
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Axioms for Asynchronous Processes

Permalink
https://escholarship.org/uc/item/6tx2s6t2

Author
Matsikoudis, Eleftherios

Publication Date
2010

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6tx2s6t2
https://escholarship.org
http://www.cdlib.org/

Axioms for Asynchronous Processes

by

Eleftherios Matsikoudis

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Electrical Engineering and Computer Sciences

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Edward A. Lee, Chair
Professor Christos H. Papadimitriou

Professor Leo A. Harrington

Fall 2010

Axioms for Asynchronous Processes

Copyright 2010
by

Eleftherios Matsikoudis

1

Abstract

Axioms for Asynchronous Processes

by

Eleftherios Matsikoudis

Doctor of Philosophy in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Edward A. Lee, Chair

From classical computability theory to modern programming language design, the
mathematical concept of function has dominated our perception of sequential computation.
But as soon as we venture into the realm of concurrent interaction, it is well understood
that this concept has to be abandoned. What are we to replace it with?

This question is considered too general to admit a definitive answer. If we want such an
answer, we must be willing to narrow our scope, and impose some constraint on the form of
concurrent interaction that we choose to consider. Here, we derive such a constraint solely
from the intuitive notion of asynchrony. And under this constraint, we propose a
mathematical concept of sequential asynchronous process, which we define axiomatically,
and put forward as the sought replacement to the classical function.

Our theory is an interleaving theory. And traditionally, interleaving theories have failed to
integrate a satisfactory treatment of what is known as the finite delay property, according
to which, if a process can make progress, then it will eventually do so, but after an
arbitrary amount of time. This failure is generally attributed to the so-called expansion
law of such theories, which reduces parallel execution to indeterminate serialization. But in
truth, the problem is deeply rooted in the concept of labelled transition system, which is
the pervasive mathematical object underlying such theories.

To solve this problem, we introduce a new type of system, in which, instead of labelled
transitions, we have, essentially, sequences of labelled transitions. We call systems of this
type labelled execution systems. We use a coalgebraic representation to obtain a proper
concept of bisimilarity among such systems, and study the conditions under which that
concept agrees with the intuitive notion of branching equivalence that one has for them.
Finally, we examine the difference in expressive power and branching complexity between
labelled execution systems and labelled transition systems.

The intended interpretation of our concept of asynchronous process is a state of what we

2

may think of as a very large labelled execution system, and the role of our axioms is to fix
the shape of that system.

There are two groups of axioms. The first group is used to specify the form of the
executions of the system, and the way in which they branch off one another, in a manner
consistent with our intuitive notion of behaviour of an asynchronous process. The second
group is deduced from a single extremal axiom asserting the finality of the system in a
covariety of coalgebras relating to the first group of axioms, and is used to guarantee that
every behaviour is accounted for exactly once.

i

Contents

1 Introduction 1

2 Transition Systems 3
2.1 Basic definitions . 3
2.2 From systems to coalgebras . 6
2.3 More on homomorphisms and bisimulations 17
2.4 Behaviour modelling and final coalgebras . 28
2.5 Existence of final coalgebras . 45

3 Execution Systems 50
3.1 From transitions to executions . 50
3.2 From systems to coalgebras and back . 52
3.3 Abrahamson systems . 58
3.4 Generable systems . 61
3.5 Behaviour modelling and covarieties . 86
3.6 Execution systems in the literature . 89

4 Sequential Asynchronous Processes 93
4.1 Our intuitive notion of asynchronous process 93
4.2 Asynchronous process types . 94
4.3 Systems and coalgebras . 95
4.4 Axiomatization . 104
4.5 The Postulate of Delegated Output . 105

Bibliography 108

1

Chapter 1

Introduction

From classical computability theory to modern programming language design, the
mathematical concept of function has dominated our perception of sequential computation.
But as soon as we venture into the realm of concurrent interaction, it is well understood
that this concept has to be abandoned. What are we to replace it with?

This question is considered too general to admit a definitive answer. If we want such an
answer, we must be willing to narrow our scope, and impose some constraint on the form of
concurrent interaction that we choose to consider. Here, we derive such a constraint solely
from the intuitive notion of asynchrony. And under this constraint, we propose a
mathematical concept of sequential asynchronous process, which we define axiomatically,
and put forward as the sought replacement to the classical function.

Our theory is an interleaving theory. And traditionally, interleaving theories have failed to
integrate a satisfactory treatment of what is known as the finite delay property, according
to which, if a process can make progress, then it will eventually do so, but after an
arbitrary amount of time. This failure is generally attributed to the so-called expansion
law of such theories, which reduces parallel execution to indeterminate serialization. But in
truth, the problem is deeply rooted in the concept of labelled transition system, which is
the pervasive mathematical object underlying such theories.

To solve this problem, we introduce a new type of system, in which, instead of labelled
transitions, we have, essentially, sequences of labelled transitions. We call systems of this
type labelled execution systems. We use a coalgebraic representation to obtain a proper
concept of bisimilarity among such systems, and study the conditions under which that
concept agrees with the intuitive notion of branching equivalence that one has for them.
Finally, we examine the difference in expressive power and branching complexity between
labelled execution systems and labelled transition systems.

The intended interpretation of our concept of asynchronous process is a state of what we

CHAPTER 1. INTRODUCTION 2

may think of as a very large labelled execution system, and the role of our axioms is to fix
the shape of that system.

There are two groups of axioms. The first group is used to specify the form of the
executions of the system, and the way in which they branch off one another, in a manner
consistent with our intuitive notion of behaviour of an asynchronous process. The second
group is deduced from a single extremal axiom asserting the finality of the system in a
covariety of coalgebras relating to the first group of axioms, and is used to guarantee that
every behaviour is accounted for exactly once.

3

Chapter 2

Transition Systems

2.1 Basic definitions

Definition 2.1.1. A transition system is an ordered pair 〈S, T 〉 such that the following are
true:

(a) S is a set;

(b) T is a binary relation1 on S.

Assume a transition system 〈S, T 〉.

We write s −→T s
′ if and only if s T s′.

We call any s ∈ S a state of 〈S, T 〉, and any 〈s, s′〉 ∈ graphT a transition of 〈S, T 〉.

The concept of transition system is ubiquitous in computer science: Turing machines,
rewriting systems, Kripke structures are only but a few examples. But as versatile as it is,
one cannot use it to model anything more about an individual transition than a change of
state in the system. And we will need more than that.

Assume a non-empty set L of labels.

Definition 2.1.2. An L-labelled transition system is an ordered pair 〈S, T 〉 such that the
following are true:

1 A binary relation R is an ordered triple 〈D,C,G〉 such that D is a set, C is a set, and G ⊆ D×C. We
write domR for D, codR for C, and graphR for G. We call domR the domain of R, codR the codomain of
R, and graphR the graph of R.

CHAPTER 2. TRANSITION SYSTEMS 4

(a) S is a set;

(b) T is a binary relation between S and L× S.

Assume an L-labelled transition system 〈S, T 〉.

We write s
l−→T s

′ if and only if s T 〈l, s′〉.

We call any s ∈ S a state of 〈S, T 〉, and any 〈s, 〈l, s′〉〉 ∈ graphT a transition of 〈S, T 〉.

Labelled transition systems have been around at least since Moore’s work on finite
automata in [43], where they appeared in tabular as well as pictorial form. In their present
form, they were first introduced by Keller in [32], where they were called named transition
systems. And although Keller used them to model parallel computation, it was apparently
Milner who first saw labels as shared vehicles of interaction, and labelled transition systems
as models of communicating behaviour, paving the way for [37] and the advent of process
algebra.

Assume L-labelled transition systems 〈S1, T1〉 and 〈S2, T2〉.

Definition 2.1.3. A bisimulation between 〈S1, T1〉 and 〈S2, T2〉 is a binary relation
B : S1 ↔ S2 such that for any s1 and s2 such that s1 B s2, the following are true:

(a) if s1
l−→T1 s

′
1, then there is s′2 such that s2

l−→T2 s
′
2 and s′1 B s′2;

(b) if s2
l−→T2 s

′
2, then there is s′1 such that s1

l−→T1 s
′
1 and s′1 B s′2.

We say that B is a bisimulation on 〈S, T 〉 if and only if B is a bisimulation between 〈S, T 〉
and 〈S, T 〉.

We say that B is a bisimulation equivalence on 〈S, T 〉 if and only if B is a bisimulation on
〈S, T 〉, and an equivalence relation on S.

We say that s1 and s2 are bisimilar among 〈S1, T1〉 and 〈S2, T2〉 if and only if there is a
bisimulation B between 〈S1, T1〉 and 〈S2, T2〉 such that s1 B s2.

We say that s1 and s2 are bisimilar in 〈S, T 〉 if and only if s1 and s2 are bisimilar among
〈S, T 〉 and 〈S, T 〉.

For example, consider the following three diagrams, which are of course pictures of labelled
transition systems:

CHAPTER 2. TRANSITION SYSTEMS 5

s0

s1

s2 s3

l0

l1 l2

s′0

s′1 s′2

s′3
s′4 s′5

s′6

l0 l0

l1

l2 l1

l2

s′′0

s′′1 s′′2

s′′3 s′′4

l0 l0

l1 l2

s0 and s′0 are bisimilar among the first two diagrams; neither of them is bisimilar to s′′0.

The idea of bisimilarity is that for any path branching out of either one of the two states,
there is a path branching out of the other one, that carries the same labels in the same
order, and goes through states that are again related to the corresponding states of the
first path in the same way. This last piece of recursion is what separates bisimilarity from
trace equivalence, making the former sensitive to the branching potential of each state.

Notice that a transition system can be thought of as a labelled transition system, every
transition of which is decorated with a single fixed label. This induces a concept of
bisimulation between transition systems: simply erase every instance of l in the above
definition.2

The concept of bisimulation is due to David Park (see [46]), and is without doubt the most
significant contribution of the theory of concurrency to the broader arena of computer
science and mathematics at large.3 After learning about Milner’s work in [39], where
bisimulation was worked out in the context of a calculus for the first time, and prompted
by the perception of an analogy between the mathematical notion of a set and that of a
process with just one kind of action, Peter Aczel used transition systems to model a theory
of sets that need not be well founded, and the concept of bisimulation to strengthen, in a
sensible and pleasing way, the Axiom of Extensionality therein (see [2]).4 But then he went
further. He noticed that transition systems could be viewed as coalgebras for a certain
endofunctor, and models of his axiom as final objects in a suitable category of such
coalgebras. Work on a generalization of this result culminated in [5] to bear a final
coalgebra theorem, asserting the existence of final coalgebras for a wide range of common
endofunctors, and a categorical definition of bisimulation, generalizing the latter as a viable

2 This will be a common theme throughout this and the next chapter: we will often state definitions
and prove statements only for the labelled case; a proper “unlabelling” will immediately carry these over to
the non-labelled case.

3 To be fair, the concept of bisimulation has been independently discovered in the fields of modal logic
and set theory as well. See [58] for a comprehensive historical account.

4 Forti and Honsell had already discovered and used the concept of bisimulation to that end in [22]. But
here, we are not so much interested in non-well-founded set theory, but rather in the developments
following Aczel’s work on it.

CHAPTER 2. TRANSITION SYSTEMS 6

coalgebraic dual to the algebraic notion of congruence. This led eventually to a general
theory of universal coalgebra (see [56]).

We will now begin to recast things in this coalgebraic framework. This will be of great
technical as well as conceptual use, especially in the next chapter, when we replace the
concept of transition system with another one, more apt to our purpose. Working with
coalgebras, we will need to make reference to a few common concepts from category theory,
and some familiarity with the latter will at times be useful. But such familiarity is not
assumed, and we will make an effort to supplement each category-theoretic definition or
argument with a concrete explanation.

2.2 From systems to coalgebras

Consider once more the concept of transition system. We have formalized this as a set of
states together with a binary relation on that set. But there is another way: to look at this
binary relation as a set-valued function.

Assume sets S1 and S2.

Assume a binary relation R : S1 ↔ S2.

We write funR for a function5 from S1 to P S2 such that for any s1 ∈ S1,

(funR)(s1) = {s2 | s1 R s2}.

Assume a function f : S1 →P S2.6

We write rel f for a binary relation between S1 and S2 such that for any s1 ∈ S1 and any
s2 ∈ S2,

s1 (rel f) s2 ⇐⇒ s2 ∈ f(s1).

The following is immediate:

Proposition 2.2.1. The following are true:

(a) rel(funR) = R;

(b) fun(rel f) = f .

5 A function f is an ordered triple 〈D,C,G〉 such that D is a set, C is a set, G ⊆ D × C, and for every
d, c1 and c2, if 〈d, c1〉 ∈ G and 〈d, c2〉 ∈ G, then c1 = c2. We write dom f for D, cod f for C, and graph f for
G. We call dom f the domain of f , cod f the codomain of f , and graph f the graph of f .

6 For every set S, we write P S for the power set of S.

CHAPTER 2. TRANSITION SYSTEMS 7

By Proposition 2.2.1, a transition system 〈S, T 〉 can be represented as a function from S to
P S, namely as funT , and conversely, a function τ : S →P S can be represented as a
transition system, namely as 〈S, rel τ〉. Thus, we could alternatively define a transition
system to be a function from a set to the power set of that set, or more verbosely, a pair of
a set S and a function τ : S →P S. This would be a coalgebraic definition, one we shall
have more to say about after a more general introduction into the concept of coalgebra.

A coalgebra is defined relative to an endofunctor, and an endofunctor is defined relative to
a category.

A category is just a two-sorted partial algebra of objects and arrows, with an identity, a
domain, a codomain, and a composition operation, satisfying a couple of simple equational
axioms. These operations assume their suggested meaning in every concrete category,
where any object is a set, possibly with some structure, and any arrow is a function from
one set to another, typically preserving structure.

For reasons that will soon become clear, we shall want to work with some very large
categories, the collections of whose objects and arrows are not sets, not even proper classes.

The first such category that we will be working with is the category of all classes7 and all
class functions8 between them.

We write Class for the category whose objects are all the classes, and arrows all the class
functions.

It is of course only in a generalized sense that we may think of Class as a partial algebra.
All the same, we shall not worry too much about this, or any other issue of foundational
nature. Such issues can be addressed in one way or another (for example, see [35, chap. I]
or [6, chap. 2]), but a thorough treatment here would only obscure the presentation of our
ideas. And in any case, we will avoid impredicative constructions and comprehension
principles that test the consistency of the theory.

A functor is a category homomorphism: a structure-preserving map from one category to
another.

An endofunctor is a functor from a category to that same category.

For example, an endofunctor on Class is a map from Class to Class that maps classes to
classes and class functions to class functions, preserving the identity operation on classes,
and the domain, codomain, and composition operation on class functions.

7 A collection C of sets is a class if and only if there is a unary formula ϕ of set theory such that for
every set S, S ∈ C if and only if ϕ(S) is true.

8 A class function f is an ordered triple 〈D,C,G〉 such that D is a class, C is a class, G ⊆ D × C, and
for every d, c1 and c2, if 〈d, c1〉 ∈ G and 〈d, c2〉 ∈ G, then c1 = c2. We write dom f for D, cod f for C, and
graph f for G. We call dom f the domain of f , cod f the codomain of f , and graph f the graph of f .

CHAPTER 2. TRANSITION SYSTEMS 8

One such endofunctor is the functor Pow, which assigns to every class C the class

PowC = {S | S is a subset of C}, 9

and to every class function f : C1 → C2 a class function

Pow f : PowC1 → PowC2

such that for every S ∈ PowC1,

(Pow f)(S) = {f(s) | s ∈ S}.

Notice that if the class C is actually a set, then

PowC = P C.

Assume an endofunctor F on Class.

Definition 2.2.2. An F -coalgebra is an ordered pair 〈C, γ〉 such that the following are
true:

(a) C is a class;

(b) γ is a class function from C to F (C).

Assume an F -coalgebra 〈C, γ〉.

We call C the carrier of 〈C, γ〉, and γ the cooperation of 〈C, γ〉.

We say that 〈C, γ〉 is small if and only if C is a set.

We say that 〈C, γ〉 is large if and only if C is a proper class.

By this definition, a Pow-coalgebra is just an ordered pair 〈C, τ〉 of a class C and a class
function τ : C → PowC, which is precisely what we have recognized as another way to
formalize the concept of transition system, with the caveat that C be a set.

Assume a Pow-coalgebra 〈C, τ〉.

We call 〈C, τ〉 a transition coalgebra.

We write c −→τ c
′ if and only if c′ ∈ τ(c).

Assume a transition system 〈S, T 〉.

The following is immediate:

9 We use the verbal expression “S is a subset of C” instead of the mathematical expression “S ⊆ C” to
emphasize the constraint that S be a set.

CHAPTER 2. TRANSITION SYSTEMS 9

Proposition 2.2.3. The following are true:

(a) s −→T s
′ if and only if s −→funT s

′;

(b) if 〈C, τ〉 is small, then c −→τ c
′ if and only if c −→rel τ c

′.

This is all very nice, but why bother with this alternative formalization in the first place?

To begin with, we need to understand what the informal meaning of the concept of
F -coalgebra is. For this, it will help to consider the dual concept of F -algebra first, where
it is not hard to establish a connection with the more common concept of Σ-algebra, the
principal object of study in the theory of universal algebra.

Definition 2.2.4. An F -algebra is an ordered pair 〈C, α〉 such that the following are true:

(a) C is a class;

(b) α is a class function from F (C) to C.

Assume an F -algebra 〈C, α〉.

We call C the carrier of 〈C, α〉, and α the operation of 〈C, α〉.

We say that 〈C, α〉 is small if and only if C is a set.

We say that 〈C, α〉 is large if and only if C is a proper class.

Notice that the only difference between the definition of an F -algebra and that of an
F -coalgebra is in the direction of the class function, which is reversed. Hence the duality.

Now, the way to think of the concept of F -algebra is as a generalization of the concept of
Σ-algebra.

For example, consider a single-sorted signature Σ. We may think of Σ as a set of operation
symbols, each annotated with a unique natural number, the arity of that symbol. A
Σ-algebra is a semantic interpretation of Σ: a set S, the carrier set of the algebra, together
with one n-ary operation fσ on S for each operation symbol σ of arity n in Σ. These
operations may be combined together into a single function

αΣ : {〈σ, 〈s1, . . . , sarity of σ〉〉 | σ ∈ Σ and s1, . . . , sarity of σ ∈ S} → S

such that for any pair 〈σ, 〈s1, . . . , sarity of σ〉〉 in its domain,

αΣ(〈σ, 〈s1, . . . , sarity of σ〉〉) = fσ(s1, . . . , sarity of σ).

CHAPTER 2. TRANSITION SYSTEMS 10

And if we view the domain of αΣ as the image of an endofunctor F on Class that assigns
to every class C the class

F (C) = {〈σ, 〈c1, . . . , carity of σ〉〉 | σ ∈ Σ and c1, . . . , carity of σ ∈ C},

and to every class function f : C1 → C2 a class function

F (f) : F (C1)→ F (C2)

such that for any 〈σ, 〈c1, . . . , carity of σ〉〉 ∈ F (C1),

F (f)(〈σ, 〈c1, . . . , carity of σ〉〉) = 〈σ, 〈f(c1), . . . , f(carity of σ)〉〉,

then a Σ-algebra is just a small F -algebra.

Algebra is about composition of things. In a Σ-algebra, this composition takes a very
specific form: things are composed according to certain rules, the operations of the
Σ-algebra, and each rule determines a unique thing for every ordered n-tuple of things,
where n is arbitrary but fixed for that rule. There is no fundamental reason, though, why
composition must be restricted to this form. One might, for example, think of a rule that
determines a new composite thing for every possible set of things. And if C is the class of
all things, then a rule of this kind can be represented simply as a class function from PowC
to C, which is precisely what a Pow-algebra is. In general, an F -algebra 〈C, α〉 will
represent one or several rules for composing particular combinations of things, as specified
and encoded by F , into other things, as determined by α.

We may now appeal to the duality between the concepts of F -algebra and F -coalgebra to
attach a plausible informal sense to the latter: if F -algebras are generalized rules of
composition, then F -coalgebras are generalized rules of decomposition.

Under this interpretation, a transition coalgebra will represent a rule for decomposing each
thing in the carrier of the coalgebra to a set of other things in it. This, of course, imposes a
particular view on a transition system: each state of the system is a composite thing,
decomposed by the cooperation of the corresponding coalgebra to the set of all immediate
successors of it in the system. And this may not be the most intuitive view to impose on a
transition system. But never mind. The merit of the coalgebraic approach is not in the
interpretation per se, but in the machinery available for relating the corresponding
decomposition structure of one system to that of another.

Assume F -coalgebras 〈C1, γ1〉 and 〈C2, γ2〉.

Definition 2.2.5. A homomorphism from 〈C1, γ1〉 to 〈C2, γ2〉 is a class function
h : C1 → C2 such that

F (h) ◦ γ1 = γ2 ◦ h.

CHAPTER 2. TRANSITION SYSTEMS 11

Thus, h is a homomorphism from 〈C1, γ1〉 to 〈C2, γ2〉 just as long as it is a class function
from C1 to C2, and the following diagram commutes:

C1 C2

F (C1) F (C2)

h

γ1 γ2

F (h)

We say that h is a monomorphism from 〈C1, γ1〉 to 〈C2, γ2〉 if and only if h is an injective
homomorphism from 〈C1, γ1〉 to 〈C2, γ2〉.

We say that h is an epimorphism from 〈C1, γ1〉 to 〈C2, γ2〉 if and only if h is a surjective
homomorphism from 〈C1, γ1〉 to 〈C2, γ2〉.

We say that 〈C1, γ1〉 is a homomorphic image of 〈C2, γ2〉 if and only if there is an
epimorphism from 〈C2, γ2〉 to 〈C1, γ1〉.

We say that h is an isomorphism between 〈C1, γ1〉 and 〈C2, γ2〉 if and only if h is a bijective
homomorphism from 〈C1, γ1〉 to 〈C2, γ2〉.

Proposition 2.2.6. If h is an isomorphism between 〈C1, γ1〉 and 〈C2, γ2〉, then h−1 is an
isomorphism between 〈C2, γ2〉 and 〈C1, γ1〉.

Proof. See [56, prop. 2.3].

We say that 〈C1, γ1〉 and 〈C2, γ2〉 are isomorphic if and only if there is an isomorphism
between 〈C1, γ1〉 to 〈C2, γ2〉.

We write 〈C1, γ1〉 ∼= 〈C2, γ2〉 if and only if 〈C1, γ1〉 and 〈C2, γ2〉 are isomorphic.

Assume an F -coalgebra 〈C, γ〉.

We say that h is an endomorphism on 〈C, γ〉 if and only if h is a homomorphism from
〈C, γ〉 to 〈C, γ〉.

We say that h is an automorphism on 〈C, γ〉 if and only if h is an isomorphism between
〈C, γ〉 to 〈C, γ〉.

The concept of homomorphism from one F -coalgebra to another is the coalgebraic
counterpart of the concept of homomorphism from one F -algebra to another, which is a
generalization, in the same sense as before, of the concept of homomorphism from one
Σ-algebra to another. It is a structure-preserving map carrying the decomposition patterns

CHAPTER 2. TRANSITION SYSTEMS 12

of one coalgebra to those of another. In particular, it establishes a similarity of structure
between its domain and range.

In the case of Pow, this similarity can take a very familiar form.

Example 2.2.7. Assume transition coalgebras 〈C1, τ1〉 and 〈C2, τ2〉.

Suppose that h is a homomorphism from 〈C1, τ1〉 to 〈C2, τ2〉.

Assume c1 ∈ C1.

Then

(Pow h)(τ1(c1)) = τ2(h(c1)),

and hence, by definition of Pow,

{h(c′1) | c′1 ∈ τ1(c1)} = τ2(h(c1)).

By extensionality, this is equivalent to the following being true:

(i) if c1 −→τ1 c
′
1, then h(c1) −→τ2 h(c′1);

(ii) if h(c1) −→τ2 c
′
2, then there is c′1 such that c1 −→τ1 c

′
1 and c′2 = h(c′1).

(i) and (ii) look very much like the defining clauses of the concept of bisimulation between
transition systems. And indeed, if 〈C1, τ1〉 and 〈C2, τ2〉 are small, then, by
Proposition 2.2.3(b), we may simply replace each instance of τ1 with rel τ1 and each
instance of τ2 with rel τ2 in (i) and (ii), to conclude, by generalization, that graphh is a
bisimulation between the transition systems 〈C1, rel τ1〉 and 〈C2, rel τ2〉.

From the perception of this connection between the concepts of homomorphism and
bisimulation, it is a small step to a coalgebraic generalization of the latter.

Definition 2.2.8. A bisimulation between 〈C1, γ1〉 and 〈C2, γ2〉 is a binary class relation10

B : C1 ↔ C2 such that there is an F -coalgebra 〈graphB, β〉 such that dprB is a
homomorphism from 〈graphB, β〉 to 〈C1, γ1〉, and cprB is a homomorphism from
〈graphB, β〉 to 〈C2, γ2〉.11

10 A binary class relation R is an ordered triple 〈D,C,G〉 such that D is a class, C is a class, and
G ⊆ D×C. We write domR for D, codR for C, and graphR for G. We call domR the domain of R, codR
the codomain of R, and graphR the graph of R.

11 For every binary class relation R, we write dprR for a function from graphR to domR such that for
any 〈c1, c2〉 ∈ graphR, (dprR)(〈c1, c2〉) = c1, and cprR for a function from graphR to codR such that for
any 〈c1, c2〉 ∈ graphR, (cprR)(〈c1, c2〉) = c2. We call dprR the domain projection map of R, and cprR the
codomain projection map of R.

CHAPTER 2. TRANSITION SYSTEMS 13

Thus, B is a bisimulation between 〈C1, γ1〉 and 〈C2, γ2〉 just as long as it is a binary class
relation between C1 and C2, and there is a class function β : graphB → F (graphB) such
that the following diagram commutes:

C1 graphB C2

F (C1) F (graphB) F (C2)

γ1

dprB cprB

γ2

F (dprB) F (cprB)

β

We say that B is a bisimulation on 〈C, γ〉 if and only if B is a bisimulation between 〈C, γ〉
and 〈C, γ〉.

We say that B is a bisimulation equivalence on 〈C, γ〉 if and only if B is a bisimulation on
〈C, γ〉, and an equivalence class relation on C.

So, a binary class relation between two F -coalgebras is a bisimulation just as long as we
can impart it with the structure of an F -coalgebra in a way that turns the projections from
the graph of the class relation to the carriers of the two F -coalgebras into homomorphisms.
In general, however, there might be more than one way to do this.

Example 2.2.9. Let S = {0, 1}, and τ be a function from S to PowS defined by the
following mapping:

0 7→ S;

1 7→ S.

We want to show that the full binary relation on S is a bisimulation on 〈S, τ〉. In order to
do so, we must find a function β : S × S → Pow(S × S) such that both proj1(S × S) and
proj2(S × S) are homomorphisms from the Pow-coalgebra 〈S × S, β〉 to 〈S, τ〉.12

One such function is defined by the following mapping:

〈0, 0〉 7→ S × S;

〈0, 1〉 7→ S × S;

〈1, 0〉 7→ S × S;

〈1, 1〉 7→ S × S.

12 For every class C1 and C2, we write proj1(C1×C2) for a function from C1×C2 to C1 such that for any
〈c1, c2〉 ∈ C1 × C2, (proj1(C1 × C2))(〈c1, c2〉) = c1, and proj2(C1 × C2) for a function from C1 × C2 to C2

such that for any 〈c1, c2〉 ∈ C1 × C2, (proj1(C1 × C2))(〈c1, c2〉) = c2. We call proj1(C1 × C2) the canonical
projection map from C1 ×C2 to C1, and proj2(C1 ×C2) the canonical projection map from C1 ×C2 to C2.

CHAPTER 2. TRANSITION SYSTEMS 14

Another is defined by the following mapping:

〈0, 0〉 7→ {〈0, 1〉, 〈1, 0〉};
〈0, 1〉 7→ {〈0, 0〉, 〈1, 1〉};
〈1, 0〉 7→ {〈0, 0〉, 〈1, 1〉};
〈1, 1〉 7→ {〈0, 1〉, 〈1, 0〉}.

In fact, there is nothing special about the graph of the class relation and its projections
either.

Theorem 2.2.10. B is a bisimulation between 〈C1, γ1〉 and 〈C2, γ2〉 if and only if there is
an F -coalgebra 〈C, γ〉, a homomorphism h1 from 〈C, γ〉 to 〈C1, γ1〉, and a homomorphism
h2 from 〈C, γ〉 to 〈C2, γ2〉, such that

B = h−1
1 ;h2. 13

Proof. See [56, lem. 5.3] and [23, thm. 5.11].

Assume F -coalgebras 〈C ′1, γ′〉 and 〈C ′2, γ′〉.

The following is immediate:

Corollary 2.2.11. If B is a bisimulation between 〈C1, γ1〉 and 〈C2, γ2〉, h1 a
homomorphism from 〈C1, γ1〉 to 〈C ′1, γ′1〉, and h2 a homomorphism from 〈C2, γ2〉 to 〈C ′2, γ′2〉,
then

h−1
1 ;B ;h2

is a bisimulation between 〈C ′1, γ′1〉 and 〈C ′2, γ′2〉.

The following will come of use:

Theorem 2.2.12. For every class-indexed family {Bi}i∈I of bisimulations between 〈C1, γ1〉
and 〈C2, γ2〉, there is a bisimulation B between 〈C1, γ1〉 and 〈C2, γ2〉 such that

graphB =
⋃
i∈I

graphBi.

Proof. See [23, thm. 5.6].

13 For every binary class relation R1 and R2 such that codR1 = domR2, we write R1 ;R2 for a binary
class relation between domR1 and codR2 such that for any c1 ∈ domR1 and any c2 ∈ codR2,
c1 (R1 ;R2) c2 if and only if there is c such that c1 R1 c and c R2 c2.

CHAPTER 2. TRANSITION SYSTEMS 15

This coalgebraic definition of bisimulation was first introduced in [5], and does indeed
generalize the concept of bisimulation between labelled transition systems. To see this, we
must first go over the coalgebraic representation of such systems.

