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1 Introduction

The fact that neutrinos are massive implies that the Standard Model (SM) must be extended.
One option is extending the SM to include dimension-5 operators, without introducing new
fields, yielding lepton number violating (LNV) Majorana mass terms. We refer to this scenario
as the νM SM. Another option is to add right-handed singlet fields to the SM and impose
lepton number conservation, or assume that only Dirac mass terms arise for the neutrinos
for some other reason. We denote this model as the νDSM.

The number of parameters in the PMNS [1, 2] lepton mixing matrix depends on which
option is realized in Nature. In the νDSM scenario, the PMNS matrix is parametrized, just like
the CKM matrix, by three mixing angles and a single CP violating phase, usually called the
“Dirac phase”. In the νM SM scenario, there are two additional physical phases, which can only
affect LNV processes. These two extra phases are usually referred to as “Majorana phases”.

The PMNS matrix is commonly parameterized as [3]1

U =

1
c23 s23
−s23 c23

×

 c13 s13 e−iδ

1
−s13 eiδ c13

×

 c12 s12
−s12 c12

1

×

eiη1

eiη2

1

 , (1.1)

where cij = cos θij , sij = sin θij , ij = {12, 23, 13}, with θij the mixing angles, δ is the
CP violating Dirac phase, and η1,2 are the Majorana phases. The Majorana phases are
not present in the νDSM.

There is significant experimental knowledge on the values of neutrino masses and the
PMNS parameters, as summarized in table 1. There are two options for the ordering of

1See the review Neutrino masses, mixing, and oscillations, https://pdg.lbl.gov/2024/reviews/rpp2024-rev-
neutrino-mixing.pdf.
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Parameter
Value

NO IO

θ12
(
33.41+0.75

−0.72
)◦ same

θ23
(
49.1+1.0

−1.3
)◦ (

49.5+0.9
−1.2

)◦
θ13

(
8.54+0.11

−0.12
)◦ (

8.57+0.12
−0.11

)◦
∆m2

21/(10−5 eV2) 7.41+0.21
−0.20 same

∆m2
32/(10−3 eV2) 2.437+0.028

−0.027 −2.498+0.032
−0.025

Table 1. Values of the mixing angles and mass squared differences used in our analysis. We use the
“w/o SK-ATM” fit results in the PDG review [3].

the masses: normal ordering (NO), where the smaller mass difference is between the two
lighter states and inverted ordering (IO), where the smaller mass difference is between the
two heavier states. If NO is established in the future, it would imply that 0νββ might never
be observed, and exploring other possibilities to detect lepton number violation becomes even
more important. While so far we do not have much information on the Dirac phase, δ, it
is expected to be measured by Hyper-Kamiokande [4] and DUNE [5].

There are several ways to constrain
∑

mi. Laboratory experiments give bounds of the
order of 1 eV [3, 6]. Cosmology gives stronger bounds. Assuming minimal ΛCDM, which is
not a very good description of the data, the DESI fit to BAO + CMB measurements suggests∑

mi < 0.072 eV (95% CL) [7]. At the same time, assuming a lower bound on
∑

mi as a
prior in the DESI analysis, the preference for NO is only mild. We view the mass ordering as
an open question and consider values of the lightest neutrino mass up to 0.1 eV.

In principle, one can distinguish between the νDSM and the νM SM experimentally.
Observing any lepton number violating process would rule out the νDSM. The most promising
probes are neutrinoless double beta decay (0νββ) experiments, measuring the following
combination of masses and PMNS parameters,

mee =
∣∣∣∣ 3∑

i=1
mi U2

ei

∣∣∣∣ , (1.2)

where mi are the three physical neutrino masses. The situation is more complicated in trying
to rule out the νM SM. It can be excluded in the case of IO, by not observing 0νββ. However,
in case of NO, the 0νββ rate may vanish even if neutrinos are Majorana. In the νM SM and for
IO, there is a lower bound from our knowledge of mixing angles and mass-squared differences,
mee > 16 meV (at 95% CL) [3]. Using a variety of nuclear matrix element calculations, the
current experimental upper bound from 0νββ searches is mee < (22−122) meV [8]. On the
other hand, in the case of NO, for certain values of the lightest neutrino mass, the 0νββ rate
may be arbitrarily small, even if the neutrino mass terms violate lepton number. In this case,
a null result at 0νββ experiments will not determine the nature of neutrino masses.

