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Abstract

For all intents and purposes, catastrophic interference, the
sudden and complete forgetting of previously stored
information upon learning new information, does not exist in
healthy adult humans. But does it exist other animals? In light
of recent research done by McClelland, McNaughton, &
O'Reilly (1995) and McClelland & Goddard (1996) on the
role of the hippocampal-neocortical interaction in alleviating
catastrophic interference, it is of particular interest to
ascertain whether catastrophic interference occurs in non-
human higher animals, especially in those animals with a
hippocampus and a neocortex, such as the rat. In this paper,
we describe experimental evidence to support our claim that
this type of radical forgetting does, in fact, exist for certain
types of learning in some higher animals, specifically, in the
rat's learning of time-durations. We develop a connectionist
model that could provide an insight into how the rat might be
encoding time-duration information.

Introduction

Catastrophic forgetting is a well-known problem in
connectionist modeling in which the learmning of new
information causes the sudden and complete disappearance
of previously-stored information. (For a review, see French,
1999). The severity of this problem first came to light at the
end of the 1980’s (McCloskey & Cohen, 1989; Ratcliff,
1990) and has been the subject of on-going research since.
In healthy adult humans, however, there is no evidence of
catastrophic forgetting. Humans, it seems, leasm — and
unleam — gradually (Bames & Underwood, 1959). But
does catastrophic forgetting exist in non-human animals?
We will present experimental results to show that
catastrophic interference does seem to exist for certain types
of learning in higher animals, specifically, in the rat’s
learning of time durations. We then develop a connectionist
model that could provide an insight into how the rat might
be encoding time information.

Catastrophic interference in connectionist networks is
due, at least in part, to the overlapping nature of the
network’s distributed internal representations. The smaller
this overlap, the less the amount of catastrophic interference
(French, 1991). Various algorithms have been proposed to
reduce internal representational overlap in order to decrease
catastrophic interference. These algorithms generally rely on
explicitly manipulating the hidden-layer representations
(e.g., French, 1991, 1994; Murre, 1992; Krushke, 1992) or
on orthogonalizing the input representations with the
expectation that this will decrease internal representational
overlap (e.g. Lewandowsky, 1991; Lewandowsky & Su-
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Chen, 1993). These techniques do, in fact, produce
significanuy reduced catastrophic interference.

The idea of reducing the overlap of internal
representations was carried to its logical conclusion in
McClelland, McNaughton, and O’Reilly (1995) and
McClelland & Goddard (1996). They suggested that the
reason humans show no signs of catastrophic interference
was because of our two complementary learning systems:
the hippocampus and the neocortex. Their idea was that new
information is initially learned in the hippocampus, where it
cannot not adversely affect information that has been
previously consolidated in the neocortex. Once the new
information was learned in the hippocampus, it was
transferred very gradually to neocortical long-term storage.
In this way, previously learned information could be kept
“out of the way” of newly arriving information. This, they
claimed, was how the brain overcame catastrophic
forgetting,

Since their theory is based on the key notion of a dual
hippocampal/neocortical mechanism of early-processing
and subsequent storage, we wondered whether there was
evidence of catastrophic forgetting in animals that, like
humans, had both a neocortex and a hippocampus. We
believe we have discovered a likely candidate for
catastrophic forgetting in animals having both hippocampus
and neocortex — namely, time-duration learning (and
forgetting) in the rat. Our results suggest that the
hippocampal/neocortical loop may not be involved in time
learning in the rat, or if it is, it may not function as it does
for types of learning that are not subject to catastrophic
interference. We show that a simple single-store
connectionist network can provide a relatively good model
this type of time-duration learning. We will conclude by
suggesting that the greater amount of overlap of the
network’s internal representations of time-durations
acquired during sequential learning compared to concurrent
learning may be why catastrophic forgetting occurs after
sequential learning and is absent in the case of concurrent
leaming. We suggest that there might be a counterpart to
these differences in the internal time-duration
representations in the rat.

