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GAP PHENOMENA AND CURVATURE ESTIMATES FOR CONFORMALLY
COMPACT EINSTEIN MANIFOLDS

GANG LI†, JIE QING∗ AND YUGUANG SHI‡

Abstract. In this paper we first use the result in [12] to remove the assumption of the L2 bound-
edness of Weyl curvature in the gap theorem in [9] and then obtain a gap theorem for a class
of conformally compact Einstein manifolds with very large renormalized volume. We also uses
the blow-up method to derive curvature estimates for conformally compact Einstein manifolds
with large renormalized volume. The second part of this paper is on conformally compact Ein-
stein manifolds with conformal infinities of large Yamabe constants. Based on the idea in [15]
we manage to give the complete proof of the relative volume inequality (1.9) on conformally
compact Einstein manifolds. Therefore we obtain the complete proof of the rigidity theorem for
conformally compact Einstein manifolds in general dimensions with no spin structure assump-
tion (cf. [29, 15]) as well as the new curvature pinch estimates for conformally compact Einstein
manifolds with conformal infinities of very large Yamabe constant. We also derive the curvature
estimates for conformally compact Einstein manifolds with conformal infinities of large Yamabe
constant.

1. Introduction

The study of conformally compact Einstein manifolds is fundamental in establishing math-
ematical theory of the so-called AdS/CFT correspondence proposed in the theory of quantum
gravity in theoretic physics. It is well understood that there is the rigidity phenomenon for con-
formally compact Einstein manifolds, that is, a conformally compact Einstein manifold whose
conformal infinity is the conformal round sphere has to be the hyperbolic space [3, 29]. On the
other hand, in [18, 6], it was shown that for each conformal sphere that is sufficiently close to the
conformal round sphere there exists a conformally compact Einstein metric on the ball whose
conformal infinity is the given conformal sphere. Those conformally compact Einstein metrics
constructed in [18, 6] are automatically close to the hyperbolic space in some appropriate way.
In an attempt to understand if those conformally compact Einstein metrics given in [18, 6] are
the unique ones, in this paper, we describe some gap phenomena in terms of renormalized vol-
umes and derive curvature estimates when either the renormalized volume is close to that of
hyperbolic space or the Yamabe constant of the conformal infinity is close to that of conformal
round sphere.

2010 Mathematics Subject Classification. Primary 53C25; Secondary 58J05.
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∗ Research supported by NSF grant DMS-1303543.
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The gap theorem in this paper for renormalized volumes of conformally compact Einstein
4-manifolds grows out of the gap theorem in [9] for closed Bach flat 4-manifolds. As a conse-
quence of recent remarkable work of Cheeger and Naber [12] we first remove the dependence
of the L2 of the Weyl curvature from the gap theorem in [9] and obtain the following:

Theorem 1.1. There exists a positive small number ε such that a closed Bach flat 4-manifold
(M, g) of positive Yamabe type has to be conformally equivalent to the round 4-sphere, ifˆ

M
σ2(A[g])dVg ≥ (1 − ε)16π2,

where σ2(A[g]) is the second symmetric function of the eigenvalues of the Schouten curvature
tensor A[g] = 1

n−2 (Ric − R
2(n−1)g) of the metric g.

Our proof of Theorem 1.1 is slightly different from that in [9]. Our approach instead replies
on the control of the Yamabe constant. The Yamabe constant is defined as follows:

(1.1) Y(M, g) = inf{

´
M( 4(n−1)

n−2 |∇u|2 + R[g]u2)dv[g]

(
´

M u
2n

n−2 dv[g])
n−2

n

: u ∈ C∞c (M)\{0}},

where C∞c (M) is the space of smooth functions with compact support in M. It is easily seen
that Y(M, g) is a conformal invariant when (M, g) is compact with no boundary, in which case
we denote it by Y(M, [g]) instead. On the other hand, on a complete non-compact manifold,
Y(M, g) is rather a local Yamabe constant. For instance

Y(Rn, gE) = Y(Hn, gH) = Y(Sn, [gS]).

The Yamabe constant is as convenient to use as the Euclidean volume growth bound when
rescaling metrics. Particularly we observe the following fact:

Lemma 1.2. Suppose that (X4, g) is a complete non-compact Ricci flat manifold. And suppose
that

Y(M, g) > 2−
1
2 Y(R4, gE).

Then (X4, g) is isometric to the Euclidean 4-space (R4, gE).

Lemma 1.2 is the special case of Lemma 3.4 when n = 4. The proof of this fact is rather
straightforward using the end analysis based on [1, 5] and the simple consequence Lemma 3.3
from the new remarkable work in [12] in dimension 4.

To see the control of Yamabe constant from the integral of σ2(A), with the Yamabe metric gY

on a compact manifold, we have

(1.2)
ˆ

M
(σ2(A)dv)[gY] =

ˆ
M

((
1

24
R2 −

1
2
|
◦

Ric|2)dv)[gY] ≤
1

24
(Y(M, [g]))2.

It is known from [17] that, on a conformally compact Einstein 4-manifold (X4, g+) with the
conformal infinity (∂X, [ĝ]),

(1.3) Vol({x > ε}) =
1
3

Vol(∂X, ĝ)ε−3 −
1
8

ˆ
∂X

(Rdv)[ĝ]ε−1 + V(X4, g+) + o(1)

2



where R[ĝ] is the scalar curvature of the metric ĝ and x is the geodesic defining function asso-
ciated with a representative ĝ of the conformal infinity. It turns out that V(X4, g+) in (1.3) is
independent of representatives and is called the renormalized volume [20, 17]. The expansion
(1.3) uses the expansion of the Einstein metric g+ given in [16]

(1.4) g+ = x−2(dx2 + gx) = x−2(dx2 + ĝ + g(2)x2 + g(3)x3 + o(x3))

where g(2) is a curvature tensor of ĝ while g(3) is non-local. Moreover, in [2] (see also [10]), it
is shown that

(1.5) 8π2χ(X) =
1
4

ˆ
X
(|W |2dv)[g+] + 6V(X4, g+)

for a conformally compact Einstein 4-manifold (X4, g+). Consequently, one knows

(1.6)
ˆ

X4
(σ2(A)dv)[ḡ] = 6V(X4, g+),

where ḡ = x2g+ is a conformal compacitification. Therefore, given a conformally compact
Einstein manifold, one may control the Yamabe constant for compactifications from the renor-
malized volume. Following the idea in [11], one may consider the doubling of the compactified
manifold from a conformally compact Einstein manifold and obtain the corresponding gap the-
orem.

Theorem 1.3. There exists a small positive number ε such that a conformally compact Einstein
4-manifold (X4, g+) with the conformal infinity of positive Yamabe type has to be isometric to
the hyperbolic space, if its renormalized volume satisfies

(1.7) V(X4, g+) ≥ (1 − ε)
4π2

3
= (1 − ε)V(H4, gH)

and the non-local term g(3) in (1.4) for g+ vanishes.

Theorem 1.3 indicates that the hyperbolic space is the only “critical point” of the renormal-
ized volume among all conformally compact Einstein manifolds that satisfy (1.7), since the
Euler-Lagrangian equation for the renormalized volume is g(3) = 0 by the calculation made
in [2] . On the other hand, Theorem 1.3 clearly does not hold if one drops the assumption
g(3) = 0. In fact the conformally compact Einstein metrics constructed in [18, 6] provide plenty
of examples of conformally compact Einstein metrics that satisfy (1.7) for arbitrarily small ε
and with conformal infinities of positive Yamabe type. Nevertheless, one obtains the following
curvature estimate for conformally compact Einstein metrics when the renormalized volume is
large enough.

Theorem 1.4. For any 0 < ε < 1
2 , there is a positive constant C such that, on a conformally

compact Einstein 4-manifold (X, g+),

‖Rm‖[g+] ≤ C,

where Rm[g+] is the Riemann curvature tensor of the metric g+, provided that the conformal
infinity is of positive Yamabe type and (1.7) holds.

Next we focus our attention to those conformally compact Einstein manifolds whose confor-
mal infinities have large Yamabe constants. It is a very original idea in [15] to use the Yamabe
constant of the conformal infinity to control the relative volume growth of geodesic balls in
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conformally compact Einstein manifolds. We recognize the important contribution of [15], but
are compelled to present a complete and correct proof of the following:

Theorem 1.5. Suppose that (Xn, g+) is an AH manifold of C3 regularity and with the conformal
infinity of positive Yamabe type. Let p ∈ Xn be a fixed point. Assume

(1.8) Ric[g+] ≥ −(n − 1)g+ and R[g+] + n(n − 1) = o(e−2t)

for the distance function t from p. Then

(1.9) (
Y(∂X, [ĝ])

Y(Sn−1, [gS])
)

n−1
2 ≤

Vol(∂Bg+(p, t))
Vol(∂BgH(0, t)

≤
Vol(Bg+(p, t))
Vol(BgH(0, t)

≤ 1,

where Bg+(p, t) and BgH(0, t) are geodesic balls.