If 0νββ is observed, one combination of the two Majorana phases will be measured. This
combination depends on the neutrino masses, as given in eq. (1.2). Other LNV processes
with two charged leptons are, in principle, sensitive to other combinations of the Majorana
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phases, although the prospects for their detection within the νM SM currently seem remote.
It is convenient to define the generalized effective Majorana mass matrix,

mαβ =
∣∣∣∣ 3∑

i=1
mi UαiUβi

∣∣∣∣ , α, β ∈ {e, µ, τ} . (1.3)

The properties of LNV processes and their dependence on the Majorana phases have been
discussed in the literature [9–23]. The prospects for constraining one combination of Majorana
phases from 0νββ and for establishing CP violation have been studied in refs. [10–13]. Ref. [14]
studied the role of Majorana phases in manifestly CP violating effects in the lepton sector.
Refs. [15–17] considered the full effective Majorana mass matrix, mαβ , and the experimental
bounds on all six elements, and ref. [18] studied mαβ in the context of models with extra
GeV-scale sterile states. Refs. [19, 20] studied collider signatures of ∆L = 2 processes.

While there are ongoing searches for 0νββ, and thus for probing mee, the prospects of
observing other LNV processes are less promising. In the near future, the best sensitivity to
a lepton number violating process involving not only electrons will probably come from µ− to
e+ conversion. The Mu2e [24] and COMET [25] experiments will search for the ppµ− → nne+

rate. Mu2e expects to be sensitive at the 10−16 level [26], many orders of magnitudes away
from the much lower rates that could arise in the νM SM, of order (10−40) [27, 28], which
would be proportional to m2

µe.
Throughout this paper we treat LNV processes as observables of interest, even though

the prospects of measuring any LNV process within the νM SM besides 0νββ seem slim at
the moment. Therefore, our results are of a theoretical nature, though one may hope to
find new ways to probe these quantities in the future. In the following, we interpret LNV
observables within the νM SM. We use the parameter values and uncertainties shown in
table 1. When δ plays a role in our analysis, we either vary it in the full range or use the
projections by Hyper-Kamiokande, where the uncertainty of δ is expected to reach 7◦ (22◦)
for δ = 0 (90◦) after 10 years of data taking [4].

We first discuss the physically observable combinations of phases using rephasing in-
variants defined in section 2. In section 3 we point out several general properties of the
effective Majorana mass matrix of eq. (1.3). In section 4 we derive a simplified dependence
on Majorana phases in the regime of a hierarchical mass spectrum. The intriguing possibility
to arrive at a theoretical no-lose theorem for the Majorana nature of neutrino masses using
the combination of mee and mµe is discussed in section 5. We conclude in section 6.

2 Physical Dirac and Majorana phases

The distinction between Dirac and Majorana phases is subtle. The phase parameters in
eq. (1.1) are convention dependent (for example, the Majorana phases η1 and η2 can be
shifted by a global rephasing of U), and therefore cannot correspond to physical quantities.
Instead, we define Dirac and Majorana phases based on how they affect observables. We
define a Dirac phase as a CP violating phase that is measured in lepton number conserving
processes, such as neutrino oscillations. Majorana phases are those which are only accessible
through LNV processes.

– 3 –
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For this purpose, it is useful to work with quantities that are rephasing invariant. We
introduce the following phase-convention independent quantities to describe the physical
phases [29],

tαiβj = UαiUβjU∗
αjU∗

βi , sαij = UαiU
∗
αj . (2.1)

We refer to tαiβj as quartic invariants and to sαij as quadratic invariants. Note that both
types of invariants are hermitian with respect to the mass eigenstate indices, {i, j}. The tαiβj

are also hermitian with respect to the flavor indices, {α, β}. We denote the phases as

Φα
ij ≡ arg(sαij) , δαβ

ij ≡ arg(tαiβj) . (2.2)

We define two transformations

Tm := U → U diag
(
eiϕ1 , eiϕ2 , eiϕ3

)
, Tf := U → diag

(
eiϕe , eiϕµ , eiϕτ

)
U , (2.3)

where the indices m and f indicate mass and flavor. The tαiβj are invariant under both Tm

and Tf . The sαij are invariant under Tf but they are not invariant under Tm transformations.
A basis for the tαiβj invariants consists of three magnitudes and a phase, and can be

chosen as {
|te2e3|, |te3e3|, |tµ2e3|, ΨD

}
, (2.4)

where we define an invariant Dirac phase as

ΨD ≡ δµe
23 = arg(tµ2e3) . (2.5)

