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Dahlkea,*
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Abstract
Global groundwater depletion is a pressing issue, particularly in regions dependent 

on groundwater for agriculture. Agricultural Managed Aquifer Recharge (Ag-MAR), 

where farm fields are used as spreading grounds for flood water, is a promising strategy 

to replenish groundwater, but it raises concerns about pesticide leaching into aquifers, 

posing risks to both drinking water quality and ecosystems. This study employs a 

physically based unsaturated flow model, a Bayesian probabilistic approach and novel 

towed  transient  electromagnetic  (tTEM) data  to  determine  the  fate  and  transport, 
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especially  the  maximum  transport  depths  (MTDs)  of  four  pesticide  residues 

(Imidacloprid, Thiamethoxam, Chlorantraniliprole, and Methoxyfenozide) in three 70-

m-thick unsaturated zones (P1, P2, P3) of California’s Central Valley alluvial aquifer. 

The results show that Ag-MAR significantly increased MTDs across all profiles for all 

pesticides and with higher variability in pesticide transport depths compared to the 

natural rainfall scenario. Profile P2, with the highest sand content exhibited the deepest 

MTDs  under  Ag-MAR,  indicating  a  strong  influence  of  soil  texture  on  pesticide 

transport. While natural capillary barriers at the depth of 2.5-20 m impede water flow 

under  natural  rainfall  conditions,  the  high-pressure  infiltration  during  Ag-MAR 

overcomes these barriers, leading to deeper water and pesticide movement.  Among 

various evaluated pesticides,  Methoxyfenozide exhibited the smallest absolute MTDs 

but  the  largest  relative  increases  in  MTDs  (RMTDs)  under  Ag-MAR  due  to  its 

persistence and low mobility, posing a higher risk of deep transport during intensive 

recharge events.  In  contrast,  Thiamethoxam showed the largest  MTDs under  both 

scenarios but smaller RMTDs due to its high mobility, suggesting a more consistent 

transport  behavior  regardless  of  recharge  practices. The  findings  highlight  the 

importance  of  understanding  both  site-specific  and  pesticide-specific  behaviors  to 

mitigate groundwater contamination risks during large water applications.

Keywords: Towed transient electromagnetic system; Bayesian probabilistic approach; 

Soil water; Pesticide transport and fates; Capillary barrier; Groundwater pollution

1 Introduction
Global groundwater depletion has become a significant concern worldwide and is 

particularly acute in areas reliant on groundwater for agricultural irrigation (Gleeson et 

al., 2012). Managed Aquifer Recharge (MAR), defined as the purposeful recharge of 

water to aquifers for subsequent recovery or environmental benefit (Dillon et al., 2009), 
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is increasingly used to counter groundwater depletion. With the acceleration in global 

groundwater depletion rates (Dillon et al., 2019; Konikow, 2011), there is a growing 

need  to  implement  MAR  to  maintain,  enhance,  and  secure  stressed  groundwater 

aquifers. Permeable soils make ideal locations for managed aquifer recharge. More 

spreading areas need to be employed to grow MAR beyond its estimated current use of 

10 km3/year (Dillon et al., 2019), making agricultural land an ideal candidate because of 

its  connection  to  water  conveyance  infrastructure  that  could  deliver  source  water 

(Levintal et al., 2023). When flood water is intentionally diverted onto farm fields for 

recharge, a method known as Agricultural Managed Aquifer Recharge (Ag-MAR), 

concerns about the potential leaching of pesticides through the soil profile into aquifers, 

leading to exacerbated drinking water and environmental issues (Levintal et al., 2023), 

need to be raised.

Pesticide use in agriculture has remained globally at about 2.7 million tons of 

active ingredients annually since 2020, with a significant portion utilized in the USA, 

Brazil,  and China  (FAO, 2021).  Many studies show that  soil  pesticides may have 

detrimental side effects on soil ecosystems by affecting soil biochemical properties and 

soil food webs (Riah et al., 2014). This disruption can lead to a decline in beneficial soil 

organisms contributing to nutrient (such as nitrate) cycling, soil health, and greenhouse 

gas emissions (Sim et al., 2022). On the other hand, pesticides have been identified as a 

growing threat to drinking water wells in the United States, with 41% of sampled wells 

showing  pesticide  compounds  and  their  metabolites  (Bexfield  et  al.,  2021).  Most 

pesticides are found in shallow, unconfined wells extracting modern-age groundwater, 

suggesting that recharge from rainfall or irrigation facilitates pesticide transport to 

groundwater, especially in regions where soils are more permeable  (Bexfield et al., 

2021).  Detailed  knowledge  of  water  flow and  pesticide  fate  and  transport  in  the 

unsaturated zone (i.e., a buffer zone that separates the land surface where pesticides are 

applied from the groundwater aquifer) is needed to address these issues.
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Pesticide transport in the unsaturated zone is influenced by soil depth and layering, 

crop  characteristics,  and  various  physical  and  biochemical  processes  such  as 

precipitation,  irrigation,  evapotranspiration,  surface  runoff,  drainage,  adsorption  to 

particles, and degradation. Other processes, such as volatilization and crop uptake, also 

play a role but are less important (Köhne et al., 2009). On the other hand, preferential 

flow and transport (a.k.a. physical/chemical nonequilibrium), often difficult to observe 

at the point scale (Vogel, 2019), makes it more challenging to quantify pesticide fate 

and transport and its potential groundwater contamination risk  (Jarvis, 2007). These 

physical and biochemical processes are often studied through the combined use of 

experimental data and numerical models (la Cecilia et al., 2021).

Numerical flow and transport modeling requires the knowledge of soil hydraulic 

and solute transport parameters characterized by strong spatial heterogeneity.  In the 

shallow unsaturated zone,  these  parameters  are  typically  acquired through inverse 

modeling by minimizing discrepancies between readily measured state variables and 

fluxes and their  corresponding model  simulations  (Šimůnek and Hopmans,  2002). 

However, inverse modeling becomes less feasible for deep unsaturated zones due to 

limited measurements of state variables and fluxes at deeper depths. Nevertheless, with 

the rapid decline in groundwater levels (Jasechko et al., 2024), there is also interest in 

recharging  the  deep  unsaturated  zone.  Consequently,  when  evaluating  the 

appropriateness of a deep unsaturated zone for Ag-MAR, it  is  imperative to have 

detailed  information  regarding  the  deep  subsurface  materials  and  their  hydraulic 

attributes (Behroozmand et al., 2019). 

Laboratory soil texture analysis on soil cores provides accurate results with high 

vertical resolution but is inefficient and thus limited to the shallow unsaturated zone. In 

contrast,  near-surface  geophysical  methods  (such  as  the  towed  transient 

electromagnetic (tTEM) system) have become increasingly popular due to their ability 

to offer cost-effective, high-resolution imaging of subsurface structures, which offers a 

4

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

4



promising tool for understanding the deep unsaturated zone processes (Perzan et al., 

2023). While some emerging research has combined tTEM data and unsaturated zone 

modeling to characterize groundwater recharge efficiency (Pepin et al., 2022; Perzan et 

al.,  2023),  little  has  focused  on  the  pesticide  fate  and  transport  under  Ag-MAR, 

especially for a deep  unsaturated zone. On the other hand, the interpretation of the 

electric resistivity acquired by tTEM often results only in a binary classification of fine 

and coarse-textured sediments (Pepin et al., 2022). It thus produces great uncertainty 

when used to predict the deep unsaturated zone processes.

In  this  study,  we  combine  field  observations  and  HYDRUS-1D  numerical 

modeling approaches to analyze the fate and transport  of four common pesticides 

(Imidacloprid, Thiamethoxam, Chlorantraniliprole, and Methoxyfenozide) in the deep 

unsaturated zone (about 70 m) of three Ag-MAR sites in the Central Valley, California. 

