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Abstract of the Dissertation

Memory System Optimizations for Customized

Computing – From Single-Chip to Datacenter

by

Yu-Ting Chen

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2016

Professor Jingsheng Jason Cong, Chair

This dissertation investigates memory system optimizations for customized computing

from the single-chip level to the datacenter level. The efficiency of a memory sys-

tem determines the chip performance and energy efficiency. Our goal is to design a

high-performance and energy-efficient memory system that supports customized com-

puting in both general-purpose processors and accelerator-rich architectures (ARAs).

Furthermore, we would like to explore the optimizations and customized support at

the datacenter level since some of the application domains require computing power

beyond a single chip.

This dissertation is composed of the following three topics. The first two topics

investigate the memory system design and optimizations of the single-chip level. The

third topic discusses the optimization and customization support in a datacenter.

First, we focus on performance modeling and energy reduction for on-chip mul-

tilevel caches, which are widely used in general-purpose systems. We propose a fast

co-simulation framework to simulate a memory system with both cache and scratch-
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pad memories for efficient design space exploration in customized computing. We

further propose a hybrid cache architecture which is composed of both SRAM and

non-volatile memories (NVM) to reduce leakage. Our proposed optimization tech-

niques can hide the drawbacks of NVM and significantly reduce power.

Moreover, we believe that an ARA is an attractive alternative to general-purpose

processors due to its high performance and energy efficiency. Therefore, we need a

methodology to fast evaluate the performance of an ARA. Furthermore, accelera-

tors usually demand higher on-chip and off-chip memory bandwidth. We provide an

optimized two-level on-chip interconnect synthesis algorithm for designing the ARA

memory system.

Third, we propose customized optimizations at the datacenter level to improve

the efficiency of using in-memory computation infrastructure. The current single-chip

and single-server solutions cannot meet performance target of the DNA sequencing

pipelines, which is an important domain we are looking into. In addition to using only

general-purpose processors for computation, we further provide customized support

of using FPGA accelerators in the datacenter.

At the single-chip level, we cover the following two topics.

Simulation and Optimizations for Multilevel Caches: Performing simu-

lations on the application(s) is the most popular way to find the optimal memory

configuration. However, the simulation-based approach suffers from long simulation

time due to the need to exhaustively simulate all configurations. In this dissertation

we propose a novel simulator, HC-Sim, which adopts elaborate data structures, a

centralized hash table, and a novel miss counter structure to effectively reduce the

simulation time. Furthermore, HC-Sim can simulate L1 caches and a scratchpad
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memory (SPM) simultaneously. SPMs are usually used for customized accelerators.

HC-Sim helps designers to explore the design space considering both L1 cache con-

figurations and the SPM sizes.

Energy-efficiency is an important goal for on-chip multilevel caches, especially

for L2 caches or last-level caches (LLCs). We first propose a novel reconfigurable

hybrid cache architecture (RHC), in which NVM is incorporated in the last-level

cache together with traditional SRAM cells. RHC can be reconfigured by powering

on/off SRAM/NVM arrays in a way-based manner. In addition, we provide hardware-

based mechanisms to dynamically reconfigure RHC on-the-fly based on the cache

demand. Second, a combined static and dynamic scheme is proposed to optimize the

block placement for energy-efficiency and endurance in a hybrid cache. We use the

compiler to provide static hints to guide initial data placement, and use the hardware

to correct the hints based on the run-time cache behavior. With the proposed scheme,

the write energy on NVM is significantly reduced while performance is maintained.

Moreover, NVM endurance is maximized.

Memory System Optimization for Accelerator-Rich Architectures: An

accelerator-rich architecture (ARA) is an attractive solution to provide high per-

formance and energy efficiency for replacing current state-of-the-art general-purpose

processors in the age of dark silicon. It is important to evaluate the performance and

energy of an ARA design. Instead of running extremely time-consuming full-system

simulation, we develop the ARAPrototyper, a highly automated and highly param-

eterized prototyping flow with runtime system and user APIs for fast prototyping

and evaluation. Furthermore, we observe that the memory system efficiency is key to

enabling a high-performance ARA. We provided an optimized two-level interconnect

synthesized algorithm for synthesizing the memory system for ARAs. Our prototype
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achieves 7.44X energy-efficiency gain over state-of-the-art processors.

Datacenter-Level Optimizations in an In-Memory Cluster Computing

Framework: At the datacenter level, many big data applications need computation

power that is beyond a single server. In order to provide acceleration on such appli-

cations, we adopt the in-memory cluster computing infrastructure, Spark, to provide

a scalable speedup. We are interested in accelerating the DNA sequencing pipeline,

which inherits both big data and compute-intensive characteristics.

In this dissertation we accelerate the first and one of the most time-consuming

steps, read alignment, in the DNA sequencing pipeline by using in-memory cluster

computing together with FPGA acceleration. We first design cloud-scale BWAMEM

(CS-BWAMEM), a cloud-scale read aligner built on top of Spark. We provide cus-

tomized optimization strategies in the in-memory cluster, such as broadcast avoidance

of the shared large human reference genome, data caching, and pipelining I/O with

computation, to improve system performance. CS-BWAMEM can outperform the

state-of-the-art aligners by more than 18x and can finish the whole-genome align-

ment in 32 minutes. The proposed optimizations are not only limited to the DNA

sequencing application but can be applied to the other large-scale data processing

applications.

Furthermore, we provide customized support to deploy the customized FPGA ac-

celerators in Spark to further accelerate the compute-intensive kernel, such as Smith-

Waterman algorithm. We provide runtime system support and algorithm-level op-

timization to reduce the data transfer overhead between Spark workers and FPGA

accelerators. Our proposed batch processing mechanism can groups small tasks in a

batch and thus accelerators can process data in a batched way to reduce communi-

cation overhead.
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CHAPTER 1

Introduction

1.1 Motivation

Energy efficiency is one of the key considerations for various systems, from hand-

held devices to servers in a data center. Designing an energy-efficient processor that

matches the target performance is currently one of our most important goals. Prior to

the early 2000s, the performance of computers doubled every 18 months or 24 months

while keeping the power constant through Dennard scaling [63]. However, after the

early 2000s, frequency scaling could not sustain this momentium. The computing

industry then entered into the multicore era, and performance improved through ex-

ploiting the parallelization. Such highly parallel, general-purpose computing systems

still face serious challenges in terms of performance, power, heat dissipation, space,

and cost. Recently, researchers have pointed out that general-purpose multicore scal-

ing cannot be sustained due to the power budget limit [67, 160]. Domain-specific

customization is a disruptive technology to attack that power wall [59].

Users or enterprises usually focus on a group of selected applications in one do-

main. For example, the media content provider has a high computing demand to

provide audio and video streams. With application-specific accelerators customized

for a specific domain, computation can be handled with better performance and en-
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ergy efficiency. Normally, application-specific accelerators can provide 10 to 1000X

energy-efficiency improvement over general-purpose processors through custimization

and by exploiting the application parallelism [79, 31, 30]. In this dissertation we focus

on (1) the medical imaging domain [25], and (2) the genomics and DNA sequencing

domain [129]; both are discussed in Section 1.5.

In a customized computing system, the accelerators and general-purpose proces-

sors cooperate together to meet the demand of both high performance and low power.

The design of the memory system is the key to providing sufficient data for accelera-

tors and processors. The goal of the memory system design should be to provide short

latency of memory accesses and high data bandwidth with low energy consumption.

This dissertations covers the memory system optimizations at two levels — the

single-chip level and the datacenter level. In the single-chip level, we discuss two

topics: (1) simulation and optimizations for energy-efficient multilevel caches, and

(2) memory system optimization for accelerator-rich architectures. In the datacenter

level, we provide customized optimizations for in-memory cluster computing frame-

works, especially for the DNA sequencing domain.

The first focus of this dissertation is simulation and optimization for a high-

performance and energy-efficient cache system. An on-chip multilevel CPU cache

is widely used in modern processors. In order to model the CPU caches with multiple

configurations efficiently, we provide an accurate and fast co-simulation framework,

HC-Sim [40], for L1 caches and scratchpad memory, which is discussed in Chapter

2. Next, we try to provide an efficient and low-power cache architecture, which is

important for general-purpose processors but can possibly be used for a customized-

computing system in the future. We utilize disparate memory technologies to compose

L2 caches or last-level caches (LLC) to reduce leakage power. This kind of cache design
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is called “hybrid cache.” We propose a reference architecture to implement a hybrid

cache. To further improve energy efficiency, we design a dynamic reconfiguration

scheme for so that a hybrid cache can adapt to the program behavior and reduce

energy consumption while maintaining performance during runtime [37]; this will be

discussed in Chapter 3. Moreover, we use the compiler hints and runtime hardware

assist together to save the energy and enhance the lifetime of the proposed hybrid

cache [38], as discussed in Chapter 4.

The second focus of this dissertation is the performance evaluation and memory

system design for an accelerator-rich architecture (ARA). ARAs can provide energy-

efficient solutions for domain-specific computing in the age of dark silicon [67] with

the use of accelerators to replace energy-hungry general-purpose processors. Instead

of running extremely time-consuming full-system simulations, we design a highly-

automated and highly-parameterized prototyping flow together with runtime system

and user APIs for fast performance and accurate energy evaluation. We called this

plaform “ARAPrototyper” [34, 41, 36], which will be discussed in Chapter 5. A

real ARA prototype can be deployed on the Xilinx Zynq platform [89], which is a

system-on-a-chip (SoC) with processors and accelerators synthesized using FPGA.

We further provide a solid theoretical basis for synthesizing the on-chip interconnects

of the ARA memory system in Chapter 6. Our proposed algorithm for synthesizing

partial crossbar is scalable enough for hundreds of accelerators with minimum switches

[33].

The third focus of this dissertation is to optimization and customize support in the

datacenter level. We especially customize our system for the domain of genomics and

DNA sequencing. In general, the scale of computation and the data storage can be

way beyond a single node in the big data era. For the genomics and DNA sequencing
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domain, the amount of data can achieve the scale of hundreds of TBs to hundreds

of PBs. Therefore, the single-node performance may not meet the requirement. We

believe the scale-out solution that uses a cluster computing system is the way to bridge

the performance gap in the genomics domain. To accelerate genomics applications,

we use the in-memory cluster computing system, Spark [171], which distributes the

computations across the nodes in a cluster. We design a cloud-scale aligner, called

CS-BWAMEM [39], to accelerate the time-consuming alignment process. We further

introduce multiple customized techniques to improve the performance in the DNA

sequencing domain in Chapter 7. In addition to the scale-out solution, the scale-

up strategy is also important for improving the system-wide performance. By using

FPGA accelerators, we can further improve the performance by leveraging compute-

intensive kernels into customized accelerators. The details of the runtime system and

optimization strategies are discussed in Chapter 8.

Figure 1.1 demonstrates the overall scope of this dissertation. Chapter 2 discusses

HC-Sim, a fast and exact simulator across both the processor plane and the acceler-

ator plane. HC-Sim can efficiently determine the optimized L1 cache size for a pro-

cessor when the buffers required by accelerators are provided. Chapter 3 introduces

the hybrid cache architectures for LLCs and dynamic reconfiguration mechanism for

reducing leakage. Chapter 4 discusses the software/hardware co-optimization scheme

to enhance the endurance and reduce the high write power of hybrid caches. Hy-

brid caches can significantly reduce the energy and provide large density for on-chip

memory in the processor plane in an ARA. Chapter 5 discusses the ARAPrototyper,

an efficient prototyping and evaluation platform for ARAs. Chapter 6 provides the

interconnect optimization for ARA memory system. In Chapter 7, we provide opti-

mizations in the datacenter level. We use cloud-scale BWAMEM (CS-BWAMEM), an
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aligner that uses the computing power of an in-memory cluster for accelerating DNA

sequencing processes, to demonstrate our proposed optimizations in an in-memory

cluster. In Chapter 8 we investigate how to use FPGA hardware accelerators in an

in-memory cluster to further provide system-wide and cluster-wide speedup.

Figure 1.1: Dissertation overview

The remainder of this chapter gives an introduction to the topics covered in this

dissertation. Section 1.2 describes simulation and optimizations in multilevel caches.

We introduce the HC-Sim and the proposed hybrid cache architectures. Section

1.3 describes ARA memory system optimizations. We introduce a fast prototyping

and evaluation flow, ARAPrototyper. We also discuss the interconnect synthesis
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algorithm of the ARA memory system. Section 1.4 describes the datacenter-level

optimizations and how we enable the FPGA acceleration in an in-memory cluster

computing system for accelerating the applications in the genomics domain. Section

1.5 discusses the two domains of interest in this dissertation, including (1) the medical

imaging pipeline, and (2) the DNA sequencing pipeline.

1.2 Simulation and Optimizations for Multilevel Caches

An on-chip multilevel CPU cache is widely used in modern processors. It usually

occupies more than 50% of die area in modern processors [10]. In order to support

efficient computation in modern processors and ARAs, the memory system needs to

be designed efficiently considering both performance and energy. Therefore, accurate

and fast performance modeling is important. We first investigate the modeling of

the L1 caches together with scratchpad memories (SPMs). We build HC-Sim for

fast evaluation and perform efficient design space exploration for multiple caches and

SPM configurations.

In addition to system performance, power and energy consumption is another key

concern in modern processors or ARAs. Most importantly, the energy consumption

of memory systems is one of the major sources of consumption. Compared to the

arithmatic logic units (ALUs) in CPU and accelerators, a memory system can con-

sume more energy, especially the leakage power, when the system is idle. Therefore,

the optimization considering energy efficiency is important. In this dissertation we

provide a hybrid cache architecture from both architecture design and circuit-level

implementation. Hybrid caches use both non-volatile memory technology and tra-

ditional SRAM cells to build L2 and LLC, which account for the largest portion of
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an ARA, to reduce leakage. We further provide multiple optimization schemes to

improve the energy efficiency and endurance of the hybrid caches while maintaining

system performance.

1.2.1 HC-Sim

In order to build an efficient memory system for customizable domain-specific com-

puting, the first step is to have an accurate performance model to guide the memory

system design. However, it is very difficult to develop an accurate analytical model

due to the complicated memory access patterns. This dissertation takes the simula-

tion approach to obtain accurate cache miss rates as measurement to estimate the

performance of a targeted application.

In domain-specific computing, the computation-intensive portions of an applica-

tion are usually processed by customized accelerators. The memory access patterns of

the accelerators can be known in advance during design time through compiler anal-

ysis. SPMs can be used as the on-chip memories for the accelerators to replace tra-

ditional CPU caches for better performance and energy consumption [43, 19, 97, 49].

The CPU caches are used to handle on-chip memory accesses from CPUs. Both SPMs

and caches can have a significant impact on system performance.

The main contributions of HC-Sim can be summarized as follows.

(1) HC-Sim can simulate multiple L1 cache configurations with one SPM config-

uration simultaneously, and thus significantly improve the simulation speed.

In HC-Sim we propose novel data structures and algorithms which incorpo-

rate a centralized hash table and a novel miss counter structure to avoid time-

consuming tag searches on the stacks. Compared to the state-of-the-art algo-
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rithms, SuSeSim [80] and CRCB [156], HC-Sim is 2.56X and 5.44X faster than

those algorithms, respectively. Furthermore, we show that the efficiency of HC-

Sim can be improved by using a miss-counter-based structure for a group of

applications.

(2) To enhance scalability of HC-Sim, we build our simulation framework on the

dynamic binary instrumentation tool, Pin [121]. The trace generation is embed-

ded into HC-Sim and is performed on-the-fly to avoid the overhead of a huge

trace file.

(3) We provide an interface for designers to specify the address range of SPM so

that the SPM accesses can be bypassed, and the correct miss rates of L1 caches

can be simulated. We also provide a mechanism to filter out prefetching loads,

which arise from SPM prefetching, to maintain the correctness of L1 cache

simulation.

1.2.2 Hybrid Caches—Design and Optimizations

The traditional SRAM-based on-chip cache has become a bottleneck for energy-

efficient design due to its high leakage power. Designers have turned their attention

towards emerging non-volatile memories (NVMs), such as the spin-torque transfer

magnetoresistive RAM (STT-RAM) and phase change RAM (PRAM), to build fu-

ture memory systems. Power, performance, and density characteristics of the new

memory technologies differ dramatically compared to SRAM, and thus they enlarge

the landscape of memory design.

Table 1.1 shows a brief comparison of SRAM, STT-RAM, and PRAM technologies.

The exact access time and dynamic power depend on the cache size and the peripheral
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circuit implementation. In sum, SRAM suffers from high leakage and low density

while providing great endurance; STT-RAM and PRAM provide high density and

low leakage at the cost of weak endurance. Moreover, STT-RAM outperforms PRAM

in terms of the endurance, access time, and dynamic power, while PRAM has higher

density. Based on the endurance, STT-RAM is more suitable for on-chip last-level

cache [165, 154, 65, 143] design due to its higher endurance, while PRAM is promising

as an alternative for DRAM in the main memory design due to its higher density [107,

140]. Therefore, in this dissertation we will focus on a hybrid cache architecture with

STT-RAM.

Table 1.1: Comparison among SRAM, STT-RAM, and PRAM.

SRAM STT-RAM PRAM

Density 1X 4X 16X

Read time Very fast Fast Slow

Write time Very fast Slow Very slow

Read power Low Low Medium

Write power Low High High

Leak. power High Low Low

Endurance 1016 4× 1012[32] 109

Hybrid caches can provide larger cache sizes than those of traditional SRAM

caches under the same area [165, 154]. In the LLC design, a hybrid cache can have

less cache misses with a larger cache size, and thus has better performance than a

traditional SRAM cache. However, the previous work [165, 154] does not consider

the opportunities to further reduce the energy by dynamically reconfiguring the hy-

brid cache In this dissertation we propose a novel reconfigurable hybrid cache design

(RHC ). Our design explores the use of NVM cache to replace the conventional all-
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SRAM design in the last-level cache to efficiently reduce leakage energy. The proposed

RHC design supports reconfigurable SRAM/NVM size, with the capability of power-

ing on/off SRAM and NVM arrays in a way-based manner for better accommodation

of memory requirements from different workloads. Hardware-based mechanisms are

proposed to detect the cache demand for dynamic reconfiguration. On average, RHC

significantly saves 64%, 46% and 28% energy over a non-reconfigurable SRAM cache,

a non-reconfigurable hybrid cache and a reconfigurable SRAM cache, respectively,

while maintaining the system performance (at most, only a 4% performance over-

head).

As shown in Table 1.1, the endurance and the high dynamic write power of STT-

RAM are the two disadvantages compared to SRAM. Although ITRS predicts that

the write cycles of STT-RAM will be 1015 at 2024 [87], the best available write cycles

of STT-RAM are 4 x 1012 at present [32]. Suppose we execute segmentation [25],

a medical imaging application, on a 4GHz CPU with 32 KB L1 cache, 2MB STT-

RAM L2 cache continuously, the lifetime of a STT-RAM cache can last only 2.17 years

without any optimizations applied. Therefore, the hybrid cache architecture is a good

alternative compared to the pure STT-RAM cache since the write-intensive blocks

can be placed in SRAM instead of STT-RAM. This can be achieved through either

static or dynamic schemes to optimize the block placement to reduce the average

write frequency to STT-RAM cells.

In this dissertation we propose a combined approach to take the advantages from

both static and dynamic schemes. For the initial cache block placement, the com-

piler provides hints of data placement to hardware to reduce the STT-RAM write

frequency, while the hardware is designed to be able to correct compiler hints based

on runtime cache capacity pressure. When initial placement does not work effec-
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tively, some write-intensive cache blocks are still placed in STT-RAM. Once these

write-intensive blocks are detected, dynamic migration starts to migrate these blocks

from the STT-RAM array to the SRAM array. Experimental results show that the

combined scheme improves endurance by 23.9x and 5.9x compared to pure static

and pure dynamic optimizations, respectively, while maintaining similar performance.

Furthermore, the system energy can be reduced by 17% compared to pure dynamic

optimization since STT-RAM writes are reduced through initial placement from the

proposed compiler flow.

1.3 Memory System Optimization for Accelerator-Rich Ar-

chitectures

1.3.1 ARAPrototyper

Compared to conventional general-purpose processors, ARAs can provide orders-of-

magnitude performance and energy gains [79, 31, 30] and are emerging as one of the

most promising solutions in the age of dark silicon [67, 160]. However, many design

issues related to the complex interaction between general-purpose cores, accelerators,

customized on-chip interconnects, and memory systems remain unclear and difficult

to evaluate. Therefore, a research platform that can enable rapid evaluation of such

design spaces will be extremely useful.

In this dissertation we design and implement the ARAPrototyper to enable rapid

design space explorations for ARAs in real silicons and reduce the tedious prototyp-

ing efforts far down to manageable efforts. First, ARAPrototyper provides a reusable

baseline prototype with a highly customizable memory system, including intercon-
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nect between accelerators and buffers, interconnect between buffers and last-level

cache (LLC) or DRAM, coherency choice at LLC or DRAM, and address translation

support. To provide more insights into performance analysis, ARAPrototyper adds

several performance counters on the accelerator side and leverages existing perfor-

mance counters on the CPU side. Second, ARAPrototyper provides a clean interface

to quickly integrate a user’s own accelerators written in high-level synthesis (HLS)

code. The whole design flow is highly automated to generate a prototype of ARA

on an FPGA system-on-chip (SoC) on Xilinx Zynq platform [89]. To quickly develop

applications that run seamlessly on the ARA prototype, ARAPrototyper provides a

system software stack, abstracts the accelerators as software libraries, and provides

APIs for software developers. Our experimental results demonstrate that ARAPro-

totyper enables a wide range of design space explorations for ARAs at manageable

prototyping efforts and 4,000 to 10,000X faster evaluation time than full-system sim-

ulations [52]. We believe that ARAPrototyper can be an attractive alternative for

ARA design and evaluation.

1.3.2 Interconnect Synthesis for ARA Memory System

An ARA is composed of heterogeneous accelerators with an on-chip memory system

[54, 41]. Compared to the general-purpose processors, an accelerator demands short

and predictable latency to its local on-chip memory to satisfy its performance target.

Moreover, an accelerator requires a much higher off-chip memory bandwidth than

a CPU since it consumes much more data in a given time period. Therefore, a

customized on-chip memory system design is one of the keys to an efficient ARA.

In this dissertation we provide a two-layer interconnect synthesis method [33]. We

first provide an optimal layer of partial crossbar that connects the heterogeneous
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accelerators and shared memory banks with a minimum number of switches. The

second layer of interconnect tries to interleave possible conflicting long-burst memory

requests for prefetching data from off-chip memory. The experimental results show

that we can reduce more than 45% of the switches of the partial crossbar compared to

the best known method [60]. This further leads to a 53% reduction of LUTs and 34%

reduction of slice utilization on a 30-accelerator FPGA prototype. The reduction of

switches leads to a 16% - 53% reduction on LUTs and a 24% - 38% reduction in slices

on FPGA prototypes. Furthermore, the performance of an ARA can be improved

by 36% - 52% with a well-designed interleaved network in a real ARA prototype for

medical imaging applications. This prototype also shows a 7.44x energy efficiency

gain over the state-of-the-art Xeon processor [104].

1.4 Datacenter-Level Optimizations in an In-Memory Clus-

ter Computing Framework

In the era of “Big Data,” the amount of data grows exponentially and requires scalable

technologies to process and store the data in a reliable way. The domain of genomics

applications that we focus on is inherently a big data domain. For example, in the

DNA sequencing pipeline, the raw data of an individual obtained from a sequencer

can be around 300GB to 500GB before processing. We need the capability to provide

scalable performance according to the performance target based on the demand of

target biological genomics pipelines, such as variant calling [129] or differential gene

expression [157]. Many research and clinical applications, such as precision medicines

for cancers, are developed on top of these pipelines. The problem becomes more

difficult when we have many cases to be analyzed. The number of individuals can be
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from 100 to above one millon. At this problem scale, the data cannot even be stored

in a single node.

In recent years, big data analysis and storage systems are burgeoning in the dat-

acenters to handle large-scale problems. Google’s MapReduce [62] and Google File

System (GFS) [73] provide a simple programming model and a storage layer for de-

velopers to store data and distribute computations over a cluster with more than

thousands of nodes. These infrastructures provide a scalable and efficient solution

for applications with a huge amount data. However, Google’s MapReduce and GFS

are not open-source software and are used only internally in Google. Hadoop [163],

with both the MapReduce framework and Hadoop Distributed File System (HDFS)

[151] implemented in Java, is the most widely used open-source solution for big data

analysis.

However, Google’s MapReduce and Hadoop have a limitation on iterative algo-

rithms which reuse a working set of data across multiple iterations. Machine learning

algorithms such as K-means and logistic regression are the key examples in the cate-

gory. In MapReduce and Hadoop, the reused data set and the output after a single

iteration need to be written back to a distributed file system, which incurs substantial

overheads on network bandwidth, disk I/O, and data serialization. Because of the

reliability concern, the distributed file system maintains several copies of data, which

makes the problem even worse. In order to solve the problem, Spark [172, 171], an

in-memory cluster computing framework, is proposed to target the applications with

reused data. The key idea is try to keep the input data and intermediate output

results across iterations in memory instead of writing them back to the distributed

file system.

The domain of DNA sequencing applications is one of the domains we are in-
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terested in. With a significant amount of data-level parallelism, applications in the

DNA sequencing pipeline can utilize in-memory cluster computing infrastructures

such as Spark to fully exploit data-level parallelism. Table 1.3 shows motivational

results of the runtime comparison of the state-of-the-art DNA sequencing pipeline

and our proposed pipeline using the scale-out approach. Table 1.2 shows the settings

of the state-of-the-art pipeline and our proposed pipeline. With a 30-node cluster,

our target is to shrink the overall processing time from 8.85 days to be within one day

(8 - 24 hours). Based on the current results, we demonstrated a superlinear 39.26x

speedup over the state-of-the-art pipeline in the first three steps, including alignment,

sort, and markduplicate. Note that ADAM [127] is a new framework built on Spark

to provide cluster-scale computation for some applications in the DNA sequencing

pipeline.

Table 1.2: A motivational example: the settings of the data pre-processing pipelines

State-of-the-art pipeline [129] Our proposed pipeline

BWA-MEM [111], CS-BWAMEM [39],

Tools SAMtools [114], Picard [7], ADAM [127]

and GATK [129] and our scale-out tools

# of Nodes 1 30

Data Size (FASTQ) 306.7GB 306.7GB

1.4.1 Datacenter-Level Optimizations — A Case Study of CS-BWAMEM

A next-generation sequencer can generate billions of small fragments (reads) of length

in the range of a few hundred nucleotides in one run. Processing such a tremendous

number of reads introduces significant computational challenges. For most of the
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Table 1.3: A motivational example: runtime comparison of the data pre-processing

pipelines

State-of-the-art pipeline Our proposed pipeline

Alignment 12.93 hrs 48 minutes

Sort 11.33 hrs 27 minutes (ADAM)

MarkDuplicate 103.33 hrs 2 - 10 hrs

IndelRealignment 12.50 hrs on-going

BaseRecalibration 53.70 hrs on-going

Extra Steps Between Stages 18.62 hrs included

Total Runtime 212.41 hrs (1.26 week) Projected: 8 - 24 hours

widely used sequencing pipelines, such as variant discovery [129] and differential gene

expression [157], the first step would align these short reads back to a long human

reference genome. After this alignment step, the aligned short reads can contain the

coordinate information based on the reference genome. Usually, the alignment step

is one of the most time-consuming steps due to its compute-intensive nature to align

these reads back to the long reference genome.

The major limitation of the current state-of-the-art aligners, such as BWA-MEM

[111] and Bowtie2 [105] is that their performance is limited by the computation power

of a single node. Performing a high-coverage whole-genome sequencing can take

tens of hours. In this dissertation we propose CS-BWAMEM, which is a scalable

solution for latency-critical sequencing. For a 30x coverage for whole genome data,

CS-BWAMEM can align it within 32 minutes by using a 30-node cluster, which is

18x faster than BWA-MEM.

CS-BWAMEM is built on top of the in-memory cluster computing framework,
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Spark, [172, 171] and thus can meet different performance targets. We used CS-

BWAMEM as an example to demonstrate our proposed customized optimizations

at the datacenter level. These strategies can also be applied to the applications in

the DNA sequencing pipeline, but may not be limited to the DNA domain. First,

the large reference genome needs to be broadcast to each node in the cluster in CS-

BWAMEM. However, it can introduce significant performance overhead when the

size of the cluster is large. We propose a mechanism to bypass the original Spark

broadcast. Instead, we load the reference genome from the local disk of each node to

avoid the broadcast overhead. Second, the data is stored in a column store for better

compression and partial data access. Third, to utilize accelerators or co-processors

efficiently, we group small tasks in batches, and the accelerators can compute tasks in

a batched way to avoid the overhead introduced by fine-grained data transfer. Finally,

we introduce multiple strategies to reduce the significant I/O overhead through in-

memory caching and pipelining the computation with I/O.

CS-BWAMEM demonstrates a motivational example showing that a similar method-

ology can also be applied to the other applications in the DNA sequencing pipeline.

1.4.2 Support and Optimizations of an FPGA-Enabled In-Memory Clus-

ter

The scale-out approach mentioned in Section 1.4.1 can accelerate the target large-

scale applications, such as CS-BWAMEM. However, in order to further improve the

system performance and energy, we need to deploy energy-efficient architectures, such

as ARAs mentioned in Section 1.3, in an in-memory cluster. Instead of realize ARAs

from manufacturing ASICs, we select FPGA to implement customized accelerators

for real-life deployment.
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We use PCIe-based FPGA cards in our in-memory cluster. We aim to accelerate

the most compute-intensive dynamic programming algorithm [111], a modified version

of the original Smith Waterman (S-W) algorithm [152, 76], used in CS-BWAMEM.

We use the array-based architecture developed in [35]. However, it is still unclear

how PCIe-based FPGA accelerators can be efficiently used in a Spark cluster. In this

dissertation we study both (1) algorithm-level improvement that adapts to FPGA

accelerators, and (2) runtime system support of using FPGA accelerators.

The contributions can be summarized as follows.

• Batched S-W algorithm for reducing communication overheads: We

realize the high-throughput S-W accelerator proposed in [35] in a PCIe-based

FPGA card using Xilinx SDAccel flow [8], and deploy the accelerators over the

cluster. We observe that a significant communication overhead occurs for the

data transfer between (1) map tasks and the accelerator manager, and between

(2) the accelerator manager and FPGA board. To overcome the communication

overheads, we try to group a large number of reads and send them to the FPGA

accelerator. However, due to the strong inner-task dependency of the S-W

algorithm used in BWA-MEM, we cannot directly send data to FPGA without

resolving the dependency. By redesigning the S-W algorithm, we are able to

process data in a batched fashion and thus better utilize the FPGA accelerator

with much less communication overhead.

• Accelerator Manager: In the SDAccel flow, we need a software accelerator

manager (AM) to manage the accelerator requests from multiple Spark tasks in

a node. The AM is in charge of receiving the requests from multiple processes,

dispatching the requests, and sending input data to the FPGA accelerator. It is

challenging to design the AM efficiently, since multiple tasks can issue requests
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simultaneously. We design the handshaking protocol and use the POSIX shared

memory to exchange data between the AM and the Spark tasks.

1.5 Application Domains

1.5.1 Domain 1: Medical Imaging Pipeline

Computerized tomography (CT) plays a major role in modern medicine. The medical

imaging pipeline consists of a set of applications which are used to process the image

produced by a CT scanner [25], as shown in Figure 1.2. The applications include

image reconstruction, de-noise, de-blur, image registration, and image segmentation.

Image reconstruction is the most time-consuming application; it uses the compressive

sensing algorithm to reduce the required sample size for less radiation to patients.

After the reconstructed image is obtained, the next step in the pipeline is to

remove the noise of an image. This step consists of two applications: (1) denoise

and (2) deblur. denoise tries to remove the noise under Rician distribution while

deblur tries to remove the blur. Next, image registration is performed to better align

the two image studies and capture the progressive development of the illness (e.g.,

tumors). Fluid registration regularizes the deformation using a fluid PDE equation,

and it allows registrations of large deformations. Finally, image segmentation tries

to find and segment an object of interest for the analysis step in the pipeline. These

medical imaging applications consists of a huge amount of stencil computations, and

thus are data-intensive.
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Figure 1.2: Medical imaging pipeline

1.5.2 Domain 2: DNA Sequencing Pipeline

The advent of next-generation sequencing technologies dramatically reduces the cost

of genome sequencing. Today’s sequencing technologies can obtain a genome for an

individual for $1,000 or less. The technology can be widely used in research and

is transitioning into clinics for applications such as precision medicine for cancer
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treatment. Next-generation sequencers will be more cost-effective by generating the

sequence from very small fragments (reads) of length in the range of a few hundred

nucleotides. Combining these sequenced fragments into a genome sequence by taking

advantage of the known human genome sequence is called resequencing and entails

tremendous computational challenges.

Figure 1.3 shows the workflow of the DNA sequencing suggested in the Genome

Analysis Toolkit (GATK) from the Broad Institute. In data preprocessing, the raw

reads generated from sequencers are processed to be analysis-ready reads. The raw

data of each individual is around 300GB – 500GB. In variant discovery, the analysis-

ready reads are used as input to perform analysis-read variants. The amount of data

can vary from 10TB – 1PB, which is far beyond the capability of a single server.

The amount of data depends on the number of individuals that are involved in joint

genotyping. The current GATK tool takes around 212 hours (about a week) to

complete data preprocessing in a multicore server with the multithreaded software,

while variant discovery may take several weeks. Our goal is to accelerate both data

preprocessing and variant discovery to reduce the processing time to within one day

and one week, respectively.

In data preprocessing, the raw reads from sequencers are first sent to an aligner to

perform initial mapping. The goal is to align these short reads to possible locations

of the reference genome. After alignment, a short read can be mapped to none,

one, or many locations on the reference genome. Burrows-Wheeler Aligner (BWA)

[112, 113, 111] and Bowtie 2 [106, 105] are the state-of-the-art aligners on general-

purpose processors. In this dissertation we adopt the BWA [111] in our sequencing

pipeline. The aligned reads then require sorting, and the duplicated reads need to

be marked before we can further refine the quality of results. In this pipeline we use
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Figure 1.3: DNA sequencing pipeline

SAMtools [114] and Picard [7] to achieve sorting and mark duplication, respectively.

After sort and markduplicate, indelrealignment is performed to locally realign reads

such that the number of mismatching bases is minimized across all the reads. Due

to the presence of an insertion or deletion from the individual’s genome with respect

to the reference genome, a large percent of intervals require local alignment. There

are two main steps in indelrealignment. First, the suspicious intervals in need of

realignment needs to be determined. Second, we need to call the local realigner on

those intervals. The final step is base recalibration. baserecalibration can recalibrate

base quality scores of the aligned reads. After recalibration, the quality score of

each read is more accurate. The computation kernel of the baserecalibration is a

hidden Markov model (HMM). For indelrealignment and baserecalibration, we use the

Genome Analysis Toolkit (GATK) [129] from the Broad Institute. The applications
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in data preprocessing inherit great data-level parallelism. Therefore, performance can

be significantly improved by exploiting the data-level parallelism in the cluster level,

which is way beyond a single node, as discussed in Section 1.4.

In variant discovery, the goal is to obtain variants relative to the reference genome.

First, the analysis-ready reads of an individual are used for variant calling. The goal

of variant calling is to try to find single nucleotide polymorphism (SNP). SNP is

a single nucleotide variation, which is different from the reference genome, of an

individual. variantcalling is performed on analysis-ready reads of every individual to

get genotype likelihoods. After that, joint genotyping is performed to obtain SNPs

and Indels (insertions and deletions) of the group of individuals. Finally, the variant

recalibration step performs customized filtering according to the needs of each project.
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CHAPTER 2

HC-Sim: A Fast Cache and SPM Co-Simulation

Framework

2.1 Introduction

The speed gap between the processor and main memory has been increasing con-

stantly. Caches are used as intermediate storage to mitigate the gap. The L1 cache,

which is accessed most frequently by the processor, has a significant impact on the per-

formance and energy consumption of a system. Increasing the cache size can improve

locality, leading to a higher cache hit rate and possible performance improvement.

However, a large cache will increase the access time and the energy of a cache access.

The cache size determination depends on the requirements of system performance

and the constraint on energy consumption.

An embedded system is designed for a specific application or a domain of appli-

cations. Therefore, the performance and energy of the system can be optimized by

providing a customized cache hierarchy. One important issue is to find the optimal

configuration for the L1 cache. A cache configuration can be defined by three param-

eters: the number of cache sets, associativity, and cache line size. Previous work has

shown that a correct L1 cache configuration can significantly improve performance
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and reduce energy consumption [12, 24, 70, 93]. To find the most energy/performance-

efficient configuration, the L1 cache miss rate should be evaluated for each configu-

ration. The distribution of L1 cache miss rates defines the working set of the appli-

cation and is an important metric used for the performance and energy estimation

[12, 24, 93]. It is also very useful for energy optimization of computer systems with

heterogeneous [94] or customizable cache designs [12, 141, 43].

To obtain the miss rates of different cache configurations on a target application,

two classes of approaches are proposed: simulation-based techniques [81, 153, 66, 93,

156, 80] and analytical approaches [70, 136, 21, 74, 75, 161]. The simulation-based

techniques perform exact simulation on every cache access in a given program trace.

The hit or miss status of every access is simulated exactly. However, the simulation-

based techniques suffer from long simulation time since each configuration should be

simulated for the target application. The analytical approaches provide analytical

models for cache miss rate estimation. Generally, the analytical approaches are fast

but inaccurate.

This chapter focuses on improving the performance of simulation-based tech-

niques. Two reasons lead to the long simulation time of exact techniques. First,

exhaustive simulation on each cache configuration is required. In [128, 81], the re-

searchers discovered and applied the “inclusion property” to simulate multiple cache

configurations simultaneously. This property specifies that when a cache hit occurs

in a cache, then cache hits occur in all larger caches. For example, if a hit occurs

in a fully associative cache with two cache blocks, then hits will definitely occur in

a fully associative cache with more than two blocks. Therefore, multiple configura-

tions can be simulated in one run, and this reduces the number of runs to simulate

all configurations. Second, based on the inclusion property, the hit/miss status of a
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cache access of multiple cache configurations can be simulated by using a stack [128].

For each cache access, a linear search is required to check if the tag of the access is

still in the stack. If not, cache misses occur. The process of the linear search may be

time-consuming since it depends on the total stack distance traversed by all accesses.

In [156, 80], the authors developed efficient techniques to reduce the search space and

thus improve simulation performance.

The scalability of the cache simulator is another important issue. The implemen-

tations of previous simulation-based techniques rely on a given trace file as an input

[66, 93, 156, 80]. However, if the target application has a long execution time, the

generated trace will be huge. The storage of memory trace consumes tremendous disk

space. For example, the trace file of a medical imaging application, riciandenoise,

has 3.5 billion data cache accesses, requiring 42.3GB to store the trace. For some

SPEC2006 benchmarks [88], such as h264ref , the trace file is estimated to be 1.1TB.

