usually unequal in size, unless a special effort is made to

partition a sphere into equal-area cells (see more in Kagan & Jackson 1998).

This cell inequality complicates the calculation.

Figs. 5 and 6 show the EDs for both Pacific regions. The red curves are

for the forecast, based on 1977-2003 seismicity, and the blue curves are for

the earthquakes which occurred in these regions from 2004-2006. Both sets

of curves are calculated using the forecast tables like those in the example

(Table 1). In principle, the calculations such as in (15) can be made with

unordered cells. The density ordering in Table 1 and Figs. 5, 6 is performed

to create the ED diagrams.

The score values I0 (14) in Table 3 are calculated using the distributions

shown by the red curves in Figs. 5, 6. The I0 values for NW- and SW-Pacific

indicate that the forecast yields an information score higher than 2-3 bits per

event compared to a homogeneous Poisson process. To obtain the average
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probability gain G or the predictive ratio (Kagan and Knopoff, 1977, p. 101)

we calculate

G = 2 I0 . (18)

Zechar & Jordan (2008, Eq. 9) derived a similar formula for the average

probability gain of a forecast; their equation can be converted into our (13)

taking into account their different normalization.

Eq. 18 means that on average the probability gain (G) is a factor of 5

to 10 (22.36 to 23.38) when using the long-term forecast compared to a

random guess. Of course, these I0 values do not fully describe the forecast

advantage. The boundaries of both regions have already been selected to

contain the maximum number of earthquakes in relatively small areas. If we

extend any of the regions toward the seismically quiet areas, the information

score would significantly increase. The proper measure of long-term forecast

performance would extend the forecast method globally, i.e., over the whole

Earth surface. Limited numerical experiments suggest that depending on the

degree of smoothing, the value of ε (Eq. 1), and other factors, the G-value

for world-wide seismicity varies from about 10 to 25.

The above values of the probability gain, G, can be compared with similar

calculations by Rhoades & Evison (2005, 2006), Console et al. (2006), and

Rhoades (2007). These authors calculated the information rate per earth-

quake for a model of smoothed seismicity (PPE), similar to our long-term
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model. The PPE model was compared to a stationary and spatially uniform

Poisson (SUP) model. The probability gain, computed using the information

rate, for New Zealand, Japan, Greece, and California is about 4.5, 1.6, 1.6,

and 3.4, respectively. These relatively small gain values are caused by the

authors’ choice of the regions that include only seismically active areas (see

ibid.). Helmstetter et al. (2007, Table 1) obtained for different long-term

seismicity predictive models in California the G-values ranging from 1.2 to

4.8.

The ED curves for earthquakes in Figs. 5, 6 are similar to the forecast

earthquake curves. The computation of the likelihood scores (7, 8) shows

that the NW earthquakes have a better score than the forecast, whereas SW

events display the opposite behavior (see also Fig. 3). The scores using the

actual centroid position (I2) are larger than those for the cell centers (I1),

an anticipated feature. Similarly, Table 3 shows that the average scores for

synthetics (< I3 >) are very close to those of I0, which is understandable,

since the simulation runs are extensive (see Eqs. 9, 10).

Fig. 7 shows the frequency curves for the log-likelihood function of both

western Pacific regions. We display log2 of the normalized rate (see column 5

of Table 1) against the normalized cumulative area of the cells (column 4).

Curves for both regions exhibit high values of the rate (Ri) concentrated in

a relatively small fraction of area. For example, the rate density exceeding

the Poisson rate (ξ, see Eq. 6) is observed only at less than 18% of the
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total area. Low values at the right-hand end of the diagram correspond to

the assumed uniform background rate density (Eq. 1, see also Figs. 1-2).

We also display two curves which are calculated as if the log of forecasted

normalized earthquake density was distributed according to the normal law

with the standard deviations (σ) as shown in Table 3.

The curves shown in Fig. 7 are dependent on the log-likelihood function

for one forecasted event on the fraction of total area τ . The log-likelihood

distribution for both regions is highly non-Gaussian: very few cells with low

density would be expected for the Gaussian law, whereas in our forecast a

significant part of the area has the density equal to the ε-value (see Figs. 1-

2). When we test the prediction for several events, the distribution seems

to be close to the Gaussian distribution (Fig. 3). The tests of the forecast

effectiveness are much simpler if the distribution is Gaussian or sufficiently

close to it.