The functor that we are going to use is the endofunctor Pow ◦ (L× Id) on Class, namely
the composite of Pow with the left product endofunctor L× Id on Class, which assigns to
every class C the class

Pow(L× C) = {S | S is a subset of L× C},

and to every class function f : C1 → C2 a class function

Pow(L× f) : Pow(L× C1)→ Pow(L× C2)

such that for every S ∈ Pow(L× C1),

Pow(L× f)(S) = {〈l, f(s)〉 | 〈l, s〉 ∈ S}.

By Proposition 2.2.1, an L-labelled transition system 〈S, T 〉 can be represented as a
(Pow ◦ (L× Id))-coalgebra, namely as 〈S, funT 〉, and conversely, a
(Pow ◦ (L× Id))-coalgebra 〈C, τ〉 can be represented as an L-labelled transition system,
namely as 〈C, rel τ〉, again with the caveat that C be a set.

Assume a (Pow ◦ (L× Id))-coalgebra 〈C, τ〉.

We call 〈C, τ〉 an L-labelled transition coalgebra.

We write c
l−→τ c

′ if and only if 〈l, c′〉 ∈ τ(c).

Assume an L-labelled transition system 〈S, T 〉.

The following is immediate:

Proposition 2.2.13. The following are true:

(a) s
l−→T s

′ if and only if s
l−→funT s

′;

(b) if 〈C, τ〉 is small, then c
l−→τ c

′ if and only if c
l−→rel τ c

′.

Assume L-labelled transition coalgebras 〈C1, τ1〉 and 〈C2, τ2〉.

Proposition 2.2.14. B is a bisimulation between 〈C1, τ1〉 and 〈C2, τ2〉 if and only if B is a
binary class relation between C1 and C2, and for any c1 and c2 such that c1 B c2, the
following are true:

CHAPTER 2. TRANSITION SYSTEMS 16

(a) if c1
l−→τ1 c

′
1, then there is c′2 such that c2

l−→τ2 c
′
2 and c′1 B c′2;

(b) if c2
l−→τ2 c

′
2, then there is c′1 such that c1

l−→τ1 c
′
1 and c′1 B c′2.

Proof. Suppose that B is a bisimulation between 〈C1, τ1〉 and 〈C2, τ2〉.

Let 〈graphB, β〉 be an L-labelled transition coalgebra such that dprB is a homomorphism
from 〈graphB, β〉 to 〈C1, τ1〉, and cprB one from 〈graphB, β〉 to 〈C2, τ2〉.

Assume c1 and c2 such that c1 B c2.

Then

Pow(L× dprB)(β(〈c1, c2〉)) = τ1((dprB)(〈c1, c2〉)),

and hence, by definition of Pow ◦ (L× Id) and dprB,

{〈l, c′1〉 | 〈l, 〈c′1, c′2〉〉 ∈ β(〈c1, c2〉)} = τ1(c1).

By extensionality, this is equivalent to the following being true:

(i) if 〈c1, c2〉
l−→β 〈c′1, c′2〉, then c1

l−→τ1 c
′
1;

(ii) if c1
l−→τ1 c

′
1, then there is c′2 such that 〈c1, c2〉

l−→β 〈c′1, c′2〉.

And by symmetry, the following are true:

(iii) if 〈c1, c2〉
l−→β 〈c′1, c′2〉, then c2

l−→τ2 c
′
2;

(iv) if c2
l−→τ2 c

′
2, then there is c′1 such that 〈c1, c2〉

l−→β 〈c′1, c′2〉.

By (ii) and (iii), (a) is true, and by (iv) and (i), (b) is true.

Thus, by generalization, for any c1 and c2 such that c1 B c2, (a) and (b) are true.

Conversely, suppose that B is a binary class relation between C1 and C2, and for any c1

and c2 such that c1 B c2, (a) and (b) are true.

Let β be a class function from graphB to Pow(L× graphB) such that for any
〈c1, c2〉 ∈ graphB,

β(〈c1, c2〉) = {〈l, 〈c′1, c′2〉〉 | c1
l−→τ1 c

′
1,

c2
l−→τ2 c

′
2,

and 〈c′1, c′2〉 ∈ graphB}.

CHAPTER 2. TRANSITION SYSTEMS 17

Assume 〈c1, c2〉 ∈ graphB.

Then the following is immediately true:

(v) if 〈c1, c2〉
l−→β 〈c′1, c′2〉, then c1

l−→τ1 c
′
1.

Also, by (a) and (b), the following is true:

(vi) if c1
l−→τ1 c

′
1, then there is c′2 such that 〈c1, c2〉

l−→β 〈c′1, c′2〉.

By (v), (vi), and extensionality,

{〈l, c′1〉 | 〈l, 〈c′1, c′2〉〉 ∈ β(〈c1, c2〉)} = τ1(c1),

and hence, by definition of Pow ◦ (L× Id) and dprB,

Pow(L× dprB)(β(〈c1, c2〉)) = τ1((dprB)(〈c1, c2〉)).

And by symmetry,

Pow(L× cprB)(β(〈c1, c2〉)) = τ2((cprB)(〈c1, c2〉)).

Thus, by generalization, B is a bisimulation between 〈C1, τ1〉 and 〈C2, τ2〉.

Assume L-labelled transition systems 〈S1, T1〉 and 〈S2, T2〉.

The following is immediate from Proposition 2.2.13(a), 2.2.14, and the definition of
bisimulation between labelled transition systems:

Proposition 2.2.15. B is a bisimulation between 〈S1, T1〉 and 〈S2, T2〉 if and only if B is
a bisimulation between the L-labelled transition coalgebras 〈S1, funT1〉 and 〈S2, funT2〉.

Proposition 2.2.14 and 2.2.15 can of course be adapted for transition coalgebras and
transition systems: simply replace every instance of Pow ◦ (L× Id) with Pow, and erase
every instance of l.

2.3 More on homomorphisms and bisimulations

We start from making the connection between the concepts of homomorphism and
bisimulation precise.

CHAPTER 2. TRANSITION SYSTEMS 18

The first thing to note is that every bisimulation equivalence is the equivalence kernel of a
homomorphism. In a theory of sets, this is straightforward. But in a theory of classes,
some care is needed.

Assume a class C and an equivalence class relation E on C.

We say that q is a quotient of C with respect to E if and only if q is a surjective class
function such that dom q = C and ker q = E.

In [5], existence of quotients is deduced from an assumed global form of the Axiom of
Choice, and in [3], from a postulated quotient existence principle for classes. In a theory of
sets, there is no such need: for every set S and every equivalence relation R on S, one can
simply turn to the quotient set of S by R, namely the set

S\R = {{s′ | s R s′} | s ∈ S},

and the canonical projection map from S to S\R, which assigns to any s ∈ S the
equivalence class of s, namely the set

[s]R = {s′ | s R s′}.

But in a theory of classes, these constructs are not, in general, well defined. For example, if
R is the full binary class relation on a proper class C, then for every c ∈ C,

{c′ | c R c′} = C,

which cannot be a member of any class.

Here, we will assume existence of quotients as a theorem of the underlying theory of
classes, and not worry about its precise deduction. We only remark that in the standard
von Neumann-Bernays-Gödel theory of classes, existence of quotients is readily deduced
from the Axiom of Limitation of Size.

Assume an F -coalgebra 〈C, γ〉.

Proposition 2.3.1. For every bisimulation equivalence B on 〈C, γ〉, and every quotient q
of C with respect to B, there is exactly one F -coalgebra 〈cod q, δ〉 such that q is an
epimorphism from 〈C, γ〉 to 〈cod q, δ〉.

Proof. See [5, lem. 5.1 and prop. 6.1].

Thus, for every bisimulation equivalence B on 〈C, γ〉, and every quotient q of C with
respect to B, there is exactly one class function δ : cod q → F (cod q) such that the
following diagram commutes:

CHAPTER 2. TRANSITION SYSTEMS 19

C cod q

F (C) F (cod q)

q

γ

F (q)

δ

The converse is not true: the equivalence kernel of a homomorphism is not, in general, a
bisimulation (see Example 2.3.3). But the graph of a homomorphism, or more accurately,
considering our working definition of a binary class relation, the homomorphism itself, is.

Assume F -coalgebras 〈C1, γ1〉 to 〈C2, γ2〉.

Theorem 2.3.2. h is a homomorphism from 〈C1, γ1〉 to 〈C2, γ2〉 if and only if h is a class
function from C1 to C2, and a bisimulation between 〈C1, γ1〉 and 〈C2, γ2〉.

Proof. See [56, thm. 2.5].

In other words, homomorphisms are functional bisimulations. This should not be
surprising: homomorphisms are supposed to preserve structure, and bisimulations to
capture equivalence of it. But do they really?

There is not much to be said about homomorphisms; they are too basic to doubt.
Bisimulations, on the other hand, deserve investigation.

We begin with a formal statement of coalgebraic bisimilarity.

We say that c1 and c2 are bisimilar among 〈C1, γ1〉 and 〈C2, γ2〉 if and only if there is a
bisimulation B between 〈C1, γ1〉 and 〈C2, γ2〉 such that c1 B c2.

We say that c1 and c2 are bisimilar in 〈C, γ〉 if and only if c1 and c2 are bisimilar among
〈C, γ〉 and 〈C, γ〉.

A disturbing fact about coalgebraic bisimilarity is that, unlike ordinary bisimilarity, it is
not, in general, an equivalence concept.

Example 2.3.3. Let F be an endofunctor on Class that assigns to every class C the class

F (C) = {〈c1, c2, c3〉 | {c1, c2, c3} ⊆ C and |{c1, c2, c3}| < 3},

and to every class function f : C1 → C2 a class function

F (f) : F (C1)→ F (C2)

CHAPTER 2. TRANSITION SYSTEMS 20

such that for every 〈c1, c2, c3〉 ∈ F (C1),

F (f)(〈c1, c2, c3〉) = 〈f(c1), f(c2), f(c3)〉.

Let S1 = {0, 1}, and γ1 be a function from S1 to F (S1) defined by the following mapping:

0 7→ 〈0, 0, 1〉;
1 7→ 〈0, 1, 1〉.

Let S2 = {0}, and γ2 be the unique function from S2 to F (S2), namely a function from S2

to F (S2) defined by the following mapping:

0 7→ 〈0, 0, 0〉.

Let h be the unique function from S1 to S2, namely a function from S1 to S2 defined by the
following mapping:

0 7→ 0;

1 7→ 0.

h is trivially a homomorphism from 〈S1, γ1〉 to 〈S2, γ2〉. But whereas h(0) and h(1) are
equal, and thus, trivially bisimilar in 〈S2, γ2〉, 0 and 1 are not bisimilar in 〈S1, γ1〉, lest
there be a binary relation B on S1, and an F -coalgebra 〈graphB, β〉 such that
〈0, 1〉 ∈ graphB and

β(〈0, 1〉) = 〈〈0, 0〉, 〈0, 1〉, 〈1, 1〉〉.

Note 2.3.1. We cannot replace ordered triples with multisets of size 3 having at most two
members of multiplicity greater than 0 to the same effect in Example 2.3.3.

Example 2.3.1.1. Let F be an endofunctor on Class that assigns to every class C the class

F (C) = {m | m : C → ω, |{c | m(c) 6= 0}| < 3, and
∑

ranm = 3},

and to every class function f : C1 → C2 a class function

F (f) : F (C1)→ F (C2)

such that for every m ∈ F (C1) and every c2 ∈ C2,

F (f)(m)(c2) =
∑
{m(c1) | f(c1) = c2}.

CHAPTER 2. TRANSITION SYSTEMS 21

For every class C, F (C) is simply the class of all multisets of size 3 having just at most two
members of multiplicity greater than 0 (see [62, chap. A]).

Let S = {0, 1}, and γ be a function from S to F (S) defined by the following mapping:

0 7→ [0, 0, 1];

1 7→ [0, 1, 1].

We want to show that the full binary relation on S is a bisimulation on 〈S, γ〉. In order to
do so, we must find a function β : S × S → F (S × S) such that both proj1(S × S) and
proj2(S × S) are homomorphisms from the F -coalgebra 〈S × S, β〉 to 〈S, γ〉.

One such function is defined by the following mapping:

〈0, 0〉 7→ [〈0, 0〉, 〈0, 0〉, 〈0, 0〉];
〈0, 1〉 7→ [〈0, 1〉, 〈0, 1〉, 〈1, 0〉];
〈1, 0〉 7→ [〈0, 1〉, 〈1, 0〉, 〈1, 0〉];
〈1, 1〉 7→ [〈1, 1〉, 〈1, 1〉, 〈1, 1〉].

Thus, 0 and 1 are bisimilar in 〈S, γ〉.

This should cast serious doubt on the coalgebraic notion of bisimulation: how can one hope
to capture all of equivalence of structure using a notion, the induced similarity concept of
which is not, in general, transitive?

This discrepancy was not lost on Aczel and Mendler, who, also in [5], generalized the
coalgebraic concept of bisimulation further into that of what they called a precongruence,
or in the case of an equivalence class relation, a congruence. This is a technically more
complicated concept: to determine whether a binary class relation R on the carrier of an
F -coalgebra 〈C, γ〉 is a precongruence on 〈C, γ〉, one has to invoke a quotient of C with
respect to the equivalence class relation generated by R, compose its image under F with
γ, and test whether R is contained in the equivalence kernel of the composite. It is also an
intuitively more warranted concept, exactly formalizing the idea of a class relation that is
compatible with the cooperation of a coalgebra. Every bisimulation on an F -coalgebra is a
precongruence, but not every precongruence on an F -coalgebra is a bisimulation. In fact,
the endofunctor that we used in Example 2.3.3 is one that was devised in [5] for the express
purpose of demonstrating this separation between the two concepts.

CHAPTER 2. TRANSITION SYSTEMS 22

Note 2.3.2. We can also use Example 2.3.3 to separate the two concepts. For by [31,
prop. 4.2], the equivalence kernel of a homomorphism from an F -coalgebra 〈C1, γ1〉 to an
F -coalgebra 〈C2, γ2〉 is a precongruence on 〈C1, γ1〉.

Note 2.3.3. In [5], the concept of precongruence was defined only for binary class relations
on single F -coalgebras. However, one can use directed sums (see Definition 2.4.10), to
extend this definition to binary class relations between pairs of different F -coalgebras.

Definition 2.3.3.1. A precongruence on 〈C, γ〉 is a binary class relation P on C such that
for every quotient q with respect to the equivalence class relation generated by P ,

graphP ⊆ graph ker(F (q) ◦ γ).

We say that P is a congruence on 〈C, γ〉 if and only if P is a precongruence on 〈C, γ〉, and
an equivalence class relation on C.

The following is easy:

Proposition 2.3.3.2. P is a precongruence on 〈C, γ〉 if and only if P is a class relation
on C, and the equivalence class relation generated by P is a congruence on 〈C, γ〉.

We say that c1 and c2 are congruent in 〈C, γ〉 if and only if there is a congruence P on
〈C, γ〉 such that c1 P c2.

Definition 2.3.4. A precongruence between 〈C1, γ1〉 and 〈C2, γ2〉 is a binary class relation
P : C1 ↔ C2 such that

(inj1(C1 + C2))−1 ;P ; inj2(C1 + C2)

is a precongruence on 〈C1, γ1〉+ 〈C2, γ2〉.

We say that c1 and c2 are congruent among 〈C1, γ1〉 and 〈C2, γ2〉 if and only if there is a
precongruence P between 〈C1, γ1〉 and 〈C2, γ2〉 such that c1 P c2.

With this extended definition, we can appreciate Theorem 2.3.2 better.

First, we extend [5, prop. 6.1].

Proposition 2.3.3.3. If B is a bisimulation between 〈C1, γ1〉 and 〈C2, γ2〉, then B is a
precongruence between 〈C1, γ1〉 and 〈C2, γ2〉.

CHAPTER 2. TRANSITION SYSTEMS 23

Proof. Suppose that B is a bisimulation between 〈C1, γ1〉 and 〈C2, γ2〉.

Let 〈graphB, β〉 be an F -coalgebra such that dprB is a homomorphism from 〈graphB, β〉
to 〈C1, γ1〉, and cprB one from 〈graphB, β〉 to 〈C2, γ2〉.

Let E be the equivalence class relation generated by

(inj1(C1 + C2))−1 ;B ; inj2(C1 + C2).

Let q be a quotient of C1 + C2 with respect to E.

Then

q ◦ inj1(C1 + C2) ◦ dprB = q ◦ inj2(C1 + C2) ◦ cprB,

and thus,

F (q) ◦ F (inj1(C1 + C2)) ◦ F (dprB) = F (q) ◦ F (inj2(C1 + C2)) ◦ F (cprB).

Let γ be the cooperation of 〈C1, γ1〉+ 〈C2, γ2〉.

Assume c1 and c2 such that

c1 ((inj1(C1 + C2))−1 ;B ; inj2(C1 + C2)) c2.

Then there are c′1 and c′2 such that

(inj1(C1 + C2))(c′1) = c1,

(inj2(C1 + C2))(c′2) = c2,

and c′1 B c′2. Thus,

F (q)(γ(c1)) = F (q)(γ((inj1(C1 + C2))(c′1)))

= F (q)(F (inj1(C1 + C2))(γ1(c′1)))

= F (q)(F (inj1(C1 + C2))(γ1((dprB)(〈c′1, c′2〉))))
= F (q)(F (inj1(C1 + C2))(F ((cprB)(β(〈c′1, c′2〉)))))
= F (q)(F (inj2(C1 + C2))(F ((cprB)(β(〈c′1, c′2〉)))))
= F (q)(F (inj2(C1 + C2))(γ2((cprB)(〈c′1, c′2〉))))
= F (q)(F (inj2(C1 + C2))(γ2(c′2)))

= F (q)(γ((inj2(C1 + C2))(c′2)))

= F (q)(γ(c2)).

Thus, by generalization, B is a precongruence between 〈C1, γ1〉 and 〈C2, γ2〉.

CHAPTER 2. TRANSITION SYSTEMS 24

Theorem 2.3.3.4. h is a homomorphism from 〈C1, γ1〉 to 〈C2, γ2〉 if and only if h is a
class function from C1 to C2, and a precongruence between 〈C1, γ1〉 and 〈C2, γ2〉.

Proof. Suppose that h is a homomorphism from 〈C1, γ1〉 to 〈C2, γ2〉.

Then by Theorem 2.3.2, h is a bisimulation between 〈C1, γ1〉 and 〈C2, γ2〉, and thus, by
Proposition 2.3.3.3, a precongruence between 〈C1, γ1〉 and 〈C2, γ2〉.

Conversely, suppose that h is a precongruence between 〈C1, γ1〉 and 〈C2, γ2〉.

Let E be the equivalence class relation generated by

(inj1(C1 + C2))−1 ;h ; inj2(C1 + C2).

Let q be a quotient of C1 + C2 with respect to E.

Then the following diagram commutes:

graphh C1

C2 cod q

dpr h

cpr h q ◦ inj1(C1 + C2)

q ◦ inj2(C1 + C2)

Thus, the following diagram also commutes:

F (graphh) F (C1)

F (C2) F (cod q)

F (dpr h)

F (cpr h) F (q) ◦ F (inj1(C1 + C2))

F (q) ◦ F (inj2(C1 + C2))

E is the smallest equivalence class relation that contains

(inj1(C1 + C2))−1 ;h ; inj2(C1 + C2),

or equivalently, the smallest transitive relation that contains the reflexive-symmetric
closure of it.

We use induction to prove that for any c1 and c2 such that c1 E c2, the following are true:

CHAPTER 2. TRANSITION SYSTEMS 25

(i) if there are c′1 and c′2 such that

(inj1(C1 + C2))(c′1) = c1

and

(inj2(C1 + C2))(c′2) = c2,

then h(c′1) = c′2;

(ii) if there are c′1 and c′2 such that

(inj2(C1 + C2))(c′1) = c1

and

(inj1(C1 + C2))(c′2) = c2,

then h(c′2) = c′1;

(iii) if there are c′1 and c′2 such that

(inj1(C1 + C2))(c′1) = c1

and

(inj1(C1 + C2))(c′2) = c2,

then h(c′1) = h(c′2);

(iv) if there are c′1 and c′2 such that

(inj2(C1 + C2))(c′1) = c1

and

(inj2(C1 + C2))(c′2) = c2,

then c′1 = c′2.

If

c1 ((inj1(C1 + C2))−1 ;h ; inj2(C1 + C2)) c2,

then (i) is trivially true, and (ii), (iii), and (iv) are vacuously true.

CHAPTER 2. TRANSITION SYSTEMS 26

If c1 = c2, then (i) and (ii) are vacuously true. Also, since inj1(C1 + C2) is injective, (iii) is
trivially true, and since inj2(C1 + C2) is injective, (iv) is trivially true.

If

c1 ((inj1(C1 + C2))−1 ;h ; inj2(C1 + C2))−1 c2,

then (i) is vacuously true, (ii) is trivially true, and (iii) and (iv) are vacuously true.

Otherwise, there is c such that c1 E c, and either

c ((inj1(C1 + C2))−1 ;h ; inj2(C1 + C2)) c2

or

c ((inj1(C1 + C2))−1 ;h ; inj2(C1 + C2))−1 c2.

If

c ((inj1(C1 + C2))−1 ;h ; inj2(C1 + C2)) c2,

then there are c′ and c′2 such that

(inj1(C1 + C2))(c′) = c,

(inj2(C1 + C2))(c′2) = c2,

and h(c′) = c′2. Thus, (ii) and (iii) are vacuously true. Also, by the induction hypothesis, if
there is c′1 such that

(inj1(C1 + C2))(c′1) = c1,

then h(c′1) = h(c′), and hence, h(c′1) = c′2. Thus, (i) is true. Finally, by the induction
hypothesis, if there is c′1 such that

(inj2(C1 + C2))(c′1) = c1,

then h(c′) = c′1, and hence, c′1 = c′2. Thus, (iv) is true.

Otherwise,

c ((inj1(C1 + C2))−1 ;h ; inj2(C1 + C2))−1 c2.

Then there are c′ and c′2 such that

(inj2(C1 + C2))(c′) = c,

CHAPTER 2. TRANSITION SYSTEMS 27

(inj1(C1 + C2))(c′2) = c2,

and c′ = h(c′2). Thus, (i) and (iv) are vacuously true. Also, by the induction hypothesis, if
there is c′1 such that

(inj2(C1 + C2))(c′1) = c1,

then c′1 = c′, and hence, h(c′2) = c′1. Thus, (ii) is true. Finally, by the induction hypothesis,
if there is c′1 such that

(inj1(C1 + C2))(c′1) = c1,

then h(c′1) = c′, and hence, h(c′1) = h(c′2). Thus, (iii) is true.

Therefore, q ◦ inj2(C1 + C2) is injective, and thus, has a left inverse.

Another implication, which we are not using for this proof, is that

{〈c1, c2〉 | q((inj1(C1 + C2))(c1)) = q((inj2(C1 + C2))(c2))} = graphh,

and thus, 〈graphh, 〈dpr h, cpr h〉〉 is a pullback of q ◦ inj1(C1 + C2) and q ◦ inj2(C1 + C2) in
F -Coalg.

Let g be a left inverse of q ◦ inj2(C1 + C2).

Since h is a class function, dpr h is bijective, and

h = (cpr h) ◦ (dpr h)−1.

Let γ be the cooperation of 〈C1, γ1〉+ 〈C2, γ2〉.

Assume c1 ∈ C1.

Since h is a precongruence between 〈C1, γ1〉 and 〈C2, γ2〉,

F (q)(γ((inj1(C1 + C2))(c1))) = F (q)(γ((inj2(C1 + C2))(h(c1)))),

and hence,

F (q)(F (inj1(C1 + C2))(γ1(c1))) = F (q)(F (inj2(C1 + C2))(γ2(h(c1)))).

Thus,

F (h)(γ1(c1)) = F (cpr h)(F (dpr h)−1(γ1(c1)))

= F (g)(F (q)(F (inj2(C1 + C2))(F (cpr h)(F (dpr h)−1(γ1(c1))))))

= F (g)(F (q)(F (inj1(C1 + C2))(F (dpr h)(F (dpr h)−1(γ1(c1))))))

= F (g)(F (q)(F (inj1(C1 + C2))(γ1(c1))))

= F (g)(F (q)(F (inj2(C1 + C2))(γ2(h(c1)))))

= γ2(h(c1)).

CHAPTER 2. TRANSITION SYSTEMS 28

Thus, by generalization, h is a homomorphism from 〈C1, γ1〉 to 〈C2, γ2〉.

An immediate corollary of Theorem 2.3.2 and 2.3.3.4 is that in the case of single-valued
binary class relations, the concepts of bisimulation and precongruence coincide.

Here, mostly for the purpose of accessibility, we have decided to follow the approach of
Rutten in [56], who advocates the coalgebraic concepts of bisimulation and bisimulation
equivalence as formal duals to the algebraic ones of substitutive relation and congruence.
His tacit preference over the more appropriate concepts of precongruence and congruence
of [5] is partly justified by the the fact that more can be proved about bisimulations and
bisimulation equivalences than precongruences and congruences. No matter: most of the
theory in [56] is developed under the assumption that the endofunctor F preserves weak
pullbacks, a technical condition under which the concepts of bisimulation and
precongruence coincide. And although we will never need to make explicit mention of it,
every particular endofunctor considered here will actually satisfy this condition, unless
specifically intended not to.

2.4 Behaviour modelling and final coalgebras

Suppose that we wanted to use L-labelled transition systems to model the behaviour of
processes of some kind. What we would wish for then is that there be a system diverse
enough to model the behaviour of every process, but coarse enough not to distinguish
between processes of equivalent behaviour. Is there such a system?

The way to use an L-labelled transition system to model the behaviour of a process is to
map the process to a state of the system, and let the branching structure emanating from
that state represent the behaviour of the process. Equivalence of behaviour then amounts
to similarity of branching structure of some kind, and indeed determines the actual
association between ‘behaviour’ and branching structure. If we let bisimilarity be that
concept of similarity, and assume for simplicity that any state of every L-labelled transition
system models the behaviour of some process, then our question becomes an enquiry over
the existence of an L-labelled transition system 〈S, T 〉 such that for every L-labelled
transition system 〈S ′, T ′〉 and any s′ ∈ S ′, there is s ∈ S such that s′ and s are bisimilar
among 〈S ′, T ′〉 and 〈S, T 〉, and for any s1, s2 ∈ S, s1 and s2 are bisimilar in 〈S, T 〉 if and
only if s1 = s2.

We want to use Theorem 2.3.2 to turn this enquiry into an instance of a common universal
construction problem, namely that of a terminal object of a category.

CHAPTER 2. TRANSITION SYSTEMS 29

An object of a category is a terminal object of that category just as long as for every object
of that category, there is exactly one arrow of that category from the latter to the former.

The category pertaining to our enquiry is that of all L-labelled transition coalgebras and
all homomorphisms between them. But once again, we work generally.

First, notice that for every F -coalgebra 〈C, γ〉, idC is an endomorphism on 〈C, γ〉, and for
every homomorphism h1 from an F -coalgebra 〈C1, γ1〉 to an F -coalgebra 〈C2, γ2〉, and every
homomorphism h2 from 〈C2, γ2〉 to an F -coalgebra 〈C2, γ2〉, h2 ◦ h1 is a homomorphism
from 〈C1, γ1〉 to 〈C2, γ2〉. Thus, F -coalgebras and their homomorphisms form a category.

We write F -Coalg for the category whose objects are all the F -coalgebras, and arrows all
the homomorphisms from one F -coalgebra to another.

Note that for any homomorphism h from an F -coalgebra 〈C1, γ1〉 to an F -coalgebra
〈C2, γ2〉, the domain and codomain of h as an arrow of F -Coalg are 〈C1, γ1〉 and 〈C2, γ2〉
respectively, and not to be confused with the domain and codomain of h as an arrow of
Class, which are C1 and C2 respectively.

We say that 〈C, γ〉 is final in F -Coalg if and only if for every F -coalgebra 〈C ′, γ′〉, there is
exactly one homomorphism from 〈C ′, γ′〉 to 〈C, γ〉.

We use “final” here rather than “terminal” only to conform with common practice in the
germane literature: an F -coalgebra is final in F -Coalg if and only if it is a terminal object
of F -Coalg.

Notice that if 〈C1, γ1〉 and 〈C2, γ2〉 are both final in F -Coalg, then

〈C1, γ1〉 ∼= 〈C2, γ2〉,

lest there be another endomorphism, apart from the identity map, on either of them. In
plain words, all final F -coalgebras are isomorphic to one another.

Theorem 2.3.2 suggests that there might be a connection between our enquiry and the
notion of finality. We set out to make this connection, if any, precise.

We say that 〈C, γ〉 is weakly complete in F -Coalg if and only if for every F -coalgebra
〈C ′, γ′〉 and any c′ ∈ C ′, there is c ∈ C such that c′ and c are bisimilar among 〈C ′, γ′〉 and
〈C, γ〉.

Note that our use of the term “weakly complete” is different from, and in general, strictly
more inclusive than that in [2], [5], and [3].

Note 2.4.1. In [2], [5], and [3], an F -coalgebra 〈C, γ〉 was called “weakly complete” if and
only if for every small F -coalgebra 〈C ′, γ′〉, there is a homomorphism from 〈C ′, γ′〉 to
〈C, γ〉. Such an F -coalgebra is always weakly complete in our sense.

CHAPTER 2. TRANSITION SYSTEMS 30

Proposition 2.4.1.1. If for every small F -coalgebra 〈C ′, γ′〉, there is a homomorphism
from 〈C ′, γ′〉 to 〈C, γ〉, then 〈C, γ〉 is weakly complete in F -Coalg.

Proof. Suppose that for every small F -coalgebra 〈C ′, γ′〉, there is a homomorphism from
〈C ′, γ′〉 to 〈C, γ〉.

Assume an F -coalgebra 〈C ′′, γ′′〉.

Assume c′′ ∈ C ′′.

By Lemma 2.4.8, there is a small F -coalgebra 〈C ′, γ′〉 such that c′′ ∈ C ′ and
〈C ′, γ′〉 ≤ 〈C ′′, γ′′〉. And by hypothesis, there is a homomorphism h from 〈C ′, γ′〉 to 〈C, γ〉.

Let R = (C ′ ↪→ C ′′)−1 ;h.