The C3 regularity is used to construct the geodesic defining function x and C2 conformal
compactification ḡ = x2g+, for each given representative ĝ, To start the proof we first need to
clear a technical issue.

Lemma 1.6. Suppose that (Xn, g+) is AH of C2 regularity and that x is a defining function.
Assume

(1.10) Ric[g+] ≥ −(n − 1)g+ and R[g+] + n(n − 1) = o(x)

Then there is a constant C0 such that

(1.11) |K[g+] + 1| ≤ C0x2

for any sectional curvature K.

It takes substantial arguments to finish the proof of Theorem 1.5 based on the idea presented
in [15]. The first issue is that (4.8) (cf. (3.17) in [15]) may not be available as claimed in [15],
since the distance function t is only Liptschitz in general. We devote Section 5 to solve this issue
by the careful study of cut loci based on [27, 22]. The second issue is that the estimate (4.1) (cf.
(2.3) in [15]) is not known to hold without assuming the convexity of the geodesic spheres (cf.
[30, 21]). We devote Section 6 to derive the total scalar curvature estimate (4.10) without (4.1).
Our argument in Section 6 uses more delicate analysis of the Riccati equations on AH manifolds
and volume estimates along geodesics where the mean curvature of the geodesic sphere is small.

As argued in [15], Theorem 1.5 implies the rigidity of conformally compact Einstein mani-
folds for any dimension, which are the cases where the conformal infinity is exactly the round
spheres (cf. [26, 3, 24, 29, 32, 14, 7, 30, 15]).

Theorem 1.7. Suppose that (Xn, g+) is AH of C3 regularity and that (1.8) holds. Then (Xn, g+)
is isometric to the hyperbolic space (Hn, gH), provided that the conformal infinity (∂X, [ĝ]) is
the round conformal sphere.

Notice that, when the conformal infinity is the round sphere, a conformally compact Ein-
stein metric g+ is always smooth according to [13], provided that it is at least of C2 regularity.
Therefore Theorem 1.7 does cover the most general rigidity theorem for conformally compact
Einstein manifolds whose conformal infinity is the round sphere in any dimension. In this pa-
per we also deduce from the relative volume growth estimates (1.9) the following interesting
curvature pinch estimates.

4



Theorem 1.8. For any ε > 0, there exists δ > 0, for any conformally compact Einstein manifold
(Xn, g+) (n ≥ 4), one gets

(1.12) |K[g+] + 1| ≤ ε,

for all sectional curvature K of g+, provided that

Y(∂X, [ĝ]) ≥ (1 − δ)Y(S n−1, [gS]).

Particularly, any conformally compact Einstein manifold with its conformal infinity of Yamabe
constant sufficiently close to that of the round sphere is necessarily negatively curved.

This result is even more interesting because it gives the curvature pinch estimate which only
relies on the Yamabe constant of the conformal infinity. Particularly, from Theorem 1.8 we now
know that any conformally compact Einstein manifold whose conformal infinity is prescribed as
a conformal sphere that is sufficiently close to the round conformal sphere is negatively curved,
which was only known to be true for those conformally compact Einstein manifolds constructed
in [18, 6].

As a consequence of the proof of Theorem 1.8 we also get:

Corollary 1.9. For L > 0, τ > 1
2 and n ≥ 4, there is a number C such that, on any conformally

compact Einstein manifold (Xn, g+),

|W |[g+] ≤ C

provided that

Y(∂X, [ĝ]) ≥ τ
2

n−1 Y(Sn, [gS])

and ˆ
Xn

(|W |
n
2 dv)[g+] ≤ L

when n ≥ 5.

The organization of this paper is as follows: in Section 2, we will introduce some basics
about AH manifolds and conformally compact Einstein manifolds. Particularly we will prove
Lemma 1.6. In Section 3 we use the renormalized volume to control the Yamabe constant of
the conformally compact Einstein 4-manifolds and prove Theorem 1.3 of the gap phenomenon
and Theorem 1.4 of curvature estimates. In Section 4 We will first sketch a proof of Theorem
1.5 based on the idea in [15]. We will identify the incompleteness and incorrectness of the
arguments in [15] in the sketch of the proof of Theorem 1.5. Then we will use Theorem 1.5
to obtain Theorem 1.8 and Corollary 1.9. In Section 5 and Section 6 we will resolve the gaps
identified in Section 4 and present the complete and correct proof of Theorem 1.5 with details.

Acknowledgment The authors are very grateful to Beijing International Center for Mathemati-
cal Research (BICMR) for the hospitality. Most of research in this paper was conducted during
the summer when the authors visit BICMR. The first author would like to thank Professor
Matthew Gursky for his interest of the problem and encouragement
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2. Preliminaries

Let us recall some basics about AH manifolds and conformally compact Einstein manifolds.
First we use the following definition for conformally compact Einstein manifolds.

Definition 2.1. Suppose that Xn is the interior of a smooth compact manifold Xn with boundary
∂Xn−1. A Riemannian metric g+ on Xn is said to be conformally compact of Ck,α regularity if, for
a smooth defining function x for the boundary ∂Xn−1 in Xn, ḡ = x2g+ can be extended to a Ck,α

Riemannian metric on Xn. If, in addition, |dx|2x2g+ |x=0 = 1, then we say (Xn, g+) is asymptotically
hyperbolic (AH in short) of Ck,α regularity. And if, in addition, g+ is at least of C2 regularity
and Einstein, that is,

(2.1) Ric[g+] = −(n − 1)g+,

then we say (Xn, g+) is a conformally compact Einstein manifold.

A smooth defining function x for the boundary ∂X in a smooth manifold Xn is a smooth
nonnegative function from Xn such that

• x > 0 in the interior Xn;
• x = 0 on the boundary ∂Xn−1;
• dx , 0 on the boundary ∂Xn−1.

The compactification ḡ induces a metric ĝ on the boundary ∂Xn−1 and changes conformally
when the defining function x varies. Hence a conformally compact metric g+ always induces a
conformal structure [ĝ] on the boundary ∂Xn−1. The conformal manifold (∂Xn−1, [ĝ]) is called
the conformal infinity of the conformally compact manifold (Xn, g+).

Before we recall basic properties of conformally compact Einstein manifolds, we give a proof
of Lemma 1.6 based on the proof of Lemma 3.1 in [13].

Proof of Lemma 1.6 The first step completely follows the proof of Lemma 3.1 in [13] and
concludes that, there is a coordinate at infinity (up to a C3 collar diffeomorphism in the language
in [13]) such that, for a defining function x,

(2.2) ḡ = x2g+ = dx2 + ĝ + g(1)x + O(x2) ∈ C2(Xn)

for some symmetric 2-tensor g(1) and a representative ĝ = x2g+|T∂X on ∂X.

We then calculate the transforms of Riemann curvature, Ricci curvature and scalar curvature
based on g+ = x−2ḡ.

Ri jkl[g+] = −(g+
ikg

+
jl − g+

jkg
+
il) + x−1(g+

ik∇
ḡ
j∇

ḡ
l x + g+

jl∇
ḡ
i∇

ḡ
k x − g+

il∇
ḡ
j∇

ḡ
k x − g+

jk∇
ḡ
i∇

ḡ
l x) + O(x2),

Rik[g+] = −(n − 1)g+ + x−1((n − 2)∇ḡ
i∇

ḡ
k x + ∆[ḡ]xḡik) + O(x2),

and
R[g+] = −n(n − 1) + 2x(n − 1)∆[ḡ]x + O(x2).

In the same time we can calculate

∇
ḡ
i∇

ḡ
k x =

1
2
∂xḡik + O(x).
6



Therefore the condition (1.10) are translated to

(n − 2)∂xḡik + ḡ jl∂xḡ jlḡik ≥ 0 and ḡ jl∂xg jl = 0 at x = 0,

which implies g(1) = 0 and thus (1.11). �

The fundamental properties of conformally compact Einstein 4-manifolds that are useful to
us are summarized in the following:

Lemma 2.2. ( [16, 17, 13, 25]) Let (X4, g+) be a conformally compact Einstein manifold and
x be the geodesic defining function associated with a representative ĝ of the conformal infinity
(∂X3, [ĝ]). In a neighborhood of the infinity

g = x−2g̃ = x−2(dx2 + gx)(2.3)

with the expansion

gx = ĝ + g(2)x2 + g(3)x3 +

m∑
k=4

g(k)xk + o(xm)(2.4)

for any m ≥ 4, where g(k) is a symmetric (0, 2) tensor on ∂X for all k and g(3) is the so-called
non-local term. Moreover, the expansion (2.4) only has even power terms, when g(3) vanishes.

As a consequence of the expansion (2.4) one gets the following volume expansion:

Lemma 2.3. ([20, 17]) Let (X4, g+) be a conformally compact Einstein manifold and x be the
geodesic defining function associated with a representative ĝ of the conformal infinity (∂X3, [ĝ]).
One has

Vol({x > ε}) =
1
3

Vol(∂X, ĝ)ε−3 −
1
8

ˆ
∂X

(Rdv)[ĝ]ε−1 + V(X4, g+) + o(1).