To measure the difference between the actual log-likelihood distribution

and the Gaussian one, we calculate the higher order moments for the error

curve (I0 of Eq. 14 corresponds to the first moment µ1)

µk =
N∑

i=1

νi

[
log2

(
νi

τi

)
− I0

]k

, (19)

where k = 2, 3, 4, ....

The standard deviation of the log-likelihood for the set of n events is

σn =
√

µ2/n . (20)
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The coefficient of skewness (Abramowitz and Stegun, 1972, p. 928) is

η = µ3/µ
3/2
2 , (21)

and coefficient of kurtosis (ibid.) is

ψ = µ4/µ
2
2 − 3 . (22)

These coefficients (η and ψ) characterize how the likelihood curve differs from

the Gaussian distribution; for the latter law both coefficients should be zero.

The Central Limit Theorem states that the distribution of a sum of a large

number of i.i.d. events with finite second moment (variance) should approach

the Gaussian law. If the event number is small, we would need to find an

efficient way to numerically approximate the distribution of the sum of i.i.d.

random variables.

In Table 3 both coefficients are large for one event likelihood curve (see

also Fig. 7), but for the set of n events they are small: the distribution is

close to the Gaussian law as demonstrated in Fig. 3. The difference between

the score values I0 to I2 is less than the standard error value (see Table 3).

Thus both forecasts can be considered statistically successful.

The difference

I ′ = I0 − I1 or I ′′ = I0 − I2 , (23)

shows the predictive efficiency of a forecast, i.e., whether on average earth-

quakes in 2004-2006 occurred at the sites listed in the prediction table (see
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an example in Table 1). For this particular time interval, both forecasts

are sufficiently good. However, as other examples (Kagan & Jackson 2000,

Fig. 9; Kagan et al. 2003, Fig. 5.2) demonstrate, this is not always the case.

The values of differences (negative for the NW-Pacific and positive for the

SW-Pacific) correspond to those simulations in Fig. 3, where we display the

distribution of the difference I3 − I2.

By applying (14) to the blue curve of earthquakes in 2004-2006 in Figs. 5, 6

we evaluate the information score

I4 =
1

n

n∑

i=1

νi log2

[
νi

τi

]
, (24)

(see Table 3). The value of I4 is obviously significantly larger than all the

other estimates of the score. Earthquake simulations provide an explanation

for this feature (see Fig. 10 below).

4.2 Two-segment error diagrams and information score

Similarly to Fig. 5 in Kagan (2007b), in Fig. 8 we display an approximation

of the ED for the NW-Pacific by several two line segment diagrams with the

same value of the information score, I0. These ED segments correspond to

two sub-areas with different point densities. As we discussed above (Eq. 12),

for a spatial stochastic field these sub-areas may be subdivided into any

number of patches with known coordinates.
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For the assumed information score I, the contact point of two segments

is defined by the equation (corrected Eq. 22 by Kagan 2007b)

D1

[
ν

ν − 1−D1

]ν

= − 2 I . (25)

By solving this equation for any value of the first segment slope D1 (non-

positive by definition), one obtains the ν-value for the contact point of two

linear segments,

τ = (1− ν)/D1 . (26)

The first of these curves has the second segment coinciding with the ab-

scissa axis. This means that one can obtain the same information score by

concentrating all the points in the 2−I0 = 0.194 ‘active’ part of the region.

However, though the I-value for such a pattern would be 2.36 bits, all points

would have the same value of the probability gain. Hence, for such a like-

lihood value distribution, the variance and higher-order moments would be

zero: very different from the actual probability gain pattern (Table 1).