Then, by Theorem 2.2.10, R is a bisimulation between 〈C ′′, γ′′〉 and 〈C, γ〉. And clearly,
c′′ R h(c′′). Thus, there is c ∈ C, namely h(c′′), such that c′′ and c are bisimilar among
〈C ′, γ′〉 and 〈C, γ〉.

Thus, by generalization, 〈C, γ〉 is weakly complete in F -Coalg.

However, an F -coalgebra that is weakly complete in our sense need not be weakly complete
in the sense of [2], [5], and [3].

Example 2.4.1.2. Consider the left product endofunctor ω × Id, which assigns to every class
C the class

ω × C = {〈n, c〉 | n ∈ ω and c ∈ C},

and to every class function f : C1 → C2, a class function

ω × f : ω × C1 → ω × C2

such that for any 〈n, c〉 ∈ C1,

(ω × f)(〈n, c〉) = 〈n, f(c)〉.

Let C = {〈s, tailn s〉 | s ∈ S inf ω and n ∈ ω}, and γ be a function from C to ω × C such
that for any 〈s, tailn s〉 ∈ C,

γ(〈s, tailn s〉) = 〈head tailn s, 〈s, tailn+1 s〉〉.

For every (ω × Id)-coalgebra 〈C ′, γ′〉 and any c′ ∈ C ′, if s is an infinite sequence such that
for every n ∈ ω,

head tailn s = (proj1(ω × C ′))((proj2(ω × C ′) ◦ γ′)n(c′)),

CHAPTER 2. TRANSITION SYSTEMS 31

then, by an easy induction, it is the only such infinite sequence, and c′ and 〈s, s〉 are
bisimilar in 〈C ′, γ′〉 and 〈C, γ〉. Thus, 〈C, γ〉 is weakly complete in (ω × Id)-Coalg.

Now let C ′ be the set of all integers, and γ′ a function from C ′ to ω × C ′ such that for any
integer i,

γ′(i) =

{
〈2i, i− 1〉 if 0 ≤ i;

〈−2i− 1, i− 1〉 otherwise.

〈C ′, γ′〉 is a small (ω × Id)-coalgebra. However, there is no homomorphism from 〈C ′, γ′〉 to
〈C, γ〉, lest there be an order-embedding from the standardly ordered set of all integers to
the standardly ordered set of all natural numbers.

Also, an F -coalgebra that is weakly complete in the sense of [2], [5], and [3] need not be
weakly final in F -Coalg.

Example 2.4.1.3. Let 〈C, γ〉 be a direct sum of all small Pow-coalgebras.

Then for every small Pow-coalgebra 〈C ′, γ′〉, there is a homomorphism from 〈C ′, γ′〉 to
〈C, γ〉, namely the canonical injection map from C ′ to C.

Let Ord be the class of all ordinal numbers, and ε a class function from Ord to Pow Ord
such that for every ordinal number α,

ε(α) = {β | β < α}.

Then, by an easy transfinite induction argument, for every Pow-coalgebra 〈C ′′, γ′′〉, any
homomorphism from 〈Ord, ε〉 to 〈C ′′, γ′′〉 is injective. Also, again by an easy transfinite
induction argument, if h is homomorphism from 〈Ord, ε〉 to 〈C, γ〉, there is a small
Pow-coalgebra 〈C ′′′, γ′′′〉 such that if ι is the canonical injection map from C ′′′ to C, then
ranh ⊆ ran ι. Thus, there is no homomorphism from 〈Ord, ε〉 to 〈C, γ〉, lest there be an
injective class function from the class of all ordinal numbers to a set, and hence, 〈C, γ〉 is
not weakly final in Pow-Coalg.

The following is immediate from Theorem 2.3.2:

Proposition 2.4.1. If 〈C, γ〉 is final in F -Coalg, then 〈C, γ〉 is weakly complete in
F -Coalg.

The notion of weak completeness is meant as a coalgebraic generalization the first of the

CHAPTER 2. TRANSITION SYSTEMS 32

two conditions of our enquiry. The one introduced next is meant as a coalgebraic
generalization of the second.

We say that 〈C, γ〉 is strongly extensional if and only if for every c1, c2 ∈ C, c1 = c2 if and
only if c1 and c2 are bisimilar in 〈C, γ〉.

We use the term “strongly extensional” here in the same way that Rutten and Turi did in
[57]. This choice of term was suggested by the special case of Pow, where it was used quite
literally, in reference to a stronger form of the Axiom of Extensionality, one better suited to
a theory of sets that need not be well founded (see [2]). All other uses of it in [2], [5], and
[3] are ultimately equivalent to that in [57].

Note 2.4.2. In [2] and [5], an F -coalgebra 〈C, γ〉 was called “strongly extensional” if and
only if for every small F -coalgebra 〈C ′, γ′〉, there is at most one homomorphism from
〈C ′, γ′〉 to 〈C, γ〉, whereas in [3], if and only if for every F -coalgebra 〈C ′, γ′〉, there is at
most one homomorphism from 〈C ′, γ′〉 to 〈C, γ〉. All three notions coincide.

Proposition 2.4.2.1. The following are equivalent:

(a) 〈C, γ〉 is strongly extensional;

(b) for every F -coalgebra 〈C ′, γ′〉, there is at most one homomorphism from 〈C ′, γ′〉 to
〈C, γ〉;

(c) for every small F -coalgebra 〈C ′, γ′〉, there is at most one homomorphism from 〈C ′, γ′〉
to 〈C, γ〉.

Proof. By [23, thm. 6.13], (a) and (b) are equivalent. And since (b) trivially implies (c), it
suffices to prove that (c) implies (b).

Suppose that for every small F -coalgebra 〈C ′, γ′〉, there is at most one homomorphism
from 〈C ′, γ′〉 to 〈C, γ〉.

Suppose, toward contradiction, that there is an F -coalgebra 〈C ′′, γ′′〉, and homomorphisms
h1 and h2 from 〈C ′′, γ′′〉 to 〈C, γ〉 such that h1 6= h2. Then there is c′′ ∈ C ′′ such that
h1(c′′) 6= h2(c′′). By Lemma 2.4.8, there is a small F -coalgebra 〈C ′, γ′〉 such that c′′ ∈ C ′
and 〈C ′, γ′〉 ≤ 〈C ′′, γ′′〉. Thus, both h1 ◦ (C ′ ↪→ C ′′) and h2 ◦ (C ′ ↪→ C ′′) are
homomorphisms from 〈C ′, γ′〉 to 〈C, γ〉. However,

(h1 ◦ (C ′ ↪→ C ′′))(c′′) = h1(c′′) 6= h2(c′′) = (h2 ◦ (C ′ ↪→ C ′′))(c′′),

and thus,

h1 ◦ (C ′ ↪→ C ′′) 6= h2 ◦ (C ′ ↪→ C ′′),

CHAPTER 2. TRANSITION SYSTEMS 33

contrary to our hypothesis.

Therefore, for every F -coalgebra 〈C ′′, γ′′〉, there is at most one homomorphism from 〈C ′, γ′〉
to 〈C, γ〉.

Theorem 2.4.2. If 〈C, γ〉 is final in F -Coalg, then 〈C, γ〉 is strongly extensional.

Proof. See [57, thm. 2.4].

Theorem 2.4.2 is equivalent to the statement that any final F -coalgebra 〈C, γ〉 satisfies
what is now known as the coinduction proof principle, whereby for every c1, c2 ∈ C, in
order to prove that c1 = c2, one need only find a bisimulation B on 〈C, γ〉 such that c1 B c2

(see [56, thm. 9.2]).

Note 2.4.3. The coinduction proof principle applies to every simple F -coalgebra, namely
every F -coalgebra that has no proper quotient, or equivalently, every F -coalgebra 〈C, γ〉
such that for every F -coalgebra 〈C ′, γ′〉, if h is an epimorphism from 〈C, γ〉 to 〈C ′, γ′〉, then
h is an isomorphism between 〈C, γ〉 to 〈C ′, γ′〉.

Dually, the induction proof principle applies to every minimal F -algebra, namely every
F -algebra that has no proper subalgebra, or equivalently, every F -algebra 〈C, α〉 such that
for every F -algebra 〈C ′, α′〉, if h is a monomorphism from 〈C ′, α′〉 to 〈C, α〉, then h is an
isomorphism between 〈C ′, α′〉 to 〈C, α〉.

These statements appear explicitly in [57, sec. 6.3], which is, apparently, where the term
“coinduction” was used for the first time in this coalgebraic setting.

By [23, lem. 4.12], an F -coalgebra 〈C, γ〉 is simple, in the above sense, if and only if for any
c1, c2 ∈ C, c1 = c2 if and only if c1 and c2 are congruent in 〈C, γ〉.

Note that in [23], an F -coalgebra 〈C, γ〉 is called simple if and only if it satisfies the
coinduction proof principle (see [23, def. 6.12]).

Now, by Proposition 2.2.15 and 2.4.1, and Theorem 2.4.2, any system having a coalgebraic
representation that is final in (Pow ◦ (L× Id))-Coalg will satisfy both conditions of our
enquiry. So if we can prove that the converse is also true, then we need look no further.

Before attempting such a proof, there is a small issue that we need to resolve regarding the
first of these conditions and our coalgebraic generalization of it. By Proposition 2.2.1(b),

CHAPTER 2. TRANSITION SYSTEMS 34

2.2.13, and 2.2.15, the former is equivalent to the statement, “for every small L-labelled
transition coalgebra 〈C, τ〉 and any c ∈ C, there is s ∈ S such that c and s are bisimilar
among 〈C, τ〉 and 〈S, funT 〉”. Because of the term “small” in the first quantifier of this
statement, saying that 〈S, funT 〉 is weakly complete in (Pow ◦ (L× Id))-Coalg seems to
impose a much stronger constraint on the system 〈S, T 〉. Whether this is in fact a stronger
constraint is really a matter of whether an increase in the size of the carrier beyond that of
a set can bring about new kinds of behaviour in a labelled transition coalgebra.

In [5], Aczel and Mendler introduced a general condition meant precisely to guard against
this type of possibility. They called F set-based if and only if for every class C and any
c ∈ F (C), there is a subset S of C, and s ∈ F (S), such that c = F (S ↪→ C)(s).14

Now, it is quite obvious that Pow ◦ (L× Id) is set-based. What is not so obvious is that,
actually, every endofunctor on Class is set-based. Adamek, Milius, and Velebil proved this
surprising fact in [7] for the standard set-theoretic model of Class, using a classical result
from combinatorial set theory, but the same ideas extend to other models of Class (for
example, see [15]).

Here, we will be using this fact under the guise of The Small Subcoalgebra Lemma of [5].

Definition 2.4.3. A subcoalgebra of 〈C, γ〉 is an F -coalgebra 〈C ′, γ′〉 such that C ′ ⊆ C,
and C ′ ↪→ C is a homomorphism from 〈C ′, γ′〉 to 〈C, γ〉.

Thus, 〈C ′, γ′〉 is a subcoalgebra of 〈C, γ〉 just as long as it is an F -coalgebra, C ′ is a
subclass of C, and the following diagram commutes:

C ′ C

F (C ′) F (C)

C′ ↪→ C

γ′ γ

F (C′ ↪→ C)

We write 〈C ′, γ′〉 ≤ 〈C, γ〉 if and only if 〈C ′, γ′〉 is a subcoalgebra of 〈C, γ〉.

The concept of subcoalgebra is the coalgebraic counterpart of the concept of subalgebra,
which is a generalization, again in the same sense as before, of the concept of Σ-subalgebra.
It is a part of the original coalgebra, that is closed, in a suitably generalized sense, under
the decomposition rules of the latter.

14 For every class C1 and C2 such that C1 ⊆ C2, we write C1 ↪→ C2 for a function from C1 fo C2 such
that for any c1 ∈ C1, (C1 ↪→ C2)(c1) = c1. We call C1 ↪→ C2 the inclusion map from C1 to C2.

CHAPTER 2. TRANSITION SYSTEMS 35

For example, if 〈S, T 〉 is a transition system, and 〈S ′, γ′〉 a subcoalgebra of 〈S, funT 〉, then
S ′ is a set of states of 〈S, T 〉 that is closed under the transition relation of 〈S, T 〉, and rel γ′

is the restriction of that transition relation onto that set of states.

As one might expect, the cooperation of a subcoalgebra is uniquely determined by its
carrier.

Proposition 2.4.4. If 〈C1, γ1〉 ≤ 〈C, γ〉, 〈C2, γ2〉 ≤ 〈C, γ〉, and C1 = C2, then γ1 = γ2.

Proof. See [56, prop. 6.1].

The following can be used as criteria for choosing an eligible carrier:

Theorem 2.4.5. If h is a homomorphism from 〈C1, γ1〉 to 〈C2, γ2〉, then there is a class
function ρ : ranh→ F (ranh) such that

〈ranh, ρ〉 ≤ 〈C2, γ2〉. 15

Proof. See [56, thm. 6.3].

Theorem 2.4.6. For every class-indexed family {〈Ci, γi〉}i∈I of subcoalgebras of 〈C, γ〉,
there is a class function υ :

⋃
i∈I Ci → F (

⋃
i∈I Ci) such that

〈
⋃
i∈I

Ci, υ〉 ≤ 〈C, γ〉.

Proof. See [23, thm. 4.7].

Finally, every homomorphism factorizes, in a unique fashion, through every subcoalgebra of
its codomain F -coalgebra that contains its range.

Proposition 2.4.7. If h is a homomorphism from 〈C1, γ1〉 to 〈C2, γ2〉, and 〈C, γ〉 is a
subcoalgebra of 〈C2, γ2〉 such that ranh ⊆ C, then there is exactly one homomorphism h′

from 〈C1, γ1〉 to 〈C, γ〉 such that

h = (C ↪→ C2) ◦ h′.

Proof. See [56, prop. 6.5].

15 For every class function f , we write ran f for the class {y | there is x ∈ dom f such that y = f(x)}. We
call ran f the range of f .

CHAPTER 2. TRANSITION SYSTEMS 36

Thus, if h, 〈C1, γ1〉, 〈C2, γ2〉, and 〈C, γ〉 are as in Proposition 2.4.7, then there is exactly
one homomorphism h′ from 〈C1, γ1〉 to 〈C, γ〉 such that the following diagram commutes:

〈C1, γ1〉 〈C2, γ2〉

〈C, γ〉

h

C ↪→ C2h′

Theorem 2.4.6 and Proposition 2.4.7 can be used to arrange the subcoalgebras of an
F -coalgebra into a complete lattice (see [23, cor. 4.9]).

The Small Subcoalgebra Lemma was a key lemma in [5], and will be a key lemma here as
well.

Lemma 2.4.8. For every subset S of C, there is a small F -coalgebra 〈C ′, γ′〉 such that
S ⊆ C ′ and 〈C ′, γ′〉 ≤ 〈C, γ〉.

Proof. See [5, lem. 2.2] and [7, thm. 2.2].

Our fist use of it is in resolving our last issue.

Theorem 2.4.9. 〈C, γ〉 is weakly complete in F -Coalg if and only if for every small
F -coalgebra 〈C ′, γ′〉 and any c′ ∈ C ′, there is c ∈ C such that c′ and c are bisimilar among
〈C ′, γ′〉 and 〈C, γ〉.

Proof. If 〈C, γ〉 is weakly complete in F -Coalg, then, trivially, for every small F -coalgebra
〈C ′, γ′〉 and any c′ ∈ C ′, there is c ∈ C such that c′ and c are bisimilar among 〈C ′, γ′〉 and
〈C, γ〉.

Conversely, suppose that for every small F -coalgebra 〈C ′, γ′〉 and any c′ ∈ C ′, there is
c ∈ C such that c′ and c are bisimilar among 〈C ′, γ′〉 and 〈C, γ〉.

Assume an F -coalgebra 〈C ′′, γ′′〉.

Assume c′′ ∈ C ′′.

By Lemma 2.4.8, there is a small F -coalgebra 〈C ′, γ′〉 such that c′′ ∈ C ′ and
〈C ′, γ′〉 ≤ 〈C ′′, γ′′〉. By hypothesis, there is c ∈ C such that c′′ and c are bisimilar among
〈C ′, γ′〉 and 〈C, γ〉. Thus, there is a bisimulation B between 〈C ′, γ′〉 and 〈C, γ〉 such that
c′′ B c.

Let R = (C ′ ↪→ C ′′)−1 ;B.

CHAPTER 2. TRANSITION SYSTEMS 37

Then, by Corollary 2.2.11, R is a bisimulation between 〈C ′′, γ′′〉 and 〈C, γ〉. And clearly,
c′′ R c. Thus, c′′ and c are bisimilar among 〈C ′, γ′〉 and 〈C, γ〉.

Thus, by generalization, 〈C, γ〉 is weakly complete in F -Coalg.

By Proposition 2.2.1(b), 2.2.13, and 2.2.14, and Theorem 2.4.9, an L-labelled transition
system 〈S, T 〉 will satisfy the first condition of our enquiry if and only if 〈S, funT 〉 is
weakly complete in (Pow ◦ (L× Id))-Coalg, and by Proposition 2.2.14, it will satisfy the
second if and only if 〈S, funT 〉 is strongly extensional. We are thus left with the problem of
proving that if 〈S, funT 〉 is both weakly complete in (Pow ◦ (L× Id))-Coalg, and strongly
extensional, then it is final in (Pow ◦ (L× Id))-Coalg.

Although it is indeed possible to prove this, such proof does not generalize as one might
expect: weak completeness and strong extensionality do not, in general, imply finality. But
before we see an example attesting to this claim, we need to introduce a simple coalgebra
construction that generalizes the notion of disjoint union, allowing us to merge different
coalgebras into a single whole.

Assume a class-indexed family {〈Ci, γi〉}i∈I of F -coalgebras.

Definition 2.4.10. The direct sum of {〈Ci, γi〉}i∈I is an F -coalgebra 〈C, γ〉 such that the
following are true:

(a) C is the disjoint union16 of {Ci}i∈I ;

(b) γ is a class function from C to F (C) such that for any j ∈ I and any c ∈ Cj,

γ(〈j, c〉) = F (injj
∑
i∈I

Ci)(γj(c)).
17

We write
∑

i∈I 〈Ci, γi〉 for the direct sum of {〈Ci, γi〉}i∈I .

We write 〈C1, γ1〉+ 〈C2, γ2〉 for
∑

i∈{1,2} 〈Ci, γi〉.

Notice that for any j ∈ I, the canonical injection map injj
∑

i∈I Ci is trivially a
homomorphism from 〈Cj, γj〉 to

∑
i∈I 〈Ci, γi〉.

The most important, and practically defining property of the direct sum is the following:

16 For every class-indexed family {Ci}i∈I of classes, the disjoint union of {Ci}i∈I is the class
{〈i, c〉 | i ∈ I and c ∈ Ci}. We write

∑
i∈I Ci for the disjoint union of {Ci}i∈I .

17 For every class-indexed family {Ci}i∈I of classes and any j ∈ I, we write injj
∑

i∈I Ci for a function
from Cj to

∑
i∈I Ci such that for any c ∈ Cj , (injj

∑
i∈I Ci)(c) = 〈j, c〉. We call injj

∑
i∈I Ci the canonical

injection map from Cj to
∑

i∈I Ci.

CHAPTER 2. TRANSITION SYSTEMS 38

Proposition 2.4.11. For every class-indexed family {hi}i∈I such that for any i ∈ I, hi is a
homomorphism from 〈Ci, γi〉 to 〈C, γ〉, there is exactly one homomorphism h from∑

i∈I 〈Ci, γi〉 to 〈C, γ〉 such that for any j ∈ I,

hj = h ◦ injj
∑
i∈I

Ci.

Proof. See [23, lem. 4.1].

Thus, for every F -coalgebra 〈C, γ〉 and class-indexed family {hi}i∈I such that for any i ∈ I,
hi is a homomorphism from 〈Ci, γi〉 to 〈C, γ〉, there is exactly one mediating
homomorphism h from

∑
i∈I 〈Ci, γi〉 to 〈C, γ〉 such that the following diagram commutes:

〈Cj, γj〉
∑

i∈I 〈Ci, γi〉

〈C, γ〉

injj
∑

i∈I Ci

hj
h

The disjoint sum construction is one particular instance of the more abstract
category-theoretic concept of coproduct, which is defined by use of the property of
Proposition 2.4.11, only generalized to a category of arbitrary objects and arrows. Another
is the disjoint union construction.

Note 2.4.4. What about the concept of product?

In [55, p. 5], Rutten writes the following:

The direct sum (or coproduct) of any collection of transition systems
consists of the disjoint union of their carriers together with (the transition
structure determined by) the disjoint union of their transition relations. In
general, the product (in the category of transition systems) of two transition
systems need not exist. For instance, let S = {0, 1, 2} with αS(0) = {0, 1}, and
αS(1) = αS(2) = ∅. There does not exist a product of 〈S, αS〉 with itself.

This is false: there does exist a product of 〈S, αS〉 with itself in Pow-Coalg.

CHAPTER 2. TRANSITION SYSTEMS 39

Let P = {0, 〈1, 1〉, 〈1, 2〉, 〈2, 1〉, 〈2, 2〉}, and τ be a class function from P to PowP defined
by the following mapping:

0 7→ {0, 〈1, 1〉};
〈1, 1〉 7→ ∅;
〈1, 2〉 7→ ∅;
〈2, 1〉 7→ ∅;
〈2, 2〉 7→ ∅.

Let π1 be a function from P to S defined by the following mapping:

0 7→ 0;

〈1, 1〉 7→ 1;

〈1, 2〉 7→ 1;

〈2, 1〉 7→ 2;

〈2, 2〉 7→ 2.

Let π2 be a function from P to S defined by the following mapping:

0 7→ 0;

〈1, 1〉 7→ 1;

〈1, 2〉 7→ 2;

〈2, 1〉 7→ 1;

〈2, 2〉 7→ 2.

Then 〈P, τ〉, together with π1 and π2, is a product of 〈S, αS〉 with itself in Pow-Coalg.

More generally, for every endofunctor F on class, all small products exist in F -Coalg (see
[7, rem. 3.20]).

We are now ready to proceed with our promised example.

Example 2.4.12. Let F be as in Example 2.3.3.

Call an F -coalgebra 〈C, γ〉 nameless if and only if for any c ∈ C,

|ran γ(c)| = 2.

CHAPTER 2. TRANSITION SYSTEMS 40

The first thing to notice about a nameless F -coalgebra 〈C, γ〉 is that if c1 and c2 are
bisimilar in 〈C, γ〉, and c2 and c3 are bisimilar in 〈C, γ〉, then c1 and c3 are bisimilar in
〈C, γ〉; that is, bisimilarity in 〈C, γ〉 is a transitive concept, and thus, by Theorem 2.2.12,
the largest bisimulation on 〈C, γ〉 is a bisimulation equivalence.

Let 〈C, γ〉 be a direct sum of all nameless F -coalgebras.

Clearly, 〈C, γ〉 is itself nameless. It is also weakly complete in F -Coalg. To see this, notice
that every F -coalgebra 〈C ′, γ′〉 is a homomorphic image of a nameless F -coalgebra 〈C ′′, γ′′〉
such that

C ′′ = C ′ + {c′′ | there is c′ ∈ C ′ such that γ′(c′) = 〈c′′, c′′, c′′〉}.

and for any 〈i, c′〉 ∈ C ′′, if

γ′(c′) = 〈c′1, c′2, c′3〉,

then

γ′′(〈c′, i〉) =

{
〈〈0, c′1〉, 〈0, c′2〉, 〈0, c′3〉〉 if |{c′1, c′2, c′3}| = 2;

〈〈0, c′1〉, 〈0, c′2〉, 〈1, c′3〉〉 otherwise.

Weak completeness then follows from Theorem 2.2.10 and 2.4.9.

Let q be a quotient of C with respect to the largest bisimulation equivalence on 〈C, γ〉.

By Proposition 2.3.1, there is exactly one F -coalgebra 〈cod q, δ〉 such that q is an
epimorphism from 〈C, γ〉 to 〈cod q, δ〉. And by an argument similar to that in
Example 2.3.3, one can see that 〈cod q, δ〉 is also nameless. More importantly, 〈cod q, δ〉 is
both weakly complete in F -Coalg, and strongly extensional. Weak completeness follows
from weak completeness of 〈C, f〉 and Corollary 2.2.11, and strong extensionality by the
straightforward observation that the inverse image of a bisimulation under a
homomorphism from one nameless F -coalgebra to another is itself a bisimulation, which,
by Theorem 2.3.2, is just a consequence of the fact that bisimilarity in a nameless
F -coalgebra is transitive. However, 〈cod q, δ〉 is not final in F -Coalg, lest it be isomorphic
to 〈S2, γ2〉, and thus, 0 and 1 bisimilar in 〈S1, γ1〉 of Example 2.3.3.

This issue is just another manifestation of the aforementioned separation between the
coalgebraic concepts of bisimulation and precongruence; had we used the latter to define
the notion of strong extensionality, there would be no issue.

Fortunately, there is a simple way around this.

We say that 〈C, γ〉 is complete in F -Coalg if and only if for every F -coalgebra 〈C ′, γ′〉 and
any c′ ∈ C ′, there is exactly one c ∈ C such that c′ and c are bisimilar among 〈C ′, γ′〉 and
〈C, γ〉.

CHAPTER 2. TRANSITION SYSTEMS 41

By an easy corollary of Proposition 2.2.14, bisimilarity among L-labelled transition
coalgebras is a transitive concept, and thus, an L-labelled transition coalgebra is both
weakly complete in (Pow ◦ (L× Id))-Coalg, and strongly extensional, if and only if it is
complete in (Pow ◦ (L× Id))-Coalg. Therefore, we may just as well forget about weak
completeness and strong extensionality, and work with completeness instead, whose
equivalence to finality generalizes nicely.

Apart from establishing this generalized equivalence, the following shows that when dealing
with the two notions, one need only worry about coalgebras that are small:

Theorem 2.4.13. The following are equivalent:

(a) 〈C, γ〉 is final in F -Coalg;

(b) for every small F -coalgebra 〈C ′, γ′〉, there is exactly one homomorphism from 〈C ′, γ′〉
to 〈C, γ〉;

(c) 〈C, γ〉 is complete in F -Coalg;

(d) for every small F -coalgebra 〈C ′, γ′〉, and any c′ ∈ C ′, there is exactly one c ∈ C such
that c′ and c are bisimilar among 〈C ′, γ′〉 and 〈C, γ〉.

Proof. Trivially, (a) implies (b), and (c) implies (d). Therefore, it suffices to prove that (b)
implies (c), and (d) implies (a).

Suppose that for every small F -coalgebra 〈C ′, γ′〉, there is exactly one homomorphism from
〈C ′, γ′〉 to 〈C, γ〉.

Assume an F -coalgebra 〈C ′, γ′〉.

Assume c′ ∈ C ′.

By Lemma 2.4.8, there is a small F -coalgebra 〈C ′′, γ′′〉 such that c′ ∈ C ′′ and
〈C ′′, γ′′〉 ≤ 〈C ′, γ′〉. By hypothesis, there is exactly one homomorphism h from 〈C ′′, γ′′〉 to
〈C, γ〉.

Let R = (C ′′ ↪→ C ′)−1 ;h.

Then, by Theorem 2.2.10, R is a bisimulation between 〈C ′, γ′〉 and 〈C, γ〉. And clearly,
c′ R h(c′). Thus, there is c ∈ C, namely h(c′), such that c′ and c are bisimilar among
〈C ′, γ′〉 and 〈C, γ〉.

Suppose, toward contradiction, that there are c1, c2 ∈ C such that c′ and c1 are bisimilar
among 〈C ′, γ′〉 and 〈C, γ〉, c′ and c2 are bisimilar among 〈C ′, γ′〉 and 〈C, γ〉, and c1 6= c2.
Then there are bisimulations B1 and B2 between 〈C ′, γ′〉 and 〈C, γ〉 such that c′ B1 c1 and

CHAPTER 2. TRANSITION SYSTEMS 42

c′ B2 c2. By Theorem 2.2.12, there is a bisimulation B between 〈C ′, γ′〉 and 〈C, γ〉 such that

graphB = graphB1 ∪ graphB2.

Let 〈graphB, β〉 be an F -coalgebra such that dprB is a homomorphism from 〈graphB, β〉
to 〈C ′, γ′〉, and cprB one from 〈graphB, β〉 to 〈C, γ〉.

By Lemma 2.4.8, there is a small F -coalgebra 〈G, β′〉 such that {〈c′, c1〉, 〈c′, c2〉} ⊆ G and
〈G, β′〉 ≤ 〈graphB, β〉.

Let B′ be a binary class relation between C ′ and C such that

graphB′ = G.

Clearly, B′ is a bisimulation between 〈C ′, γ′〉 and 〈C, γ〉.

By Theorem 2.4.5, there is a class function ρ : ran dprB′ → F (ran dprB′) such that

〈ran dprB′, ρ〉 ≤ 〈C ′, γ′〉.

And by Proposition 2.4.7, there is exactly one homomorphism π from 〈graphB′, β〉 to
〈ran dprB′, ρ〉 such that

dprB′ = (ran dprB′ ↪→ C ′) ◦ π.

Since 〈graphB′, β′〉 is small, 〈ran dprB′, ρ〉 is small. Thus, by hypothesis, there is exactly
one homomorphism h′ from 〈ran dprB′, ρ〉 to 〈C, γ〉. Then both h′ ◦ π and cprB′ are
homomorphisms from 〈graphB′, β′〉 to 〈C, γ〉. However,

(h′ ◦ π)(〈c′, c1〉) = h′(c′) = (h′ ◦ π)(〈c′, c2〉)

and

(cprB′)(〈c′, c1〉) = c1 6= c2 = (cprB′)(〈c′, c2〉),

and thus,

h′ ◦ π 6= cprB′,

contrary to our hypothesis.

Therefore, there is at most one c ∈ C such that c′ and c are bisimilar among 〈C ′, γ′〉 and
〈C, γ〉.

Thus, there is exactly one c ∈ C, namely h(c′), such that c′ and c are bisimilar among
〈C ′, γ′〉 and 〈C, γ〉.

CHAPTER 2. TRANSITION SYSTEMS 43

Thus, by generalization, 〈C, γ〉 is complete in F -Coalg.

We have thereby proved that (b) implies (c). It remains to prove that (d) implies (a).