More importantly V(X4, g+) is independent of the choice of representative ĝ and is called the
renormalized volume.

To appreciate the global invariant V(X4, g+) of a conformally compact Einstein 4-manifold
(X4, g+) we recall the Gauss-Bonnet formula observed in [2, 11].

Lemma 2.4. Let (X4, g+) be a conformally compact Einstein 4-manifold. Then

(2.5) 8π2χ(X) =
1
4

ˆ
X
(|W |2dv)[g+] + 6V(X4, g+)

Comparing the Gauss-Bonnet formula (2.5) with the Gauss-Bonnet formula for compact 4-
manifold (X, ḡ) with totally geodesic boundary:

(2.6) 8π2χ(X) =
1
4

ˆ
X
(|W |2dv)[ḡ] +

ˆ
X
(σ2(A)dv)[ḡ],

we arrive at

(2.7)
ˆ

X
(σ2(A)dv)[ḡ] = 6V(X4, g4),

for any compactification ḡ = x2g+.

7



To discuss the conformal gap theorem in [9] we recall the definition of Bach curvature tensor
and ε-regularity theorem for Bach flat Yamabe metrics. On 4-manifolds the Bach curvature
tensor is a symmetric 2-tensor

(2.8) Bi j = W lk
ki jl, +

1
2

RklWki jl.

The ε-regularity theorem has been established in [31] as follows:

Lemma 2.5. ([31]) Suppose that (M4, g) is a Bach flat 4-manifold with Yamabe constant Y > 0
and g is a Yamabe metric. Then there exist positive numbers τk and Ck depending on Y such
that, for each geodesic ball B2r(p) centered at p ∈ M, ifˆ

B2r(p)
|Rm|2dv ≤ τk,

then

(2.9) sup
Br(p)
|∇kRm| ≤

Ck

r2+k (
ˆ

B2r(p)
|Rm|2dv)

1
2 .

3. Conformally compact Einstein manifolds with large renormalized volumes

In this section we use Cheeger and Naber’s result in [12] in dimension 4 to drop the L2

boundedness condition in the conformal gap theorem in [9] and prove a version of conformal
gap theorem of renormalized volumes on conformally compact Einstein manifolds. First we
state Cheeger and Naber’s result.

Theorem 3.1. (Theorem 1.5 [12]) There exists C = C(v) such that, if M4 satisfies |RicM4 | ≤ 3
and Vol(B1(p)) > v > 0, then

(3.1)
 

B1(p)
|Rm|2dV ≤ C,

where B1(p) is a geodesic ball on (M4, g).

We then recall the following theorem on the end analysis in [1, 5].

Theorem 3.2. ([1, 5]) Let (Mn, g) (n ≥ 4) be a complete noncompact Ricci flat Riemannian
manifold satisfying that

Vol(Br) ≥ Crn for all r > 0,(3.2) ˆ
M

(|Rm|
n
2 dV)[g] < ∞.(3.3)

Then given q ∈ M, there is an R0 > 0 such that
• M \ BR0(q) is diffeomorphic to the cone (R0,∞) × S n−1/Γ;
• g = gF + O(r−2), where gF is the flat metric on the cone.

Moreover, if M is simply connected at infinity, then (Mn, g) is isometric to the Euclidean space.

It turns out, as a straightforward consequence of Theorem 3.1 of Cheeger and Naber, one can
drop the assumption (3.3) in Theorem 3.2 in dimension 4.

Lemma 3.3. Let (M4, g) be a complete noncompact Ricci flat Riemannian 4-manifold satisfying
the Euclidean volume growth assumption (3.2). Then, given q ∈ M, there is an R0 > 0 such that
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• M \ BR0(q) is diffeomorphic to the cone (R0,∞) × S 3/Γ;
• g = gF + O(r−2), where gF is the flat metric on the cone.

Moreover, if M is simply connected at infinity, then (M4, g) is isometric to the Euclidean 4-
space.

Proof. In the light of Theorem 3.2 ([1, 5]) it suffices to show that, there is a constant C such thatˆ
BR

(|Rm|2dv)[g] ≤ C

for any R > 0. For any fixed R > 0, we consider the metric gR = R−2g. It is easily verified that
Theorem 3.1 is applicable to gR. Hence the proof is complete. �

Theorem 1.1 is an improved version of the conformal gap theorem in [9] based on the above
Lemma 3.3. But we will present a complete proof of Theorem 1.1 that is slightly different
from that in [9]. Our approach replies on the control of the Yamabe constant via (1.2) and the
following observation that describes the influence of the end structure from the Yamabe constant
similar to that of the lower bound of the Euclidean volume growth.

Lemma 3.4. Let (Mn, g) (n ≥ 4) be a complete noncompact Ricci flat Riemannian manifold.
Assume (3.3) when n ≥ 5. Then (Mn, g) is isometric to the Euclidean space Rn, provided that

Y(M, g) ≥ τY(Rn, gE)(3.4)

for some τ > 2−
2
n .

Proof. First of all, according to Lemma 3.2 in [19], one indeed has a lower bound for the
Euclidean volume growth from the lower bound of the Yamabe constant. Then from our Lemma
3.3 and the arguments in [1, 5] it is known that the tangent cone (Mn

∞, g∞) at infinity for the
Ricci flat manifold (Mn, g) is a flat cone Rn/Γ. Because the blow-down: the rescaled manifolds
(Mn, λ2

i g, p), as λi → 0 with a fixed point p ∈ Mn, converges to the tangent cone (M∞, g∞, p∞)
at infinity in Cheeger-Gromov topology away from the singular point p∞ (cf. [1, 5]). It is rather
easily seen from (1.1) that the Yamabe quotient of the blow-down sequence converges to that of
the tangent cone at infinity for any smooth function with compact support away from the vertex
of the cone. For a smooth function with compact support in general, we simply use cut-off

functions to modify it as follows. For any small s > 0, we consider cut-off functions:
φ = 0 when r ≤ s
φ = 1 when r ≥ 2s
φ ∈ C∞

We may require that |∇φ| ≤ Cs−1 for some constant C. Then, for a function u with compact
support, which is smooth away from the vertex and Lipschitz across the vertex, we calculateˆ

Rn/Γ

|∇u|2 =

ˆ
Rn/Γ

|∇(φu)|2 +

ˆ
Rn/Γ

(2∇(φu) · ∇((1 − φ)u) + |∇((1 − φ)u)|2)

=

ˆ
Rn/Γ

|∇(φu)|2 + O(sn−2)

9



and ˆ
Rn/Γ

u
2n

n−2 =

ˆ
Rn/Γ

(φu)
2n

n−2 + O(sn)

as s→ 0. Therefore, due to the scaling invariance of the Yamabe constant, we also know that

Y(Mn
∞, g∞) ≥ lim inf Y(M, λig) ≥ τY(Rn, gE)

for some τ > 2−
2
n from our assumption (3.4). Suppose that

DΓ : Rn → Rn/Γ

is the desingularization of the cone metric. Then it is easily seen that

(3.5)

´
Rn

4(n−1
n−2 (|∇u ◦ DΓ|

2dv)[gE]

(
´
Rn(u ◦ DΓ)

2n
n−2 dv[gE])

n−2
n

= 2
2
n

´
Mn
∞

4(n−1
n−2 (|∇u|2dv)[g∞]

(
´

Mn
∞

u
2n

n−2 dv[g∞])
n−2

n

.

Hence, when using appropriately modifications of the standard function

u ◦ DΓ = (
2

1 + |x|2
)

n−2
2

in (3.5), one easily gets

Y(Mn
∞, g∞) ≤ |Γ|−

2
n Y(Rn, gE),

which, comparing to (3.4), forces the group Γ to be trivial and the Ricci flat manifold (Mn, g)
to be isometric to the Euclidean space (Rn, gE) according Lemma 3.3 ([12]) in dimension 4 and
Theorem 3.2 ([1, 5]) in general dimensions. So the proof is complete. �

Now we are ready to give the proof of our Theorem 1.1:

Proof of Theorem 1.1: If not, then there exists a sequence of Bach flat 4-manifolds (M4
j , (gY) j),

that are not conformally equivalent to the round 4-sphere, where (gY) j is the Yamabe metric with
R[(gY) j] = 12 and ˆ

M
(σ2(A)dv)[(gY) j] = (1 − ε j)216π2 → 16π2

as j→ ∞. Hence, in the light of (1.2), we have

(3.6) (1 − ε j)Y(Sn, [gS]) ≤ Y(M4
j , [(gY) j]) ≤ Y(Sn, [gS])

and

(3.7)
ˆ

M j

(|
◦

Ric|2dv)[(gY) j] ≤
1
12
ε j → 0.

Here we use the fact that, on the round sphere (S4, gS),ˆ
S 4

(σ2(A)dv)[gS] =
1
24

Y(S4, [gS])2.