Perception of time-duration in the rat

In their natural environment, animals are, of necessity, good
at predicting significant events such as periodical food
availability. This seems to be a clear indication of an ability
to represent time. Laboratory researchers studying time-
leaming in animals have developed a number of techniques
to study timing processes. One of these is the peak
procedure (Catania, 1970) in which rats learn to press a


mailto:rfrench@lg.ac.be
mailto:a.ferrara@ulg.ac.be

lever to receive food after a certain fixed duration. Each trial
in this procedure begins with the simultaneous onset of a
sound stimulus and the insertion of a lever into the Skinner
box. There are two different types randomly mixed of trials.
During reinforced (or “food”) trials, only the first lever
press after the critical duration is rewarded with a little food
pellet. Immediately following the reinforced lever-press, the
sound is switched off and the lever is withdrawn from the
box. Test trials begin exactly like reinforced trials, but the
animal receives no reward. Test trials are necessary because
in the reinforced trials, the animal’s lever-pressing stops as
soon as the food pellet drops into its box. These trials end
independently of the lever presses made by the animal and
typically last at least twice as long the duration reinforced in
the rewarded trials. The number of lever presses are
recorded for each one-second interval and averaged across
test trials. This produces the characteristic bell-shaped
response-rate function observed with this procedure (Fig. 2).
The moment of maximum lever-pressing is called the peak
time and reflects the moment of maximal food expectation
by the rat.

The observation of steady-state behavior following
training has long been used to understand the mechanisms
underlying timing abilities (Roberts,1981; Gibbon, Church,
& Meck, 1984). More recently, it has also been used to
study the acquisition of a new temporal representation
(Meck. Komeily-Zadeh, & Church, 1984; Ferrara, 1999).

Time perception experiment

Sequential time-duration learning

A group of 15 rats was used in a learning experiment that
studied behavioral adaptations to changes in rewarded time-
durations. How rats adapt their behavior when leaming
time-durations is assumed to reflect properties of its
temporal representation. The present experiment was
divided in several phases. In the first phase the animal was
trained on a 40-sec. duration (14 days, with 90 trials per day
of which 85% were reinforced trails and 15 % test trials). In
the next phase, the animal learned an 8-sec. duration (10
days, 90 trials per day with the same proportions of fixed
and test intervals).

The moment when the animals were switched from 40-
sec. learning to 8-sec. learning is referred to as Transition
40-8 (1) and can be seen in the upper left graph of Figure 2.
After the 8-sec. duration had been learned, the reward was
switched back to the original 40-sec. duration (Transition 8-
40 (2) in the lower left graph of Figure 2).

The rate of lever-pressing was recorded during three
different sessions: just before a transition, the two sessions
immediately following a transition. The final session of
Phases 1, 2, 5 and 6 (i.e., the last session before switching to
a new time-duration) is referred to as a reference session
(indicated by a (1) in Fig. 1). The peak time of the reference
session reflects the moment of maximum expectancy for
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receiving a food pellet. The transition session (indicated by
a (2) in Fig. 1) refers to the first session after switching the
animal to a new time-duration. It is interesting to notice how
the peak time shifts during this session compared to the
reference session, since, presumably, any changes in peak
time reflect modifications of the animal’s internal
representation of the reinforced duration. The transition+1
session (indicated by a (3) in Fig. 1) refers to the second
session after the transition. Learning a new time-duration
can be described in terms of a moving peak time. In other
words, during Transition 40-8 (1), the peak time shifts from
the previously learned 40-sec. duration and stabilizes around
the new 8-sec. duration which is being reinforced (Fig. 2)
Similarly, in Transition 8-40 (2), the peak time will
gradually move from 8 to 40 seconds. It has been shown
elsewhere (Lejeune, Ferrara, Simons & Wearden, 1997)
that, even if the reinforcement is repeatedly switched back
and forth from one time-duration to the other, there is no
real improvement in the speed of the peak time adaptation,
In fact, re-learning a previously learned time-duration
requires as much time as learning an entirely new one. This
suggests that at each transition, the previous representation
of the reinforced time is “overwritten” as the new one is
built. In other words, there is no evidence of any memory
savings from the previously learned time-durations. One
reasonable interpretation of this result is that new time-
duration learning completely (catastrophically) wiped out
the originally learned time-duration.