Suppose that for every for every small F -coalgebra 〈C ′, γ′〉, and any c′ ∈ C ′, there is
exactly one c ∈ C such that c′ and c are bisimilar among 〈C ′, γ′〉 and 〈C, γ〉.

Assume an F -coalgebra 〈C ′′, γ′′〉.

For every small subcoalgebra 〈C ′, γ′〉 of 〈C ′′, γ′′〉, let h〈C′,γ′〉 be a class function from 〈C ′, γ′〉
to 〈C, γ〉 such that for any c′ ∈ C ′, h〈C′,γ′〉(c

′) is the unique c ∈ C such that c′ and c are
bisimilar among 〈C ′, γ′〉 and 〈C, γ〉.

Let h be a binary class relation between 〈C ′′, γ′′〉 and 〈C, γ〉 such that

graphh =
⋃
{graphh〈C′,γ′〉 | 〈C ′, γ′〉 is a small subcoalgebra of 〈C ′′, γ′′〉}.

We claim that h is a homomorphism from 〈C ′′, γ′′〉 to 〈C, γ〉.

We first need to prove that h is a class function.

Assume c′′ ∈ C ′′.

By Lemma 2.4.8, there is a small F -coalgebra 〈C ′, γ′〉 such that c′′ ∈ C ′′ and
〈C ′, γ′〉 ≤ 〈C ′′, γ′′〉. Thus, 〈c′′, h〈C′,γ′〉(c

′′)〉 ∈ graphh.

Thus, by generalization, domh = C ′′.

Suppose, toward contradiction, that there are 〈c′′, c1〉, 〈c′′, c2〉 ∈ graphh such that c1 6= c2.
Then there is a small subcoalgebra 〈C ′1, γ′1〉 of 〈C ′′, γ′′〉 such that

h〈C′
1,γ

′
1〉(c

′′) = c1,

and a small subcoalgebra 〈C ′2, γ′2〉 of 〈C ′′, γ′′〉 such that

h〈C′
2,γ

′
2〉(c

′′) = c2.

Thus, there is a bisimulation B1 between 〈C ′1, γ′1〉 and 〈C, γ〉 such that c′′ B1 c1, and a
bisimulation B2 between 〈C ′2, γ′2〉 and 〈C, γ〉 such that c′′ B2 c2. Now, by Theorem 2.4.6,
there is a function υ : C ′1 ∪ C ′2 → F (C ′1 ∪ C ′2) such that

〈C ′1 ∪ C ′2, υ〉 ≤ 〈C ′′, γ′′〉.

And by Proposition 2.4.7, C ′1 ↪→ (C ′1 ∪ C ′2) is a homomorphism from 〈C ′1, γ′1〉 to
〈C ′1 ∪ C ′2, υ〉, and C ′2 ↪→ (C ′1 ∪ C ′2) one from 〈C ′2, γ′2〉 to 〈C ′1 ∪ C ′2, υ〉.

Let R1 = (C ′1 ↪→ (C ′1 ∪ C ′2))−1 ;B1.

CHAPTER 2. TRANSITION SYSTEMS 44

Let R2 = (C ′2 ↪→ (C ′1 ∪ C ′2))−1 ;B2.

Then, by Corollary 2.2.11, both R1 and R2 are bisimulations between 〈C ′1 ∪ C ′2, υ〉 and
〈C, γ〉. And clearly, c′′ R1 c1 and c′′ R2 c2, contrary to our hypothesis.

Therefore, for every 〈c′′, c1〉, 〈c′′, c2〉 ∈ graphh, c1 = c2.

Thus, h is a class function from C ′′ to C.

We move on to prove that h is a homomorphism from 〈C ′′, γ′′〉 to 〈C, γ〉.

Assume c′′ ∈ C ′′.

By Lemma 2.4.8, there is a small F -coalgebra 〈C ′, γ′〉 such that c′′ ∈ C ′ and
〈C ′, γ′〉 ≤ 〈C, γ〉.

Let B be a bisimulation between 〈C ′, γ′〉 and 〈C, γ〉 such that c′′ B h〈C′,γ′〉(c
′′).

Let 〈graphB, β〉 be an F -coalgebra such that dprB is a homomorphism from 〈graphB, β〉
to 〈C ′, γ′〉, and cprB one from 〈graphB, β〉 to 〈C, γ〉.

Suppose, toward contradiction, that

h ◦ (C ′ ↪→ C ′′) ◦ dprB 6= cprB.

Then there is 〈c′′, c〉 ∈ graphB such that

(h ◦ (C ′ ↪→ C ′′) ◦ dprB)(〈c′′, c〉) 6= (cprB)(〈c′′, c〉).

Thus, h(c′′) 6= c. However, h(c′′) = h〈C′,γ′〉(c
′′), and thus, h〈C′,γ′〉(c

′′) 6= c, contrary to our
hypothesis.

Therefore,

h ◦ (C ′ ↪→ C ′′) ◦ dprB = cprB.

Then

F (h)(γ′′(c′′)) = F (h)(F (C ′ ↪→ C ′′)(γ′(c′′)))

= F (h)(F (C ′ ↪→ C ′′)(γ′((dprB)(〈c′′, h〈C′,γ′〉(c
′′)〉))))

= F (h)(F (C ′ ↪→ C ′′)(F (dprB)(β(〈c′′, h〈C′,γ′〉(c
′′)〉))))

= F (h ◦ (C ′ ↪→ C ′′) ◦ dprB)(β(〈c′′, h〈C′,γ′〉(c
′′)〉))

= F (cprB)(β(〈c′′, h〈C′,γ′〉(c
′′)〉))

= γ((cprB)(〈c′′, h〈C′,γ′〉(c
′′)〉))

= γ(h〈C′,γ′〉(c
′′))

= γ(h(c′′)).

CHAPTER 2. TRANSITION SYSTEMS 45

Thus, by generalization, h is a homomorphism from 〈C ′′, γ′′〉 to 〈C, f〉.

Suppose, toward contradiction, that there are homomorphisms h1 and h2 from 〈C ′′, γ′′〉 to
〈C, γ〉 such that h1 6= h2. Then there is c′′ ∈ C ′′ such that

h1(c′′) 6= h2(c′′).

And by Lemma 2.4.8, there is a small F -coalgebra 〈C ′, γ′〉 such that c′′ ∈ C ′ and
〈C ′, γ′〉 ≤ 〈C, γ〉. By Theorem 2.3.2, both h1 ◦ (C ′ ↪→ C ′′) and h2 ◦ (C ′ ↪→ C ′′) are
bisimulations between 〈C ′, γ′〉 to 〈C, γ〉. Thus, c′′ and h1(c′′) are bisimilar among 〈C ′, γ′〉
and 〈C, γ〉, and c′′ and h2(c′′) are bisimilar among 〈C ′, γ′〉 and 〈C, γ〉, contrary to our
hypothesis.

Therefore, there is at most one homomorphism from 〈C ′′, γ′′〉 to 〈C, γ〉.

Thus, there is exactly one homomorphism from 〈C ′′, γ′′〉 to 〈C, γ〉.

Thus, by generalization, 〈C, γ〉 is final in F -Coalg.

The equivalence of (a) and (b) was already sketched by Aczel in [2], whereas the implication
from (a) to (c) can be found in [23, thm. 6.4]. But the one in the reverse direction is, to our
knowledge, a new result. Altogether, Theorem 2.4.13 is a powerful characterization of final
coalgebras, justifying their prominent role as semantic models of behaviour.

2.5 Existence of final coalgebras

At this point, there are two questions left for us to answer. First, is there a final L-labelled
transition coalgebra? And second, if there is one, is it a coalgebraic representation of an
L-labelled transition system?

The answer to the first question was already contained in the Final Coalgebra Theorem of
[2], which has since been generalized to assert the existence of a final coalgebra for every
endofunctor on Class.

Theorem 2.5.1. There is an F -coalgebra that is final in F -Coalg.

Proof. See [5, thm. 2.1] and [7, thm. 2.2].

By now, there have been several different proofs of Theorem 2.5.1 (see [7] and references
therein). Assuming [7, thm. 2.2], or equivalently, Lemma 2.4.8, the proof in [5] is perhaps
the most elementary, and surely the most natural from the non-category-theorist point of
view. It amounts to forming a direct sum of all small F -coalgebras, and constructing a

CHAPTER 2. TRANSITION SYSTEMS 46

quotient of it with respect to the largest congruence on it, or equivalently in this case, the
equivalence class relation generated by the largest bisimulation on it.

Note 2.5.1. In [5], Aczel and Mendler constructed the quotient of a coproduct of all small
coalgebras with respect to the largest congruence on it, which, by Proposition 2.3.3.2, is
also the largest precongruence on it. That we can use the equivalence class relation
generated by the largest bisimulation on it instead is not entirely obvious, but nevertheless,
true.

Proposition 2.5.1.1. If for every small F -coalgebra 〈C ′, γ′〉, there is a homomorphism
from 〈C ′, γ′〉 to 〈C, γ〉, then for every c1, c2 ∈ C, the following are equivalent:

(a) c1 and c2 are congruent in 〈C, γ〉;

(b) there is c ∈ C such that c1 and c are bisimilar in 〈C, γ〉, and c and c2 are bisimilar in
〈C, γ〉.

Proof. Suppose that for every small F -coalgebra 〈C ′, γ′〉, there is a homomorphism from
〈C ′, γ′〉 to 〈C, γ〉.

Assume c1, c2 ∈ C.

Suppose that c1 and c2 are congruent in 〈C, γ〉.

Then there is a congruence P on 〈C, γ〉 such that c1 P c2.

By Lemma 2.4.8, there is a small F -coalgebra 〈C ′, γ′〉 such that {c1, c2} ⊆ C ′ and
〈C ′, γ′〉 ≤ 〈C, γ〉.

Let q be a quotient of C with respect to P .

By [5, lem. 5.1], there is a class function δ : cod q → F (cod q) such that q is an epimorphism
from 〈C, γ〉 to 〈cod q, δ〉. By Theorem 2.4.5, there is a class function
ρ : ran(q ◦ (C ′ ↪→ C))→ F (ran(q ◦ (C ′ ↪→ C))) such that

〈ran(q ◦ (C ′ ↪→ C)), ρ〉 ≤ 〈cod q, δ〉.

By Proposition 2.4.7, there is exactly one homomorphism h from 〈C ′, γ′〉 to
〈ran(q ◦ (C ′ ↪→ C)), ρ〉 such that

q ◦ (C ′ ↪→ C) = (ran(q ◦ (C ′ ↪→ C)) ↪→ cod q) ◦ h.

And clearly, h(c1) = h(c2).

CHAPTER 2. TRANSITION SYSTEMS 47

Assume c′ ∈ C ′.

Since 〈C ′, γ′〉 is small, 〈ran(q ◦ (C ′ ↪→ C)), ρ〉 is small. Thus, by hypothesis, there is a
homomorphism h′ from 〈ran(q ◦ (C ′ ↪→ C)), ρ〉 to 〈C, γ〉.

Let B = (C ′ ↪→ C)−1 ;(h′ ◦ h).

Then, by Theorem 2.2.10, both B and B−1 are bisimulations on 〈C, γ〉. And clearly,
c1 B h′(h(c1)) and h′(h(c2)) B−1 c2. However, h(c1) = h(c2), and hence,
h′(h(c1)) = h′(h(c2)). Thus, there is c ∈ C, namely h′(h(c1)), such that c1 and c are
bisimilar in 〈C, γ〉, and c and c2 are bisimilar in 〈C, γ〉.

Conversely, suppose that there is c ∈ C such that c1 and c are bisimilar in 〈C, γ〉, and c and
c2 are bisimilar in 〈C, γ〉.

Then, by [5, prop. 6.1], c1 and c are congruent in 〈C, γ〉, and c and c2 are congruent in
〈C, γ〉. Thus, by [23, lem. 4.16] there is a congruence P on 〈C, γ〉 such that c1 P c and
c P c2, and hence, c1 P c2. Thus, c1 and c2 are congruent in 〈C, γ〉.

Thus, by generalization, (a) and (b) are equivalent.

By [5, lem. 4.3], there is a largest congruence, and by [56, cor. 5.6], a largest bisimulation on
〈C, γ〉. What Proposition 2.5.1.1 then implies is that if for every small F -coalgebra 〈C ′, γ′〉,
there is a homomorphism from 〈C ′, γ′〉 to 〈C, γ〉, as is the case with any coproduct of all
small F -coalgebras, then the largest congruence on 〈C, γ〉 coincides with the equivalence
class relation generated by the largest bisimulation on 〈C, γ〉.

Note that according to Rutten, for every F -coalgebra, the largest bisimulation on it is an
equivalence class relation (see [56, cor. 5.6]). This is false. For an easy counterexample,
consider the direct sum of the F -coalgebras 〈S1, γ1〉 and 〈S2, γ2〉 of Example 2.3.3.

We could also forgo some of the generality of Theorem 2.5.1, in favour of an even simpler
final coalgebra construction, one that would be, for instance, more amenable to formal
reasoning.

For example, if we assume that F is an ωop-continuous endofunctor on Class, namely one
that preserves limits of ωop-indexed diagrams in Class, and let 1 be a terminal object of
Class, or equivalently, a set with just one member, and ! the unique class function from
F (1) to 1, then we can fashion a final F -coalgebra out of a limit of the following diagram
(see [60, lem. 2]):

CHAPTER 2. TRANSITION SYSTEMS 48

1 F (1) F (F (1)) · · ·! F (!) F (F (!))

Another, fascinating example is The Special Final Coalgebra Theorem of [2], which, under
the hypothesis of a universe of sets that need not be well founded, asserts that if F
preserves inclusion maps, and is uniform on maps, a condition capturing the informal idea
of an endofunctor whose action on class functions is completely determined by its action on
classes, then the largest fixed point of the object part of F , which is readily obtained, in
this case, as⋃

{S | S is a subset of F (S)},

together with the identity map on it, is a final F -coalgebra.

All the same, it is only the existence of a final F -coalgebra that will be of any interest to us
here.

The answer to the second question is suggested by Lambek’s Lemma.

Proposition 2.5.2. If 〈C, γ〉 is final in F -Coalg, then γ is bijective.

Proof. See [33, lem. 2.2].

If 〈C, τ〉 is final in (Pow ◦ (L× Id))-Coalg, then τ is a bijective class function from C to
Pow(L× C), which, for obvious cardinality reasons, is possible only if C is a proper class.
Thus, even though there is a final L-labelled transition coalgebra, it, being large, cannot be
a coalgebraic representation of an L-labelled transition system, and consequently, there is
no L-labelled transition system satisfying both conditions of our enquiry.

Although perhaps disconcerting, this is not something that should come as a complete
surprise. Having left the cardinality of the branching degree of a state in a system
unchecked, it is only reasonable to expect that the different types of branching structure be
too many to collect inside a set. One could, for example, bound, in a suitable sense, the
endofunctor F , to ensure that a final coalgebra be small (see [31, cor. 3.3]). In the case of
Pow ◦ (L× Id), this would correspond to bounding that branching degree cardinality, and
for a model of process behaviour, this may or may not be a natural thing to do. But in the
case of Pow, and for a model of a theory of sets, for example, it is definitely not.

Here, we will feel comfortable working with large coalgebras, and refrain from imposing
additional constraints, just for the sake of size. Indeed, the very reason that we have
decided to work within a theory of classes in the first place was not having to worry about
size at all. If we want to understand ‘behaviour’ in terms of branching structure, then it
seems inappropriate to constrain that structure by means that only reflect our own

CHAPTER 2. TRANSITION SYSTEMS 49

preconceptions about how that ‘behaviour’ may come about. And a bound on the
branching degree of that structure seems to do just that: reflect our own bias toward a
kind of process that “computes” its own evolution using a fixed set of predefined resources.

Before we leave this chapter, we note that the notion of an F -coalgebra can be defined for
any endofunctor F on any arbitrary category, concrete or not. See, for example, [57], for an
adaptation of the theory to the categories of metric spaces and ordered sets, or [51], for an
entirely axiomatic approach.

50

Chapter 3

Execution Systems

3.1 From transitions to executions

Perhaps the first thing to decide when setting out to develop an observational theory of
processes of some kind is what the unit of observation should be. For a theory based on the
concept of labelled transition system, this unit is effectively fixed to what can be
represented by a single transition: a single action or event. But at that scale of
observation, it is only the local properties of the behaviour of a process that carry over to
the model. Non-local properties, specifically those concerning infinite executions of the
process, do not. For examples of the first kind, one may look at safety properties, such as
mutual exclusion or deadlock freedom, whereas for examples of the second kind, one may
look at liveness properties, such as termination or guaranteed service (see [8]).

We might think of a labelled transition system as an intuitionistic approach to a model of
a process. For an intuitionist, an infinite execution cannot possibly claim existence as a
completed totality of actions or events. It is only “a manifold of possibilities open towards
infinity; it remains forever in the status of creation, but is not a closed realm of things
existing in themselves” (see [63, p. 9]). This rejection of the notion of actual infinity is
detrimental to the expressiveness of a theory. All limits of partial executions become
complete executions in the model, which is the source of bounded indeterminacy (see [19,
chap. 9]), and the reason behind the well known problems with properties like fairness
([50]) or finite delay ([30]) (for example, see [45]).

Here, instead, we take what we might say is a more classical approach, and fix our unit of
observation at the level of a complete execution of a process. And for that, we need a
different type of mathematical structure.

Definition 3.1.1. An execution system is an ordered pair 〈S,E〉 such that the following

CHAPTER 3. EXECUTION SYSTEMS 51

are true:

(a) S is a set;

(b) E is a binary relation between S and S S.1

Assume an execution system 〈S,E〉.

We write sBE e if and only if s E e.

We call any s ∈ S a state of 〈S,E〉, and any 〈s, e〉 ∈ graphE an execution of 〈S,E〉.

Notice that an execution is an ordered pair of a state and a sequence of states, rather than
a single sequence of states, what might have seemed a more natural option. And while we
do think that there is a certain clarity in distinguishing the starting state of an execution
from any subsequent step, this was mainly a choice of mathematical convenience. Its merit
will soon become apparent.

The idea of an execution system has been around at least since the early days of temporal
logic in computer science, in the form of a type of semantic structure called a path
structure in [53] (for example, see [52], [1], and [34]). The states of a system would
represent the various memory configurations and control locations traversed in the course
of a computation of a possibly concurrent program, and the executions those computations
permitted by the assumed implementation, and over which the modalities of the logic were
to be interpreted. Here, we will need one more thing: labels.

Definition 3.1.2. An L-labelled execution system is an ordered pair 〈S,E〉 such that the
following are true:

(a) S is a set;

(b) E is a binary relation between S and S (L× S).

Assume an L-labelled execution system 〈S,E〉.

We write sBE e if and only if s E e.

We call any s ∈ S a state of 〈S,E〉, and any 〈s, e〉 ∈ graphT an execution of 〈S,E〉.

Despite the rich cross-fertilization of ideas between temporal logic and process algebra, and
the obvious parallel between semantic structures and labelled systems in the two fields,
path structures were never really assimilated for use as models of process theories. In fact,
the concept of labelled execution system is almost absent from the literature. Looking back

1 For every set S, we write S S for the set of all finite and infinite sequences over S.

CHAPTER 3. EXECUTION SYSTEMS 52

to it, we could only find a handful of sporadic instances of the general notion. We discuss
them at the end of this chapter, where we also offer our own opinion on this surprising
omission.

3.2 From systems to coalgebras and back

As our choice of formalization should have made obvious, the concept of labelled execution
system is a direct generalization of that of labelled transition system. The idea of a single
step from one state to another is replaced by that of an “admissible” path through the
system over which a sequence of steps can be taken. The result is a more elaborate notion
of branching structure. And if we are to associate this notion with ‘behaviour’ of some
kind, we need to understand what constitutes similarity and dissimilarity of it. In other
words, we need a concept of branching equivalence suited to labelled execution systems.
What should that concept be?

In [57], Rutten and Turi propose a simple approach to this type of problem: all we have to
do is find a suitable endofunctor to represent our systems coalgebraically. We can then use
that endofunctor to instantiate the “parametric” concept of bisimulation of
Definition 2.2.8, and obtain not only the equivalence concept that we seek, but a model too
that is fully abstract with respect to that concept (see Theorem 2.4.13 and 2.5.1).2 This is
straightforward here.

We write Seq for an endofunctor on Class that assigns to every class C the class

SeqC = {s | there is a subset S of C such that s ∈ S S},

and to every class function f : C1 → C2 a class function

Seq f : SeqC1 → SeqC2

such that for every s ∈ SeqC1,

(Seq f)(s) =

{
〈 〉 if s = 〈 〉;
〈f(head s)〉 · (Seq f)(tail s) otherwise.

Notice that if the class C is a actually a set, then

SeqC = S C.

2 The tacit assumption here is that the instantiated concept of bisimulation does indeed induce an
equivalence concept. See Example 2.3.3 for a case where it does not.

CHAPTER 3. EXECUTION SYSTEMS 53

At this point, the reader may protest against the seeming circularity in the way we have
specified the action of Seq on class functions; what may look like a harmless definition by
recursion is really a descending argument over a possibly infinite deduction sequence: there
is no base case. A little thought, however, will suffice to convince oneself that there is
nothing ambiguous about it. Seq f is a simple lift of f to sequences over dom f . Informally,
if 〈c0, c1, . . .〉 is a sequence over dom f , then (Seq f)(〈c0, c1, . . .〉) is the result of replacing
each ci in that sequence with its own image under f , namely the sequence
〈f(c0), f(c1), . . .〉. We are thus entitled to use this contentious form of specification as a
definition. The question is how do we justify it formally.

In principle, we could use induction on the index of a sequence to prove that each point in
the sequence is uniquely determined. But we can do better.

First, notice that SeqC2 can be given the structure of a ({〈 〉}+ (C2 × Id))-coalgebra,
where {〈 〉}+ (C2 × Id) is the composite of the left sum endofunctor {〈 〉}+ Id on Class
with the left product endofunctor C2 × Id on Class: simply let σ2 be a class function from
SeqC2 to {〈 〉}+ (C2 × SeqC2) such that for every s ∈ SeqC2,

σ2(s) =

{
(inj1({〈 〉}+ (C2 × SeqC2)))(〈 〉) if s = 〈 〉;
(inj2({〈 〉}+ (C2 × SeqC2)))(〈head s, tail s〉) otherwise.

Now, we can use f to give SeqC1 the structure of a ({〈 〉}+ (C2 × Id))-coalgebra as well:
just let σ1 be a class function from SeqC1 to {〈 〉}+ (C2 × SeqC1) such that for every
s ∈ SeqC1,

σ1(s) =

{
(inj1({〈 〉}+ (C2 × SeqC1)))(〈 〉) if s = 〈 〉;
(inj2({〈 〉}+ (C2 × SeqC1)))(〈f(head s), tail s〉) otherwise.

All our definition says then is that Seq f is a homomorphism from 〈SeqC1, σ1〉 to
〈SeqC2, σ2〉. And the existence and uniqueness of this homomorphism follows from the fact
that 〈SeqC2, σ2〉 is actually final in ({〈 〉}+ (C2 × Id))-Coalg, as the reader may wish to
prove.

With experience, all this can be inferred immediately by simple inspection of the form of
the defining equations. More importantly, the same type of argument can be applied to the
case of any endofunctor, even if there is no readily available representation of a final
coalgebra amenable to inductive reasoning (see [44]). A definition that relies in this way on
the finality of the implicit target coalgebra is what we call a definition by corecursion. This
particular use of the term appears to have originated with [11], and is justified by the
duality to the more familiar notion of definition by recursion, which, in similar fashion,
relies on the initiality of the implicit source algebra (see [28]).

We can now compose Seq with the left product endofunctor L× Id on Class to obtain the

CHAPTER 3. EXECUTION SYSTEMS 54

endofunctor Seq ◦ (L× Id) on Class, which assigns to every class C the class

Seq(L× C) = {s | there is a subset S of L× C such that s ∈ S S},

and to every class function f : C1 → C2 a class function

Seq(L× f) : Seq(L× C1)→ Seq(L× C2)

such that for every s ∈ Seq(L× C1),

(Seq(L× f))(s) =

{
〈 〉 if s = 〈 〉;
〈〈first head s, f(sec head s)〉〉 · (Seq(L× f))(tail s) otherwise.3

This is another instance of a definition by corecursion. Informally, if 〈〈l0, c0〉, 〈l1, c1〉, . . .〉 is
a sequence over dom f , then

Seq(L× f)(〈〈l0, c0〉, 〈l1, c1〉, . . .〉) = 〈〈l0, f(c0)〉, 〈l1, f(c1)〉, . . .〉.

Finally, we can compose Pow with Seq ◦(L× Id) to obtain the endofunctor
Pow ◦ Seq ◦ (L× Id) on Class, which assigns to every class C the class

Pow Seq(L× C) = {S | S is a subset of Seq(L× C)},

and to every class function f : C1 → C2 a class function

Pow Seq(L× f) : Pow Seq(L× C1)→ Pow Seq(L× C2)

such that for every S ∈ Pow Seq(L× C1),

(Pow Seq(L× f))(S) = {(Seq(L× f))(s) | s ∈ S}.

Just as we did with transition systems, we can take now advantage of the formal analogy
between the concepts of binary relation and set-valued function, and use Proposition 2.2.1
to obtain our coalgebraic representation. This unity of treatment is the reward of our
aforementioned formalization choice.

By Proposition 2.2.1 then, an L-labelled execution system 〈S,E〉 can be represented as a
(Pow ◦ Seq ◦ (L× Id))-coalgebra, namely as 〈S, funE〉, and conversely, a
(Pow ◦ Seq ◦ (L× Id))-coalgebra 〈C, ε〉 can be represented as an L-labelled execution
system, namely as 〈C, rel ε〉, again with the caveat that C be a set.

3 For every ordered pair 〈x, y〉, we write first 〈x, y〉 for x, and sec 〈x, y〉 for y.

CHAPTER 3. EXECUTION SYSTEMS 55

Assume a (Pow ◦ Seq ◦ (L× Id))-coalgebra 〈C, ε〉.

We call 〈C, ε〉 an L-labelled execution coalgebra.

We write cBε e if and only if e ∈ ε(c).

Assume an L-labelled execution system 〈S,E〉.

The following is immediate:

Proposition 3.2.1. The following are true:

(a) sBT e if and only if sBfunT e;

(b) if 〈C, ε〉 is small, then cBε e if and only if cBrel ε e.

At this stage, we could already use Proposition 3.2.4 below as our definition of bisimulation
between labelled execution systems. But we prefer a different, more operational one that
will help us develop some insight into the concept. And for this, we need some more
preparation.

Assume a binary class relation R : C1 ↔ C2.

We write Seq(L×R) for a binary class relation between Seq(L×C1) and Seq(L×C2) such
that for every e1 ∈ Seq(L× C1) and every e2 ∈ Seq(L× C2),

e1 Seq(L×R) e2 ⇐⇒ there is e ∈ Seq(L× graphR)
such that e1 = Seq(L× dprB)(e)
and e2 = Seq(L× cprB)(e).

Seq(L×R) is a simple lift of R to pairs of sequences over domR and codR. Informally, if
〈c0, c1, . . .〉 is a sequence over domR, and 〈c′0, c′1, . . .〉 a sequence over codR, then

〈c0, c1, . . .〉 Seq(L×R) 〈c′0, c′1, . . .〉

if and only if c0 R c′0, c1 R c′1, etc. This is, of course, an abuse of notation. But it is a very
mild form of abuse. For if R is actually a class function, then Seq(L×R) is the same as
the image of R under Seq ◦(L× Id).

Assume L-labelled execution coalgebras 〈C1, ε1〉 and 〈C2, ε2〉.

Proposition 3.2.2. B is a bisimulation between 〈C1, ε1〉 and 〈C2, ε2〉 if and only if B is a
binary class relation between 〈C1, ε1〉 and 〈C2, ε2〉, and for any c1 and c2 such that c1 B c2,
the following are true:

(a) if c1 Bε1 e1, then there is e2 such that c2 Bε2 e2 and e1 Seq(L×B) e2;

CHAPTER 3. EXECUTION SYSTEMS 56

(b) if c2 Bε2 e2, then there is e1 such that c1 Bε1 e1 and e1 Seq(L×B) e2.

Proof. Suppose that B is a bisimulation between 〈C1, ε1〉 and 〈C2, ε2〉.

Let 〈graphB, β〉 be an L-labelled execution coalgebra such that dprB is a homomorphism
from 〈graphB, β〉 to 〈C1, ε1〉, and cprB one from 〈graphB, β〉 to 〈C2, ε2〉.

Assume c1 and c2 such that c1 B c2.

Then

Pow Seq(L× dprB)(β(〈c1, c2〉)) = ε1((dprB)(〈c1, c2〉)),

and hence, by definition of Pow ◦ Seq ◦ (L× Id) and dprB,

{Seq(L× dprB)(e) | e ∈ β(〈c1, c2〉)} = ε1(c1).

By extensionality, this is equivalent to the following being true:

(i) if 〈c1, c2〉Bβ e, then c1 Bε1 Seq(L× dprB)(e);

(ii) if c1 Bε1 e1, then there is e such that Seq(L× dprB)(e) = e1 and 〈c1, c2〉Bβ e.

And by symmetry, the following are true:

(iii) if 〈c1, c2〉Bβ e, then c2 Bε2 Seq(L× cprB)(e);

(iv) if c2 Bε2 e2, then there is e such that Seq(L× cprB)(e) = e2 and 〈c1, c2〉Bβ e.

By (ii), (iii), and definition of Seq(L×B), (a) is true, and by (i), (iv), and definition of
Seq(L×B), (b) is true.

Thus, by generalization, for any c1 and c2 such that c1 B c2, (a) and (b) are true.

Conversely, suppose that B is a binary class relation between C1 and C2, and for any c1

and c2 such that c1 B c2, (a) and (b) are true.

Let β be a class function from graphB to Pow Seq(L× graphB) such that for any
〈c1, c2〉 ∈ graphB,

β(〈c1, c2〉) = {e | c1 BE Seq(L× dprB)(e),
c2 BE Seq(L× cprB)(e),
and e ∈ Seq(L× graphB)}.

Assume 〈c1, c2〉 ∈ graphB.

Then the following is immediately true:

CHAPTER 3. EXECUTION SYSTEMS 57

(v) if 〈c1, c2〉Bβ e, then c1 Bε1 Seq(L× dprB)(e).