From the argument in [9], to get a contradiction it suffices to show that M4
j is diffeomorphic to

S4 for a subsequence of j. More precisely, here we use the following interesting result from [9]:
10



Lemma 3.5. ([9]) There is ε > 0 such that a Bach flat metric g on 4-sphere S4 is conformal to
the standard round metric gS, provided thatˆ

S4
(|W |2dv)[g] ≤ ε.

The rest of the proof of Theorem 1.1 follows from a more or less standard rescaling argument
based on our Lemma 3.4. We first derive a contradiction if there was curvature blow-up. Again,
we use Lemma 3.2 in [19] to get the uniform lower bound on the Euclidean volume growth for
such sequence of manifolds. Then, one stands at the point of curvature blow-up, that is, p j ∈ M j

such that
λ j = |Rm|(p j)[(gY) j] = max

M j
|Rm|[(gY) j]→ ∞

and considers the sequence of pointed Riemannian manifold (M j, g j, p j) with the rescaled metric
g j = λ2

j(gY) j. Therefore, according to the curvature estimates established, for example, in [31],
one derives a subsequence that converges to complete non-compact manifold (M∞, g∞, p∞) in
Cheeger-Gromov topology. As the consequences of (3.6) and (3.7) one knows that

• Y(M∞, g∞) = Y(Sn, [gS]) = Y(Rn, gE) and

•
◦

Ric[g∞] = 0 and R[g∞] = 0.
Here we use the argument similar to that in the proof in Lemma 3.4 to derive the equality
Y(M∞, g∞) = Y(Rn, gE). Therefore (M∞, g∞) is isometric to the Euclidean 4-space according
to Lemma 3.4 in the same time |Rm|(p∞)[g∞] = 1, which is a contradiction. On the other
hand, if there is no curvature blow-up for the sequence (M j, (gY) j), then, the same compact-
ness argument implies that there would be a subsequence that converges to the round sphere in
Cheeger-Gromov topology, which is impossible due to Lemma 3.5. Thus the proof of Theorem
1.1 is complete. �

Next we use the facts collected in the section of preliminaries to give a proof of Theorem 1.3:

Proof of Theorem 1.3: Since g(3) = 0, from the expansion (2.4), the doubling

(XD, g̃) = (X̄
⋃

X̄, ḡ)

is a smooth Bach flat 4-manifold (for more details about the doubling please see [10], which
uses [8]). In fact, it is also shown in [10] that the doubling (XD, g̃) is of positive Yamabe type
from the assumption that the conformal infinity (∂X3, [ĝ]) is of positive Yamabe type. In the
mean time we recall from (2.7) thatˆ

XD

(σ2(A)dv)[g̃] = 2
ˆ

X
(σ2(A)dv)[ḡ] = 12V(X4, g+)

to conclude that ˆ
XD

(σ2(A)dv)[g̃] ≥ (1 − ε)16π2

by the assumption (1.7). Now one applies Theorem 1.1 to the doubling (XD, g̃) and derives that
(XD, g̃) is conformally equivalent to the round 4-sphere when ε is sufficiently small. Particularly
one obtains that (X4, g+) is a simply connected Riemannian manifold of constant curvature −1
(cf. [10]) when ε is sufficiently small, which completes the proof. �

11



To derive Theorem 1.4 we carry the above rescaling scheme with Lemma 3.4 on conformally
compact Einstein manifolds. In fact we are able to derive the curvature bound for conformally
compact Einstein manifolds in general dimensions, to which Theorem 1.4 is a corollary.

Theorem 3.6. For a constant B and a constant τ > 2−
2
n , there exists a constant C = C(n, τ, B) >

0 such that

(3.8) |Rm| ≤ C,

for any conformally compact Einstein manifold (Xn, g+) (n ≥ 4) with
• Y(Xn, g+) ≥ τY(Hn, gH) and
•
´

Xn(|W |
n
2 dv)[g+] ≤ B when n ≥ 5.

Proof. Suppose otherwise that there is a sequence of conformally compact Einstein manifolds
(Xn

j , g+
j ) satisfying the assumptions in the theorem with curvature blowing up. Since con-

formally compact Einstein manifolds are always asymptotically hyperbolic, we may extract a
sequence of points p j ∈ Xn

j such that

λ j = |Rm|(p j)[g+
j ] = max

Xn
j

|Rm|[g+
j ]→ ∞,

and consider the pointed rescaled manifolds (Xn
j , λ jg+

j , p j). It is then easily seen that there is
a subsequence (Xn

j , g
+
j , p j) converges in Cheeger-Gromov topology to a complete non-compact

Ricci flat manifold (Xn
∞, g∞, p∞) with

• Y(Xn
∞, g∞) ≥ τY(Hn, gH) = τY(Rn, gE);

• |Rm|(p∞)[g∞] = 1;
•
´

Xn
∞

(|W |
n
2 dv)[g∞] ≤ B when n ≥ 5,

which is a contradiction in the light of Lemma 3.4. �

Corollary 3.7. For ε < 1
2 , there exists a number C > 0 such that

|Rm|[g+] ≤ C,

for any conformally compact 4-manifold (X4, g+) with conformal infinity of positive Yamabe
type and

V(X4, g+) ≥ (1 − ε)
4π2

3
= (1 − ε)V(H4, gH).

Proof. It suffices to verify that

(3.9) Y(X4, g+) ≥ (1 − ε)
1
2 Y(H4, gH).

From (3.6) in the proof of Lemma 3.4 we know

Y(XD, g̃) ≥ (1 − ε)
1
2 Y(H4, gH),

which implies (3.9) by the conformal invariance of the Yamabe constant. �

Clearly, the local Yamabe constant Y(X4, g+) for a conformally compact Einstein 4-manifold
approaches that of the hyperbolic space as the renormalized volume V(X4, g+) approaches that
of the hyperbolic space. Before we end this section we state an easy observation based on the
construction of Aubin on the impact to local Yamabe constant from local geometry in higher
dimensions (cf. Paragraph 6.10 in [4, 23]).

12



Proposition 3.8. For any ε > 0, there is δ > 0 such that, for any section curvature K at any
point on any conformally compact Einstein manifold (Xn, g+) (n ≥ 6), one has

|K + 1| ≤ ε,

provided that
Y(Xn, g+) ≥ (1 − δ)Y(Hn, gH).

Proof. Assume otherwise, for some ε0 > 0, there is a sequence of conformally compact Einstein
manifolds (Xn

j , g+
j ) and a sequence δ j → 0 such that

Y(Xn
j , g+

j ) ≥ (1 − δ j)Y(Hn, gH),

but
|K + 1| > ε0,

for a sectional curvature K at some point on Xn
j . We are going to derive contradictions in two

steps. First, if there is a subsequence (Xn
j , g+

j ) whose sectional curvature is not bounded as
j→ ∞ (for connivence, we continue to use the same index j), then we may rescale the metrics

g̃ j = λ2
jg

+
j

for λ j = |W |(p j)[g+
j ] = maxXn

j
|W |[g+

j ]. Then, due to the curvature estimates for Einstein mani-
folds, it is easily seen that, at least for a subsequence, (Xn

j , g̃ j, p j) converges to a complete non-
compact Ricci flat manifold (Xn

∞, g∞, p∞) in Cheeger-Gromov topology. But |W |(p∞)[g∞] = 1
contradicts with the fact that Y(Xn

∞, g∞) = Y(Rn, gE) in the light of the estimate of Yamabe
constant in Paragraph 6.10 in [4] (cf. also [23]).

Secondly, if there is no curvature blowup, then one may extract a subsequence such that

|W |(p j)[g+
j ]→ w > 0

and (Xn
j , g+

j , p j) converges to a complete non-compact Einstein manifold (Xn
∞, g+

∞, p∞) in
Cheeger-Gromov topology. But, again, |W |(p∞)[g+

∞] = w > 0 contradicts with the fact that
Y(Xn

∞, g+
∞) = Y(Hn, gH) in the light of the estimate of Yamabe constant in Paragraph 6.10 in

[4](cf. also [23]). �

One wonders whether Proposition 3.8 still holds in dimension 4, which would be much more
significant.

4. Conformally compact Einstein manifolds whose conformal infinities have large Yamabe
constants

In this section we will first present the idea in [15] to establish the relative volume growth
bounds (1.9). We recognize the contribution from [15] but are compelled to give self-contained
arguments for a complete, vigorous and correct proof of (1.9) to the best of our knowledge. We
will point out what are not clear and not correct in [15] and finish filling those gaps in the subse-
quent sections. Then we will carry out the rescaling argument to derive the curvature estimates
in Theorem 1.8 in two steps similar to that in the proof of Proposition 3.8.