This research builds on the earlier work by (Zhou et al., 2024), which focused on the 

shallow vadose zone (0–2.5 m), by extending the analysis to focus specifically onto the 

deeper vadose zone (0–70 m). Key innovations in this study include applying Bayesian 

probabilistic methods to improve parameter estimation and uncertainty quantification 

and leveraging towed transient electromagnetic (tTEM) data to assess the impact of 

deep vadose zone heterogeneity. A significant advancement also includes evaluating 

pesticide transport under both Ag-MAR practices and natural rainfall conditions while 

considering a wide range of soil texture permutations across multiple vadose zone 

layers.  These  advancements  address  critical  knowledge  gaps  by  providing  a 

comprehensive risk evaluation of pesticide transport across deep unsaturated zones, 

thereby offering practical insights for sustainable Ag-MAR management.

The objectives of this study are to 1) assess the predictive accuracy and uncertainty 

of  the  HYDRUS-1D  model  using  a  Bayesian  probabilistic  approach,  2)  analyze 

parameter  sensitivity  and  how it  is  connected  to  dominant  processes  and  factors 

governing water flow and pesticide transport, 3)  quantify the impacts of unsaturated 
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zone heterogeneity on water and pesticides mass balance and water travel times, and 4) 

evaluate  the  maximum  transport  depths  of  pesticides  and  potential  groundwater 

contamination  risks  in response to Ag-MAR by  testing  all possible permutations of 

tTEM soil texture data.

2 Materials and Methodology

2.1 Study site and experimental setup
The Ag-MAR experiment was conducted at Terranova Ranch in the Kings River 

basin, California, on a 32,376 m² recharge plot (Fig. 1a). The plot was continuously 

flooded with 38,774 m³ (1.2 m in depth) of groundwater at a flow rate of ~3.35 m3/min 

between February 16 and 24, 2021. We selected three soil profiles (P1, P2, P3) to study 

water flow and pesticide transport under Ag-MAR (Fig. 1b). Before flooding, 541 g of 

Br− (equivalent  to  806  g  of  KBr)  dissolved  in  100  L  of  water  was  applied  at  a 

concentration of 5410 ppm over a 2.5 × 7 m² area at each profile. The application 

occurred on February 15, 2021, at P1 and P2, and on February 16, 2021, at P3 with an 

irrigation rate of 0.00381 cm/min.

Soil samples were taken at 15 cm intervals down to 2.5 m before and after flooding. 

Soil texture analysis of the shallow 2.5 m zone across the three selected soil profiles 

revealed increasing sand fractions from P1 (41%), P3 (61%), to P2 (84%) (Fig. 1b; 

Table S1), and a cemented duripan layer at around 1 m depth at P1 and P3. Towed 

transient  electromagnetic  (tTEM)  data  collected  in  September  2019  provided  a 

description of subsurface sediment materials down to 70 m (the groundwater table 

depth during the experiment), distinguishing fine and coarse textures (Fig. S1, Table 

S2). More information on the derivation of sediment texture from tTEM data can be 

found in (Goebel and Knight, 2021).
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Meteorological data, including precipitation and potential evaporation (Fig. S3), 

were collected at the site, and sensors were installed in each profile at depths of 0.2, 0.6, 

1.0, and 2.5 m to monitor soil moisture and ponding levels throughout the flooding 

period at a 10-minute time interval. Suction cups installed at depths of 0.2, 0.6, 1.0, 

1.75, and 2.5 m at each profile collected breakthrough curve data for bromide and 

residual pesticides, with sampling conducted every 4 hours during the flooding period 

(Fig.  1c).  The  suction  cups  were  placed  about  50  cm apart,  within  a  maximum 

horizontal distance of 3.5 meters from the sensor profile.

The California Department of Food and Agriculture analyzed the soil pore water 

samples  collected  during  the  experiment  for  54  pesticide  compounds  using  four 

methods: GWPP Multi-Analyte Screen, Triazine Screen, DCPA Screen, and SWPP 

Multi-Analyte Screen. The analysis detected thirteen residual pesticide compounds at 

concentrations  above  trace  levels,  including  azoxystrobin,  Imidacloprid, 

Mefenoxam/Metalaxyl,  Metolachlor,  Simazine,  Thiamethoxam,  Methoxyfenozide, 

Chlorantraniliprole,  Propiconazole, and  Clomazone (Tables S3-S4). However, only 

Imidacloprid,  Thiamethoxam,  Methoxyfenozide,  and  Chlorantraniliprole had 

consistent observations throughout the study. None of the four pesticides were detected 

in groundwater.

The application history (e.g., the application date, crop type, product name, active 

ingredient concentration, application rate, area treated, and the total amount applied) 

and key physical and chemical properties of these four pesticides are detailed in Tables 

S2-S3 of (Zhou et al., 2024). The most recent application dates were June 4, 2020, for 

Imidacloprid (8.5 months before the Ag-MAR experiment), July 11, 2020, for both 

Thiamethoxam and  Chlorantraniliprole (7  months  prior  to  the  experiment),  and 

September 24, 2018, for Methoxyfenozide (29 months before the experiment).
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Figure 1. Location of the recharge plot and three soil profiles P1, P2, and P3 (a), the 

soil texture at each profile (b), and sampling details (c).

2.2 HYDRUS-1D model setup
Water flow, bromide (KBr), and pesticide transport in the unsaturated zone were 

simulated using the HYDRUS-1D software, which solves the Richards equation for 

water flow and the advection-dispersion equation for solute transport based on certain 

initial and boundary conditions  (Šimůnek et al.,  2024;  Šimůnek et al.,  2016).  The 

governing flow and transport equations are solved numerically using Galerkin-type 

linear finite element schemes. The mixed form of the Richards equation is solved using 

the mass-conservative method proposed by (Celia et al., 1990), which has become a 

standard method in most vadose zone codes. This scheme is highly mass conservative, 

conserving the mass not only in homogeneous, but also in heterogeneous transport 

domains. Similarly, the Galerkin-type linear finite element scheme is used to solve the 

convection-dispersion equation for solute transport. No special measures need to be 

taken in these Galerkin-type linear finite element schemes to maintain mass continuity 

for  both  flow and  transport  when  crossing  the  boundaries  of  distinct  soil  layers. 

Additionally, HYDRUS-1D evaluates the mass balance errors for both water flow and 
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solute transport at each time step. The mass balance errors reported by the code were 

typically significantly lower than 0.1% for water flow and 1% for solute transport.

2.2.1 Governing equations
The one-dimensional movement of soil water can be described using the Richards 

equation:

∂θ (h)
∂t

= ∂
∂ z [K (h)(∂h∂ z +1)] (1)

where θ represents the volumetric water content [L3L-3], t is time [T], h denotes the 

water pressure head [L], z is the vertical spatial coordinate [L] with a positive direction 

upwards,  and  K  refers  to  the  hydraulic  conductivity [LT-1].  The  soil's  hydraulic 

properties, including water retention and hydraulic conductivity, are modeled using the 

van Genuchten-Mualem (VGM) equations (Mualem, 1976; van Genuchten, 1980):

θ (h )={θr+ θs−θr
[1+|αh|n]m

h<0

θsh≥0

(2)

K (h )=K sSe
l ¿ (3)

Se
❑=

θ−θr
θs−θr

(4)

m=1−1/n (n>1) (5)

where θr and θs are the residual and saturated water contents [L3L-3], respectively; Ks 

denotes the saturated hydraulic conductivity [LT-1]; Se is the effective saturation [-]; l is 

the pore connectivity parameter (commonly set to 0.5); n is a shape parameter related to 

the pore-size distribution [-]; and α is an air-entry suction parameter [L-1].

Solute transport in the vadose zone is described using the advection-dispersion 

equation:
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∂θC
∂t

+ρ ∂s
∂t

= ∂
∂ z (θD ∂C∂ z )−∂ (qC )

∂ z
−ϕ (6)

where C is the solute concentration in the liquid phase [ML-3], ρ is the soil bulk density 

[ML-3], s is the sorbed concentration on soil particles [MM-1], q is the water flux [LT-1], 

D is the effective dispersion coefficient [L2T-1],  and  ϕ is a sink term representing 

degradation reactions [ML-3T-1].

