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ABSTRACT OF THE DISSERTATION

Analysis, Computation, and Design of Innovative High Gain Feed-Reflector and Beam Steering
Antenna Solutions

by
Ghanshyam Mishra
Doctor of Philosophy in Computational Science

San Diego State University, 2020
and
University of California, Irvine, 2020

Professor Satish K. Sharma, Chair

Wireless communication is ubiquitous as we are in the cusp of intelligent connectivity (e.g.,
fifth-generation (5G) and internet of things (loT)), autonomous devices, advance satellite
communications, millimeter-wave communications, and augmented reality. The technology
demands exploration in cost-effective and energy-efficient antenna technologies to facilitate the
transformation of these innovations. This dissertation is the collection of research on novel high
gain feed-reflector and beam steering antenna solutions to meet these futuristic demands in satellite

and wireless communications.

As part of the dissertation, following significant antenna research contributions have been
made to facilitate the high data throughput for satellite and wireless communication networks: (1)
W-band (79 — 88 GHz) novel circularly polarized feed horn antenna feeding an offset parabolic
reflector for CubeSats; (2) W-band (86 GHz) fixed-beam novel circularly polarized series-fed
novel Butterfly antenna and 1D-beam steering phased array antenna for CubeSats; (3) Ku-band

(12 — 14 GHz) dual-linear polarized 1D-beam steering parabolic-cylindrical reflector fed by a
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silicon RFIC transceiver based flat panel phased array antenna; (4) Multi-functional Ka-band (28
GHz) staggered Butterfly array antenna for 5G communications with key features of full-
polarization reconfigurability, flexible radiation pattern, and wide-angle 1D-beam steering
performance; and (5) Investigation on the Ka-band (26.5 — 29.5 GHz) 3D metal printed dual
circularly polarized feed-horn feeding a spherical reflector for high gain multiple-beam switching

applications.

The relevant computational methods used in the research are computational
electromagnetics, physical optics (PO), linear algebra, Monte-Carlo statistical analysis, and beam
synthesis algorithm. Discussion about the proposed antennas include detailed theoretical analysis,
numerical simulation, optimizations, beam synthesis algorithms, fabrication of the antennas and
its control/beamforming feed networks, and finally, its characterization of impedance matching,

gain, and radiation patterns.
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Chapter 1
Introduction

1.1 Objective

There is an increasing demand for high gain antennas for satellite and wireless
communication applications. The objective of the dissertation is to present fundamental insights
into several innovative antenna designs along with their analyses and characterizations. The
research is a collection of innovative feed-reflector antennas and planar 1D-beam steering array
antennas providing high gain, cost-effective, and energy-efficient solutions for satellite and

wireless applications.

First, two different novel antenna solutions are proposed for high data rate CubeSat
application in the millimeter-wave W-band. One of the designs is an innovative inbuilt polarizer
that provides symmetric and stable radiation pattern with high circular polarization (CP) purity.
This polarizer is then fed to an offset reflector to provide high gain. The alternative solution is
proposed using a novel series-fed Butterfly antenna array for high gain and 1D-beam steering

performance for the CubeSat application at W-band (86 GHz).

Next, a hybrid reflector-phased array antenna technology is introduced to provide a cost-
effective and energy-efficient solution for high data rate wireless application at Ku-band (12 — 14
GHz). The reflector is parabolic-cylindrical, and the phased array is a dual-linear polarized feed

source placed along the focal line of the reflector to provide wide 1D-beam steering and high gain.

In line with the Butterfly radiating element, a modified staggered Butterfly array is
proposed for the multi-functional application at 28 GHz fifth-generation (5G) band. The proposed

staggered array is capable of full-polarization reconfiguration (right-hand circular polarization

1



(RHCP), left-hand circular polarization (LHCP), Linear-X, and Linear-Y polarization) with wide-

angle 1D-beam steering and flexible radiation patterns of varying 3 dB gain-beamwidth.

Finally, a dual circularly polarized 3D metal printed feed horn is proposed for the 5G Ka-
band high gain applications. A collection of such dual CP feed horns will be placed along the focal

arc of the spherical reflector to provide high gain wide-angle beam switching.

1.2 Motivation and Background