We recall that a Riemannian manifold (Xn, g+) is said to be AH (short for asymptotically
hyperbolic) if it is conformally compact and its curvature goes to −1 at the infinity. Obviously

13



a conformally compact Einstein manifold is always AH. Let us consider the distance function
to a given point p0 ∈ Xn:

t = dist(·, p0)

and the geodesic sphere Γt = {p ∈ Xn : dist(p, p0) = t}. The important initial step is the estimate
(2.3) in Lemma 2.1 of [15], which is

(4.1) ∇2
gt(v, v) = 1 + O(e−βt),

where v is any unit vector perpendicular to ∇t and β is any positive number less than 2. It
is not clear to us how Section 6.2 in [28] is applied in the proof (4.1) in [15]. In fact the es-
timate (4.1) does not seem to be correct without the convexity of geodesic spheres (cf. [30, 21]).

It is observed in [15] that one may employ the Bishop-Gromov relative volume comparison
theorem and get

Vol(Γt, g+)
Vol(Γt, gH)

≤
Vol(B(t, p0), g+)
Vol(B(t, 0), gH)

≤ 1

for all t > 0 on a conformally compact Einstein manifold. Hence the real issue for (1.9) is the
lower bound and the key is to establish the relative volume lower bound by the limit

lim
t→∞

Vol(Γt, g+)
Vol(Γt, gH)

.

It is very original in [15] to realize that one may use the Yamabe quotient to bound the relative
volume Vol(Γt ,g+)

Vol(Γt ,gH) from below. Suppose that (Xn, g+) is an AH manifold and that x is the geodesic
defining function associated with a representative ĝ of the conformal infinity (∂Xn−1, [ĝ]). Let

(4.2) r = − log
x
2

and Σr = {p ∈ Xn : r(p) = r} be the level set of the geodesic defining function. We would like to
mention that the inequality (2.2) in Lemma 2.1 of [15] is a well known fact about AH manifolds
of C3 regularity, which is

(4.3) Ddr(v, v) = 1 + O(e−2r),

where v is any unit vector perpendicular to ∇r, provided that (1.11) holds. Let ḡ = x2g+ be the
conformal compactification from the defining function and let

ḡt = ḡ|Γt and ḡr = ḡ|Σr .

Also let g̃ = 4e−2tg+ = ψ
4

n−3 ḡ be the conformal compactification from the distance function and
let

g̃t = g̃|Γt and g̃r = g̃|Σr ,

where ψ = e
n−3

2 (r−t). First of all it is easily seen that u = r − t is bounded on Xn by the trian-
gle inequality for distance functions. It is then observed in Lemma 3.1 of [15] that |∇u|[ḡ] is
bounded. For the convenience of readers we present a complete proof and an easy fix for a gap
in [15].

14



Lemma 4.1. Suppose that (Xn, g+) is an AH manifold of C3 regularity and (1.11) holds. Then
there is a constant C such that

(4.4) |du|[ḡ] ≤ C,

when r is large enough.

Proof. It suffices to show that

(4.5) g+(∇t,∇r) = 1 + O(e−2t).

First, as noticed in the proof of Lemma 3.1 in [15], if let φ = g+(∇t,∇r), then

(4.6)
d
dt
φ = ∇2r(∇t,∇t) = (1 − φ2)∇2r(v, v),

where ∇t =
√

1 − φ2v +φ∇r. We want to point out that it is not enough to derive (4.5) just from
(4.6) and (4.3). One needs the next lemma, which turns out to an easy fact but not a consequence
of (4.5) as presented in the proof of Lemma 4.1 of [15]. �

Lemma 4.2. Suppose that (Xn, g+) is AH of C3 regularity and (1.11) holds. Let x be the
geodesic defining function associated with a representative ĝ of the conformal infinity (∂X, [ĝ]).
Let p0 ∈ Xn is a fixed point and t be the distance to p0 in g+. And let r be given in (4.2). Then

g+(∇r,∇t) > 0

at the point t is smooth and r is sufficiently large.

Proof. It is known (cf. (2.2) in Lemma 2.1 of[15]) that, there is r0 > 0 such that, for r > r0,

∇2r(v, v) >
1
2

for all unit vector v that is perpendicular to ∇r. Then we claim that

φ = g+(∇t,∇r) > 0

for any point p where t is smooth and r > r0. To see this, one considers the minimal geodesic
γ that connects p to p0 and realizes the distance. Then, in the light of (4.6), it is not hard to see
that φ > 0 from the time t0 when the geodesic γ exits from Σr0 . Because φ ≤ 1 for all t and
φ(t0) ≥ 0. �

By Lemma 4.2, for r large, a geodesic from p0 can touch Σr at most once till the time it hits
the cut locus of p0. Hence by (4.4) the metric g̃ = ψ

4
n−3 ḡ extends to Xn with Lipschitz regularity

up to the boundary. In fact, as a consequence of the estimate (4.3) and Lemma 4.1 as observed
in Corollary 2.2 of [15], one has the following:

Corollary 4.3. Suppose that (Xn, g+) is AH of C3 regularity and (1.11) holds. Then the second
fundamental form of the level set Σr in (Xn, g̃) converges to zero as r → ∞.

Corollary 4.3 is used in the calculation of the scalar curvature R[g̃r] for (Σr, g̃r) (cf. (5.5) in
[15]). The following is one of the key steps in [15]. We will present the idea from [15] and
point out what are not clear and not correct . We will finish filling those gaps in the subsequent
sections.
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Lemma 4.4. Suppose that (Xn, g+) is an AH manifold of C3 regularity and (1.8) holds, with its
conformal infinity (∂Xn−1, [ĝ]) of positive Yamabe type. Then

(
Y(∂X, [ĝ])

(n − 2)(n − 1)
)

n−1
2 ≤ Vol(∂X, g̃0) = lim

t→∞
Vol(Γt, g̃t),

where g̃0 is the continuous extension of g̃ to the boundary.

Proof. We are recapturing the proof given in [15] in the way that the use of the estimate (4.1)
and the places where more vigorous arguments are required are explicitly identified. The full
proof of this lemma will be completed in the subsequent sections.

The first step is to derive (3.8) in [15]. Using the Lipschitz extension of ψ based on Lemma
4.1, we have

(4.7)

´
∂X((4(n−2)

n−3 |∇ψ|
2 + Rψ2)dv)[ĝ]

(
´
∂X ψ

2(n−1)
n−3 dv[ĝ])

n−3
n−1

≤ lim inf
r→∞

´
Σr

((4(n−2)
n−3 |∇ψ|

2 + Rψ2)dv)[ḡr]

(
´

Σr
ψ

2(n−1)
n−3 dv[ḡr])

n−3
n−1

.

On the other hand, we remark that, though

(4.8)
ˆ

Σr

((
4(n − 2)

n − 3
|∇ψ|2 + Rψ2)dv)[ḡr] =

ˆ
Σr

(Rdv)[g̃r]

easily holds when ψ is smooth, (4.8) (cf. (3.7) in [15]) may not be correct when ψ is only known
to be Liptschiz. Our approach is to use the deep understanding of the structure of cut loci to
overcome the challenge based on [27, 22]. We will deal with this issue and complete this first
step in Section 5 (cf. Theorem 5.4).

The second step is to obtain the pointwise scalar curvature estimate

(4.9) R[g̃r] ≤ (n − 1)(n − 2) + o(1)

(cf. (5.1) in [15]). The proof of Lemma 5.1 in [15] uses Corollary 4.3 and the Laplacian
comparison theorem. More importantly it uses the estimate (4.1) in calculating

∇2t(∇r,∇r) = 1 − (g+(∇r,∇r))2 + O(e−3t),

which indeed would imply (4.9) and

(4.10) lim inf
r→∞

´
Σr

(Rdv)[g̃r]

(
´

Σr
dv[g̃r])

n−3
n−1

≤ (n − 1)(n − 2) lim
r→∞

Vol(Σr, g̃)
2

n−1 = (n − 1)(n − 2)Vol(∂X, g̃0)
2

n−1 .

We will present a proof of (4.10) without assuming the estimate (4.1) at each smooth point of
t on Σr. Our key idea is to show the part of Σr where (4.1) does not holds has arbitrarily small
volume. We will present a complete and correct proof the second step in Section 6 (cf. Theorem
6.8).

The last step is to show that

(4.11) lim
t→∞

Vol(Γt, g̃t) = Vol(∂X, g̃0).
16



To do so, similar to the discussions in Section 6 of [15] that is based on Lemma 4.1, one
considers the geodesic sphere Γt as a Lipschitz graph over ∂X in (Xn, g̃), where

x(t)→ 0 as t → ∞

in W1,p topology for any p ∈ [1,∞). It is then easily seen that (4.11) holds, as shown in [15]. �

Consequently, from the idea in [15], for conformally compact Einstein manifolds, we have
the lower bound of the relative volume growth.

Proof of Theorem 1.5 One only needs to realize that, as calculated in [15], the following:

Vol(Γt, g+)
Vol(Γt, gH)

=
Vol(Γt, g̃t)( et

2 )n−1

ωn−1 sinhn−1 t
=

Vol(Γt, g̃t)
ωn−1

+ o(1)(4.12)

as t → ∞. �

Now we are ready to prove Theorem 1.8.