Concurrent learning

In the next phase (Phase 4), the rats were concurrently
trained for 25 consecutive sessions on both 8- and 40-sec.
durations. This was done by means of a random mixture of
42.5% 8-sec. trials, 42.5% 40-sec. trials and 15% test trials
(each session still contains 90 trials). At the end of this
learning period, the response curves (not shown here)
became clearly bimodal, with a first peak located around 8
seconds and a second peak located around 40 seconds. This
means that during concurrent learning of the two time-
durations, the animal had developed a representation for
both durations.

Phases 5, 6 and 7 were identical to phases 1-3 (except
for the number of sessions). Transition 40-8 (3) and
transition 8-40 (4) show the curves for lever-pressing rates
for the reference, transition and transistion+1 sessions after
the animals have learned 40- and 8-sec. durations
concurrently as above.

Unlike the previous case of sequential learning in which
there was no savings of prior learning, the animal, having
now learned the two durations concurrently, can rapidly
shift from the 40-sec. duration back to the 8-sec. duration. In
this case, while there is still a small amount of forgetting,
there is no catastrophic forgetting of the originally learned
8-sec. duration. This seems to imply that time-
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Figure 1. Lever-pressing rates were recorded during the reference session (1) at the end of one learning period and
during the transition (2) and transition+1(3) sessions, i.e., the first and second sessions after switching to a new learning

period.
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e an responses number by second

One second bins

Figure 2. Average rates of lever-presses/second for the
reference (white), transition (black) and transition+1
(gray) sessions.

duration representations developed during concurrent
learning are significantly different than those developed
during sequential learning.

Simulation

To simulate these results, we used an 11-18-2
backpropagation network with binary input coding. The
learning rate was set at 0.1, momentum 0.9, The learning
criterion was set at 0.001 for all output nodes. An 11-unit
input layer was used because this corresponds to the
oscillation periods used in the Church and Broadbent (1990)
model. Eleven oscillation periods were chosen by these
authors because this is enough to represent the full range of
relevant short-term time-durations experienced by the
animal. The oscillation periods used in the following
simulation were as follows: 0.2, 0.4, 0.8, 1.6, 3.2, 6.4, 12.8,
25.6, 51.2, 102.4, 204.8 seconds.

Each time duration was translated into a binary pattern
of these 11 oscillators, with each oscillator either being
activated (= 1) or not (= 0). On each training session the
input patterns were modified by the addition of gaussian
noise. The noise added to each oscillator signal was
proportional to its mean oscillation period (i.e., the larger
the oscillator period, the larger the normal curve around its
mean). Target outputs of 00 indicated no reinforcement;
whereas 11 indicated a positive reinforcement.
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Each “session” consisted of a grouped presentation of
20 patterns, P;, learned for 16 epochs (or until the error for
all patterns was below 0.001). Each pattern consisted of an
input, which was an encoding for a particular time-duration
and a desired output, corresponding to whether or not that
particular time-duration was reinforced. For example, an “8-
sec. only” session is:

P,: Input: 2-sec. Output: 00
P,: Input: 4-sec. Output: 00
P;: Input: 6-sec. Output: 00
P,. Input: 8-sec. Output: 11 (“reinforced”)

Pm Input: 40-sec. Output: 00

There were six distinct phases for sequential-learning, five
for concurrent-learning simulations (Figs. 3, 4).

Phase 1 and 2 were identical for both simulations. The
first consisted of 20 “8-sec. only” sessions (i.e., only the 8-
sec. duration was reinforced); the second by 20 “40-sec.
only” sessions (i.e., only the 40-sec. duration was
reinforced).

The next phases were critically different for the two
simulations. For sequential learning, Phases 3 consisted
forty “8-sec. only” sessions followed by Phase 4 which had
forty “40-sec. only” sessions. For the concurrent learning
simulation, however, these two phases were combined into a
single 80-session phase during which both 8-sec. and 40-
sec. durations were reinforced.

The test phases (i.e., Phases 5 and 6 for sequential
learning and Phases 4 and 5 for concurrent-learning) in
both simulations were identical and consisted of 40
sessions. The first of the two test phases consisted of eight
“8-sec. only” sessions. This was long enough for the
previously learned 40-sec. duration to be “forgotten” by the
network, after having learned it in Phase 4 in the sequential
simulation and, along with the 8-sec. duration, in Phase 3 of
the concurrent simulation. In other words, “unlearning” the
40-sec. duration, whether in the sequential simulation or the
concurrent simulation, meant that when 40 seconds was
input to the network, it correctly responded with 00. This
took eight sessions. The final 32 sessions of this phase were
“40-sec. only” sessions. The critical observation was how
quickly the network recovered its knowledge of the 40-sec.
time duration.