For applications with predictable access patterns, scratchpad memory (SPM) can

used to achieve better performance and energy consumption of an embedded system

[43, 19, 97, 49]. The predictable patterns can be identified by programmers or compil-

ers to provide optimized codes. Compared to a cache, SPM does not need to perform

an expensive associative way driving and tag comparisons, and hence is more energy

efficient. The recent NVIDIA Fermi GPU [9] also provides a mechanism to config-

ure the ratio between L1 cache and SPM. However, currently no tool can efficiently

simulate the hybrid memory system with L1 cache and SPM. The co-simulation is

achieved by integrating SPM into the memory system in a full system simulator,

which suffers from long simulation time [49].

In this chapter we propose HC-Sim (Hashing-based Cache Simulator), which ef-

ficiently simulates multiple L1 cache configurations simultaneously and supports fast
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co-simulation for L1 caches and SPM. The contributions are summarized as follows.

(1) We propose novel data structures and algorithms, which incorporate a central-

ized hash table and a novel miss counter structure to avoid time-consuming tag

searches on the stacks. Compared to SuSeSim [80] and CRCB algorithms [156],

HC-Sim results can be up to 5.21X and 13.73X faster, respectively. On average,

HC-Sim is 2.56X and 5.44X faster than the SuSeSim and CRCB algorithms, re-

spectively. Furthermore, we show that the efficiency of HC-Sim can be improved

by using a miss-counter-based structure for a group of applications.

(2) To enhance scalability of HC-Sim, we build our simulation framework on the

dynamic binary instrumentation tool, Pin [121]. The trace generation is embed-

ded into HC-Sim and is performed on-the-fly to avoid the overhead of a huge

trace file.

(3) To observe the interaction between a L1 cache and SPM, such as the miss rates

and the distribution of memory accesses on L1 caches and SPM, fast cache and

SPM co-simulation are needed. This is non-trivial since the implementation of

HC-Sim is based on Pin, and only instruction-level information can be obtained.

Here, we provide an interface for designers to specify the address range of SPM

so that the SPM accesses can be bypassed, and the correct miss rates of L1

caches can be simulated. We also provide a mechanism to filter out prefetching

loads, which arise from SPM prefetching, to maintain the correctness of L1

cache simulation.
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2.2 Background

In this section we first define the terminology that is used to describe a cache config-

uration and a memory access. Next, the inclusion property is reviewed. After that,

we describe the stack simulation and the forest simulation used to simulate associa-

tive caches [128] and direct-mapped caches [81] respectively. Finally, we discuss the

data structure extended to simulate set-associative caches [93] and the corresponding

enhancements [156, 80].

2.2.1 Terminology

A cache configuration is determined by three parameters: the number of cache sets

(s), associativity (a), and cache line size (b). The cache size is the multiple of the three

parameters (s×a× b). The largest settings of the number of cache sets, associativity,

and cache line size are denoted as S, A, and B respectively. We assume that the three

parameters can only be set to powers of two. Hence, to find the optimal configuration,

(log2(S) + 1)× (log2(A) + 1)× (log2(B) + 1) configurations should be simulated.

For a memory reference, the address can be divided into three fields: tag, index,

and offset, as shown in Figure 2.1. The index is used to indicate in which cache set

the datum is stored. We can use log2(s) bits for the index. In a set-associative cache,

a datum can be stored in any cache way of the cache set. Therefore, tag comparison

is performed to find the datum. Typically, the cache line size is larger than the size

of one datum. The offset is used to retrieve the datum from the cache line. log2(b)

bits are required for the offset. Hence, in a 64-bit system, the tag field contains (64 -

log2(s) - log2(b)) bits. The block address contains the fields of the tag and the index

of a reference.
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Figure 2.1: The address fields of a 64-bit memory reference

2.2.2 Inclusion Property

The inclusion property can be used to achieve fast simulation in multiple set-associative

caches with LRU replacement policy [128, 81, 93, 156, 80]. The inclusion property

holds when the cache line sizes of these set-associative caches are the same, and no

prefetching is performed. We summarize the inclusion property into the following two

cases. First, for caches with the same number of sets (s) and different associativity

(a), whenever a hit occurs in a cache, hits are then guaranteed in all caches with

larger associativity [128, 81]. For example, if a hit occurs in a cache where s = 2 and

a = 1, it is then guaranteed that the same hit occurs in the caches with s = 2 and

a > 1. This can be used to simulate associative caches simultaneously, as described

in Section 2.2.3. Second, for caches with the same associativity and a different num-

ber of sets, if a hit occurs in a cache, then all caches with a larger number of sets

guarantee the same hit [81, 93]. For example, if a hit occurs in a cache with s = 2

and a = 1, it is then guaranteed that hits occur in the caches with s > 2 and a = 1.

Based on the property, the forest simulation is proposed to simulate direct-mapped

caches [81] and set-associative caches [93], as reviewed in Section 2.2.4 and Section

2.2.5.
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2.2.3 Stack Simulation for Associative Caches

By using the inclusion property, the authors in [128] showed that a stack can be used

to model multiple associative caches/memories. Figure 2.2(a) shows the linked-list

structure used to simulate the stack behavior. A linked-list with four nodes can be

used to simulate 1-way to 4-way associative caches simultaneously. Note that we

consider that all associative caches are in the same cache set. Each node in the

list represents a cache way and stores the tag of a cache access. The most recently

accessed cache access is stored in the head, while the second-most recently accessed

is stored on the second node, and so on. Only the four most recently accessed ones

can be stored in the stack. Here, we define the stack distance of a node to be the

distance between the head and the node. To find a node in the list by linear search,

the stack distance is the number of nodes that must be traversed.

Here, we illustrate the process of stack simulation with an example. Figure 2.2(b)

shows the situation after a cache access sequence with addresses {0110, 1001, 1010,

1000} is performed. The initial tags stored in the linked-list are {1000, 1001, 0010,

1100}. Here, we assume the cache line size is one byte and the number of sets is

one. When the first access ‘0110’ comes in, a linear search is performed on the linked-

list. Since no matched tag is found, misses occur at all associative caches. For the

second access ‘1001,’ a mapped tag is found in the third node. Based on the inclusion

property, hits occur at the 3-way and 4-way associative caches while misses occur at

1-way and 2-way associative caches. After that, ‘1010’ and ‘1000’ are processed, and

their corresponding status is shown in Figure 2.2(b). The total number of misses for

1-way to 4-way caches is four, four, three and two, respectively.
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Figure 2.2: LRU stack simulation

2.2.4 Forest Simulation for Direct-Mapped Caches

Initially, forest simulation was proposed to simulate direct-mapped caches [81]. As

mentioned in Section 2.2.1, we use log2(s) bits to encode the index field of a memory

reference. We can use 1-bit to encode a direct-mapped cache with two sets, which are

encoded by ‘0’ and ‘1.’ For a cache with four sets, we can use ‘00,’ ‘01,’ ‘10,’ and ‘11’

to encode them. It is natural to represent a group of direct-mapped caches of different

sizes in a binary tree, as shown in Figure 2.3(a). The root of the tree represents a

direct-mapped cache with one cache set, while two nodes in the second level represent

a cache with two sets and so on. In Figure 2.3, a group of direct-mapped caches with

one, two, four, and eight sets represented in a four-level binary tree.

Figure 2.3(a) also shows an intermediate state of the tree. Each node has an entry

to store a tag. We assume the cache line size to be one byte. In forest simulation, the

tree traversal starts at the root and proceeds to the leaves. However, only one node
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in each tree level will be traversed since an access can only be mapped to one cache

set. First, suppose the next address accessed is ‘1001,’ where a hit occurs at the root.

Based on the inclusion property, we do not need to traverse the tree any more since

hits are guaranteed in all larger caches with two, four, and eight sets. Therefore, tag

updates are not required. After that, the next access is ‘1100,’ a miss occurs in the

root and further traversal of the tree should be performed until either the tag is found

or the leaf of the tree is arrived at. Since a matched tag is not found until the node

‘100,’ we can conclude misses occur in direct-mapped caches with one, two, and four

sets. The updated state of the tree is shown in Figure 2.3(b).

2.2.5 Forest Simulation for Set-Associative Caches

To simulate set-associative caches in one run, the researchers in [93] proposed a data

structure based on the forest simulation framework described in Section 2.2.4. In [93],

the tag entry is replaced by a linked-list described in Section 2.2.3. The linked-list is

used to simulate a group of associative caches. Figure 2.4 shows the data structure

used to simulate the caches where 0 ≤ s ≤ 8 and 0 ≤ a ≤ 4. If we want to simulate

set-associative caches with multiple cache line sizes, we can replicate the structure for

multiple copies.

The authors proposed an algorithm based upon this data structure to obtain miss

rates for caches [93]. The algorithm can be briefly explained as follows. For each

access in the trace, we traverse the tree from the root to the leaves in a top-down

scheme. Note that only one of the nodes in each tree level is traversed because a cache

access can only be mapped to one cache set in a set-associative cache. For example,

the ‘1001’ reference will be mapped to the tree node with set number ‘01’ in the third

tree level. After that, a linear search is performed on the linked-list pointed to by the
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Figure 2.3: Forest simulation for direct-mapped caches

cache set ‘01.’ If a matched tag is found at the n-th node of the linked-list, hits occur

on caches with associativity larger than or equal to n. Finally, we need to update

the order of the linked-list to maintain the LRU property. Note that the cache miss

counters need to be updated if misses occur on corresponding cache configurations.

Assume that there are N accesses in the trace. For each access, it takes at most

O(log2(S)) time, which is equal to the height of the tree, to perform the tree traversal.

The time complexity to perform linear search in a linked-list is O(A) in the worst case

if no matched tag is found. Note that we assume that the associativity can only be

powers of two. Therefore, log2(A) counters are required for each linked-list. To update

the miss counters, it takes O(log2(A)) for each linked-list. The time complexity is

O(N + N(log2(S))(log2(A)) + N(log2(S))A), which is equal to O(N(log2(S))A) [93].
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Figure 2.4: Forest simulation for set-associative caches

2.2.6 Strategies for Speedup

Based the framework described in Section 2.2.5, the researchers presented strategies

utilizing the inclusion property to speed up the simulation [156, 80]. In [156], the

researchers provided two enhancements which reduced the total number of nodes to

be traversed in the linked-lists. First, if a hit occurs in the head of the linked-list with

s = i, then we do not need to perform simulations for caches with s > i since hits

occur at all configurations. Second, if the block addresses of two consecutive cache

accesses are the same, hits occur for all cache configurations.

In [80], the authors had two other observations. First, the inclusion property

can also be interpreted in another way. If a miss occurs in caches with s = i for all

associativity, then misses will occur in all smaller caches with s < i for all associativity.

A bottom-up tree traversal scheme can be developed according to the observation.

This removes a large amount of unnecessary tag searches on the linked-lists, and thus
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reduces the simulation time. Second, we assume the largest setting of associativity

is A. If a matched tag is found in X-th way where X > (A/2), then cache hits can

only occur after X-th way for caches with a smaller number of cache sets. Therefore,

by performing linear search from the tail to the head, more unnecessary searches can

be removed.

2.3 HC-Sim Design

2.3.1 Motivation

We observe that the most important factor that leads to the long simulation time is

the linear search performed on the linked-lists. If we can improve the efficiency of

searching, the simulation time can be significantly reduced. However, even if one can

replace the linked-lists with alternative data structures to improve searching efficiency,

it is still costly to update the linear order for every cache access. The linear order

is naturally maintained by the LRU stacks, i.e. the linked-lists. Therefore, we focus

on improving the searching efficiency of the linked-lists. A hash table is one of the

data structures that can be used to improve the searching efficiency. In [101], the

researchers provided a data structure using a hash table to simulate a memory trace.

Figure 2.5 shows the data structure. A hash table is used to find the corresponding

memory reference in the stack. The key in the hash table is the address of the

memory reference, while the value of the hash table is a pointer used to point to the

corresponding reference in the stack.

With the aid of the hash table, a memory reference can be found in constant

time. However, to obtain the miss rates of different memory configurations, the stack
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distance of a node should be found in constant time as well. Then, we can use

counters to record the hit information for a cache configuration. Figure 2.5(a) shows

that the marker is added as a field in each node of the stack. Normally, a designer

only considers memory configurations to be power-of-two sizes. Therefore, we assume

that the stack sizes can only be powers of two. A marker represents the relative stack

distance of a node instead of the distance from the top of the stack. For example,

the value of the marker of the fifth element in the LRU stack is ‘3,’ which means the

node can be found in the stack only when the stack size is greater than or equal to 23.

The node cannot be found when the stack size is less than or equal to 22. Whenever

a new memory reference is processed, the marker fields are required to be updated.

It can be naively done by updating the fields from the top of the stack to the node

found by the hash table. However, this does not improve the simulation efficiency

compared to linear search.

To improve the efficiency, the marker pointers are used to point to the boundaries

of markers. For example, the marker pointer of size = 22 is pointed to the fifth node

which follows the last node with marker ‘2,’ as shown in Figure 2.5(a). When a

cache access occurs, the marker pointers and the corresponding hit counter should be

updated. Consider the address of the next access as ‘110111. Figure 2.5(b) shows the

update of the data structures. First, since ‘110111’ is found in the hash table, the

node in the LRU stack can be found by the pointer. The node should be moved to the

head of the stack, and the marker should be set to ‘0.’ Second, the marker pointers of

20 and 21 should be moved upward by one node such that the marker pointers point

to the correct places. The marker pointers are moved from ‘1010’ and ‘0110’ to ‘1011’

and ‘1010,’ respectively. Also, the markers of the node ‘1011’ and ‘1010’ should be set

to ‘1’ and ‘2,’ respectively. Third, the hit counter of 22 should be incremented by 1.
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Based on the inclusion property, the hit counter of 23 should be also incremented to

record the hit. However, we can save the increment to improve simulation efficiency.

The total number of hits of a specific cache size can be calculated by accumulation

after all cache accesses are processed.

Figure 2.5: Hashing-based structure for stack simulation
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If the maximum stack distance is A, the time complexity to update marker pointers

is O(log2(A)). Compared to the time complexity of linear search, which is O(A), this

method is more efficient. In addition, the hit counter takes O(1) to be updated, which

is more efficient than the miss counters used in [93, 156, 80]. Therefore, this method

has been used to simulate disk and file-system traces, which have long stack distances

[101].

The hashing-base structure can be used to simulate associative caches efficiently.

However, it is not clear how to extend the proposed data structure to simulate set-

associative caches in one run. Simply replicating hash tables for all stacks is not

feasible. Considering the forest simulation framework, if we want to simulate set-

associative caches with up to 512 sets, there will be 1023 nodes in the forest. Each

node requires a hash table, an LRU stack and a counter structure. However, the size

of a hash table depends on the number of distinct cache accesses appearing in the hash

table, which may be large in some applications. Therefore, it may be infeasible to

realize the system due to the huge memory demand. We shall introduce an elaborate

centralized hash table design, as described in Section 2.3.2.2, to handle the memory

usage problem. Also, the extra data structure modifications are required and are

discussed in Section 2.3.2.1.

2.3.2 HC-Sim Data Structures

2.3.2.1 Modifications of Data Structures

To simulate associative caches, the size of an LRU stack is the largest setting of

associativity. For a cache access, if misses occur for all associative caches, the access

will become the head of the linked-list. In the meantime, the original tail of the
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linked-list should be removed from the linked-list since it is no longer in the LRU

stack. Otherwise, the stack will grow continuously without the recycling mechanism.

This issue is not mentioned in [101]. Therefore, we require a mechanism to invalidate

the pointer in the hash table when the corresponding cache line is no longer available.

Figure 2.6(a) shows a new field, called reset pointer, which is added to each node of

the LRU stack for invalidation use. In this example, we assume the cache line size is

four bytes, and the number of cache sets is one.

Moreover, we use block addresses as the keys of the hash table, as shown in Figure

2.6(b). It is possible that many references stored in the hash table point to the same

node in the stack, as shown in Figure 2.6(a). In this example, ‘000110,’ ‘000111,’

and ‘000100’ point to the same node in the stack since their tags and indexes are the

same. The design of reset pointers becomes complicated since multiple entries in the

hash table require invalidation when there is a miss. One feasible solution is to use a

linked-list to model a set of reset pointers of a node in the LRU stack. However, this

degrades the performance since O(B) times of invalidation are required. Also, extra

memory overhead in O(B) is introduced. In a cache, the granularity of a hit or a

miss is based on one cache line. Cache accesses in the same cache line share the same

block address and thus the same hit/miss status. Therefore, it is natural to use the

block address as the key. One important benefit is that the number of entries in the

hash table can be greatly reduced, and thus the memory use is reduced. In Figure

2.6(b), two redundant accesses are removed from the hash table. Furthermore, the

invalidation mechanism is simplified and can be realized by using one reset pointer

per stack node.
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Figure 2.6: Modifications of data structures: (a) reset pointers and (b) use of block

addresses

2.3.2.2 Centralized Hash Table Design

Instead of using independent hash tables for all stacks, which results in huge memory

overhead, we adopt a centralized hash table structure. Figure 2.7 shows the data

structures used by HC-Sim, which can be divided into three parts: the hash table,
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the forest, and the counter structures. The key of each entry is the block address,

as described in Section 2.3.2.1. For the value field, a node pointer array is used to

store the node pointers that point to the corresponding nodes in the LRU stacks.

Intuitively, it seems that the size of the node pointer array should be equal to the

number of tree nodes in the forest. However, the array requires only (log2(S)) + 1

elements, which is equal to the number of levels of the binary tree. This is because a

cache line can only be mapped to one of the cache sets in any level of the binary tree.

For example, the cache access ‘10011’ is mapped to the sets with set number ‘1,’ ‘11,’

and ‘011’ respectively. ‘1,’ ‘11,’ and ‘011’ are the set numbers of three different levels

in the binary tree. The data structures shown in Figure 2.7 can be used to simulate

set-associative caches where b = 1, 0 ≤ a ≤ 4, and 0 ≤ s ≤ 8.

For the forest, we used the modified node with reset pointer to realize the invali-

dation of a hash-table entry. For each linked-list, a corresponding counter structure is

provided for stack distance calculation, and thus the number of hits can be updated.

Figure 2.7: HC-Sim structure

The counter structures are used to record the number of hits or misses for miss
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rates calculation. Figure 2.8 shows the process of updating the counters in three

different counter structures. In this example, the access coming next, ‘0101101,’ is

found at the fourth node of the linked list. Therefore, hits occur when associativity

equals 22, and 23 while misses occur when associativity equals 20 and 21. Figure

2.8(a) shows the hit counter structure used in [101]. As mentioned in Section 2.3.1,

we only increment the counter of 22. The time complexity for the counter update is

O(1).

In [93, 156, 80], authors used a centralized miss counter structure, as shown in

Figure 2.8(b). Since they do not use the marker pointers to point to the boundaries

of markers, the counter structure is a two- dimensional array that records the total

number of misses of each cache configuration. For the counter updates, they sim-

ply increment the miss counters of all configurations with cache misses. The time

complexity is O(log2(A)).

However, spatial locality exists in most applications. Normally, the desired miss

rates for most L1 cache configurations are less than 10%. The total number of hits

are an order larger than the the total number of misses. Therefore, the hit counter

structure may or may not outperform the centralized miss counter structure. Based

on this observation, we design a new miss counter structure, as shown in 2.8(c). In this

example, only the miss counter of 21 is required to be incremented. Similarly, the miss

rates can be calculated by accumulation. The miss counter structure inherits both

advantages of the O(1) complexity and fewer increments on misses. We demonstrate

the statistics of counter updates in Section 2.5.2.

For each cache access, at most O(log2(S)) LRU stacks are traversed in the binary

tree. Therefore, the time complexity of counter updates for the hit counter structure

and the miss counter structure is O(log2(S)) per access, while that for the centralized
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miss counter structure is O((log2(S))(log2(A))).

Figure 2.8: Counter structure design: (a) hit counter structure, (b) centralized miss

counter structure, and (c) miss counter structure

2.3.3 HC-Sim Algorithm

Algorithm 1 is proposed to simulate set-associative caches based on the HC-Sim data

structures. For each cache access, we will first check to determine if the block address

of the access is already in the centralized hash table (line 12). If so, then we check the

node pointers in the array to determine the hit/miss status for all configurations. If

the node pointer is valid, it means that it points to a node in the corresponding LRU

stack, and thus a hit is detected. If the node pointer is invalid, a miss is detected.

Lines 14-29 show the checking and updating procedure. If the block address does not
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exist in the hash table, then misses occur for all cache configurations. We need to

insert the block into the hash table and perform corresponding updates (lines 30-40).

Note that the observations of the CRCB algorithm [156] are also applied to avoid

unnecessary accesses to node pointers.

To compute the time complexity of the algorithm, we assume that there are N

cache accesses in the trace. Hence, there will be O(N) accesses on the centralized

hash table. For each access, the node point array is accessed for at most O(log2(S))

times, and thus the complexity of updating miss counters is also O(log2(S)). However,

the number of marker pointers required to be updated may be O(log2(A)) per linked-

list access. Therefore, the time complexity of Algorithm 1 is O(N + N(log2(S)) +

N(log2(S))(log2(A))), which is equal to O(N(log2(S))(log2(A))). In the worst case,

HC-Sim outperforms previous methods [93, 156, 80] since the complexity of updat-

ing marker pointers is O(N(log2(S))(log2(A))), which is more efficient than that of

performing linear search. The time complexity of linear search is O(N(log2(S))A), as

described in Section 2.2.5. For the counter updates, the time complexity of HC-Sim is

also less than that of the previous work [93, 156, 80], which is O(N(log2(S))(log2(A))).

Note that Algorithm 1 can be slightly modified to be used for a hit-counter-based

HC-Sim, while the time complexity does not change.

2.3.4 HC-Sim Implementation

For scalability concerns, HC-Sim is implemented based on the Pin framework. Pin is

a dynamic binary instrumentation system that supports x86 architectures. We can

place instrumentations on different types of instructions by using Pin’s APIs. The

implementation of HC-Sim can be partitioned into two parts, as shown in Figure

2.9. Trace Generator bypasses the instructions which are not memory accesses. This
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Algorithm 1 HC-Sim Algorithm
1: H → the centralized hash table in HC-Sim

2: array size → the size of a node pointer array

3: prev x → the block address of the previous cache access

4: for each cache access x do

5: block x = get block address(x)

6: /* CRCB2: Two consecutive accesses are in the same cache line */

7: if block x == prev x then

8: Break

9: end if

10: prev x = block x

11: if block x is found at entry h in H then

12: for i = 1 to array size do

13: /* Cache hit(s) occur(s) in this cache set */

14: if h.array[i] is valid then

15: if h.array[i] does not point to the head of the stack then

16: Move the node pointed by h.array[i] to the head

17: Increment the miss counter in the corresponding counter structure

18: Update the marker pointers in the corresponding counter structure

19: end if

20: /* Cache miss(es) occur(s) in this cache set */

21: else

22: Push the new node of x into the corresponding stack

23: Point h.array[i] to the head of the stack

24: Increment the miss counter of largest associativity in the corresponding counter structure

25: Update all marker pointers in the corresponding counter structure

26: Pop out the tail and invalidate the corresponding node pointer in H

27: end if

28: end for

29: /* Cache misses for all configurations */

30: else

31: Insert block x into the hash table

32: for i = 1 to array size do

33: Push the new node of x into the corresponding stack

34: Point h.array[i] to the head of the stack

35: Increment the miss counter of largest associativity in the corresponding counter structure

36: Update all marker pointers in the corresponding counter structure

37: Pop out the tail and invalidate the corresponding node pointer in H

38: end for

39: end if

40: end for
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can be done by placing instrumentations before every load/store instruction. When a

memory access is identified by Trace Generator, the address will be sent to Simulation

Engine. Next, Simulation Engine simulates the hit/miss status for each configuration

and finally gives the control back to Trace Generator. Simulation Engine implements

the data structures and the corresponding algorithms described in Section 2.3.2 and

Section 2.3.3 respectively.

In addition, the implementation of the hash table uses the google − sparsehash

[82], which is an extremely memory-efficient implementation. The overhead is only

2 bits/entry. The memory-efficient feature is important since the memory demand

of HC-Sim is proportional to the number of entries in the hash table. The number

of entries, which is usually a large number, depends on the number of distinct cache

lines occurring in the execution of an application. Therefore, the memory efficiency

is one of the important factors determining the scalability of HC-Sim.

Figure 2.9: Implementation of HC-Sim

2.4 SPM Co-Simulation Support

In this section we discuss how to add the co-simulation support for scratchpad memory

(SPM) into HC-Sim. Our motivation is to evaluate the miss rates of different L1
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cache configurations when SPM is provided. The miss rates of caches can provide

information for designers to select a suitable L1 cache configuration under a given

SPM configuration for a target application. Based on the fast and exact L1 cache

simulation framework, we show that the co-simulation can be done accurately and

efficiently.

2.4.1 SPM Access Handling

In a hybrid cache system, a memory access will be directed to the L1 cache and SPM

according to its memory addresses. Therefore, to obtain the miss rates of different L1

cache configurations, the accesses to SPM should be filtered out. Since the accesses

to SPM have an address range which is not overlapping with the range of cache

accesses, one feasible solution is to examine the address of each access before the

cache simulation is performed. Figure 2.10(a) shows a code sample of riciandenoise

[86] re-written by a programmer for performance optimization by using SPM. Here,

we assume that a one-dimensional array is used to model SPM in the program, and the

address range of the SPM array is contiguous. The accesses to SPM can be specified

by a programmer or a compiler. We provide an interface function, which is called

spm alloc(), for programmers to specify the starting address and the size of the array,

as shown in Figure 2.10(a) (line 72). This function is added to inform HC-Sim about

the address range of SPM accesses. The same interface is used in [50, 49]. In [49], the

interface is integrated with a full system simulator to support co-simulation. Figure

2.12 shows the design of the co-simulation support for HC-Sim. By intercepting the

“spm alloc()”, the address range of SPM can be known in advance by an address

filter, as shown in Figure 2.11. Therefore, SPM accesses can be filtered out, and they

do not enter the simulation engine. Even if the address range is non-contiguous or
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segmented, the interface function still can be applied to specify the address range of

SPM.

Figure 2.10: (a) An SPM code sample of riciandenoise (b) detection of prefetching

loads
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Figure 2.11: Co-simulation support for HC-Sim

2.4.2 Prefetching Support and Prefetching Loads

Prefetching is a common technique to improve the performance of SPM. In Figure

2.10(a), the expressions in line 6 and line 7 represent that the data in array u should be

prefetched into SPM from lower-level cache or main memory for future computation.

The expression in line 7 would be translated into instructions that contain one load

and one store, as shown in Figure 2.10(b). First, a load instruction is generated since

the data in u should be loaded into the register. After that, a store instruction is

generated to store the data loaded from array u. The second store instruction would

be filtered out as described previously. However, the first load instruction should

never enter the simulation engine. It is used to model the behavior of prefetching,

but it is not a real access on L1 caches. We call these loads prefetching loads.

However, it is not trivial to filter out these prefetching loads. One reason is that

implementation of HC-Sim is based on Pin. Through binary- level instrumentation,

we can only observe the instruction-level information, such as register names or the

types of instructions. One way to handle this is by tracking the dependence be-

tween the SPM store and the prefetching load. However, another problem is that

the prefetching load always occurs before the SPM store. Therefore, we introduce a
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code buffer to deal with the problem. With the assistance of the code buffer, memory

accesses can be temporarily stored. When an SPM store is detected, we can filter out

the prefetching load corresponding to that store and then re-simulate the memory

accesses stored in the code buffer in program order. Therefore, the correctness of

cache simulation can be maintained. Figure 2.12 shows the co-simulation flow. There

is one potential problem for the code buffer mechanism. A prefetching load may be

simulated when the buffer is full. However, this case is rare if an adequate size of

code buffer is given since the prefetching load and the SPM store are adjacent. For

example, only 0.01% of prefetching loads are simulated when we perform simulation

on the riciandenoise benchmark. The buffer size is 10000 elements. The simulation

error is negligible.

2.5 Experimental Results

2.5.1 Simulation Setup and Workloads

As mentioned in Section 2.3.4, we implement HC-Sim based on the Pin framework

for scalability concerns. Therefore, we also implement SuSeSim [80] and the CRCB

algorithm [156] based on the Pin framework to perform a fair comparison. All methods

are implemented in C++ and compiled by the g++ compiler with ‘-O3’ optimization

level. Simulations are performed on an Intel Xeon Quad 2Ghz processor with 8GB

main memory.

Since the trace is dynamically generated during runtime by the tool itself, the ad-

dresses of memory references will be different every time, and that makes verification

difficult. Therefore, we implement a golden version that takes a trace file as an input
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Figure 2.12: Flow of co-simulation on SPM and L1 caches

for each method, and the golden version is verified by DineroIV [66]. The golden

version provides a reference to guarantee the correctness of the implementations on

the Pin framework.

We simulated 400 configurations for each method on each workload. The range

of each cache parameter is described in Table 2.1. Note that we consider only L1

data cache simulation in this dissertation. However, the proposed method can also

be applied to L1 instruction cache simulation.

As shown in Table 2.2, the benchmarks we used in this dissertation cover memory-

intensive workloads from SPEC2006 [88]. The medical imaging benchmarks are a set
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Table 2.1: Cache configurations

The Number of Cache Sets (s) = 2i 0 ≤ i ≤ 9

Associativity (a) = 2i 0 ≤ i ≤ 9

Cache Line Size (b) = 2i 4 ≤ i ≤ 7

of benchmarks that are used to process the image produced by a CT scanner [86].

The benchmarks include applications for image reconstruction, denoise, deblur, image

registration, and image segmentation. These medical imaging benchmarks consist of

stencil computation and are data-intensive. The total number of accesses and the

simulation time of miss-counter-based HC-Sim for each benchmark are listed in Table

2.3. In our experiment, the largest trace contains 87.07 billion accesses, which results

in a huge disk demand in terabyte scale. By using HC-Sim, we can eliminate the

problem and can perform simulation on an even larger program.

Table 2.2: Workloads

Benchmark Applications

SPEC2006 gcc, mcf, libquantum, h264ref, astar

soplex, lbm

Medical Imaging rician-denoise, rician-deblure, registration

segmentation, compressive sensing

2.5.2 Performance Evaluation

Table 2.4 shows the normalized simulation time of HC-Sim, SuSeSim [80], and the

CRCB algorithm [156]. Note that the simulation time of SuSeSim, CRCB, and hit-

counter-based HC-Sim are normalized to that of miss-counter-based HC-Sim. Com-

pared to hit-counter-based HC-Sim, SuSeSim and CRCB, miss-counter-based HC-
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Table 2.3: Trace size and simulation time of HC-Sim (M)

Benchmarks Num of accesses Simulation time (Second)

mcf 4.84B 33712

lbm 3.40B 38526

gcc 5.53B 112523

h264ref 87.07B 324017

astar 64.30B 198116

soplex 128.94M 452

libquantum 70.14M 339

riciandenoise 3.34B 33892

riciandeblure 10.85B 61233

registration 10.46B 49557

segmentation 6.03B 30389

comp. sensing 35.55B 139727

Sim can achieve up to 1.27X, 5.21X and 13.73X reduction in runtime respectively.

On average, miss-counter-based HC-Sim can run 1.12X, 2.56X and 5.44X faster than

hit-counter-based HC-Sim, SuSeSim, and CRCB, respectively.

As mentioned in Section 2.3.3, the time complexity of HC-Sim is bounded by

the marker update, which is O(N(log2(S))(log2(A))). The complexities of previous

methods [93, 156, 80] are bounded by linked-list traversal, which is O(N(log2(S))A)).

To show the effectiveness of the reduced complexity, we compare the number of marker

updates of HC-Sim with the number of traversed list nodes for SuSeSim and CRCB,

as shown in Figure 2.13. Here, we collect data for the cache configurations where

0 ≤ s ≤ 9, 0 ≤ a ≤ 9, and b = 64. The data are normalized to the number of marker

updates of miss-counter-based HC-Sim. We can observe that the number of marker
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Table 2.4: Normalized simulation time

Benchmarks HC-Sim (M) HC-Sim (H) SuSeSim CRCB1

mcf 1.00 1.03 3.74 8.57

lbm 1.00 1.14 5.21 13.73

gcc 1.00 1.10 2.38 3.33

h264ref 1.00 1.27 1.70 2.27

astar 1.00 1.19 1.22 1.69

soplex 1.00 1.25 1.50 2.04

libquantum 1.00 1.07 3.05 3.89

riciandenoise 1.00 1.09 2.52 7.49

riciandeblure 1.00 1.05 4.17 12.47

registration 1.00 1.05 2.28 5.92

segmentation 1.00 1.12 1.03 1.29

comp. sensing 1.00 1.09 1.86 2.58

Average 1.00 1.12 2.56 5.44

updates is from 5X to 13X and from 7X to 40X less than the traversed list nodes

of SuSeSim and the CRCB algorithm, respectively. Therefore, the number of nodes

accessed is significantly reduced through the hashing-based structure. Even if the

constant overhead of a hash table access is large, the time complexity reduction from

O(N(log2(S))A)) to O(N(log2(S))(log2(A))) still compensates for the overhead.

Figure 2.13(b) quantifies the benefit of using miss counters to further improve

the efficiency of HC-Sim. First, we can observe that the number of counter updates

of miss-counter-based HC-Sim is from 2.2X to 7.6X less than that of hit-counter-

based HC-Sim. Moreover, compared to the centralized miss counter structure used

in [156, 80], miss-counter-based HC-Sim reduces the number of counter updates from
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2.1X to 5.5X since the time complexity is reduced from O(N(log2(S))(log2(A))) to

O(N(log2(S))). Note that we collect the data where the cache line size is equal to 64

bytes.

2.5.3 Evaluation of Co-Simulation Support

In this section a case study of riciandenoise is used to evaluate the efficiency of

co-simulation support for HC-Sim. Figure 2.14 shows the miss rate distribution of

a hybrid cache system with an L1 cache and SPM and a cache-only system. The

cache line sizes for both systems are 64 bytes. In the hybrid system, the size of SPM

is 4320 bytes as indicated in Figure 2.10(b). The input size of riciandenoise is an

image with 64 × 64 × 64 pixels. Figure 2.14(a)(b) shows the miss rates distribution

of both systems. With SPM support, the hybrid cache system has a lower miss rate

distribution as shown in Figure 2.14(b).

The simulation time of HC-Sim with co-simulation support takes only 122 seconds,

while the simulation time for the cache-only system takes 309 seconds. The first

reason is that SPM accesses are filtered out, and thus the number of accesses for

cache simulation is reduced. Second, with the assistance of SPM, the miss rates are

reduced, leading to faster cache simulation. In comparison, the authors in [50, 49]

recently evaluated the performance of SPM with a full system simulator [126] which

takes almost eight hours to obtain the result of only one cache configuration with

SPM. With HC-Sim, we can evaluate the distribution of miss rates more efficiently

and thus provide the capacity for an early stage design space exploration with more

than 10,000X simulation runtime reduction. When the miss rate distribution of L1

caches is the metric we would like to measure, full system simulation is inefficient and

is not required.
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Figure 2.13: Normalized numbers of (a) marker updates and traversed list nodes and

(b) counter updates (b = 64 bytes)
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Figure 2.14: Miss rate distribution of (a) L1 caches only (b) L1 caches + SPM

2.6 Related Work

Section 2.2 provided a detailed review of simulation-based methods. In this section

we discuss analytical approaches for cache miss rate estimation. In contrast to the

exact simulation-based methods, the analytical approaches provide a fast estimation

of cache misses.
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The researchers in [70] use system-level simulations to estimate the energy-delay

product under different cache configurations. In contrast to exploring the whole

cache design space, they use a sensitivity-based analysis to optimize the three cache

parameters sequentially. In their work, the optimization procedure is to give initial

values of cache line size and associativity and first optimize the number of cache sets

according to the ED metric. Next, the line sizes are optimized under the fixed number

of sets. Finally, the associativity is optimized.

In [75] the cache miss equations (CME) are proposed to represent the cache misses

of a loop nest. By analyzing the iteration space and reuse vectors of a loop nest, the

CMEs can capture cache misses in a simple loop nest, such as a perfect nested loop,

accurately. The cache parameters, such as associativity, line size, and the number of

sets, are treated as inputs for the CMEs. In [161] the authors provided a fast and

accurate approach to solving CMEs. By using a sampling technique, a small subset

of the iteration space can be analyzed to approximate the miss ratio of each reference.

In [21], the authors developed a probability model to estimate miss rates by using

the stack distance distribution of the cache accesses in a program. They showed that

the miss rate can be estimated accurately with a 10−4 sampling rate. However, the

approach can only be used on fully associative cache.

In [74], instead of calculating the cache miss rates for different cache configura-

tions, the authors try to obtain the configurations that satisfy the constraint of a

cache miss rate. They provided an exact method for analyzing the trace and finding

feasible configurations for different miss rate targets.

In general, the estimation approaches may be inaccurate since they do not examine

the hit/miss status of each cache access. In addition, some analytical models can be
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only applied on a subset of caches [21] or a subset of programs [75, 161].

2.7 Conclusions

We propose a fast and exact L1 cache simulator, HC-Sim, to simulate multiple cache

configurations in one run. HC-Sim adopts a centralized hash table and supplementary

data structures to efficiently reduce the search time performed on the LRU stacks.

Assuming no prefetching, HC-Sim can simulate multiple caches that adopt the LRU

replacement policy simultaneously. For a collection of 12 workloads, HC-Sim can

be 2.56X and 5.44X faster than the SuSeSim and CRCB algorithms on average. To

enhance the scalability, HC-Sim is implemented based on the dynamic instrumenta-

tion framework, Pin, to generate traces during runtime. The overhead of huge trace

files can thus be avoided. In addition, HC-Sim provides the capacity to perform co-

simulation on L1 caches and SPM simultaneously. The miss rates of L1 caches can

be efficiently calculated with a given SPM configuration. Therefore, designers can

efficiently explore the design space of a hybrid memory system consisting of L1 cache

and SPM.
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CHAPTER 3

Reconfigurable Hybrid Cache: Architecture

Design and Dynamic Reconfiguration

3.1 Introduction

The traditional SRAM-based on-chip cache has become a bottleneck for energy-

efficient design due to its high leakage power. Designers have turned their attention

towards emerging non-volatile memories such as the spin-torque transfer magnetore-

sistive RAM (STT-RAM) and phase change RAM (PRAM) to build future memory

systems. Power, performance, and density characteristics of the new memory tech-

nologies differ dramatically compared to SRAM, and thus they enlarge the landscape

of memory design.

Table 1.1 shows a brief comparison of SRAM, STT-RAM, and PRAM technologies.

The exact access time and dynamic power depend on the cache size and the peripheral

circuit implementation. In sum, SRAM suffers from high leakage and low density

while providing great endurance; STT-RAM and PRAM provide high density and low

leakage at the cost of weak endurance. Moreover, STT-RAM outperforms PRAM in

terms of endurance, access time, and dynamic power, while PRAM has higher density.