Also, by (a), (b), and the definition of Seq(L×B), the following is true:

(vi) if c1 Bε1 e1, then there is e such that Seq(L× dprB)(e) = e1 and 〈c1, c2〉Bβ e.

By (v), (vi), and extensionality,

{Seq(L× dprB)(e) | e ∈ β(〈c1, c2〉)} = ε1(c1).

and hence, by definition of Pow ◦ Seq ◦ (L× Id) and dprB,

Pow Seq(L× dprB)(β(〈c1, c2〉)) = ε1((dprB)(〈c1, c2〉)).

And by symmetry,

Pow Seq(L× cprB)(β(〈c1, c2〉)) = ε2((cprB)(〈c1, c2〉)).

Thus, by generalization, B is a bisimulation between 〈C1, ε1〉 and 〈C2, ε2〉.

Proposition 3.2.2 has the same feel as Proposition 2.2.14. The difference is that the local
check of correspondence of transitions has been replaced by a non-local test of agreement
along entire executions. This is conceptually in tune with our intended change in scale of
observation from one type of system to the other.

Assume L-labelled execution systems 〈S1, E1〉 and 〈S2, E2〉.

Definition 3.2.3. A bisimulation between 〈S1, E1〉 and 〈S2, E2〉 is a binary relation
B : S1 ↔ S2 such that for any s1 and s2 such that s1 B s2, the following are true:

(a) if s1 BE1 e1, then there is e2 such that s2 BE2 e2 and e1 Seq(L×B) e2;

(b) if s2 BE2 e2, then there is e1 such that s1 BE1 e1 and e1 Seq(L×B) e2.

The following is of course immediate:

Proposition 3.2.4. B is a bisimulation between 〈S1, E1〉 and 〈S2, E2〉 if and only if B is a
bisimulation between the L-labelled execution coalgebras 〈S1, funE1〉 and 〈S2, funE2〉.

We say that B is a bisimulation on 〈S,E〉 if and only if B is a bisimulation between 〈S,E〉
and 〈S,E〉.

CHAPTER 3. EXECUTION SYSTEMS 58

We say that B is a bisimulation equivalence on 〈S,E〉 if and only if B is a bisimulation on
〈S,E〉, and an equivalence relation on S.

We say that s1 and s2 are bisimilar among 〈S1, E1〉 and 〈S2, E2〉 if and only if there is a
bisimulation B between 〈S1, E1〉 and 〈S2, E2〉 such that s1 B s2.

We say that s1 and s2 are bisimilar in 〈S,E〉 if and only if s1 and s2 are bisimilar among
〈S,E〉 and 〈S,E〉.

3.3 Abrahamson systems

Informally, we can explain bisimilarity of states of labelled execution systems in the same
way as we did in the case of labelled transition systems. Only now, paths are not implicitly
inferred from a transition relation, but explicitly stipulated as part of the system structure.
And this can have some peculiar side effects.

For example, consider two {l1, l2}-labelled execution systems, whose executions are as
depicted in the following left and right frames respectively:

s1

s2

l1

s′1

s′2

s′2

s′3

l1 l2

Then s1 and s′1 are not bisimilar among the two systems, simply because the execution
starting from s′2 carries a different label than the one starting from s1. But why should we
care if it does? The only execution starting from s′1 has only one step, labelled l1, and is in
perfect agreement with the only execution starting from s1, which also has only one step,
also labelled l1. So, intuitively, there is no difference in branching potential between the
two states. We must therefore conclude that bisimilarity is, in this case, inconsistent with
our informal sense of equivalence of branching structure.

A plausible remedy for this would, informally, be the following: for any path beginning at a
given state, discount any branch off that path that is not a suffix of another path beginning
at that same state. And indeed, this would work for this particular case. But there are
more problems.

Consider two {l1, l2}-labelled execution systems, whose executions are as depicted in the
following left and right frames respectively:

CHAPTER 3. EXECUTION SYSTEMS 59

s1

s2

s4

s1

s3

s5

l1 l1

l2 l3

s′1

s′2

s′3

s′1

s′2

s′4

l1 l1

l2 l3

Then s1 and s′1 are bisimilar among the two systems. But intuitively, there is difference in
branching potential between the two states: the two executions starting from s1 diverge
right away at s1, with steps that carry identical labels, whereas those starting from s′1
diverge after the first step, at s′2, with steps that carry different labels. Of course, the
explanation here is that there is no execution starting from s′2, and so, conceptually, the
choice between the diverging steps is already made at s′1. But then, what is the point of
having the two executions share the state s′2?

By now, the reader should begin to suspect what the source of our problems is: what we
have called “state” in our systems does not really behave as such. In a type of system that
is supposed to serve as a modelling device for processes of some kind, it is essential that
“the future behavior depends only upon the current state, and not upon how that state
was reached”. And this is not always the case here. What we need to do is constrain the
structure of our systems so that it is.

Of course, this idea is not new. The quote above is from [34, p. 176], where Lamport
required that the set of paths in a path structure be suffix closed, in the sense that for any
path in the set, any suffix of that path is again a path in the set. It was later observed in
[20] that this is not enough: one must also require that the set of paths be fusion closed, in
the sense that for any prefix of a path in the set, and any suffix of another path in the set,
if the former ends at the state at which the latter begins, then their fusion at that state is
again a path in the set (see [52]). And apparently, it was Abrahamson, in [1], that first
considered path structures that satisfied both requirements (see [16]).

We now adapt these requirements to our own setting.

We say that 〈S,E〉 is Abrahamson if and only if the following are true:

(i) for every s, l, s′, and e′, if sBE 〈〈l, s′〉〉 · e′, then s′ BE e
′;

(ii) for every s, l, s′, e′1, and e′2, if sBE 〈〈l, s′〉〉 · e′1 and s′ BE e
′
2, then sBE 〈〈l, s′〉〉 · e′2.

Here, (i) corresponds to suffix closure, and (ii), conditioned on (i), to fusion closure.

CHAPTER 3. EXECUTION SYSTEMS 60

In an Abrahamson system, there is a clear notion of a “possible next step” relation, which
induces the construction of an associated, or better, underlying labelled transition system.
From a mathematical standpoint, this construction makes sense for a non-Abrahamson
system as well, and is most conveniently carried out on the coalgebra side of the theory.

Assume a class C.

We write η(C) for a class function from Pow Seq(L×C) to Pow(L×C) such that for every
S ∈ Pow Seq(L× C),

η(C)(S) = {head s | s ∈ S and s 6= 〈 〉}.

Our choice of notation here is not arbitrary. We think of η as an operator that assigns to
every class C a class function from its image under Pow ◦ Seq ◦ (L× Id) to its image under
Pow ◦ (L× Id). And what is interesting about this operator is that for every class function
f : C1 → C2,

η(C2) ◦ Pow Seq(L× f) = Pow(L× f) ◦ η(C1),

or equivalently, the following diagram commutes:

Pow Seq(L× C1) Pow(L× C1)

Pow Seq(L× C2) Pow(L× C2)

η(C1)

Pow Seq(L× f) Pow(L× f)

η(C2)

In the language of category theory, this makes η a natural transformation from
Pow ◦ Seq ◦ (L× Id) to Pow ◦ (L× Id).

The concept of natural transformation is of great importance in the study and application
of category theory. It is defined using the same property as above, only generalized to a pair
of arbitrary functors with a common domain category and a common codomain one. Pierce
helps us visualize the essence of the concept by inviting us to “imagine ‘sliding’ the picture
defined by [the first functor] onto the picture defined by [the second one]” (see [47, p. 41]).

The reason why it is of interest to us here that η is a natural transformation is a theorem
by Rutten, according to which, every natural transformation ν from an endofunctor F1 on
Class to an endofunctor F2 on Class induces a functor from F1-Coalg to F2-Coalg that
assigns to every F1-coalgebra 〈C, γ〉 the F2-coalgebra 〈C,η(C) ◦ γ〉, and to every
homomorphism h from an F1-coalgebra 〈C1, γ1〉 to an F1-coalgebra 〈C2, γ2〉 that same class

CHAPTER 3. EXECUTION SYSTEMS 61

function h, which is now a homomorphism from the F2-coalgebra 〈C1,η(C1) ◦ γ1〉 to the
F2-coalgebra 〈C2,η(C2) ◦ γ2〉 (see [56, thm. 15.1]). In other words, the induced functor
preserves homomorphisms, and thus, by Theorem 2.2.10, bisimulations too.

In our case, the functor induced by η is a forgetful functor, which, informally, keeps only
the first step, if any, from any execution starting from any state, and discards the rest.

The following is immediate from Rutten’s theorem, but a more direct proof would require
only little extra work:

Proposition 3.3.1. If h is a homomorphism from 〈C1, ε1〉 to 〈C2, ε2〉, then h is a
homomorphism from the L-labelled transition coalgebra 〈C1,η(C1) ◦ ε1〉 to the L-labelled
transition coalgebra 〈C2,η(C2) ◦ ε2〉.

The following is now immediate from Theorem 2.2.10 and Proposition 3.3.1.

Proposition 3.3.2. If B is a bisimulation between 〈C1, ε1〉 and 〈C2, ε2〉, then B is a
bisimulation between the L-labelled transition coalgebras 〈C1,η(C1) ◦ ε1〉 and
〈C2,η(C2) ◦ ε2〉.

Of course, we can translate all this back to the system side of the theory.

Assume a binary relation E : S ↔ S (L× S).

We write transE for a binary relation between S and L× S such that for any s ∈ S and
any 〈l, s′〉 ∈ L× S,

s (transE) 〈l, s′〉 ⇐⇒ there is e such that s E e, e 6= 〈 〉, and head e = 〈l, s′〉.

The following is trivial:

Proposition 3.3.3. transE = rel(η(S) ◦ funE).

The following is now immediate from Proposition 2.2.1(b), 2.2.15, 3.2.4, 3.3.2, and 3.3.3:

Proposition 3.3.4. If B is a bisimulation between 〈S1, E1〉 and 〈S2, E2〉, then B is a
bisimulation between the L-labelled transition systems 〈S1, transE1〉 and 〈S2, transE2〉.

3.4 Generable systems

The converse of Proposition 3.3.4 is of course false, as is that of Proposition 3.3.1 and 3.3.2.
But it is instructive to see exactly where it fails. We go over it through a series of simple
examples.

CHAPTER 3. EXECUTION SYSTEMS 62

First, suppose that 〈S,E〉 and 〈S ′, E ′〉 are two {l}-labelled execution systems, whose
executions are as depicted in the following left and right frames respectively:

s1

s2

l

s′1

s′2

s′3

l

l

Then s1 and s′1 are bisimilar among the {l}-labelled transition systems 〈S, transE〉 and
〈S ′, transE ′〉, but not among 〈S,E〉 and 〈S ′, E ′〉.

The problem is easy to spot here. The two systems have one execution each. But whereas
the execution of the first system has only one step, the execution of the second has two.
And that second step, which is the cause for s1 and s′1 not being bisimilar among the two
systems, is dropped during the labelled transition system construction.

Now suppose that 〈S,E〉 and 〈S ′, E ′〉 are two {l1, l2, l3}-labelled execution systems, whose
executions are as depicted in the following left and right frames respectively:

s1

s2

s3

s2

s3

s2

s4

l1 l2 l3

l2

s′1

s′2

s′4

s′2

s′3

s′2

s′4

l1 l2 l3

l3

Then s1 and s′1 are bisimilar among the now {l1, l2, l2}-labelled transition systems
〈S, transE〉 and 〈S ′, transE ′〉, but not among 〈S,E〉 and 〈S ′, E ′〉.

Here the problem is of a different nature. Every step of every execution is accounted for in
the constructed labelled transition systems. However, the two longer executions, starting
from s1 and s′1 respectively, disagree on their second step, and that disagreement is masked
by the agreement of executions starting from s2 and s′2 respectively.

These two examples were specially chosen to target the two defining clauses of the
Abrahamson property. Specifically, and informally, the systems in the first example are not
suffix closed, thus violating clause (i) of the property, whereas those in the second are not

CHAPTER 3. EXECUTION SYSTEMS 63

fusion closed, thus violating clause (ii). Overall, none of them is Abrahamson. And since
our construction was based on the idea of a “possible next step” relation, which, in the
case of a non-Abrahamson system, is a conceptually ambiguous notion, it is no surprise
that non-bisimilar states turn bisimilar in the constructed systems.

With Abrahamson systems, things get much more interesting. In the rest of our examples,
we shall focus on such systems. And as afforded with such systems, we shall communicate
their structure more casually, simply drawing a diagram of the underlying labelled
transition system, and describing the set of paths in that diagram that correspond to their
executions.

Consider then the {l1, l2}-labelled transition system, with l1 and l2 different, portrayed in
the following diagram:

s
l1 l2

One {l1, l2}-labelled execution system lying over this labelled transition system is the one
whose executions correspond to all infinite paths in the diagram. Another is the one whose
executions correspond to those infinite paths that go through each of the two loops
infinitely often. And of course, s is not bisimilar with itself among the two.

We may think of each of the two {l1, l2}-labelled execution systems in this example as a
specification of a scheduling policy between two processes, forever iterating over l1 and l2
respectively, on a single processing unit. Under the first policy, the scheduler is only
required to guarantee progress of execution, simply picking at random one process at a
time. Under the second, it is further required to be fair, taking care that there is no point
in time after which a process is forever neglected. But whereas its behaviour in the first
case is completely specified by the underlying {l1, l2}-labelled transition system, in the
second case, it cannot be specified by any {l1, l2}-labelled transition system alone.

Besides demonstrating the failure of the converse of Proposition 3.3.4 for Abrahamson
systems, this example attempts to display the increase in expressive power and branching
complexity that moving from a labelled transition to a labelled execution system can bring.
But it does so inadequately. For one need not really move to a labelled execution system to
specify the behaviour of the scheduler under that second policy. One can just augment the
given labelled transition system with the set of all infinite sequences over {l1, l2}
corresponding to a fair interleaving of the two processes. And in fact, the concept of
bisimulation between labelled transition systems can be generalized to account for this kind
of augmentation by simply adding a third clause to Definition 2.1.3 that tests for inclusion
between the sets of “admissible” sequences of labels associated with each state. This gives
rise to the less known concept of fortification equivalence, one of the alternative approaches
to the semantics of finite delay considered by Milner in [38], and a perfectly adequate

CHAPTER 3. EXECUTION SYSTEMS 64

approach to the specification of the two scheduling policies in our example. What we want
is another example that will expose the shortcomings of this type of approach, and
vindicate our present venture.

Consider then the {l1, l2}-labelled transition system, with l1 and l2 different, portrayed in
the following diagram:

s1

s2

s2 s3

l1

l1 l2

l1

l1

The first {l1, l2}-labelled execution system that we wish to consider here is the unique
Abrahamson system whose executions starting from s1 correspond to all maximal paths in
this diagram. The second is the one whose executions are all the executions of the first,
except the single infinite execution stuttering around s1. And because of this exception, s1

is not bisimilar with itself among the two systems.

This beautiful example is from [4], where it was used to attack precisely the type of
approach discussed above. Here, it is perhaps convenient to think of the two systems as
modelling the behaviour of two distinct processes, both initialized at s1. The first process
will either loop around s1 forever, or iterate through it for a finite, indeterminate number
of times before progressing to s2. From there on, a single indeterminate choice will decide
its fate. The second process, on the other hand, is not allowed to loop around s1 forever. It
must eventually advance to s2, from where on it behaves just like the first one. What sets
the behaviour of the two processes apart is, of course, the infinite stuttering around s1,
permitted for the first process, but not the second. However, this is something that cannot
be determined by the sequences of actions that the two processes perform in the course of
their executions, for the trace of that infinite stuttering is matched by that of every infinite
execution that eventually loops around s2. And yet the two processes ought to be
distinguished. For during that infinite stuttering, the first process may always choose to
branch off to a state from which it can perform l2, whereas, in every execution having that
trace, the second must eventually reach a state from which it cannot ever do so.

With respect to the failure of the converse of Proposition 3.3.4, both this and the previous
example point at the same problem: the existence of an infinite path in the diagram that
does not correspond to any execution of a system, but whose every finite prefix is a prefix
of another path that does.

CHAPTER 3. EXECUTION SYSTEMS 65

This too is something that has already come up in the investigation of path structures in
temporal logic. In [20], Emerson called a set of paths limit closed provided that for every
infinite, strictly increasing chain of finite prefixes of paths in the set, the limit of that
chain, in the standard topology of sequences, is again a path in the set. This property was
apparently also first considered in [1]. But it was Emerson in [20] who proved the
independence of all three closure properties, and the equivalence of their conjunction to the
existence of a transition relation generating the given set of paths. Apart from the absence
of labels, which has no bearing in this particular discussion, Emerson’s setup was different
in that paths were always infinite. But this too is of no importance in our examples, which,
in light of Emerson’s result, appear to implicate violation of limit closure in the failure of
the underlying labelled transition system to subsume all the branching information relevant
to a given Abrahamson system.

Our next example is perhaps the most curious one.

Consider the simple {l}-labelled transition system portrayed in the following diagram:

s

l

There are exactly three Abrahamson {l}-labelled execution systems that one can lay over
this labelled transition system. The first is the one whose only execution corresponds to
the only infinite path in the diagram. The second is the one whose executions correspond
to all finite paths in the diagram. And of course, the third is the one whose executions are
all executions of the first and second system. But s is not bisimilar with itself among any
two of the three.

Informally, the second system is not limit closed, and this is one part of the problem. But
the first and third are, and so there must be something more going on here. The answer is
in the difference between Emerson’s setup and ours mentioned earlier. Here, executions are
not always infinite. In a system that is, informally, suffix closed, if there is a finite
execution, then there is an empty execution. And an empty execution creates a type of
branching that is impossible to mimic in a labelled transition system.

In an Abrahamson system that is used to model the behaviour of a process, an empty
execution can be used to model termination. But if there is another, non-empty execution
starting from the same state, then termination becomes a branching choice, one that does
not show up in the “possible next step” relation of the system. This feature of
indeterminate termination, as we might call it, can seem a little odd at first, but is really a
highly versatile mechanism, particularly useful in modelling idling in absence of input
stimuli, as we shall see in the next chapter.

CHAPTER 3. EXECUTION SYSTEMS 66

Finally, consider the labelled transition system of the following, trivial diagram:

s

There are exactly two labelled execution systems that one can lay over this labelled
transition system: one that has one execution, the empty execution, and one that has no
execution. And of course, s is not bisimilar with itself among the two.

This degenerate case deserves little comment. We only remark that in a suffix closed
system, if a state has no execution starting from it, then it has no execution going through
it.

At this point, we have found five possible causes of failure for the converse of
Proposition 3.3.4. We have chosen our examples carefully, to examine each of the five
separately and independently from one another. And we have observed how each of the
first three connects to violation of one of the three closure properties that have been shown
to collectively characterize sets of infinite paths generable by a transition relation. But
finite paths add another dimension to the problem, rendering Emerson’s characterization
result obsolete. What we will show next is that impossibility of indeterminate termination,
along with a non-triviality condition guarding against the occurrence of an isolated state,
can be added to the conditions of suffix, fusion, and limit closure, to produce a complete
characterization of system generability, insensitive to the length of the executions.

First, we need to make the notion of generability precise. For generality, we transfer
ourselves again to the coalgebra side of the theory.

Assume a class function τ : C → Pow(L× C).

Assume c ∈ C.

Assume e ∈ Seq(L× C).

We say that e is a τ -orbit of c if and only if the following are true:

(i) one of the following is true:

(1) τ(c) = ∅ and e = 〈 〉;
(2) there is l, c′, and e′ such that 〈l, c′〉 ∈ τ(c) and e = 〈〈l, c′〉〉 · e′;

(ii) for every n ∈ ω, if tailn e 6= 〈 〉, then one of the following is true:

(1) there is l and c′ such that τ(c′) = ∅ and tailn e = 〈〈l, c′〉〉;
(2) there is l, c′, l′, c′′, and e′′ such that 〈l′, c′′〉 ∈ τ(c′) and

tailn e = 〈〈l, c′〉〉 · 〈〈l′, c′′〉〉 · e′′.

CHAPTER 3. EXECUTION SYSTEMS 67

Here again, it is the computational interpretation that is most helpful. If we think of τ as a
representation of the control flow graph of a possibly indeterminate sequential program,
then a τ -orbit of c corresponds to a total execution of that program starting from the node
represented by c.

Now, we would like to say that a class function from C to Pow Seq(L× C)) is generated by
τ just as long as it assigns to any c ∈ C the set of all τ -orbits of c. But first, we need to
make sure that this really is a set, and not a proper class.

We write Wτ (c) for a class function from ω to Pow(L× C) such that

Wτ (c)(0) = τ(c)

and for every n ∈ ω,

Wτ (c)(n+ 1) =
⋃
{τ(c′) | there is l such that 〈l, c′〉 ∈Wτ (c)(n)}.

We think of Wτ (c) as a wave emitted by c, and propagating through L× C according to τ ,
and Wτ (c)(n) as the wavefront at the nth time instance.

Proposition 3.4.1. If e is a τ -orbit of c, then for every n ∈ ω, if tailn e 6= 〈 〉, then
head tailn e ∈Wτ (c)(n).

Proof. We use induction.

If n = 0, then tailn e = e. Thus, if tailn e 6= 〈 〉, then there is l, c′, and e′ such that
〈l, c′〉 ∈ τ(c) and

tailn e = 〈〈l, c′〉〉 · e′.

Hence, head tailn e ∈Wτ (c)(n).

Otherwise, there is m ∈ ω such that n = m+ 1. Then, if tailn e 6= 〈 〉, then tailm e 6= 〈 〉.
Thus, there is l, c′, l′, c′′, and e′′ such that 〈l′, c′′〉 ∈ τ(c′)

tailm e = 〈〈l, c′〉〉 · 〈〈l′, c′′〉〉 · e′′.

By the induction hypothesis, head tailm e ∈Wτ (c)(m), and so, 〈l, c′〉 ∈Wτ (c)(m). Thus,
〈l′, c′′〉 ∈Wτ (c)(m+ 1), and since

head tailn e = head tailm+1 e = 〈l′, c′′〉,

head tailn e ∈Wτ (c)(n).

Therefore, for every n ∈ ω, if tailn e 6= 〈 〉, then head tailn e ∈Wτ (c)(n).

CHAPTER 3. EXECUTION SYSTEMS 68

Proposition 3.4.2. For every n ∈ ω, Wτ (c)(n) is a set.

Proof. We use induction.

If n = 0, then Wτ (c)(n) = τ(c), which, by definition of Pow, is a set.

Otherwise, there is m ∈ ω such that n = m+ 1. By the induction hypothesis, Wτ (c)(m) is
a set. Then clearly, Wτ (c)(m+ 1) is a set, and so Wτ (c)(n) is a set.

Therefore, for every n ∈ ω, Wτ (c)(n) is a set.

Proposition 3.4.3. {e | e ∈ Seq(L× C) and e is a τ -orbit of c} is a set.

Proof. By Proposition 3.4.1, for every e ∈ Seq(L× C), if e is a τ -orbit of c, then

graph e ⊆ C ×
⋃
{Wτ (c)(n) | n ∈ ω}.

Thus,

{graph e | e ∈ Seq(L× C) and e is a τ -orbit of c}

is a set, and by replacement,

{e | e ∈ Seq(L× C) and e is a τ -orbit of c}

is a set.

Proposition 3.4.2 and 3.4.3 will be taken for granted in the sequel.

We write gen τ for a class function from C to Pow Seq(L× C) such that for any c ∈ C,

(gen τ)(c) = {e | e ∈ Seq(L× C) and e is a τ -orbit of c}.

Assume a class function ε : C → Pow Seq(L× C).

We say that τ generates ε if and only if gen τ = ε.

We say that ε is generable if and only if there is a class function from C to Pow(L× C)
that generates ε.

Now, suppose that ε is indeed generable. Can there be more than one class function from
C to Pow(L× C) that generates ε?

We could perhaps use the following tentative argument to convince ourselves that this
cannot be the case: if τ1 and τ2 are two different class functions from C to Pow(L×C), then
there must be c ∈ C and 〈l, c′〉 ∈ L× C such that either 〈l, c′〉 ∈ τ1(c) and 〈l, c′〉 6∈ τ2(c), or

CHAPTER 3. EXECUTION SYSTEMS 69

〈l, c′〉 6∈ τ1(c) and 〈l, c′〉 ∈ τ2(c); and assuming, without any loss of generality, the former,
we can prefix any τ1-orbit of c′ with 〈l, c′〉 to get a τ1-orbit of c that cannot be a τ2-orbit of
c. But how do we know if there is a τ1-orbit of c′ to prefix with 〈l, c′〉?

If τ1(c′) = ∅, then 〈 〉 is a τ1-orbit of c′. If τ1(c′) 6= ∅, then we would again expect that there
is at least one τ1-orbit of c′. For we could imagine constructing one by first choosing a pair
〈l′, c′′〉 in τ1(c′), then a pair 〈l′′, c′′′〉 in τ1(c′′), then a pair 〈l′′′, c′′′′〉 in τ1(c′′′), and so on
forever, or until we reach a point where there is no pair to choose. If we never reach such a
point, then this construction will involve an infinite number of choices. This suggests that
the Axiom of Choice, or some other, weaker form of it, might be necessary to prove the
statement that for every suitable τ and c, there is a τ -orbit of c. And indeed, this
statement is equivalent to the Axiom of Dependent Choice.

We will need the following lemma:

Lemma 3.4.4. For every n ∈ ω, if there is 〈l, c′〉 ∈Wτ (c)(n) and e′ ∈ Seq(L× C) such
that e′ is a τ -orbit of c′, then there is e ∈ Seq(L× C) such that e is a τ -orbit of c.

Proof. We use induction.

If n = 0, then 〈l, c′〉 ∈ τ(c), and 〈〈l, c′〉〉 · e′ is a τ -orbit of c.

Otherwise, there is m ∈ ω such that n = m+ 1. By definition of Wτ (c), there is
〈l′, c′′〉 ∈Wτ (c)(m) such that 〈l, c′〉 ∈ τ(c′′), and 〈〈l, c′〉〉 · e′ is a τ -orbit of c′′. Thus, by the
induction hypothesis, there is e ∈ Seq(L× C) such that e is a τ -orbit of c.

Therefore, for every n ∈ ω, if there is 〈l, c′〉 ∈Wτ (c)(n) and e′ ∈ Seq(L× C) such that e′ is
a τ -orbit of c′, then there is e ∈ Seq(L× C) such that e is a τ -orbit of c.

Theorem 3.4.5. The following are equivalent:

(a) for every class C, every class function τ : C → Pow(L× C), and any c ∈ C, there is
e ∈ Seq(L× C) such that e is a τ -orbit of c;

(b) for every non-empty set S and every binary relation R on S, if for every s ∈ S, there
is s′ such that s R s′, then there is an infinite sequence d over S such that for every
n ∈ ω, head tailn d R head tailn+1 d.

Proof. Suppose that (a) is true.

Assume a non-empty set S.

Let l be a label in L.

Let τ be a class function from S to Pow(L× S) such that for every s ∈ S,

τ(s) = {〈l, s′〉 | s R s′}.

CHAPTER 3. EXECUTION SYSTEMS 70

Let s be a member of S.

Since (a) is true, there is e ∈ Seq(L× S) such that e is a τ -orbit of s. And by an easy
induction, for every n ∈ ω, tailn e 6= 〈 〉.

Let d be an infinite sequence over S such that for every n ∈ ω,

head tailn d = sec head tailn e.

Then, by an easy induction, for every n ∈ ω, head tailn d R head tailn+1 d.

Thus, by generalization, (b) is true.

Conversely, suppose that (b) is true.

Assume a class C, a class function τ : C → Pow(L× C), and c ∈ C.

If τ(c) = ∅, then 〈 〉 is a τ -orbit of c.

Otherwise, Wτ (c)(0) 6= ∅.

If there is n ∈ ω and c′ ∈Wτ (c)(n) such that τ(c′) = ∅, then 〈 〉 is a τ -orbit of c′. Thus, by
Lemma 3.4.4, there is e ∈ Seq(L× C) such that e is a τ -orbit of c.

Otherwise, for every n ∈ ω and every c′ ∈Wτ (c)(n), τ(c′) 6= ∅.

Let S =
⋃
{Wτ (c)(n) | n ∈ ω}.

Then, since Wτ (c)(0) 6= ∅, S 6= ∅.

Let R be a binary relation on S such that for every 〈l, c′〉, 〈l′, c′′〉 ∈ S,

〈l, c′〉 R 〈l′, c′′〉 ⇐⇒ 〈l′, c′′〉 ∈ τ(c′).

Then for every 〈l, c′〉 ∈ S, there is 〈l′, c′′〉 such that 〈l, c′〉 R 〈l′, c′′〉, and thus, since (b) is
true, there is an infinite sequence d over S such that for every n ∈ ω,
head tailn d R head tailn+1 d. And clearly, there is n ∈ ω and 〈l, c′〉 ∈Wτ (c)(n) such that

head d = 〈l, c′〉

and tail d is a τ -orbit of c′. Thus, by Lemma 3.4.4, there is e ∈ Seq(L× C) such that e is a
τ -orbit of c.

Thus, by generalization, (a) is true.

Here, we accept the Axiom of Dependent Choice, and so we will take Theorem 3.4.5(a) for
granted.

CHAPTER 3. EXECUTION SYSTEMS 71

We can now make our tentative argument formal.

Assume class functions τ1, τ2 : C → Pow(L× C).

Proposition 3.4.6. If τ1 6= τ2, then gen τ1 6= gen τ2.

Proof. Suppose that τ1 6= τ2.

Then there is c, l, and c′ such that either 〈l, c′〉 ∈ τ1(c) and 〈l, c′〉 6∈ τ2(c), or 〈l, c′〉 6∈ τ1(c)
and 〈l, c′〉 ∈ τ2(c).

Without any loss of generality, assume the former.

Let e′ be a sequence in Seq(L× C) that is a τ1-orbit of c′.

Let e = 〈〈l, c′〉〉 · e′.

Then e ∈ (gen τ1)(c), but e 6∈ (gen τ2)(c). Thus, gen τ1 6= gen τ2.