All results reported in this paper were averaged over 60
independent runs of the network..
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Figure 3. Phases of 8-sec. and 40-sec. learning when these durations are learned sequentially.

Results

Sequential learning

We began by running the network in “sequential mode”
(Fig. 3). At the beginning of Phase 3, when the network
returns to learning the 8-sec. duration, its error curve is
virtually identical to the first time it ever encountered the 8-
sec. duration in Phase 1. In other words, learning the 40-sec.
duration in Phase 2 seems to have completely erased any
memory trace of the initial 8-sec. leaming. There is no
evidence of any “savings” of the initial 8-sec. learning.
(Ebbinghaus, 1887; see Hetherington & Seidenberg, 1989,
for a discussion of this as a measure of catastrophic
forgetting)..

In short, the network is responding to learning new time
durations in much the same way as the rat: learning a new
duration seems to completely erase (or overwrite) the
memory trace of the prior time-duration learning.

Concurrent learning

In the second simulation we explore concurrent time-
duration learning and find that it produces considerably
different results compared to learning time-durations
sequentially (Fig. 4). Phases 1 and 2 in the concurrent-
learning simulation are identical to Phases 1 and 2 in the
sequential-learning simulation. However, now in Phase 3
the network leammed both 8-sec. and 40-sec. durations

followed by 40 40-sec. sessions as in the previous
simulation). After this concurrent learning phase, the
network is tested as in the previous simulation. In other
words, in Phase 4, the network is trained for eight sessions
on &-sec. durations only. As before, this was long enough
for its performance on 40-sec. durations to return to a zero-
error baseline. Reinforcement was then switched back to a
40 seconds (Phase 5, Fig. 4)

Now let us compare the test phases in the two
simulations. In both simulations, the eight sessions of 8-sec.
learning only, allowed the network to retum to the
unreinforced baseline for 40-sec. learning (see the 40-sec.
error rate in Phase 5 in the sequential-learning simulation,
and in Phase 4 in the concurrent-learning simulation in
Figures 3 and 4, respectively).

The critical difference can be seen in the error-rate just
after this eight-session phase of 8-sec. learning. In the
sequential learning simulation (Fig. 3), when the network is
switched back to training on the 40-sec. duration, the error
rate shoots up to 0.7 and remains above 0.4 for a number of
sessions. On the other hand, when the 8- and 40-sec.
durations were learned concurrently (Fig. 4), there is no
such jump in error-rate. The error-rate for 40-sec. learning
after the eight-session 8-sec. training is essentially what it
was at the end of the concurrent learning phase. In short, the
network now has no trouble reviving its prior memory of the
40-sec. duration.

This is very similar to what was observed in the peak-

concurrently for 80 sessions (instead of 40 8-sec. sessions time experiments with the rat. Concurrent learning
error —ee=—-B8 seconds
1 1 40 seconds
0.8 +\-
0.6 -
0.4
0.2
0 A~
= v v ————
8-sec 40-sec. Concurrent 8440 sec. Phase 3 8-sec 40%sec
Phase 1 Phase 2 Phase 4 Phase 5

Figure 4. Concurrent learning of 8- and 40-sec. durations in Phase 3.
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allows the rat to rapidly “revive” its memory trace of the 40-
sec. duration; sequential learning does not. In the latter case,
both in the case of the simulation and the rat, the memory
trace seems to have been catastrophically erased by new
learning.

Internal representations developed by
sequential versus concurrent learning

Given the results of these simulations, we wondered
whether the differences in forgetting observed in sequential
and concurrent learning were related to the network’s
internal representations of the time information it had
learned. This suggests the corresponding question for the rat
— namely, are the differences observed for the rat’s
sequential and concurrent time-duration learning based on
its development of different internal representations of these
durations depending on how it learned them?