With desirable characteristics on leakage power and density, NVMs have been
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explored as an efficient alternative for either SRAM or DRAM in memory sys-

tems [165, 154, 65, 143, 107]. As can be seen in Table 1.1, compared to PRAM,

STT-RAM has higher endurance (109 versus 4× 1012 write cycles) [87, 32]. Based on

the write cycles, we use a similar endurance model proposed in [92] to calculate the

lifetime of PRAM and STT-RAM in an on-chip hybrid cache which consists of 1MB

SRAM and 3MB NVM. Table 3.1 demonstrates the lifetime of the hybrid cache for

three write-intensive workloads selected from medical imaging domains [25] and PAR-

SEC [22]. For a PRAM-based hybrid cache, the lifetime is limited, ranging from 4.70

to 196.12 days; but the STT-RAM-based hybrid cache can last for more than tens of

years. Thus, STT-RAM is more suitable for on-chip last-level cache [165, 154, 65, 143]

design due to its higher endurance, while PRAM is promising as an alternative for

DRAM in the main memory design due to its higher density [107, 140]. Therefore, in

this dissertation we will focus on a hybrid cache architecture with STT-RAM as the

NVM.

Table 3.1: Endurance (lifetime) of 4MB RHC and 2MB SRAM-based cache

Workloads registration segmentation fluidanimate

PRAM (days) 4.70 196.12 39.33

STT-RAM (years) 12.88 537.32 107.76

A common problem in existing hybrid cache designs [165, 154] is the lack of

adaptation to varied workloads. Previous studies show that different applications may

exhibit different characteristics [142]. For example, if the targeted application accesses

a 10MB working set in a streaming fashion, then a fixed hybrid cache design consisting

of a 2MB SRAM and 8MB NVM (as discussed in [154]) may become inefficient in

terms of both performance and energy compared to a 2MB SRAM-only design. In

the 2MB SRAM-only design, all data blocks are put into the SRAM to achieve fast
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access. However, in the 2MB SRAM with 8MB NVM design, the data blocks are

distributed in both the SRAM and NVM regions, while most blocks are located in

the NVM region. The cache miss rates are the same for the two architectures due

to the streaming access pattern, but the performance degrades because of the longer

access latency of NVM. The energy consumption in the hybrid design is larger since

it consumes more leakage due to longer runtime and additional leakage from NVM

arrays. Also, the greater dynamic write energy on NVM increases the total energy

consumption. Therefore, if we can provide configurability on the hybrid cache design,

it can be reconfigured to accommodate varied workloads. In this example the hybrid

cache can be reconfigured into 2MB SRAM to achieve the best performance and

energy efficiency.

In this chapter we propose a novel reconfigurable hybrid cache design (RHC).

Our design explores the use of NVM cache to replace the conventional all-SRAM

design in the last-level cache to efficiently reduce leakage energy. The proposed RHC

design supports reconfigurable SRAM/NVM size, with the capability of powering

on/off SRAM and NVM arrays in a way-based manner for better accommodation

of memory requirements from different workloads. Hardware-based mechanisms are

proposed to detect the cache demand for dynamic reconfiguration. On average, RHC

significantly saves 64%, 46% and 28% energy over a non-reconfigurable SRAM cache, a

non-reconfigurable hybrid cache and a reconfigurable SRAM cache, respectively, while

maintaining the system performance (at most, only a 4% performance overhead).

The remainder of the chapter are organized as follows. Section 3.2 introduces the

NVM technologies of both STT-RAM and PRAM. The architecture of the proposed

RHC is demontrated in Section 3.3. Section 3.4 describes our evaluation methodology,

and the evaluation results are shown in Section 3.5. Section 3.6 discusses the related
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work. Section 3.7 concludes the chapter and discusses the future work.

3.2 Background: STT-RAM and PRAM

Figure 3.1 shows the schematic views of an STT-RAM and a PRAM cell. Both of

them can be modeled as a 1T1R structure. In STT-RAM, a magnetic tunnel junction

(MTJ) is used as the information carrier. Each MTJ consists of two ferromagnetic

layers and one tunnel barrier layer. If the two ferromagnetic layers have different

magnetic directions, the MTJ resistance is high, representing a binary 1 state. If

the two ferromagnetic layers have the same direction, the MTJ resistance is low,

representing a binary 0 state.

The storage mechanism in PRAM relies on two stable states of phase-change ma-

terials (GST). The crystalline state has low resistance, representing binary 1 (set

state); the amorphous state has high resistance, representing binary 0 (reset state).

The GST can be converted from one state to another by applying heat. like chalco-

genide. Ge2Sb2Te5 (GST) is the most widely used chalcogenide.

Figure 3.1: A STT-RAM and a PRAM cell
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3.3 Reconfigurable Hybrid Cache Design

In this section we discuss the RHC design in the following way. First, we present

the architecture and circuit design of the RHC with disparate SRAM and NVM

technologies. Next, the reconfigurability support for the RHC is discussed. Finally,

we propose hardware-based schemes for dynamic reconfiguration.

3.3.1 Hybrid Cache Architecture

Figure 3.2 shows an overall structure of RHC. In RHC the data array is partitioned

into SRAM and NVM at a cache-way granularity. One concern of RHC design is that

the access latency of a NVM cell is longer than that of SRAM [165]. In a simple hybrid

cache design where the tag and data arrays of each cache way are implemented either

with all SRAM cells or NVM cells, the cache critical path will always be dominated by

the longer access latency to the NVM cache ways. To overcome this, RHC is designed

in the following way. First, the accesses to the tag array and data array are done

sequentially, (i.e., the data array will be accessed after the tag array). Such a serialized

tag/data array access has already been widely adopted in a modern low-level large-

scale cache for energy reduction. Second, the RHC tag array is fully implemented

with SRAM cells. In RHC, each tag entry contains only four bytes, including the

tag, coherence state bits, the dirty bits, etc., while each cache block in the data array

contains 64 bytes. Hence, the SRAM-based RHC tag array will not create a large

energy overhead.

The circuit design of RHC with STT-RAM as the NVM is as follows. First, an

STT-RAM cell has a bitline (BL) and a source-line (SL) for its operation. This is

similar to the bitlines (BL, BLB) used in SRAM. Therefore, the organization of an
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STT-RAM data array is almost the same as a SRAM data array. Second, the sense

amplifiers need to be modified due to the single-ended bitlines [65]. According to

a recent implementation [159] of an STT-RAM array, the reference voltage is 1.2V,

which is close to a SRAM-based design. Therefore, additional power-supply pins to

support the read/write accesses of the STT-RAM array may not be required.

Figure 3.2: Reconfigurable hybrid cache (RHC) design

3.3.2 RHC Reconfiguration Design

The reconfiguration in RHC is realized by powering on/off SRAM and NVM arrays

arbitrarily in a way-based manner. From an architectural point of view, the reconfig-

uration mechanism in RHC is similar to the existing way-based reconfigurable SRAM
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cache [12]. Data accesses will not be directed to a disabled cache way, thus those

ways in the data array dissipate no dynamic power. Note that the replacement deci-

sion logic within the cache controller must ensure that no data will be allocated to a

disabled cache way.

In Figure 3.3 we illustrate the power-gating design adopted in RHC. A centralized

power management unit (PMU ) is introduced to send sleep/wakeup signals to power

on/off each SRAM or NVM way. The power-gating circuits of each way in SRAM

tag/data arrays are implemented with NMOS sleep transistors to minimize the leak-

age. In this design the stacking effect of three NMOS transistors from the bitline to

GND substantially reduces leakage [137]. Note that in RHC, the SRAM cells in the

same cache way will be connected to a shared virtual GND while the virtual GNDs

among different cache ways are disconnected. This can ensure that the behaviors of

cache ways that are powered-on will not be influenced by the powering-off process in

other ways.

For the peripheral circuits, such as the row decoder, column decoders, word

drivers, and sense amplifiers, we use PMOS sleep transistors to implement the power-

gating design; this can provide better performance of the peripheral circuits in the

active mode [29]. Since the NVM cell itself consumes little leakage, we do not intro-

duce extra power-gating circuits for the cells of NVM data arrays. To power on/off

a NVM cache way, PMU will send a sleep/wakeup control signal to the peripheral

circuits of the corresponding NVM way. The design complexity of the PMU is highly

related to the adopted wakeup scheme. In this dissertation we assume a daisy-chain

wakeup scheme for each cache way [150]. For the PMU, we use Synopsys SAED 90nm

technology, which is the most advanced process technology available, to obtain the

energy and delay numbers. An RTL-level description of PMU is synthesized by Syn-
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opsys Design CompilerTM . The dynamic energy is 0.0135pJ for one reconfiguration,

while the leakage power is 1.0378uW. The delay of the PMU is 0.28ns. The overhead

of the PMU is small and thus can be neglected.

The overhead of the reconfiguration will be classified in the following two cate-

gories. First, when a cache way is disabled, the dirty blocks in that cache way need

to be written back to lower-level memory. This will introduce both performance and

energy overhead. Second, from a circuit-level perspective, the power-up process also

involves extra energy consumption. The reason for this is that the accumulated charge

during the standby mode in SRAM cells should be discharged.

Figure 3.3: Power-gating design for RHC

3.3.3 Dynamic Reconfiguration

In this section we propose two hardware schemes to utilize the reconfigurability pro-

vided by RHC. The main idea is to detect the cache demand dynamically and recon-

figure the RHC in a way-based manner to satisfy the demand. In the meantime, the
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powered-off cache ways can provide energy savings in leakage.

3.3.3.1 Way-Based Decay Scheme

The reconfiguration scheme includes two dynamic decisions: (1) when to power off

a cache way and (2) when to power on a cache way. To power off a cache way, we

utilize the cache decay idea [98], and introduce the novel way-based decay counters,

as shown in Figure 3.4. The main idea of cache decay is to power off a cache block

which is not accessed for a long time period to save leakage. This time period is called

the decay interval. Cache decay is implemented by a local 2-bit saturating counter

for each block with a global cycle counter. The local counter is incremented when

the global counter exceeds a certain number of clock cycles, which is used to model

the decay interval. The local counter is reset to zero when there is an access on this

block. Cache decay is initially used to provide a self-guided block-based power-on/off

mechanism [98]. However, it is not feasible for PMU to arbitrate reconfiguration at

the block-based granularity due to circuit design complexity. Therefore, we use the

way-based decay counter to measure the number of decay blocks in that cache way

during a time period. The way-based decay counter is incremented by one when any

local 2-bit counter in that cache way saturates. Similarly, when a local 2-bit counter

is reset to zero, the corresponding way-based decay counter is decreased by one. If

the value of a way-based decay counter exceeds a given threshold in a given time

period, such as 90% (used in this dissertation) of the blocks in that way, the whole

cache way will be powered off due to the low cache demand.

To detect the demand for powering on more cache ways, we keep the whole tag

array powered-on to record potential hits if those blocks are in RHC. The potential hit

counter is increased by one when a hit occurs on a tag entry whose corresponding data
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block is powered off (referred to as the victim tags [175, 49]). The victim tags reuse

the same tag array, which does not create extra storage overhead. The replacement

policy for the victim tags follows LRU policy. When the value of potential hit counter

is greater than a threshold, a cache way is powered on to reduce cache misses. We

denote this powering-on threshold as THon. Note that the power-on/off decision is

made for every one-million cycles in this dissertation. This time period is called

the reconfiguration period. Both the way-based decay counters and the potential hit

counter are reset to zero after the decision is made.

Figure 3.4: Counters for dynamic reconfiguration

3.3.3.2 Independent Potential Hit Counters Scheme

In this section, we provide an improved strategy to for dynamic reconfiguration. In

the way-based decay scheme, a large number of cache ways can be powered off simul-

taneously since each cache way is controlled independently. However, we observe that

this aggressive powering-off scheme may result in significant performance degradation

due to the increase of L2 cache misses especially when the decay interval is small,

such as one million cycles. Another potential problem is that a single decay interval
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cannot accurately capture the varied decay intervals of all cache blocks, which also

makes the way-based decay counter ineffective. When the decay interval is too large,

such as 100 millions cycles, most of the blocks are accessed once during that interval.

The powering-off decisions are seldom made and thus the energy reduction is limited.

The improved scheme takes both the hybrid nature of RHC and the aggressive

powering-off issue into consideration. Considering the hybrid nature of RHC, it is

beneficial to measure the cache demand for the SRAM and STT-RAM arrays inde-

pendently to better accommodate the cache demand. Therefore, we use two potential

hit counters to measure the cache demand of the SRAM and STT-RAM arrays inde-

pendently.

The powering-off strategy is different from that of the way-based decay scheme.

Here, we use the same potential hit counter to make the powering-off decision. We

introduce another powering-off threshold (THoff ). When the value of the potential

hit counter is less than or equal to THoff , a cache way can be powered off. Based

on the strategy, only one cache way can be powered off at a time period, and this

greatly reduces the chance of cache thrashing. However, according to our observa-

tion, this strategy still generates considerable cache misses. To mitigate the aggressive

powering-off strategy, we further restrict the powering-off condition. When the value

of the potential hit counter reaches THoff , we cannot power off a cache way imme-

diately. A cache way can only be powered off after ten consecutive reconfiguration

periods (ten-million cycles) have passed. Note that THon is set to 50 and THoff is

set to 0 for both SRAM and STT-RAM arrays for evaluation.

Furthermore, we consider the endurance of RHC when making decisions of recon-

figuration. We achieve this by randomly selecting the cache way from all possible

candidates. For example, when the decision is to power off a cache way, we will
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randomly pick the victim from all powered-on cache ways.

3.4 Evaluation Methodology

3.4.1 Performance and Energy Models

We evaluate the proposed RHC design on a simulation platform built upon Sim-

ics [124] with GEMS [126]. Simics and GEMS provide the full-system simulation ca-

pability, especially for simulating complex cache coherency protocols, such as MESI.

In Chapter 2 we proposed HC-Sim to simulate many cache configurations simulta-

neously for fast design space exploration. However, HC-Sim does not support fine-

grained multilevel coherent cache simulation. Therefore, we still adopt the conven-

tional full-system simulator for simulating hybrid caches.

Table 3.2 shows the parameters used in our model. The value K represents the

number of cache ways that are powered on in a specific L2 cache configuration, which

also equals the amount of “active” cache associativity. Notice that the configuration

of the processor core, L1 caches, and main memory remains the same through all

simulations.

For the energy of the memory technologies, we use the ITRS 32nm process model.

The SRAM and STT-RAM energy/latency numbers used in our simulations are ob-

tained from CACTI 6.5 [85] and the data scaled from [65], respectively. The en-

ergy numbers of a 4MB RHC and 2MB SRAM-based cache are listed in Table 3.3,

where Active and Standby correspond to the power-on and power-off state. The

standby leakage is estimated according to the ratio of active/standby leakage pre-

sented in [137]. This can be achieved through a careful power-gating design.
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Table 3.2: Simulation parameters

single-thread workload multi-thread workload

#Core 1 4

Core Sun UltraSPARC-III Cu processor core, 4GHz

L1 Cache 32KB per core for I/D caches

4-way, 64-byte block, 1-cycle latency

L2 Cache RHC: 1MB SRAM + 3MB STT-RAM

SRAM-based: 2MB

K-way (K≤16), 64-byte block

L2 Cache SRAM: 10 cycles

Access Lat. STT-RAM read/write: 11/30 cycles

Main Memory 4GB, 320-cycle access latency

3.4.2 Benchmarks

Our testbench consists of 16 benchmark applications, which have been carefully cho-

sen to represent memory-intensive algorithms in the fields of data processing, massive

communication, scientific computation and medical applications. The applications

include seven memory-intensive applications from SPEC2006 [88], four applications

from PARSEC [22], and five applications from the medical imaging domain [25].

3.4.3 Reference Designs

To evaluate the effectiveness of RHC, we compare RHC with a traditional SRAM-

based cache under the same area basis. RHC is set to 4MB, which is composed

of 1MB SRAM and 3MB STT-RAM, while the SRAM-based cache is set to 2MB.

This setting reflects the fact that STT-RAM is about four times denser than that of
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Table 3.3: Energy of 4MB RHC and 2MB SRAM-based cache

L2 Cache Tech. Dyn. energy Active Standby

Design per acc. (nJ) leak.(mW) leak.(mW)

4MB RHC SRAM 0.137 431.30 14.38

STT- Read: 0.278 116.92 3.897

RAM Write: 0.765

2MB SRAM 0.288 711.29 23.71

SRAM. The area of the data arrays in 4MB RHC is about 0.875X that of the 2MB

SRAM-based cache.

The associativity of both the 4MB RHC and 2MB SRAM-based cache are both

16-way. This setting provides the same reconfigurability on RHC and SRAM-based

cache. RHC has four SRAM ways and 12 STT-RAM ways, while the SRAM-based

cache has 16 SRAM ways. Both can be reconfigured from one cache way to 16

cache ways. To evaluate the effectiveness of RHC, we compare the performance and

energy of RHC with three reference points: (1) SC: non-reconfigurable 2MB SRAM-

based cache; (2) HC: non-reconfigurable 4MB hybrid cache (4-way SRAM + 12-way

STT-RAM); and (3) RSC: reconfigurable 2MB SRAM-based cache. Note that the

evaluation in Section 3.5.1 and Section 3.5.3 uses the scheme introduced in Section

3.3.3.2 for both RHC and RSC, while RSC uses a single potential hit counter.
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3.5 Experimental Results

3.5.1 Effectiveness of RHC

Figure 3.5 shows the comparison results of L2 cache miss rates. Compared to the

baseline SC, HC consistently has a lower miss rate (39% on average) because of the

2X larger cache capacity provided by the STT-RAM. But this consistent miss rate

improvement is realized at the cost of more energy consumption compared to RSC and

RHC, which will be discussed later. On the other hand, since RSC dynamically powers

off the cache ways—although this is done based on the cache pressure—the reduced

cache capacity consistently impairs the cache performance (77% more cache misses),

especially when the dynamic reconfiguration scheme can not accurately capture the

cache behavior. This can be observed in bzip2 and libquantum. Compared to the

baseline SC, there are two main scenarios with RHC: 1) for the cases where the

applications have relatively large working sets (such as bzip2, deblur and compressive

sensing), RHC can achieve a considerable miss rate reduction of 52% on average; 2)

for the cases where the applications have relatively small working sets which can be

held for a 2MB L2 cache, RHC will gradually power off half of the cache capacity.

But during this process, some of the cache blocks with long reuse distance will be

evicted, which results in slightly higher miss rates. Overall, RHC incurs 33% more

cache misses compared to SC.

Figure 3.6 shows the comparison results of system performance in terms of runtime

of the application on the system. These results are normalized to that of the baseline

SC scheme. The runtime difference of the four design schemes mainly comes from the

difference of the L2 cache miss rate. Compared to the baseline SC, HC consistently has

better performance (0% to 36% less runtime) because of its consistently smaller miss
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Figure 3.5: Comparison results of L2 cache miss rate

rate, while RSC consistently has worse performance (0% to 9% more runtime) due to

its consistently larger miss rate. For the cases where RHC can achieve considerable

L2 miss rate reduction, it also improves the performance (1% to 34% less runtime)

over SC. For the other cases, RHC incurs a slight performance overhead (0% to 4%

worse runtime).

Figure 3.6: Comparison results of runtime

When it comes to energy, the power of the dynamic reconfiguration begins to

show gain. Figure 3.7 shows the comparison of memory subsystem energy, The en-

ergy data is broken down into the L1 cache dynamic/leakage energy, and the L2 cache

SRAM/STT-RAM dynamic/leakage energy for detailed illustration of the energy dis-

tribution. These results are normalized to that of the baseline SC scheme. The SRAM

leakage dominates the memory subsystem energy in 32nm technology. Compared to
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the baseline SC, HC reduces energy by 24% to 53% (30% on average), because the

STT-RAM array consumes less leakage. In addition, HC consistently reduces the

runtime, which reduces the SRAM leakage. By dynamically powering off the cache

ways based on cache pressure, RSC can also reduce the energy by 7% to 88% (51%

on average). In cases of bzip2, deblur and compressive sensing where the powering-on

time of the remaining cache ways incurs an energy overhead which almost catches up

with the reduction of the leakage in the powering-off cache ways, the energy reduc-

tion of RSC is much smaller than the other cases. By dynamically powering off the

cache ways and maintaining the system performance, RHC achieves the least energy

use among all the design schemes since RHC inherits the advantages of both the low

leakage NVM array and dynamic reconfiguration to save leakage. It reduces energy

by 63%, 48%, 25% compared to baseline SC, HC and RSC, respectively.

Figure 3.7: Comparison results of memory subsystem energy

To better illustrate the gain over other design schemes in terms of both energy and

runtime, we use the metrics of energy-delay product (ED) to make the comparison,

where the delay means the runtime. Figure 3.8 shows the comparison results of this

metric over the four design schemes. All results are normalized to that of the baseline

SC. The proposed RHC achieves the best ED among all the design schemes. On

average, RHC improves the ED by 64%, 46%, and 28% compared to SC, HC and

RSC, respectively.
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Figure 3.8: Comparison results of ED product

3.5.2 Comparison of Two Dynamic Schemes

For the way-based decay scheme with independent potential hit counters (IPHC), we

evaluate three different decay intervals (1M, 10M, and 50M cycles). When the decay

interval is larger, more cache ways are powered-on to maintain the performance.

The largest interval we used is 50M cycles since the simulation results remain the

same even when we enlarge the decay interval. Figure 3.9 shows the comparison

results of runtime. The results are normalized to the baseline HC. The most critical

disadvantage of the way-based decay scheme comes from the significant performance

degradation, as shown in Figure 3.9. When the decay interval is set to 1M cycles, the

performance drops from 2% to 131% compared to HC. Even when the decay interval

is set to 50M cycles, swaptions still suffer from 27% performance degradation. In

contrast, IPHC can provide stable performance within a 4% degradation compared

to HC among all workloads.

Figure 3.10 shows the comparison of energy. IPHC can achieve better or at least

similar energy reduction compared to the cases of 10M and 50M decay intervals.

Therefore, IPHC can further provide energy savings when maintaining similar perfor-

mance compared to the 50M decay interval case. When the decay interval is set to 1M
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cycles, the way-based decay scheme achieves much better energy saving on bzip2, seg-

mentation, and comp. sensing. However, bzip2 and comp. sensing suffer from 122%

and 24.2% performance overhead compared to IPHC. In summary, IPHC provides

consistent performance compared to baseline HC while providing considerable energy

saving. The way-based decay scheme suffers from potential performance degradation

problems, and the choice of a suitable decay interval varies from workloads.

Figure 3.9: Comparison of runtime on two dynamic schemes

Figure 3.10: Comparison of energy on two dynamic schemes
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3.5.3 Endurance Analysis

Table 3.4 shows the endurance comparison between HC and RHC. The lifetime cal-

culation is based on the method from [92] and the write cycle is 4× 1012 [32]. RHC

can achieve from a 1.08X to 3.53X lifetime enhancement on most of the workloads ex-

cept bzip2, soplex, segmentation, and swaptions. For bzip2 and segmentation, the

lifetimes of our scheme are still in a reasonable range. Through the random selection

of powered-on/off victims, some write-intensive data blocks may have a chance to

be swapped out to main memory, and thus the pressures of the most write-intensive

cache blocks can be alleviated. Therefore, our reconfigurable scheme can achieve a

reasonable lifetime compared to HC even when available cache ways are decreased

due to reconfiguration. However, we observe the non-uniform distribution of write ac-

cesses as mentioned in the previous work [32, 92]. A suitable wear-leveling technique

is still required to achieve better endurance.

Table 3.4: Endurance comparison of 4MB non-reconfigurable hybrid cache (HC) and

4MB RHC (unit: year)

Workloads HC RHC Workloads HC RHC

bzip2 299.92 200.24 g.-deblure 76.68 116.36

mcf 8.40 29.68 registration 12.88 30.68

soplex 4.64 4.6 segmentation 537.32 256.4

libquantum 2.82 4.2 comp. sensing 3.28 3.56

h264ref 22.76 41.88 blackscholes 3.144 5.44

lbm 228.96 253 swaptions 7.36 3.4

astar 16.00 30.08 fluidanimate 107.76 118.56

r.-denoise 53.44 118.8 bodytrack 9.76 10.28
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3.6 Related Work

Because of the desirable characteristics on leakage power and density, NVMs have

recently been intensively investigated as an efficient alternative for either SRAM in

the on-chip caches or DRAM in main memory [165, 154, 65, 143, 107]. In [165], STT-

RAM and PRAM are used to implement the lower-level cache. Two types of hybrid

cache architectures are evaluated—inter-level and intra-level, in which NVMs are used

either as the entire L3 cache or the slow-accessed region in L2 cache. In [154], 3D

stacking STT-RAM is used to build a hybrid cache system with SRAM. The capacity

for STT-RAM to be used alone in L2 cache is evaluated in [65, 143]. However, none

of the prior work has considered dynamic powering on/off of SRAM and NVM arrays

to adapt to varied workloads. Recent work shows that the write performance of STT-

RAM can be improved by relaxing the retention time of STT-RAM cells. In [115],

the authors propose Cache-Coherence-Enabled Adaptive Refresh (CCear) to minimize

the number of refresh operations for volatile STT-RAM LLC to reduce refresh power.

Dynamically reconfigurable caches are investigated for pure SRAM caches to either

reduce the energy consumption via power gating [137, 173, 175, 98, 29], or provide

dynamic flexible support of software-managed memories to the core through a cache

line control bit [43, 49]. The key to these approaches is the dynamic assessment of

runtime cache pressure. In [137], researchers use a single miss counter to measure the

demand of an instruction cache to perform reconfiguration. Missing tags or victim

tags are used in [173, 175, 49] to assess the cache pressure. When a cache miss occurs,

the tag of the victim block will overwrite the LRU tag of the same set in victim tags

and will be marked as the MRU victim tag. If there is a cache miss and victim tag

hit, this indicates that a potential hit would occur if the requested block were held

in the cache. The authors in [98] use a time-based counter for each cache block,
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which will be reset once there is a hit to that block. When the counter maintaining

a non-zero status exceeds a given decaying period, the block will be turned off to

save leakage. However, none of the existing dynamic reconfiguration schemes have

considered hybrid memory technologies. In [29], an industry last-level cache design is

proposed while providing reconfigurability through the set-based architecture [137].

In recent work, EECache [42] proposes slice-based power-on/power-off decisions based

on three main factors: (1) utilization, (2) hotness, and (3) distribution of dirty cache

lines. The proposed data migration policy is used to reduce the miss penalty due to

the loss of data in powered-off slices.

To the best of our knowledge, this dissertation is the first work to explore the

dynamic cache reconfiguration for hybrid memory technologies in order to reduce the

cache energy consumption.

There is also work investigating endurance reduction for the NVMs. In [107, 140],

wear-leveling techniques are proposed for a PRAM-based memory system to enhance

the lifetime. Recent work in [32] uses periodic set-remapping to distribute the writes

among sets in a STT-RAM cache. Another study migrates the write-intensive cache

blocks to other cache lines in the same/different cache set or in the SRAM to reduce

the average write frequency of the STT-RAM (or PRAM) cache lines [92]. This

work is orthogonal and complementary to our proposed reconfigurable hybrid cache

designs.

3.7 Conclusions

We propose an energy-efficient last-level cache design—the reconfigurable hybrid

cache (RHC). In RHC different memory technologies (SRAM and NVM) are uni-
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fied at the same cache level to form a hybrid design, and power gating circuitry is

introduced to allow adaptive powering on/off of SRAM/NVM sub-arrays at way level.

Experimental results show that the proposed RHC achieves an average 63%, 48% and

25% energy saving over non-reconfigurable SRAM-based cache, non-reconfigurable

hybrid cache, and reconfigurable SRAM-based cache, while maintaining the system

performance (at most 4% performance overhead).

82



CHAPTER 4

Static and Dynamic Co-Optimizations for Block

Placement in Hybrid Caches for Energy and

Endurance

4.1 Introduction

In Chapter 3 we introduced the reconfigurable hybrid cache architecture and provided

optimization techniques to dynamically reconfigure hybrid caches for reducing leakage

consumption. In addition to the reconfiguration, the use of hybrid caches is still

limited by two important factors: endurance and high dynamic write energy on the

NVM cells. In this chapter we will provide static and dynamic co-optimization to

improve the endurance and reduce the dynamic write energy on NVM cells.

We select the STT-RAM as the NVM cells in hybrid caches. Compared to PRAM,

STT-RAM has significantly higher endurance (109 versus 1012 write cycles) and

shorter write latency [87], and is much more promising in the last-level cache design

[154, 165, 92, 32, 116, 37]. Moreover, due to the intensive writes of caches, hybrid

caches consisting of both SRAM and STT-RAM are investigated [154, 165, 92, 37],

where the SRAM can accommodate write-intensive data and the STT-RAM can

accommodate other data with its dense capacity.
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However, the STT-RAM endurance is still an important issue to be considered in

the last-level cache design. Although ITRS predicts that the write cycles of STT-RAM

will be 1015 at 2024 [87], the best available write cycles of STT-RAM are 4 x 1012 at

present [32]. Suppose we execute segmentation [25], a medical imaging application,

on a 4GHz CPU with 32 KB L1 cache, 2MB STT-RAM L2 cache continuously, the

lifetime of a STT-RAM cache can last only 2.17 years without any optimizations

applied. The endurance problem becomes even worse in the multilevel cell (MLC)

STT-RAM technology [32]. Block placement optimization is very important to shrink

the large endurance gap between STT-RAM and SRAM in a hybrid cache. Recent

work considers either static or dynamic schemes to optimize the block placement to

reduce the average write frequency to STT-RAM cells, while maintaining the overall

performance by making use of higher density of STT-RAM. Some of the proposed

approaches were targeted at PRAM, and those ideas can also be applied to STT-RAM

with the same objective.

The first category of the prior work uses static schemes. In [90] the authors

introduce data migration and recomputation to reduce the write frequency on PRAM

main memory. In [119] the partitioning of the application working set into SRAM

and PRAM can reduce 79% of the writes to PRAM.

The second category of the prior work uses dynamic schemes. Recent work in

[32] uses periodic set-remapping to distribute the writes among sets in a STT-RAM

cache. Another set of work migrates the write-intensive cache blocks to other cache

lines in the same/different cache set or in the SRAM in order to reduce the average

write frequency of the STT-RAM cache lines [92]. In [162], the authors use an access

pattern predictor to direct block placement and migration. The LLC write accesses

can be categorized into three classes: prefetch-write, demand-write, and core-write.

84



However, there exists intrinsic limitations in both approaches, which cannot be

resolved independently. The static optimization decisions are made at compile time

without run-time information; thus the compiler may generate misleading hints to

the hardware. On the other hand, pure dynamic optimization uses blocked-based

counter structures to learn the memory reference patterns on-the-fly. However, the

dynamic scheme lacks a global view of the whole program and has no knowledge of

future access patterns.

In this chapter we propose a combined approach in which the static and dynamic

optimizations can compensate each other. The compiler tries to provide data place-

ment hints to hardware to reduce STT-RAM write frequency, while the hardware is

designed to correct compiler hints based on runtime cache behavior. Experimental

results show that the combined scheme improves the endurance by 23.9x and 5.9x

compared to pure static and pure dynamic optimizations, respectively, while main-

taining similar performance. Furthermore, the system energy can be reduced by 17%

compared to pure dynamic optimization since STT-RAM writes are reduced through

initial placement from the proposed compiler flow.

4.2 Problem Formulation

In this chapter we assume that the L2 cache is a hybrid cache architecture with 4-way

SRAM and 12-way STT-RAM, which is similar to the setting described in [92, 37].

The block-level initial placement and dynamic migration is allowed to place the data

blocks in either SRAM or STT-RAM. The initial placement is given by the compiler

hints and the runtime cache pressure while the dynamic migration is designed with

hardware mechanisms. Our assumptions are described in detail in Section 4.4.1 and
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Section 4.4.3 for better illustration of our co-optimization strategy.

The objective of this chapter is to improve the endurance of the hybrid cache and

reduce system energy while maintaining performance through the combined scheme.

Another meaningful objective is to co-optimize performance and energy while under

the endurance constraint. A storage-efficient way to monitoring the endurance of each

cache block is required under the second scenario. The discussion of this formulation

is not included in this dissertation but may be worthwhile for further investigation.

4.3 Motivational Examples

In this section we use real-life examples to illustrate how pure static optimization

and dynamic optimization may produce sub-optimal block placement decisions in a

hybrid cache design.

The deficiency of pure static optimization comes from the fact that the runtime

write frequencies of L2 cache (which is the hybrid last-level cache in our evaluated

system) blocks are input-dependent, which cannot be fully obtained offline. First,

the input data may change the control flow of the program, and this will change the

write frequency of the data that are affected by the control flow variation. Second,

since part of the writes to the L2 cache come from the write-back operations from

the L1 caches, the compiler cannot accurately capture the L2 cache write behavior

with the existence of the L1 caches. For example, given the LRU replacement policy,

the data which is written fewer times in the code may be frequently evicted by the

L1 cache and behaves much more write-intensive in the L2 cache than other data

which are written more frequently. Note that the lifetime of the STT-RAM mainly

depends on the peak write count of all the cells [92, 32]. Even static optimizations
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can reduce the total STT-RAM writes compared to dynamic optimizations via global

optimization; the potential mis-predictions can still severely degrade the STT-RAM

lifetime, since there is no dynamic scheme to migrate mis-predicted write-intensive

blocks into SRAM. This causes a large peak write count to this cell. As an example,

Table 4.1 shows the STT-RAM cell write count distribution of the segmentation

application [25] for both of the pure static [119] and the pure dynamic [92] schemes.

The peak write count of static optimization is significantly larger than that of the

dynamic one.

Table 4.1: STT-RAM write count distribution

# writes 0-100 100-200 200-300 300-400 400-1000 1000-5000 > 5000 max

static 12262 6 5 0 0 10 5 5470

dynamic 12207 38 16 27 0 0 0 395

The deficiency of dynamic migration comes from the fact that it lacks the future

memory access information and highly relies on the application to exhibit a bipolar

L2 write frequency pattern—the L2 cache blocks are either rarely written or inten-

sively written. Then the write-intensive blocks can swap their places with the rarely

written blocks through dynamic migration. However, based on our observation, not

all the applications have such characteristics, especially in the three medical imaging

applications [25] used in our study. As shown in Figure 4.1, most of the blocks are

uniformly written 2-3 times. Under this circumstance, if the migration threshold is

set to be higher than 3, then there will be little migration; both the SRAM and

STT-RAM will be evenly written based on the LRU scheme, which may impair the

endurance. However, even if the migration threshold is set to be 2 or 3, the migration

for most blocks does not save any writes, since most blocks behave similarly. A cor-

rect approach is to place all these streaming accessed blocks into the SRAM, which
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can be obtained via static optimization in the compiler. After that, the expensive

writes on STT-RAM can be significantly reduced, and thus dynamic energy can be

reduced.

Figure 4.1: Write frequency distribution of the L2 cache blocks

To overcome these limitations, while taking advantage of both static and dynamic

schemes, we use a combined strategy: the compiler tries to guide the hardware in order

to rapidly achieve the desired placement, while the hardware corrects the compiler

hints based on the run-time cache behavior. To the best of our knowledge, we are

the first one to take such a hybrid approach.

4.4 The Combined Approach

4.4.1 Compiler Support

In this dissertation we develop an automatic compilation flow to generate data place-

ment hints for each memory reference. Here, we assume that LRU replacement policy

is used, and L2 is an inclusive cache with the same block size of L1, which is widely
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used in modern processors because of easy coherence implementation.

Similar to [119], our compiler tends to place write-intensive references into SRAM

and non-write-intensive data into STT-RAM. Based on our inclusive cache assump-

tion, the write accesses on L2 STT-RAM cells occur in only two situations: (1) L1

dirty evictions due to L1 cache replacement, and (2) L2 cache replacement. However,

the work in [119] assumes there is no cache in the memory system, and thus does not

consider the effect of higher-level (L1) cache on the memory access behavior. Figure

4.2 shows an example code and its corresponding memory access behavior. We can

find that both arrays A and B are written twice. However, since array A is more

frequently accessed and can be kept in the L1 cache (we assume LRU replacement

policy is used here), neither of the two writes falls into the L2 cache. On the other

hand, since array B is evicted from the L1 cache before its next access, one write-back

operation will be issued into L2.

Figure 4.2: One sample code and its memory access behavior

To capture this effect, we use the concept of memoryreusedistance (MRD) [64],

which equals the total size of unique data elements accessed between two references

to X. A larger memory reuse distance of X implies that X will not be accessed in

the near future, and thus X is more likely to be evicted from the L1 cache.

Definition1: For a write operation w of memory instruction X, assuming the

future access sequence of X is w, r1, r2, ..., rn, w′, etc., (r and w correspond to
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read and write operations), w is called an L1-writeback write if one of the following

conditions is satisfied: (1) there exists MRD(ri, ri+1) ¿ distL1 (i = 1, ..., n-1), (2)

MRD(rn, w′) ¿ distL1, (3) MRD(w, r1) ¿ distL1. (distL1 is the average reuse distance

to keep X in L1 cache.)

From Definition 1 we can see that if the memory reuse distance between two

accesses into a dirty data X is larger than a threshold value distL1, the compiler will

treat the first write (w) to X as a L1− writeback, since X will be written back into

L2. The other set of L2 write accesses comes from L2 misses, and data are written

into L2 from main memory. Here we use distL2 to indicate the average reuse distance

to keep X in L2 cache. For two adjacent accesses to X, if the memory reuse distance

between them is larger than distL2, the compiler will treat the second access as an

L2 miss, which will introduce one L2 write operation.

In our flow, we provide a 2-bit compiler hint for each memory instruction to

guide its data placement in L2 cache. For each access to reference X, we count the

total number of future L2 writes to X including both L1− writeback writes and L2

misses. If there are frequent L2 writes, our compiler will generate hint “01” for X.

On the other hand, hint “00” is generated to indicate that X will not be written

frequently. For those accesses that the compiler cannot analyze accurately (e.g., due

to unknown loop bound), hint “1x” is generated, and the data placement is controlled

by hardware. Note that a memory instruction in a regular loop is accessed multiple

times with repeated access patterns [50]; therefore we can apply the same hint to all

the accesses to it.

It should be noted that the compiler just tries its best to predict the write fre-

quency. The value of distL1 and distL2 can be obtained from profiling on represen-

tative input or set to a fixed value by default. However, it is not feasible to profile
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all input sets. In this dissertation a conservative approach is used to set distL1 to L1

set associativity. This can ensure that data X will not be evicted from L1 between

two accesses with reuse distance less than distL1. Since the compiler cannot make an

optimal decision without knowing the runtime cache behavior, these generated hints

may not be followed in the hardware. We will discuss our combined scheme in Section

4.4.3.1.

4.4.2 Compiler-Hardware Interface

In our implementation, the compiler passes the hints to the hardware through setting

two bits in the 32-bit instruction code. We assume that there are two extra bits

in each memory instruction that the compiler can use to assist the run-time cache

block replacement. Existing architectures already use these kinds of extra bits in the

instruction, such as the prefetch and evict − next instruction in the Alpha 21264.