In this two-segment curve we presume that there are no events at the

non-active part of the region, thus the ε-value (1) is zero. Such an arrange-

ment is possible only if the model is assumed to be correct, because if even

one event occurs in such a subregion, the value of the likelihood score would

immediately be −∞. This is why in the real-life situation, where an earth-

quake occurrence model is not known exactly, we need to adopt a non-zero

ε-value (see Eq. 1).
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If we modify the two-segment model to distribute the events with differ-

ent non-zero densities over the both sub-areas, the variance and the other

moments would be also non-zero. In Fig. 9 we show the dependence of the

lower-order moments for the likelihood score on the D1 slope. We calculate

the moments for each two-segment model, using a modification of (19). For

example

σ =

√
(1− ν)

[
log2

(
1− ν

τ

)
− I0

]2

+ ν
[
log2

(
ν

1− τ

)
− I0

]2

, (27)

where ν and τ are defined in (25-26) and I0 for this case can be calculated

as

I0 = (1− ν) log2

(
1− ν

τ

)
+ ν log2

(
ν

1− τ

)
. (28)

The higher-order moments (19), as well as the skewness (21) and the kurtosis

(22) are computed similarly.

For D1 = −2 × 2I (dashed magenta line, fifth curve from the bottom)

the 2nd, 3rd, and 4th moments correspond roughly to the moments of the

forecasted densities. Thus, such a two-segment model would reasonably well

approximate the actual event distribution.

The contact coordinates of two segments for this curve are: ν5 = 0.1732

and τ5 = 0.0803. Therefore, the point pattern having apparently the same

lower-order moments as the actual earthquake forecast would have about

83% of points concentrated in 8% of the area, i.e., the point density will

be 10.3 times higher than the uniform Poisson rate. The rest of the events
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would be distributed in 92% of the area and have the rate of 0.19 compared to

the uniform Poisson distribution. As we mention in Section 2, in our Pacific

forecast 0.01 part of the total earthquake rate is spread over the entire region

(see Eq. 1 and Figs. 1-2).

The equality of two scores, one based on the ED (I0) and other on the

likelihood ratio (< I3 >), shown in Table 3, demonstrates again that the

ED is a more complete description of the point process. One can obtain the

information score from the ED, but not vice versa: as we see from Fig. 8 even

for two-segment diagrams there is by their construction an infinite number

of ED curves having the same score.

4.3 Information score for 1977-2003 CMT and PDE
catalogs

ED displays in Figs. 5, 6 are inconvenient since the most interesting parts of

the curves are concentrated near ν− and τ -axes. The reason for this feature

is that seismicity is concentrated in relatively narrow seismic belts having a

fractal spatial earthquake distribution. Now we focus on how other curves

deviate from the forecasted (red) one. To make these deviations show more

prominently, we need to display the curves in a relative abscissa format, using

the 1977-2003 forecast density as a template or baseline for the likelihood

score calculation.

Fig. 10 shows several curves in a new format; in effect we convert the

red curve in Fig. 5 to the diagonal. This is equivalent to calculating the
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information scores by using λi as a reference density

Im =
1

n

n∑

j=1

νi log2

ζi

λi

, (29)

where ζi is a rate density for all the other point distributions. In effect we

displace all the curves horizontally by the abscissa difference between the

forecast line and the unskilled forecast (the descending diagonal of the error

diagram, cf. Fig. 5).

Fig. 10 shows the difference between the forecast curve (red) and the

earthquake curve (blue) better than Fig. 5. Fig. 10 also displays the curve

for the 1977-2003 CMT catalog. The numbers of events in the cell areas

are shown in Table 1, column 8. Also shown is the curve for the PDE cat-

alog (U.S. Geological Survey 2008) for 1968-2006. We obtain I1 = 3.5991

bits/event for the 1977-2003 CMT catalog and I1 = 2.9789 bits for the

PDE. These values are significantly larger than those forecasted for 2004-

2006. Therefore, our forecast predicts better locations of past earthquakes

than those of future events. Why this paradox? In our forecast we use a

broader smoothing kernel to capture the spread of seismicity with time (Sec-

tion 2). Kagan & Jackson (1994, p. 13,696) performed two optimizations

for the NW Pacific region: one by using the standard leave-one-out method

(Silverman 1986) the other by subdividing the catalog into two parts. The

standard density estimation method yielded the optimum value of the max-

imum distance of a smoothing kernel Rmax ' 180 km as compared to the
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value Rmax ' 350 km for predicting the second half of the catalog based on

the first half, i.e., the leave-one-out procedure greatly under-smoothed the

predicted future spatial distribution of earthquakes. A similar explanation is

apparently valid for the PDE score value. Helmstetter et al. (2007, Table 1)

obtained G = 7.1 (significantly higher than the G-values for predictive al-

gorithms) when the same data were used to build the long-term seismicity

model and to test it (see Section 4.1).