Proof of Theorem 1.8. First we want to show that, there are constant δ0 > 0 and C such that

|W |[g+] ≤ C

for any conformally compact Einstein manifolds that satisfy the assumptions in Theorem 1.8 for
0 < δ ≤ δ0. Assume otherwise there is a sequence of conformally compact Einstein manifolds
(Xn

j , g+
j ) such that

|W |[g+
j ]→ ∞ and Y(∂X j, [ĝ j])→ Y(S, [gS])

as j→ ∞. By Theorem 1.5, we know that

(4.13) (
Y(∂X j, [ĝ j])
Y(S, [gS])

)
n−1

2 ≤
Vol(Γt, g+

j )

Vol(Γt, gH)
≤

Vol(B(p j, t), g+
j )

Vol(B(0, t), gH)
≤ 1

for t > 0. Since |W |[g+
j ](p) → 0 as p → ∞ on each conformally compact Einstein manifold

(Xn
j , g+

j ), there exists a point p j ∈ Xn
j so that

τ j = |W |[g+
j ](p j) = max

p∈Xn
j

|W |[g+
j ](p)→ ∞

as j → ∞. We then consider the rescaled metric g j = τ jg+
j on the pointed manifold (Xn

j , p j).
From (4.13), one may conclude that the sequence of pointed Einstein manifolds (Xn

j , τ jg+
j , p j)

converges to a Ricci flat manifold (Xn
∞, g∞, p∞) in Cheeger-Gromov topology. In particular, one

gets, again from (4.13),
Vol(Γt, g∞) = Vol(Γt, gE)

for all t > 0, which implies that (Xn
∞, g∞) is isometric to the Euclidean space (Rn, gE) and hence

contradicts with |W |(p∞)[g∞] = 1.

To finish the proof of Theorem 1.8 we assume again otherwise, there are ε0 > 0 and a se-
quence of conformally compact Einstein manifolds (Xn

j , g+
j ) such that

|W |(p j)[g+
j ] ≥ ε0 and Y(∂X, [ĝ j])→ Y(Sn, [gS])

17



as j → ∞. According to the above uniform bound for the curvature for such a sequence,
we may extract a subsequence of pointed Einstein manifolds (Xn

j , g+
j , p j) with |W |(p j)[g+

j ] ≥
ε0 > 0, which converges to an Einstein manifold (Xn

∞, g∞, p∞) in Cheeger-Gromov topology.
Then the exact same argument at the end of Section 7 in [15] produces a contradiction from
|W |(p∞)[g∞] ≥ ε0 > 0. So the proof is complete. �

It is obvious that the argument in the first step in the above proof of Theorem 1.8 implies
Corollary 1.9, in the same spirit as in the proof of Lemma 3.4.

5. Normal cut loci

In this section we focus on the issue in the first step of the proof of Lemma 4.4. First ψ
is smooth away from the cut loci of the point p in a conformally compact Einstein manifold
(Xn, g+). Hence it is necessary to understand the fine structure of the set of cut loci and the
behavior of the distance function near the cut loci in order to study (4.8).

One might think, for a fixed p in a complete and non-compact manifold (Mn, g), the cut loci
Cp may stay in a compact set. In fact, to the contrary, any component of Cp extends to the infin-
ity, unless p is a pole. This is because Mn\Cp is always diffeomorphic to the Euclidean spaceRn.

On a complete Riemannian manifold (Mn, g) with a fixed point p ∈ Mn, the set Cp of cut
loci consists of the set Qp of conjugate points and the set Ap of non-conjugate cut loci. Among
the points in Ap we call those from which there are exactly two minimal geodesics connecting
to p and realizing the distance to p in (Mn, g) the normal cut loci, according to [27, 22]. We
denote the set of all normal cut loci by Np and the rest of non-conjugate cut loci by Lp. In those
notations we have

Cp = Qp

⋃
Lp

⋃
Np.

We recall from [27, 22] the following facts about the cut loci on Riemannian manifolds in
general.

Lemma 5.1. ([27, 22]) Suppose that (Mn, g) is a complete Riemannian manifold and that
p ∈ Mn. Then

• The closed set Qp
⋃

Lp is of Hausdorff dimension no more than n − 2.
• The set Np of normal cut loci consists of possibly countably many disjoint smooth hy-

persurfaces in Mn.
• Moreover, at each normal cut locus q ∈ Np, there is a small open neighborhood U of q

such that U
⋂

Cp = U
⋂

Np is a piece of smooth hypersurface in Mn.

In our cases, on a conformally compact Einstein manifold (Xn, g+) with a given point p, we
are concerned with the set

γr = Σr

⋂
Cp = (Σr ∩ (Qp ∪ Lp))

⋃
(Σr ∩ Np) = γQL

r

⋃
γN

r ,

where ψ is not smooth as a Liptschitz function on Σr. Before we move to look closely on (4.8)
we would like to mention some more facts about the distance function t and the geodesic spheres
in our context.

Lemma 5.2. Suppose that (Xn, g+) is AH of C3 regularity and (1.11) holds. Then
18



• When t is sufficiently large, the geodesic sphere Γt is a Liptschitz graph over ∂X.
• When t is sufficiently large, the outward angle of the corner at the normal cut locus on

Γt is always less than π.

Proof. The first statement can be proven using the same argument as in Section 4 of [15] (cf.
Lemma 4.1 and Lemma 4.2 in the previous section).

From [27, 22] we know that the singularities for the geodesic sphere at normal cut loci are
corners that are, at least locally, the meet of two smooth hypersurfaces. To see the outward
angle of such corner at each normal cut locus is always less than π, let us assume otherwise.
Let γ be a (distance realizing) minimal geodesic from the fixed p to a normal cut locus q ∈ Γt

where the inward angle is less than π. We may push toward the geodesic sphere Γt from inside a
small geodesic ball centered along γ. Clearly the geodesic ball will definitely touch the geodesic
sphere Γt at some point q̄ ∈ Γt before it reaches the corner q ∈ Γt. This yields a contradiction
because the distance from p to the point q̄ ∈ Γt would be definitely less than t. �

By compactness of γQL
r , there are finitely many points pi ∈ γ

QL
r so that Bε

r =
⋃

i Bε(pi) covers
γQL

r . Then Bε
r together with γN

r covers the set γr. Then we perform the integral by parts to
calculate the Yamabe functional for ψ as follows:

(5.1)

ˆ
Σr\(Bεr∪γN

r )
((

4(n − 2)
n − 3

|∇ψ|2 + Rψ2)dv)[ḡr] =

ˆ
Σr\(Bεr∪γN

r )
(Rdv)[g̃r]

+

˛
∂(Σr\(Bεr∪γN

r ))

4(n − 2)
n − 3

ψ(
∂

∂n
ψdσ)[ḡr]

In the light of Lemma 5.1, for almost every r as r → ∞ and almost every ε as ε → 0, one may
assume γQL

r is of Hausdorff dimension no more than n−3 and γN
r \Bε

r is a union of finitely many
disjoint hypersurfaces in Σr. Hence˛

∂(Σr\(Bεr∪γN
r ))
ψ(

∂

∂n
ψdσ)[ḡr] =

˛
∂Bεr

ψ(
∂

∂n
ψdσ)[ḡr] +

˛
γN

r \Bεr

ψ((
∂

∂n+
ψ +

∂

∂n−
ψ)dσ)[ḡr]

where n+ and n− are the two outward normal directions to γN
r from the inside of Σr \ (Bε

r ∪ γ
N
r ).

It is not hard to see that

(5.2)
˛
∂Bεr

ψ(
∂

∂n
ψdσ)[ḡr]→ 0

as ε → 0. Because, γQL
r is compact and of Hausdorff dimension no more than n − 3; and ψ is

uniformly Liptschitz on Σr (cf. (4.4) in Lemma 4.1). Recall that ψ = e
n−3

2 (r−t) at least for almost
every r. Therefore

∂

∂n±
ψ = −

n − 3
2

ψ
∂t
∂n±

= −
n − 3

2
ψ(∇t)± · n±

and

(5.3)
∂

∂n+
ψ +

∂

∂n−
ψ = −

n − 3
2

ψ(
∂t
∂n+

+
∂t
∂n−

) = −
n − 3

2
ψ((∇t)+ − (∇t)−) · n+,

where (∇t)± is the gradient of the distance function t with respect to the metric ḡ from either
side of the corner γN

r .
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Lemma 5.3. For almost every r, when γN
r is union of disjoint hypersurafces in Σr,

(5.4)
∂t
∂n+

+
∂t
∂n−
≥ 0

at each point on γN
r .

Proof. Given a point q ∈ γN
r , let us consider the plane P spanned by (∇t)+ and (∇t)−. And let

nt be the unit direction of the projection of n+ to the plane P. One notices that, from (4.5), the
angle between (∇t)+ and (∇t)− is arbitrarily small as well as the angle between (∇t)± and nt is
arbitrarily close to π

2 , as r → ∞. In the light of (5.3), to verify (5.4) is to verify that the angle
from (∇t)− to nt is not smaller than the one from (∇t)+ to nt, since ‖(∇t)+‖ = ‖(∇t)−‖.