All quartic invariants can be expressed in terms of the four quantities in eq. (2.4), using
the following relations,

tαiβj = tαiβk

t∗αjβk

tαkβk
, tαiβj = tαiγj

t∗βiγj

tγiγj
,∑

i

tαiβj = δαβ

√
tαjαj ,

∑
α

tαiβj = δij

√
tβiβj . (2.6)

We note that the area of the unitarity triangles in the lepton sector can be expressed as
J = s12s23s13c12c23c2

13 sin δ = −|tµ2e3| sin ΨD.
The four parameters in eq. (2.4) suffice to describe the PMNS matrix in the νDSM. For

the case of the νM SM, the additional phase convention independent parameters needed to
describe Majorana phases arise from the sαij invariants, which are physical in this case since
the Tm transformation is no longer a symmetry in this model.

Of the nine non-vanishing Φα
ij phases, two are independent. It is convenient to first

eliminate all Φα
13’s by using the identity

Φα
13 = Φα

12 + Φα
23 . (2.7)

Of the remaining six phases, only one of the three, {Φe
12, Φµ

12, Φτ
12}, and one of the three,

{Φe
23, Φµ

23, Φτ
23}, are independent. The rest can be expressed in terms of the chosen two

and the Dirac phase, using a second identity,

Φβ
ij = Φα

ij + δβα
ij . (2.8)
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Therefore, a basis for the Majorana phases could be any pair,

{Φα
12, Φβ

23} α, β = e, µ, τ , (2.9)

or any pair of linear combinations,
{∑

α aα Φα
12,

∑
β bβ Φβ

23
}
. Throughout this paper we

primarily use the following choice of basis, which is convenient for 0νββ,

{Φ12, Φ23} ≡ {Φe
12, Φe

23} . (2.10)

In terms of the convention for the PMNS matrix in eq. (1.1), the physical Dirac and Majorana
phases, as defined in eqs. (2.5) and (2.10), are given by

ΨD = arg
(
c12c23e−iδ − s12s23s13

)
,

Φ12 = η1 − η2 ,

Φ23 = η2 + δ . (2.11)

3 General statements

Within the framework of the νM SM, the following three statements hold:

1. The rate of any LNV process involving two charged leptons of flavor α and β is
proportional to m2

αβ where mαβ is defined in eq. (1.3).

In the νM SM, in the absence of right-handed charged current interactions, the amplitude
of any LNV process with two charged leptons takes the following form,

iMµν ∝
∑

i

ūγµPLUαi
i(pργρ + mi)C

p2 − m2 Uβi(ūγνPL)T ∝ mαβ , (3.1)

with C = −iγ2γ0. Due to the Dirac structure, only the part of the neutrino propagator
proportional to the mass contributes, which is what leads to mαβ.

2. Any one element of the effective Majorana mass matrix, mαβ, is in itself independent
of the Dirac phase. This implies that prior knowledge of ΨD is not required for a
prediction of any element, mαβ . In particular, knowledge of the Dirac phase does not
affect the uncertainty of the prediction for 0νββ.

To demonstrate this second point, we write the square of the effective Majorana mass as

m2
αβ =

∑
i,j

mimjsαijsβij (3.2)

=
∑

i

m2
i |Uαi|2|Uβi|2 + 2m1m2|Uα1Uα2Uβ1Uβ2| cos

(
Φα

12 + Φβ
12
)

+ 2m2m3|Uα2Uα3Uβ2Uβ3| cos
(
Φα

23 + Φβ
23
)

+ 2m1m3|Uα1Uα3Uβ1Uβ3| cos
(
(Φα

12 + Φβ
12) + (Φα

23 + Φβ
23)
)

,

where for the last term we have used eq. (2.7). We see that for any given mαβ , we can choose
a basis such that no Dirac phase appears. That is, if we use the basis

Φαβ
12 = Φα

12 + Φβ
12

2 , Φαβ
23 = Φα

23 + Φβ
23

2 , (3.3)

– 5 –
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then eq. (3.2) has the form

m2
αβ =

∑
i

m2
i |Uαi|2|Uβi|2 + 2m1m2|Uα1Uα2Uβ1Uβ2| cos

(
2Φαβ

12
)

(3.4)

+ 2m2m3|Uα2Uα3Uβ2Uβ3| cos
(
2Φαβ

23
)

+ 2m1m3|Uα1Uα3Uβ1Uβ3| cos
(
2Φαβ

12 + 2Φαβ
23
)

.