In Fig. 10 we also show several curves for the simulated earthquakes.

These curves explain why the I4-value (24) is significantly larger than the

other measures of the information score. The reason is twofold. First, the

number of events in the 3-year interval is relatively small and the curves

often fluctuate around the expected value (the red curve). These fluctuations

increase the sum value in (24). The curves are often below the red forecast

line, which would usually cause the score value to increase. Second, the ED

curve should be concave (Molchan 1997; 2003). I4-values, listed in Table 3,

are calculated with the original curves shown in Figs. 5, 6 which have many

convex sections. If we make a lower envelope of the curve points, this would

decrease the I4-value. However, our numerical experiments show that the

decrease is not significant enough to bring the value sufficiently close to the

I0 score.

The fluctuations of the synthetic curves also suggest that some strategies

proposed to measure the performance of a prediction algorithm by consider-
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ing the ED, like a sum of errors (ν + τ) or minimax errors (Molchan 1991;

Molchan & Kagan 1992; Kossobokov 2006; Molchan & Keilis-Borok 2008)

are biased for a small number of forecasted events. For western Pacific re-

gions the number of predicted events (nj) is relatively large; in many other

applications of the ED (ibid.) this number is less than 10.

In Fig. 10 the forecast distribution curve is used as the template or the

reference model (Zechar & Jordan 2008). Thus, we can measure the differ-

ence between this line and the other curves using many standard statistical

techniques, like the Kolmogorov-Smirnov test, the Cramer-von Mises test,

etc., (Stephens 1974) to infer whether these distributions are statistically

different.

5 Discussion

Several information scores are displayed in Table 3. Although these scores

appear different, the difference is caused either by the small event number or

a small number of simulations. The following limits can be easily conjectured

I0 = lim
N→∞

< I3 > , (30)

(see Eq. 10). In Table 3 the difference between these two scores is small due

to the large number of simulations. Similarly,

I = lim
|Si|→0

I0 , or I = lim
N→∞

I0 , (31)
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(cf. Eq. 14). Also

I1 = lim
|Si|→0

I2 , (32)

(see Eqs. 7, 8).

In addition, if the model of the long-term forecast is correct, then

I1 = lim
n→∞ I , and I4 = lim

n→∞ I , (33)

(see Eqs. 7, 24).

As Table 3 demonstrates, the convergence of the I4 score, shown in (33) is

slow, even as tens or hundreds of events have been forecasted in our examples.

In many considerations and applications of error diagrams (see Section 1),

behavior of the curves is considered only for a few observed events, thus ran-

dom fluctuations of the observed distribution vs. the theoretical distribution

should be much larger.

In this paper we wanted to extend statistical analysis of the stochastic

point processes on line (usually time) to multidimensional space. In par-

ticular, we wished to find the relation between two widely used statistical

measures of prediction efficiency: likelihood scores and error diagrams. The

equations derived here can be easily transformed to describe quantitative

connection between the information scores and concentration diagrams (Sec-

tion 1).

Summarizing our results, we list the following major points:

• 1. As with temporal stochastic processes (Kagan 2007b), we find forward
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and inverse relations between the information score and the error diagram

curve for point spatial fields. The error diagram represents a much more

complete picture of the stochastic point process than does likelihood analy-

sis.

• 2. Since we are using a Poisson process to represent the long-term spa-

tial point pattern, the resulting models are easier to visualize and calculate.

However, the assumption of earthquake statistical independence and its in-

fluence on the information score value both need to be investigated.

• 3. We extend our analysis for relatively small samples of events and show

that for such samples we should modify some of the testing criteria proposed

for error diagrams.