If we think of gen as an operator from cooperations of L-labelled transition coalgebras to
cooperations of L-labelled execution coalgebras, then we can read Proposition 3.4.6 as
saying that that operator is injective. So it must have a left inverse. The following shows
that that left inverse is the composition on the left with the image of the carrier of the
corresponding L-labelled execution coalgebra under η:

Proposition 3.4.7. The following are true:

(a) η(C) ◦ gen τ = τ ;

(b) if ε is generable, then ε = gen(η(C) ◦ ε).

Proof. Assume c ∈ C.

Assume 〈l, c′〉 ∈ L× C.

Suppose that 〈l, c′〉 ∈ (η(C) ◦ gen τ)(c).

Then there is e ∈ (gen τ)(c) such that head e = 〈l, c′〉, and thus, 〈l, c′〉 ∈ τ(c).

Conversely, suppose that 〈l, c′〉 ∈ τ(c).

Let e′ be a sequence in Seq(L× C) that is a τ -orbit of c′.

Then 〈〈l, c′〉〉 · e′ ∈ (gen τ)(c), and thus, 〈l, c′〉 ∈ (η(C) ◦ gen τ)(c).

Thus, 〈l, c′〉 ∈ (η(C) ◦ gen τ)(c) if and only if 〈l, c′〉 ∈ τ(c).

Thus, by generalization, (a) is true.

CHAPTER 3. EXECUTION SYSTEMS 72

We will now use (a) to prove (b).

Suppose that ε is generable.

Then there is a class function τ ′ : C → Pow(L× C) such that

gen τ ′ = ε.

Thus,

η(C) ◦ gen τ ′ = η(C) ◦ ε,

and hence, by (a),

τ ′ = η(C) ◦ ε.

Thus, (b) is true.

Before we move on to our characterization theorem, we have one last stop to make. We
have built our notion of generability around the idea of a τ -orbit. And we have tried to
formalize the latter in the most conceptually direct way. But as effective as that
formalization has been, there is still reason to consider another one. First, it is ugly. And
second, there is a very simple but powerful proof rule that it is entirely oblivious to.

We say that ε is consistent with τ if and only if for any c ∈ C and any e ∈ ε(c), one of the
following is true:

(i) τ(c) = ∅ and e = 〈 〉;

(ii) there is l, c′, and e′ such that 〈l, c′〉 ∈ τ(c), e′ ∈ ε(c′), and e = 〈〈l, c′〉〉 · e′.

Theorem 3.4.8. The following are equivalent:

(a) e is a τ -orbit of c;

(b) there is a class function ε : C → Pow Seq(L×C) such that ε is consistent with τ , and
e ∈ ε(c).

Proof. Suppose that (a) is true.

Let ε be a class function from C to Pow Seq(L× C) such that for every c′ and e′, e′ ∈ ε(c′)
if and only if one of the following is true:

(i) c′ = c and e′ = e;

CHAPTER 3. EXECUTION SYSTEMS 73

(ii) there is n ∈ ω and l such that tailn e = 〈〈l, c′〉〉 · e′.

Assume c′ ∈ C and e′ ∈ ε(c′).

Suppose that c′ = c and e′ = e.

If τ(c′) = ∅ and e′ = 〈 〉, then clause (i) of the consistency property is true.

Otherwise, there is l′, c′′, and e′′ such that 〈l′, c′′〉 ∈ τ(c′) and

e′ = 〈〈l′, c′′〉〉 · e′′.

Then, by (ii), e′′ ∈ ε(c′′). Thus, clause (ii) of the consistency property is true.

Otherwise, there is n ∈ ω and l such that tailn e = 〈〈l, c′〉〉 · e′.

If e′ = 〈 〉, then τ(c′) = ∅, and thus, clause (i) of the consistency property is true.

Otherwise, there is l′, c′′, and e′′ such that 〈l′, c′′〉 ∈ τ(c′) and

e′ = 〈〈l′, c′′〉〉 · e′′.

Then, by (ii), e′′ ∈ ε(c′′). Thus, clause (ii) of the consistency property is true.

Therefore, ε is consistent with τ .

Thus, (b) is true.

Conversely, suppose (b) is true,

Then clause (i) of the property of being a τ -orbit of c is true.

By an easy induction, for every n ∈ ω, if tailn e 6= 〈 〉, then there is l and c′ such that

head tailn e = 〈l, c′〉

and tailn+1 e ∈ ε(c′).

Assume n ∈ ω.

Suppose that tailn e 6= 〈 〉.

Then there is l and c′ such that

head tailn e = 〈l, c′〉

and tailn+1 e ∈ ε(c′).

If tailn+1 e = 〈 〉, then τ(c′) = ∅.

CHAPTER 3. EXECUTION SYSTEMS 74

Otherwise, there is l′, c′′, and e′′ such that 〈l′, c′′〉 ∈ τ(c′), e′′ ∈ ε(c′′), and

tailn+1 e = 〈〈l′, c′′〉〉 · e′′.

Thus, by generalization, clause (ii) of the property of being a τ -orbit of c is true.

Therefore, (a) is true.

The following is immediate:

Corollary 3.4.9. If ε is consistent with τ , then for any c ∈ C,

ε(c) ⊆ (gen τ)(c).

The following is now straightforward:

Corollary 3.4.10. gen τ is consistent with τ .

Proof. Assume c ∈ C and e ∈ (gen τ)(c).

By Theorem 3.4.8, there is a class function ε : C → Pow Seq(L× C) such that ε is
consistent with τ , and e ∈ ε(c).

If τ(c) = ∅ and e = 〈 〉, then there is nothing to prove.

Otherwise, there is l, c′, and e′ such that 〈l, c′〉 ∈ τ(c), e′ ∈ ε(c′), and

e = 〈〈l, c′〉〉 · e′.

And by Corollary 3.4.9, e′ ∈ (gen τ)(c′).

Thus, by generalization, gen τ is consistent with τ .

Corollary 3.4.9 is the proof rule that we referred to earlier, which is basically an instance of
the coinduction proof technique described in [42]. This deserves a brief digression.

We write Gτ (ε) for a class function from C to Pow Seq(L× C) such that for any c ∈ C,

Gτ (ε)(c) =

{
{〈 〉} if τ(c) = ∅;
{〈〈l, c′〉〉 · e′ | 〈l, c′〉 ∈ τ(c) and e′ ∈ ε(c′)} otherwise.

Here again, our notation is not arbitrary. We think of Gτ as an operator on class functions
from C to Pow Seq(L× C). And the interesting thing about this operator is that it
preserves the pointwise ordering of class functions from C to Pow Seq(L× C) induced by

CHAPTER 3. EXECUTION SYSTEMS 75

the inclusion class relation on Pow Seq(L× C): for every class function
ε1, ε2 : C → Pow Seq(L× C), if for any c ∈ C,

ε1(c) ⊆ ε2(c),

then for any c ∈ C,

Gτ (ε1)(c) ⊆ Gτ (ε2)(c).

What is more, ε is consistent with τ if and only if ε is a post-fixed point of Gτ , or
equivalently, for any c ∈ C,

ε(c) ⊆ Gτ (ε)(c).
And it is not hard to see that gen τ is the greatest fixed point of Gτ , with respect to the
aforementioned pointwise ordering. Therefore, we can read Corollary 3.4.9 as saying that
every post-fixed point of Gτ is below the greatest fixed point of Gτ in that ordering, which
is precisely what the coinduction proof technique of [42] mandates. Unlike the latter, we
could not have used Tarski’s Lattice-theoretical Fixpoint Theorem (see [61, thm. 1]) to
deduce our proof rule here. For if C is a proper class, then Pow Seq(L× C) is not a
complete lattice under inclusion, and so neither is the induced ordering of class functions
from C to Pow Seq(L× C). Nevertheless, the principle is the same.

Note that an ordered set can be viewed as a category, an order-preserving function on that
set as a functor on that category, and a post-fixed point of that function as a coalgebra for
that functor. And if that ordered set is a complete lattice, then, by Tarski’s fixed-point
theorem, there is a final coalgebra for that functor. And so the coinduction proof technique
of [42] is just another variation of the general finality theme that lies behind the
coinduction proof principle of Theorem 2.4.2. The same, of course, is true for the more ad
hoc proof rule of Corollary 3.4.9.

For a historical account on the emergence of coinduction in computer science, we refer to
[58].

We have now finally reached our generability characterization theorem.

Theorem 3.4.11. ε is generable if and only if the following are true:

(a) for every c, l, c′, and e′, if 〈〈l, c′〉〉 · e′ ∈ ε(c), then e′ ∈ ε(c′);

(b) for every c, l, c′, e′1, and e′2, if 〈〈l, c′〉〉 · e′1 ∈ ε(c) and e′2 ∈ ε(c′), then
〈〈l, c′〉〉 · e′2 ∈ ε(c);

(c) for any c ∈ C and every infinite sequence s, if for every n ∈ ω, there is e ∈ ε(c) such
that for every k < n+ 1, tailk e 6= 〈 〉 and

head tailk s = head tailk e,

then s ∈ ε(c);

CHAPTER 3. EXECUTION SYSTEMS 76

(d) for every c and e, if e ∈ ε(c) and 〈 〉 ∈ ε(c), then e = 〈 〉;

(e) for any c ∈ C, ε(c) 6= ∅.

Proof. Suppose that ε is generable.

Then there is a class function τ : C → Pow(L× C) such that ε = gen τ .

For every c, l, c′, and e′, if 〈〈l, c′〉〉 · e′ ∈ (gen τ)(c), then, by Corollary 3.4.10, e′ ∈ (gen τ)(c),
and thus, (a) is true.

For every c, l, c′, e′1, and e′2, if 〈〈l, c′〉〉 · e′1 ∈ (gen τ)(c) and e′2 ∈ (gen τ)(c′), then, by
Corollary 3.4.10, 〈〈l, c′〉〉 · e′2 ∈ (gen τ)(c), and thus, (b) is true.

Assume c ∈ C and an infinite sequence s.

Suppose that for every n ∈ ω, there is e ∈ (gen τ)(c) such that for every k < n+ 1,
tailk e 6= 〈 〉 and

head tailk s = head tailk e.

Assume n ∈ ω.

If n = 0, then there is e ∈ (gen τ)(c) such that e 6= 〈 〉 and

head s = head e.

Thus, there is l, c′, and e′ such that 〈l, c′〉 ∈ τ(c) and

s = 〈〈l, c′〉〉 · e′.

Otherwise, there is m ∈ ω such that n = m+ 1. Then there is e ∈ (gen τ)(c) such that
tailm e 6= 〈 〉 and

head tailm s = head tailm e,

and tailm+1 e 6= 〈 〉 and

head tailm+1 s = head tailm+1 e.

Thus, there is l, c′, l′, c′′, and e′′ such that 〈l′, c′′〉 ∈ τ(c′) and

tailm s = 〈〈l, c′〉〉 · 〈〈l′, c′′〉〉 · e′′.

Thus, by generalization, s is a τ -orbit of c, and hence, s ∈ (gen τ)(c).

CHAPTER 3. EXECUTION SYSTEMS 77

Thus, by generalization, (c) is true.

For every c and e, if e ∈ (gen τ)(c) and 〈 〉 ∈ (gen τ)(c), then, by Corollary 3.4.10, τ(c) = ∅,
and hence, e = 〈 〉. Thus, (d) is true.

By Theorem 3.4.5 and the Axiom of Dependent Choice, (e) is true.

Conversely, suppose that (a), (b), (c), (d), and (e) are true.

We prove that ε = gen(η(C) ◦ ε).

Assume c ∈ C and e ∈ ε(c).

If e = 〈 〉, then, by (d), ε(c) = {〈 〉}, and thus, η(C)(ε(c)) = ∅.

Otherwise, there is l, c′, and e′ such that

e = 〈〈l, c′〉〉 · e′.

Thus, by definition of η, 〈l, c′〉 ∈ η(C)(ε(c)), and by (a), e′ ∈ ε(c′).

Thus, by generalization, ε is consistent with η(C) ◦ ε, and by Corollary 3.4.9, for any c ∈ C,

ε(c) ⊆ (gen(η(C) ◦ ε))(c).

Assume c ∈ C and e ∈ (gen(η(C) ◦ ε))(c).

If e = 〈 〉, then η(C)(ε(c)) = ∅. Thus, by (e), e ∈ ε(c).

Otherwise, there is l, c′, and e′2 such that 〈l, c′〉 ∈ η(C)(ε(c)) and

e = 〈〈l, c′〉〉 · e′2.

Suppose that there is n ∈ ω such that tailn+1 e = 〈 〉.

Let n be the least member of ω such that tailn+1 e = 〈 〉.

Then there is l′ and c′′ such that η(C)(ε(c′′)) = ∅ and

tailn e = 〈〈l′, c′′〉〉.

We use induction to prove that for every j < n+ 1, there is l′′ and c′′′ such that

head tailj e = 〈l′′, c′′′〉

and tailj+1 e ∈ ε(c′′′).

If j = n, then

head tailj e = 〈l′, c′′〉

CHAPTER 3. EXECUTION SYSTEMS 78

and

tailj+1 e = 〈 〉.

And since η(C)(ε(c′′)) = ∅, by (e), tailj+1 e ∈ ε(c′′).

Otherwise, there is k < n+ 1 such that j + 1 = k. Then there is l′′, c′′′, l′′′, c′′′′, and e′′′′2

such that 〈l′′′, c′′′′〉 ∈ η(C)(ε(c′′′)) and

head tailj e = 〈l′′, c′′′〉.

and

tailj+1 e = tailk e = 〈〈l′′′, c′′′′〉〉 · e′′′′2 .

By the induction hypothesis, e′′′′2 ∈ ε(c′′′′). Since 〈l′′′, c′′′′〉 ∈ η(C)(ε(c′′′)), there is e′′′′1 such
that 〈〈l′′′, c′′′′〉〉 · e′′′′1 ∈ ε(c′′′). Thus, by (b), tailj+1 e ∈ ε(c′′′).

Therefore, e′2 ∈ ε(c′). And since 〈l, c′〉 ∈ η(C)(ε(c)), there is e′1 such that 〈〈l, c′〉〉 · e′1 ∈ ε(c).
Thus, by (b), e ∈ ε(c).

Otherwise, for every n ∈ ω, tailn+1 e 6= 〈 〉.

We use induction to prove that for every n, k ∈ ω, there is l′, c′′, and e′′ such that

head tailn e = 〈l′, c′′〉,

e′′ ∈ ε(c′′), and for every i < k + 1, taili e′′ 6= 〈 〉 and

head tailn+1+i e = head taili e′′.

Suppose that k = 0.

Then there is l′, c′′, l′′, c′′′, and e′′′ such that 〈l′′, c′′′〉 ∈ η(C)(ε(c′′)) and

tailn e = 〈〈l′, c′′〉〉 · 〈〈l′′, c′′′〉〉 · e′′′.

And since 〈l′′, c′′′〉 ∈ η(C)(ε(c′′)), there is e′′ such that e′′ ∈ ε(c′′) and

head e′′ = 〈l′′, c′′′〉.

Otherwise, there is j ∈ ω such that k = j + 1.

Then there is l′, c′′, l′′, c′′′, and e′′′ such that 〈l′′, c′′′〉 ∈ η(C)(ε(c′′)) and

tailn e = 〈〈l′, c′′〉〉 · 〈〈l′′, c′′′〉〉 · e′′′.

CHAPTER 3. EXECUTION SYSTEMS 79

By the induction hypothesis, there is e′′′2 such that e′′′2 ∈ ε(c′′′) and for every i < j + 1,
taili e′′′2 6= 〈 〉 and

head tailn+2+i e = head taili e′′′2 .

Since 〈l′′, c′′′〉 ∈ η(C)(ε(c′′)), there is e′′′1 such that 〈〈l′′, c′′′〉〉 · e′′′1 ∈ ε(c′′). Thus, by (b),
〈〈l′′, c′′′〉〉 · e′′′2 ∈ ε(c′′). And clearly, for every i < k + 1, taili(〈〈l′′, c′′′〉〉 · e′′′2) 6= 〈 〉 and

head tailn+1+i e = head taili(〈〈l′′, c′′′〉〉 · e′′′2).

Therefore, for every n ∈ ω, there is e′ ∈ ε(c′) such that for every k < n+ 1, tailk e′ 6= 〈 〉 and

head tailk e′2 = head tailm e′.

Thus, by (c), e′2 ∈ ε(c′). And since 〈l, c′〉 ∈ η(C)(ε(c)), there is e′1 such that
〈〈l, c′〉〉 · e′1 ∈ ε(c). Thus, by (b), 〈〈l, c′〉〉 · e′2 ∈ ε(c), and hence, e ∈ ε(c).

Thus, by generalization, for any c ∈ C,

ε(c) ⊇ (gen(h(C) ◦ ε))(c).

Thus, ε = gen(h(C) ◦ ε), and hence, ε is generable.

Clause (a) of Theorem 3.4.11 corresponds to suffix closure, clause (b), conditioned on (a),
to fusion closure, and clause (c) to limit closure. Clause (d) asserts the impossibility of
indeterminate termination. Finally, clause (e) is the non-triviality condition discussed
earlier, and essentially replaces Emerson’s left totality condition on the generating
transition relation (see [20]).

Each of these five properties has come about in connection with a different cause of failure
of the converse of Proposition 3.3.4, and hence of Proposition 3.3.1 and 3.3.2. And if we
have been thorough enough, we should expect that the conjunction of all five properties be
sufficient a condition for eliminating that failure altogether. This turns out to be the case.

We say that 〈C, ε〉 is generable if and only if ε is generable.

Theorem 3.4.12. If 〈C1, ε1〉 and 〈C2, ε2〉 are generable, then h is a homomorphism from
〈C1, ε1〉 to 〈C2, ε2〉 if and only if h is a homomorphism from the L-labelled transition
coalgebra 〈C1,η(C1) ◦ ε1〉 to the L-labelled transition coalgebra 〈C2,η(C2) ◦ ε2〉.

Proof. Suppose that 〈C1, ε1〉 and 〈C2, ε2〉 are generable.

Suppose that h is a homomorphism from 〈C1, ε1〉 to 〈C2, ε2〉.

CHAPTER 3. EXECUTION SYSTEMS 80

Then, by Proposition 3.3.1, h is a homomorphism from the L-labelled transition coalgebra
〈C1,η(C1) ◦ ε1〉 to the L-labelled transition coalgebra 〈C2,η(C2) ◦ ε2〉.

Conversely, suppose that h is a homomorphism from 〈C1,η(C1) ◦ ε1〉 to 〈C2,η(C2) ◦ ε2〉.

Let ε′2 be a class function from C2 to Pow Seq(L× C2) such that for any c2 ∈ C2,

ε′2(c2) = {e2 | there is c1 ∈ C1 and e1 ∈ ε1(c1)
such that h(c1) = c2 and (Seq(L× h))(e1) = e2}.

Assume c2 ∈ C2 and e2 ∈ ε′2(c2).

Then there is c1 ∈ C1 and e1 ∈ ε1(c1) such that

h(c1) = c2

and

(Seq(L× h))(e1) = e2.

Suppose that e1 = 〈 〉.

Then e2 = 〈 〉. Also, (η(C1) ◦ ε1)(c1) = ∅, and since h is a homomorphism from
〈C1,η(C1) ◦ ε1〉 to 〈C2,η(C2) ◦ ε2〉, (η(C2) ◦ ε2)(c2) = ∅.

Otherwise, by Corollary 3.4.10, there is l, c′1, and e′1 such that 〈l, c′1〉 ∈ (η(C1) ◦ ε1)(c1),
e′1 ∈ ε1(c′1), and

e1 = 〈〈l, c′1〉〉 · e′1.

Then (Seq(L× h))(e′1) ∈ ε′2(h(c′1)) and

e2 = 〈〈l, h(c′1)〉〉 · (Seq(L× h))(e′1).

And since h is a homomorphism from 〈C1,η(C1) ◦ ε1〉 to 〈C2,η(C2) ◦ ε2〉,
〈l, h(c′1)〉 ∈ (η(C2) ◦ ε2)(c2).

Thus, by generalization, ε′2 is consistent with η(C2) ◦ ε2. Then, by Corollary 3.4.9, for any
c2 ∈ C2,

ε′2(c2) ⊆ ε2(c2).

And clearly, for any c1 ∈ C1,

(Pow Seq(L× h))(ε1(c1)) ⊆ ε′2(h(c1)).

CHAPTER 3. EXECUTION SYSTEMS 81

Therefore, for any c1 ∈ C1,

(Pow Seq(L× h))(ε1(c1)) ⊆ ε2(h(c1)).

We use induction to prove that for any c1 ∈ C1 and any finite e2 ∈ ε2(h(c1)), there is
e1 ∈ ε1(c1) such that

(Seq(L× h))(e1) = e2.

If e2 = 〈 〉, then (η(C2) ◦ ε2)(h(c1)) = ∅, and since h is a homomorphism from
〈C1,η(C1) ◦ ε1〉 to 〈C2,η(C2) ◦ ε2〉, (η(C1) ◦ ε1)(c1) = ∅. Thus, 〈 〉 ∈ ε1(c1).

Otherwise, by Corollary 3.4.10, there is l, c′2, and e′2 such that 〈l, c′2〉 ∈ (η(C2) ◦ ε2)(h(c1)),
e′2 ∈ ε2(h(c′1)), and

e2 = 〈〈l, c′2〉〉 · e′2.

And since h is a homomorphism from 〈C1,η(C1) ◦ ε1〉 to 〈C2,η(C2) ◦ ε2〉, there is c′1 such
that 〈l, c′1〉 ∈ (η(C1) ◦ ε1)(c1) and

h(c′1) = c′2.

Thus, by the induction hypothesis, there is e′1 ∈ ε1(c′1) such that

(Seq(L× h))(e′1) = e′2,

and hence, 〈〈l, c′1〉〉 · e′1 ∈ ε1(c1). And clearly,

(Seq(L× h))(〈〈l, c′1〉〉 · e′1) = e2.

We now prove that for any c1 ∈ C1 and any infinite e2 ∈ ε2(h(c1)), there is e1 ∈ ε1(c1) such
that

(Seq(L× h))(e1) = e2.

Assume c1 ∈ C1 and an infinite e2 ∈ ε2(h(c1)).

By Corollary 3.4.10 and an easy induction, for every n ∈ ω, there is l and c′2 such that

head tailn e2 = 〈l, c′2〉

and tailn+1 e2 ∈ ε2(c′2).

CHAPTER 3. EXECUTION SYSTEMS 82

Let W be a function from ω to (L× C1)× ω such that

W (0) = {〈〈l, c′1〉, 0〉 | 〈l, c′1〉 ∈ (η(C1) ◦ ε1)(c1) and head e2 = 〈l, h(c′1)〉}

and for every n ∈ ω,

W (n+ 1) = {〈〈l′, c′′1〉, n+ 1〉 | there is 〈〈l, c′1〉, n〉 ∈ W (n)
such that 〈l′, c′′1〉 ∈ (η(C1) ◦ ε1)(c′1)
and head tailn+1 e2 = 〈l′, h(c′′1)〉}.

Since e2 is non-empty, there is l and c′2 such that

head e2 = 〈l, c′2〉.

And since h is a homomorphism from 〈C1,η(C1) ◦ ε1〉 to 〈C2,η(C2) ◦ ε2〉, there is c′1 such
that 〈l, c′1〉 ∈ (η(C1) ◦ ε1)(c1) and

h(c′1) = c′2.

Thus, W (0) 6= ∅.

Let S =
⋃
{W (n) | n ∈ ω}.

Then, since W (0) 6= ∅, S 6= ∅.

Let R be a binary relation on S such that for every 〈〈l, c′1〉,m〉, 〈〈l′, c′′1〉, n〉 ∈ S,

〈〈l, c′1〉,m〉 R 〈〈l′, c′′1〉, n〉 ⇐⇒ 〈l′, c′′1〉 ∈ (η(C1) ◦ ε1)(c′1) and n = m+ 1.

Assume 〈〈l, c′1〉, n〉 ∈ S.

Then

head tailn e2 = 〈l, h(c′1)〉

and tailn+1 e2 ∈ ε2(h(c′1)). Thus, by Corollary 3.4.10, there is l′, c′′2, and e′′2 such that
〈l′, c′′2〉 ∈ (η(C2) ◦ ε2)(h(c′1)), e′′2 ∈ ε2(c′′2), and

tailn+1 e2 = 〈〈l′, c′′2〉〉 · e′′2.

And since h is a homomorphism from 〈C1,η(C1) ◦ ε1〉 to 〈C2,η(C2) ◦ ε2〉, there is c′′1 such
that 〈l′, c′′1〉 ∈ (η(C1) ◦ ε1)(c′1) and

h(c′′1) = c′′2.

Thus, 〈〈l′, c′′1〉, n+ 1〉 ∈ S and 〈〈l, c′1〉, n〉 R 〈〈l′, c′′1〉, n+ 1〉.

CHAPTER 3. EXECUTION SYSTEMS 83

Thus, by generalization, for every s ∈ S, there is s′ such that s R s′. Then, by the Axiom
of Dependent Choice, there is an infinite sequence d over S such that for every n ∈ ω,
head tailn d R head tailn+1 d.

Let n = sec head d.

We use induction to prove that for every j < n+ 1, there is l, c′1, and e′1 such that
〈〈l, c′1〉, j〉 ∈ W (j), e′1 ∈ ε1(c′1), and

(Seq(L× h))(〈〈l, c′1〉〉 · e′1) = tailj e2.

If j = n, then there is l and c′1 such that

head d = 〈〈l, c′1〉, j〉.

And clearly, 〈〈l, c′1〉, j〉 ∈ W (j), (Seq(proj1((L× C1)× ω)))(tail d) ∈ ε1(c′1) and

(Seq(L× h))(〈l, c′1〉 · (Seq(proj1((L× C1)× ω)))(tail d)) = tailj e2.

Otherwise, there is k < n+ 1 such that j + 1 = k. By the induction hypothesis, there is l′,
c′′1, and e′′1 such that 〈〈l′, c′′1〉, k〉 ∈ W (k), e′′1 ∈ ε1(c′′1), and

(Seq(L× h))(〈〈l′, c′′1〉〉 · e′′1) = tailk e2.

Since 〈〈l′, c′′1〉, k〉 ∈ W (k), there is 〈〈l, c′1〉, j〉 ∈ W (j) such that 〈l′, c′′1〉 ∈ (η(C1) ◦ ε1)(c′1) and
head tailk e2 = 〈l′, h(c′′1)〉. And clearly, 〈〈l′, c′′1〉〉 · e′′1 ∈ ε1(c′1) and

(Seq(L× h))(〈〈l, c′1〉〉 · e′1) = tailj e2.

Therefore, there is l, c′1, and e′1 such that 〈〈l, c′1〉, e′1〉 ∈ W (0), e′1 ∈ ε1(c′1), and

(Seq(L× h))(〈〈l, c′1〉〉 · e′1) = e2.

And by definition of W , 〈l, c′1〉 ∈ (η(C1) ◦ ε1)(c1). Thus, 〈l, c′1〉 · e′1 ∈ ε1(c1).

Thus, by generalization, for any c1 ∈ C1,

(Pow Seq(L× h))(ε1(c1)) ⊇ ε2(h(c1)).

Thus,

(Pow Seq(L× h)) ◦ ε1 = ε2 ◦ h,

and hence, h is a homomorphism from 〈C1, ε1〉 to 〈C2, ε2〉.

CHAPTER 3. EXECUTION SYSTEMS 84

The following is immediate from Theorem 2.2.10 and 3.4.12:

Theorem 3.4.13. If 〈C1, ε1〉 and 〈C2, ε2〉 are generable, then B is a bisimulation between
〈C1, ε1〉 and 〈C2, ε2〉 if and only if B is a bisimulation between the L-labelled transition
coalgebra 〈C1,η(C1) ◦ ε1〉 and the L-labelled transition coalgebra 〈C2,η(C2) ◦ ε2〉.

Once more, we can translate all this back to the system side of the theory.

Assume a binary relation T : S ↔ L× S.

Assume a binary relation E : S ↔ S (L× S).

We write ET (E) for a binary relation between S and S (L× S) such that for any s ∈ S and
every e ∈ S (L× S),

s ET (E) e ⇐⇒ either there is no 〈l, s′〉 such that s T 〈l, s′〉, and e = 〈 〉,
or there is 〈l, s′〉 such that s T 〈l, s′〉, head e = 〈l, s′〉, and s′ E tail e.

The following is trivial:

Proposition 3.4.14. ET (E) = relGfunT (funE).

We think of ET as a function on binary relations between S and S (L× S). And the reason
that we are interested in this function is that it preserves the ordering of binary relations
between S and S (L× S) induced by the inclusion relation on their graphs: for every
binary relation E1, E2 : S ↔ S (L× S), if

graphE1 ⊆ graphE2,

then

graph ET (E1) ⊆ graph ET (E2).

This ordering is of course a complete lattice, and hence, by Tarski’s Lattice-theoretical
Fixpoint Theorem, so is the set of all fixed points of ET .

We write execT for the greatest fixed point of ET .

Notice that here, the coinduction proof technique of [42] is directly applicable.

The following follows from Proposition 3.4.14 and the fact that gen funT is the greatest
fixed point of GfunT :

Proposition 3.4.15. execT = rel gen funT .

CHAPTER 3. EXECUTION SYSTEMS 85

We say that T generates E if and only if execT = E.

We say that E is generable if and only if there is a binary relation between S and L× S
that generates E.

The following is immediate from Proposition 2.2.1 and 3.4.15:

Proposition 3.4.16. E is generable if and only if funE is generable.

The following is immediate from Proposition 2.2.1, 3.3.3, 3.4.15, and 3.4.16:

Proposition 3.4.17. The following are true:

(a) trans execT = T ;

(b) if E is generable, then exec transE = E.

We say that 〈S,E〉 is generable if and only if E is generable.

The following is immediate from Proposition 3.4.16:

Proposition 3.4.18. 〈S,E〉 is generable if and only if the L-labelled execution coalgebra
〈S, funE〉 is generable.

The following is immediate from Proposition 2.2.1(b), 2.2.15, 3.2.4, and 3.3.3, and
Theorem 3.4.13:

Theorem 3.4.19. If 〈S1, E1〉 and 〈S2, E2〉 are generable, then B is a bisimulation between
〈S1, E1〉 and 〈S2, E2〉 if and only if B is a bisimulation between the L-labelled transition
systems 〈S1, transE1〉 and 〈S2, transE2〉.