The  absorbed  concentration  s is  modeled  using  the  Freundlich  adsorption 

isotherm, expressed as:

s=K dC
η (7)

where K d is the distribution coefficient between liquid and solid phases [L3M-1], and 

η is the Freundlich exponent [-], which was set to 1 in this study for linear adsorption. 

The  effective  dispersion  coefficient  D combines  both  molecular  diffusion  and 

mechanical dispersion:

D=λv+
D0τ

θ
(8)

where λ is the dispersivity [L], v is the pore-water velocity [LT-1], D0 is the molecular 

diffusion coefficient [L2T-1], and τ  is the tortuosity factor [-]. For bromide, D0 is about 

1.584 cm2/d for Br- (Isch et al., 2019; Köhne et al., 2004), while for pesticides, it is about 

0.43 cm2/d (Dusek et al., 2015).

The degradation sink term ϕ accounts for the breakdown of chemicals in both the 

liquid and solid phases, expressed as:

ϕ=μLθC+μSρs (9)

where μLand  μS are the first-order degradation rate constants in the liquid and solid 

phases [T-1], respectively. These rates can be derived from the half-life value t1/2 [T-1] 

as  μ=ln(2)/t1/2.  For non-reactive solutes like bromide,  adsorption and degradation 
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processes  are  not  considered (i.e.,  K d=0,  and  μ=0).  For  pesticides,  both 

adsorption/desorption and degradation processes are considered.

2.2.2 Initial and boundary condition settings
Each soil profile was divided into nine layers: five for the top 2.5 m of the shallow 

vadose  zone  and  four  additional  layers  extending  to  70  m to  represent  the  deep 

unsaturated zone.  The shallow layers  were  determined  based on soil  core  sample 

measurements (shown in Table S1), while the deeper layers were informed by tTEM 

sediment texture data (shown in Table S2 and Fig. S1).

In the shallow zone (0-2.5 m) (Fig. 2a), the 250 cm soil profile was divided into 

five distinct modeling layers: 0–46 cm, 47–76 cm, 77–122 cm, 123–182 cm, and 183–

250 cm. These layers were created by grouping the original  soil  texture data and 

aligning each layer with corresponding sensors installed at depths of 0.2, 0.6, 1, 1.75, 

and 2.5 m (Table S1). The spatial discretization resolution was 1 cm throughout the soil 

profile. Initial soil pressure heads were set based on field measurements of soil water 

contents at 0.2, 0.6, 1.0, and 2.5 m (Fig. S2), while the initial solute concentrations 

(bromide and pesticides) were based on pore water data.  For water flow, the upper 

boundary  condition  was  set  to  an  atmospheric  flux  (considering  precipitation, 

evaporation, and flooding, Fig. S3), while the lower boundary condition was set to free 

drainage. Solute transport had a Cauchy boundary condition at the surface, adjusting for 

bromide concentrations during irrigation, with a zero-concentration gradient (Neumann 

boundary) at the lower boundary (Text S2). The soil hydraulic parameters (θs, α, n, 

K s) and reactive solute transport parameters (λ, Kd , μLand μS) in the shallow (2.5 m) 

vadose zone were optimized (discussed later in Sections 2.3).

For the deep unsaturated zone (2.5-70 m) (Fig. 2b), four additional layers (Layers 

6-9) were incorporated to reflect the coarse and fine sediment texture classifications 

from the tTEM data. Since texture and sediment hydraulic properties (e.g., Ks) cannot 
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yet be reliably estimated from tTEM data (Perzan et al., 2023), we explored different 

permutations of seven fine-textured materials (clay to sandy clay), and five coarse-

textured (loam to sand) materials as stated in Table S2. Layers 7 (5-20 m) and 9 (35-70 

m), which were classified as consisting of coarse materials in the tTEM data were 

assigned 5 soil textures, while layers 6 (2.5-5 m) and 8 (20-35 m), which included both 

fine and coarse materials in the tTEM classification were assigned 12 textures (clay to 

sandy clay) from the United States Department of Agriculture (USDA) soil texture 

triangle (Table S2). Different combinations of USDA textures for the fine and coarse 

soil layers resulted in 3600 soil texture combinations (12*5*12*5) for each soil profile. 

These soil profiles were generated to evaluate the role of soil texture on pesticide 

transport. The spatial discretization of the deep vadose zone is 50 cm. The bottom 

boundary conditions of the deep vadose zone model are a constant pressure head for 

water flow (i.e., pressure head equals zero at 70 m) and a zero concentration gradient for 

pesticide  transport  (Text  S2). For  simplicity,  the  adsorption  and  degradation 

coefficients, along with initial pesticide concentrations in the deep unsaturated zone 

(2.5-70 m), were set to 0. The initial pressure heads in the deep vadose zone (2.5 to 70 

m) were defined as a constant pressure gradient, starting from a specific value at a depth 

of 2.5 m and gradually increasing to zero at the groundwater table (Fig. S2). The 

transport parameters (dispersivities) were fixed as 700 cm (i.e., 1/10th of the total travel 

distance (Gelhar et al., 1992). Thus, only the effects of soil hydraulic parameters (θs, 

α, n, K s) were included in the deep unsaturated zone model runs.

The simulation period was 104 days, from 0:00 on Dec. 17, 2020, to 24:00 on Mar. 

31, 2021, which included pre-flooding (before Feb. 16), flooding (Feb. 16~Feb. 24), and 

post-flooding  (after  Feb.  24)  periods.  The  temporal  discretization  resolution  was 

variable, with a minimum time step of 0.01 minutes.  After each run, the maximum 

transport depths (MTDs) (i.e., the depth where the pesticide concentration was zero) 

during the Ag-MAR period (Feb.  16 to  Feb.  24,  2021) were recorded for  both a 
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business-as-usual scenario (Rainfall scenario - no Ag-MAR but rainfall only) and an 

Ag-MAR scenario (MTD_Rainfall and MTD_Ag-MAR). The relative difference in 

MTDs for a specific pesticide between Rainfall and Ag-MAR scenarios (i.e., RMTD) 

was calculated as (MTD_Ag-MAR – MTD_Rainfall)/MTD_Rainfall.

Figure 2. HYDRUS-1D model setup for the vadose zones (a) 0-2.5 m and (b) 0-70 m 
deep. Note that “W” and “S” represent water flow and solute transport, respectively.

2.3 Parameter optimization and Bayesian inference
In this study, we adopted a two-step optimization for the shallow 2.5 m vadose 

zone. In the first step, we calibrated soil hydraulic parameters and dispersivities using 

13

298

299

300

301

302

303

304

305

306

307

308

309

13



measured bromide breakthrough curves (BTCs) since bromide is not influenced by 

adsorption,  desorption,  or  degradation.  The  residual  water  content  (θr)  was  not 

optimized. Instead, the default values for corresponding soil textures were initially 

adopted and then manually adjusted to improve the model fit, as done in many other 

studies (Schaap and Bouten, 1996; Vereecken et al., 2010; Wosten and van Genuchten, 

1988;  Zhou et  al.,  2022).  Therefore,  five parameters  (θs,  α,  n,  K s, and  λ)  were 

optimized for each layer.

The Gradient-Based Comprehensive Learning Particle Swarm Optimization (G-

CLPSO) method (Brunetti et al., 2022) was used to inversely estimate soil hydraulic 

parameters and dispersivities (θs, α, n, K s, and λ) for five different soil horizons (i.e., a 

total  of  25  calibrated  parameters)  at  each  of  the  three  soil  profiles  (P1,  P2,  P3). 

Measured  surface  pressure  heads,  volumetric  water  contents,  and  bromide 

concentrations at different depths were used in the calibration process.