This turns out to be true because the outward angle of the corner at any normal cut locus on
the geodesic sphere is always less than π according to Lemma 5.2. �

From the proof of Lemma 5.3, we can observe that for r > 0 large, Np intersects with Σr

transversely, so that for q ∈ Np, there exists v ∈ TqNp so that the angle between v and ∇gr(q)
is bounded by Ce−r with a uniform constant C > 0. Therefore, Hn−1(Σr

⋂
Cp) = 0. Similarly,

Hn−1(Γt
⋂

Cp) = 0 for t > 0 large. To summarize what we have so far in this section we state
the following proposition:

Theorem 5.4. Suppose that (Xn, g+) is an AH manifold of C3 regularity and (1.11) holds. Let p
be a fixed point on Xn. Let t be the distance function to p on (Xn, g+) and let r = − log x

2 , where
x is the geodesic defining function associated with a representative ĝ of the conformal infinity
(∂X, [ĝ]). Then for almost all large r > 0 so thatHn−2(γQL

r ) = 0, it holds that

(5.5)
ˆ

Σr

((
4(n − 2)

n − 3
|∇ψ|2 + Rψ2)dv)[ḡr] ≤

ˆ
Σr\(Bεr∪γN

r )
(Rdv)[g̃r] + oε(1),

where ψ = e
n−3

2 (r−t) and oε(1)→ 0 as ε → 0.
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6. Estimates of the total scalar curvature

In this section we focus on the issue in the second step of the proof of Lemma 4.4. Let us
first be very clear on how (4.1) is used in the argument in [15] and what one can hope to get for
a upper bound for the scalar curvature R[g̃r]. Recall from [15], to estimate the scalar curvature
R[g̃r], one starts with (5.5) in [15],

R[g̃r] = R[g̃] − 2Ric[g̃](N,N) + o(1)

and

Ric[g̃](N,N) =
e2t

4
(Ric[g+](∇r,∇r) + ∆t + (n − 2)(1 − (g+(∇r,∇t))2)(∇2t(v, v) − 1))

where N = 1
2et∇r and

∇r = g+(∇r,∇t)∇t +
√

1 − (g+(∇r,∇t))2v
for some unit vector v ⊥ ∇t. Hence, following the calculation in [15] and assuming

(6.1) Ric[g+] ≥ −(n − 1)g+ and R[g+] = −n(n − 1) + o(e−2t),

one arrives at

(6.2) R[g̃r] ≤ (n − 1)(n − 2) +
n − 2

2
e2t(1 − (g+(∇r,∇t))2)(1 − ∇2t(v, v)) + o(1),

which implies (4.9) whenever (4.1) is available. In fact it is clear that, any lower bound of the
principal curvature would yield a upper bound for the scalar curvature R[g̃t] from (6.2) and (4.5).
To our best knowledge, one does not have any a prior lower bound of the principal curavture,
though one indeed can manage to get the desired upper bound for the principal curvature, by
the nature of the Riccati equations in general (cf. [30, 21]). What we observe is that, smaller the
principal curvature is; smaller the mean curvature is; and therefore smaller the surface volume
element is, at any smooth point of the distance function. Thus we will still be able to obtain the
desired estimate for the total scalar curvature

(6.3)
ˆ

Σr\Cp0

(Rdv)[g̃r] ≤ (n − 1)(n − 2)
ˆ

Σr

dv[g̃r] + o(1)

where o(1)→ as r → ∞. We will organize this section into three subsections.

6.1. Curvature estimates based on the Riccati equations. In this section we would like to
derive the curvature estimates based on the Riccati equations on AH manifolds. Let us start
with the Riccati equation for the shape operator of the geodesic spheres along a geodesic γ(t)
(cf. for example, (2.1) in [15] or [30, 21, 28])

(6.4) ∇∇tS + S 2 = −(R∇t)[g+]

where S = ∇2t is the shape operator and (R∇t)[g+](v) = (R(v,∇t)∇t)[g+]. Particularly, one has

(6.5) 1 −C0e−2t ≤ µ′(t) + µ2(t) ≤ 1 + C0e−2t

for the principal curvature µ, on an AH manifold with (1.11) (cf. (2.6) in [15]). We will use
µm and µM to stand for the smallest and the biggest principal curvature respectively. The step
following (2.6) in the proof of (2.3) in [15] does not seem to be correct to us. In the rest of this
subsection we will present a careful study of the Riccati equations and derive the upper bounds
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and lower bounds of the principal curvature that hold on AH manifolds.

The first is a general fact for complete Riemmannian manifolds.

Lemma 6.1. Suppose that (Mn, g) is a complete Riemannian manifold and p ∈ Mn is a fixed
point. For any given t0 > 0, there is a constant C such that

(6.6) µM(q) ≤ C

for all q ∈ Γt0 \ Cp, where Γt0 is the geodesic sphere of radius t0 and Cp is the cut loci of p in
(Mn, g).

Proof. Suppose otherwise that there is a sequence qk ∈ Γt0 \Cp such that

µM(qk)→ ∞.

Without loss of generality one may assume that qk → q0 ∈ Γt0 and the geodesic γk(t) that
realizes the distance and connects qk and p converges to a minimizing geodesic γ(t) from q0 to
p. Hence q0 is the first cut locus of p along γ. Set

µ = µM(γ(
1
2

t0)).

Since the set Cp of cut loci of p is closed, there is an open neighborhood U of γ( 1
2 t0) where t is

smooth. One may assume that
µM(q) ≤ 2µ

for all q ∈ U (take a smaller set if necessary). Particularly

γk(
1
2

t0) ∈ U and µM(γk(
1
2

t0)) ≤ 2µ

for all sufficiently large k, which is easily seen to contradict with the fact that

µM(qk) = µM(γk(t0))→ ∞

in the light of the Riccati equation (6.4). So the proof is complete. �

Consequently we have the sharp upper bound for the principal curvature of geodesic spheres
in AH manifolds.

Corollary 6.2. Suppose that (Xn, g+) is AH and p ∈ Xn is a fixed point. And suppose that the
curvature condition (1.11) holds on (Xn, g+). Then, for t0 > 0, there exists a constant C such
that

(6.7) µM(q) ≤ 1 + C(t + 1)e−2t

for all q ∈ Γt \Cp and all t ≥ t0.

Proof. From (6.5) one has
µ′M + µ2

M ≤ 1 + C0e−2t.

Then one may consider z = µM − 1 along the minimizing geodesic γ(s) from p to q ∈ Γt and the
equation (6.5) for z

z′ + 2z ≤ C0e−2s − z2 ≤ C0e−2s,

which easily implies (6.7). We remark that the constant C may very in different places. �
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Roughly speaking, the reason one has the sharp upper bound (6.7) is because 1 is a sink for
the equation

(6.8) µ′ + µ2 = 1.

On the other hand, −1 is a source for the equation (6.8), one could not expect a lower bound
in general. In fact the best one can say about the lower bound for the principal curvature is as
follows:

Proposition 6.3. Suppose that (Xn, g+) is AH and p ∈ Xn is a fixed point. And suppose that the
curvature condition (1.11) holds on (Xn, g+). Then

µm(q) ≥ −
√

1 + C0e−2t

for q ∈ Γt and q is on a minimizing geodesic ray that runs from p to the infinity without inter-
secting the set Cp of cut loci of p.

Proof. Suppose that γ is a minimizing geodesic that runs from p to the infinity without inter-
secting the set Cp of cut loci of p. Assume otherwise

µm(γ(t)) < −
√

1 + C0e−2t.

Then, based on (6.5), it is not hard to show that µm(γ(s)) goes to −∞ in a finite time after t,
which is a contradiction. �

6.2. Volume estimates where the mean curvature is not big enough. In this section we are
concerned with the set

Uδ
r = {q ∈ Σr \Cp : H(q) < (n − 1)(1 − δ)}

where H = ∆t. We would like to show thatˆ
Uδ

r

dv[g̃r]→ 0

as r → ∞.

We first notice from (4.5) in the proof of Lemma 4.1 that

(6.9) ‖dv[g+](∇t) − dv[g+](∇r)‖g+ ≤ Ce−t

and

(6.10) |
2n−1e−(n−1)tdv[g+](∇r)

2n−1e−(n−1)tdv[g+](∇t)|(∇r)⊥
− 1| = |

dv[g+](∇r)
dv[g+](∇t)|(∇r)⊥

− 1| ≤ Ce−2t,

where

(6.11) dv[g̃r] = 2n−1e−(n−1)tdv[g+](∇r)

and (∇r)⊥ stands for the hyperplane perpendicular to ∇r. This gives us the clue how the mean
curvature H = ∆t is related to the volume element dv[g̃r] on Σr. We now focus on the behavior
of the (n-1)-form dv[g+](∇t) along geodesics γ from p.
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To be more clearer we set a parallel orthonormal frame {ω1, ω2 · · · , ωn−1} along a geodesic γ
for the dual of the subspace perpendicular to the geodesic γ. Then we may write

dv[g+](∇t) = Jω1 · ω2 · · ·ωn−1.