We believe that in most architectures, the increasing speed gap between memory

and processor will justify the inclusion of additional bits in the instruction code to

facilitate the reduction of this gap.

Once a memory reference instruction is executed, if this is a L1 cache hit, these

2 bits will be discarded. If this is a L1 miss, then the bits will be passed to the L2

cache controller, if this is a L2 hit, then these 2 bits will be discarded; if this is a L2

miss, these 2 bits will be used as hints for the initial placement of the new block.

4.4.3 Hardware Support

In this chapter we use a 1MB 16-way hybrid cache including a 4-way SRAM data array

and a 12-way STT-RAM data array similar to the configurations used in [154, 92, 37].
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The asymmetric configuration is chosen since smaller SRAM contributes less leakage,

while the bigger STT-RAM provides the advantage of higher density. We use separate

replacement units on SRAM and STT-RAM in order to perform block replacement

in these two arrays independently. We also introduce a global replacement unit for

them in order to perform a global replacement among them if required. All of these

replacement units use LRU policy.

4.4.3.1 Capacity-Pressure and Compile-Hints-Based Initial Placement

The initial block placement decision is made based on both the compiler hint and

also the SRAM/STT-RAM capacity pressure monitored in the hardware.

Before discussing the decision-making process, we first show our capacity pressure

assessing hardware. To assess the SRAM/STT-RAM capacity pressure, we introduce

two additional hardware structures: missingtags (MTs) and MT counters. The

proposed structures are similar to the missing tags [173] and victim tags [49]. MTs

and MT counters are integrated with the tag array design, as shown in Figure 4.3. In

addition to the original 4-way SRAM tag array and the 12-way STT-RAM tag array,

4-way SRAM MTs and 4-way STT-RAM MTs are introduced. Moreover, for each

cache set, there are a SRAM MT counter and a STT-RAM MT counter, and these

counters indicate the capacity pressure of the SRAM and STT-RAM portions in that

cache set, respectively. Note that the sizes of MTs are the same for both SRAM and

STT-RAM arrays to provide similar pressure-monitoring criterion.

We use the SRAM MT to illustrate the MT and MT counter functionality, and

the STT-RAM MT and MT counter work in the same way. When a cache miss occurs

in the SRAM, the tag of the victim block will overwrite the LRU tag in the same
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Figure 4.3: SRAM and STT-RAM missing tag and counter

set in SRAM MTs and be marked as most recently reused tag. If there is a miss in

the SRAM array and there is a hit in the SRAM MTs, this indicates that a potential

hit will occur if the requested block were placed in STT-RAM. Then the SRAM MT

counter in the corresponding cache set is incremented by one.

We use an interval-based assessing approach, i.e., the value of the MT counters in

the current interval will be used to guide the initial placement in the next interval.

Considering the less-frequent access to the L2 cache, the interval length cannot be too

short, but it can also be too long in terms of timely assessment. In this dissertation

we set it to be 10K cycles. At the end of each 10K cycle, the value of all the MT

counters will be evaluated to fill the capacitypressuretable (CPT). The number of

entries of CPT equals the number of sets in the cache, and each entry contains two

bits: the SRAM capacity pressure and the STT-RAM capacity pressure of that cache

set. If the value of the SRAM (STT-RAM) MT counter of a cache set is greater

than a threshold, then the SRAM (STT-RAM) bit for that set in the CPT is set to

1 (high), and otherwise set to 0 (low). Then all the MT counters are reset to 0. In

the next interval, the CPT is accessed together with the compiler hints to decide the

initial block placement.
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Given the capacity pressure from the CPT and also the compiler hints, the L2

cache controller makes the initial placement as shown in Table 4.2. If a block is going

to be placed in SRAM (STT-RAM), then the LRU replacement unit of SRAM (STT-

RAM) will be triggered to evict the victim in that cache set of SRAM (STT-RAM).

If a block is going to be placed globally, the global LRU replacement unit is triggered

to evict the LRU block of all the SRAM and STT-RAM cache lines in that cache set.

Table 4.2: Initial placement decision based on compiler hints and SRAM/STT-RAM

capacity pressure

Capacity pressure Compiler hint

SRAM STT-RAM infrequent writes frequent writes unknown

High Low STT-RAM STT-RAM STT-RAM

Low High SRAM SRAM SRAM

High High STT-RAM SRAM Global

Low Low SRAM SRAM SRAM

4.4.3.2 Write-Frequency-Based Dynamic Migration

As pointed out in Section 4.4.1, the compiler hints are not absolutely accurate due to

the input variation and the L1 cache impact. Moreover, according to Section 4.4.3.1,

when capacity pressure unbalance occurs, blocks may be initially placed in the less-

intensive used portion of the hybrid cache, instead of based on the write-frequency of

the block itself, as shown in Table 4.2. Thus it is possible that a block is incorrectly

initially placed.

We use dynamic migration to correct the initial placement by migrating the actu-

ally write-intensive STT-RAM data blocks to SRAM. We use the dynamic migration
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scheme similar to [92], which is briefly described as follows. Each L2 cache block is

associated with a saturate 2-bit write counter to indicate the number of writes during

its on-chip lifetime. If the write counter of a STT-RAM block saturates (three writes),

the migration unit will check the write counters of the SRAM blocks in the same cache

set. If there is any counter that is less than 3, then the corresponding SRAM block is

swapped with that STT-RAM block. After that, all the write counters in this cache

set are reset to 0. If the counters of all the SRAM blocks in a set are saturated, no

migration will be performed. Therefore, the possibility that another write-intensive

block could be swapped from the SRAM back to STT-RAM is avoided.

In sum, in our combined approach, if the compiler provides correct hints, the

hardware can use them to rapidly achieve correct block placement. If the compiler

makes mis-predictions, the hardware corrects the compiler hints as shown in Table 4.3.

Note that all the hardware corrections are automatically triggered by our introduced

hardware counters.

Table 4.3: Hardware corrections to the compiler mistakes

Compiler mis-predictions Hardware corrections

a b c i ii iii

X X

X X

X X X

X X X X

X X X X

Compiler mis-predictions: (a) Mis-predicts some write-intensive blocks as non-

write-intensive. (b) Generates larger percent of non-write-intensive blocks than there
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actually is. (c) Generates larger percent of write-intensive blocks than there actually

is.

Hardware corrections: (i) Distributes blocks to STT-RAM. (ii) Distributes

blocks to SRAM. (iii) Migrates write-intensive blocks from STT-RAM to SRAM.

4.5 Evaluation Methodology

4.5.1 Compilation and Simulation Infrastructure

The compiler support for hint generation is implemented based on the LLVM com-

piler infrastructure [83]. Omega library [84] is used in this flow to perform memory

dependency analysis. Given a source program written in C/C++, we parse it into

LLVM IR using LLVM’s frontend. All standard optimizations in O3 are applied.

Our hint-generating flow is invoked as a pass on the optimized LLVM intermediate

representation (IR) code and will automatically generate data placement hints for

each load/store instruction. We also modify LLVM backend to emit hint-included

load/store instructions in the final assembly code. A potential issue of this LLVM

frontend analysis is that some load/store instructions cannot be captured in the IR

level. For example, the loads/stores in pre-compiled library functions cannot be an-

alyzed under this framework. Moreover, the loads/stores from the operating system

cannot be analyzed during compile time. Therefore, a hardware support mentioned

in Section 4.4.3 is required to provide better optimization.

We extend the full-system cycle-accurate Simics [124] and GEMS [126] simulation

platforms to model the proposed hardware support. The system configurations of

SIMICS/GEMS are shown in Table 4.4. We obtain the energy data of the SRAM
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Table 4.4: Simics/GEMS simulator configurations

Core Sun UltraSPARC-III Cu processor core

L1 Instruction/ 32KB, 2-way set-associative, 64-byte block,

Data Cache 2-cycle access latency, pseudo-LRU

L2 Cache 1MB, 16-way set-associative (4-way SRAM, 12-way STT-RAM),

(Hybrid cache) 64-byte block, access latency: 10-cycle for SRAM,

11-cycle (read) and 30-cycle (write) for STT-RAM

Main Memory 4GB, 320-cycle access latency

array and MTs/MT counters through Cacti 6.5 [131] with 32nm process technology

at 330K. The energy data of the STT-RAM array are obtained from NVSim [169].

Table 4.5 shows the energy model we use in our evaluation. Note that the low leakage

cells (itrs-lstp) are used in SRAM data array and tag array. For peripheral circuitry,

we use high performance cells (itrs-hp) to optimize performance and area. Note that

we also try to implement the peripheral circuitry with low leakage cells for further

leakage minimization. However, we observed that considerable area overhead may

arise since the width of an itrs-lstp transistor needs to be large enough to provide

enough current for STT-RAM write operation.

Table 4.5: Energy/power data of the evaluated hybrid cache

Read energy Write energy Leakage power

SRAM (4-way) 0.0603nJ 0.0603nJ 15.017mW

STT-RAM (12-way) 0.231nJ 1.306nJ 11.173mW

MTs (8-way) 0.0020nJ 0.0020nJ 2.805mW
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4.5.2 Benchmarks

Our testbenchs consist of eight benchmark applications, which have been carefully

chosen to represent-memory intensive algorithms in the fields of data processing, mas-

sive communication, scientific computation and medical applications. The benchmark

applications include three memory-intensive applications from SPEC2006 [88] (bzip2,

mcf and lbm) and five applications from the medical imaging domain [25].

4.5.3 Reference Schemes

To demonstrate the effectiveness of our combined scheme (combined), we compare it

to two representative prior approaches:

Pure static optimization (static): The hardware will strictly follow the compiler-

generated block placement hint. The compiler hints are generated based on the ap-

proach proposed in [119], and we further take the effect of L1 cache into consideration

using the techniques discussed in Section 4.4.1.

Pure dynamic optimization (dynamic): We use the dynamic migration scheme

proposed in [92]. Our dynamic migration scheme described in Section 4.4.3 follows

the same migration threshold used in [92]. The migration threshold is set to three.

There is no compiler hint in this scheme.

Note that the energy overhead of MTs and MT counters is only applied on the

combined scheme.
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4.6 Experimental Results

4.6.1 Endurance

In this work, we assume that the maximum write cycles of a STT-RAM cell is 4 x

1012 [32]. We assume that a workload continuously runs on the system. To model

the endurance in a more sophisticated way, one can provide a loading factor, which

is the percentage of the overall runtime occupied by the workload. The lifetime is

measured from the start of the simulation until the first STT-RAM line becomes

defective, which is similar to the estimation methodology proposed in [92, 32].

Figure 4.4 demonstrates the lifetime which is normalized to the static scheme.

The static scheme typically performs the worst among the three schemes (up to 1.2x

- 148x worse than the combined scheme). This is because once a compiler mis-predicts

a write-intensive block as a non-write-intensive one and places it into the STT-RAM,

this block will be intensively written, and there is no dynamic migration to mitigate

it. The lifetime of the STT-RAM mainly depends on the peak write count of the

cells. The exceptions are fft, lbm and denoise, where the program only has negligible

input-variation, so the static scheme can have a longer lifetime than the other two

schemes. Note that the static scheme can only reduce the total writes instead of

the peak write count among all blocks, as shown in Figure 4.5. Therefore, the static

scheme is the worst in terms of endurance, but it can save STT-RAM write energy,

which is discussed in Section 4.6.2.

With the dynamic migration to average the writes to STT-RAM blocks, the dy-

namic scheme achieves up to 14x improvement of lifetime compared to the static

scheme. However, the reduction of the peak write count of STT-RAM is accompanied

99



Figure 4.4: Comparison results of STT-RAM lifetime

with the cost of much more total STT-RAM writes, since it lacks global information

to reduce the total STT-RAM writes. Figure 4.5 shows that the dynamic scheme

has 1.6x - 36.6x more STT-RAM writes than the static scheme. In cases of fft and

lbm, the data blocks are all uniformly written less than 3 times on either SRAM or

STTRAM. Therefore, there is little migration in the dynamic scheme, and it has a

lifetime which is only 4% - 13% of that of the static scheme.

The combined scheme has a 1.6x - 14.7x lifetime compared to that of the dynamic

scheme. By following the correct compiler hints, the combined scheme rapidly achieves

the optimal block placement without additional migrations, especially in the cases

where most of the blocks are uniformly written less than two or three times, as shown

in the motivational examples in Section 4.3. This can save both the peak write count

and also the total writes of the STT-RAM. Although the combined scheme has 0.8x

- 4.1x more total STT-RAM writes than static, it achieves 1.2x - 148x lifetime due to

averaging the writes to the STT-RAM cells (except fft where static has a 1.8x longer

lifetime than combined).

100



Figure 4.5: Comparison results of total STT-RAM writes

4.6.2 Energy

Figure 4.6 shows the distribution of hybrid cache (L2 cache) energy that is normalized

to the static scheme. The leakage consumption of three schemes is similar. This is

because leakage is proportional to program runtime and the runtime (as shown in

Figure 4.7) of the three schemes is similar. Therefore, the key factor that influences

the system energy is the L2 STT-RAM dynamic energy. The static scheme has the

least energy, because the reduced STT-RAM writes (as shown in Figure 4.5) bring in

considerable dynamic energy savings. Without the hints of initial placement, a large

number of writes arises in the dynamic scheme, leading to 9% - 80% energy overhead

(38% overhead on average) compared to the static scheme.

The combined scheme achieves similar energy consumption to that of the static

scheme (7% - 20% energy overhead, 11% overhead on average) and outperforms the

dynamic scheme (2% - 39% energy reduction, 17% reduction on average). Note that

the energy overhead of the combined scheme comes from both the leakage of the
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introduced MTs and the extra dynamic STT-RAM writes energy compared to the

static scheme.

Figure 4.6: Comparison results of hybrid cache energy

4.6.3 Performance

Performance is measured by the runtime of a workload (in terms of number of clock

cycles obtained from our simulation infrastructure). Figure 4.7 shows the comparison

results of runtime that are normalized to the static scheme. Since the total cache

size for the three schemes is the same, the runtime does not vary significantly. The

differences among the three schemes come from how efficiently they make use of the

aggregate capacity of both SRAM and STT-RAM to reduce the cache misses. The

dynamic scheme typically performs the best due to the equivalent initial placement to

SRAM and STT-RAM, which best utilizes the STT-RAM capacity. As mentioned in

Section 4.4.3.1, the compiler may generate larger write-intensive data on SRAM due

to the input variation, thus imposing high-capacity pressure on the SRAM resulting

in high cache misses (as shown in Figure 4.8). Therefore, the static scheme performs
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-1% to 9% worse than the dynamic scheme (with a -1% to 30% increase in the L2

cache misses). The only exception is fft where static outperforms dynamic due to

accurate compiler hints.

Figure 4.7: Comparison results of runtime

In the combined scheme, the hardware can automatically correct the compiler

mis-predictions as discussed in Section 4.4.3. Therefore, it achieves a runtime similar

to that of the dynamic scheme (within a -5% to 5% variation). These analyses are

summarized in Table 4.6.

Table 4.6: Comparison summary of the experimental results

static dynamic combined

Endurance worst fair best

Performance fair best best

Energy best worst b̃est
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Figure 4.8: Comparison results of hybrid cache misses

4.6.4 Different Bit Widths of Write Counters

We perform the sensitivity analysis on different bit widths of the write saturation

counters in our proposed combined scheme. The write counters are used for dynamic

migration to improve the endurance. We justify that 2-bit counters are adequate

enough for write counters. Figure 4.9 shows that the lifetime can be significantly

enhanced in mcf, deblur, registration, and segmentation when 2-bit counters are ap-

plied. The 1-bit counters are inefficient since the SRAM blocks in the same set may

easily saturate and thus prevent the migration of write-intensive STT-RAM blocks

into SRAM ones. For the rest of workloads, the lifetime is insensitive to the bit width.

According to our experimental results, the bit widths of write counters are insensitive

to both energy and runtime among all workloads (less than 1% difference). In terms

of energy, the only exception is mcf, where most of write-intensive blocks cannot be

migrated into SRAM when 1-bit counters are used. Therefore, the STT-RAM en-

ergy increases by 15% in the 1-bit counters case compared to the others (2- to 5-bit).

For performance, it is insensitive to the widths of write counters since performance
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is maintained through cache capacity pressure monitoring, as described in Section

4.4.3.1.

Figure 4.9: STT-RAM lifetime over different bit widths

4.7 Conclusions

In this chapter a combined static and dynamic scheme is proposed to optimize the

block placement in a hybrid SRAM and STT-RAM cache, so that endurance and en-

ergy are co-maximized. The compiler tries to guide the hardware to rapidly achieve

the desired placement, while the hardware corrects the compiler hints based on the

runtime cache behavior. Experimental results show that the combined scheme im-

proves the endurance by 23.9x and 5.9x compared to pure static and pure dynamic

schemes, respectively, while maintaining similar performance. Meanwhile, the system

energy can be reduced by 17% compared to the pure dynamic scheme.
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CHAPTER 5

Accelerator-Rich Architectures and

ARAPrototyper

5.1 Introduction

The scaling of conventional multicore processors has been limited by the power and

utilization walls because most portions of future chips cannot be simultaneously pow-

ered up. This unpowered portion is referred to as dark silicon [67, 160]. Customized

acceleration [30, 31, 45, 77, 79, 102, 118, 139, 147, 160] has proved to be one of the

most promising solutions to address this issue. Compared to conventional general-

purpose processors, these customized accelerators can provide orders-of-magnitude

performance improvement and energy savings. Recently, more accelerators are be-

ing integrated into the general-purpose processors; this new architecture is referred

to as the accelerator-rich architecture (ARA) [53, 54, 122]. Due to the significant

performance and energy gains, numerous ARA efforts have been reported from both

academia (such as research in [53, 54, 122]) and industry (such as the IBM wire-speed

processors in server markets [72] and the Intel video streaming processors in consumer

markets [104]).

However, the accelerator-rich architectures (ARAs) are still in the early stages of
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development and many design issues, especially system-level issues, remain unclear

and difficult to evaluate. Examples include efficient accelerator resource management,

design choices of interconnect between accelerators and scratchpad buffers, intercon-

nect between scratchpad buffers and LLC or DRAM, efficient address translation

support, etc. Therefore, a research platform that can enable rapid ARA design space

explorations will be extremely useful.

In prior work, there are two major approaches used to explore the ARA design

spaces: 1) full-system simulation [52, 53, 54, 56, 77, 102], and 2) FPGA prototyping

[20, 34, 41, 45, 71, 118]. As shown in Figure 5.1, full-system simulators are very flexible

when changing configurations and require little development effort to conduct design

space explorations. However, the simulation time is very long and usually three to

four orders-of-magnitude slower than native execution. On the other hand, FPGA

prototyping provides rapid evaluation from real silicons, and it has gained increased

attention. An FPGA prototype is a realization of the targeted ASIC design, which

allows users to run real-life applications on the prototype at native speed and helps

developers to verify the robustness of the design before taping out a chip. However, the

tedious efforts for existing FPGA prototyping flows have impeded the wide adoption

of FPGA prototyping for architectural design space exploration. The goal of the

ARAPrototyper is to reduce the prototyping efforts to efforts that are manageable

and enable both rapid prototyping and rapid evaluation/verification for ARAs.

The major burden of FPGA prototyping for full-system evaluation involves sig-

nificant design, implementation, and verification efforts. A robust FPGA prototype

developed from scratch usually needs a very long development cycle because it re-

quires a wide range of background knowledge, such as hardware accelerator design,

system software stack support (including drivers), and application programming inter-
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Figure 5.1: Position of ARAPrototyper: rapid prototyping and evaluation for ARA

design space exploration (DSE).

faces (APIs) design. Existing FPGA prototypes, like LegUp [28, 27, 71, 78], CoRAM

[46, 47], and PARC/ARACompiler [34, 41], take years of engineering efforts for ini-

tial development and continuous improvement. An FPGA prototype developed for

architectural design space exploration purposes imposes more challenges. First, ar-

chitects usually want to explore different designs of ARAs or improve their ARAs

in an incremental way. To reduce their burden, we should design our ARAProto-

typer such that our baseline ARA prototype is highly reusable and customizable to

avoid rebuilding the system from scratch. Second, users may want to add their own

accelerators into the reusable baseline prototype for system-level evaluation, which

stil requires hundreds of lines of HLS code simply for integration in state-of-the-art

FPGA prototyping flows—such as our prior efforts, PARC [34] and ARACompiler

[41]. Therefore, a decent automation flow with a clean customization interface should

be provided so that users can change a few lines of code and push a button to generate

their own ARAs.

In this chapter we present ARAPrototyper, a prototyping flow to enable rapid

design space explorations for ARAs in native execution time. We choose the modern
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Xilinx Zynq SoC [89], which is composed of a dual-core ARM Cortex-A9 CPU and

FPGA fabrics,1 as our underlying prototyping platform. Recently, Xilinx proposed

the SDSoC development environment [166] to enable an automated design process for

the embedded system. However, it still cannot satisfy our need for rapidly prototyping

complex ARAs. To reduce the prototyping efforts for ARA design space explorations,

we provide the following features in ARAPrototyper.

1. We develop a reusable and highly customizable baseline prototype for users to

evaluate the performance of their ARAs. First, a shared memory architecture

has been provided as highly parameterized hardware templates in the baseline

prototype. Users can easily configure the interconnect topology between the

accelerators and buffers, the interconnect topology between buffers and LLC or

DRAM, coherency choice at LLC or DRAM, and TLB (translation-aside buffer)

sizes in the ARA specification file without writing RTL or HLS codes. Second, to

gain more insight into the performance evaluation, we add a few performance

counters at the accelerator side to monitor DRAM and TLB accesses. We

also leverage the existing performance counters on the ARM CPU. These can

significantly reduce system design efforts and improve the quality of evaluation.

2. To further reduce the efforts of the accelerator design, we support the inte-

gration of accelerators that are written in high-level synthesis (HLS) into our

ARAPrototyper. More importantly, we provide a clean accelerator integration

interface for users to integrate their own accelerators by abstracting away com-

mon functionalities such as issuing memory access requests and invoking address

1According to the Xilinx UltraScale MPSoC roadmap [167], the next generation of Zynq boards
will include a quad-core ARM CPU and ultra-scale FPGA fabrics which will enable the design space
explorations for even larger-scale ARAs.
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translations. Users just have to specify a few parameters and invoke the com-

putation kernels of their own accelerators. The whole flow to integrate users’

own accelerators with their customized ARA prototype is highly automated.

3. We provide a system software stack that supports users in compiling and run-

ning their applications seamlessly on their customized ARA prototype. For

users to quickly develop their applications that use the accelerators, we ab-

stract the accelerators as software libraries and provide them with user-friendly

C/C++ APIs to manipulate accelerators.

To demonstrate the above design space exploration capability of the ARAProto-

typer, we choose the medical imaging pipeline [25] as our main application domain

for case studies. In order to illustrate the manageable prototyping efforts, we further

integrate existing HLS-synthesisable accelerators from the widely used accelerator

benchmark suite MachSuite [144] into ARAPrototyper. Only a few lines of code

(LOCs) are needed for the integration compared to hundreds of LOCs in recent ARA

prototyping work such as PARC [34] and ARACompiler [41]. Finally, we also com-

pare the evaluation time of ARAPrototyper to that of the state-of-the-art full-system

ARA simulator PARADE [52] by running a set of common medical imaging applica-

tions with different input sizes. ARAPrototyper achieves a 4,000X to 10,000X faster

evaluation time. We believe that ARAPrototyper can be an attractive alternative

to current full-system simulators for rapid ARA design and evaluation. In summary,

this dissertation makes the following contributions:

1. Rapid FPGA prototyping for ARA design space explorations by providing a

highly customizable baseline prototype with performance counters, a clean in-

terface and automation flow to integrate the users’ own HLS-synthesisable ac-
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celerators, a system software stack and accelerator APIs to quickly develop

applications that can run seamlessly on the prototype.

2. Rapid evaluation of ARA designs in native execution time, which is about

4,000X to 10,000X faster than the state-of-the-art full-system ARA simulator

PARADE.

3. Case studies demonstrating ARAPrototyper’s capability for a wide range of

ARA design space explorations, manageable prototyping efforts, and rapid eval-

uation time.

5.2 Background and Motivation

Table 5.1 summarizes the evaluation methodologies in existing accelerator-related

research. Basically, we can divide them into two major categories: simulation-based

evaluation and FPGA prototyping-based evaluation.

The simulation methodologies can be further divided into the following four cat-

egories: 1) pre-RTL simulation [149], 2) RTL simulation [122, 147], 3) cycle-accurate

simulation [79, 139, 160], and 4) full-system cycle-accurate simulation [52, 53, 54,

56, 77, 102]. First, except for the pre-RTL simulation, all other simulations take a

very long evaluation time that is orders-of-magnitude slower than the native execu-

tion. Second, the pre-RTL simulator Aladdin [149] uses dynamic data dependence

graphs to model an accelerator, where the model depends on the input changes.

More importantly, Aladdin only simulates the accelerator itself and lacks integra-

tion with full-system simulators to enable system-level exploration. Third, except

for PARADE [52], all (full-system) cycle-accurate simulators also need to implement

the accelerator design in RTL, which results in tedious efforts. Finally, PARADE is
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Table 5.1: Evaluation methodologies in existing accelerator-related research.

Full-system Methodology Related work

N pre-RTL simulation Aladdin [149]

N
RTL simulation AccStore [122]

with SPICE models Sonic Millip3De [147]

N
Cycle-accurate H.264 [79] Convolution Engines [139]

simulation Conservation Cores [160]

Y

Full-system Walker [102] DySER [77]

cycle-accurate ARC [54] CHARM [53]

simulation BiN [56] PARADE [52]

N
FPGA LegUp [28][27][78]

prototyping FPCA [57] CoRAM [46][47]

Y
Full-system FPGA DySER [20] TSSP [118] LINQits [45]

Prototyping PARC [34] ARACompiler [41]

the state-of-the-art full-system cycle-accurate ARA simulator that provides various

design space exploration choices. PARADE extends the widely used gem5 [23] sim-

ulator with HLS support to reduce the efforts of modeling the accelerators. We will

compare the evaluation time of our ARAPrototyper to PARADE in Section 5.6.2.

Compared to the long-running simulation, FPGA prototyping [20, 28, 27, 34, 41,

45, 57, 71, 78, 118] is gradually gaining increased attention because it enables native

measurement of the performance and power in real silicons. However, the tedious

prototyping efforts impede the wide adoption of FPGA prototyping for ARA design

and evaluation. In this chapter we exploit full-system FPGA prototyping to enable

rapid design space explorations for the emerging ARAs. Our goal of ARAPrototyper
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is to reduce the tedious prototyping efforts far down to manageable efforts.

5.2.1 Comparison to Recent Prototyping Work

In this subsection we compare the ARAPrototyper to the four most related proto-

typing systems: PARC [34], ARACompiler [41], LegUp [28, 27, 71, 78], and CoRAM

[46, 47]. In addition, we also discuss commercial accelerator design tools such as

Xilinx SDSoC [166].

1. PARC [34]. PARC is our first-generation FPGA prototype designed to eval-

uate the ARA architecture described in [54]. ARAPrototyper shares some

methodologies that are similar to PARC: the integration with high-level synthe-

sis flow, shared memory architecture, and accelerator API support. However,

ARAPrototyper provides many more new features. First, ARAPrototyper sig-

nificantly reduces the prototyping efforts (hundreds of LOCs to a few LOCs as

compared in Section 5.6.3) by providing a clean accelerator integration interface

and automation flow. Second, ARAPrototyper significantly enlarges the scope

of design space explorations for ARAs: 1) it adds the customizable intercon-

nect layer between buffers and DRAM ports to explore the efficiency of off-chip

accesses; 2) it adds the coherency choice at either LLC or DRAM. Third, ARA-

Prototyper adds performance counter support to provide more insights into the

performance evaluation. Finally, ARAPrototyper is implemented in the newer

Xilinx Zynq SoC board [89] and has stronger ARM processor support (PARC

uses a much weaker MicroBlaze processor), and thus models a real-life ARA

more closely.

2. ARACompiler [41]. The ARACompiler is our early enhanced version over
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PARC, and lies in the middle between PARC and ARAPrototyper. Compared

to ARACompiler, ARAPrototyper has the advantages of 1) manageable pro-

totyping efforts (quantitative comparison of efforts will be presented in Sec-

tion 5.6.3) and 2) performance counter support to provide more insights, as

explained above. More importantly, ARACompiler [41] is published as a poster

paper. This discussion of ARAPrototyper provides many more implementation

details and extensive design space explorations, which can provide more insights

to the community.

3. LegUp [28, 27, 71, 78]. LegUp takes a standard C program as input and au-

tomatically compiles the program into a hybrid architecture with a MIPS soft

processor and customized accelerators. The more recent update [71] uses an

ARM processor in the Altera FPGA-SoC and can take OpenMP and pthread

functions as input. LegUp can perform self-profiling on the processor and iden-

tify program sections that would benefit from hardware acceleration. The iden-

tified sections are synthesized by its own HLS engine. Compared to LegUp,

ARAPrototyper takes a different design philosophy. ARAPrototyper allows

users to design the accelerators themselves (also adopted in [27]) or leverage ex-

isting accelerators that other hardware developers provided. More importantly,

ARAPrototyper models the emerging ARA architectures that have the global

accelerator management (GAM), customizable interconnect between accelera-

tors and buffers, interconnect between buffers and DRAMs, coherency choice at

LLC or DRAM, etc. In addition, ARAPrototyper adds the performance counter

support to provide more insights into ARA design space explorations. This is

totally from a different perspective and none of these ARAPrototyper features

are supported by LegUp.
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4. CoRAM [46, 47]. The goal of CoRAM is to provide a scalable and portable

memory architecture so that designers can focus on the accelerator design in-

stead of building the memory architecture from scratch. A 2D-mesh intercon-

nect is used to provide the connectivity between CoRAM blocks, which is differ-

ent from the partial crossbar architecture explored in ARAPrototyper. CoRAM

provides the flexibility for designers to customize the on-chip SRAM blocks into

caches, FIFOs or buffers. But designers still need to expend considerable effort

to design these customized memories, which impedes the goal of rapid proto-

typing and evaluation. Similar to LegUp, the full-system evaluation capability

is not supported. Instead, ARAPrototyper provides the capability to observe

interactions between hardware and OS, such as the performance impacts on

TLB misses, which enlarges the scope of design space explorations.

5. Commercial tools [166]. FPGA vendors also provide tools to design and pro-

totype customized SoCs. For example, designers can use Xilinx SDSoC [166] to

build their own accelerators using FPGA fabrics that work together with hard

ARM cores. However, it does not support most features that an ARA needs,

such as the global accelerator manager, customized interconnect between accel-

erators, buffers, and DRAM, performance counters, to name just a few. ARA-

Prototyper provides a reusable baseline with highly customizable parameters for

a typical ARA, and provides easy accelerator integration for rapid prototyping.

5.3 The Baseline ARA Prototype

We first present an overview of the ARA that we are prototyping, based on the

architecture proposed in [54, 56]. As shown in Figure 5.2, the ARA mainly contains
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Figure 5.2: ARA overview: accelerator plane and processor plane.

two planes: 1) the accelerator plane, and 2) the processor plane. The accelerator plane

is composed of the heterogeneous accelerators, the ARA memory system to support

the high memory demand of accelerators, and IOMMU for address translation. The

processor plane is composed of a conventional multicore processor with a multilevel

cache. From a system perspective, the user applications are launched in the processor

plane, and the compute-intensive tasks can be offloaded to the accelerator plane. The

system software stack acts as the interface between the two planes. It provides the

services of reservations, starts, and releases for the accelerators. The system software

stack is implemented in the privileged mode and transparent to users.

Next, in our baseline ARA prototype, we will present the detailed design of the

customizable ARA memory system in the accelerator plane and the system software

stack connecting the two planes. To gain more insights into the performance evalu-
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ation, we also add a few more performance counters in the accelerator plane, while

we can leverage the existing performance counters for the processor plane. Finally,

we will introduce some important features of Xilinx Zynq SoC [89], which is used for

ARA prototyping.

5.3.1 ARA Memory System

The ARAPrototyper can generate a shared memory (buffer) architecture for het-

erogeneous accelerators to share the on-chip memory resources, which is similar to

the architectures discussed in [56, 122]. We believe the on-chip memories need to

be shared when the number of accelerators increases. To share on-chip memory re-

sources, we provide a customized two-layer interconnect, which can be synthesized

automatically by specifying the parameters in the hardware templates. We also pro-

vide the flexibility if users desire to fully customize the interconnects, even to support

private buffers.

Figure 5.3 presents the accelerator plane and its ARA memory system design in de-

tail. The major components include 1) heterogeneous accelerators, 2) homogeneous

shared buffers, 3) direct memory access controllers (DMACs), 4) physical memory

ports, 5) a customized partial crossbar between accelerators and buffers, 6) a cus-

tomized interleaved network between buffers and DMACs, and 7) an input/output

memory management unit (IOMMU) and a dedicated TLB. We can have different

types and different numbers of accelerators of each type. Each type of accelerator has

its own input and output port demands. Each port can connect to one or multiple

buffers based on the generated partial crossbar topology.

The ARAPrototyper provides a pool of homogeneous buffers to be shared by the
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Figure 5.3: Accelerator plane and the ARA memory system.

accelerators. Before computation, an accelerator needs to send requests to IOMMU

to perform page translations. After that, IOMMU assigns corresponding DMACs

to issue memory requests to fetch data through physical memory ports (MPs). The

off-chip long burst requests are interleaved with the interleaved network to minimize

possible conflicts. The memory requests are at the page granularity (4KB). The buffer

size is 16KB by default, but can be configured by users.

5.3.1.1 Customizable Optimal Partial Crossbar

The goal of the partial crossbar is to provide sufficient connectivity between the

accelerators and shared buffers. The partial crossbar avoids extra arbitration cycles

that occur in a conventional bus. Therefore, a deep-pipelined accelerator can achieve
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initiation interval (II) as low as one with the partial crossbar support. Figure 5.4

demonstrates a real interconnect topology generated from ARAPrototyper. In this

example, the accelerator plane contains six heterogeneous accelerators. The numbers

inside each parentheses represent the assigned buffer IDs to the accelerator, which

forms the topology of the customized partial crossbar. When an accelerator is reserved

by an application, the accelerator has the privilege of using the assigned buffers as its

own local buffers. The accelerator can fetch one element from each buffer per cycle

(II = 1) since a dedicated connection is built.

Figure 5.4: A real example of the interconnect topology generated from ARAProto-

typer.

The ARAPrototyper provides a built-in optimization flow [33] for the customized

partial crossbar. This optimizer takes the number of ports of each accelerator and the

number of shared buffers as input. Designers need to provide the maximum number of
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simultaneous active accelerators as another constraint. The number of simultaneous

active accelerators can influence 1) the power budget and 2) the complexity of the

partial crossbar, which reflect the two important design criteria—dynamic power and

area. Our optimizer can guarantee the optimality of the crossbar with the minimum

number of cross points based on the input and constraints. In PARC [60], the authors

can generate an optimal crossbar topology when the number of accelerator ports of

each accelerator are equal. In ARAPrototyper, we provide a more generalized optimal

partial crossbar design for accelerators with heterogeneous port demands. Buffer

demand information can also be reported by our built-in optimizer.

5.3.1.2 Private Buffer Architecture Support

Though we mainly target the shared buffer architecture as previously explained, ARA-

Prototyper also supports the private buffer architecture: each accelerator has its own

buffers without sharing. Users can simply set the number of shared buffers to be

equal to the number of ports of all accelerators. In this case, the shared buffer archi-

tecture is customized to the private buffers while still benefiting from the interleaved

network. This can be used to evaluate an ARA with abundant buffer resources and

a large power budget.

5.3.1.3 Customizable Interleaved Network

The main purpose for an interleaved network is to minimize possible conflicts for the

long off-chip burst requests. An accelerator usually issues multiple requests simulta-

neously to prefetch data from the off-chip DRAM to on-chip buffers for near-future

computation. For example, in a stencil computation, multiple data elements, e.g., five
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or seven, are required for a single computation. These data are prefetched into buffers

in advance. If the simultaneous requests are not distributed evenly across physical

memory ports, significant performance degradation can occur. First, an accelerator

can start to work only when all required data are prefetched into its buffers. Second,

a memory request is at the page granularity (4KB), and thus the latency is very large.

The uneven distribution of requests can cause serious delay for the pending requests.

Figure 5.4 shows how the interleaved network successfully distributed four simul-

taneous accesses into four DMACs. Note that the topology of the interleaved network

depends on the topology of the customized partial crossbar. In ARAPrototyper, we

support two design strategies for design space exploration: 1) interleaving the requests

within an accelerator, and 2) interleaving the inter-accelerator requests.

5.3.1.4 Coherency Choice at LLC or DRAM

The ARAPrototyper supports two types of coherency. Users can select either one in

our flow. First, the ARA memory system can be coherent with the last-level cache

(LLC) residing in the processor plane. In this case, users do not need to worry about

the coherency. Second, the ARA memory system can directly exchange data with

the off-chip DRAM (i.e., coherent at DRAM). Compared to the LLC coherent case,

the burst DMA transfer may provide higher memory bandwidth because of larger

burst sizes and more physical memory ports. However, users need to invalidate the

corresponding cache lines if the data is updated in the DRAM.
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5.3.1.5 TLB Support in IOMMU

Since accelerators in an ARA share the physical memory with the processor and use

virtual memory for simplicity, a hardware IOMMU and a dedicated TLB are provided

in the accelerator plane to support the virtual to physical address translation. The

TLB size is configurable by users. We leverage the system software stack to handle

a TLB miss, which will be explained in Section 5.3.2.4. To gain more insights, we

also add two performance counters to monitor the TLB accesses and TLB misses.

Since in our cases, the data is accessed consecutively in a streaming fashion, we can

also use the TLB access counter to calculate the total DRAM accesses and achieved

memory bandwidth from the accelerator plane. One can add a DRAM access counter

if necessary.

5.3.2 System Software Stack

Figure 5.5 presents an overview of the ARA system software stack. ARAPrototyper

can automatically generate the related software modules based on the ARA specifi-

cation file. The five major components in the system software stack are: 1) global

accelerator manager (GAM), 2) dynamic buffer allocator (DBA), 3) coherence man-

ager, 4) TLB miss handler, and 5) performance monitor (PM). Next, we present more

details of these components. Users may further customize the software stack based

on their needs.
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Figure 5.5: System software stack and the interactions with the ARA and user ap-

plications.

5.3.2.1 Global Accelerator Manager

GAM is responsible for 1) interfacing with user applications, 2) accelerator resource

management and task scheduling, and 3) requesting buffer resources. User applica-

tions can talk to GAM with the provided APIs, which will be discussed in Section 5.5.

In GAM, we use a table to keep track of the available accelerators of each type. The

incoming requests from user applications are scheduled in a first-come, first-serve ba-

sis. GAM would make requests for the shared buffer resources to the dynamic buffer

allocator before reserving a target accelerator.
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5.3.2.2 Dynamic Buffer Allocator

In the shared buffer architecture, discussed in Section 5.3.1, a buffer bank can be

shared by multiple accelerator ports. DBA is in charge of the dynamic buffer assign-

ment during runtime based on the requests from user applications. Static assignment,

such as the work in [34], can no longer handle the dynamic cases and can limit the

framework scalability for evaluation.