G-CLPSO  combines  the  exploration  and  exploitation  capabilities  of  the 

Comprehensive  Learning  Particle  Swarm  Optimization  (Liang  et  al.,  2006) and 

Marquardt-Levenberg  search  strategy,  respectively.  The  sum of  squared  residuals 

between observed and simulated values is the objective function. The swarm population 

and the learning parameter were set to 20 and 1.4995, respectively. A random individual 

was selected every three iterations and used as a starting point for the Marquardt-

Levenberg  search.  The  algorithm  was  considered  converged  if  all  particles'  best 

positions and the global best position recorded for the entire swarm simultaneously 

exhibited  negligible  improvements  in  the  last  five  consecutive  iterations.  An 

improvement was considered negligible if the relative change in the objective function 

between two consecutive iterations was below a user-defined tolerance value of 0.1%. 

The  95%  confidence  intervals  were  calculated  for  each  parameter  to  assess  the 

uncertainty. Optimized parameters and their uncertainty are summarized in Table S5.
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In the second step, soil hydraulic parameters and dispersivities (θs, α, n, K s, and 

λ) were set to their previously calculated global optima (Table S5). Pesticide BTCs at 

different  depths were combined with the Bayesian inference to  inversely estimate 

adsorption  and reaction  parameters  and assess  their  uncertainty.  In  particular,  the 

distribution coefficient Kd and the first-order degradation coefficients in the liquid and 

solid phases, μLand μS, for five different soil horizons were calibrated for a total of 15 

parameters.

Uniform  priors  were  set  for  all  parameters,  while  measurement  errors  were 

assumed  uncorrelated  and  normally  distributed  with  a  constant  variance,  σ2. 

Considering the complexity of the field-scale experiment, which increased uncertainty, 

pesticide  concentration  observations  at  different  depths  were  normalized  by  their 

maxima, and σ was set to 0.2. The G-CLPSO method was first used to identify a high-

likelihood region in the parameters' space, from which multiple Markov chains were 

initialized (Brunetti et al., 2023). In particular, a Markov Chain Monte Carlo (MCMC) 

method based on the Affine Invariant Ensemble Sampler (Goodman and Weare, 2010) 

was used to approximate the parameters' posterior distribution. As Brunetti et al. (2023) 

suggested,  a  total  of  30  chains  evolved  for  10,000  steps  to  achieve  stationary 

distributions. The Python package emcee was used to carry out the Bayesian analysis. 

Optimized parameters and their uncertainty are summarized in Tables S6-S9.

2.4  Model  Sensitivity,  Information  Content  of  Observations,  and  Parameter 
Interactions

The estimated  posterior  distributions  of  parameters  from  Section  2.3 and  a 

parameter  correlation  analysis  using  the  Jacobian  approximation  of  the  Hessian 

matrices around the optima (Šimůnek and Hopmans, 2002) were combined to detect 

and analyze parameters' interaction, as shown in Figs. S10-S24. The estimated posterior 

distributions of parameters provide a statistical basis to clarify how observations inform 
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model parameters and identify which parameters are most sensitive for the calibration 

process.  The statistic  metric  that  summarizes these effects  is  the Kullback-Leibler 

divergence DKL between the prior π(x) and the posterior p(x) for each parameter: 

DKL(π (x )∨¿p(x ))=∫
x

π (x ) log
π (x )
p(x )

dx

DKL is positively correlated with the information content of the observations. Parameters 

characterized by relatively high DKL are informed by the data and thus influence the 

model  fitting  (i.e.,  sensitive  factors).  Parameter  interactions  are  analyzed  using 

correlation  matrices  and  marginal  posterior  distributions  for  water  flow,  tracer 

transport, and pesticide reactive transport. The former is based on the final covariance 

matrices obtained by the G-CLPSO algorithm around the global optima, while the latter 

is a direct outcome of the Bayesian inference.

3 Results

3.1 Model parameters and performance
The estimated soil  hydraulic  and pesticide transport,  adsorption,  and reaction 

parameters  and their  uncertainty  for  the  upper  2.5  m of  the  unsaturated zone are 

summarized in Tables S5-S9. With a few exceptions, the optimized soil hydraulic 

parameters for the observed soil textures were within the typical ranges reported in 

other studies (Text S4). Although all three Ag-MAR sites were classified as Traver fine 

sandy loam, P1 and P3 had a distinct cemented duripan at a depth of 77-122 cm 

(Bachand et al., 2014), resulting in lower saturated hydraulic conductivities (K s) at 

these depths (approximately 0.005-0.01 cm/min). Overall, K s values were highest at 

P2, the sandiest profile (84% sand), lowest at P1 (41% sand), and intermediate at P3 

(61% sand). The estimated adsorption and degradation coefficients for the pesticides 

generally followed the opposite trend, being highest at P1 and lowest at P2, consistent 
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with the total organic matter content (Table S1). Additionally, Chlorantraniliprole and 

Methoxyfenozide exhibited higher adsorption, but lower degradation rates compared to 

Imidacloprid and Thiamethoxam (Tables S6-S9), indicating they were less mobile and 

more persistent in the environment.

The  simulated  versus  observed  pesticide  concentrations  for Imidacloprid, 

Thiamethoxam, Chlorantraniliprole, and Methoxyfenozide across the three profiles (P1, 

P2, and P3) showed the model's ability to capture overall transport trends (Fig. 3 and 

Figs. S7-S9; Table 1). For  Imidacloprid, the model fit well at shallow depths, with 

larger discrepancies at deeper levels, particularly in Profile 2 (Fig. 3). Thiamethoxam 

showed good agreement at shallow depths, but deeper levels, especially in Profile 3, 

reflected  underestimations  (Fig.  S7).  Chlorantraniliprole showed  satisfactory 

simulation accuracy across most profiles and depths, but significant underestimations 

occur at 250 cm in Profile 2 (Fog. S6). Methoxyfenozide was well captured at shallow 

depths, but deeper levels, particularly in Profile 2, show underestimation (Fig. S9). 

Overall, the model reasonably approximated pesticide transport in the shallow vadose 

zone but required refinements for the deeper unsaturated zones to better account for 

potential  preferential  flow  and  kinetic  adsorption  (i.e.,  physical  and  chemical 

nonequilibrium)  since  rapid  water  flow  during  intensive  flooding  makes  it  more 

challenging to reach adsorption equilibrium (Dusek et al., 2015).

Table 1. Mean root mean square deviation (RMSE) for simulating surface 
ponding levels, soil water contents, concentrations of bromide and four pesticides 

(Imidacloprid, Thiamethoxam, Chlorantraniliprole, Methoxyfenozide) in the shallow 
vadose zone (0-2.5 m) of the three soil profiles (P1, P2, P3).

Profile P1 P2 P3
Surface ponding level 
(cm)

1.61 2.36 2.43

Water content (cm3/cm3) 0.03 0.05 0.03
Bromide (ppm) 45.29 22.68 36.29
Imidacloprid (ppb) 0.12 0.15 0.21
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Thiamethoxam (ppb) 1.20 0.68 2.15
Chlorantraniliprole (ppb) 1.54 2.99 0.27
Methoxyfenozide (ppb) 0.21 0.20 0.09

Figure 3. Observed (black dots with vertical error bars) and simulated (black 
lines) Imidacloprid concentrations at different depths (20, 60, 100, 175, and 250 cm; 
top to bottom) for the three soil profiles (P1, P2, P3; left to right). The blue shaded 
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area is obtained by randomly sampling 100 solutions from the posterior parameter 
distributions obtained by Bayesian Inference (Tables S6-S9). The mean root mean 

square deviation (RMSEmean) for simulations using the mean parameters values (red 
line) is also reported.