From eq. (3.4) it is clear that, for any {α, β}, m2
αβ depends only on two phases, which can

be expressed as pure Majorana phases. This is true for any one mαβ observable alone. As
soon as more than one is considered, there is no choice of basis for the Majorana phases
that allows both to be expressed without the use of Dirac phases. Thus, while mαβ can be
expressed as a function of the two Majorana phases in eq. (3.3), considering a different mα′β′ ,
expressed in the same basis, the phases in the cosines would also include Dirac phases,

Φα′β′

12 = Φαβ
12 + (δα′α

12 + δβ′β
12 )/2 , (3.5)

Φα′β′

12 = Φαβ
23 + (δα′α

23 + δβ′β
23 )/2 ,

where we have used the identity in eq. (2.8). We see that when considering more than one
LNV observables, all three phases play a role. In principle, measurement of three different
mαβ could determine all three phases — two Majorana and one Dirac.

The lack of dependence on the Dirac phase can be obscured when working in a specific
convention, such as that of eq. (1.1). For example, m2

ee in the basis of eq. (1.1) reads,

m2
ee = (m2

1c4
12 + m2

2s4
12)c4

13 + m2
3s4

13 + 2m1m2s2
12c2

12c4
13 cos

[
2(η1 − η2)

]
+ 2m1m3c2

12s2
13c2

13 cos
[
2(η1 + δ)

]
+ 2m2m3s2

12s2
13c2

13 cos
[
2(η2 + δ)

]
. (3.6)

While this expression depends on δ, varying the value of δ has no effect on the possible values
the three cosine terms can take. This is because δ only enters as (η1 + δ) and (η2 + δ), and
thus it simply shifts the extracted values of η1,2. Therefore, the predictions for mee with
unknown Majorana phases are not affected by any knowledge of the Dirac phase (or lack
thereof). The same holds when considering any one element of the mαβ matrix by itself.
However, independence of the Dirac phase, ΨD, does not necessarily imply independence
of the parameter δ, which in the parametrization of eq. (1.1) also affects magnitudes of
some PMNS matrix elements.

3. Sensitivity to each of the Majorana phases, Φij , scales as the corresponding product of
masses, mi mj .

Rewriting eq. (3.4) using the Majorana phase basis of eq. (2.10) (Φij ≡ Φe
ij), we have

m2
αβ =

∑
i

m2
i |Uαi|2|Uβi|2 + 2

∑
i<j

mimj

∣∣UαiUαjUβiUβj

∣∣ cos
(
2Φij + δαe

ij + δβe
ij

)
. (3.7)

Eq. (3.7) shows that a given Majorana phase, Φij , accompanies the corresponding product
of masses, mi mj , in the expression for m2

αβ, regardless of the flavor indices α, β. This is
not a surprise, since the Majorana phases are those that could have been rotated away via
rephasing of the neutrino mass eigenstates, were the mass terms of the Dirac type.

– 6 –
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4 Approximate relations for hierarchical masses

In the following we consider the limit where the lightest neutrino is very light (we discuss
below the numerical values of when this limit is justified). In this case we point out that,
to leading order, all mαβ depend only on one Majorana phase. This implies correlations
between LNV observables of different flavors in this limit. Our analysis focuses on the
approximate relation between mee and mµe.

4.1 Unified naming scheme for neutrino masses

We introduce the following naming scheme for the three neutrino mass eigenstates,

{νℓ, ν2, νo} , (4.1)

where the ℓ stands for “lightest” and the o for “other”. This notation utilizes that, independent
of the mass ordering, ν2 is never the lightest mass eigenstate. Any expression can then be
written in a simple manner, in terms of these three states, with the following correspondence
to the conventional notation for the mass eigenstates:

NO IO

ν1 → νℓ , ν1 → νo ,
ν2 → ν2 , ν2 → ν2 ,
ν3 → νo , ν3 → νℓ .

(4.2)

This convention for the mass eigenstates is convenient when one is interested in the behavior
for different values of the lightest mass. For other purposes it may be more useful to work
with the standard convention. For instance, this choice is useful when we expand in the small
parameter (mℓ/m2), while it makes an expansion in the small s13 less transparent.