DBA receives the buffer requests from GAM. As shown in Figure 5.6, DBA uses

a list structure, called task list, to store the requests that have not been processed.

With information of the incoming tasks, DBA is able to provide different kinds of

allocation policies to influence task scheduling. Users are able to modify the allocation

policy of DBA based on their demand; this is done by modifying the policies, such as

throughput-driven or deadline-driven scheduling, to manipulate the task list.

Figure 5.6: Dynamic buffer allocation: a starvation-free scheme.

In ARAPrototyper, we provide a starvation-free buffer allocation policy, as illus-

trated in Figure 5.6. The tasks come in numerical order. It is possible that Acc5 can
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starve since Acc2, Acc3, and Acc4 occupy the buffers to serve the continuous incoming

tasks. To prevent starvation, we use two flags for each buffer: occupied and reserved.

A buffer can only be allocated by DBA when the buffer is neither occupied nor re-

served. When a buffer is assigned to an accelerator, it will be marked as occupied.

The reserved flag is used when a buffer is occupied but another accelerator would like

to reserve it. The starvation can be resolved by providing the “reserved” privilege

only for the task at the head of the task list. This guarantees that the task at the head

can always occupy or reserve the required buffers. After that, the algorithm greedily

allocates buffers to the tasks in the task list in order until no feasible allocation can

be found. This algorithm is lightweighted, and the overhead is negligible.

5.3.2.3 Coherency Manager

The RAPrototyper offers a coherency manager for coarse-grained software-based co-

herence handling. When users try to directly write data to DRAM for higher memory

bandwidth, the overlapping pages residing in multilevel caches in the processor need

to be invalidated. We abstract the cache invalidation details in the coherency man-

ager in our system software, so users only need to call the coherency manger to handle

the possible coherency issue.

5.3.2.4 TLB Miss Handler

For the TLB misses arising from the accelerators, we currently use a software-based

handler to handle the miss. To reduce overhead incurred in the communication be-

tween IOMMU and the TLB miss handler in the privileged mode, IOMMU groups

multiple TLB misses and sends them to the handler together. Instead of using the
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slow kernel API to do page translation, we write our own version by leveraging the

ARM architecture support for page table walk. Table 5.2 shows our profiling results

on the average TLB miss handling time. Our efficient walker reduces the miss penalty

from 4278 cycles to 458 cycles, and thus performance degradation from TLB misses

in an ARA can be significantly reduced.

Table 5.2: Average TLB miss penalty; kernel APIs vs. software page table walk

(Acc@100MHz).

Microblaze Cortex-A9 Cortex-A9

Method Kernel APIs Kernel APIs pgtwalk

Freq. 100MHz 667MHz 667MHz

Cycles 4975 4278 458

Time(us) 49.75 6.41 0.69

We are also considering implementing a hardware-based page walker. It can be

a scalable version when the number of accelerators is large. However, the hardware-

based walker in our Zynq board [89] can lead to three sequential DRAM accesses (600

cycles) per TLB miss because of the walk on multilevel page tables.

5.3.2.5 Performance Monitor

To provide more insights into the system bottleneck analysis, we add performance

counters in the IOMMU so that the TLB hit/miss events and memory bandwidth

can be monitored on-the-fly, as mentioned in Section 5.3.1.5. We add a PM module

in the system software stack to handle requests from applications and interact with the

IOMMU to monitor or reset the performance counters. These performance counters

can provide more in-depth performance characterization in addition to simple runtime
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numbers. The impacts of different architecture parameters can also be observed and

analyzed.

In addition to using the accelerator-side performance counters supported by PM,

users can also use OProfile [135] to obtain the performance counter information inside

CPU cores. We successfully ported OProfile on top of our ARA baseline prototype

under the Zynq platform.

5.3.3 Prototyping Platform: Xilinx Zynq SoC

We choose the Xilinx Zynq ZC706 evaluation board [89] with 1GB DRAM as our

underlying prototyping platform. Figure 5.7 shows the architecture of Zynq SoC. It

is composed of FPGA fabrics for accelerator implementation and a dual-core ARM

for the system software implementation. The FPGA contains around 2MB on-chip

block RAM, which can be used to implement the shared buffers. User applications

can be launched on the ARM processor with Linux support. The Zynq architecture

has the following advantages to support ARAPrototyper.

1. Faster processor cores. The hard ARM cores can run up to 800MHz, which

is much more efficient than the soft Microblaze cores synthesized from FPGA.

Linux can be ported on ARM cores and executed fluently. The system soft-

ware stack provided in ARAPrototyper, including global accelerator manager,

dynamic buffer allocator, coherence manager, TLB miss handler, and perfor-

mance monitor, can all leverage the faster processor.

2. A coherent LLC support. The dual-core ARM provides a shared L2 cache.

The shared buffers can be coherent with L2 cache through the accelerator-

coherent port (ACP). This provides an alternative ARA design opportunity (as
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Figure 5.7: The prototyping platform: Xilinx Zynq SoC. (Taken and modified from

the Xilinx website.)

described in Section 5.3.1.4).

3. A fast ASIC on-chip memory controller. The ASIC on-chip memory con-

troller provides higher memory bandwidth compared to a memory controller

synthesized in FPGA. In order to efficiently exploit the available memory band-

width, Zynq provides four high-performance (HP) ports in FPGA fabrics. This

gives us opportunities to explore the topology of the interleaved network to

better utilize the off-chip bandwidth.

Prior PARC work [34] is prototyped on the ML605 board with Virtex 6 FPGA.

Compared to the Virtex 6 with only FPGA fabrics, Zynq SoC enables a wider range

of ARA design explorations.
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5.4 Design Automation Flow and ARA Customization Inter-

face

The main challenge to architectural design space exploration through FPGA proto-

typing is the long development cycle for each generation of an ARA, which requires

extensive coding in RTL. To further reduce the prototyping efforts, we develop a

highly automated design flow for users to customize the baseline ARA prototype and

integrate their own accelerators. Users only have to configure an ARA specification

XML file to customize their ARA, and specify a few parameters in the acceleration

integration interface to add their own accelerators that are written in HLS. Our de-

sign flow can automatically generate users’ customized ARAs and deploy them on

the underlying FPGA prototyping platforms.

5.4.1 Design Automation Flow

We classify the components in the ARA prototype into the following three parts.

1. Platform-specific modules. The platform-specific modules are mainly bonded

to the hard modules in the FPGA chip and evaluation platform (board), such as

the dual-core ARM processor. ARAPrototyper can adapt to different platforms,

and thus users can spend minimum effort on the platform issues.

2. Platform-independent modules. The platform-independent modules in-

clude two-layer interconnects, shared buffers, IOMMU and TLB, and DMACs,

which are the major components in the ARA memory system. ARAProto-

typer provides highly parameterized hardware templates for these platform-

independent components. Users can easily customize them in the ARA specifi-
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cation file that will be explained in Section 5.4.2.

3. User-designed accelerators. In the ARAPrototyper, we provide a group

of highly optimized accelerators in the medical imaging pipeline that will be

further explained in Section 5.6. Users can easily develop their own accelerators

in HLS. Furthermore, we provide a clean accelerator integration interface (to

be explained in Section 5.4.3) for users to easily add their own accelerator into

our ARAPrototyper.

Figure 5.8: ARAPrototyper design automation flow.

Figure 5.8 presents our design automation flow. It begins with the ARA spec-

ification file, and all following steps can be executed automatically upon a single

“make” button. In the left branch, we apply ARA memory system optimizations to

our platform-independent modules by using the configurations in the ARA specifica-
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tion file. This is combined with our hardware templates to create the ARA memory

system. In the middle branch, HLS tools are applied to user-designed accelerators

coded in C/C++ for generating RTL designs. In the right branch, the platform in-

formation is used to generate platform-specific modules. Depending on the target

platform, e.g., Xilinx Zynq FPGA in our case, the flow can be seamlessly integrated

with the corresponding back-end process (e.g., Xilinx PlanAhead flow for bitstream

generation).

5.4.2 ARA Specification File

The ARA specification file is provided for users to specify components and config-

ure the parameters in the accelerator plane. Users can easily evaluate their new

accelerators by integrating them into the reusable baseline prototype, and perform

system-level design space explorations. This is composed of six major sections: 1)

accelerator specification (including the number of read and write ports and the num-

ber of parameters sent from the application), 2) the number of shared buffers and

DMACs, 3) two-layer interconnects configurations, 4) IOMMU configurations, 5) co-

herence type, and 6) target frequency. The ARA specification file is recorded in

a XML format, with an example shown in Listing 5.1. Users can easily modify it

on top of the XML template we provide, including (1) accelerator specification, (2)

shared buffer and DMAC specification, (3) interconnect specification, (4) IOMMU

specification, (5) coherence specification, and (6) target frequency.

<system>

<ACCs>

<acc type=” grad i en t ” num=”2” num params=”5”>

<port s i z e=”16K” num=”6”/>

</ acc>
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<acc type=” segmentat ion ” num=”1” num params=”13”>

<port s i z e=”16K” num=”8”/>

</ acc>

<acc type=” r i c i a n ” num=”1” num params=”7”>

<port s i z e=”16K” num=”12”/>

</ acc>

<acc type=” gauss ian ” num=”1” num params=”7”>

<port s i z e=”16K” num=”5”/>

</ acc>

</ACCs>

<SharedBuf fe r s s i z e=”16K” num=”32” numDMACs=”4”/>

<I n t e r connec t s>

<ACCs to Buffers type=” c ro s sba r ” c o n n e c t i v i t y=”3” auto=”1”/>

<Buffers to DMACs type=” i n t e r l e a v e d ” use=”1” auto=”1”/>

</ In t e r connec t s>

<IOMMU>

<TLB s i z e=”8K” e v i c t=”LRU”/>

<IOMMU/>

<CoherentCache use=”0” />

<AccFrequency hz=”75MHz” />

</ system>

Listing 5.1: An example ARA specification file created for design space exploration

with four types of accelerators via ARAPrototyper.

5.4.3 Accelerator Integration Interface

In order to further reduce the development cycle of adding users’ own accelerators,

ARAPrototyper supports the integration of accelerators developed in HLS. Moreover,

ARAPrototyper provides a clean accelerator integration interface that only needs a
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few lines of code to integrate users’ own accelerators.

Accelerator development in HLS. Design productivity of accelerators can be

improved by raising the level of design abstraction beyond RTL. HLS tools [51, 168]

enable automatic synthesis of high-level, untimed or partially timed specifications

(such as in C, C++, or SystemC) to low-level cycle-accurate RTL code. As reported

in [51], the code density can be easily reduced by 7 to 10X when moved to high-level

specification in C, C++, or SystemC, and at the same time, resource usage can also

be reduced by 11 to 31% in an HLS solution, compared to a hand-coded RTL design.

Figure 5.9: Accelerator integration template in HLS-compatible C.

Accelerator integration interface. To allow users to easily integrate existing

accelerators into the ARAPrototyper, we provide the following flow. First, designers

need to specify the accelerator port information in the ARA specification file, such

as the number of parameters sent from CPU and the number of demanded buffers.
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Next, our tool can generate the port names and the corresponding HLS pragma for

the control and data ports between the accelerator, IOMMU, and CPU automatically

using the ARA specification file. This generated file in HLS-compatible C format is

called accelerator integration template, as shown in Figure 5.9. Designers need to

place the computation kernel and the invoking of read and write memory requests

explicitly in the corresponding locations in the template.

Control and data ports are generated as function parameters in the HLS codes.

There are three kinds of ports. First, the input parameters sent from CPU (such as

“vaddr port0”) are generated. These parameters are sent from the CPU through the

AXI-Lite port and are stored in the registers of the accelerator. Second, the commu-

nication channel (“IOMMU FIFO”) realized by FIFO is generated. The accelerator

uses the FIFO to send read and write requests to IOMMU to fetch data from DRAM

(or L2 cache) to its own buffers and write data back from its own buffers to DRAM

(or L2). Third, the ports to input and output buffers such as “port0” and “port1” are

generated. These ports are connected to the shared buffers through the automatically

synthesized crossbar described in Section 5.3.1.1.

The only changes that designers need to specify are the memory requests in reading

data from DRAM (or L2 cache) and writing data back to DRAM (or L2) in the ac-

celerator integration template. For example, a memory request (“memory request0”)

needs to be specified explicitly before the computational kernel reads data from its

own buffer. Similarly, the output results need to be written back after computation

is done in “memory request1.” This only involves a few lines of code (LOCs) change.

As shown in Figure 5.9, after the existing accelerator computation kernel is plugged

in, only the two lines with “Req Length0” and “Req Length1” (shown in red color

and bold italic font) are added. Detailed prototyping efforts (LOCs) will be presented
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in Section 5.6.3.

5.5 Application Development API

To enable rapid development of applications that use the accelerators in ARAPro-

totyper, we abstract accelerators as software libraries and provide the user-friendly

C/C++ APIs. With the information provided by the ARA specification file, ARA-

Prototyper can automatically generate the header file of accelerator APIs for pro-

grammers, which is similar to [34][41]. For each type of accelerator, we provide the

following APIs with fine-grained accelerator control as done in ARACompiler [41]: 1)

reserve(), 2) check reserved(), 3) send param(), 4) check done(), and 5) free(). Users

can develop their applications with the C++ classes and member functions to manip-

ulate the accelerators in the ARA. After applications are developed, users can simply

set up a g++ cross compiler to compile applications into ARM executable, which can

be seamlessly executed on the ported Linux on the Zynq board.

Figure 5.10(a) is an application code example using an accelerator. The appli-

cation can first use the reserve() function to make requests to GAM for reserving

an accelerator. After the reservation is confirmed, the required parameters are sent

through the send param() function, and the accelerator will be started. The applica-

tion should periodically check the status of accelerators with check done(). Once the

accelerator finishes its task, it should be freed for future use. With these APIs, a pro-

grammer can explore more complicated settings, such as using multiple accelerators

simultaneously in the user application.

Compared to ARACompiler [41], ARAPrototyper provides a simplified API, called

run(), which is intended for software developers who do not want to dig into the
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Figure 5.10: Code examples of using APIs to develop applications.

hardware accelerator details. This API covers the functionality, from reserving to

releasing the accelerator using a single function. Figure 5.10(b) is a code example,

which achieves the same functionality as the code of Figure 5.10(a).
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As presented in Section 5.3.2.5, ARAPrototyper provides a PM module to monitor

performance counters added in our prototype. We provide several APIs built on top of

the PM module so that designers can use these APIs to monitor those key performance

counters for analyzing and improving the ARA design. Figure 5.10(c) shows how TLB

accesses and misses can be monitored by using the provided APIs.

Figure 5.11: Code examples of using APIs to develop applications when utilizing

more than one accelerator in the ARA.

Furthermore, programmers can write a complex application by using the provided
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APIs. Figure 5.11 shows an example where a programmer can start two accelerators

simultaneously. This allows users to explore the latency and the throughput when

more than one accelerator is used in the given ARA.

5.6 Experimental Results

In this section we present a quantitative evaluation of the rapid evaluation time and

manageable prototyping efforts of ARAPrototyper for ARA design space explorations.

We choose the medical imaging processing pipeline as our target application domain.

To demonstrate the capability and usage of ARAPrototyper, we conduct a number

of case studies for ARA design explorations.

5.6.1 Target Domain: Medical Imaging

The target application domain we choose to accelerate is primarily the medical imag-

ing processing pipeline, which is one of the most important application domains in

personalized medical care. This pipeline is used to process the raw data obtained

from computerized tomography (CT) [25]. We are motivated to accelerate it with

a scenario in which a doctor is able to show the CT analysis interactively to pa-

tients with a tablet. Current mobile processors without accelerators cannot provide

real-time and energy-efficient solutions.

The medical imaging pipeline can be divided into the following stages. After

image reconstruction, it will 1) remove noise and blur; 2) align the current image with

previous images from an individual; and 3) segment a region of interest for diagnosis

[25]. The three tasks can be implemented by four accelerator kernels: gradient,
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gaussian, rician, and segmentation. In the following subsections, we will mainly

demonstrate the benefits of ARAPrototyper using these four accelerator kernels for

case studies.

5.6.2 Evaluation Time

Figure 5.12: Evaluation time on ARAPrototyper and PARADE.

To demonstrate the rapid evaluation time of ARAPrototyper, we compare it

against the state-of-the-art full-system ARA simulator PARADE [52] for a typical

ARA configuration. Figure 5.12 compares the execution time of two common medi-

cal imaging applications with different input sizes on ARAPrototyper and PARADE.

For the larger input size, it takes a couple of days for PARADE to simulate one

single ARA configuration, while it only takes a minute or so for ARAPrototyper to

run the configuration. We should mention that our flow generation time (generating

the ARA configuration to the FPGA bitstream) takes around four hours, but it is

a one-time effort for one ARA configuration that can run multiple applications with

multiple inputs. Usually, the native executions on our FPGA prototype are 4,000X

to 10,000X faster than full-system simulations, and we believe ARAPrototyper can
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be an attractive alternative for design space explorations.

5.6.3 Prototyping Efforts

To demonstrate the manageable prototyping efforts of ARAPrototyper, we present

the lines of code (LOCs) that users have to change or add to customize their own

ARA using existing accelerators or integrating their own accelerators.

We first present LOCs for users to configure their own ARA by leveraging our

reusable baseline prototype and existing accelerators. As shown in Table 5.3, users

can simply configure the ARA specification file with up to 33 lines of XML code to

set up the parameters of the shared memory architecture and operating frequency.

There is no C/C++ description or RTL code required. Users can start the push-

button ARAPrototyper flow after the specification file is set to obtain an FPGA

prototype in hours. We also present the LOCs for automatically generated RTL from

the baseline prototype in Table 5.3, which is more than 37,000 lines. It reflects the

huge engineering efforts required if everything is built from scratch.

Table 5.3: Lines of code (LOCs) to customize users’ own ARA prototype using exist-

ing accelerators.

# line of XML code

input ARA description file 33

components # line of RTL code

IOMMU 21407

automatically crossbar 1526

generated top module 14253

total 37186
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Next, we present LOCs for users to integrate their own accelerators. To demon-

strate the benefits of reduced prototyping efforts of ARAPrototyper compared to prior

work such as PARC [34] and ARACompiler [41], we also include them for a quan-

titative comparison. Table 5.4 presents the LOCs to integrate our medical imaging

accelerators and third-party MachSuite [144] accelerator kernels into PARC/ARA-

Compiler/ARAPrototyper, including total generated RTL code, total HLS C/C++

code, kernel-only HLS code, and integration-only code. We include eight more accel-

erator kernels from a widely used third-party accelerator benchmark suite MachSuite

to better illustrate our manageable prototyping efforts.2 As shown in Table 5.4,

compared to the hundreds of LOCs for accelerator integration in PARC and ARA-

Compiler, users only need to add a few LOCs (most of the time less than 10 LOCs)

to integrate their own accelerators into ARAPrototyper due to its clean accelerator

integration interface and automation flow.

5.6.4 Design Space Exploration

To demonstrate the capability and use of ARAPrototyper, we conduct the following

case studies for ARA design explorations.

5.6.4.1 Private vs. Shared Buffer Architecture

First, users can configure the ARAPrototyper to achieve either a private or shared

buffer architecture (as explained in Section 5.3.1.1 and Section 5.3.1.2). To demon-

strate this, we use an example ARA with a total of five accelerators. In the private

2We do not include MachSuite accelerators for more studies because their performance is far
below optimal. However, users can engage in further accelerator microarchitecture explorations
based on ARAPrototyper.
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Table 5.4: Lines of code (LOCs) to integrate medical imaging and third-party Mach-

Suite kernels into PARC/ARACompiler/ARAPrototyper, including total generated

RTL code, total HLS C/C++ code, kernel only HLS code, and integration-only code.

Domain
Accelerator

Total Total
Kernel

PARC/ ARA-

RTL HLS ARACompiler Prototyper

Integration Integration

gaussian 15107 513 363 150 5

Medical gradient 32538 778 616 162 6

Imaging segmentation 63857 1304 1070 234 8

rician 42291 1140 850 290 12

FFT/TRANSPOSE 17072 530 412 118 4

GEMM/NCUBED 3201 121 23 98 3

GEMM/BLOCKED 5226 158 20 138 5

MachSuite KMP/KMP 3593 167 45 122 4

[144] MD/KNN 7023 243 53 190 7

(third-party) SORT/MERGE 2996 128 54 74 2

SPMV/CRS 4080 160 18 142 5

VITERBI/VITERBI 4212 177 35 142 5

buffer architecture, each accelerator needs its own buffer resources, regardless of how

many of the accelerators are simultaneously powered on dynamically. While in the

shared one, with the maximum number of simultaneously powered-on accelerators in

mind, we can allocate the minimum buffer resources to support any combination of
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Figure 5.13: Buffer consumption: private vs. shared buffer arch.

accelerators running. Figure 5.13 shows that the shared buffer architecture can use

much less physical buffer resources (thus less area and power) when not all accelera-

tors are running simultaneously. On the other hand, if the shared buffer architecture

is designed to support at most four simultaneous accelerators, but users need to run

five tasks, then it would degrade the performance by 12.6% compared to the private

buffer architecture (with 15.6% less buffer resources) based on our profiling.

5.6.4.2 Interleaved Network: Inter-Acc vs. Intra-Acc

Second, ARAPrototyper provides the flexibility for users to evaluate different inter-

connects between buffers and DRAM. Users can (statically) configure this intercon-

nect to interleave inter-accelerators to achieve fairness among accelerators or within

an accelerator to achieve better performance for the accelerator, as explained in Sec-

tion 5.3.1.3. Figure 5.14(a) presents the performance of inter-accelerator and intra-

accelerator interleaved networks for our medical imaging accelerators. As discussed
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Figure 5.14: Evaluation on (a) performance and (b) memory bandwidth between

Inter-Acc and Intra-Acc interleaving networks.

in Section 5.3.1.3, the intra-accelerator interleaving can prevent the case in which all

long-burst requests from the accelerator are issued to the same DMACs.

To gain more insights into this performance speedup, we further compare the

achieved bandwidth of both cases; this can be obtained using the added performance

counters in ARAPrototyper. As shown in Figure 5.14(b), intra-accelerator interleav-
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ing can achieve better bandwidth than inter-accelerator interleaving in our case, and

thus achieves better performance. We can also observe that the available memory

bandwidth is not the performance bottleneck. When we launch two, three, or four

accelerators simultaneously, the utilized memory bandwidth still increases. Note that

gaussian is a special case since it only fetches four pages of data, and thus the impact

is negligible.

5.6.4.3 Coherency Choices

Third, ARAPrototyper provides the flexibility for coherency choices at either LLC or

DRAM depending on the application locality. Figure 5.15(a) presents the performance

of both coherency choices. In our case, coherency at DRAM achieves up to 1.7X

performance speedup compared to coherency at LLC. The major reason is that our

medical imaging applications behave in a streaming fashion and have poor locality

at LLC. Another reason is due to current Zynq board limitation, where the LLC has

only one port while DRAM has four ports. As a result, coherency at DRAM can

achieve higher bandwidth, as shown in Figure 5.15(b).

5.6.4.4 Impact of TLB sizes

Fourth, The ARAPrototyper provides the flexibility for users to configure different

TLB sizes. In addition, we also provide performance counters in ARAPrototyper to

get the number of TLB accesses and misses for further performance analysis. A TLB

miss handling (in software) penalty can also be collected in our system software stack.

Figure 5.16(a) and Figure 5.16(b) present the TLB miss rate and TLB miss handling

penalty (in terms of percentage of total execution time) for different TLB sizes. In
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Figure 5.15: Evaluation on (a) performance and (b) memory bandwidth for different

coherency choices.

our case, we choose 32K TLB entries in the design since the TLB miss rate and

miss handling penalty will stop to shrink after this point. Another point we want to

mention is that TLB misses can cause up to a penalty of 24% of the whole execution

time in an ARA due to the streaming access behavior and accelerated computation.

Therefore, this needs more attention to address translation support when designing

an ARA compared to a general-purpose CPU.
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Figure 5.16: The impact of TLB sizes on: (a) TLB miss rates and (b) TLB miss

penalty over total runtime.

5.6.4.5 Accelerator Microarchitecture Exploration

Finally, without loss of generality, users can conduct accelerator microchitecture ex-

plorations such as 1) algorithm-level changes, and 2) HLS pragmas tuning. Actually,
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Figure 5.17: Evaluation of accelerator data reuse optimization: (a) the ratio of com-

putation in total runtime; (b) performance speedup.

ARAPrototyper makes the accelerator microarchitecture explorations easier by pro-

viding more profiling statistics through performance counters and pointing out the

optimization directions.

In this subsection we demonstrate a data reuse optimization for accelerators mo-

tivated by the profiled low computation percentage of total execution time in initial

accelerator design. As shown in Figure 5.17(a), in our initial accelerator design, before
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data reuse optimization, the computation ratio is below 40% for most accelerators,

which suggests the accelerators are not fully utilized but are waiting for data. There-

fore, we apply the data reuse optimization presented in [58] to the accelerators. After

this optimization, the computation ratio can be significantly increased, in most of

the cases above 80%. As shown in Figure 5.17(b), the data reuse optimization can

achieve up to 6X performance speedup.

5.7 Conclusions

In this work we designed and implemented ARAPrototyper to enable rapid design

space explorations for ARAs in FPGA prototypes with manageable efforts. Design-

ers can easily integrate their HLS-compatible accelerator designs into our reusable

baseline prototype for a few lines of code, and customize their own ARAs with up

to 33 lines of XML code. The memory system of our ARA prototype is highly cus-

tomizable and enables numerous design space explorations with insights provided by

our added performance counters. Furthermore, we provide user-friendly APIs and

the underlying system software stack for users to quickly develop their applications

and deploy them seamlessly on our prototype. Finally ARAPrototyper achieves a

4,000X to 10,000X faster evaluation time than full-system simulations. We believe

that ARAPrototyper can be an attractive alternative for ARA design and evaluation.

The success of ARAPrototyper involves continuous development efforts from our

lab. ARAPrototyper inherits some key features in [34] but provides significant mod-

ifications to adapt to the Zynq platform in order to support efficient full-system

evaluation. The design of the accelerator integration interface in Section 5.4.3 is a

collaborative effort between Peipei Zhou and myself. I also thank Dr. Fang for his
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feedback on improving ARAPrototyper.
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CHAPTER 6

Memory System Optimizations for

Accelerator-Rich Architectures

6.1 Introduction

In Chapter 5 we discussed the high-level view of ARAs. We also discussed how to use

ARAPrototyper to prototype and evaluate ARA performance and energy efficiently.

In this chapter we will discuss the details of the ARA memory system synthesis, which

is the key for building an efficient ARA.

Accelerators improve performance by exploiting the application parallelism and

data locality. An accelerator utilizes customized and deep pipelines to process a

series of data. To maximize performance, the accelerator is usually designed with its

initiation interval (II) to be one, i.e., fully pipelined to maximize its throughput. To

enable a fully pipelined design, an accelerator must be able to simultaneously fetch

multiple data elements from all its owned memory banks within one cycle. This can

be easily achieved if all accelerators have their own private memory banks. However,

as the number of accelerators in an ARA increases, the on-chip memory resource

needs to be shared. The interconnects between the accelerators and shared memory

banks have to provide (1) sufficient connectivity, and (2) the fixed one-cycle latency.
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Figure 6.1 shows three conventional on-chip shared memory architectures. Multi-

level caches (Figure 6.1(a)) are commonly used in multi-core processors. However, the

fixed latency demand cannot be met since a cache miss can lead to uncertain access

latency. Furthermore, a cache may not be able to service a number of simultaneous

requests efficiently, even if interval banking is performed. A conventional SoC uses

a system bus (Figure 6.1(b)) to share memory resource. However, when the number

of devices increases, significant arbitration latency and area overhead to synthesize

memory interfaces become the bottleneck [60]. Other interconnect topologies, such

as ring and mesh, usually cannot meet the one-cycle latency constraint. A partial

crossbar, shown in Figure 6.1(c), can provide sufficient connectivity and the one-cycle

latency with moderate area overhead. In this dissertation we conduct optimization

for the partial crossbar for heterogeneous accelerators.

Figure 6.1: Three conventional on-chip shared memory architectures.

Another important issue is how to efficiently fetch the data from off-chip memory.

In CPU cores, the off-chip memory accesses are issued when misses occur in the last-

level caches. An accelerator improves performance by grouping a series of memory

accesses together into a burst request and then issuing multiple long burst requests

to prefetch data into its own on-chip memory banks. In an ARA, it is common to

have multiple memory ports to fully use the available memory bandwidth. However,

if multiple burst requests are issued to the same interface, the outstanding requests
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must wait.

In this chapter we aim to design the interconnects to satisfy the need for sufficient

connectivity, fixed latency, and efficient off-chip prefetching capabilities for the shared

ARA memory system.

Our contributions can be summarized as follows:

• An Optimal Partial Crossbar Between Heterogeneous Accelerators

and Memory Banks: Assuming the number of accelerators that can be

simultaneously powered on is bounded, we provide a novel algorithm to synthe-

size the interconnect between heterogeneous accelerators and memory banks as

a partial crossbar with the minimum number of switches. Also, the number of

required memory banks is minimum. Compared to the state-of-the-art synthesis

algorithm [60], we further generalize the optimal solution for accelerators with

heterogeneous memory bank demands.

• Interleaved Network Between Memory Banks and Memory Inter-

faces: We generate the interleaved network to interleave the simultaneous

long burst requests to limited memory interfaces based on the proposed opti-

mal partial crossbar topology. Performance can thus be significantly improved

when request conflicts are reduced.

We first evaluate our synthesis algorithm by comparing the number of switches in

the partial crossbar with [60], the full-capacity crossbar and full crossbar. Based on

experimental results, we can reduce more than 45% of switches compared to the work

in [60]. To validate the effectiveness of the reduction of switches, we synthesize our

partial crossbar design with 30 accelerators on the Xilinx Zynq platform. Our method

can reduce 47% of switches, 53% of LUTs and 34% of slices when compared to [60].
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We further demonstrate the efficiency of our interleaved network through a real ARA

prototype with heterogeneous medical imaging accelerators. The interleaved network

can reduce the execution time 36% - 52% by improving the prefetching process. The

ARA prototype also shows a 7.44x energy efficiency gain over the state-of-the-art

Xeon processors.

6.2 Preliminary

6.2.1 Accelerator-Rich Architectures

An ARA is composed of the general-purpose cores, heterogeneous accelerators, on-

chip memories, and interconnects [160, 122, 55, 41], as discussed in Section 5.3. Figure

6.2 demonstrates the accelerator plane of an ARA, which can be decomposed into the

following components: (1) heterogeneous accelerators, (2) shared memory banks, (3)

direct memory access controllers (DMACs), (4) physical memory ports (interfaces),

and (5) two layers of interconnects [41]. The heterogeneous accelerators can have a

different number of memory bank demands. For example, Acc1 needs four memory

banks, while Acc2 requires six. These heterogeneous demands make the design of

interconnects more difficult than that of the “homogeneous” demands.

In the dark silicon era, the power wall limits the number of transistors that can be

powered on simultaneously. For an accelerator island, the power budget is determined

by (1) the number of powered-on accelerators at a certain time period, and (2) the

number of memory banks in this island. The number of powered-on accelerators leads

to the dynamic power consumption [60], while the number of memory banks signifi-

cantly contributes to leakage power [122]. Therefore, the number of on-chip memory
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banks and the maximum number of powered-on accelerators should be limited under

a given power budget.

Figure 6.2: An accelerator-rich architecture (ARA)—the accelerator plane.

6.2.2 Limitations of Existing Methods and Motivation

The authors in [109] summarized the complexity for several types of crossbar designs,

such as the full-capacity crossbar [132], for general signal routing in FPGA. However,

these methods are not efficient enough when the constraint on the number of powered-

on accelerators is considered. The work in [60] first investigated the partial crossbar

synthesis when the power budget is limited, which is the work that is most relevant

to ours. However, the method proposed in [60] can only generate the minimum

partial crossbar for accelerators with homogeneous memory bank demands, as shown
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in Figure 6.3(a). The homogeneous bank demands do not match the heterogeneity

nature of accelerators. Therefore, we are motivated to synthesize the minimum partial

crossbar for accelerators with heterogeneous bank demands, as shown in Figure 6.3(b).

Figure 6.3: Limitation of the previous partial crossbar synthesis method.

The crossbar (bus matrix) is also used to provide sufficient connectivity for buses

in high-performance systems [95]. The crossbar network is usually designed in a

cascaded fashion, while providing full connectivity [96] or partial connectivity [95].

However, this design style cannot meet the demand for accelerators to fetch multiple

data every cycle to maintain high throughput. Similarly, the network-on-chip (NoC)

topologies [18][148] and the combination of buses and NoC [61] for large-scale multi-

core processors cannot satisfy the high-throughput need.

In this dissertation the first important question that we address is how to synthe-

size the interconnects between heterogeneous accelerators and shared memory banks.

We use the configurable partial crossbar to provide one-cycle fixed latency and guar-

anteed connectivity. The second question is how to design an interleaved network

between memory banks and DMACs based on the optimal partial crossbar topology.

The topology synthesis in this layer has not been considered together with a given

partial crossbar topology from the existing work.
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6.3 Optimal Partial Crossbar Design

In this section we first discuss the crossbar configurability and then define the problem

formulation of the partial crossbar synthesis. Following that, we propose a novel

algorithm to synthesize the optimal partial crossbar between the accelerators and the

shared memory banks. The algorithm guarantees that the number of switches in the

partial crossbar is minimum, while supporting at least any c accelerators in the island

that can be simultaneously powered on. For simplicity of discussion, we summarize

the key notations used in this chapter in Table 6.1.

Table 6.1: Major notations

Notation Explanation

n the number of heterogeneous accelerators in the island

ai

accelerator i, 1 ≤ i ≤ n

{a1, a2, ..., an} are sorted in descending order

based on the memory bank demand

di the number of memory bank demand of ai

c the number of simultaneous powered-on accelerators

m the number of shared memory banks

bi memory bank i, 1 ≤ i ≤ m

k the number of DMACs and MPs

6.3.1 Crossbar Configurability

Figure 6.4 is an example of the partial crossbar design between the heterogeneous

accelerators and the shared memory banks. In this example, banks 1 to 4 are assigned

to Acc1, while banks 3 to 8 are assigned to Acc2. Acc1 and Acc2 cannot be powered on

simultaneously since they share bank 3 and bank 4. In our assumption, one memory
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bank cannot be simultaneously used by two accelerators or any two ports in one

accelerator. This is because a memory bank only has two ports. One is connected

to an accelerator while the other is connected to a DMAC. Also, an accelerator

accesses its own memory banks every cycle to achieve high throughput. The crossbar

is designed to be configurable for sharing these two memory banks for Acc1 and Acc2.

We assume that two-port memory banks are used. One port of a memory bank is

connected to the accelerators while the other port is connected to one DMAC.

Figure 6.4: An example of a configurable crossbar.

6.3.2 Minimum Required Memory Banks

Suppose that the number of allowed simultaneous powered-on accelerators within the

power budget is c. The primary goal is to provide a configurable partial crossbar

which makes any c accelerators in this island simultaneously work together. The first

question we try to answer is what is the minimum number of required memory banks

to support c accelerators to be powered on simultaneously.
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Lemma 1. Given a set of accelerators, {a1, a2, ..., an}, with non-increasing memory

band demands d1 ≥ d2 ≥ ... ≥ dn, and c, the minimum number of required memory

banks is at least
c∑

i=1

di.

Proof. The goal is to simultaneously power on any c accelerators in this island. The c

accelerators with the largest memory bank demands need to be satisfied. Therefore,

at least
c∑

i=1

di memory banks are required.

6.3.3 Problem Formulation

Given the number of simultaneous powered-on accelerators c, the number of shared

memory banks m (m =
c∑

i=1

di), and n accelerators, our goal is to minimize the total

number of switches of the partial crossbar.

6.3.4 Optimal Partial Crossbar Synthesis

We propose Algorithm 2 to synthesize the partial crossbar, which meets these two

requirements: (1) the minimum number of memory banks shown in Lemma 1, and

(2) the minimum number of switches equal to the lower bound shown in Theorem 1.

In this section we illustrate the high-level concepts of the proposed algorithm. We

will discuss (1) the lower bound of the minimum required number of switches and (2)

the optimality analysis of the proposed algorithm in Section 6.3.5 and Section 6.3.6,

respectively.

We have n heterogeneous accelerators, and only c accelerators can be powered

on simultaneously. In Algorithm 2, we first assign the crossbar switches for the c

accelerators, {a1, a2, ..., ac}, with the largest memory bank demand. For these c
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Algorithm 2 Optimal partial crossbar synthesis
1: port map: the mapping between the accelerator ports and shared memory banks; 1st dimension:

the accelerator index; 2nd dimension: the accelerator’s port index; the mapping: memory bank

id

2: d: the array recording the memory bank demands for all accelerators

3: n: the number of accelerators

4: m: the number of memory banks

5: c: the number of simultaneous powered-on accelerators

6: procedure OptCrossbar(d, n,m, c)

7: bank index ← 0

8: for i ← 1 to c do . 1st nested loop: for the largest c accelerators

9: for j ← 1 to d[i] do . Assign consecutive memory banks

10: port map[i][j] ← bank index

11: bank index ← bank index + 1

12: end for

13: end for

14: for i ← 1 to c do . 2nd nested loop: for the rest n - c accelerators

15: bank index ← port map[i][1]

16: for j ← c + 1 to n do

17: if bank index + d[j] > port map[i][d[i]] then

18: bank index ← port map[i][1]

19: end if

20: for k ← 1 to d[j] do . Assign consecutive memory banks

21: port map[j][k] ← bank index

22: bank index ← bank index + 1

23: end for

24: end for

25: end for

26: return port map

27: end procedure
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accelerators, one memory port exactly maps to one memory bank (lines 8 - 13).

Next, we assign the switches for the remaining n− c accelerators (lines 14 - 25). Each

port in accelerators {ac + 1, ..., an} is mapped to c memory banks. The number of

switches generated from Algorithm 2 is m + c ×
n∑

i=c+1

di (Theorem 2), which is the

minimum number of required switches (Theorem 1). Note that the memory ports

of an accelerator are assigned in a contiguous way to one Region (Definition 1) for

accelerators {a1, a2, ..., ac} or to c Regions for accelerators {ac + 1, ..., an}. Figure

6.5(a) shows an example of the partial crossbar topology generated from Algorithm

2.

6.3.5 The Lower Bound of the Required Switches

To design the minimum (optimal) partial crossbar, we first find the lower bound

of the minimum required switches and then provide a proof for this lower bound.

Following that, we will provide an algorithm to synthesize the partial crossbar with

the minimum switches.

Theorem 1. The lower bound for the number of switches required in the partial

crossbar is m+ c×
n∑

i=c+1

di, where m is equal to
c∑

i=1

di.