3.2 Parameters’ sensitivity and interactions and observations information content
The Kullback-Leibler divergence (DKL) was used to illustrate the sensitivity of 

different parameters in predicting the behavior of four pesticides in the upper 2.5 m of 

the unsaturated zone across the three soil profiles (Fig. 4). Parameters with higher DKL 

values are more sensitive, indicating that their changes more significantly impact the 

model's accuracy (Schübl et al., 2022). In particular, degradation coefficients (μLand 

μS)  were  particularly  sensitive  for  Imidacloprid at  P2  and  Thiamethoxam at  P1, 

respectively. This is also confirmed by the joint marginal posterior (Figs. S16 and S12), 

which was leptokurtic for these parameters. Conversely, adsorption coefficients were 

more relevant for  Thiamethoxam at P3 and  Chlorantraniliprole at P1, respectively. 

Interestingly, Methoxyfenozide exhibited consistently high DKL for most parameters at 

profile P2, which were reflected in the right skewed joint posterior (Fig. S19). This type 

of  posterior  distribution  indicates  structural  model  inadequacy,  which  forces  the 

calibrated parameters towards physically unrealistic values. From a Bayesian point of 

view, this implies that only a few parameter sets are likely to have produced data 

generating  processes.  However,  this  inadequacy  is  here  mainly  attributed  to 

measurement inaccuracies, since results for Methoxyfenozide at other soil profiles are 

satisfactory.

19

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

19



Figure 4. Kullback-Leibler divergence DKL of degradations in the liquid (μL) and 
solid (μs) phases and adsorption (K d) in different layers (1,2,3,4,5) of the three soil 

profiles (P1, P2, P3) for Imidacloprid, Thiamethoxam, Chlorantraniliprole, and 
Methoxyfenozide.

3.3 Pesticide leaching dynamics
Pesticide transport responded strongly to the infiltrating floodwater applied for 

eight continuous days in February 2021 at the site (Fig. 3 and Figs. S7-S9). Water 

samples taken at three locations from five depths in the upper 2.5 m of the unsaturated 

zone  showed  measurable  concentrations  of  Imadocloprid,  Methoxyfenozide, 

Thiamethoxam,  and  Chlorantraniliprole.  Pesticides  were  applied  7 

(Chlorantraniliprole, Thiamethoxam), 8.5 (Imadocloprid), and 29 (Methoxyfenozide ) 

months  before  the  recharge  experiment  (Table  S2  in  Zhou  et  al.,  2024),  likely 

explaining  the  one  order  of  magnitude  difference  in  concentrations  between 

Chlorantraniliprole or  Thiamethoxam and  the  other  two  pesticides.  Maximum 
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concentrations of the four pesticides ranged between 1.3 – 13.3 ppb in Profile 1 (P1), 0.4 

– 13.2 ppb in Profile 2 (P2), and 1.3 – 22.5 ppb in Profile 3 (P3).

Shallow soil layers (0-122 cm) showed the most significant decrease in pesticide 

concentrations,  likely  due  to  strong  leaching  from  these  layers,  except  for 

Methoxyfenozide,  whose  concentrations  increased.  Increasing  Methoxyfenozide 

concentrations  suggest  chemical  nonequilibrium  transport  and  recharge-facilitated 

release  of  Methoxyfenozide into  the  pore  water.  Pesticide  concentrations  in  larger 

depths (122-250 cm) varied between profiles: rising (mostly at P1), falling (mostly at 

P2),  or  initially rising then falling (mostly at  P2 and P3).  These patterns indicate 

different arrival rates of peak pesticide concentrations during flooding: slower at P1, 

faster at P2, and medium at P3, suggesting that pesticide transport is strongly controlled 

by sediment texture, as the P2 profile, with the highest sand fraction (84%), showed the 

fastest leaching among all profiles.

3.4 Water and pesticide mass balances and flooding water travel times
Water mass balance (Table 2), pesticide mass balance (Table 3) and flooding water 

travel times (Table 4) were calculated for the upper 2.5 m of the unsaturated zone. The 

largest  groundwater  recharge  (93.6%;  Table  2)  was  observed  at  P2,  the  smallest 

(87.3%) at P1, while P3 (87.6%) was between the two but closer to P1. The water mass 

balance between P2 and the other two profiles varied by up to 7%.

The highest leaching efficiency of Chlorantraniliprole and Methoxyfenozide (3.8-

6.2%) was reached at P2. The highest leaching efficiency of Imidacloprid (1.3-20.4%) 

was observed at P3, while the lowest (0.1-12.7%) was at P1 (Table 3). This finding was 

supported by the fact that the adsorption and degradation coefficients were largest at P1, 

followed by P3, while the lowest were at P2, as discussed in Section 3.1.

As expected, the P2 profile with the highest sand content produced the shortest 

travel times and highest flow velocities due to its greater permeability, followed by P3, 
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while P1 had the lowest. However, at some depths, P3 showed shorter travel times and 

higher velocities, likely due to localized coarse textures that enhanced water movement 

despite its lower overall sand content. Accordingly, bromide travel times or transport 

velocities between the three profiles differed by up to 80.6%, ranging between 0.35-6.97 

days or between 11.11-61.22 cm/day in the 2.5 m of the near-surface unsaturated zone 

(Table 4).

Table 2. Water mass balance components for three soil profiles.
Term P1 P2 P3

cm % cm % cm %

P+I 128.4 128.4 128.4

E 13.3 10.3 9.6 7.5 12.2 9.5

D 111.3 86.6 116.8 91.0 112.6 87.7

∆SRZ 6.9 5.4 2.7 2.1 7.6 5.9

∆SLZ 0.8 0.6 3.3 2.6 -0.1 0.0

GR 112.1 87.3 120.1 93.6 112.5 87.6

P: precipitation, F: flooding and  irrigation, E: evaporation, D: drainage, ∆S: storage 
change in the root zone 0~100 cm (∆SRZ) and deep vadose zone 100-250 cm (∆SLZ ), 
GR: groundwater recharge including D and ∆SLZ because water flow is considered to 
be  one-dimensional  and  thus  deep  drainage  below  the  root  zone  will  eventually 
recharge groundwater with a delay (de Vries and Simmers, 2002).

22

483

484

485

486

487

488

489
490

491

492

493

494

495

22



Table 3. Solute mass balance components for four pesticides at three soil profiles.
P1 P2 P3

Pesticide Term ppb∙cm
Mean

(%)

Range

(%)
ppb∙cm

Mean

(%)

Range

(%)

ppb∙c

m

Mean

(%)

Range

(%)

Imidacloprid Sp ,init 664.0 519.1 219.1

Lp -3.9 0.6 0-13.4 -6.5 1.3 0.2-15.4 -44.7 20.4 3.5-52.5

Dp -432.0 65.1 10-85.9 -198.6 38.3 2.6-77.2 -100.3 45.8 3.4-79

Sp , final 227.1 34.2 13.6-76.6 314.1 60.5 22.7-82 74.2 33.9 17.5-44.1

∆Sp ,RZ -321.9 -119.8 -147.5

∆Sp ,LZ -115.0 -85.3 2.6

Thiamethoxam Sp ,init 2441.9 2842.4 8898.0

Lp -309.9 12.7 8.4-20.5 -153.5 5.4 1.9-20.5 -117.4 1.3 0.2-15.7

Dp -431.2 17.7 1.1-29.6 -2555.5 89.9 73.1-97.8 -7437.5 83.6 48.1-94.2

Sp , final 1709.4 70.0 62.2-78.9 133.3 4.7 0.7-6.2 1300.4 14.6 4.8-36.1

∆Sp ,RZ -654.7 -487.2 -2518.6

∆Sp ,LZ -77.9 -2222.0 -5078.9

Chlorantraniliprole Sp ,init 6519.8 1754.5 1996.7 

Lp -7.5 0.1 0-2.1 -67.2 3.8 3.8-31.2 -56.3 2.8 0.2-12.1

Dp -1253.0 19.2 3.8-21.9 -456.5 26.0 0.2-26 -293.3 14.7 3.4-47.2

Sp , final 5259.8 80.7 78.1-94.2 1231.2 70.2 68.4-70.2 1647.2 82.5 52.4-84.5

∆Sp ,RZ -1097.6 -694.6 -399.6 

∆Sp ,LZ -162.3 171.4 50.1 

Methoxyfenozide Sp ,init 699.1 243.0 705.2
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Lp -2.6 0.4 0-16.6 -15.0 6.2 6.2-33.1 -8.9 1.3 0.2-9.4