We would like to finish this section with a few remarks.

Proposition 3.4.17 and Theorem 3.4.19 confirm what has been implicit throughout this
section: generable labelled execution systems are just another representation of labelled
transition systems. This is even more evident in the coalgebra side of the theory, where, by
Proposition 3.4.7 and Theorem 3.4.12, the category of all generable labelled execution
coalgebras and all homomorphisms between them is isomorphic to (Pow ◦ (L× Id))-Coalg.
Thus, for all practical purposes, generable labelled execution coalgebras are equivalent to
labelled transition coalgebras.

In light of this equivalence, Theorem 3.4.11 does not just characterize generable labelled
execution coalgebras. It marks the boundary between the expressive power of labelled
transition coalgebras and labelled execution coalgebras. And what it implies is that there

CHAPTER 3. EXECUTION SYSTEMS 86

is no sense in choosing the latter over the former, unless we are willing to give up one or
more of the five properties listed in the respective clauses of Theorem 3.4.11.

In the next chapter, we will give up two of these properties: limit closure and impossibility
of indeterminate termination. Giving up limit closure will enable us to faithfully model the
finite delay property, so intrinsically bound to the notion of asynchrony. And indeterminate
termination will provide us with the means to simulate the behaviour of a capricious
environment that may at any time cease to produce input stimuli.

3.5 Behaviour modelling and covarieties

In Section 2.4, in order to motivate the study of final coalgebras, we considered a
hypothetical scenario, in which we used L-labelled transition systems to model the
behaviour of processes of some kind. And for simplicity, we assumed that any state of
every L-labelled transition system modelled the behaviour of some process of that kind.
Here, we wish to consider a different scenario, in which we use L-labelled execution systems
instead. And this time, we make no such simplifying assumption.

We have already seen examples of labelled execution systems that are not suitable for
modelling the behaviour of processes. In Section 3.3, we argued that non-Abrahamson
systems should be excluded from consideration. And in the next chapter, we will exclude
even more systems, leaving only those that conform with our intuitive notion of behaviour
of an asynchronous process.

In cases like these, a final L-labelled execution coalgebra is no longer the right choice of
model. Sure, every behaviour modelled within the class of systems under consideration is
accounted for exactly once in such a coalgebra. But there are more behaviours in there,
which are neither needed nor wanted. What is required then is a suitable generalization of
the final coalgebra approach of the previous chapter.

We will need a couple of last concepts from category theory.

A subcategory of a category is a collection of objects and arrows of that category that is
closed under the identity, domain, codomain, and composition operation of that category.

A full subcategory of a category is a subcategory of that category, whose arrows between
any two objects are all the arrows between the two objects in that category.

Notice that a full subcategory is completely determined by its objects.

In Section 2.4, we were interested in the terminal object of F -Coalg. Here, by a similar
reduction, we are interested in the terminal object of a full subcategory of F -Coalg.

CHAPTER 3. EXECUTION SYSTEMS 87

Assume a full subcategory S of F -Coalg.

We say that 〈C, γ〉 is final in S if and only if 〈C, γ〉 is in S, and for every F -coalgebra
〈C ′, γ′〉 in S, there is exactly one homomorphism from 〈C ′, γ′〉 to 〈C, γ〉.

Clearly, not every full subcategory of F -Coalg has a final F -coalgebra. But as we will see,
every “reasonably specified” one does.

We say that S is closed under the formation of homomorphic images if and only if for
every F -coalgebra 〈C, γ〉, if 〈C, γ〉 is in S, and 〈C ′, γ′〉 is a homomorphic image of 〈C, γ〉,
then 〈C ′, γ′〉 is in S.

We say that S is closed under the formation of subcoalgebras if and only if for every
F -coalgebra 〈C, γ〉, if 〈C, γ〉 is in S, and 〈C ′, γ′〉 is a subcoalgebra of 〈C, γ〉, then 〈C ′, γ′〉 is
in S.

We say that S is closed under the formation of direct sums if and only if for every
class-indexed family {〈Ci, γi〉}i∈I of F -coalgebras, if for every i ∈ I, 〈Ci, γi〉 is in S, then∑

i∈I 〈Ci, γi〉 is in S.

Definition 3.5.1. An F -covariety is a full subcategory C of F -Coalg such that the
following are true:

(a) C is closed under the formation of homomorphic images;

(b) C is closed under the formation of subcoalgebras;

(c) C is closed under the formation of direct sums.

The concept of F -covariety is the coalgebraic counterpart of the concept of F -variety,
which is a generalization, in the same sense as before, of the concept of Σ-variety, what
Birkhoff called a family of algebras when he introduced the concept in [13]. It is our idea of
a “reasonably specified” full subcategory of F -Coalg.

For example, the category of all Abrahamson labelled execution coalgebras, defined in the
obvious way, and all homomorphisms between them is a (Pow ◦ Seq ◦ (L× Id))-covariety, as
is the category of all generable labelled execution coalgebras and all homomorphisms
between them. But we will not need to prove this here.

Just as we did with the notion of finality, we generalize the notion of completeness to full
subcategories.

We say that 〈C, γ〉 is complete in S if and only if 〈C, γ〉 is in S, and for every F -coalgebra
〈C ′, γ′〉 in S and any c′ ∈ C ′, there is exactly one c ∈ C such that c′ and c are bisimilar
among 〈C ′, γ′〉 and 〈C, γ〉.

The following is a generalization of Theorem 2.4.13:

CHAPTER 3. EXECUTION SYSTEMS 88

Theorem 3.5.2. For every F -covariety C, the following are true:

(a) 〈C, γ〉 is final in C;

(b) for every small F -coalgebra 〈C ′, γ′〉 in C, there is exactly one homomorphism from
〈C ′, γ′〉 to 〈C, γ〉;

(c) 〈C, γ〉 is complete in C;

(d) for every small F -coalgebra 〈C ′, γ′〉 in C, and any c′ ∈ C ′, there is exactly one c ∈ C
such that c′ and c are bisimilar among 〈C ′, γ′〉 and 〈C, γ〉.

Proof. See proof of Theorem 2.4.13.

The reason that we were able to reuse the proof of Theorem 2.4.13 here without any
modification or adjustment is that, because of the closure properties of an F -covariety, all
relevant constructions in that proof can be carried out inside C. The only structures in that
proof that are not necessarily in C are the bisimulations, which are not supposed to either.

The following is a generalization of Theorem 2.5.1:

Theorem 3.5.3. For every F -covariety C, there is an F -coalgebra that is final in C.

Proof. Assume an F -covariety C.

Let 〈C, γ〉 be an F -coalgebra that is final in F -Coalg.

Let 〈C ′, γ′〉 be a direct sum of all small F -coalgebras in C.

Let h be the unique homomorphism from 〈C ′, γ′〉 to 〈C, γ〉.

Then, by Theorem 2.4.5, there is a class function ρ : ranh→ F (ranh) such that

〈ranh, ρ〉 ≤ 〈C, γ〉.

And by Proposition 2.4.7, there is exactly one homomorphism h′ from 〈C ′, f ′〉 to 〈ranh, ρ〉
such that

h = (ranh ↪→ C) ◦ h′.

Clearly, h′ is surjective, and thus, 〈ranh, ρ〉 is a homomorphic image of 〈C ′, f ′〉. And since
C is an F -covariety, 〈ranh, ρ〉 is an F -coalgebra in C.

We claim that 〈ranh, ρ〉 is final in C.

Assume a small F -coalgebra 〈C ′′, γ′′〉 in C.

CHAPTER 3. EXECUTION SYSTEMS 89

Let ι be the canonical injection map from C ′′ to C ′.

Then h′ ◦ ι is a homomorphism from 〈C ′′, γ′′〉 to 〈ranh, ρ〉.

Suppose, toward contradiction, that there are homomorphisms h1 and h2 from 〈C ′′, γ′′〉 to
〈ranh, ρ〉 such that

h1 6= h2.

Then both (ranh ↪→ C) ◦ h1 and (ranh ↪→ C) ◦ h2 are homomorphisms from 〈C ′′, γ′′〉 to
〈C, γ〉. And since (ranh ↪→ C) is injective,

(ranh ↪→ C) ◦ h1 6= (ranh ↪→ C) ◦ h2,

contrary to 〈C, γ〉 being final in F -Coalg.

Therefore, there is at most one homomorphism from 〈C ′′, γ′′〉 to 〈ranh, ρ〉.

Thus, there is exactly one homomorphism, namely h′ ◦ ι, from 〈C ′′, γ′′〉 to 〈ranh, ρ〉.

Thus, by generalization and Theorem 3.5.2, 〈ranh, ρ〉 is final in C.

Theorem 3.5.3 is easy enough to be already known. But being unable to trace it in the
literature, we have taken care to prove it here (but see [3, thm 2.2]).

3.6 Execution systems in the literature

The process algebra literature is dominated by the concept of labelled transition system.
And to some extent, this is understandable. For process algebra emerged from a marriage
of Plotkin’s structural operational semantics (see [48]), and Keller’s named transition
systems (see [32]) (see [41, chap. 12], [12], [49], and [10]). This marriage was the work of
Robin Milner, and is most clearly expounded in [41], but was already present in [36], where
the so-called expansion law was stated for the first time.

The expansion law has been a constant source of controversy in the theory of concurrency.
In the language of Milner’s CCS (see [40], [41]), a typical equation asserted by the law is
the following:

a.0 | b.0 = a.b.0 + b.a.0.

Here, ‘a’ and ‘b’ stand for arbitrary actions, ‘0’ for the inactive agent, which is incapable of
performing any action, ‘.’ for sequential composition, ‘|’ for parallel composition, and ‘+’
for alternative composition. Thus, the intended meaning of the equation is that the parallel

CHAPTER 3. EXECUTION SYSTEMS 90

execution of a and b is “equivalent”, in some sense, to the indeterminate serialization of the
two.

In order to justify the expansion law, and the blurring between causal dependence and
temporal precedence resulting from it, Milner wrote the following in [36, p. 81]:

We do not yet know how to frame a sufficiently general law without, in a sense,
explicating parallelism in terms of non-determinism. More precisely, this means
that we explicate a (parallel) composition by presenting all serializations - or
interleavings - of its possible atomic actions. This has the disadvantage that we
lose distinction between causally necessary sequence, and sequence which is
fictitiously imposed upon causally independent actions; [. . .]. However, it may
be justified to ignore it if we can accept the view that, in observing
(communicating with) a composite system, we make our observations in a
definite time sequence, thereby causing a sequencing of actions which, for the
system itself, are causally independent.

Effectively, what he argued for was a dichotomy between causation and observation in the
theory of concurrency. And what he proposed as an observational view to the theory was
the interleaving of the atomic actions of the various agents inside a system as would be
perceived by a single, sequential observer outside the system. But what he failed to
recognize was that the expansion law is in fact inconsistent with that view.

To understand the mismatch, consider the following equation derived from the expansion
law, again in the language of CCS:

fix(X = a.X) | fix(X = b.X) = fix(X = a.X + b.X).

Here, we use recursion expressions to define agents with infinite behaviour. Thus,
fix(X = a.X) is an agent that forever iterates a, fix(X = b.X) one that forever iterates b,
and fix(X = a.X + b.X) one that at each iteration, does either a or b, indeterminately
choosing between the two. But whereas every infinite sequence over {a, b} is a trace of a
possible execution of fix(X = a.X + b.X), not every such sequence is consistent with what
could be perceived by a sequential observer of fix(X = a.X) | fix(X = b.X). Indeed, only
those sequences that contain an infinite number of a’s and an infinite number of b’s are.
For if fix(X = a.X) and fix(X = b.X) execute in parallel, each of them must eventually
perform an infinite number of actions, and each of these actions must eventually be
perceived by any sequential observer of fix(X = a.X) | fix(X = b.X).

All this goes unnoticed in the finite case, because interleaving the executions of two finite
agents is ultimately equivalent to indeterminately alternating between the two. But the
expansion law blindly carried that equivalence over to the infinite case. And this created

CHAPTER 3. EXECUTION SYSTEMS 91

confusion. The word “interleaving” became synonymous to the word “indeterminate”, and
the observational view was robbed of its power to express liveness properties such as finite
delay or termination.

Of course, it is not the expansion law per se that is to blame for this confusion.
Interleaving is an operation on executions, not transitions, and the use of labelled
transition systems was always going to cause problems with it. But instead of replacing
transitions with executions in their systems, people started augmenting them with all kinds
of different pieces of information that would allow them to distinguish the “admissible”
sequences of transitions from the “inadmissible” ones. And more often than not, the result
was a type of modelling structure that could no longer claim adherence to the
observational view. The few attempts that did use executions directly, at least those that
we are aware of (see [18], [17]), were not concerned with organizing them into structures
and looking at their branching properties, and anyway, seem to have received only scant
attention, possibly due to their poor presentation.

The first place where we do see executions organized into structures is not process algebra,
but temporal logic. These so-called path structures (see Section 3.1) are quite popular in
the beginning. We do not see a formal concept of bisimulation for them, but there is
definitely interest in their branching properties. The notions of suffix, fusion, and limit
closure are all defined in connection with path structures. Eventually, they give way to
Kripke structures, inherited from modal logic, and claimed to provide “a setting more
appropriate to concurrency” (see [21, p. 152]). They do not. But despite the voices of
reason asking for a separation between implementation and correctness issues in reasoning
about concurrent programs (for example, see [16]), transitions remain in the lead role.

In [26], Hennessy and Stirling introduce what appears to be the first type of labelled
execution system in the literature. They call systems of that type general transition
systems, and in their definition, demand not only suffix and fusion closure, but prefix
closure as well, with the justification that it “also appears to be natural” (see [26, p. 27]).
They also define a concept of extended bisimulation for such systems, which is basically the
same as our formally derived concept of bisimulation between labelled executions systems
(see Definition 3.2.3). The focus in [26] is in logic, and specifically, in a generalization of
Hennessy-Milner Logic (see [25]) to general transition systems. But what is surprising is
that no attempt is later made to apply the ideas of general transition systems and
extended bisimulations to the semantics of processes.

More than ten years later, these ideas pop up in a “very rough and incomplete draft” of
Aczel (see [4]), who is aware of Hennessy’s work in [24], a precursor of [26], but apparently,
unaware of the work in [26] (see footnote in [4, p. 3]). Aczel’s intention is to apply the final
universe approach of [3] to the semantics of Milner’s SCCS with finite delay (see [38]). But
his execution is indeed “very rough and incomplete”. The proposed type of structure is a
generalized type of labelled transition system, where each state is equipped with the set of

CHAPTER 3. EXECUTION SYSTEMS 92

all infinite sequences of transitions “admissible” from that state. An added condition of
“stability” makes structures of that type ultimately equivalent to the general transition
systems of [26], but only because the latter are prefix closed. Eventually, these structures
are represented as coalgebras over Class, and [3, thm. 2.2] is used to prove the existence of
a final coalgebra in the full subcategory of all such coalgebras that are “stable”.

The only other place where we find these ideas applied to the semantics of processes is [27].
The starting point is again Milner’s SCCS with finite delay, and the structures used are
practically the same as in [4]. But the approach is purely categorical. Indeed, the main
goal in [27] is showing how much can be done within category theory alone. Apparently, a
lot, but not without cost.

Comparing [26], [4], and [27] with our work here, there are two things that we think stand
out and would like to mention.

First, as regards the general idea underlying the concept of labelled execution system, we
find that in all three of [26], [4], and [27], the notion of indeterminate termination, and its
use in modelling the behaviour of reactive systems, has been completely overlooked. This is
easy to put right in [26], where prefix closure is an added feature, but not so in [4] and [27],
where the property is practically built into the structure of a system.

Second, as regards the formalization of the idea, we believe that the present approach
represents a great simplification, both conceptually and notationally, over what was done
in all three of [26], [4], and [27], and hope that the reader will appreciate the power and
elegance of our framework, which, we think, are felt in every part of the theory.

It should be emphasized that the precedence of [26], [4], and [27] over our work here is not
causal, only temporal. Our ideas were developed, and for the most part, worked out before
any acquaintance with these studies. The above review was mainly driven by our curiosity
to understand why ideas that in retrospect seem so natural have not found their way into
the household of the average concurrency theorist.

In the end, one can only speculate. But one thing is certain: if matters of pedagogy have
played any role in this, transition semantics have definitely profited from it; for people like
pictures, and execution systems are impossible to draw.

93

Chapter 4

Sequential Asynchronous Processes

4.1 Our intuitive notion of asynchronous process

What is a process? This is a question that has troubled concurrency theorists ever since
the birth of the field almost fifty year ago. And yet, there is still very little agreement as to
what the answer is. With the advent of process algebra in the eighties came the well known
controversy between so-called true concurrency and interleaving semantics, adding another
dimension to the problem.

The central figure in this controversy was of course Robin Milner, who, as we have seen,
was the one to argue for the dichotomy between causation and observation, which can be
tersely described as the difference between events partially ordered by causal dependence,
and actions totally ordered by temporal precedence (see [9]). Milner’s idea was nothing less
than brilliant. But it was marred by the inadequacies of the used model, the labelled
transition system.

Our work thus far has been to fix just that. And we have done so by introducing a model
that we believe can do justice to the interleaving approach. We now want to use this model
to define an abstract notion of asynchronous process.

The word asynchronous is derived from the Greek word ασύγχρονος. The latter is a
compound of the privative prefix α-, the prefix συν-, in the sense of of identical, and χρόνος,
the Greek word for time. It is used in a strict sense to assert that one does not coincide in
time with another, or, more often, in a loose sense to assert that one need not coincide in
time with another. And in the context of concurrency theory, it is the only in a loose sense
that it can be used without any contradiction. For if two events must be non-synchronized,
then there is a synchronization between the presence of the one and absence of the other.

CHAPTER 4. SEQUENTIAL ASYNCHRONOUS PROCESSES 94

The most important implication from this intuitive notion of asynchrony is that
communication must be unidirectional. In other words, in an asynchronous setting, if a
process wants to communicate with another process, then the most it can do is pass a
message for it to read at its own leisure. And this means that there must be some place to
leave that message. Therefore, a process is determined by a number of ports, or mailboxes,
as we like to call them, which is the interface of the process to the outside world.

Based on this, we shall now give an informal, anthropomorphic description of how we think
an asynchronous process works. The precise concept will only be understood after the
axioms are presented. But this informal description will be very useful in understanding
the intuition behind the mathematics, and we shall return frequently to it. We only advise
the reader not to take it too literally.

We shall then think of an asynchronous process as an organization of people. And this
organization will communicate with the outside world through the exchange of messages.
Specifically, it will have a number of mailboxes, and a number of workers and messengers.
We will not constrain the internal structure of the mailboxes at all. These may act as
bounded or unbounded buffers, first-in-first-out queues or push-and-pop stacks,
single-token places or multisets. The workers inside the organization will be responsible for
the operation of the organization, and their access to these mailboxes will too be left
unconstrained. For all we know, a worker might choose to ignore all messages, or might be
sitting behind a mailbox waiting for the next message. Finally, the messengers will be
responsible for delivering messages to other organizations, and thus, represent the
communication capabilities of the organization. And while the number of mailboxes will be
considered fixed for an organization, the number of workers and messengers will, in
principle, be allowed to vary.

Here, we will focus on a specific type of asynchronous process, a sequential asynchronous
process. What this corresponds to in our anthropomorphic description is the constraint
that there be just one worker. Messengers may by many and variable, but there is always
going to be a single worker.

4.2 Asynchronous process types

Our first step is to formalize this anthropomorphic notion of interface of a process.

Definition 4.2.1. An asynchronous process type is an ordered pair 〈I, O〉 such that the
following are true:

(a) I is a function such that the following are true:

(i) dom I is countable;

CHAPTER 4. SEQUENTIAL ASYNCHRONOUS PROCESSES 95

(ii) for any i ∈ dom I, I(i) is a non-empty set;

(b) O is a function such that the following are true:

(i) domO is countable;

(ii) for any o ∈ domO, O(o) is a non-empty set;

(c) dom I and domO are disjoint.

In an asynchronous process type 〈I, O〉, I represents that mailboxes of a process, and the
types of messages that can be deposited to them. O, on the other hand, represents all the
mailboxes that a process might deposit a message to, and all the kinds of messages it might
deposit. This creates some redundancy, but a typed approach greatly simplifies things.

Note that the constraint that dom I and domO be disjoint makes sense from an
observational point of view: if a process deposits a message to itself, only it can observe
that deposition.

One interesting question here is why we have decided to make the number of input and
output channels countable when we have intentionally left everything else unbounded. The
reason is simple: our executions are finite or infinite sequences, as they must be if we want
our processes to maintain a connection with reality. And thus, a process with an
uncountable number of channels could never communicate over all of them through its
lifetime.

4.3 Systems and coalgebras

The type of an asynchronous process determines the different kinds of actions that it can
perform. Basically, these are input actions, which are to be understood as the event of
deposition of a message to a mailbox of the process, output actions, which correspond to
the deposition of a message by a messenger of the process to some mailbox, and internal
actions, which model the work done internally by the workers of the process.

Assume an asynchronous process type 〈I, O〉.

We write actin 〈I, O〉 for {〈i,m〉 | i ∈ dom I and m ∈ I(i)}.

We write actout 〈I, O〉 for {〈o,m〉 | o ∈ domO and m ∈ O(o)}.

We write τ for ∅.

We write act 〈I, O〉 for actin 〈I, O〉 ∪ actout 〈I, O〉 ∪ {τ}.

CHAPTER 4. SEQUENTIAL ASYNCHRONOUS PROCESSES 96

We call any 〈i,m〉 ∈ actin 〈I, O〉 an input action, any 〈o,m〉 ∈ actout 〈I, O〉 an output action,
and τ an internal action.

Notice that the choice of ∅ for τ is arbitrary. Any object different from an ordered pair
would do. The symbol itself is used for conformance with the literature.

It is also worth noting that there is no predefined set of actions. Any pair of functions
satisfying the definition of an asynchronous process type will do.

We now begin to formalize our notion of process. The first step is to define a notion of
path. This is understood as any finite or infinite sequence of steps through the underlying
transition system of a labelled execution system.

Assume an (act 〈I, O〉)-labelled execution system 〈S,E〉.

We write paths 〈S,E〉 for the largest subset X of S ×S (act 〈I, O〉 × S) such that for every
〈s, e〉 ∈ X, one of the following is true:

(i) e = 〈 〉;

(ii) there is α, s′, and e′ such that s
α−→transE s

′, 〈s′, e′〉 ∈ X, and

e = 〈〈α, s′〉〉 · e′.

The existence of a largest such set is easily verified by straightforward order-theoretic
arguments, which we will henceforth omit.

We next begin to define a notion of fairness for such paths. Intuitively, we want every
different party involved in the execution of a process to be given the chance to proceed.
This include the worker of the process, the messengers, and of course the environment.
However, we want to place as little constraints as possible, making sure that in the end,
every possible interleaving of them will be part of the behaviour of the process.

Assume 〈s, e〉 ∈ paths 〈S,E〉.

We say that τ is eventually in 〈s, e〉 if and only if 〈s, e〉 is a member of the smallest set X
such that the following are true:

(i) for every s′, s′′, and e′′, if s′
τ−→transE s

′′ and 〈s′′, e′′〉 ∈ paths 〈S,E〉, then
〈s′, 〈〈τ, s′′〉〉 · e′′〉 ∈ X;

(ii) for every s′, α, s′′, and e′′, if s′
α−→transE s

′′ and 〈s′′, e′′〉 ∈ X, then
〈s′, 〈〈α, s′′〉〉 · e′′〉 ∈ X.

We say that τ eventually need not be in 〈s, e〉 if and only if 〈s, e〉 is a member of the
smallest set X such that the following are true:

CHAPTER 4. SEQUENTIAL ASYNCHRONOUS PROCESSES 97

(i) for every s′, if for every s′′, s′ Y τ−→transE s
′′, then for every e′, if 〈s′, e′〉 ∈ paths 〈S,E〉,

then 〈s′, e′〉 ∈ X;

(ii) for every s′, α, s′′, and e′′, if s′
α−→transE s

′′ and 〈s′′, e′′〉 ∈ X, then
〈s′, 〈〈α, s′′〉〉 · e′′〉 ∈ X.

The meaning of these two predicates should be clear. The first asserts that in an execution,
the worker does at some point make progress, and the second that at some point in the
execution, the worker cannot make progress.

The following is meant to take care the progress of a messenger.

Assume 〈o,m〉 ∈ actout 〈I, O〉 and s′ such that s
〈o,m〉−→transE s

′.

We say that 〈〈o,m〉, s′〉 is eventually in 〈s, e〉 if and only if 〈s, e〉 is a member of the
smallest set X such that the following are true:

(i) for every e′, if 〈s′, e′〉 ∈ paths 〈S,E〉, then 〈s, 〈〈〈o,m〉, s′〉〉 · e′〉 ∈ X;

(ii) for every α, s′α, and e′, if s
α−→transE s

′
α, 〈s′α, e′〉 ∈ paths 〈S,E〉, and there is s′′ such

that s′
α−→transE s

′′, s′α
〈o,m〉−→transE s

′′, and 〈〈o,m〉, s′′〉 is eventually in 〈s′α, e′〉, then
〈s, 〈〈α, s′α〉〉 · e′〉 ∈ X.

Here, the situation is more complex. The problem is that at any point, there may be more
than one messenger with identical messages and destinations. If we used the same type of
predicate as in the case of an internal action, there would be cases where a messenger was
put on hold forever, just because another messenger with the same message and
destination was making progress. And for all we know, the behaviour of the worker may
depend on the identity of the available messengers. In Definition 4.3.1, the necessary
confluence constraints are imposed so that the above method does indeed guarantee that
every single messenger will eventually make progress.

With these inductively defined predicates, we can now define a notion of fairness
coinductively.

We say that 〈s, e〉 is fair in 〈S,E〉 if and only if 〈s, e〉 is a member of the largest subset X
of paths 〈S,E〉 such that for every 〈s′, e′〉 ∈ X, one of the following is true:

(i) e′ = 〈 〉, and for every s′′, the following are true:

(1) s Y τ−→transE s
′′;

(2) for every 〈o,m〉 ∈ actout 〈I, O〉, s Y
〈o,m〉−→transE s

′′;

CHAPTER 4. SEQUENTIAL ASYNCHRONOUS PROCESSES 98

(ii) there is 〈i,m〉 ∈ actin 〈I, O〉, s′′, and e′′ such that s′
〈i,m〉−→transE s

′′, 〈s′′, e′′〉 ∈ X,

e′ = 〈〈〈i,m〉, s′′〉〉 · e′′,

and the following are true:

(1) if there is 〈o,mo〉 ∈ actout 〈I, O〉 and s′′o such that s′
〈o,mo〉−→ transE s

′′
o , then there is

s′′′ such that s′′
〈o,mo〉−→ transE s

′′′, s′′o
〈i,m〉−→transE s

′′′, and 〈〈o,mo〉, s′′′〉 is eventually in
〈s′′, e′′〉;

(2) if there is s′′τ such that s′
τ−→transE s

′′
τ , then either τ is eventually in 〈s′′, e′′〉, or τ

eventually need not be in 〈s′′, e′′〉;

(iii) there is 〈o,m〉 ∈ actout 〈I, O〉, s′′, and e′′ such that s′
〈o,m〉−→transE s

′′, 〈s′′, e′′〉 ∈ X,

e′ = 〈〈〈o,m〉, s′′〉〉 · e′′,

and if there is s′′τ such that s′
τ−→transE s

′′
τ , then either τ is eventually in 〈s′′, e′′〉, or τ

eventually need not be in 〈s′′, e′′〉;

(iv) there is s′′ and e′′ such that s′
τ−→transE s

′′, 〈s′′, e′′〉 ∈ X,

e′ = 〈〈τ, s′′〉〉 · e′′,

and if there is 〈o,m〉 ∈ actout 〈I, O〉 and s′′o such that s′
〈o,m〉−→transE s

′′
o , then there is s′′′

such that s′′
〈o,m〉−→transE s

′′′, s′′o
τ−→transE s

′′′, and 〈〈o,m〉, s′′′〉 is eventually in 〈s′′, e′′〉.

We note that similar approaches of iterated induction and coinduction to fairness have
been used before (for example, see [45]).

By requiring the executions of a process to coincide with all fair paths in the underlying
labelled transition system, we guarantee that all different interleavings of the worker, the
messengers, and the environment are accounted for.

Definition 4.3.1. A sequential asynchronous process system of type 〈I, O〉 is an
(act 〈I, O〉)-labelled execution system 〈S,E〉 such that the following are true:

(a) for any s ∈ S and any 〈i,m〉 ∈ actin 〈I, O〉, there is s′ such that s
〈i,m〉−→transE s

′;

(b) for every s, s′1, and s′2, and any 〈i,m〉 ∈ actin 〈I, O〉, if s
〈i,m〉−→transE s

′
1 and

s
〈i,m〉−→transE s

′
2, then s′1 = s′2;

CHAPTER 4. SEQUENTIAL ASYNCHRONOUS PROCESSES 99

(c) for every s, s′1, and s′2, and any 〈i1,m1〉, 〈i1,m2〉 ∈ actin 〈I, O〉, if s
〈i1,m1〉−→ transE s

′
1

s
〈i2,m2〉−→ transE s

′
2, and i1 6= i2, then there is s′′ such that s′1

〈i2,m2〉−→ transE s
′′ and

s′2
〈i1,m1〉−→ transE s

′′;

(d) for every s, s′i, and s′o, any 〈i,mi〉 ∈ actin 〈I, O〉, and any 〈o,mo〉 ∈ actout 〈I, O〉, if

s
〈i,mi〉−→ transE s

′
i and s

〈o,mo〉−→ transE s
′
o, then there is s′′ such that s′i

〈o,mo〉−→ transE s
′′ and

s′o
〈i,mi〉−→ transE s

′′;

(e) for every s, s′1, and s′2, and any 〈o1,m1〉, 〈o1,m2〉 ∈ actout 〈I, O〉 if s
〈o1,m1〉−→ transE s

′
1 and

s
〈o2,m2〉−→ transE s

′
2, then there is s′′ such that s′1

〈o2,m2〉−→ transE s
′′ and s′2

〈o1,m1〉−→ transE s
′′;

(f) for every s, s′o, and s′τ , and any 〈o,m〉 ∈ actout 〈I, O〉, if s
〈o,m〉−→transE s

′
o and

s
τ−→transE s

′
τ , then there is s′′ such that s′o

τ−→transE s
′′ and s′τ

〈o,m〉−→transE s
′′;

(g) for every s, s′o, and s′′, and any 〈o,m〉 ∈ actout 〈I, O〉, if s
〈o,m〉−→transE s

′
o and

s
τ−→transE s

′′, then there is s′τ such that s
τ−→transE s

′
τ and s′τ

〈o,m〉−→transE s
′′;

(h) for every s and e, sBE e if and only if 〈s, e〉 is fair in 〈S,E〉.