Proof. Based on Lemma 1, the number of required memory banks is at least m =
c∑

i=1

di. To power on the c accelerators with the largest memory demands ({a1, a2, ...,

ac}), we need exactly m switches to map each port from {a1, a2, ..., ac} to one memory

bank. Considering the case where one accelerator in {ac+1, ac+2, ..., an} and any (c -

1) accelerators out of {a1, a2, ..., ac} are powered on simultaneously, the accelerator aj

in {ac+1, ac+2, ..., an} needs to have at least c copies of memory banks (c×dj) to avoid

the memory bank conflicts. Therefore, we require at least c×
n∑

i=c+1

di switches for all
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Figure 6.5: (a) An example of partial crossbar synthesis using Algorithm 2. (b) An

example demonstrating the insight of Algorithm 2 design.

accelerators in {ac+1, ac+2, ..., an} to support c simultaneous powered-on accelerators.

The lower bound of the required switches is m+ c×
n∑

i=c+1

di.

Theorem 1 can be easily used to find the minimum number of switches when all

accelerators have the same number of memory bank demands, as described in [60].

We use r to denote the homogeneous memory bank demand. The minimum required

memory banks, m, is equal to c × r. As demonstrated in Equation 6.1, Theorem

1 can further generalize the theorem derived from [60] for synthesizing accelerators
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with homogeneous bank demands.

m + c×
n∑

i=c+1

di = m + c× (n− (c + 1) + 1)× r

= c× r + c× (n− c)× r = m× (1 + n− c)

(6.1)

6.3.6 Algorithm Optimality Analysis

In this section we first prove that Algorithm 2 can synthesize a partial crossbar with

a minimum number of switches by Theorem 2.

Theorem 2. Algorithm 2 synthesizes the partial crossbar with m+c×
n∑

i=c+1

di switches,

which is equal to the lower bound described in Theorem 1.

Proof. Based on Algorithm 2 (lines 9 - 14), the number of required switches for the

c accelerators with the largest bank demand is
c∑

i=1

di = m. The number of required

switches for the rest of n − c accelerators is c ×
n∑

i=c+1

di, according to the second

nested loop in Algorithm 2. Therefore, we can synthesize the partial crossbar with

m+ c×
n∑

i=c+1

di switches.

To further prove that the crossbar generated from Algorithm 2 can power on any

c accelerators, we first define the term Region.

Definition 1. “Regions” are the ranges for the contiguous memory bank assignments

for the c accelerators with the largest memory bank demands. All the c Regions are

not overlapped with one another based on the Algorithm 2.
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Lemma 2. For any two accelerators, if their bank assignments reside at two differ-

ent Regions, i.e., non-overlapped Regions, the two accelerators can be powered on

simultaneously. (We suppose the other accelerators are currently powered off.)

Lemma 3. Based on Lemma 2, a partial crossbar with c Regions can support at least

c accelerators that are powered on simultaneously.

Based on Definition 1, we have three Regions for the synthesized partial crossbar

shown in Figure 6.5(a). We can further deduce Lemma 2 and Lemma 3 based on the

definition. The key insight of Algorithm 2 is to avoid the case of the cross-Region

bank assignment such as a4, shown in Figure 6.5(b). By using Algorithm 2, the bank

assignment of the accelerators is aligned well inside the Regions, which avoids the

cross-Region assignment. We show that Algorithm 2 can provably power on any c

accelerators by Theorem 3.

Theorem 3. The crossbar generated from Algorithm 2 can power on any c heteroge-

neous accelerators simultaneously.

Proof. Omitted. The following three cases, which cover all possible conditions, pro-

vide the proof for Algorithm 2.

Case 1: The c accelerators are all from {a1, a2, ..., ac}.

Based on Lemma 3, the c accelerators can be powered on simultaneously since they

are allocated at three different Regions.

Case 2: The c accelerators are all from {ac+1, ac+2, ..., an}.

Based on Algorithm 2, each accelerator in the group owns c copies of memory banks

distributed in the c Regions. Therefore, we can provide a given order to assign these

c accelerators to the c Regions, and thus the accelerators can all be powered on

(Lemma 3).
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Case 3: The w accelerators are from {a1, a2, ..., ac} while the rest of c−w accelerators

are from {ac+1, ac+2, ..., an}.

We first assign the w accelerators to their corresponding Regions. The rest of c− w

accelerators still own c − w copies of memory banks in the rest of c − w Regions.

Therefore, we can provide a given order to assign these c−w accelerators to the rest

of c− w Regions to power on all c accelerators (Lemma 3).

6.4 Interleaved Network

6.4.1 Conflicts of Burst Prefetch Requests

In an ARA, the off-chip data prefetching memory access patterns have the following

properties. First, the prefetch requests issued from accelerators are usually long

memory bursts to prefetch a group of consecutive data elements for performance

concerns. In our design, it is at the page granularity (4KB), ranging from one to four

pages (4 - 16KB). Second, an accelerator issues multiple burst requests simultaneously.

The number of simultaneous burst requests depends on the memory bank demands

of an accelerator; this ranges from 5 to 12 in our design. Third, the partial crossbar

described in Section 6.3 maps the ports of an accelerator to contiguous memory banks.

The interconnects between memory banks and DMACs need to be carefully designed

considering the partial crossbar topology.

Figure 6.6 shows a real topology synthesized using Algorithm 2. In this example,

a1 is powered on and six simultaneous burst requests are issued from a1 to prefetch

the required input data into {b1, b2, ..., b6}. If the interconnect layer between memory

banks and DMACs is not designed carefully, request conflicts will arise. Figure 6.6(a)
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shows that four burst requests are sent to DMAC 1, while two requests are sent to

DMAC 2. The four requests issued to DMAC 1 will become the bottleneck since MP1

services the requests in a sequential way. Each request is a 4KB to 16KB long burst

request, which leads to a significant performance degradation.

Figure 6.6: (a) Burst requests conflict at DMAC1. (b) Burst requests are interleaved

to different DMACs.

6.4.2 Interleaved Network Design

We consider the following important properties for interleaved network design in order

to resolve possible conflicts.

1. Partial crossbar topology. According to Algorithm 2, the memory banks

assigned to an accelerator are contiguous. We design the mapping function described

in Equation 6.2 to map the memory banks to DMACs. The mapping function can

guarantee the distribution of simultaneous burst requests distributed uniformly to

different DMACs. Figure 6.6(b) shows an example of our interleaved network de-

sign. In this example (k = 6), the memory banks {b1, b2, ..., b6} are mapped to
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{DMAC1, DMAC2, ..., DMAC6}, respectively. The six interleaved burst requests

can be serviced in parallel with available memory bandwidth without conflicts.

MemBankToDMAC(i) = i mod k, i ∈ 1..m (6.2)

2. Accelerator usage pattern. We believe that the priority of interleaving

requests within an accelerator is more important than that of interleaving requests

across accelerators. This is because not all of the accelerators can start simultaneously

with limited power budgets. The heterogeneous nature of accelerators also reduces the

possibility that accelerators launch simultaneously. Even if multiple accelerators are

running simultaneously, the requests from multiple accelerators may still interleave.

However, a single accelerator cannot start to work until all data are prefetched and

ready. Therefore, we choose the topology generated in Equation 6.2 to ensure that the

burst requests of a specific accelerator can be distributed uniformly across DMACs.

6.5 Experimental Results

6.5.1 Case Study: A Real Medical Imaging ARA Prototype

6.5.1.1 Applications and Prototyping Platform

We are interested in accelerating the medical imaging processing pipeline for comput-

erized tomography (CT) images [25]. First, the noise and blur need to be removed.

Second, the process would align the current image with previous images of an individ-

ual. Third, a region of interest for diagnosis is segmented. To accelerate the pipeline,

we include four accelerator kernels—gradient, gaussian, rician, and segmentation
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in our ARA design.

We use the Xilinx Zynq ZC706 as our prototyping platform. The Zynq SoC, which

is composed of a dual-core ARM Cortex-A9 and FPGA fabrics, is used to prototype

an ARA (Figure 6.2). We use ARAPrototyper [41, 34] to prototype the ARA for

the medical imaging pipeline. In this ARA, we have five heterogeneous accelerators:

(1) two gradient, (2) one gaussian, (3) one rician, and (4) one segmentation. The

memory bank demand of each accelerator is shown in Table 6.2. The shared memory

banks are synthesized using the on-chip BRAMs, while both interconnect layers are

realized using FPGA LUTs and routing resources. In Zynq, there are four physical

memory ports (k = 4) for accelerators to prefetch data from off-chip DRAM.

Table 6.2: Memory bank demands (i.e., the number of ports of each accelerator)

Type gradient gaussian rician segmentation

Bank demand 6 5 8 12

6.5.1.2 Optimal Partial Crossbar

Figure 6.7(a) shows the minimum number of required memory banks, while Figure

6.7(b) shows the number of switches generated from Xiao’s algorithm and Algorithm

2. We set c to four in the ARA prototype, and thus 8.8% of switches are saved.

6.5.1.3 Effectiveness of Interleaved Network

To evaluate the effectiveness of the interleaved network, we measure performance from

our FPGA prototype. This is because the request conflicts occur during runtime based

on the accelerator utilization, which is difficult to model in an analytical way. We
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Figure 6.7: (a) The minimum number of required memory banks for this ARA. (b)

The number of switches generated from Xiao’s algorithm and our algorithm.

design the interleaved network based on the partial crossbar topology generated from

Algorithm 2. We compare our interleaved network design from Equation 6.2 to a non-

interleaved design described in Equation 6.3. The non-interleaved mapping is similar

to the case demonstrated in Figure 6.6(a). The interleaved network can reduce the

runtime from 36% to 52%, as shown in Figure 6.8. This is because the interleaved

network improves the performance of prefetching by utilizing the available memory

bandwidth better.

MemBankToDMAC(i) = i div k, i ∈ 1..m (6.3)

6.5.1.4 Energy-Efficiency of the ARA Prototype

Table 6.3 shows the performance and power results of the denoise application in our

ARA prototype and the state-of-the-art processors. denoise is composed of gradient
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Figure 6.8: Effectiveness of interleaved network

and rician kernels and executes the two kernels sequentially for 10 iterations. We

use OpenMP to implement denoise for evaluating Xeon processors. The result of

Cortex-A9 uses single thread. denoise is compiled using gcc with -O2 option. Table

6.3 shows that our prototype can achieve 7.44x and 2.22x energy efficiency over Xeon

and ARM, respectively. As reported in [103], the power gap between FPGA and

ASIC is around 12X. If our ARA is implemented in ASIC, 24-84X energy savings

over Xeon processors are expected.

Table 6.3: Performance and power comparison over (1)ARM Cortex-A9, (2)Intel Xeon

(Haswell), and (3)ARA

Cortex-A9 Xeon (24 threads) ARA

Freq. 667MHz 1.9GHz
Acc@100MHz

CPU@667MHz

Runtime(s) 28.34 0.55 4.53

Power 1.1W 190W(TDP) 3.1W

Total Energy 2.22x 7.44x 1x
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6.5.2 Scalability Study of the Optimal Crossbars

To evaluate our crossbar design, we compare the number of switches of (1) full cross-

bar, (2) full-capacity crossbar [132], (3) the crossbar generated from [60], and (4) the

crossbar generated from Algorithm 2 over different numbers of powered-on acceler-

ators. A full-capacity crossbar can only connect any m inputs to m outputs, which

is less flexible than a full crossbar. In our case, m is the number of memory banks.

The algorithm in [60] can only guarantee the minimum design when all accelerators

have the same memory bank demands. Note that the number of switches is measured

based on the minimum required memory banks derived from Lemma 1 for all the cases

in Figure 6.9 and Figure 6.10. We generate the memory demand of each accelerator

at random, ranging from 4 to 16.

We evaluate Algorithm 2 using three sizes of designs: (1) 10 accelerators, (2) 50

accelerators, and (3) 100 accelerators, as shown in Figure 6.9. For larger designs,

Algorithm 2 generates only about 1% to 10% of switches for full crossbar and full-

capacity crossbar, respectively. Compared to the state-of-the-art method [60], we can

reduce the number of switches by more than 45% in larger designs, as shown in Figure

6.9(b)(c). This means that the method in [60] is still far from the optimal solution

for many cases.

Note that the method in [60] can only generate optimal results when c = 1 and

c = n, where n is the number of accelerators in the ARA. For all the other cases,

only Algorithm 2 can generate a crossbar with the minimum number of switches

and outperform [60]. When c is equal to 1, the accelerator with the largest memory

demand shares its memory banks with all the other accelerators. When c is equal to

n, each accelerator has its own memory banks. In both cases, the number of switches
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Figure 6.9: The number of switches of (1) the full crossbar, (2) the full-capacity

crossbar, (3) the crossbar generated using Xiao’s algorithm, and (4) the crossbar

generated using Algorithm 2, over different numbers of powered-on accelerators.

Figure 6.10: The comparison of Algorithm 2 and Xiao’s algorithm based on the

different memory demand deviations.

is equal to the sum of the memory bank demands of all accelerators.

We further evaluate our algorithm based on the different deviations of memory

bank demands. We generate the bank demands of 100 accelerators under normal

distribution, and the mean of the demands is equal to eight. We vary the standard

deviations from one, two, to four. As shown in Figure 6.10, our algorithm becomes

much more effective when the deviation increases. Note that when the standard

deviation is equal to zero, both Algorithm 2 and [60] can achieve the optimal solution.
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6.5.3 FPGA Validation of the Partial Crossbars

To further validate the effectiveness of switch reduction, we prototype the partial

crossbar designs generated from Algorithm 2 and [60] on the Xilinx ZC706. We

generate a large design with 30 heterogeneous accelerators with 156 memory banks,

and only 20 accelerators can be powered on simultaneously (n=30, c=20, m=156). In

order to save the FPGA resource for synthesizing the partial crossbar, we use dummy

accelerators instead of real ones. Figure 6.11 shows the resource utilization of the

FPGA of the generated partial crossbars of Algorithm 2 and [60]. Algorithm 2 can

generate a much less congested partial crossbar by reducing 47% of switches, which

leads to 53% LUT and 34% slice reduction when compared to [60].

Table 6.4 shows the resource utilization, including LUTs and slices, of the FPGA

prototypes on six configurations. The memory demand of each heterogeneous accel-

erator is generated under normal distribution (N(8, 4)). In order to save the resource

for synthesizing the partial crossbar, we use dummy accelerators instead of real ac-

celerators.

Table 6.4: Evaluation of the resource utilization of partial crossbar on FPGA (n: the

number of accelerators, c: the number of simultaneously powered-on accelerators, m:

the number of memory banks)

[60] Algorithm 2 Reduction by using Alg. 2

Configurations switches LUTs slice(%) switches LUTs slice(%) switch(%) LUT(%) slice(%)

n=30, c=10, m=92 1284 65K 33 1009 50K 25 21.42 23.68 24.24

n=30, c=15, m=128 1479 77K 40 965 49K 25 34.75 37.19 37.50

n=30, c=20, m=156 1348 82K 41 713 38K 27 47.11 53.27 34.15

n=50, c=10, m=120 3041 145K 41 2628 122K 29 13.58 16.32 29.27

n=50, c=16, m=180 4187 NA NA 3204 153K 33 NA NA NA

n=50, c=28, m=280 4836 NA NA 2799 142K 34 NA NA NA
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Figure 6.11: Snapshots of the Zynq FPGA using Xiao’s algorithm and (b) Algorithm

2 for partial crossbar synthesis for the configuration (n=30, c=20, m=156). The

purple color represents the resources used by the partial crossbar, while the blue

color represents the rest of utilized resources.
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Table 6.4 demonstrates that the switch reduction leads to lower resource utilization

on FPGA, including both LUTs and slices for FPGA routing. Compared to [60],

our algorithm can effectively reduce the number of LUTs by 16% - 53% and slice

utilization by 24% - 38%. It also shows that the number of switches is a good estimate

for resource utilization. Note that for the two larger designs ([n=50, c=16, m=180],

[n=50, c=28, m=280]), the method in [60] cannot generate a feasible partial crossbar.

This is because the generated design is too congested, and thus the Xilinx router

cannot find a feasible solution. Therefore, our algorithm is much more scalable than

[60] when the number of accelerators and the powered-on constraints are large. In

Figure 6.11, we can see that our algorithm can generate a less congested partial

crossbar with less resource utilization.

6.6 Conclusions

In this work we first provide an optimal partial crossbar synthesis algorithm that

guarantees the required number of switches to be minimum while supporting at least

a given number of accelerators that can be powered on simultaneously. Second, we

improve the data prefetching efficiency by interleaving multiple simultaneous long

burst requests into different physical memory ports for better bandwidth utilization.

With the optimal synthesis algorithm, we can reduce 45% of switches when compared

to previous work. Our prototyping results show that we can improve performance by

36% - 52% using the interleaved network for a real ARA.
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CHAPTER 7

Datacenter-Level Optimizations for Cluster

Computing Frameworks

7.1 Introduction

In the era of “big data,” the amount of data grows exponentially and requires scalable

technology to process and store the data in a reliable way. With a significant amount

of data, valuable information can be found by intelligently analyzing the data. The

major goal of this dissertation is to provide customized solutions for our target appli-

cation domains. In this chapter we will use an important application, read alignment,

in the genomics domain to demonstrate our proposed optimizations in the datacen-

ter level. The domain of genomics applications that we are targeting is inherently a

big data domain. For example, in the DNA sequencing pipeline, the raw data of an

individual obtained from a sequencer before processing is around 300GB to 500GB.

In order to improve performance of sequencing, the data and computations need to

be processed in an efficient and scalable way. We need the capability to tune per-

formance according to the performance target. The problem becomes more difficult

when we have multiple individuals to analyze. The number of individuals can be from

100 to above one million. Under this problem scale, the data cannot even be stored in

a single node. Therefore, a scalable methodology is required for the applications with
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significant amounts of data to be processed. With a significant amount of data-level

parallelism, our applications can utilize a big data infrastructure such as Spark to

exploit data-level parallelism.

In Section 1.5.2 we discussed that read alignment is the first step in the DNA se-

quencing pipeline for variant discovery, as shown in Figure 1.3. Aligning the reads to

a reference genome is usually one of the most time-consuming steps in many genomics

pipelines, such as the pipelines for variant discovery [129] and differential gene ex-

pression [158]. Recent high-throughput sequencing systems, such as Illumina HiSeq

X Ten, can deliver more than 18,000 genomes annually. As the data throughput

increases—more than doubling each year—a fast and scalable aligner is needed to

align the ever-increasing data.

The state-of-the-art aligners, such as BWA-SW [113], Bowtie2 [105], and BWA-

MEM [111], can perform gapped-read alignment while using pair-end reads to improve

alignment quality. These aligners usually proceed in two steps for each read. The

first step is called the seeding process. The full-text minute index (FM-index) [69]

and Burrows-Wheeler transform [26] (BWT) are used to find the possible candidate

locations on the reference genome of a read very efficiently. These ungapped and

exact-matched alignments collected from a read are used as seeds in the second step.

To allow gaps, such as mismatches, insertions, and deletions, the Smith-Waterman

algorithm [152] is applied to extend the seeds with gaps. The score of each can be used

to filter out poor gap-allowed alignments. However, the seed extension step involves

significant computation since dynamic programming is used. Recent aligners, like

Bowtie 2 and BWA-MEM, leverage the efficiency of single-instruction multiple-data

(SIMD) built into modern processors to accelerate this compute-intensive part.

Though the efficiency of the aligners can be significantly improved by the FM-

177



index aided method together with the SIMD acceleration on dynamic programming

algorithm, the tremendous number of reads delivered from sequencers nowadays still

takes a significant amount of time to be aligned using existing aligners. Existing

aligners use multi-threaded parallelization to boost performance. However, they can

only use the computation power from a single server, which is limited when the

number of reads to be processed is significantly large. For the deep-coverage whole-

genome sequencing (WGS) data, billions of reads can be generated in one run. The

alignment of 30x coverage WGS data can take more than 10 hours if BWA-MEM is

used on a single server with two state-of-the-art Intel six-core processors. In fact, the

alignment process is highly parallelizable but we haven’t seen the prior work using

private or public cloud to fully exploit the huge parallelism arising from billions of

reads to accelerate the alignment process. To build a cluster-scale aligner, the first

difficulty is the software development complexity. BWA-MEM, the most widely used

aligner for DNA sequencing, is composed of 15,741 lines of C code. We need to

analyze the tool and develop the software under the MapReduce programming model

[62]. In order to make the tool adoptable in the bioinformatics community, the second

difficulty will be to achieve almost the same alignment quality over BWA-MEM. It

takes a significant effort to develop this software.

In this chapter, we developed a new aligner, CS-BWAMEM, which can lever-

age the abundant computing resources in a computing cluster. CS-BWAMEM uses

the BWM-MEM algorithm and is developed using the MapReduce [62] programming

model, which is one of the most frequently used models in developing distributed soft-

ware packages in modern datacenters. CS-BWAMEM is built on top of Apache Spark

[172, 171], which realizes a highly efficient MapReduce system that can cache inter-

mediate data in memory to avoid unnecessary disk I/O accesses. By using Spark, CS-
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BWAMEM can distribute read alignment tasks to multiple servers within a cluster,

providing the capability to accelerate the alignment process beyond one single server.

Therefore, CS-BWAMEM can provide scalable and ultra-fast alignment speed. Users

can deploy CS-BWAMEM based on the computing resources they have in a cluster

or the runtime target they set up. With such scalability, CS-BWAMEM can finish

deep-coverage (30x) whole-genome sequencing within 32 minutes by using a 30-node

cluster.

Our contributions can be summarized as follows.

• Ultrafast and scalable aligner—CS-BWAMEM: CS-BWAMEM is built

on top of the in-memory cluster computing system, Spark. With a 30-node clus-

ter deployment, CS-BWAMEM is 18x faster than the state-of-the-art aligner,

BWA-MEM.

• Broadcast avoidance of the large human reference genome: We avoid

broadcasting large human reference genome data to every node before computa-

tion. Instead, we load it from its local disk of each Spark worker during runtime.

The time complexity of broadcast can be limited to constant time instead of

linear time or logarithmic time.

• Use of column store: We adopt the column store to the raw sequences

(FASTQ format) for better compression and partial data access.

• Batch processing for reducing data transfer overhead: In order to

efficiently utilize accelerators or co-processors, we group small tasks into a batch,

and the accelerators then can compute tasks in a batched way to avoid the

overhead introduced by fine-grained data transfers. We used the Intel SSE to

accelerate the Smith-Waterman algorithm as a case study in this chapter. We

will provide more details of using FPGA accelerators in the cluster in Chapter
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8.

• I/O performance improvement: We show that I/O time accounts for a

significant amount of runtime in CS-BWAMEM. We optimize I/O efficiency by

using (1) caching intermediate data in memory and (2) pipelining file system

I/O with MapReduce computation.

By using all the customized strategies in a 30-node cluster, CS-BWAMEM can

align the whole-genome in 32 minutes, which is about 18x faster than the state-of-

the-art aligner, BWA-MEM, running on a single server.

In this chapter we first discuss the background of state-of-the-art read aligners

and cluster computing frameworks. Next, we describe the software architecture of

CS-BWAMEM, where CS-BWAMEM provides a valuable case study to demonstrate

the effectiveness of using the in-memory cluster computing system. After that, we

introduce the details of the customized optimizations for improving performance for

CS-BWAMEM. Finally, we demonstrate the effectiveness of our optimizations in the

experimental result section.

7.2 Background

7.2.1 Big Data Infrastructures

In recent years, big data analysis and storage systems have burgeoned in the data-

centers in order to handle large-scale problems. Google’s MapReduce [62] and Google

File System (GFS) [73] provide a simple programming model and a storage layer for

developers to store data and distribute computations over a cluster with more than

thousands of nodes. These infrastructures provides a scalable and efficient solution

180



for applications with a huge amount of data. However, Google’s MapReduce and

GFS are not open-source software and are used only internally in Google. Hadoop

[163], with both a MapReduce framework and the Hadoop Distributed File System

(HDFS) [151] implemented in Java, is the most widely used open-source solution for

big data analysis.

However, Google’s MapReduce and Hadoop have a limitation on iterative algo-

rithms which reuse a working set of data across multiple iterations. Machine learning

algorithms such as K-means clustering and logistic regression are the key examples.

In MapReduce and Hadoop, the reused data set and the output after a single iter-

ation need to be written back to a distributed file system, which incurs substantial

overheads on network bandwidth, disk I/O, and data serialization. Because of the

reliability concern, the distributed file system maintains several copies of data, which

makes the problem even worse. In order to solve the problem, Spark [172, 171], an

in-memory cluster computing framework, is proposed to target the applications with

reused data. The key idea is to try to keep the input data and intermediate output

results across iterations in memory instead of writing them back to the distributed

file system.

7.2.1.1 Spark: An In-Memory Cluster Computing System

For iterative algorithms and iterative machine learning models, the input data or

training are reused many times in each iteration. The intermediate data generated

from one iteration can be reused in the next iteration. However, in most current

frameworks, the only way to reuse data between iterations is to write this interme-

diate data back to a reliable file system, such as a distributed file system like GFS

or HDFS. This incurs significant overheads due to data replications, disk I/O, and
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data serialization. The shared input data also needs to be read from HDFS in each

iteration. Instead of writing data back to the distributed file system on disks, the

capability to cache the reused data in memory can significantly improve performance.

Spark provides a framework for programmers to develop iterative algorithms with

data reuse among iterations in the MapReduce programming model. Spark provides a

new abstraction, resilient distributed datasets (RDDs), which is a read-only collection

of objects partitioned across a set of nodes in a cluster. RDDs are fault-tolerant

and parallel data structures. Users can explicitly specify that RDDs be persisted in

memory so that the RDDs are not written back to the distributed file system, resulting

in better performance. RDDs guarantee data reliability through recomputation on

faulty elements instead of replication, which also significantly improves performance

[171].

7.2.1.2 Parquet: Column-Oriented Storage at Cloud Scale

The MapReduce programming model provides the capability to exploit data-level

parallelism. Multiple data objects can be processed simultaneously in a cluster. These

independent data objects are called records, which are stored in a distributed file

system, such as HDFS. The MapReduce underlying system can fetch records from

the distributed file system, and then the user MapReduce program can process the

records in a parallel way. This type of storage method is called record-oriented storage.

However, when the data structure of a record becomes complicated, not all of the

field of a record would be used in computation. Only a subset of the fields is required

for a specific type of data analysis. Compared to the flattened record-oriented data

storage, column-oriented storage, which has been studied in the database field, is
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another way to store data and retrieve data efficiently [11]. Google’s Dremel [130]

is the first system to provide the nested data representation for the column-oriented

storage at cloud scale. Parquet [4] is an open-source implementation that inherits the

main spirit of Dremel.

Figure 7.1 illustrates the record-oriented storage and column-oriented storage with

the same data structure. FASTQ [48] is the input format of the raw reads to be

sequenced. A FASTQ record contains five fields: name, seq, quality, seqLength, and

comment. In the record-oriented storage, FASTQ records are stored in the granularity

of a record, as shown in Figure 7.1(b). Every time, all the fields in a record are fetched

before computations start. In the column-oriented storage, data of the same field are

stored together, as shown in Figure 7.1(c). The column-oriented storage forms a

tree-like structure. Programmers can fetch only a few columns (fields) to reduce I/O

demand.

Figure 7.1: Record-oriented storage vs. column-oriented storage

The major benefits of column stores are as follows:
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• Nested representation: The data for analysis are usually complex and can

contain many fields. The organization of data can be hierarchical. Therefore, a

general and flexible way to represent data is required. Parquet provides nested

representation for describing data flexibly.

• In situ data access: In situ refers to the capability to access data “in place,”

which means, in this case, the ability to access data in a distributed file system.

Parquet can work seamlessly with HDFS and provides APIs that can be used for

Hadoop and Spark programmers. Programmers can easily develop MapReduce

programs and obtain structure data.

• On-demand data fetching: Column-oriented storages pack the items of the

same field together. It is common that only a few fields of a record are required

during computation. Programmers only need to fetch the required fields of the

records. Therefore, significant disk I/O and network bandwidth can be reduced.

• Better compression and less storage: The data items in the same field

share the same properties. Therefore, column-oriented storages can have higher

compression rates to compress items in the same column. This reduces the

storage demand and improves the disk I/O and network efficiency.

We are the first to use Parquet for storing FASTQ format data. The ADAM

[127] project also uses Parquet to store the ADAM format data, which is similar

but not 100% compatible to the SAM format. Another related work is Hadoop-

BAM. Hadoop-BAM is a library for manipulating the SAM/BAM format data in the

Hadoop system.
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7.2.2 Target Domain: Read Alignment

We have discussed the DNA sequencing pipeline in Section 1.5.2. In this section, we

will focus on the discussion of the read aligner.

Next-generation sequencing (NGS) is an area of chemical/biological engineering,

bioinformatics and computer science. To sequence the entire genome of a human, a

number of copies of the individual’s genome are fragmented into small pieces called

reads, and sequencers then determine the order of nucleotides for all the reads. Nu-

cleotides are the building blocks of a DNA molecular structure that is comprised of

only four kinds of nucleotides—generally represented by four letters, A, C, G and

T. Therefore, the sequenced reads generated by NGS sequencers, such as Illumina

sequencers, are stored as ASCII strings, and a software program, called read aligner,

assembles the reads into an entire DNA sequence by aligning each read onto a known

human genome, called reference genome, which is also represented by a string of the

four letters.

The key advantage of NGS is that the reads can be sequenced, as well as aligned,

completely independently. A genome sequencing task for an individual usually gen-

erates billions of reads for sequencing and alignment, creating tremendous amounts

of parallelism to explore. The state-of-the-art aligners have exploited the parallelism

to some extent; for example, the Burrows-Wheeler Aligner (BWA) [112, 113, 111],

by far the most prevalent read alignment software package, is able to fully utilize the

maximum number of threads supported by a server to perform read alignment tasks

in parallel by using POSIX threads. However, BWA cannot be run across multiple

servers, which prevents the scalable parallelism from being further exploited.

For each read, an alignment task is actually an approximate string-matching prob-
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lem. Given a pre-defined scoring function, approximate string matching generates the

gap/mismatch-tolerant mapping(s) between a read and the reference that maximizes

the scoring function. The Smith-Waterman (S-W) algorithm [152] is a commonly used

method to address this problem. This dynamic-programming algorithm tolerates an

arbitrary number of mismatches and gaps, and is guaranteed to generate all the op-

timal mapping(s) with the highest score. However, this algorithm has quadratic time

complexity, proportionate to the length of the read (m) by the length of the reference

(n), i.e., O(mn). A read typically consists of hundreds of nucleotides, while the ref-

erence genome contains 3.2 billion. Worse still, as mentioned before, billions of reads

need to be processed for only one individual. Assuming that the basic computation

of the S-W algorithm consumes 1 ns, it would take over 10,000 years for one thread to

align one billion reads along the 3.2-billion-long reference. Therefore, it is practically

impossible for read aligners to align reads by only using the S-W algorithm, even

though some degree of parallelism can be exploited to accelerate the process.

A two-step heuristic approach is widely adopted by the state-of-the-art aligners,

such as Bowtie2 [105] and BWA-MEM [111], as an acceptable alternative for the pure

S-W method [113]. In the first step, a read is chopped into small segments, called

seeds, which are exactly mapped to the reference genome. An algorithm, based on

backtracking with the Burrows-Wheeler Transform (BWT) proposed in [112], can

achieve linear time complexity for exact string matching, proportionate to the length

of a short seed (usually tens of nucleotides) and independent of the length of the

long reference. Recently, the state-of-the-art aligners adapted the Burrows-Wheeler

Transform (BWT) as an engine to find exact mappings [26]. The state-of-the-art

aligners, such as SOAP2 [117], Bowtie [106], and Burrows-Wheeler Aligner (BWA)

[112], apply BWT on the reference genome and can significantly improve sequencing
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performance with a small memory footprint. Consider the size of a read as m and

the size of the reference genome as n, the beauty of the BWT-based algorithm is that

it can find the exact match of a read in O(m) time, independent of the size of the

genome. Note that the genome size (n) is about 3.2 billions bp, which is much larger

than the size of a read (m).

In the second step, the exact mappings serve as seeds and extend both leftward

and rightward. The extensions fall into the approximate matching category and are

performed using the S-W algorithm. Differing from the pure S-W method in which

the whole reference is examined, the seeds generated in the first step locate the S-W

tasks in only several candidate sections, i.e., approximately mapping several pairs

of strings with hundreds of letters. This canonical paradigm, seed-and-extend, first

introduced in the BLAST algorithm [13], is deemed a milestone for read alignment.

7.2.2.1 From BWA, BWA-SW to BWA-MEM

The first version of BWA uses BWT to efficiently perform exact and inexact mappings

of short reads [112]. As sequencing technologies improve, the size of a read increases

gradually for better sequencing accuracy. In order to align long reads (> 200 bp), the

authors of BWA further propose Burrows-Wheeler Aligner’s Smith-Waterman Align-

ment (BWA-SW). BWA-SW follows the seed-and-extend paradigm, such as BLAST

[14], BLAT [99], and SSAHA2 [133]. BWA-SW finds alignments by using the Smith-

Waterman algorithm allows mismatches and gaps in seeds. The Smith-Waterman

algorithm is a classic method for performing local sequence alignment, which is used

for string matching or nucleotide sequences or protein sequences. The algorithm was

first proposed in [152] and improved in [76] and [15] for better scaling and accuracy,

respectively. Smith-Waterman is a dynamic programming algorithm and has O(m2)
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time complexity, where m is the length of a read or a seed. Therefore, it is commonly

used for aligning two short sequences due to the quadratic time complexity.

BWA-MEM is the most recent version of BWA. It also follows the seed-and-extend

paradigm. Conventionally, the seed-and-extend paradigm only uses a constant size of

a seed, e.g., 16 bp, while shifting the seeding window in a constant size, e.g., 10 bp

[105]. Instead, BWA-MEM uses an algorithm to find supermaximal exact matches

(SMEMs) [110] as seeds of a read in the seed-and-extend process. For seed extension,

a dynamic programming algorithm adapted from the Smith Waterman algorithm is

used.

7.2.2.2 Input/Output File Formats

Table 7.1 shows the FASTQ format, which is used for describing the raw reads from

sequencers [48]. A FASTQ file is one of the inputs of an aligner. The aligner tries

to map each seed, collected from a read, to the possible locations on the reference

genome. Therefore, a read can have multiple alignments in the final output. The

output alignments are stored in the sequence alignment/mapping (SAM) format [155].

To save storage demand, the BGZF compression format [155] is used to compress a

SAM file. The compressed format is called BAM [155]. Table 7.2 shows the mandatory

fields of an alignment. The detailed SAM format is very complex and also includes

the header description. The detailed specification can be found in [155]. Note that

both FASTQ and SAM formats have several fields, but not all of the fields need to

be used during various types of analyses.

For the whole genome DNA sequencing, the input data sizes in the FASTQ format

can reach 250GB to 350GB per individual sample, while the uncompressed SAM
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Table 7.1: FASTQ format

Line Number Brief description

Line 1 sequence identifier and an optional description

Line 2 the raw sequence letters (A, T, C, G, N)

Line 3 (optional) the same sequence identifier and any description

Line 4 the quality values for the sequence in Line 2

format output file after read alignment can achieve 300GB to 500GB. In order to

perform read alignment and store data beyond a single node in a scalable way, we

choose the open source Apache Hadoop Distributed File System (HDFS) [151] and

Parquet [4] for storage purposes. For the computation infrastructure, we use Apache

Spark [172, 171]. For the DNA sequencing, we use Avro [2] with Parquet to model

both FASTQ and SAM format schemas. More importantly, the computation of each

read does not directly depend on the result of the other reads. Therefore, we can use

the a cluster to handle these large-scale computation challenges.

7.3 The Baseline Architecture of Cloud-Scale BWAMEM

7.3.1 Overview of CS-BWAMEM

In this section we will introduce the software architecture of our proposed aligner, CS-

BWAMEM. This aligner provides two major functions. First, the large FASTQ files

stored in the local Linux file system can be automatically partitioned into small file

fragments and then uploaded to a distributed file system in a cluster. CS-BWAMEM

uses the Hadoop distributed file system (HDFS) [151] as the storage backend. Second,

the small FASTQ fragments are fetched from HDFS and aligned in parallel across the
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Table 7.2: SAM format (mandatory fields)

Field Brief Description

QNAME Query template NAME

FLAG bitwise FLAG

RNAME Reference sequence NAME

POS 1-based leftmost mapping POSition

MAPQ MAPping Quality

CIGAR CIGAR string

RNEXT Ref. name of the mate/next read

PNEXT Position of the mate/next read

TLEN observed Template LENgth

SEQ segment SEQuence

QUAL ASCII of Phred-scaled base QUALity+33

allocated servers in the cluster.

For the read alignment, CS-BWAMEM is built on top of Apache Spark, Parquet,

and HDFS. We use Apache Spark to leverage the computation power we have in an

in-memory cluster. In CS-BWAMEM, we follow and use the algorithms directly from

the state-of-the-art aligner, BWAMEM. In the Spark cluster, the reads are processed

in a distributed way to improve the throughput of the aligner. The input and output

data of CS-BWAMEM are stored in HDFS using Parquet columnar storage.

For each read, CS-BWAMEM proceeds through two MapReduce stages, which are

composed of six steps, as shown in Figure 7.2. In the first map stage, CS-BWAMEM

first uses a super maximal exact match (SMEM) method [110] to generate the seeds

from the read. The generated seeds are then extended by the Smith-Waterman-like

190



dynamic programming algorithm. The estimated insert distance of all the reads in

this group is calculated in the first reduce stage, where the insert distance is used as a

statistical estimate of the distance between the read pairs. In the second map stage,

the pair-end alignments are performed, and then the output data are written back to

HDFS in the ADAM distributed format [127]. Users can also collect the alignment

data in the more widely used SAM format [114].

Figure 7.2: Overview of CS-BWAMEM
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7.3.2 Data Organization and Computation Patterns in CS-BWAMEM

Figure 7.3 shows the data organization and distribution of CS-BWAMEM. Three

types of nodes are in charge of different functions in Spark. A driver is a node where

an application is launched and usually where the local data are stored. A master node

performs the management and arbitration for Spark workers and HDFS datanodes.

A worker node has as two roles: (1) a Spark worker and (2) an HDFS datanode. All

worker nodes will interact with the master node for both storage and computation

purposes.

CS-BWAMEM works as follows. The reference genome data and short reads

generated from sequencers are initially stored in a driver node. Before launching the

BWA-MEM algorithm for alignment, the short reads need to be uploaded to HDFS

and will be stored in a distributed way. In the very beginning of CS-BWAMEM, the

whole reference genome needs to be broadcast from the driver node to every single

worker node. The reference genome acts as a large lookup table for performing read

alignment for each short read. The reference genome is accessed intensively so each

node needs to have its own copy in memory. We will show further optimization in

Section 7.4.2. After the broadcast process, the core computation of BWAMEM starts

independently on each worker.

Figure 7.4 shows the data flow and computation patterns in CS-BWAMEM.