Dp -331.1 47.4 11.5-60.4 -10.4 4.3 0-15.3 -184.2 26.1 3.6-45.1

Sp , final 365.1 52.2 39.3-72 217.6 89.6 66.9-89.6 512.0 72.6 54.5-87

∆Sp ,RZ -73.7 -28.9 -192.1

∆Sp ,LZ -5.0 3.5 -1.2

Note that Sinit and Sfinal are the initial and final pesticide storages in the soil profile, respectively, Lp is the pesticide leaching through drainage, Dp is the 
degradation due to chemical or biological reactions, and ∆Sp is a pesticide storage change in the root zone 0~100 cm (∆Sp ,RZ) and deep vadose zone 100-250 cm 
∆Sp ,LZ
..
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Table 4. Travel times and average velocities of bromide (calculated by the peak displacement 
method) from the soil surface to different soil depths at three soil profiles.

Term Depth (cm) P1 P2 P3

Travel time (day)

20 1.80 1.10 0.35
60 2.64 1.64 0.98
100 3.72 2.26 2.15
175 5.68 4.01 3.90
250 6.97 4.55 4.90

Flow velocity 
(cm/day)

20
11.1

1
18.18 57.14

60
22.7

3
36.59 61.22

100
26.8

8
44.25 46.51

175
30.8

1
43.64 44.87

250
35.8

7
54.95 51.02
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3.5 The maximum transport depth (MTD) of pesticides during the Ag-MAR period 
The 2.5 m model domains of the calibrated models were extended to 70 m using the coarse 

and fine texture sediment classifications obtained using the towed transient electromagnetic 

(tTEM) data (Goebel and Knight, 2021) to estimate the maximum transport depths of the four 

pesticides in the deep unsaturated zone. Fig. 5 compares the pesticides’ maximum transport 

depths (MTDs) for the tTEM-mapped fine- and coarse-textured layers shown in Table S2 for 

the Ag-MAR and Rainfall scenarios.  MTD is defined in this study as the soil profile depth 

where the concentration of a given pesticide falls to zero. It represents the maximum vertical 

extent to which a pesticide is transported in the unsaturated zone.

Fig. 6 and Table 5 show the mean values and standard deviations of MTDs. In Profile P1, 

the mean MTD values under the Rainfall scenario range between 7.64 m and 8.15 m, with 

standard deviations between 1.50 m and 1.59 m. Under the Ag-MAR scenario, pesticides 

traveled  much  deeper,  with  mean  MTD values  from 16.66  m to  17.02  m and  standard 

deviations between 3.13 m and 3.17 m. In Profile P2, the Rainfall scenario resulted in mean 

MTD values between 7.69 m and 8.15 m, with standard deviations from 1.33 m to 1.55 m. In 

contrast, the Ag-MAR scenario showed deeper transport, with mean MTDs ranging from 17.86 

m to 18.17 m and standard deviations around 3.44 m. In Profile P3, the Rainfall scenario 

showed mean MTD values between 5.73 m and 8.15 m, with standard deviations between 1.57 

m and 1.72 m. Under Ag-MAR, mean MTD values increased significantly, ranging from 15.85 

m to 17.48 m, with standard deviations from 3.05 m to 3.09 m. The results indicate that the 

application  of  1.2  m3/m2 of  water  in  the  Ag-MAR scenario  increased  the  MTDs for  all 

pesticides in all profiles, as indicated by a consistent downward shift of MTDs compared to the 

Rainfall  scenario. The  Ag-MAR  scenario  shows  greater  variability  (higher  standard 

deviations), indicating that Ag-MAR practices resulted in more variable pesticide transport 

depths. Overall, Profile P2 generally showed the deepest MTDs across both scenarios, followed 

by P3 and P1.  Thiamethoxam generally showed the largest MTDs, while  Methoxyfenozide 
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showed the smallest MTDs in the unsaturated zone of all soil profiles in response to the Ag-

MAR or Rainfall scenarios (Fig. 6 and Table 5).

Fig. 7 and Table 5 show the relative differences in MTDs of pesticides between the Ag-

MAR and Rainfall scenarios (i.e., RMTDs). The RMTD is expressed as a percentage increase 

in the maximum transport depth under Ag-MAR relative to the Rainfall scenario. In P1, the 

RMTD values  ranged from 116.6% ± 42.9% for  Thiamethoxam to  123.6% ± 47.9% for 

Methoxyfenozide. In P2, the RMTD values ranged from 130.3% ± 39.4% for Thiamethoxam to 

138.9% ± 60.6% for Methoxyfenozide. In P3, the RMTD values ranged from 111.5% ± 52.1% 

for Thiamethoxam to 159.4% ± 53.5% for Methoxyfenozide. Overall, RMTDs were larger at P2 

than  at  P1  and  P3.  Thiamethoxam generally  showed  the  lowest  RMTDs,  while 

Methoxyfenozide showed the largest RMTDs in the unsaturated zone of all profiles in response 

to the Ag-MAR or Rainfall scenarios.

Interestingly, under the Rainfall scenario, the impact of the deep vadose zone soil textures 

on pesticide transport was minimal, with similar MTD values observed across various soil 

textures (Figs. 5a-5f). However, a subtle pattern emerged, indicating that finer-textured soils in 

Layers 6 and 7 (2.5-20 meters) resulted in slightly deeper MTDs (Figs. 5a-5f). This is because 

finer soils have a higher unsaturated hydraulic conductivity than coarser soils during drier 

conditions (in the Rainfall scenario), allowing water to flow more consistently downward. As a 

result, pesticides were transported deeper in fine soils. In contrast, a clear and consistent trend 

was observed under the Ag-MAR scenario, where coarser-textured soils in Layers 6 and 7 (2.5-

20 meters) led to significantly deeper MTDs (Figs. 5a-5f). During wetter conditions in the Ag-

MAR scenario, there were stronger hydraulic gradients, pushing larger volumes of water with 

dissolved pesticides further into the deep vadose zone, particularly through coarser soils that 

allowed for faster water movement due to their larger pores and higher saturated hydraulic 

conductivities.

The occurrence of a coarser textured layer at the depths of 2.5-5 m (Layer 6) or 5-20 m 

(Layer 7) in Profiles 1 and 3 significantly impacted MTDs under Ag-MAR, while the finer or 

coarser-textured layers below (Layer 8: 20-35 m and Layer 9: 35-70 m) had only a minor effect 
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on pesticide transport. When the soil textures at Layers 6 or 7 were not loamy sand or sand, 

MTDs under Ag-MAR can be controlled within the first 20 m of the unsaturated zone for any 

other soil texture considered (Fig. 5a-5f).

Figure 5. Violin plots of the maximum transport depths (MTDs) of the four pesticides, 
including Imidacloprid (IMCP), Thiamethoxam (TMTX), Chlorantraniliprole (CRNP), and 
Methoxyfenozide (MTFZ) during the Ag-MAR period (Feb. 16 to Feb. 24, 2021) in response 

to the Rainfall and Ag-MAR scenarios and different soil texture permutations (Table S2) 
reflecting fine and coarse textured materials in the deep unsaturated zone. MTDs are shown 
for the fine/coarse-textured Layer 6 (2.5-5 m) (plots a-c), coarse-textured Layer 7 (5-20 m) 

(plots d-f), the fine/coarse-textured Layer 8 (20-35 m) (g-i), and the coarser-textured Layer 9 
(35-70 m) (j-l) for the three soil profiles (P1, P2, P3).
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Figure 6. Comparison of mean values and standard deviations of maximum transport depths 
(MTDs) for  the four pesticides,  including  Imidacloprid (IMCP),  Thiamethoxam (TMTX), 
Chlorantraniliprole (CRNP), and Methoxyfenozide (MTFZ) during the Ag-MAR period (Feb. 
16 to Feb. 24, 2021) in response to the Rainfall and Ag-MAR scenarios. The markers represent 
the mean values, and error bars indicate standard deviations.
 