To study the internal representations of 8- and 40-sec.
durations in our network, we presented “pure” (i.e., without
noise) 8-sec. and 40-sec. time patterns to the network just
before the eight-session 8-sec. only test phase began. This
allowed us to record the hidden-unit activation patterns
corresponding to 8-sec. and the 40-sec. inputs for the
sequential-learning simulation and for the concurrent-
learning simulation. We then calculated the hidden-unit
representation overlap of these two patterns for both
simulations. We then compared the differences in overlap of
the hidden-unit encodings of 8-sec. and 40-sec. durations for
the two different learning scenarios.

Our prediction was that, since there was considerably
less forgetting of the 40-sec. time-duration in the
concurrent-learning  simulation, that the representations
developed during Phase 3 of the concurrent-learning
simulation would overlap less and be more sparse than the
corresponding representations developed during sequential
learning. This prediction was confirmed by the data (Fig. 5).

Hidden-layer representational
overlap and sparseness

We calculated representational overlap by means of an
inner-product measure of the hidden-unit vectors
corresponding to 8-sec. and 40-sec. input. These values
were averaged over 60 runs of the program. As predicted, in
the case of case of concurrent learning, this value (0.61) was
considerably lower than when the representations had
developed during sequential learning (1.49). In other words,
the internal representational overlap of the two time-
duration patterns was 2.4 times higher for sequential
learning, accounting, at least in part, for the greater
interference observed in sequential learning.
Representational sparseness can be measured by
considering the total amount of activation used by a
representation and by its dispersion. In general, the more
sparse the representation, the less activation it will use and
the lower its dispersion. For sequential learning, the average
8-sec. hidden-unit representation used 5.5 units of activation
and the 40-sec. representation, 2.4 units of activation. For
concurrent learning, these figures dropped to 2.2 and 2.0
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units of activation, respectively. A simple measure of
dispersion (standard deviation, SD) indicated how dispersed
the representations were over the 18 hidden-units. The
spread of the 8- and 40-sec. representations in the case of
sequential learning (0.41 and 0.12 SD) is considerably
greater than the spread of the same representations in the
case of concurrent learning (0.27 and 0.10 SD). Figure 5
shows graphically the degree to which the sparseness of
these representations differs (the activation levels of the
representations have been ordered in order to facilitate
comparisons between them).

8-second representation,
sequential learning

activation
110

B

0.8 {1}

0.6

04

0.2

8-second representation,
concurrent learning

nodes

activation 40-second representation,

sequential learning

40-second representation,

activation :
concurrent learning

1
08
0.6
04
02

nodes

Figure 5. Differences in the sparseness of coding at the
hidden layer of the representations for 8-sec. and 40-sec.
durations in the case of sequential learning and concurrent
learning.

In other words, the network’s internal representations of
8- and 40-sec. durations when learned concurrently, were
significantly sparser and less overlapping than when they
were learned sequentially. It is well established that the
amount of internal representational overlap is contributes
significantly to the amount of catastrophic interference
produced. It is therefore reasonable to conclude that
forgetting is far less catastrophic for concurrent learning
than for sequential learning because of, at least in part, the



smaller amount of interference of (the internal
representations of the two time-durations in concurrent
learning compared to sequential learning.

Conclusion

Two suggestions emerge from this research. The first is that
the rat may not store time-duration information in the same
way it stores other types of information that are less
susceptible to catastrophic interference. In other words, the
complementary hippocampal-neocortical system proposed
by McClelland, McNaughton, and O’Reilly (1995) to avoid
catastrophic interference may not be used by the rat for
long-term storage of time information. The fact that a single
connectionist network seems to produce effects quite similar
to those actually observed in rats for both sequential and
concurrent time-learning would argue for the possibility of a
unitary time storage area in the rat, rather than a dual
hippocampal-neocortical mechanism.

Secondly, we believe these results support for the claim
that in the rat there may be a distinctly different internal
coding of time durations when they are learned
concurrently, as opposed to when they are learned
sequentially. In our connectionist simulation, we obtain
forgetting results similar to those observed in the rat. These
differences in the network correspond to significant
differences in the internal coding of the two time-durations
depending on how the network leamed them. The internal
representations in the case of concurrent learning are more
sparse and overlap less than in the case of sequential
learning. We suggest that this might imply a similar type of
coding in the rat.
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