• 4. We show that the forecasting blueprint for estimating future earthquake

point density differs from standard methods of statistical density evaluation.

Nevertheless, the connection between the likelihood score and error diagrams

described above can be used in many density estimation problems.

• 5. We show that for testing the long-term forecast, it is sufficient to process

the forecast table to obtain the error diagram and most information scores.

Thus, the simulation which was used in previous work, and which requires

significant computational resources, can be avoided in most cases (Rhoades

2008).

• 6. In this paper we mostly considered relations between the theoretical

EDs and likelihood scores (Eqs. 12 and 13) under the assumptions that the
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number of events is large and the theoretical model of the stochastic point

process is true. Thus, the derived relations are mathematical expectations.

Although some theoretical analysis has been previously published for the

case when the above assumptions have been violated (see references in Sec-

tion 1), a rigorous consideration of statistical behavior for both measures of

prediction efficiency would require an effort well beyond the bounds of the

present study.
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Lat. Long. EQ Rate (λi) 1◦ × 1◦ Cell Rate (Ri) EQs Probab. EQs
θ φ EQ/(day×km2) (Si) km2 EQ/[yr×(.5◦)2] 04-06 Gain (Gi) 77-03
1 2 3 4 5 6 7 8

7.0 127.0 1.7909E-07 12254 0.2003970 0 68.3700 6
40.5 143.0 1.6302E-07 9388 0.1397471 0 62.2331 1
45.5 151.5 1.5134E-07 8653 0.1195765 0 57.7738 5
24.0 122.0 1.4759E-07 11278 0.1519959 1 56.3445 10
44.5 150.0 1.4496E-07 8805 0.1165462 0 55.3376 8
44.5 149.5 1.4252E-07 8805 0.1145830 0 54.4055 9
12.5 125.5 1.4152E-07 12053 0.1557541 0 54.0252 6
44.0 148.5 1.4150E-07 8881 0.1147490 0 54.0181 8

.... .... .... .... .... .... .... ....
48.5 128.0 2.6198E-11 8180 0.0000196 0 0.0100 0
48.5 127.5 2.6189E-11 8180 0.0000196 0 0.0100 0
48.5 127.0 2.6183E-11 8180 0.0000196 0 0.0100 0

Table 1: Beginning and end of earthquake rate forecast table for NW-Pacific
based on CMT catalog (Ekström et al. 2005) for 1977-2003 and ordered by
descending rate density (column 3, λ). Cells are 0.5◦ × 0.5◦, they form a
121×121 grid, EQ – earthquake(s). The probability gains (Gi) for displayed
cells are ratio of the rate density (λi) to the Poisson rate density equal to
2.6289× 10−9 eq/(day × km2) (see Eq. 6).

Pacific Regions
Time NW SW

Interval Annual Rate
υ0 77-03 Forecast 35.7159 60.7509
n1 77-03 EQs 968 1591
υ1 77-03 EQs 35.8546 58.9304
n2 04-06 EQs 108 170
υ2 04-06 EQs 35.9918 56.6537

Table 2: Annual earthquake rate (υi) estimates. Actual rate calculations are
made with time intervals measured in days (9861 days in 1977-2003 and 1096
days in 2004-2006). For display convenience, we convert the daily rates into
annual rates by multiplying them by 365.25. EQs – earthquakes.
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# Info Pacific Regions (nj)
Score NW (108) SW (170)

1 I0 2.3645 3.3772
2 I1 2.3675 3.0506
3 I2 2.4067 3.2777
4 < I3 > 2.3609 3.3768
5 I4 3.0970 3.9823
6 I0 − I1 −0.0030 0.3266
7 I0 − I2 −0.0422 0.1002