Figure 7. Comparison of the mean values and standard deviations of relative differences in 
the  maximum  transport  depths  (RMTD)  for  the  four  pesticides,  including  Imidacloprid 
(IMCP), Thiamethoxam (TMTX), Chlorantraniliprole (CRNP), and Methoxyfenozide (MTFZ) 
during the Ag-MAR period (Feb. 16 to Feb. 24, 2021) between the  Rainfall and Ag-MAR 
scenarios. The markers represent the mean values, and error bars indicate standard deviations.

Table 5. Impact of Ag-MAR on water flow and pesticide transport across the three soil 
profiles (P1, P2, P3).

Indicators P1 P2 P3

Water flow Sand content 41% 84% 61%
Capillary barrier at 5-20 m Yes No Yes

Recharge efficiency (%) 87.3 93.6 87.6
Flow velocity (cm/day) 11.11-35.87 18.18-54.95 44.87-61.22

Imidacloprid Leaching efficiency (%) 0-13.4 0.2-15.4 3.5-52.5
MTD_Rainfall (m) 7.86±1.56 7.65±1.33 8.04±1.57

MTD_Ag-MAR (m) 16.70±3.14 17.86±3.45 17.45±3.08
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RMID (%) 116.9±43.0 139.8±59.2 114.0±51.9

Thiamethoxam Leaching efficiency (%) 8.4-20.5 1.9-20.5 0.2-15.7
MTD_Rainfall (m) 8.08±1.59 8.15±1.55 8.15±1.64

MTD_Ag-MAR (m) 17.02±3.16 18.11±3.44 17.49±3.09
RMID (%) 116.6±42.9 130.3±59.4 111.5±52.1

Chlorantraniliprol

e
Leaching efficiency (%) 0-2.1 3.8-31.2 0.2-12.1

MTD_Rainfall (m) 8.06±1.58 7.98±1.53 8.05±1.58
MTD_Ag-MAR (m) 16.75±3.13 18.17±3.46 17.45±3.09

RMID (%) 113.0±42.1 136.9±62.7 113.8±52.2

Methoxyfenozide Leaching efficiency (%) 0-16.6 6.2-33.1 0.2-9.4
MTD_Rainfall (m) 7.64±1.50 7.78±1.44 5.73±0.72

MTD_Ag-MAR (m) 16.67±3.17 17.94±3.44 15.85±3.05
RMID (%) 123.6±47.8 138.9±60.6 159.4±53.5

Note  that  MTD  is  the  maximum  transport  depth  (i.e.,  the  depth  where  the  pesticide 
concentration is zero) from Feb. 16 to Feb. 24, 2021 (i.e., Ag-MAR time period) for Rainfall 
and Ag-MAR scenarios (MTD_Rainfall and MTD_Ag-MAR).

4 Discussion

4.1 Comparison of findings with Zhou et al. (2024)
Both studies evaluated model performance (Section 3.1), with both achieving good results 

for  surface  water  levels  and  soil  moisture  but  facing  challenges  in  predicting  pesticide 

concentrations  at  deeper  soil  depths  of  the  upper  2.5  m unsaturated  zone.  In  this  study, 

significant deviations between the observed and simulated pesticide residue concentrations 

occurred in P2 for Imidacloprid and Methoxyfenozide. Similarly, Zhou et al. (2024) found that 

preferential  flow paths in deeper layers made it  difficult  for models to accurately predict 

pesticide movement. Dual-porosity models (DPM) helped improve surface water and bromide 

predictions in Zhou et al. (2024), but they still struggled with pesticide dynamics, highlighting 

the need for better models to account for complex flow paths and slow chemical reactions.

Degradation and adsorption of pesticides were important factors in both studies (Section 

3.3).  This  study  found  degradation  rates  particularly  critical  for  Imidacloprid and 

Thiamethoxam in P1 and P2, while Zhou et al.  (2024) reported similar findings for other 

pesticides. Adsorption was also key, especially for Chlorantraniliprole and Methoxyfenozide. 
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Both this study and Zhou et al.  (2024) underscore the critical role of soil texture in 

influencing model parameters and water flow and pesticide transport (Section 3.2 and Section 

3.4). Sandier profiles, like P2, exhibit a higher saturated hydraulic conductivity (K s), leading to 

faster water movement. In contrast, clay-rich soils as found at P1 have lower K s, slowing the 

water movement. Cemented duripans in some profiles (P1 and P3) further reduced K s, creating 

barriers to water infiltration. The sandier P2 profile had the highest groundwater recharge 

efficiency and shortest travel times, leading to more pesticide leaching, which was consistent 

across both studies.

A  major  strength  of  this  study  is  its  use  of  parameter  uncertainty  analysis  through 

Bayesian  methods,  which  offers  a  more  comprehensive  approach  than  particle  swarm 

optimization (PSO) in Zhou et al. (2024). While PSO can provide uncertainty estimates by 

analyzing variability within the swarm, Bayesian analysis directly estimates the full posterior 

distribution of parameters, capturing a broader range of possible values and interactions. This 

provides  a  deeper  understanding  of  how  variations  in  pesticide  properties  affect  model 

predictions (as shown in the range of pesticide mass balance components in Table 3), enhancing 

risk assessment of pesticide leaching and informing groundwater management under Ag-MAR 

practices.

4.2 Site-specific transport behaviors
The  study  revealed  that  both  the  maximum  transport  depths  (MTDs)  and  relative 

differences in the maximum transport depths (RMTDs) between the Ag-MAR and Rainfall 

scenarios varied significantly across profiles (Figs. 5, 6, and 7; Table 5). In Profile P2, MTDs 

increased significantly from the Rainfall to Ag-MAR scenarios, rising from approximately 

7.69–8.15 m under Rainfall to 17.86 m to 18.17 m under Ag-MAR across all pesticides, 

reflecting a substantial deepening of pesticide transport under high infiltration rates. The deeper 

transport  observed in  Profile P2 can be attributed to  its  high sand content  (84%),  which 

promotes faster water infiltration and deeper movement of pesticides. However, Profiles P1 and 
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P3, which contain more fine-textured soils in the shallow vadose zone, exhibited lower MTDs 

due to slower water flow.

Under the Rainfall scenario, Layers 6 (2.5–5 m) and 7 (5–20 m) acted as natural capillary 

barriers,  slowing  the  downward  movement  of  water  and  pesticides.  This  is  because  the 

transition from fine-textured layers to coarser ones created a hydraulic discontinuity, impeding 

water infiltration at these depths. The presence of capillary barriers under drier conditions 

allowed water to accumulate in the upper layers, reducing the transport of pesticides into deeper 

zones. However, under the Ag-MAR scenario, the large hydraulic gradients caused infiltration 

dynamics  to  be  controlled by soil  texture  and hydraulic  conductivity,  with  coarse  layers 

promoting faster and deeper transport of water and pesticides. This distinction is critical for 

designing  effective  Ag-MAR  strategies  to  minimize  groundwater  contamination  risks, 

particularly in regions with variable soil textures.

4.3 Pesticide-specific transport behaviors
The transport behaviors of the four pesticides varied significantly in both absolute MTDs 

and RMTDs, highlighting the influence of pesticide properties on their movement through the 

vadose zone (Figs. 5, 6, and 7; Table 5).