4.2 Nearly massless lightest neutrino

Using the above notation for the mass eigenstates, we consider the scenario in which neutrino
masses are hierarchical, with the light eigenstate much lighter than the others,

mℓ ≪ mo . (4.3)

We can rewrite eq. (3.7) in the form of an expansion,

m2
αβ = m2

2 |Uα2|2 |Uβ2|2

×
[
1 +

∑
i=o,ℓ

m2
i

m2
2

|Uαi|2|Uβi|2

|Uα2|2|Uβ2|2
+ 2

∑
(ij)=

{oℓ,2ℓ,2o}

mimj

m2
2

|UαiUαjUβiUβj |
|Uα2|2|Uβ2|2

cos
(
Φij + δαe

ij + δβe
ij

)]
,

(4.4)

where we choose to factor out m2
2 |Uα2|2 |Uβ2|2, since m2 is nonzero regardless of the ordering.

Consider the limit in which the lightest neutrino mass approaches zero,

mℓ → 0 . (4.5)

– 7 –
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In this limit there is only a single Majorana phase, since one phase can be rotated away
due to the enhanced symmetry.2 Thus, only a single cosine term survives in the sum in
eq. (4.4). When approaching this limit, for small but nonzero mℓ, two Majorana phases
remain physical, but the sensitivity of m2

αβ to the second phase is suppressed by mℓ/mo. We
refer to the mℓ → 0 regime as the single phase limit.

To make this more concrete, we consider the coefficients of the three cosine terms in
eq. (4.4),

Coℓ = momℓ

m2
2

|Uαo||Uβo||Uαℓ||Uβℓ|
|Uα2|2|Uβ2|2

, (4.6)

C2ℓ = mℓ

m2

|Uαℓ||Uβℓ|
|Uα2||Uβ2|

,

C2o = mo

m2

|Uαo||Uβo|
|Uα2||Uβ2|

,

where the flavor indices, α and β, in the coefficients C are suppressed. We can then better
define the regime of eq. (4.3) by considering the following condition,

max [C2ℓ, Coℓ] < 0.1 C2o , (4.7)

where we use an arbitrary choice of 0.1 as a benchmark for the measure of dominance of the
leading coefficient. The condition in eq. (4.7) is flavor dependent. It is known experimentally
that the magnitudes of most PMNS matrix elements are O(1), and do not play a significant
role in determining the hierarchy of the coefficients in eq. (4.6). However, for observables
involving electrons, the relative smallness of |Ue3| ≈ 0.15 can be important.

The approximate single phase expression is given by

m2
αβ ≈ m2

2 |Uα2|2 |Uβ2|2
[
1+ m2

o

m2
2

|Uαo|2|Uβo|2

|Uα2|2|Uβ2|2
+2mo

m2

|Uαo||Uβo|
|Uα2||Uβ2|

cos
(
2Φ2o + δαe

o2 + δβe
o2
)]

, (4.8)

and hereafter we use the approximately equal sign to denote equalities holding up to a relative
correction of max [C2ℓ, Coℓ]. We note that:

1. Only one Majorana phase, Φ2o, appears in eq. (4.8), regardless of the flavor indices α

and β. This implies that, in principle, assuming the Dirac phase is determined by other
means, only one of the six elements of the symmetric matrix mαβ is independent in
this limit, and can serve to predict all others within the νM SM.

2. The approximate relation between mαβ and the Majorana phase, Φ2o, is also independent
of mℓ (this was pointed out, for IO, in ref. [10]). This implies that, in the single phase
limit, the leading Majorana phase information can be extracted from one measurement
of mαβ , without relying on any knowledge of the absolute mass scale.

2To prove this, following ref. [30], note that a symmetric rank-2 neutrino Yukawa matrix has 5 real and
5 imaginary parameters (for rank-3, it is 6 real and 6 imaginary). The charged lepton Yukawa couplings
contain 9 + 9 parameters. The global U(3)L × U(3)E symmetry is still completely broken, allowing to remove
6 + 12 parameters, leaving 5 masses, 3 mixing angles, and 2 phases (one Dirac and one Majorana) as physical
parameters.
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Figure 1. The behavior of m2
ee in the single phase limit. (a) mee as a function of mℓ, when varying

all parameters within 2σ, using the values in table 1. The phases δ, η1, and η2 are unconstrained. The
vertical lines show the onset of the single phase limit for IO and NO, as defined in eq. (4.7). (b) The
correlation of m2

ee and cos(2Φ2o) in the single phase limit (dark shaded region) vs. the correlation
in the full range (light shaded region), for IO. (c) The same as in (b) but for NO. In this case the
single phase limit correlation cannot be seen in the full range due to the vast range of m2

ee values (see
inset plot).