8 σ 2.2102 2.9720
9 η −0.6574 −0.2264

10 ψ 0.3685 −0.3078

11 σn 0.2151 0.2296
12 ηn −0.0196 0.0078
13 ψn −0.0369 0.0441

Table 3: Information scores for one event in west Pacific regions, the standard
error (σ) and coefficients of skewness (η) and kurtosis (ψ) (20-22). The
numbers in parentheses are event counts in 2004-2006 for each region, nj.
Variables σn, ηn, and ψn are for the set of nj events.
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Fig. 1
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Figure 1: NW-Pacific long-term seismicity forecast. The forecast is calculated
at 121×121 grid. Colour tones show the rate density of shallow (depth less or
equal to 70 km) earthquake occurrence calculated using the CMT 1977-2003
catalog; 108 earthquakes for 2004-2006 are shown in white. The uniform
background rate density (ε = 0.01, see Eq. 1) can be observed at northwest
and southeast corners of the map as greyish-green areas.
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Fig. 2
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Figure 2: NW-Pacific long-term seismicity forecast. Colour tones show the
rate density of earthquake occurrence calculated using the CMT 1977-2003
catalog; 1080 simulated earthquakes for 2004-2006 are shown in white.
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Figure 3: Histograms of the log-likelihood function differences for 2004-2006
simulated earthquakes (see Fig. 2). The functions are normalized to have
a unit standard deviation. We simulate 10,000 sets of 108 events for the
NW-Pacific and of 170 events for the SW-Pacific. The blue line is the Gaus-
sian curve with a zero mean and unit standard deviation. Red curve corre-
sponds to simulation distributions for NW-Pacific; green curve to SW-Pacific.
Curves on the right from the Gaussian curve correspond to simulations that
are worse than a real earthquake distribution; curves on the left correspond
to simulations that are better than a real earthquake distribution.
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Figure 4: Error diagram (τ, ν) schematic example (see Eq. 17). Two ED
plots are shown: 1) for the uniform Poisson process, corresponding to the
diagonal of the square, and 2) for a region consisting of three sub-areas with
different occurrence rates in each (see text).
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Figure 5: Error diagram (τ, ν) for NW-Pacific long-term seismicity forecast.
The forecast is calculated at 121 × 121 grid. Solid black line – the strategy
of random guess, red line – the ordered density for long-term forecast, blue
line – earthquakes in 2004-2006.
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Figure 6: Error diagram (τ, ν) for SW-Pacific long-term seismicity forecast.
The forecast is calculated at 121 × 161 grid. Solid black line – the strategy
of random guess, red line – the ordered density for long-term forecast, blue
line – earthquakes in 2004-2006.
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Figure 7: Likelihood function dependence on the fraction of the total area, τ ,
for west Pacific long-term seismicity forecasts: solid red curve – NW-Pacific,
blue curve – SW-Pacific (see boundaries in Section 2). Dotted lines are for
the Gaussian distribution of log forecast rates: red – NW-Pacific, blue – SW-
Pacific. Thick black line shows the log-likelihood distribution if all cells are
assumed to have a uniform Poisson rate.
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Figure 8: Error diagram (τ, ν) for NW-Pacific long-term seismicity forecast,
approximated by two-segment distributions. The solid thick black straight
line corresponds to a random guess, the thick red solid line is for the NW
forecast. Thin two-segment solid lines are for the curves with the information
score I0 = 2.3645 bits. The slope D1 for the right-hand first segment is
D1 = −2 I0 . For the next first segments slopes are D1 × 1.1, D1 × 1.25,
D1× 1.5, D1× 2.0, D1× 3.0, D1× 5.0, D1× 10, D1× 50, D1× 100, D1× 250,
D1 × 1000, D1 × 10, 000, D1 × 100, 000, and D1 × 1000, 000.
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Figure 9: Dependence on slope |D1| of standard deviation (magenta), co-
efficients of skewness (blue) and kurtosis (green) for two-segment curves in
Fig. 8. Horizontal lines are these variables for the red curve in the cited plot.
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Figure 10: Error diagram (τ, ν) for NW-Pacific long-term seismicity forecast.
Solid black line – the strategy of random guess. The solid thick red diagonal
line is a curve for the NW forecast. Blue line is earthquake distribution
from the CMT catalog in 2004-2006 (forecast); magenta line corresponds
to earthquake distribution from the CMT catalog in 1977-2003; cyan line is
earthquake distribution from the PDE catalog in 1968-2006. Thin green lines
are ten simulations, displayed in Fig. 2, the first realization is shown by a
thick green line.
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