The goal is to align billions of input reads from FASTQ files and generate output

SAM/ADAM alignments. From our profiling, the SMEM algorithm for seed gen-

eration and three dynamic programming Smith-Waterman kernels (SW, P-SW, and

SW’) are the four major steps which contribute more than 80% of the total application

runtime.
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Figure 7.3: Data organization and distribution in CS-BWAMEM

The first “Map” stage in the MapReduce programming model is composed of the

SMEM and SW kernels. The seeds, i.e., exact matches, can be generated from input

reads by using the SMEM algorithm, as discussed in Section 7.2.2.1. The first Smith-

Waterman kernel (SW) then takes the seeds as input and tries to extend the seeds

with gaps (insertions and deletions) that are allowed. The mapping positions and

the lengths of an extended seed can be known after the first Map “stage.” The first

“Reduce” stage and acts as a synchronization point and collects the pair-end statistics

to calculate insert distance distribution, which is needed for the P-SW kernels. Note

that our CS-BWAMEM can do both single-end and pair-end alignments. In the single-

end BWAMEM, Step 2 and the P-SW kernel are skipped. In the second “Map” stage,

pair-end Smith-Waterman (P-SW) kernels are used to perform pair-end pairing. P-
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SW can find more possible missing alignments and filter out incorrect alignments.

Finally, the SW’ kernel is used to generate the alignments and quality scores and

produce final output. The final output can be stored in a distributed fashion in

HDFS in an ADAM format or be collected back to the Spark driver node in a SAM

format.

We use the in-memory caching capability of Spark. Although CS-BWAMEM does

not behave like common machine-learning algorithms, which have iterative behaviors,

it is still very important to keep the data in memory since the intermediate data

generated from the first MapReduce stage is 20 - 30x larger than the input reads.

Without in-memory caching, we would expect to incur a huge disk I/O penalty by

writing the intermediate data (6TB - 15TB) out to HDFS or a local Linux file system

for each whole-genome sample.

Figure 7.4: CS-BWAMEM: data flow and computation patterns
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7.4 Optimizations in the Datacenter Level: a Case Study in

CS-BWAMEM

In this section we introduce several customized strategies for the applications of the

DNA sequencing pipeline deployed on an in-memory cluster. The proposed strategies

can be applied to applications, including, but not limited to, DNA sequencing. We

use CS-BWAMEM as a case study to demonstrate the effectiveness of these strategies.

7.4.1 Data Organization: Column-Oriented Storages

The first strategy we adopted is the column-oriented storage, which is introduced

in Section 7.2.1.2. We use the Parquet framework for the column-oriented storage.

CS-BWAMEM can enjoy two benefits from column-oriented storage: (1) in situ data

access and (2) better compression and less storage. First, the in situ data access is

required for data processing since the FASTQ data is distributedly stored in HDFS.

Second, the FASTQ data is highly structured and can be compressed well. For

example, the seq field only contains five different characters: A, T, C, G, N.

We do not use the benefit of on-demand data fetching for CS-BWAMEM. In CS-

BWAMEM, the BWA, SW, and P-SW kernels described in Section 7.3 only require

the seq field, while the SW’ kernel requires all fields. For the other applications in

the DNA sequencing pipeline described in Section 1.5.2, SAM or ADAM formats are

widely used. Like the FASTQ format, the SAM format is also highly structured and

shares the same benefits—like better compression and less storage. The effectiveness

of on-demand data fetching highly depends on the behavior of an application. Also,

Berkeley’s ADAM has an implementation for sort, markduplicate, baserecalibration,

195



and indelrealignment [127].

7.4.2 Broadcast Elimination: Loading The Large Reference from Local

Worker Nodes

It is common to have shared variables in a multi-threaded program in a single-node.

In the distributed environment, broadcast can be used to provide share variables or

tables for every node in a cluster. Normally, the shared variables are initially loaded

from the driver node and then are broadcast to all worker nodes through networking.

The efficiency of broadcast can influence the performance and scalability of a cluster

system. As the number of nodes and the data size to be broadcast increase, the

efficiency of broadcast is bounded by network bandwidth.

CS-BWAMEM give us a strong motivation to improve the efficiency of broadcast.

The reference genome is required to be physically located in each node for fast and

frequent accesses during the alignment process. Figure 7.5(a) shows the initial mech-

anism provided in Spark to broadcast the reference genome across all worker nodes.

CS-BWAMEM is initially launched from the driver node and loads the 6 GB reference

genome from the local Linux file system. The reference genome is then broadcast to

each worker node through the network and becomes a shared variable in the dis-

tributed environment. Spark provides two types of broadcasting mechanisms: (1)

HTTP broadcast [172] and (2) Torrent broadcast [44]. The default HTTP broadcast

creates HTTP service for variable transfer, which significantly reduces performance.

The Torrent broadcast use a BitTorrent session [5] to distribute shared variables from

the seed to multiple receivers. However, the network bandwidth is still the bottleneck

for the efficiency of broadcast.
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In this dissertation we propose a novel method to load the shared variables directly

from each worker node. Figure 7.5(b) demonstrates the mechanism by which each

worker node can fetch the reference genome from its local file system. In this case, the

limitation of aggregate network bandwidth and computation power for data transfer

are transformed to the disk I/O bandwidth on each node, which improves performance

by close to 13.5% in our cluster.

Figure 7.5: Broadcast vs. loading from the local file system

This strategy works great for large and infrequently changed data like the hu-

man reference genome used in CS-BWAMEM. The human reference genome is only

updated every one or two year(s). The one-time uploading effort can be negligible
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since we rarely update the data. The only limitation of the mechanism is that it may

not be useful in a highly virtualized cluster. In a virtualized cluster, we do not have

prior knowledge of where the virtualized machines physically locate. However, for a

private cluster designed to handle a specific application, such as CS-BWAMEM, this

strategy is very useful. We believe the strategy can be applied in other applications

with similar settings.

7.4.3 Offloading Compute-Intensive Kernels: Reducing Data Transfer

Overhead through Batch Processing

In a cluster system, computations are generally done in the general-purpose proces-

sors. As discussed in Chapter 5, accelerators are attractive alternatives to improve

performance and energy efficiency. The built-in vector engines, like Intel SSE and

Intel AVX, are the accelerators that can be directly used in today’s modern proces-

sors. The co-processors like GPUs, Intel Xeon Phi co-processors, and FPGAs are also

common accelerators. By designing suitable algorithm and customized accelerators,

we can map compute-intensive kernels into such accelerators.

For coprocessor-based accelerators, such as GPUs and FPGA accelerators, the

communication overhead to transfer data from the CPU host program to the copro-

cessors can dominate the total computation time. Normally, we need to send data

from the CPU host program to the device memory on coprocessors. Modern copro-

cessors usually use the PCI Express technology for data transfer. If the data to be

computed is not large enough, the communication overhead can dominate.

Even for the built-in vector engine, which is very close to the processor, the data

transfer overhead can occur. This is because a lot of open-source cloud computing
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infrastructures, such as Hadoop, Spark, and Parquet, are all developed in Java. The

whole software ecosystem is developed using Java as well. Java applications run on

top of the Java Virtual Machine (JVM), which does not support these architecture-

dependent features due to the cross-platform concern. Therefore, we cannot directly

utilize the accelerators that are built in the process, such as Intel AVX. We need to

use Java Native Interface (JNI) to transfer data to the native implementation that

maps the computation kernel into Intel SSE or AVX. The data transfer between JVM

and a native environment also leads to performance degradation. We call this process

data serialization and deserialization.

7.4.3.1 Pair-End Smith-Waterman Kernel Acceleration: Using Vector

Engines

We implement CS-BWAMEM on top of Spark and use Scala as the programming

language. Scala is an object-oriented functional programming language and can be

compiled into Java bytecodes and run on JVM. Spark has very good support for

Scala and is also implemented using Scala; thus, our decision was to use Scala. In the

original BWA-MEM aligner, the developer uses Intel SSE vector engines to accelerate

the compute-intensive Smith-Waterman algorithm that is used for pair-end mapping.

For the pair-end Smith-Waterman kernel (P-SW), as shown in Figure 7.4, the

striped Smith-Waterman SIMD algorithms are developed to utilize the vector en-

gines for acceleration [68, 146]. However, these SIMD algorithms cannot be directly

implemented in Java due to its platform-independent characteristics. To leverage the

power of vector engines, like Intel SSE, one feasible way is to use the Java Native

Interface (JNI) support. JNI allows programmers to call native binaries wrapped in a

shared library to achieve native performance. With JNI support, the striped Smith-
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Waterman SIMD algorithm can be implemented in C and compiled into a shared

library. Through JNI, the input data of the SIMD engines can be transferred from

JVM to native machine.

However, if we use JNI in a fine-grained way with many tiny computations, the

overhead of JNI to send data back and forth can dominate the overall runtime. There-

fore, we take the batch processing strategy to reduce the communication overhead

between Java and native SIMD functions. It is important to choose the batch size

carefully because a large batch can introduce huge intermediate data structures to

be allocated in main memory. For example, if the batch size is set to 100, we may

need to increase the memory use by 100x for storing these data structures during the

batch code section. This can lead to significant performance degradation when we

run out of memory. Garbage collection can dominate the whole program runtime in

this case. The batch size needs to be carefully set based on the input data size and

the physical memory we have in the Spark worker node. In CS-BWAMEM, we set

the batch size to be 10 or 100 for using the Intel SSE. In Chapter 8, we will have an

in-depth discussion and analysis for applying batch processing for PCI-e based FPGA

accelerators.

7.4.4 Improving I/O Performance: RDD Caching and Latency Hiding

Due to the large amount of data in whole-genome sequencing, a significant perfor-

mance degradation can occur because of the I/O overhead. In this section we provide

three strategies that significantly hide the potential I/O overhead and improve the

performance of CS-BWAMEM.

The first proposed strategy is to cache the intermediate data structures, generated
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from the first MapReduce stage, in the in-memory cluster by using RDD, as illustrated

in Figure 7.6. CS-BWAMEM is not like the machine learning algorithms, which

usually have iterative behaviors. However, the intermediate data structures generated

after seed extension is about 5x to 10x larger than the original input FASTQ files.

This is because after the seed extension step, more information, such as the coordinate

of each alignment, is included. The intermediate data structures are more like the

SAM format, which is more complex than the FASTQ format, and thus demands

more memory. Second, in the seeding stage, a read can generate many seeds, where

each seed may have its own alignment. Therefore, the number of alignments is larger

than the original numbers of seed. Third, Java data structures are more memory-

hungry than the ones in C/C++. Based on the above reasons, if we do not apply

an in-memory caching strategy, like Spark RDD, these intermediate data need to be

written back to local disks or even HDFS (if we use Hadoop MapReduce). Significant

I/O overhead can result.

Before the alignment stage, the pair-end FASTQ input files stored in the local

Linux file system need to be uploaded to HDFS for later pipelining. Before the data

can be uploaded to HDFS, we need to first read it from local file system. However,

the local file read sequentially followed by the HDFS upload is very time-consuming.

However, since the input FASTQ files can be very large, about 300GB - 500GB per

genome, we have to split the whole upload process into multiple groups, as shown in

Figure 7.7.

Therefore, our second proposed strategy is to pipeline the sequential read of the

FASTQ files and the write (upload) to HDFS between different groups of reads, as

shown in Figure 7.7. This is because the local file system read and HDFS write

operate in different I/O devices. Therefore, we can utilize the I/O bandwidth in both
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Figure 7.6: Strategy 1: caching intermediate data structures between MapReduce

stages using Spark RDDs

local file system and HDFS.

Figure 7.7: Strategy 2: pipelining the I/O of (1) read from a large SAM input file

and (2) write to HDFS in the CS-BWAMEM upload
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Similarly, in the alignment stage we can also leverage the same pipeline strategy.

The alignment MapReduce stage can be overlapped with the write to the local Linux

file system, as demonstrated in Figure 7.8. This happens when users want to collect

the SAM format file and use the traditional GATK pipeline. Here, we pipeline the

computation with file I/O to improve performance.

Note that it may be possible to overlap the alignment stage with the HDFS write

stage if we want to generate output in a distributed fashion in ADAM format. How-

ever, it will require an approximate 2x computation resources since we are overlap-

ping two MapReduce stages, the alignment and the HDFS output stage together, as

demonstrated in Figure 7.7. We do not consider this in the current implementation.

Figure 7.8: Strategy 3: pipelining (1) the MapReduce computation with (2) write

output to HDFS in the CS-BWAMEM alignment
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7.5 Experimental Results

7.5.1 CS-BWAMEM vs. State-of-the-Art Aligners

We compare our CS-BWAMEM with the two state-of-the-art aligners, BWA-MEM

[111] and Bowtie 2 [105], which are used in variant discovery pipelines (DNASeq)

[129] and RNASeq [158], respectively. Table 7.3 shows the environment setup of

CS-BWAMEM, BWA-MEM, and Bowtie2, for the pair-end read alignment for a 30x

coverage of whole-genome data. Our CS-BWAMEM is implemented in Scala on top

of Spark and runs on JVM. BWAMEM and Bowtie2 are implemented in C [111] and

run natively. Note that the results of CS-BWAMEM are based on the discussion

in Section 7.3 and the column stores described in Section 7.2.1.2. With 30 nodes,

CS-BWAMEM can finish whole-genome alignment within 32 minutes, which leads to

18x and 20.3x speedups over state-of-the-art BWAMEM and Bowtie 2, respectively.

The major reason that CS-BWAMEM cannot achieve the ideal 30x speedup with

30 nodes is because the performance of JVM execution still falls behind the native

execution by around 2x. In terms of the overall throughput, CS-BWAMEM does not

outperform BWAMEM or Bowtie 2, with the same computing resources. However,

CS-BWAMEM can be used to target the latency-critical applications, especially when

users have enough computing resources. It is much easier to add more nodes in

a cluster rather than add more processors in a node to reduce latency. Another

advantage of using CS-BWAMEM is because users can leverage the benefits brought

from cluster computing. For example, in the next step, “Sort,” the scale-out version

of software also demonstrates significant performance benefits. We will include the

results of CS-BWAMEM alignment and Sort in the next section.
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Table 7.3: CS-BWAMEM vs. BWA-MEM vs. Bowtie2 (pair-end)

BWAMEM 0.7.12, Bowtie2 2.2.6 CS-BWAMEM

FASTQ size 300GB 300GB

Implementation C, native execution Java, JVM execution

Configuration One node, 24 threads 30 nodes, 720 threads

Figure 7.9: Performance comparison of (1) BWA-MEM, (2) Bowtie 2, and (3) CS-

BWAMEM, for 30x coverage of whole-genome data.

7.5.2 Scalability and Runtime Distribution of CS-BWAMEM

In this section we provide the scalability analysis of CS-BWAMEM and then provide

the runtime of CS-BWAMEM for both whole-genome data and whole-exome data.

Note that the whole-genome data are commonly used for research purposes, while the

whole-exome data are used in more clinical applications.

Figure 7.10 shows the scalability of CS-BWAMEM when we use different cluster

sizes. CS-BWAMEM can provide scalable performance when we have more computing

resource in a cluster. By using 15 nodes, CS-BWAMEM can provide 2.6x speedup
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over a five-node cluster. When we use the largest available cluster size, 30 nodes, we

still can achieve 4.88x speedup over five nodes. With good scalability demonstrated

in Figure 7.10, users can determine a suitable cluster size based on their performance

target.

Figure 7.10: Scalability of CS-BWAMEM over different cluster sizes

Figure 7.11 shows the runtime distribution of 13 whole-genome data with 30x

coverage. In addition to CS-BWAMEM alignment, we also provide the runtime dis-

tribution in the next step, Sort. For alignment, we can observe that the runtime is

stable among all the whole-genome data, ranging from 36 to 49 minutes. For “Sort,”

we are also able to finish this step within 9.6 to 27 minutes. The performance is stable

and does not vary a lot among different data samples.

We mentioned that recent clinical applications almost always use whole-exome

data since the cost is cheaper. Also, the amount of data is only about 1/10 of the

whole-genome data, and thus both the storage and computation demands are less.
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Figure 7.11: The runtime distribution of 13 30x coverage whole-genome data on (1)

CS-BWAMEM and (2) Sort

Our collaborators at UCLA also collected around 800 whole-exome cases to detect

rare Mendelian disorders [108]. The results shows that our CS-BWAMEM and the

proposed flow of “Sort” in the cluster scale can efficiently finish the alignment and

sort steps in around 10 minutes!

Figure 7.12: The runtime distribution of six whole-exome data on (1) CS-BWAMEM

and (2) Sort

We project that if we can also complete the steps of markduplicate, indelRealign-

ment, and baseRecalibration, we can achieve the whole data pre-processing pipeline,
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as demonstrated in Figure 1.3, within eight hours and one hour, for whole-genome

data and whole-exome data, respectively.

7.5.3 Validation of CS-BWAMEM’s Alignment Quality

In general, our CS-BWAMEM algorithm basically follows the original BWA-MEM

algorithm [111]. However, the final alignment results are still slightly different when

compared to BWA-MEM. Fortunately, the difference is almost negligible. In this

section we provide a quantitative analysis to validate the alignment quality of CS-

BWAMEM.

These are the two implementation issues that make the alignment results different.

First, in the insert distance calculation step for pair-end alignment, as shown in Figure

7.2, we need to calculate the insert distance distribution of a group of reads. In

BWA-MEM, the group size depends on the number of CPU threads to be used. In

CS-BWAMEM, it depends on the HDFS FASTQ file partition size and the number

of partitions to be used, which generally contains more reads in a group than that of

BWAMEM. Therefore, the insert distance distribution can be different and it slightly

influences the pair-end alignment. Second, in the seed extension stage, the original

BWA-MEM uses its own library for sorting seeds, while we directly use the built-in

Java library for sorting in our implementation. It causes slightly different alignment

results since the algorithm itself relies on the order of the seeds.

We used simulated reads generated from a read simulator, ART [91]. The reason

to use simulated reads instead of real reads is because the simulated reads can provide

the ground truth of alignment. We generate about 16 million Illumina reads at 100bp

and 150bp for validating our CS-BWAMEM. We follow a similar validation method

208



described in BWA-SW [113].

Table 7.4 and Table 7.5 show the alignment quality results on 100bp and 150bp

reads, respectively. MAPQ stands for the mapping quality score, which is introduced

by Heng Li. MAPQ is used to estimate the probability of a read being placed at a

wrong position. As suggested in [113], the author used score 20 as the boundary to

differentiate if the aligner is confident of the alignment result. We follow this rule and

evaluate our alignment result together with BWA-MEM. We find that CS-BWAMEM

can provide the very similar alignment quality as BWA-MEM does for both 100bp

and 150bp reads.

First, CS-BWAMEM can generate similar numbers of confidently aligned reads

(MAPQ ≥ 20). As [113] suggested, we compared the coordinates of the simulated

reads with our aligned reads to find out the error alignments. Note that the errors are

the wrong alignments out of the alignments of high confidence reads (MAPQ ≥ 20).

As shown in Table 7.4 and Table 7.5, the results show that the error rates are low

and similar in both aligners. The alignment differences at Column 4 in both tables

mainly come from the reads that can be mapped to multiple possible locations on the

reference genome. In this case, the aligner cannot tell where should these reads are

mapped, and thus the MAPQ of this kind of reads will be zero.

Table 7.4: Validation of alignment data of CS-BWAMEM and BWA-MEM on 16M

100bp simulated reads

100bp MAPQ ≥ 20(%) Error Aln.(%) Aln. diff.(%)

(MAPQ ≥ 20)

CS-BWAMEM 64.56 0.0134 18.07

BWA-MEM 64.54 0.0137 19.20
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Table 7.5: Validation of alignment data of CS-BWAMEM and BWA-MEM on 16M

150bp simulated reads

150bp MAPQ ≥ 20(%) Error Aln.(%) Aln. diff.(%)

(MAPQ ≥ 20)

CS-BWAMEM 65.05 1.93 20.48

BWA-MEM 65.04 1.93 21.50

7.5.4 Effectiveness of Avoiding Broadcast

We compare the performance of our broadcast avoidance method with the state-of-

the-art Torrent broadcast used in Spark. Table 7.6 demonstrates the effectiveness of

avoiding broadcast. For a 30-node cluster, our method can effectively improve the

performance by 13.51%. We also find that broadcast performance overhead grows

as the cluster size increases. It is an important strategy to improve system-wide

performance, especially when the cluster size is large.

Note that since Spark 1.x, the Torrent broadcast mechanism has replaced the

original HTTP broadcast one. The performance has been significantly improved, but

is still not good when the size of a cluster is large.

Table 7.6: Spark torrent broadcast V.S. load from local file system

CS-BWAMEM + broadcast CS-BWAMEM + load locally

Broadcast Mechanism Torrent broadcast Load from local file system

Configuration 30 nodes, 720 threads 30 nodes, 720 threads

Runtime 37 minutes 32 minutes

210



7.5.5 Effectiveness of SIMD Acceleration and Batch Processing in Pair-

End S-W Algorithm

As discussed in Section 7.4.3.1, we use the Intel SSE SIMD engine to accelerate the

pair-end S-W algorithm. Note that we only apply SIMD acceleration to the pair-end

S-W algorithm. For the seed extension step shown in Figure 7.2, a modified version

of the S-W algorithm, which cannot be accelerated using a SIMD S-W algorithm

like [68], is used in the original BWA-MEM. In order to match the results of BWA-

MEM, CS-BWAMEM keeps the original algorithm of seed extension. Instead of using

the SIMD S-W algorithm, we utilize customized FPGA acceleration, which will be

discussed in Chapter 8, to accelerate the seed extension process.

Without SIMD acceleration, the pair-end S-W algorithm would become the bot-

tleneck of the whole application, as demonstrated in Table 7.7, which can slow down

CS-BWAMEM by more than 2x. With pair-end SIMD acceleration with batch pro-

cessing, we can achieve the 32 minutes of runtime, improving the performance by

2.19x.

Table 7.7: Batch processing: Java native execution vs. Intel SSE acceleration

CS-BWAMEM (Java) CS-BWAMEM (Java + Intel SSE)

Java vs. SIMD Acc. JVM execution Intel SSE Acceleration

Configuration 30 nodes, 720 threads 30 nodes, 720 threads

Runtime 70 minutes 32 minutes

Figure 7.13 shows the importance of carefully selecting the batch size. As discussed

in Section 7.4.3.1, a large batch can reduce the communication overhead. However,

a large batch size can increase memory usage and reduce JVM garbage collection

performance. Therefore, a careful design space exploration needs to be performed to
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Figure 7.13: The comparison of the overall CS-BWAMEM runtime over different

batch sizes

select the best batch size. We find that the best performance occurs when batch size

is equal to 100, which is 33.3% faster than the case of not utilizing batch processing

(bs = 1). We can observe that when the batch sizes are too large, such as 10,000 or

100,000, the performance degrades as well due to worse memory behavior in JVM.

For example, when the batch size is equal to 10,000, performance is reduced by 50%

compared to the case of when no batch processing is applied (bs = 1).

Figure 7.14 shows the performance comparison for the second MapReduce stage,

i.e., the stage of paring and output generation. With SIMD acceleration, this stage

can be accelerated by 3.88x. The performance of this stage also improves by 2x with

a careful selection of batch size (bs = 100).

Table 7.8 demonstrates the runtime and garbage collection (GC) time distribution
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Figure 7.14: The comparison of the second MapReduce stage (the pairing and output

generation stage) runtime of CS-BWAMEM over different batch sizes

of a sample of 4,000 HDFS file partitions. We compare the two setting: (1) bs = 100

and (2) bs = 10,000. We can determine that the setting of “bs = 100” is 4x and 5x

faster than the setting of “bs = 10,000” for the mean runtime and mean GC time,

respectively.

7.5.6 Effectiveness of I/O Optimizations

In Section 7.4.4, we discussed several I/O optimization strategies, including RDD

caching and I/O pipelining. Based on the experimental results, the proposed Strategy

2, as shown in Figure 7.7, can improve the performance of the uploading stage by

40% (2 hours to 1.2 hours) for 30x coverage of whole-genome data.

The proposed Strategy 3 (Figure 7.8), which overlaps the alignment stage with
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Table 7.8: Runtime and GC time distribution of the second MapReduce stage of a

sample of 4,000 HDFS file partitions.

Min 25th percentile Median 75th percentile Max

Runtime, bs=100 5s 9s 9s 10s 15s

Runtime, bs=10,000 10s 31s 36s 42s 1.4min

GC Time, bs=100 0.1s 2s 3s 4s 17s

GC Time, bs=10,000 39ms 0.5s 0.6s 0.8s 2s

file system I/O, can reduce the runtime from 80 minutes to 52 minutes (35%). Based

on our observation, the local file system I/O bandwidth is about 120 MB/s in our

system. The file size of the whole-genome alignment is about 360GB. Even if we

can write the output file at full speed consistently, it still takes 50 minutes to finish

it at 120MB/s bandwidth. Therefore, our results demonstrate that we have already

pipelined the I/O with computation efficiently.

Figure 7.15 shows the alignment time of generating SAM format outputs over

different cluster sizes. In this setting, the final alignment results are collected at the

driver node in an aggregated SAM file. When we use a large cluster, e.g. a cluster

with 25 - 30 nodes, we observe the diminishing return of performance gain. This is

because the available network bandwidth and disk bandwidth on the single driver

node limit the scalability.

With the three proposed strategies, we can significantly improve the system-wide

performance. We can conclude that I/O optimization is the key to reducing the

overall runtime.
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Figure 7.15: Scalability of CS-BWAMEM in SAM format outputs over different clus-

ter sizes

7.5.7 Current Progress of DNA Sequencing Pipeline Acceleration

In this chapter we proposed CS-BWAMEM to accelerate the read alignment through

the scale-out in-memory cluster approach. Our final goal is to accelerate the whole

DNA sequencing pipeline, as shown in Figure 7.16. Our current progress shows that

we can reduce the first three steps in the pipeline (alignment, sort, markduplicate) by

40x when we use a 30-node cluster, which is a super-linear speedup. This is through

efficient in-memory cluster computing, algorithm improvement in markduplicate, and

efficient cluster-level in-memory sorting in Spark. We clearly demonstrate the scale-

out approach can help us process the DNA sequencing data more efficiently.
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Figure 7.16: Current progress of accelerating the DNA sequencing pipeline

7.6 Conclusions

In this chapter we first introduce the software suite, cloud-scale BWAMEM (CS-

BWAMEM), where CS-BWAMEM is an ultrafast aligner that provides around 20x

speedup over the state-of-the-art aligner. CS-BWAMEM uses the in-memory cluster

computing system, Spark, to provide scalable performance that matches a user’s

performance target. CS-BWAMEM is also a valuable case study to demonstrate the

effectiveness of using an in-memory cluster computing system to accelerate the DNA

sequencing pipeline.

Next, we introduce the details of customized strategies for improving the perfor-

mance of CS-BWAMEM. Some of them can be further applied to other applications

in the DNA sequencing pipeline or the other domains. First, we avoid broadcasting

the large human reference genome data to every node before computation. Instead,
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we load it from the local disk of each Spark worker during runtime. Second, the data

is stored in a column store for better compression and partial data access. Third, to

utilize accelerators or coprocessors efficiently, we group small tasks into a batch; the

accelerators then can compute tasks in a batched way to avoid the overhead intro-

duced by fine-grained data transfers. We used the Intel SSE vector engine as a case

study in this chapter. Finally, we try to optimize I/O efficiency by using RDD caching

and pipelining file system I/O with MapReduce computation. By using all the cus-

tomized strategies in a 30-node cluster, CS-BWAMEM can align the whole-genome in

32 minutes—which is about 18x faster than the state-of-the-art aligner, BWA-MEM.

The CS-BWAMEM is available online at https://github.com/ytchen0323/cloud-scale-

bwamem.

I am the main architect of CS-BWAMEM and contributed 80% of the implemen-

tation. CS-BWAMEM is a collaborative effort between Sen Li, Peng Wei, Peipei

Zhou and myself. Peng Wei and I have had many discussions on the mechanism of

avoiding broadcast and CS-BWAMEM design. The improvement of markduplicate,

described in Section 7.5.7, is a collaborative effort between Qi Zhao and myself.
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CHAPTER 8

FPGA Acceleration in an In-Memory Cluster

8.1 Introduction

In Chapter 7 we discussed about our motivation to design CS-BWAMEM. We also

show the overall software architecture in CS-BWAMEM. In this chapter we will focus

more on how to use FPGA-based accelerators for further scaling up the performance of

each node in a cluster for CS-BWAMEM. As discussed in Section 7.2.2, recent state-

of-the-art aligners decompose the read alignment process into two steps [111][105].

The classic Smith-Waterman (S-W) algorithm is used to find inexact mappings by

using dynamic programming. The time complexity is quadratic, and it thus becomes

one of the main computation bottlenecks in the state-of-the-art aligners. Therefore,

we decide to leverage this compute-intensive kernel into hardware accelerators.

The acceleration techniques have been studied in various architectures, such as

SIMD vector engines in general-purpose processors, GPUs, and FPGAs. In [164, 68,

145], the authors redesigned the S-W algorithms based on the architecture of the

SIMD vector engines. The wavefront-based [164] and column-based [68, 145] algo-

rithms were proposed to map to the vector engines. Several GPU implementations,

such as the work in [125] and CUDASW++ 3.0 [120], demonstrated the speedups

over SIMD CPU implementations [68][145]. The research in [138, 123, 174, 170,
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100] exploited the anti-diagonal parallelism of the S-W algorithm and implemented

wavefront-based architectures on the FPGA. In a very recent work [35], the authors

proposed an FPGA-based high-throughput acceleration engine for accelerating the S-

W algorithm used in BWA-MEM, which best suits our needs. However, it is unclear

how to modify the current S-W algorithm in BWA-MEM to efficiently use the FPGA

accelerator. Furthermore, the runtime system and middleware need to be developed

to manage the accelerator requests from multiple map tasks under a MapReduce

framework.

In this dissertation we apply hardware acceleration to CS-BWAMEM in order to

accelerate the compute-intensive Smith-Waterman kernels. Our contributions can be

summarized as follows.

• High-throughput FPGA S-W acceleration engine: We propose an array-

based architecture for processing the enormous number of reads in a high-

throughput fashion, adapting better to inputs with widely varied sizes. A

two-level hierarchical architecture for resource management is provided. It can

reduce the amount of resources needed for synthesizing bus interfaces, while

satisfying the off-chip bandwidth demand. Furthermore, our design supports

the pruning technique, shortening the runtime of the S-W algorithm signifi-

cantly. Our FPGA implementation demonstrates a 343.8x speedup over the

state-of-the-art Intel Xeon server running under a single thread.

• Batched S-W algorithm optimized for hardware accelerator: We

realize the high-throughput S-W accelerator proposed in [35] in a PCIe-based

FPGA card using the Xilinx SDAccel flow [8] and deploy the accelerators over

the cluster. We observe that a significant communication overhead occurs for the

data transfer between (1) map tasks and the accelerator manager and between
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(2) the accelerator manager and FPGA board. To overcome the communication

overheads, we try to group a large number of reads and send them to the FPGA

accelerator. However, due to the strong inner-task dependency of the S-W

algorithm used in BWA-MEM, we cannot directly send data to FPGA without

resolving the dependency. By redesigning the S-W algorithm, we are able to

process data in a batched fashion and thus better utilize the FPGA accelerator

with much less communication overhead.

• Accelerator manager: In the SDAccel flow, we need a software accelerator

manager (AM) to manage the accelerator requests from multiple Spark tasks in

a node. The AM is in charge of receiving the requests from multiple processes,

dispatching the requests, and sending input data to the FPGA accelerator. It is

challenging to design the AM efficiently since multiple tasks can issue requests

simultaneously. We design the handshaking protocol and use the POSIX shared

memory to exchange data between the AM and the Spark tasks.

With hardware acceleration, we can further reduce the runtime by more than 50%

of the S-W algorithm process.

8.2 Background

8.2.1 Cluster Computing and Storage Frameworks

In recent years, cluster computing and storage frameworks began to proliferate in

datacenters in order to handle large-scale problems. Google File System (GFS) [73]

provides a storage layer for developers to store data in a distributed way and use repli-

cas for maintaining reliablilty. We use the Apache Spark [171] in-memory MapReduce
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framework as our underlying computation system. Google first proposed MapReduce

[62], which provides a simple map/reduce programming model with the underlying

system to distribute computations over a cluster with more than thousands of nodes.

Apache Spark keeps the MapReduce programming model while further providing the

capability to cache reusable data in memory instead of writing data back to the

distributed file system at the reduce step. Therefore, Spark demonstrates signifi-

cant performance improvement over Hadoop [3], an open source implementation of

MapReduce. This capability of caching reusable data can be beneficial since we can

cache the intermediate data between the steps in the DNA sequencing pipeline.

8.2.2 Hardware Acceleration for Read Alignment

As a fundamental operation in computational biology, accelerating read alignment has

captured much attention from academia [16]. The hardware acceleration techniques of

both the backtracking algorithm and the S-W algorithm are studied in various kinds of

hardware platforms. In [134] the authors proposed a scalable FPGA-based solution,

including both the backtracking and the S-W algorithm, and demonstrated a one-

order-of-magnitude speedup versus Bowtie. In [17] the authors implemented a fully

pipelined accelerator for the backtracking algorithm, achieving a 18.1x speedup over

BWA. A systolic-array-based implementation for accelerating the S-W algorithm was

described in [174], gaining up to 250x speedup. The authors in [123] proposed a novel

computing approach, called race logic, and demonstrated up to 4x faster than the

systolic array implementation. These solutions utilize the anti-diagonal parallelism

inherent in the S-W algorithm, and work efficiently when the sizes of inputs are

relatively homogeneous. In [35] the authors pointed out that the S-W kernel in

BWA-MEM is fed with sharply varied size inputs, and is optimized by pruning. A
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high-throughput accelerator is implemented specifically for the S-W kernel in BWA-

MEM.

These hardware acceleration approaches show great potential to serve as building

blocks in state-of-the-art read aligners to improve the overall performance. However,

contemporary aligners are all purely software-based, leaving the potential for further

acceleration unfulfilled. One important reason for this is that prior work ignored

the complexity of integrating a standalone hardware accelerator into state-of-the-art

aligners. This chapter shares our experiences of integrating a hardware accelerator

into a prevalent aligner to fulfill the potential.

8.3 Architecture of the FPGA Accelerator

In this section we will discuss our design for accelerating the modified Smith-Waterman

algorithm used for the seed extension step.

8.3.1 Key Observations

Our acceleration engine design is based on the following three important observations

derived from an analysis of the S-W implementation in BWA-MEM.

Observation 1: Enormous Task-Level Parallelism. A sequencer can gener-

ate billions of reads from a single individual for analysis in todays NGS flow. The

huge amount of data generates enormous task-level parallelism, prompting us to reex-

amine the conventional wavefront technique for S-W acceleration. The conventional

wavefront technique exploits the inner-task anti-diagonal parallelism to maximize the

speedup for a single task. However, the wavefront implementation is not optimal
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when the task-level parallelism is several orders of magnitude larger than the inner-

task parallelism. For an accelerator platform with limited resources, e.g., an FPGA

board with a certain amount of LUTs (DSPs, BRAMs, etc.), we must decide if the

resources should be allocated for exploiting the task-level parallelism or the inner-task

parallelism.

Observation 2: Significantly Varied-Size Inputs. For simplicity without

losing generality, we abstract the total resources of an accelerator platform into a

given number of unified processing elements (PEs). We also assume that each PE is

capable of producing one value per cycle to fill the 2D table in the DP algorithm. A

kernel is composed of a group of PEs and can be assigned to execute one S-W task.

We denote mxn as a pair of input strings for the S-W algorithm with length m and

n.

The sharply varied input sizes of S-W in BWA-MEM result in a considerable waste

of resources in wavefront-based designs. For example, a kernel of 10 PEs is only able

to reach a maximum of 65% resource utilization for a 13x103 input because the length

of the maximal antidiagonals (13) is not divisible by the number of PEs (10). It takes

2 cycles for 10 PEs to fill an anti-diagonal with 13 elements. Figure 8.1 provides

a histogram of the sizes of the shorter strings (bounding the maximum degrees of

parallelism) over 10M inputs of randomly selected BWAMEM S-W tasks. The sizes

range from 1 to 84, and none of them has more than 5% of the 10M inputs. The

significant diversity of input sizes makes it prohibitive to choose one or a few kinds

of PEs to avoid wasting resources. A better choice is to have each kernel restricted

to only one PE, which means the anti-diagonal parallelism gets totally ignored.

Observation 3: Pruning Strategies. Derived from the X-dropoff pruning

strategy in BLAST [13], BWA-MEMs pruning strategy is able to save over 50% in
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Figure 8.1: Histogram of the lengths of the shorter input strings collected from 10

million randomly selected BWA-MEM S-W tasks.

computation efforts for S-W tasks, as illustrated in Figure 8.2. However, the pruning

strategy destroys the basis of the anti-diagonal parallelism, as described in detail in

[111]. Moreover, the results generated by the optimized S-W algorithm in BWA-

MEM are slightly different from those obtained by the standard S-W algorithm.

This increases the difficulty of integrating existing wavefront-based work into BWA-

MEM for concerns of result credibility. Even if the difficulty of integration can be

overcome, the potential speedup from pruning would have to be sacrificed due to its

incompatibility with the wavefront technique. It will be even worse when the sizes of

seeds become longer, which is the future trend for NGS.
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Figure 8.2: A 55x105 BWA-MEM Smith-Waterman task. The general S-W algorithm

requires filling up a 55x105 matrix (5775 elements), but only 2836 elements (49%) were

actually filled with the help of pruning. The black area in the left graph illustrates

the elements that got filled, and the right graph shows how many elements for each

target loop index are actually calculated.

8.3.2 Architecture Design

8.3.2.1 Overall Architecture

Figure 8.3 shows the overview of our Smith-Waterman accelerator engine. It consists

of multiple PE arrays. Each PE array has a task distributor connected to the off-chip

memory via an AXI bus interface. Each PE acts as one kernel and can take one S-W

task at a time to maximize throughput. This strategy is used to take the advantage

of the first observation of enormous data-level parallelism, as discussed in Section

8.3.1. In order to reduce the round-robin scheduling overhead rising from the large

number of PEs, we design our architecture to be two-level task distribution. Note

that our accelerator engine is customized for the modified Smith-Waterman algorithm

used in BWA-MEM and CS-BWAMEM, which is different from the general-purpose

Smith-Waterman algorithm.
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Before the accelerator starts to operate, the host processor assembles a set of query

and target sequence pairs and streams them to the on-board DDR3 memory via the

PCIe bus. After that, each PE arrays task distributor fetches a certain number of

sequence pairs and distributes them to the idled PEs. The mapping results are stored

in the on-board memory and then sent back to the host.

Figure 8.3: The architecture of the Smith-Waterman accelerator.

8.3.2.2 Processing Element (PE) Design

By using the high-level synthesis methodology, the hardware structure of a PE is

created based on the S-W software code obtained from the software implementation

of BWA-MEM. Unlike wavefront-based solutions that look completely different from

the software structure, our design naturally follows the original software structure,

which considerably shortens the development cycle.