Methoxyfenozide consistently exhibited the smallest MTDs across all profiles, such as 

7.64 ± 1.49 m under Rainfall and 16.66 ± 4.31 m under Ag-MAR in P1. However, it showed the 

largest RMTDs, ranging from 123.6% ± 47.8% in P1 to 159.4% ± 53.5% in P3. This suggests 

that Methoxyfenozide, due to its low mobility and high persistence (discussed in Section 3.1), is 

more likely to be transported to deep soil layers during intensive flooding like Ag-MAR.

In contrast,  Thiamethoxam generally exhibited the largest MTDs and smaller RMTDs 

across profiles. For example, its MTDs reached 8.15 ± 1.55 m under Rainfall and 18.10 ± 3.44 

m under Ag-MAR in P2, with RMTDs ranging from 116.6% ± 42.9% in P1 to 130.3% ± 39.4% 

in P2. These results indicate that Thiamethoxam’s high mobility allows it to consistently reach 

deeper layers under both scenarios, resulting in smaller relative differences in transport depths 

between Rainfall and Ag-MAR scenarios.
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The variability  in  both  MTDs and RMTDs across  the  four  pesticides  highlights  the 

importance of considering soil textures, hydraulic conditions, and pesticide properties when 

assessing  groundwater  contamination  risks.  Methoxyfenozide poses  a  higher  risk  of  deep 

transport under Ag-MAR due to its large RMTDs, while Thiamethoxam, despite having the 

largest absolute MTDs, shows smaller relative increases during Ag-MAR due to its greater 

mobility.  Understanding  these  dynamics  is  crucial  for  designing  effective  Ag-MAR 

management strategies to mitigate pesticide leaching risks.

4.4 Limitations of this study
Several site-specific and analytical constraints influenced the modeling results presented in 

this study. First, the bromide or pesticide samples were not taken at the exact same locations as 

the  soil  sensors,  installed  at  a  maximum of  3  meters  apart.  Pesticide  sampling  required 

collection of 1L pore water samples, which may have originated from a relatively large area of 

influence since it was collected with a high-capacity suction lysimeter over a 4–6-hour time 

window. Pesticide concentrations thus may not accurately represent soil water at a particular 

location and time. 

Second, we employed a 1D model to simulate water flow and pesticide transport in the 

vadose zone primarily due to the vertical nature of the flow at our study site. The flooded 

recharge  plot  covered  an  area  of  32,376  m²  (approximately  100  m ×  320  m),  which  is 

significantly larger than the 2.5 m soil profile depth. Given the uniform water application at the 

surface, the dominant flow pathway is expected to be vertical infiltration through the vadose 

zone. Therefore, the assumption of predominantly vertical flow is reasonable for this study. 

However, we assumed the groundwater table remained at 70 m during the entire experiment 

period. Groundwater levels are influenced by factors such as pumping drawdown and recharge 

mounds, which lead to lateral groundwater flow may cause variations and deviate from the 

constant 70 m assumption. Therefore, while our 1D model captures vertical transport through 

the vadose zone, a 2D/3D model would better evaluate broader regional groundwater quality 

impacts.
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Third,  in this  study,  the measured BTCs of bromide were used to calibrate the soil 

hydraulic and basic solute transport parameters (λ) and then used in the subsequent pesticide 

transport parameter optimization. This means that bromide and pesticide transport/reaction 

parameters were determined independently. As a result, the optimized dispersivities derived 

from bromide breakthrough curves (BTCs) may not be suitable for pesticides. Consequently, 

simultaneously  improving  the  model  performance  for  bromide  and  pesticides  BTCs  is 

challenging (Table S1).  For instance,  one study conducted the Morris sensitivity analysis 

simultaneously for water flow, nonreactive tracer, and reactive solute transport parameters for 

each reactive solute (Gatel et al., 2019). They found that soil hydraulic parameters were more 

influential than adsorption parameters in determining the Nash-Sutcliffe efficiencies (NSEs) of 

output solute fluxes. The authors recommended selecting the same set of parameters from the 

sensitivity analysis results that yielded the best NSE values for output flux simulations across 

all solutes, which significantly improved output solute flux simulation.

Fourth,  the omission of preferential  flow and transport  and kinetic adsorption (a.k.a. 

physical and chemical nonequilibrium), often difficult to observe at the point scale  (Vogel, 

2019), makes it more challenging to accurately quantify pesticide fate and transport and its 

potential groundwater contamination risk (Jarvis, 2007). The earlier arrival and much narrower 

shapes of observed bromide BTCs or earlier arrival of observed pesticides BTCs compared to 

those simulated at P2 and P3 may be caused by preferential flow/transport (i.e.,  physical 

nonequilibrium) (Haws et al., 2005). In addition, we considered only linear adsorption, which 

requires fewer input parameters, while much research shows that nonlinear adsorption is more 

appropriate in some cases (Cheviron and Coquet, 2009). Model performance was worse for 

BTCs of Methoxyfenozide and at P2, which may be related to the omission in this study of 

potential kinetic adsorption (i.e., chemical nonequilibrium) since the rapid water flow during 

intensive flooding makes it more difficult to reach equilibrium adsorption (Dusek et al., 2015).

Fifth, the soil hydraulic parameters in the deep unsaturated zone were generated from 

typical 12 soil textural classes of the USDA textural triangle. In addition, since no measured 
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adsorption and degradation coefficients were available in this study, they were neglected for the 

deep unsaturated zone (2.5-70 m). These simple treatments might bias the model results.

5 Conclusions
By integrating field observations, HYDRUS-1D modeling, and a Bayesian probabilistic 

approach,  we  analyzed  the  transport  of  four  pesticides—Imidacloprid,  Thiamethoxam, 

Chlorantraniliprole, and Methoxyfenozide in three (P1, P2, P3) deep (70 m) unsaturated zones 

characterized by varying textures  in  response to  large water  applications (1.2 m3/m2)  for 

intentional groundwater recharge (agricultural managed aquifer recharge - Ag-MAR).

The results demonstrate that soil texture significantly controls the maximum transport 

depths (MTDs) of pesticides. Profiles P1 and P3, characterized by fine-textured soils in the 

shallow vadose zone, exhibited lower MTDs compared to Profile P2, which contained the 

highest  sand content.  Under natural  rainfall  conditions,  capillary barriers formed by fine-

textured  layers  between  2.5  and  20  meters  depth  effectively  slowed water  and  pesticide 

infiltration. However, during Ag-MAR, the high-pressure infiltration overcame these barriers, 

pushing water and dissolved pesticides deeper into the vadose zone. This indicates that under 

large-scale recharge practices, subsurface heterogeneity must be carefully considered in site 

selection to manage the risks of pesticide leaching into groundwater.

The  transport  behavior  of  individual  pesticides  varied  based  on  their  properties. 

Methoxyfenozide exhibited the smallest absolute MTDs but posed the highest risk of deep 

transport  under  Ag-MAR due  to  its  low mobility  and  persistence.  Its  relative  maximum 

transport depth (RMTD) increased significantly during Ag-MAR, particularly in Profile P3, 

where  it  nearly  tripled  compared  to  the  Rainfall  scenario.  In  contrast,  Thiamethoxam 

consistently displayed the deepest absolute MTDs across all profiles due to its high mobility, 

with  relatively  small  RMTD  increases  between  Rainfall  and  Ag-MAR  scenarios.  These 

contrasting behaviors highlight the importance of considering pesticide-specific properties 

when assessing the potential for groundwater contamination under recharge practices.
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Overall, this study provides practical recommendations for managing pesticide leaching 

risks  during  Ag-MAR.  Site  selection  should  prioritize  areas  with  fine-textured  soils  to 

minimize deep pesticide transport. Additionally, the timing and type of pesticide applications 

should be carefully managed, especially for persistent pesticides like  Methoxyfenozide that 

pose a higher risk of reaching groundwater during recharge events. Future research should 

further  explore  preferential  flow  and  nonlinear  adsorption  processes  to  improve  model 

accuracy and better predict pesticide fate in the deep vadose zone.
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