Now we recall from the first variation formula in Riemannian geometry that

(6.12)
dJ
dt

= HJ .

To state the key observation for the volume estimate, for each small δ, we let tδ be a fixed large
number such that

(n − 2)C(t + 1)e−2t ≤
δ

4
and 1 −C0e−2t ≥ (1 −

1
2
δ)2

for all t ≥ tδ, where C is the constant in (6.7) and C0 is the constant in (1.11).

Lemma 6.4. Suppose that (Xn, g+) (n ≥ 4) is AH of C3 regularity and p ∈ Xn is a fixed point.
And suppose that the curvature condition (1.11) holds. Let q ∈ Uδ

r and γ(s) be the minimizing
geodesic from p to q = γ(t) for t > tδ. Then

(6.13) H(γ(s)) ≤ (n − 1)(1 −
δ

4(n − 1)
)

for all s ∈ (tδ, t).

Proof. Assume otherwise, for some s ∈ (tδ, t) such that

H(γ(s)) > (n − 1)(1 −
δ

4(n − 1)
).

Using the sharp upper bound (6.7) we conclude that

(6.14) µm(γ(s)) > 1 −
δ

2
.

It is then easily seen that (6.14) implies

µm(q) = µm(γ(t)) ≥ 1 −
3
4
δ > 1 − δ.

Because, from (6.5), one has

µ′m + µ2
m ≥ 1 −C0e−2t ≥ (1 −

1
2
δ)2

in (tδ, t), which means µ′m is positive whenever µm ∈ (0, 1 − 1
2δ). �

Consequently, from (6.11), (6.10), and (6.12), considering Uδ
r as a graph on a subset of Γtδ

induced by exponential map at p, we have

Proposition 6.5. Suppose that (Xn, g+) is an AH manifold of C3 regularity and p ∈ Xn is a fixed
point. And suppose that the curvature condition (1.11) holds. Then

(6.15) J(q) ≤ J(γ(tδ))e(n−1)(1− δ
4(n−1) )(t−tδ)
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for q ∈ Γt \ Cp with H < (n − 1)(1 − δ) and γ is the minimizing geodesic from p to q. Thus, for
each fixed small δ > 0,

(6.16)
ˆ

Uδ
r

dv[g̃r]→ 0

as r → ∞.

6.3. Volume estimates where the mean curvature is very negative. If there were a lower
bound for the mean curvature, then (6.2) and (6.7) would yield a upper bound the scalar cur-
vature R[g̃r] and one would have by now completed the proof of (6.3). Therefore we need to
estimate the lower bound of Hdv[g+](∇t) at least when the mean curvature H is very negative.
First of all one easily derives from the first variational formula (6.12) that, along a geodesic
γ(s),

(6.17)
d
ds

(Hdv[g+](∇t)) = (H′ + H2)dv[g+](∇t).

The key observation for this subsection is the following more detailed statement of Proposi-
tion 6.3 about the Riccati equation:

Lemma 6.6. Suppose that (Xn, g+) is AH and p ∈ Xn is a fixed point. And suppose that the
curvature condition (1.11) holds. Then, for any t0 > 0, there is a constant C > 0, for q ∈ Γt \Cp

and γ being the minimizing geodesic from p to q, one always has

(6.18) µm(γ(t − 1)) ≥ −C,

provided that t > t0 + 1.

Proof. To start, one considers the Riccati equation (6.5) along the geodesic γ when µ(s0) <
−
√

1 + C0e−2s0 with s0 = t − 1 > t0. Recall

µ′ + µ2 ≤ 1 + C0e−2s ≤ 1 + C0e−2s0

for s > s0, which implies

µ(s) ≤ −a
1 + χe2a(s−s0)

1 − χe2a(s−s0)

where a =
√

1 + C0e−2s0 and χ = −
a+µ(s0)
a−µ(s0) ∈ (0, 1). Therefore it is clear that µ reaches −∞ at

s1 = t − 1 −
1

2a
log χ

and
lim

µ(t−1)→−a
χ = 0 and lim

µ(t−1)→−∞
χ = 1.

Thus

−
1
2a

logχ < 1

when µ(t − 1) is sufficient negative, which implies, there is a constant C = C(t0) such that

µm(γ(t − 1)) > −C

for γ(t) ∈ Γt \Cp and t > t0 + 1. �
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Now we are ready to deal with the volume estimate at places the mean curvature is very
negative.

Proposition 6.7. Suppose that (Xn, g+) is AH and p ∈ Xn is a fixed point. And suppose that the
curvature condition (1.11) holds. Then there is a constant C > 0 such that, for q ∈ Γt \Cp with
H(q) ≤ −2(n − 1) and γ being the minimizing geodesic from p to q,

(6.19) HJ(γ(t)) ≥ −Ce(n−1)(1− δ
4(n−1) )t,

provided that t > tδ + 1.

Proof. Using Riccati equation and (6.17), we end at
d
ds

(HJ) = (−Ric[g+](∇t,∇t) − |∇2t|2 + H2)J

for s ∈ (t − 1, t) ⊂ (tδ, t). Hence we are looking for lower bound for (∆t)2 − |∇2t|2. Let

{µi : i = 1, · · · , n − 1}

be the eigenvalues of ∇2t. We may calculate

(∆t)2 − |∇2t|2 =
∑
i, j

µiµ j ≥
∑
µi·µ j<0

µiµ j ≥ 2(n − 1)2µm ≥ 2(n − 1)2H −C

for some constant C > 0, where the last inequality uses the sharp upper bound (6.7). Notice also
that H ≤ −2(n − 1) yields that µm ≤ −2, which guarantees that there is always some negative
eigenvalues. Therefore by (1.11), we obtain

(6.20)
d
ds

(HJ) ≥ 2(n − 1)2HJ −CJ

for some constant C > 0, which can be rewritten as follows:
d
ds

(e−2(n−1)2 sHJ) ≥ −Ce−2(n−1)2 sJ

for s ∈ (t − 1, t) Thus

(6.21) HJ(γ(t)) ≥ e2(n−1)2
HJ(γ(t − 1)) −Ce2(n−1)2t

ˆ t

t−1
e−2(n−1)2 sJ(γ(s))ds.

Now, in the light of Lemma 6.6, (6.19) is proven if (6.15) in Proposition 6.5 is applicable to
all points γ(s) : s ∈ [t − 1, t]. To see (6.15) holds at each point γ(s) : s ∈ [t − 1, t], one
uses that µm(γ(t)) < −2 and the Riccati equation (6.5) for t − 1 > tδ. Because one gets that
µm(γ(s)) < −1 + C0e−2tδ and hence H(γ(s)) ≤ (n − 1)(1 − δ) for all s ∈ [t − 1, t], at least when δ
is small enough. �

Combining Proposition 6.5 and Proposition 6.7 we thus have obtained

Theorem 6.8. Suppose that (Xn, g+) is AH of C3 regularity and p ∈ Xn is a fixed point. And
suppose that (6.1) holds. Then for almost all large r > 0 so thatHn−2(γQL

r ) = 0, it holds that

(6.22)
ˆ

Σr\(Br
ε∪Np)

(Rdv)[g̃r] ≤ (n − 1)(n − 2)
ˆ

Σr

dv[g̃r] + or(1),

where or(1) is independent of ε > 0 and or(1)→ 0 as r → ∞.
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Proof. At any point q ∈ Σr \Cp, by (6.10),

|
Hdv[g+](∇r)

Hdv[g+](∇t)|(∇r)⊥
− 1| ≤ Ce−2t.

Since |t − r| is uniformly controlled, for q ∈ Σr \ Cp so that H ≤ −2(n − 1) we get the decay of
H dv[g+](∇r) by Proposition 6.7.

For any δ > 0, for r > 0 large as in the statement of the theorem, considering Σr as a graph of
Γtδ induced by the exponential map at p, we have the splitting of the integration,ˆ

Σr\(Br
ε
⋃

Np)
(RdV)[g̃r]

=

ˆ
{q∈Σr\(Br

ε
⋃

Np): H(q)>(n−1)(1−δ)}
(RdV)[g̃r] +

ˆ
{q∈Σr\(Br

ε
⋃

Np):−2(n−1)<H≤(n−1)(1−δ)}
(RdV)[g̃r]

+

ˆ
{q∈Σr\(Br

ε
⋃

Np): H≤−2(n−1)}
(RdV)[g̃r].

Note that Ddt(v, v) ≥ µm ≥ H − C. By Proposition 6.5 and Proposition 6.7 combining with
(6.11) and (6.12) and arbitrary choice of δ > 0, we completes the proof of (6.23). �
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