We demonstrate the dependence on a single phase in figure 1, for the case of mee. The
single phase limit of eq. (4.7) is obtained requiring

mℓ ≲

10−2 eV , IO ,

2 × 10−4 eV , NO .
(4.9)

From figure 1(a), we see that in this regime mee does not depend on the value of mℓ.
From panels (b) and (c) (darker regions and insets), we see that a measurement of mee is
a measurement of cos(2Φ2o). Outside of the single phase limit (lighter regions), a single
Majorana phase cannot determine mee. We emphasize that no prior knowledge on the Dirac
phase is assumed in figure 1.

4.3 Using mee to predict mµe

In the following we demonstrate the ability to use one element of the mαβ matrix to predict
another, using the example of mee and mµe. Inverting eq. (4.4), one can see that the value of
cos 2Φ2o is fixed by a measurement of m2

ee in 0νββ decays up to relative corrections of order

max
[

mℓ

m2

|Ueℓ|2

|Ue2|2
,

mℓ

mo

|Ueℓ|2

|Ueo|2

]
. (4.10)

In particular, if we neglect the subleading corrections in eq. (3.7), we arrive at the relation

m2
ee ≈

∑
i

m2
i |Uei|4 + 2m2mo |Ue2|2|Ueo|2 cos 2Φ2o . (4.11)

The effective Majorana mass relevant for µ− → e+ conversion, m2
µe, is then related to

m2
ee, since it is also, to leading order, dependent only on the Majorana phase Φ2o,

m2
µe ≈

∑
i

m2
i |Uei|2|Uµi|2 + 2m2mo

∣∣Ue2UeoUµ2Uµo

∣∣ cos
(
2Φ2o + δµe

2o

)
. (4.12)
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Figure 2. The correlation between mµe and mee in the single phase limit, under various assumptions
on the Dirac phase. The mixing angles and mass squared differences are fixed at their central values
shown in table 1. The values for the Dirac phase, ΨD, are fixed by the given ranges for δ, using the
relation of eq. (2.11).

We emphasize that the phase δµe
2o contains only Dirac phase information and we assume it

would be determined in oscillation experiments. More concretely, for the two mass orderings
the phase shifts are given by

δµe
2o =


arg(tµ2e3) = ΨD , NO ,

arg(tµ1e2) = arg
(
−|Uµ2Ue2|
|Uµ3Ue3|

− e−iΨD

)
, IO .

(4.13)

Figure 2 demonstrates the correlation between mµe and mee in the single phase limit, where,
depending on our knowledge of the Dirac phase, a measurement of one can be used in principle
to predict the other. In the case of inverted ordering, the phase shift δµe

2o in eq. (4.12) is
close to ±π, see eq. (4.13), and there is a clear (anti-)correlation even without assuming
knowledge of the Dirac phase. For normal ordering, the value of the Dirac phase strongly
affects the correlation.

4.4 Discrete ambiguities

A measurement of mαβ in the single phase limit is a measurement of cos 2Φ2o (as in eq. (4.11)
for the case of mee), leaving the four-fold ambiguity in the Majorana phase [31], {Φ2o, π −
Φ2o, −Φ2o, Φ2o − π}, where the phases are defined by convention in the range [−π, π]. A
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determination of sign(sin 2Φ2o) would reduce the ambiguity to a two-fold, {Φ2o, Φ2o−π}, while
resolving the remaining ambiguity would require a measurement sensitive to sign(cos Φ2o)
or sign(sin Φ2o).

In the case of mee and mµe, while a measurement of mee would fix the value of cos 2Φ2o,
the different flavor structure of mµe implies a phase shift in the cosine term compared to
mee, as can be seen in eq. (4.12) vs. eq. (4.11), resulting in a dependence on the product
sin 2Φ2o sin δµe

2o . Assuming knowledge of the Dirac phase (magnitude and sign), this implies
that a prediction of mµe from mee would involve a two-fold discrete ambiguity, corresponding
to the unknown sign of sin 2Φ2o. This ambiguity can be seen in the middle panels of figure 2,
where, for a specific (non zero) value of the Dirac phase, a given value for mee corresponds
to two possible mµe values.