To maximize throughput, we make the initiation interval (II) of the PE design

be equal to one (II=1), i.e., calculating one cell of the dynamic programming score
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matrix per cycle. Moreover, a conditional branch logic is implemented to realize

pruning. It enlarges the size of each PE by 20%, but reduces computation effort by

over 50%.

8.3.2.3 Two-Level Task Scheduling

The first level of task scheduling resides in a PE array. A PE array includes three

types of major components: (1) a task distributor, (2) a set of PEs, and (3) a result

collector. The task distributor fetches data from the on-board DRAM to the on-chip

BRAM and dynamically dispatches the tasks to each PE through a FIFO. The result

collector receives mapping results from each PE through a FIFO and packs them

together for the host.

If a centralized task distributor is not provided, each PE needs to fetch data from

on-board memory independently. This incurs a significant (25%) area overhead per

PE to synthesize its own AXI interface. To reduce the overhead, we use only one

AXI bus interface for each task distributor per PE array. A PE array, acting as an

AXI bus master, fetches a group of data that satisfy the off-chip bandwidth demand

of all PEs in the array. We also implement pingpong buffering by using a pair of

BRAM blocks for better performance. After the data are prefetched to BRAM, the

distributor checks the flag of the FIFO of each PE one by one to find an available

PE. The task distributor then transfers the S-W tasks from BRAM to the FIFOs of

the PE. This process continues until all the tasks are processed. The result collector

continues monitoring the output FIFO of each PE and obtaining results until all the

results are received.

If the number of PEs is small, the one-level task scheduling is sufficient. How-
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ever, when the number of PEs is increased to a certain point, e.g., 50, the distributor

becomes a performance bottleneck due to its round-robin task scheduling scheme.

Therefore, we introduce a two-level task scheduling scheme which feeds tasks to mul-

tiple arrays, each with its own task distributor. This two-level hierarchy provides us

with a scalable design methodology for obtaining scalable speedup.

8.3.2.4 Performance of the Acceleration Engine

To demonstrate the speedup of our accelerator engine over the original Smith-Waterman

kernel used in BWA-MEM, an Intel Haswell Xeon server with two 6-core CPUs is used.

The server can run 24 threads in parallel, with hyper-threading support. We compare

the execution time of our FPGA acceleration engine to pure software-optimized S-W

algorithm runtimes with 1, 2, 4, 8, 16 and 24 threads. To make a fair comparison,

only the computation time of the S-W calls (after loading inputs from memory and

before storing outputs to memory) is collected.

Figure 8.4 shows the performance comparison with results normalized to the

single-threaded CPU performance. Our FPGA design outperforms the single-thread

CPU and 24-thread CPU by 343.8x and 26.4x, respectively. This justifies the effi-

ciency of our FPGA acceleration engine.

8.4 CS-BWAMEM with FPGA Acceleration

In this section we first describe our cluster setup, including computing and storage

frameworks and hardware accelerators. Next, we discuss our cluster-scale aligner de-

sign and proposed optimization strategy. We mainly focus on (1) the uploading stage
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Figure 8.4: Performance comparison between our FPGA acceleration engine and the

multi-threaded S-W software kernel.

and (2) the first MapReduce stage, including seeding and seed extension, described

in Section 7.3. We will not discuss the pairing and output generation stage.

8.4.1 Cluster Setup

We use Apache Spark as our cluster computing framework and HDFS as the storage

framework. Figure 8.5 shows a cluster with one master node and N worker nodes.

Note that a HDFS datanode and a Spark worker are deployed together in the same

node so that the Spark worker can fetch data from the local node for better data

locality. We launch our jobs on the driver node. Then, the driver can send job

requests to the master node. Each aligner job is decomposed into many small map

tasks running on the Spark workers. Each node has an accelerator manager, which
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handles the requests for the hardware accelerator that were sent from the map tasks.

The accelerator manager is also in charge of the data transfer between the map tasks

and the accelerator by copying data from the host program to the device memory.

The interconnection network of the cluster is at the 10Gb Ethernet speed.

For each node, we have one PCIe-based FPGA card, which works like a coproces-

sor, for providing hardware acceleration for the S-W algorithm. We use the Alpha

Data ADM-PCIE-7V3 card designed for datacenter applications [1]. Each card has

a Xilinx Virtex 7 FPGA and 16GB on-board DDR3 DRAM. The host CPU process

can send data to the on-board DRAM through the PCI-e Gen 3 interface. We use

the Xilinx SDAccel flow with the Vivado high-level synthesis tool to design our accel-

erators and program the generated bitstream to the FPGA card [8]. The bitstream

is preloaded on board before the read alignment jobs are launched.

Figure 8.5: Cluster setup
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8.4.2 Aligner Software Architecture

Figure 8.6 demonstrates our first two MapReduce stages. We partition the input

FASTQ files into many independent data partitions In Spark, each data partition is

scheduled as a map task, and computation is executed independently and distribut-

edly in a cluster. Thus, we can exploit the huge task-level parallelism by leveraging

the computation power all over a cluster.

In the first MapReduce stage, the reads in the FASTQ format need to be uploaded

to HDFS. The FASTQ format is a standard text-based format to represent DNA

reads. Conventionally, the whole genome FASTQ data is stored in a Linux file system.

In our aligner, Avro [2] is used to specify the data schema of the FASTQ format. With

Avro, the FASTQ reads can be stored and sent during computation between nodes

in the cluster.

In the second MapReduce stage, the major computation of the read alignment

is performed. It can be decomposed into two compute-intensive functions: exact

mapping and inexact mapping, as discussed in Section 7.2.2. The exact mapping

is developed using pure software implementation while the inexact mapping can be

accelerated through the FPGA acceleration engine. Our aligner supports both the

widely used SAM format [114] and the distributed ADAM format [127] for further

analysis in the DNA sequencing.

8.5 Batch Smith-Waterman Algorithm

In this section we describe our approach for exploiting the potential of FPGA hard-

ware acceleration solutions. In sum, the gap between an impressive PCI-e based
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Figure 8.6: Cluster-scale read aligner: overview

accelerator and an integrated software/hardware system is surprisingly large. In this

section we discuss how to design an efficient algorithm that maps well to our proposed

FPGA accelerators.

8.5.1 Overhead of Data Transfer Between CPU Host and FPGA

In order to reduce the communication overhead between accelerators and processors,

we proposed the batch processing strategy, which groups a series of data and sends

it to accelerators all at once. In this case, the accelerators can perform a series of

computations on the received data without interruption. Table 8.1 shows the commu-

nication overheads introduced between the host program and the FPGA accelerators

in different batch sizes. The batch size is the number of tasks in a batch. The total
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number of tasks in 512K in the example. For example, if the batch size is eight, the

number of batches is 512K
8

= 64K. These batches are processed in a sequential way.

The processor would communicate with FPGA through PCI-e bus back and forth to

process these batches. We find that the communication overhead of the smallest batch

(batch size = 1) is around 22.6x larger than the largest batch (batch size = 512K).

Therefore, batch processing is an important way to reduce data transfer overhead.

Table 8.1: Overhead of communications between processors and FPGA accelerators

batch size # of batches overheads (s)

1 512K 13.8

2 256K 6.72

4 128K 3.45

8 64K 1.81

16 32K 0.995

... ... ...

64K 8 0.610

128K 4 0.610

256K 2 0.609

512K 1 0.611

8.5.2 Building Block: FPGA Smith-Waterman Acceleration Engine

Most hardware acceleration work focuses on accelerating the general versions of the

algorithms to make the accelerators widely used; however, software aligners modify

the algorithms for their own optimization purpose. BWA-MEM adopts a pruning

strategy, called X-dropoff, to improve the performance of its S-W kernel, but the
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results generated by the revised S-W kernel are slightly different from those gener-

ated by the general S-W algorithm. Moreover, the input size of the S-W kernel in

BWA-MEM varies drastically. Therefore, the accelerators or SIMD-based algorithm

designed for accelerating the general Smith-Waterman algorithm cannot be directly

applied [68, 145, 138, 123, 174, 170, 100].

The BWT-based backtracking kernel encounters an even worse situation. While

the acceleration for the general backtracking algorithm proposed in [112] has been

well studied, BWA-MEM adopts the SMEM algorithm [110], which has not received

enough attention yet. It is even extremely difficult to find a roughly similar hardware

accelerator to start with.

As a result, we first focus on designing a customized FPGA accelerator for BWA-

MEM and CS-BWAMEM. The detailed architecture design of the FPGA accelerator

has been published in [35]. We use it as a building block for accelerating the S-W

kernel in our integrated software/hardware system. The modified Smith-Waterman

algorithm consumes 30%-40% of the overall execution time of BWA-MEM. Our sys-

tem does not include a backtracking building block for now. Nevertheless, we are still

working on designing accelerators for the SMEM algorithm in order to obtain higher

aggregate speedup.

8.5.3 Batch Processing: Reduce Communication Overhead

When integrating a hardware accelerator into a software system, one critical issue

that has a strong impact on performance is the data transfer overhead between the

accelerator engine and the application host, as discussed in Section 7.4.3. The data

transfer overhead can be significantly reduced if the data are sent in a coarse-grained
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fashion to the accelerators; for example, a software program spends some time prepar-

ing input data for an accelerator. In this case, the overhead is even negligible if the

computation time is orders-of-magnitude longer than the data transfer time. However,

the behavior of calling the S-W kernel in BWA-MEM reaches the opposite extreme.

By analyzing the original algorithm in BWA-MEM, we observed that the S-W kernel

is called in a drastically finer-grain in BWA-MEM. On average, each S-W function call

is fed by an 30x100 input and consumes about 20 µs in CPU, based on our profiling

results. Meanwhile, a sequencing task calls the kernel hundreds of billions of times.

Since the time to make a request to the FPGA board typically needs thousands of

nanoseconds, it takes days for all the S-W calls to merely communicate with FPGA

if we send data in such a fine-grained way.

Given this fine-grained pattern, our system processes the S-W function calls in

a batched fashion. Figure 8.7 illustrates the effectiveness of batch processing by

measuring the utilization of the bandwidth of an FPGA’s private DRAM in different

batch sizes. We initially feed a certain number of input data for the S-W kernel into

an FPGA’s private DRAM, and then collect the actual bandwidths of different batch

sizes. We can see that the utilized bandwidth improves significantly with the increase

of the batch size. Although the communication between an FPGA and its private

DRAM is not the only communication overhead, it is sufficient to show the power of

batch processing.

The proposed batch processing mechanism works well for BWA-MEM as the align-

ment tasks of different reads are completely independent, enabling us to process a

batch of S-W calls from different reads in parallel. (The S-W calls generated by the

same read, however, are strongly dependent on each other. See Section 8.8 for more

details). Since billions of reads need to be aligned in a sequencing task, the degree
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Figure 8.7: DRAM bandwidths for different batch sizes

of parallelism is adequate for our system to form large batches to reduce the com-

munication overhead. We reimplement the BWA-MEM algorithm, realizing batch

processing along with the MapReduce programming model. Each map task consists

of a configurable number of reads to be processed in batch, which can be as large as

a whole HDFS partition and as small as containing only one read. Our implemen-

tation not only maintains good scalability, but enables hardware accelerators to be

integrated into our system.

8.5.4 Batch Size Selection: Larger Not Always Better

Batch processing of the S-W kernel in BWA-MEM is not as straightforward as simply

unrolling a loop. BWA-MEM is a highly complicated algorithm with 15,741 lines of
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C code in total, and the S-W kernel is deeply located inside the hierarchy of BWA-

MEM’s function calls—that is, the eighth nest from the main function. Extracting

the kernel for batch processing not only takes considerable engineering effort, but

generates more intermediate data, which is in proportion to the batch size. A large

batch size incurs a large memory footprint, resulting in a longer garbage collection

time. This reduces the performance gain from the reduction of the communication

overhead, especially when many threads are used. Therefore, there is a trade-off

between the reduction of data transfer overhead through a large batch size and an

adequate memory footprint through a small batch size. Moreover, different system

settings may lead to different optimal batch sizes. The batch size is implemented as

a configurable parameter in our system with the default value 32,768, based on the

experiment described in Section 8.8.2.

8.5.5 Thresholding: Addressing the Long-Tail Problem

It is not always efficient to send all the tasks to FPGA for acceleration when the

gain from acceleration is smaller than the loss obtained from data transfer. In BWA-

MEM, the number of S-W function calls generated by a read is data-dependent.

Different reads may trigger enormously varied numbers of S-W calls, ranging from

0 to over 8000. Based on the algorithm of BWA-MEM, the S-W call of seed in one

read strongly depends on the extension result from the previous seed. Therefore, the

alignments of all seeds in a read can only be done sequentially. Figure 8.8 illustrates

this dependency inside a read. For each row, it represents the number of seeds of a

read. For example, read 0 contains 11 seeds while read 2 has only two seeds. Our

batch processing algorithm would process the first seeds from all the reads in the

batch together. After the first seeds of all reads are processed, the algorithm will try
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to process the second seeds (if there are any) of all reads. This process will continue

until all the seeds are processed.

Due to the significantly varied behaviors of the read, each read has different num-

bers of seeds. We can observe that the batch size will be gradually reduced. However,

we observed that when the batch size is too small, the communication and data trans-

fer overhead actually dominate the execution time, offsetting the performance gain

brought from FPGA acceleration. To address this issue, a threshold is needed to

determine whether a batch needs to be processed on FPGA or we can simply use

CPU for computation. An appropriate threshold is critical to the performance of

our system. Like the batch size, the threshold is also implemented as a configurable

parameter in our system with the default value 64, based on the experiment described

in Section 8.8.2.

Figure 8.8: Dependencies and batching in a batch of reads

In sum, in order to leverage the acceleration benefits brought by FPGA, we need to

carefully redesign the algorithm to avoid communication and data transfer overhead.
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Batch processing is a powerful way to resolve this problem. However, the parameters,

such as an adequate batch size and a threshold for using FPGA accelerator, need to

be carefully determined to achieve the best performance.

8.6 Accelerator Manager Design

In the current SDAccel flow, we need to have a dedicated software accelerator manager

(AM) to send requests, copy data from the host program to device memory, and wait

for the results from the FPGA accelerator. This is because many threads inside a

Spark worker will contend for the FPGA resources. AM is needed for arbitration

purposes. In this section we first discuss the challenges encountered for supporting

intense accelerator accesses from multiple S-W tasks. Next, we demonstrate our AM

design that addresses these issues.

8.6.1 Design Challenges

The goal of the AM design is to provide a handshaking protocol between S-W map

tasks and the FPGA accelerator. The AM is also in charge of the data transfer. For

performance concerns, the AM needs to minimize the communication overheads so

that the map tasks can efficiently leverage the power of the FPGA accelerator. We

find the that following requirements need to be satisfied.

The first design challenge we encounter is that the accelerator access pattern is

a large number of fine-grained and discontiguous accesses. A conventional way to

efficiently use GPU-like coprocessors is to copy a large amount of data from the host

program to the device memory, and then acceleration can be achieved by using abun-
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dant SIMD engines. The data transfer and the computation is usually done at a

coarse granularity. However, since the S-W algorithm used in BWA-MEM introduces

strong inner-task dependency, as discussed in Section 8.5, we are not able to sim-

ply send a large number of reads directly to the FPGA coprocessor. The proposed

batched Smith-Waterman algorithm can effectively group data and send it to the

accelerator. However, the batched algorithm still generates a series of fine-grained

and discontiguous requests for the FPGA accelerator.

Second, the accelerator needs to service the requests from multiple map tasks. In

our cluster-scale aligner, the FASTQ data are stored and computed as small tasks

in a distributed way. Each task is processed by one CPU core. Therefore, multiple

requests can be sent from different map tasks to the AM simultaneously. The Hyper-

Q technology in the Kepler GPU provides the capacity that allows 32 simultaneous

connections to share the GPU resources [6]. However, neither the current SDAccel

flow nor the S-W accelerator engine we select can support simultaneous accesses.

The AM needs to act as an intermediate layer to arbitrate the accesses from multiple

processes.

Third, our cluster-scale aligner is developed using Scala and built on top of the

Spark framework, which runs on the Java Virtual Machine (JVM). However, the

accelerator is a native application built from C to interact with the FPGA accelerator.

We need to provide a handshaking protocol and data transfer mechanism between

the Spark tasks and the AM.
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8.6.2 Accelerator Manager Design

Figure 8.9 shows the AM design and the handshaking protocol. We launch one AM

per node to handle the accelerator requests from the map tasks in this node. The

POSIX shared memory is used for exchanging data and the done signals of data

transfer between the AM and the map tasks. Since the shared memory is allocated

by the map tasks during runtime, we use sockets to send the shared memory ID to

the AM so that the AM can fetch data from and write results back to the assigned

shared memory region.

When a map task enters the batched S-W algorithm section, it will send a series

of batched requests to the AM for FPGA acceleration, as described in Section 8.5.3.

This process is implemented through the Java Native Interface (JNI) and built as a

library to be loaded in JVM during runtime. For each request, a shared memory is

created and the required input data for FPGA acceleration is loaded to the allocated

shared memory region (step (1)). Next, the map task tries to send the shared memory

ID to the AM through a socket. The map task will keep trying to deliver the ID until

the AM is not busy (step (2)). After that, the map task will continue checking the

register v2 until the AM finishes the request. The shared memory needs to be freed

once the task is completed.

In the AM, we first program the bitstream to FPGA and create the default read-

/write device buffers during initialization time. This is a one-time process. Next,

the AM starts to listen to the socket to receive the requests from map tasks. After

receiving the shared memory ID, the AM begins to process the current request for

the specific map task. The register v1 is set by the map task when data is ready.

Once v1 is set, the AM can read the data from the designated shared memory and
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then write the data to the on-board device memory using the API, write dev buffer(),

provided by the SDAccel flow. The enqueue task() function sends a start signal to

the FPGA accelertor. The AM will wait until the task finishes and then the results

can be read from device memory. At the end, the AM writes the results back to the

shared memory and updates the v2 register so that the map task can get the results.

Figure 8.9: Accelerator manager design and the handshaking protocol

Since we have only one FPGA accelerator per server node, the accelerator resource

cannot be shared once it is occupied. Therefore, the sequential FPGA accelerator

accesses do not harm performance since the accelerator can only service one request
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at one time. The potential inefficiency of the current AM design is that it needs

to read the shared memory of the requests from multiple map tasks in a sequential

way. This can be hidden if each map task can directly communicate to the FPGA

accelerator with a suitable arbitration scheme. However, it cannot be achieved based

on the current SDAccel flow, and SDAccel is the only way to use the Alpha Data

card. Based on our evaluation, the data transfer time is currently not the performance

bottleneck. Compared to the time spent on the FPGA accelerator, it accounts for

only 10% of the time spent on FPGA hardware.

8.7 Evaluation Methodology

8.7.1 Software and Hardware Overview

Our system comprises a cluster of 12 Intel Haswell Xeon servers as well as six Xilinx

Alpha Data FPGA boards. Each server equips two Intel Xeon E5-2420 microproces-

sors with 12 cores in total and 64GB memory. The system implements the BWA-

MEM algorithm presented in BWA 0.7.8 by harnessing the Apache Spark MapReduce

framework.

The system is tested on our cluster with Spark 1.2.1 and Hadoop 2.5.2. The

testcases are derived from a real genome sample with breast cancer (HCC1954), which

contains over 1 billion reads (300GB large). While the software implementation can

fully utilize all of the 12 server nodes, the integrated software/hardware system is only

tested under a subset of six nodes due to the insufficient number of FPGA boards.

However, the effectiveness of the joint system can still be demonstrated in the 6-node

cluster and easily projected to the entire cluster.
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The hardware accelerator proposed in [35] is adopted as the building block for

accelerating the S-W kernel in BWA-MEM. Accelerators are synthesized on the Xil-

inx Alpha Data ADM-PCIE-7V3 boards which are equipped with Xilinx Vertex 7

FPGAs. The six Alpha Data boards are located in six servers, forming a 6-node

heterogeneous cluster for launching our joint software/hardware system. The com-

munication between a server and an FPGA board is facilitated through the PCIe

bus. The SDAccel development environment is used for accelerator configuration,

synthesis and integration. We mainly test our system using an accelerator with 60

processing elements (PEs). We also use 40 PEs for performance comparison.

8.7.2 Profiling Methodology

In Spark, a large number of map tasks are created and launched in the cluster. These

map tasks are executed in parallel, and the executions are interleaved with each other.

In order to get a detailed profile of our cluster-scale aligner, we design a profiler to

extract the runtime of each step. In the reduce stage, we collect the statistics from

all map tasks and accumulate them. Therefore, we can identify the performance

bottlenecks and reduce the design cycle easily.

In the evaluation section, the speedups of different numbers of nodes and the time

breakdown of the AM statistics are the wall-clock time. The other detailed time

breakdowns are the statistics collected from the profiler.
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8.8 Evaluation and Analysis

8.8.1 Effectiveness of Hardware Acceleration

In order to understand the effectiveness of the hardware acceleration of the S-W

algorithm, we need to first analyze the runtime breakdown between the exact mapping

(using BWT) and the inexact mapping (using the S-W algorithm). We use our profiler

to get the accumulated runtime from all the map tasks of the exact and inexact

mapping steps. Figure 8.10 shows the statistics collected from a single node in the

cluster. We compare the accumulated runtime breakdown between the pure-CPU

aligner and the FPGA-accelerated aligner when using different numbers of cores.

The performance of FPGA-accelerated aligner is normalized to the pure-CPU one.

We can observe important characteristics based on Figure 8.10. First, the BWT

part accounts for more than 60% of the total runtime. The amount of time that can be

accelerated by using the S-W accelerator is about 30% - 35%. Second, we can reduce

the runtime of the S-W algorithm by more than 50% after all the communication

overheads between the software map tasks and the PCIe-based FPGA accelerators

are included. Third, we can reduce the overall aligner runtime by around 20% even

when we launch map tasks on 12 cores in node. In Figure 8.10 we can observe

that the runtime reduction only decreases slightly from 1-core (22.8%) to 12-core

(16.2%). This means we can launch multiple map tasks concurrently with only one

accelerator. It further demonstrates the effectiveness of our batched S-W algorithm

and the accelerator manager.

To show the scalability of the hardware-accelerated cluster, we evaluate the ef-

fectiveness of hardware acceleration with a 6-node cluster. Figure 8.11 demonstrates
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Figure 8.10: Runtime breakdown between the pure-CPU and the FPGA-accelerated

aligners over different numbers of cores used in one node.

the performance gain of FPGA acceleration over different sizes of cluster. For each

cluster size, the performance of the FPGA-accelerated aligner is normalized to the

pure-CPU one. The FPGA accelerator can consistently reduce the runtime from 9%

to 17% over the pure-CPU aligner. This leads to an extra speedup which is orthogonal

to the benefits of using a cluster.

Figure 8.12 shows the scalability of the aligner with hardware acceleration. With

six nodes, we can demonstrate a 5.23x and 4.70x speedup over a single-node pure-CPU

aligner and a single-node FPGA-accelerated aligner, respectively.

246



Figure 8.11: Effectiveness of hardware acceleration

Figure 8.12: Scalability of the cluster-scale aligner with hardware acceleration
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8.8.2 Performance of Batched S-W Algorithm

As discussed in Section 8.5, the batch size and threshold are two critical parame-

ters that affect the overall performance of the joint software/hardware system. The

following two sections evaluate the impact of the two parameters on performance.

8.8.2.1 Evaluation on Different Batch Sizes

Figure 8.13 shows the performance comparison among a group of joint hardware/soft-

ware implementations with different batch sizes. The performance of each implemen-

tation is denoted by its execution time, which is collected from our 4-node, 48-core

heterogeneous cluster and normalized to that of the implementation with batch size

equal to 65,536.

We can see that the execution time gets shorter as the batch size increases, which

can be as much as 26x, but becomes longer after reaching a certain amount, i.e.,

32,768. This variation is consistent with the trade-off between lower communication

overhead and larger memory footprint, as discussed in Section 8.5.4. We also find

that the interference in contending for the FPGA accelerator by the 12 cores plays an

important role in the overall performance. A smaller batch size leads to more batched

tasks, triggers more severe interference, and eventually harms the performance. In

addition, we observe that the garbage collection time of the 65,536-batch-size imple-

mentation is 33% more than that of the 32,768-batch-size implementation. A better

garbage collection mechanism or a large physical memory is expected to increase the

optimal batch size.
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Figure 8.13: Performance comparison between different batch sizes

8.8.2.2 Evaluation on Different Threshold

Figure 8.14 shows the performance comparison among a group of joint hardware/soft-

ware implementations with different thresholds. The performance of each implemen-

tation is denoted by its execution time, which is collected from our 4-node, 48-core

heterogeneous cluster and normalized to that of the implementation with threshold

equal to 256.

We can see that neither a too-large nor a too-small threshold can achieve optimal

performance. Figure 8.15 shows the proportions between the number of S-W calls

run on an FPGA and that of S-W calls run on CPU. We note that a larger threshold

leaves more S-W calls on a CPU, some of which may run faster on an FPGA. On

the other hand, as illustrated in Figure 8.16, the average execution time of a S-W
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Figure 8.14: Performance comparison between different thresholds

function call in a small batch is considerably longer than that in a large batch.

Ideally, an optimal threshold is the batch size that equals the execution times of

a batch on both CPU and FPGA. Nevertheless, the runtime of a batch is not only

determined by the batch size, but the S-W calls inside the batch. The default thresh-

old in our system, 128, is chosen based on the experiment results, and is expected to

work well in the average case, though not in every case, for our system configuration.

8.8.3 Accelerator Manager Runtime Breakdown

Figure 8.17 shows the runtime breakdown of the AM. The runtime can be decomposed

into three parts: (1) writing input data to FPGA device memory, (2) reading results

from FPGA device memory, and (3) the real FPGA accelerator execution time. As

discussed in Section 8.9, the real FPGA acceleration execution time accounts for 91%
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Figure 8.15: Proportions between the number of S-W calls on FPGA and on CPU

under different thresholds

Figure 8.16: The average execution times of a S-W call in different sizes of batches
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of time. The write/read device memory time is not the bottleneck for the AM.

Figure 8.17: Time breakdown of the AM.

Figure 8.18 shows the utilization of the accelerator upon different numbers of

cores, i.e., map tasks. When there is only one core access to the accelerator, most

of the time the AM is listening to the socket channel and waiting for the accelerator

request. When the number of cores increases, the demand to the accelerator increases,

and thus the socket listening time shrinks signficantly.

8.8.4 Impact of Faster Accelerators

Generally, a faster accelerator is always better in terms of performance, but the

effectiveness of a faster accelerator decreases based on Amdahl’s Law. For example,

if a computation kernel consumes 20% of the overall runtime, the replacement of a

10x-speedup accelerator with a 100x-speedup accelerator will have almost no benefit.

The situation is somewhat complicated in our system since an accelerator platform
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Figure 8.18: Socket listening vs. the data transfer with FPGA execution time

is shared by up to 12 cores. Figure 8.19 shows the performance improvement obtained

by replacing a faster accelerator with more processing elements (PEs), i.e., 60 instead

of 40, under different numbers of cores. Three kinds of performance improvements

are collected and illustrated: 1) one that is directly related to FPGA, i.e., sending

input to and receiving output from FPGA, as well as the FPGA execution time; 2)

S-W kernel in BWA-MEM, which takes 30%-40% of the overall execution time; 3)

performance gain of the whole BWA-MEM program.

We can see that the configuration with the larger number of cores benefits more

from the faster accelerator. This is because a faster accelerator reduces the interfer-

ence between multiple cores along with the acceleration of the FPGA runtime. As

a result, the S-W kernel can be executed over 50% faster in the 12-core-per-node

configuration. We currently observe that the faster accelerator is able to improve

the overall performance by up to 7%, but it is expected to gain more if a suitable

accelerator for the BWT kernel is developed and integrated into our system.
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Figure 8.19: Performance improvement of a faster accelerator

8.9 Conclusions

In this chapter we aim to provide a more efficient read aligner than the state-of-the-

art aligners, such as BWA-MEM and Bowtie 2. We first develop an FPGA-based

accelerator to accelerate the modified Smith-Waterman algorithm that can be used

in BWA-MEM and CS-BWAMEM. We further integrate the FPGA accelerator to

provide hardware acceleration on the S-W algorithm. Furthermore, we develop a

novel batched S-W algorithm and an accelerator manager to efficiently utilize the

accelerator and remove the communication and data transfer overhead between map

tasks and the FPGA accelerator. With hardware acceleration, we can reduce more

than 50% of the runtime of the S-W algorithm and further reduce the system runtime

by 10%.

The architecture design of the Smith-Waterman accelerator is an collaborative
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effort among Prof. Jie Lei, Peng Wei, and myself. I contributed the key observations

and the high-level architecture design, while Prof. Lei and Peng Wei determined

the detailed design and implemented the FPGA accelerator. Peng Wei and I both

contributed to the Batched Smith-Waterman algorithm design. Peng Wei realized

the algorithm and integrated it into the CS-BWAMEM software suite.
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CHAPTER 9

Concluding Remarks

Technical summary

In this dissertation we investigate the optimizations of memory system and in-

memory cluster for customized computing. The efficiency of memory system de-

termines the chip performance and energy efficiency. Our goal is to design a high-

performance and energy-efficient memory system that supports customized computing

in both general-purpose processors and accelerator-rich architectures (ARAs).

Many big data applications need the computation power beyond a single server.

In order to provide acceleration on such applications, we adopt the in-memory cluster

and provide corresponding optimization strategies. Furthermore, we provide support

to deploy the customized accelerators in a cluster to improve system performance.

Table 9.1 summarizes our exploration efforts. From Chapter 2 to Chapter 4, we

focus on the simulation techniques and energy-efficient hybrid caches design. In Chap-

ter 2, we propose HC-Sim [40], which can simulate multiple L1 cache configurations

with scratchpad memories simultaneously. In Chapter 3 and Chapter 4, we discuss

energy-efficient L2 cache and LLC cache designs by using non-volatile memory tech-

nologies. The proposed hybrid cache design can significantly reduce leakage. With

dynamic reconfiguration on hybrid caches, we can further reduce leakage when the
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caches are not accessed frequently by processors [37]. To further reduce the dynamic

write energy and the endurance of hybrid caches, we introduce a combined scheme

by using compiler hint and monitoring hardware counter dynamically to reduce the

writes on NVM cells [38]. We believe that, in the near future, NVM technologies

can be widely used in on-chip memories. They can be used for both CPU caches or

accelerator buffers.

From Chapter 5 to Chapter 6, we focus on the ARA memory system design, where

an ARA is composed of a sea of accelerators, CPUs, and the memory system. In order

to evaluate the system performance, we first proposed ARAPrototyper [36, 41, 34] in

Chapter 5. ARAPrototyper provides a fast and a highly parameterized ARA design

flow together with system software and user APIs. We can easily develop an ARA

and utilize these APIs to develop applications that run on top of an ARA to collect

performance statistics. In Chapter 6 we introduce an optimized crossbar synthesis

algorithm, which highly reduces the crossbar complexity between accelerators and

memory banks. We also introduce a two-level interconnect synthesis method for

ARA memory system design [33].

In Chapter 7 and Chapter 8, we are interested in accelerating the DNA sequenc-

ing pipeline [111, 114, 129]. However, due to the big data behaviors and compute-

intensive kernels of the applications in the pipeline, it is extremely time-consuming

to run the pipeline in a single server. Therefore, we decide to use the in-memory

cluster computing to provide a scalable speedup. In Chapter 7 We first try to accel-

erate the alignment step [111] in the pipeline. We proposed CS-BWAMEM [39] that

utilizes the Spark in-memory cluster computing framework together with multiple

customized optimization strategies, which can reduce the alignment time from 9.5

hours to 33 minutes. In Chapter 8 we provide runtime support and a customized
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batch-processing algorithm that can be mapped to the PCIe-based FPGA accelera-

tors. We demonstrate the capability and required support of using FPGA accelerators

in an in-memory cluster.

Table 9.1: Summary of the proposed optimizations in the dissertation

Optimization Architecture Optimization Simulation or

target components goals emulation platform

On-chip caches CPU, energy-efficiency, HC-Sim [40]

(Chapter 2-4) multilevel cache endurance

ARA memory Accelerators, performance, ARAPrototyper

system memory banks, energy-efficiency [36]

(Chapter 5-6) CPU

In-memory CPU, performance, evaluation

cluster main memory (DRAM), energy-efficiency on a real

(Chapter 7-8) FPGA boards (PCIe) cluster

Future work

In this dissertation we discussed the memory system optimizations in both single-

chip level and the datacenter level. For the single-chip level, we covered both energy-

efficient hybrid caches and ARA memory systems. In the datacenter level, we pro-

vided customized optimization for the genomics domain in an in-memory cluster and

supported the deployment of FPGA accelerators in the cluster. We summarize the

lessons we learned and the possible future directions to be further explored.

1. Cache simulation and hybrid caches

HC-Sim can efficiently simulate hundreds of single-level caches with different

258



architecture parameters. Meanwhile, HC-Sim can also co-simulate one scratch-

pad configuration with many L1 caches. One possible extension to HC-Sim is

to provide the capability of simulating multiple scratchpad configurations at

the same time. Another possible extension is to explore the miss rates of many

multilevel caches simultaneously.

We provide the architecture and circuit-level implementation of dynamically

reconfigurable hybrid caches. We show that dynamic reconfiguration can sig-

nificantly reduce the leakage consumption. Furthermore, we provide compiler-

assisted optimization with dynamic hardware monitoring to reduce the high

dynamic write energy on the NVM cells while improving the endurance of hy-

brid caches. The important lessons we learned are about (1) the heterogeneity

of SRAM and NVM cells, and (2) the dynamic behavior monitoring and tuning

that can provide huge opportunities for optimizing energy efficiency.

In recent years, the research field of NVM caches and hybrid caches has been

very active and has attracted much focus. However, the real product develop-

ment of NVM caches is still ongoing. A possible research direction could be

the optimization of the interaction between the L1 cache and the hybrid cache

(usually used in L2 caches or LLCs). This is not addressed in this dissertation.

2. ARAPrototyper and ARA memory system

We build the ARAPrototyper to prototype an ARA in a highly automatic way,

and users can also evaluate their own developed applications efficiently on top

of their ARA prototype. This provides an alternative to full-system simulation.

Compared to the full-system simulation, one advantage of prototyping is that

native time execution speed can be achieved, which is four to five orders of

magnitude faster than full-system simulation. This can be especially useful
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when the input size is large. Also, ARAPrototyper provides a framework for

users to test their ARAs on real silicon with their own applications deployed.

Compared to full-system simulation, the prototyping method still has limita-

tions related to when we want to observe or evaluate fine-grained microarchi-

tecture parameters. In order to probe for more detailed information, ARAPro-

totyper provides several built-in hardware counters for users to obtain more

insights for further improvement. One piece of future work is to provide more

hardware counters for users to help them analyze and improve their ARAs.

In Chapter 6 we provide an optimal crossbar synthesis algorithm to minimize

the crossbar complexity. Also, we introduce the interleaved network for better

off-chip bandwidth utilization. A possible future direction is to consider the

co-optimization of both the crossbar layer and the interleaved network.

3. Datacenter-level optimization in genomics domain

Research concerning the customization and optimization in a domain-specific

datacenter or cluster is still in the very beginning stage. In this dissertation we

provide several customized optimizations in an in-memory cluster computing

system and seek both the algorithm-level optimizations and runtime system

support for FPGA-enabled datacenters. Here are several lessons we learned.

We also discuss several on-going projects we are working on and possible future

directions.

(a) Amdahl’s Law — the fundamental limiting factor of acceleration

We learn that the overall speedup of an application can be limited by

the time spent on the code sections that cannot be accelerated, i.e., the

code sections that need to be computed by general-purpose cores. We
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successfully show that customized accelerators can be much more powerful

than general-purpose cores. For example, our customized Smith-Waterman

accelerators [35] can be 340x faster than a state-of-the-art Xeon processor

running under a single thread. However, based on our profiling results,

the runtime spent on the Smith-Waterman kernel in CS-BWAMEM only

accounts for 28%. Even if we can reduce the runtime of the given kernel

to zero, there is still 72% of the remaining part to be accelerated.

To achieve more speedup in an application, we need to identify more

computation kernels to be accelerated. We identified the seeding kernel

that uses the SMEM algorithm [110], as demonstrated in Figure 7.2. The

SMEM algorithm accounts for about 30% runtime of BWA-MEM and CS-

BWAMEM. With both seeding and seed extension steps accelerated, we

are able to achieve more than 2x speedup in the alignment stage (CS-

BWAMEM).

(b) Data transfer overhead from JVM to the FPGA device memory

In Chapter 8 we demonstrated that the data transfer from Spark workers

running on JVM to the FPGA device memory can generate significant

overhead. With this overhead, we can only accelerate the Smith-Waterman

kernel by 2 to 3x instead of a 24x S-W kernel speedup over 24 CPU threads

measured in [35].

We provide both (1) algorithm-level improvement through batch process-

ing, and (2) accelerator manager support for FPGA-enabled clusters. How-

ever, we believe more optimizations can be provided in algorithm-level to

map the algorithm to the FPGA accelerator in a more efficient way. Fur-

thermore, we only provide a primitive design of the accelerator manager in

this dissertation in order to support FPGA-enabled clusters. However, a
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generalized and optimized accelerator manger needs to be provided. This

node-level manager can take the requests from multiple applications and

manage more than one accelerator. The optimization on both task schedul-

ing and the data transfer reduction are two important optimization goals.

(c) Acceleration of the whole DNA sequencing pipeline

We discussed our current progress in accelerating the DNA sequencing

pipeline in Section 7.16. We showed that more than 40x speedup can be

achieved in the first three steps. However, we have to accelerate all of the

five steps in the pipeline. Otherwise, the unaccelerated steps will become

the bottlenecks, e.g., the Indel Realignment and Base Recalibration steps.

This will be an important future work that needs to be addressed for the

DNA sequencing domain.

We can take a methodology similar to what we did when developing CS-

BWAMEM. First, we need to have a scale-out version of software in both

Indel Realignment and Base Recalibration. Next, we also profile the appli-

cation and then extract and design accelerator kernels. In Figure 9.1 we

demonstrate the identified accelerator kernels and the current progress we

have achieved.

Finally, in addition to accelerating the DNA sequencing pipeline, variant

calling [129] is an important next-coming stage to be accelerated. Based

on our profiling results, the runtime of the variant calling stage is from

62 to 203 hours, which is comparable to the current runtime of the DNA

sequencing pipeline.

Conclusions

The journey is just beginning. Currently, the research of accelerator-rich architec-
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Figure 9.1: Identified accelerator kernels in DNA sequencing pipeline.

tures and FPGA-enabled datacenters is burgeoning. This is because energy-efficient

architectures have become more and more important—from hand-held devices to

datacenters. However, the research on such customized techniques is still far from

mature. This dissertation launches an exploration into the optimizations of several

key components: (1) multilevel caches, (2) ARA memory systems, (3) customized op-

timizations of the in-memory clusters, and (4) FPGA-enabled datacenters. It is our

hope that the proposed methodologies—including their limitations, of course—will

inspire more innovations in future accelerator-rich architectures and FPGA-enabled

in-memory clusters.
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