We briefly go over the clauses of this definition.

Clause (a) corresponds to the most basic assumption of asynchrony, that we should be able
to deposit any kind of message in any mailbox at any time. Diagrammatically, we have the
following representation:

s

s′

i ? m (all 〈i,m〉 ∈ actin 〈I, O〉)

Here, the dashed line is used to signify existence of the corresponding transition, which is
understood as a transition of the underlying labelled transition system of the sequential
asynchronous process system.

Clause (b) formalizes the idea that the effect of deposition of a message in a mailbox is
uniquely determined. In other words, there are no different ways of depositing a message in
a mailbox. Diagrammatically, we have the following:

CHAPTER 4. SEQUENTIAL ASYNCHRONOUS PROCESSES 100

s s′1

s′2

i ? m

i ? m =⇒ s′1 = s′2

Clause (c) is the last clause concerned with input, and what it states is essentially that
different mailboxes are physically distinct. Thus, depositing messages to two different
mailboxes in any order will have the same effect in the content of each mailbox. This is
portrayed in the following confluent diagram:

p s′1

s′2 s′′

i1 ? m1

i2 ? m2 i2 ? m2 (i1 6= i2)

i1 ? m1

Clauses (d), (e), and (f) are concerned with output, and essentially, assert that a messenger
can never be recalled. Once a decision is made, and a messenger is dispatched, that
messenger will insist until his job is done. This is expressed by the confluence of the
following three diagrams:

s s′o

s′i s′′

o ! mo

i ? mi i ? mi

o ! mo

s s′1

s′2 s′′

o1 ! m1

o2 ! m2 o2 ! m2

o1 ! m1

s s′o

s′τ s′′

o ! m

τ τ

o ! m

Clause (g) is the last of the clauses that constrain the underlying labelled transition
system, and is, as we shall see, somewhat controversial. Essentially, what it asserts is that
it cannot be the case that a worker waits for a messenger to continue with his job. This
clearly precludes the situation where there is only one person in the organization, switching
between a worker and a messenger. This is the intuitive idea behind the following
commutative diagram:

CHAPTER 4. SEQUENTIAL ASYNCHRONOUS PROCESSES 101

s s′o

s′τ s′′

o ! m

ττ

o ! m

Finally, clause (h) is the place where our work begins to pay off. All previous clauses
concern transitions, and while more general than the typical approach to asynchrony (for
example, see [59]), are after all expressed in terms of labelled transition systems. It is in
(h), where we begin to express properties about our systems that are impossible to capture
with labelled transition systems. And this will become all the more important, when we
use our coalgebraic framework to obtain an extensional model for these properties.

To be formal, we repeat all the above, this time for labelled execution coalgebras.

Assume an (act 〈I, O〉)-labelled execution coalgebra 〈C, ε〉.

We write paths 〈C, ε〉 for the largest subclass X of C × Seq(act 〈I, O〉 × C) such that for
every 〈c, e〉 ∈ X, one of the following is true:

(i) e = 〈 〉;

(ii) there is α, c′, and e′ such that c
α−→η(C)◦ε c

′, 〈c′, e′〉 ∈ X, and

e = 〈〈α, c′〉〉 · e′.

Assume 〈c, e〉 ∈ paths 〈C, ε〉.

We say that τ is eventually in 〈c, e〉 if and only if 〈c, e〉 is a member of the smallest set X
such that the following are true:

(i) for every c′, c′′, and e′′, if c′
τ−→η(C)◦ε c

′′ and 〈c′′, e′′〉 ∈ paths 〈C, ε〉, then
〈c′, 〈〈τ, c′′〉〉 · e′′〉 ∈ X;

(ii) for every c′, α, c′′, and e′′, if c′
α−→η(C)◦ε c

′′ and 〈c′′, e′′〉 ∈ X, then
〈c′, 〈〈α, c′′〉〉 · e′′〉 ∈ X.

We say that τ eventually need not be in 〈c, e〉 if and only if 〈c, e〉 is a member of the
smallest set X such that the following are true:

(i) for every c′, if for every c′′, c′ Y τ−→η(C)◦ε c
′′, then for every e′, if 〈c′, e′〉 ∈ paths 〈C, ε〉,

then 〈c′, e′〉 ∈ X;

CHAPTER 4. SEQUENTIAL ASYNCHRONOUS PROCESSES 102

(ii) for every c′, α, c′′, and e′′, if c′
α−→η(C)◦ε c

′′ and 〈c′′, e′′〉 ∈ X, then
〈c′, 〈〈α, c′′〉〉 · e′′〉 ∈ X.

Assume 〈o,m〉 ∈ actout 〈I, O〉 and c′ such that c
〈o,m〉−→η(C)◦ε c

′.

We say that 〈〈o,m〉, c′〉 is eventually in 〈c, e〉 if and only if 〈c, e〉 is a member of the
smallest set X such that the following are true:

(i) for every e′, if 〈c′, e′〉 ∈ paths 〈C, ε〉, then 〈c, 〈〈〈o,m〉, c′〉〉 · e′〉 ∈ X;

(ii) for every α, c′α, and e′, if c
α−→η(C)◦ε c

′
α, 〈c′α, e′〉 ∈ paths 〈C, ε〉, and there is c′′ such

that c′
α−→η(C)◦ε c

′′, c′α
〈o,m〉−→η(C)◦ε c

′′, and 〈〈o,m〉, c′′〉 is eventually in 〈c′α, e′〉, then
〈c, 〈〈α, c′α〉〉 · e′〉 ∈ X.

We say that 〈c, e〉 is fair in 〈C, ε〉 if and only if 〈c, e〉 is a member of the largest subset X
of paths 〈C, ε〉 such that for every 〈c′, e′〉 ∈ X, one of the following is true:

(i) e′ = 〈 〉, and for every c′′, the following are true:

(1) c Y τ−→η(C)◦ε c
′′;

(2) for every 〈o,m〉 ∈ actout 〈I, O〉, c Y
〈o,m〉−→η(C)◦ε c

′′;

(ii) there is 〈i,m〉 ∈ actin 〈I, O〉, c′′, and e′′ such that c′
〈i,m〉−→η(C)◦ε c

′′, 〈c′′, e′′〉 ∈ X,

e′ = 〈〈〈i,m〉, c′′〉〉 · e′′,

and the following are true:

(1) if there is 〈o,mo〉 ∈ actout 〈I, O〉 and c′′o such that c′
〈o,mo〉−→ η(C)◦ε c

′′
o , then there is

c′′′ such that c′′
〈o,mo〉−→ η(C)◦ε c

′′′, c′′o
〈i,m〉−→η(C)◦ε c

′′′, and 〈〈o,mo〉, c′′′〉 is eventually in
〈c′′, e′′〉;

(2) if there is c′′τ such that c′
τ−→η(C)◦ε c

′′
τ , then either τ is eventually in 〈c′′, e′′〉, or τ

eventually need not be in 〈c′′, e′′〉;

(iii) there is 〈o,m〉 ∈ actout 〈I, O〉, c′′, and e′′ such that c′
〈o,m〉−→η(C)◦ε c

′′, 〈c′′, e′′〉 ∈ X,

e′ = 〈〈〈o,m〉, c′′〉〉 · e′′,

and if there is c′′τ such that c′
τ−→η(C)◦ε c

′′
τ , then either τ is eventually in 〈c′′, e′′〉, or τ

eventually need not be in 〈c′′, e′′〉;

CHAPTER 4. SEQUENTIAL ASYNCHRONOUS PROCESSES 103

(iv) there is c′′ and e′′ such that c′
τ−→η(C)◦ε c

′′, 〈c′′, e′′〉 ∈ X,

e′ = 〈〈τ, c′′〉〉 · e′′,

and if there is 〈o,m〉 ∈ actout 〈I, O〉 and c′′o such that c′
〈o,m〉−→η(C)◦ε c

′′
o , then there is c′′′

such that c′′
〈o,m〉−→η(C)◦ε c

′′′, c′′o
τ−→η(C)◦ε c

′′′, and 〈〈o,m〉, c′′′〉 is eventually in 〈c′′, e′′〉.

Definition 4.3.2. A sequential asynchronous process coalgebra of type 〈I, O〉 is an
(act 〈I, O〉)-labelled execution coalgebra 〈C, ε〉 such that the following are true:

(a) for any c ∈ C and any 〈i,m〉 ∈ actin 〈I, O〉, there is c′ such that c
〈i,m〉−→η(C)◦ε c

′;

(b) for every c, c′1, and c′2, and any 〈i,m〉 ∈ actin 〈I, O〉, if c
〈i,m〉−→η(C)◦ε c

′
1 and

c
〈i,m〉−→η(C)◦ε c

′
2, then c′1 = c′2;

(c) for every c, c′1, and c′2, and any 〈i1,m1〉, 〈i1,m2〉 ∈ actin 〈I, O〉, if c
〈i1,m1〉−→ η(C)◦ε c

′
1

c
〈i2,m2〉−→ η(C)◦ε c

′
2, and i1 6= i2, then there is c′′ such that c′1

〈i2,m2〉−→ η(C)◦ε c
′′ and

c′2
〈i1,m1〉−→ η(C)◦ε c

′′;

(d) for every c, c′i, and c′o, any 〈i,mi〉 ∈ actin 〈I, O〉, and any 〈o,mo〉 ∈ actout 〈I, O〉, if

c
〈i,mi〉−→ η(C)◦ε c

′
i and c

〈o,mo〉−→ η(C)◦ε c
′
o, then there is c′′ such that c′i

〈o,mo〉−→ η(C)◦ε c
′′ and

c′o
〈i,mi〉−→ η(C)◦ε c

′′;

(e) for every c, c′1, and c′2, and any 〈o1,m1〉, 〈o1,m2〉 ∈ actout 〈I, O〉 if c
〈o1,m1〉−→ η(C)◦ε c

′
1 and

c
〈o2,m2〉−→ η(C)◦ε c

′
2, then there is c′′ such that c′1

〈o2,m2〉−→ η(C)◦ε c
′′ and c′2

〈o1,m1〉−→ η(C)◦ε c
′′;

(f) for every c, c′o, and c′τ , and any 〈o,m〉 ∈ actout 〈I, O〉, if c
〈o,m〉−→η(C)◦ε c

′
o and

c
τ−→η(C)◦ε c

′
τ , then there is c′′ such that c′o

τ−→η(C)◦ε c
′′ and c′τ

〈o,m〉−→η(C)◦ε c
′′;

(g) for every c, c′o, and c′′, and any 〈o,m〉 ∈ actout 〈I, O〉, if c
〈o,m〉−→η(C)◦ε c

′
o and

c
τ−→η(C)◦ε c

′′, then there is c′τ such that c
τ−→η(C)◦ε c

′
τ and c′τ

〈o,m〉−→η(C)◦ε c
′′;

(h) for every c and e, cBE e if and only if 〈c, e〉 is fair in 〈C, ε〉.

Clearly, sequential asynchronous process systems and small sequential asynchronous
process coalgebras are the same objects in different guises.

Assume a sequential asynchronous process system 〈S,E〉 of type 〈I, O〉.

CHAPTER 4. SEQUENTIAL ASYNCHRONOUS PROCESSES 104

Assume a sequential asynchronous process coalgebra 〈C, ε〉 of type 〈I, O〉.

The following is immediate from :

Proposition 4.3.3. The following are true:

(a) the (act 〈I, O〉)-labelled execution coalgebra 〈S, funE〉 is a sequential asynchronous
process coalgebra of type 〈I, O〉;

(b) if 〈C, ε〉 is small, then the (act 〈I, O〉)-labelled execution system 〈C, rel ε〉 is a
sequential asynchronous process system of type 〈I, O〉.

We write SAPC〈I,O〉 for the category whose objects are all the asynchronous process
coalgebras of type 〈I, O〉, and arrows all the homomorphisms from one asynchronous
process coalgebra of type 〈I, O〉 to another.

Clearly, SAPC〈I,O〉 is a full subcategory of (Pow ◦ Seq ◦ (act 〈I, O〉 × Id))-Coalg.

The following is straightforward from Proposition 3.3.1 and a routine proof by cases:

Theorem 4.3.4. SAPC〈I,O〉 is a (Pow ◦ Seq ◦ (act 〈I, O〉 × Id))-covariety.

The following is immediate from Theorem 3.5.3 and 4.3.4:

Corollary 4.3.5. There is a sequential asynchronous process coalgebra of type 〈I, O〉 that
is final in SAPC〈I,O〉.

4.4 Axiomatization

Corollary 4.3.5 is the basis for our axiomatization. Essentially, what are axioms state are
that processes are members of a sequential asynchronous process coalgebra of type 〈I, O〉
that is final in SAPC〈I,O〉. This approach to the definition of a process is inspired by [2]
and [57].

We will not be too obsessed with formalistic issues, as we want these axioms expressed in
the same manner they are to be used.

In the following, we will used accented and subscripted variants of p for processes. We will
write 〈P,B〉 for the class of all process and the cooperation of the corresponding coalgebra.
Essentially, this is a metalinguistic device to refer to the model of the theory from inside
the theory. This will enable us to express an extremal axiom that guarantees that are
coalgebra is final in SAPC〈I,O〉. And the consistency of that axiom will be a consequence
of Corollary 4.3.5.

CHAPTER 4. SEQUENTIAL ASYNCHRONOUS PROCESSES 105

Axiom of Unimpeded Input. For every p and any 〈i,m〉 ∈ actin 〈I, O〉, there is p′ such

that p
〈i,m〉−→ p′.

Axiom of Determinate Input. For every p, p′1, and p′2, and any 〈i,m〉 ∈ actin 〈I, O〉, if

p
〈i,m〉−→ p′1 and p

〈i,m〉−→ p′2, then p′1 = p′2.

Axiom of Independent Input. For every p, p′1, and p′2, and any

〈i1,m1〉, 〈i1,m2〉 ∈ actin 〈I, O〉, if p
〈i1,m1〉−→ p′1 p

〈i2,m2〉−→ p′2, and i1 6= i2, then there is p′′ such

that p′1
〈i2,m2〉−→ p′′ and p′2

〈i1,m1〉−→ p′′.

Axiom of Irrevocable Output. The following are true:

(a) for every p, p′i, and p′o, any 〈i,mi〉 ∈ actin 〈I, O〉, and any 〈o,mo〉 ∈ actout 〈I, O〉, if

p
〈i,mi〉−→ p′i and p

〈o,mo〉−→ p′o, then there is p′′ such that p′i
〈o,mo〉−→ p′′ and p′o

〈i,mi〉−→ p′′;

(b) for every p, p′1, and p′2, and any 〈o1,m1〉, 〈o1,m2〉 ∈ actout 〈I, O〉 if p
〈o1,m1〉−→ p′1 and

p
〈o2,m2〉−→ p′2, then there is p′′ such that p′1

〈o2,m2〉−→ p′′ and p′2
〈o1,m1〉−→ p′′;

(c) for every p, p′o, and p′τ , and any 〈o,m〉 ∈ actout 〈I, O〉, if p
〈o,m〉−→ p′o and p

τ−→ p′τ , then

there is p′′ such that p′o
τ−→ p′′ and p′τ

〈o,m〉−→ p′′.

Postulate of Delegated Output. For every p, p′o, and p′′, and any 〈o,m〉 ∈ actout 〈I, O〉,
if p

〈o,m〉−→ p′o and p
τ−→ p′′, then there is p′τ such that p

τ−→ p′τ and p′τ
〈o,m〉−→ p′′.

Axiom of Finite Delay. For every p and e, pB e if and only if 〈p, e〉 is fair in 〈P,B〉.

The Extremal Axiom. 〈P,B〉 is final in SAPC〈I,O〉.

The Extremal Axiom can further be reduced in the obvious way within the language of the
theory using Theorem 3.5.3.

4.5 The Postulate of Delegated Output

The Postulate of Delegated Output stands out, as it is the only one we have titled a
“postulate” instead of an “axiom”. This is done with the purpose of initiating a discussion
about its use and connection to the notion of asynchrony. Intuitively, even though it is
practically assumed in every formalization of asynchrony that we know of, we would like to
exclude it. Because we would like to consider computational processes running

CHAPTER 4. SEQUENTIAL ASYNCHRONOUS PROCESSES 106

asynchronously on a non-distributed system, and exchanging messages over say queues or
buffer as asynchronous. But this creates problems.

In [14], Brock and Ackerman came up with their famous anomaly that proved that
relational semantics was never going to be sufficient for the denotational characterization of
interactive systems. The following example is from [54], and demonstrates two programs
that have the same history relation, yet different behaviour when in a feedback
configuration:

1: either
2: write o : 0
3: block read i
4: write o : 0
5: or
6: block read a
7: write o : 0
8: write o : 1
9: end either

1: either
2: write o : 0
3: block read i
4: write o : 0
5: or
6: block read i
7: write o : 0
8: write o : 1
9: or

10: write o : 0
11: block read i
12: write o : 1
13: end either

In [29], Jonsson proved that in order to obtain a compositional semantics, one must at least
add enough information to describe the behaviour of a process as observed by a linear,
sequential observer. And as it turns out, his result rests on the Postulate of Delegated
Output.

The next example shows two different components that display the same behaviour with
respect to such an observer, but still behave differently in a feedback configuration. The
pseudocode below is understood as the program of a sequential process that reads from a
buffer i and writes to a buffer o. Notice that reads are internal actions, while writes are
external. And this is what violates the Postulate of Delegated Output: each of these two
processes, when in feedback, after writing something to its own buffer, that written value is
there to be read the next time a read is attempted. The reader is invited to verify that the
traces of the two processes agree as they are, but disagree when in feedback.

CHAPTER 4. SEQUENTIAL ASYNCHRONOUS PROCESSES 107

1: either
2: write o : 0
3: write o : 0
4: or
5: write o : 0
6: if read i = void then
7: write o : 0
8: end if
9: end either

1: if read i 6= void
2: write o : 0
3: write o : 0
4: else
5: write o : 0
6: if read i = void then
7: write o : 0
8: end if
9: end if

It is not hard to see that the problem is created only in direct feedback, and so perhaps it
is instead that mechanism that is ill conceived. But more work is required to understand
this new kind of anomaly.

108

Bibliography

[1] Karl Abrahamson. Decidability and Expressiveness of Logics of Programs. PhD thesis,
University of Washington at Seattle, 1980.

[2] Peter Aczel. Non-well-founded Sets. Number 14 in Lecture Notes. CLSI, 1988.

[3] Peter Aczel. Final universes of processes. In Proceedings of the 9th International
Conference on Mathematical Foundations of Programming Semantics, pages 1–28,
London, UK, 1994. Springer-Verlag.

[4] Peter Aczel. A semantic universe for the study of fairness. VERY ROUGH AND
INCOMPLETE DRAFT, October 1996.

[5] Peter Aczel and Nax Paul Mendler. A final coalgebra theorem. In Category Theory
and Computer Science, pages 357–365, London, UK, 1989. Springer-Verlag.

[6] Jǐŕı Adámek, Horst Herrlich, and George Strecker. Abstract and Concrete Categories.
New York, NY, USA, 2004.

[7] Jǐŕı Adámek, Stefan Milius, and Jǐŕı Velebil. On coalgebra based on classes.
Theoretical Computer Science, 316(1-3):3–23, 2004. Recent Developments in Domain
Theory: A collection of papers in honour of Dana S. Scott.

[8] Bowen Alpern and Fred B. Schneider. Defining liveness. Information Processing
Letters, 21(4):181–185, 1985.

[9] Jos C. M. Baeten. The total order assumption. In Proceedings of the First North
American Process Algebra Workshop, NAPAW ’92, pages 231–240, London, UK, 1993.
Springer-Verlag.

[10] Jos C. M. Baeten. A brief history of process algebra. Theoretical Computer Science,
335(2-3):131–146, 2005.

[11] Jon Barwise and Lawrence Moss. Vicious Circles. Number 60 in Lecture Notes. CLSI,
1996.

BIBLIOGRAPHY 109

[12] Martin Berger. An interview with Robin Milner.
http://www.informatics.sussex.ac.uk/users/mfb21/interviews/milner/,
September 2003.

[13] Garrett Birkhoff. On the structure of abstract algebras. Mathematical Proceedings of
the Cambridge Philosophical Society, 31(04):433–454, 1935.

[14] J. Dean Brock and William B. Ackerman. Scenarios: A model of non-determinate
computation. In J. Dı́az and I. Ramos, editors, Formalization of Programming
Concepts, volume 107 of Lecture Notes in Computer Science, pages 252–259. Springer
Berlin / Heidelberg, 1981.

[15] Daniela Cancila, Furio Honsell, and Marina Lenisa. Some properties and some
problems on set functors. Electronic Notes in Theoretical Computer Science,
164(1):67–84, 2006. Proceedings of the Eighth Workshop on Coalgebraic Methods in
Computer Science (CMCS 2006), Eighth Workshop on Coalgebraic Methods in
Computer Science.

[16] Constantin Courcoubetis, Moshe Y. Vardi, and Pierre Wolper. Reasoning about fair
concurrent programs. In Proceedings of the eighteenth annual ACM symposium on
Theory of computing, STOC ’86, pages 283–294, New York, NY, USA, 1986. ACM.

[17] Philippe Darondeau. About fair asynchrony. Theoretical Computer Science,
37:305–336, 1985.

[18] Philippe Darondeau and Laurent Kott. On the observational semantics of fair
parallelism. In Josep Diaz, editor, Automata, Languages and Programming, volume
154 of Lecture Notes in Computer Science, pages 147–159. Springer Berlin /
Heidelberg, 1983.

[19] Edsger W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

[20] E. Allen Emerson. Alternative semantics for temporal logics. Theoretical Computer
Science, 26(1-2):121–130, 1983.

[21] E. Allen Emerson and Joseph Y. Halpern. “Sometimes” and “not never” revisited: On
branching versus linear time temporal logic. J. ACM, 33:151–178, January 1986.

[22] Marco Forti and Furio Honsell. Set theory with free construction principles. Annali
della Scuola Normale Superiore di Pisa, Classe di Scienze, 4e série, 10(3):493–522,
1983.

[23] H. Peter Gumm. Elements of the general theory of coalgebras. Lecture Notes for
LUATCS’99 at Rand Africaans University, Johannesburg, South Africa, 1999.

http://www.informatics.sussex.ac.uk/users/mfb21/interviews/milner/

BIBLIOGRAPHY 110

[24] Matthew Hennessy. Axiomatising finite delay operators. Acta Informatica, 21:61–88,
1984.

[25] Matthew Hennessy and Robin Milner. Algebraic laws for nondeterminism and
concurrency. J. ACM, 32:137–161, January 1985.

[26] Matthew Hennessy and Colin Stirling. The power of the future perfect in program
logics. Information and Control, 67(1-3):23–52, 1985.

[27] Thomas T. Hildebrandt. A fully abstract presheaf semantics of SCCS with finite
delay. Electronic Notes in Theoretical Computer Science, 29:102–126, 1999. CTCS ’99,
Conference on Category Theory and Computer Science.

[28] Bart Jacobs and Jan J. M. M. Rutten. A Tutorial on (Co)Algebras and
(Co)Induction. EATCS Bulletin, 62:62–222, 1997.

[29] Bengt Jonsson. A fully abstract trace model for dataflow networks. In Proceedings of
the 16th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, POPL ’89, pages 155–165, New York, NY, USA, 1989. ACM.

[30] Richard M. Karp and Raymond E. Miller. Parallel program schemata. Journal of
Computer and System Sciences, 3(2):147–195, 1969.

[31] Yasuo Kawahara and Masao Mori. A small final coalgebra theorem. Theoretical
Computer Science, 233(1-2):129–145, 2000.

[32] Robert M. Keller. Formal verification of parallel programs. Commun. ACM,
19(7):371–384, 1976.

[33] Joachim Lambek. A fixpoint theorem for complete categories. Mathematische
Zeitschrift, 103:151–161, 1968.

[34] Leslie Lamport. “Sometime” is sometimes “not never”: On the temporal logic of
programs. In Proceedings of the 7th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, POPL ’80, pages 174–185, New York, NY, USA,
1980. ACM.

[35] Saunders Mac Lane. Categories for the Working Mathematician. Number 5 in
Graduate Texts in Mathematics. Springer, 2nd edition, 1998.

[36] Robin Milner. Synthesis of communicating behaviour. In 7th MFCS: Mathematical
Foundations of Computer Science, volume 64 of Lecture Notes in Computer Science,
pages 71–83. Springer, 1978.

BIBLIOGRAPHY 111

[37] Robin Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in
Computer Science. Springer, 1980.

[38] Robin Milner. A finite delay operator in synchronous CCS. Technical Report
CSR-116-82, University of Edinburgh, 1982.

[39] Robin Milner. Calculi for synchrony and asynchrony. Theoretical Computer Science,
25(3):267–310, 1983.

[40] Robin Milner. A calculus of communicating systems. Report ECS-LFCS-86-7,
Laboratory for Foundations of Computer Science, Department of Computer Science,
University of Edinburgh, August 1986. (First published by Springer-Verlag as Vol.92
of Lecture Notes in Computer Science).

[41] Robin Milner. Communication and Concurrency. Prentice-Hall, Upper Saddle River,
NJ, USA, 1989.

[42] Robin Milner and Mads Tofte. Co-induction in relational semantics. Theoretical
Computer Science, 87(1):209–220, 1991.

[43] Edward F. Moore. Gedanken-experiments on sequential machines. Automata Studies,
34:129–153, 1956.

[44] Lawrence S. Moss and Norman Danner. On the foundations of corecursion. Logic
Journal of IGPL, 5(2):231–257, 1997.

[45] David Park. On the semantics of fair parallelism. In Dines Bjoorner, editor, Abstract
Software Specifications, volume 86 of Lecture Notes in Computer Science, pages
504–526. Springer Berlin / Heidelberg, 1980.

[46] David Park. Concurrency and automata on infinite sequences. In Peter Deussen,
editor, Theoretical Computer Science, volume 104 of Lecture Notes in Computer
Science, pages 167–183. Springer Berlin / Heidelberg, 1981.

[47] Benjamin C. Pierce. Basic Category Theory for Computer Scientists. Foundations of
Computing. The MIT Press, 1991.

[48] Gordon D. Plotkin. A structural approach to operational semantics (Aarhus notes).
Technical Report DAIMI FN–19, Computer Science Department, Aarhus University,
September 1981.

[49] Gordon D. Plotkin. The origins of structural operational semantics. Journal of Logic
and Algebraic Programming, 60-61:3–15, 2004.

BIBLIOGRAPHY 112

[50] Amir Pnueli. The temporal semantics of concurrent programs. In Gilles Kahn, editor,
Semantics of Concurrent Computation, volume 70 of Lecture Notes in Computer
Science, pages 1–20. Springer Berlin / Heidelberg, 1979.

[51] John Power and Hiroshi Watanabe. An axiomatics for categories of coalgebras.
Electronic Notes in Theoretical Computer Science, 11:158–175, 1998. CMCS ’98, First
Workshop on Coalgebraic Methods in Computer Science.

[52] Vaughan R. Pratt. Process logic: Preliminary report. In Proceedings of the 6th ACM
SIGACT-SIGPLAN symposium on Principles of programming languages, POPL ’79,
pages 93–100, New York, NY, USA, 1979. ACM.

[53] M. Reynolds. An axiomatization of full computation tree logic. The Journal of
Symbolic Logic, 66(3):1011–1057, 2001.

[54] James R. Russell. Full abstraction for nondeterministic dataflow networks. In
Foundations of Computer Science, 1989., 30th Annual Symposium on, pages 170–175,
1989.

[55] Jan J. M. M. Rutten. A calculus of transition systems (towards universal coalgebra).
Technical report, CWI (Centre for Mathematics and Computer Science), Amsterdam,
The Netherlands, The Netherlands, 1995.

[56] Jan J. M. M. Rutten. Universal coalgebra: a theory of systems. Theor. Comput. Sci.,
249(1):3–80, 2000.

[57] Jan J. M. M. Rutten and Daniele Turi. On the foundations of final semantics:
Non-standard sets, metric spaces, partial orders. In Proceedings of the REX Workshop
on Sematics: Foundations and Applications, pages 477–530, London, UK, 1993.
Springer-Verlag.

[58] Davide Sangiorgi. On the origins of bisimulation and coinduction. ACM Trans.
Program. Lang. Syst., 31(4):1–41, 2009.

[59] Peter Selinger. First-order axioms for asynchrony. In Antoni Mazurkiewicz and Józef
Winkowski, editors, CONCUR ’97: Concurrency Theory, volume 1243 of Lecture
Notes in Computer Science, pages 376–390. Springer Berlin / Heidelberg, 1997.

[60] Michael B. Smyth and Gordon D. Plotkin. The category-theoretic solution of recursive
domain equations. SIAM Journal on Computing, 11(4):761–783, 1982.

[61] Alfred Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific J. of
Mathematics, 5:285–309, 1955.

BIBLIOGRAPHY 113

[62] Terese. Term Rewriting Systems. Number 55 in Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press, 2003.

[63] Hermann Weyl. Mathematics and logic. The American Mathematical Monthly,
53(1):2–13, 1946.

	Introduction
	Transition Systems
	Basic definitions
	From systems to coalgebras
	More on homomorphisms and bisimulations
	Behaviour modelling and final coalgebras
	Existence of final coalgebras

	Execution Systems
	From transitions to executions
	From systems to coalgebras and back
	Abrahamson systems
	Generable systems
	Behaviour modelling and covarieties
	Execution systems in the literature

	Sequential Asynchronous Processes
	Our intuitive notion of asynchronous process
	Asynchronous process types
	Systems and coalgebras
	Axiomatization
	The Postulate of Delegated Output

	Bibliography