5 mµe, mµµ and a no-lose proposition

If the neutrino mass ordering is inverted, upcoming 0νββ experiments will determine whether
neutrino mass terms violate or conserve lepton number. However, if the mass ordering is
normal, and upper bounds on 0νββ improve in the coming decades without discovering a
signal, then it becomes a pivotal question to find other means of revealing the nature of
neutrino mass. Here we show that a combination of bounds on mee and mµe (or mµµ) could,
in principle, exclude the νM SM also for the case of NO.

In figure 3 we plot, for normal ordering, the allowed ranges of mee, mµe, and mµµ, as
functions of the lightest neutrino mass. The smallest value of mℓ for which mµe can vanish
is highly sensitive to the mixing angles. The left plot shows that taking the central values
of the mixing angles in the “w/o SK-ATM” fit in the PDG [3] in table 1, the regions of
mℓ for which mee and mµe can vanish do not overlap. The fact that mee and mµe cannot
simultaneously vanish means that, at least in principle, one can determine the nature of
the neutrino mass, even if mee is zero. While the required mµe sensitivity is many orders of
magnitude beyond that of any proposed experiment for µ− → e+ conversion, this provides,
in principle, a no-lose theorem for determining the nature of neutrino mass. Allowing for the
variations of the mixing angles by 2σ of their present uncertainties, the regions of vanishing
mee and mµe start to overlap. This is shown in the right plot in figure 3, where the allowed
range for the sum, mee + mµe, is plotted. We find,

mee + mµe >

7 × 10−4 eV , central values ,
2 × 10−4 eV , within 1σ ranges ,

(5.1)

where in the second line we varied independently all parameters in table 1 within their
respective 1σ ranges. Varying them by 2σ, mee + mµe can vanish. The existence or absence
of this overlap region will also be impacted by future constraints on the CP violating phase δ,
and on the lightest neutrino mass, mℓ. In any case, this adds to the motivations to determine
the mixing parameters more precisely.

For completeness, figure 3 (a) also shows the allowed range for mµµ, and figure 4 shows
the corresponding plot for mτe, mτµ, and mττ . For normal ordering, neither mτµ nor mττ

can vanish simultaneously with mee. The prospects for experimentally probing these elements
of the mαβ matrix are, however, even more remote than for mµe.
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Figure 3. The allowed ranges of (a) mee, mµe, and mµµ for normal ordering, for the central values
of the three mixing angles and two mass-squared differences in table 1. In (b) we show the allowed
ranges of mee + mµe for the central values of these five parameters, and varying them by 1σ or 2σ.
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Figure 4. The allowed ranges of mτe, mτµ, and mττ , compared to mee (dashed contour), as a
function of the lightest neutrino mass in the case of normal ordering and for the central values of the
three mixing angles and two mass-squared differences in table 1.

6 Conclusion

The nature of neutrino masses is a fundamental open question. If neutrinos are Majorana
particles, then their mixing involve two yet unconstrained CP violating phases, which
only affect lepton number violating processes. Measuring 0νββ would constrain one linear
combination. Our analysis of ∆L = 2 processes within the νM SM leads to the following
conclusions:

1. The sensitivity of m2
αβ to a specific Majorana phase scales with the product of the

corresponding neutrino masses, that is, for a small but nonzero lightest mass, mℓ, the
sensitivity to the second Majorana phase is reduced linearly.
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2. In the regime of a very small mℓ, one Majorana phase, Φ2o, is dominant, and its relation
to mαβ is approximately independent of mℓ itself. The dominance of a single Majorana
phase is common to all entries of mαβ , implying that at leading order only one of the
six elements is independent in this limit.

3. If future progress allows reaching νM SM sensitivity for mµe, the Majorana nature of
neutrinos could be ruled out by the non-observation of both mee and mµe. (The same
can also be achieved if mµµ can be probed.) The current central values of the mass-
squared differences and PMNS mixing angles yield no overlap for the regions where mee

and mµe both vanish. This provides additional motivation for precision measurements
of mixing parameters, as well as for further exploration of ways to probe mµe.

Although our results pertain to observables beyond current sensitivity, furthering our
understanding of lepton number violating processes is essential to characterize the basic
nature of the lepton sector. Upcoming results from various experiments (cosmological, 0νββ,
mνe , oscillation) will contribute to this developing understanding.
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