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Abstract

Given a ring R, a bijection exists between torsion theories and idempotent rad-

icals. Further, the class of hereditary torsion theories contains the skeleton of the

open classes. In this work, we extend the notions and main results in R-Mod about

torsion classes, torsion-free classes, and open classes to the category LM of linear

lattices, whose objects are complete modular lattices and whose morphisms are

linear morphisms.
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1. Introduction

For every ring R, an R-module M induces a complete modular lattice L(M), whose
elements are the submodules ofM and whose lattice operations of infimum and supre-
mum are the intersection and sum of submodules, respectively. Further, each R-linear
homomorphism f : M −→ N induces a join-preserving function between the lattices
L(M) and L(N ), the “direct image under f ”, which, provided f is injective, is a lattice
morphism (that is, it preserves infima and suprema).
However, T. Albu and M. Iosif in [2] introduce the concept of linear morphisms between
two bounded modular lattices that, in contrast to usual lattice morphisms, summon
the First Isomorphism Theorem for modules into a lattice framework. Moreover, the
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authors show that the collection of bounded modular lattices equipped with linear
morphisms forms a category. We shall restrict ourselves to complete modular lattices
and denote the corresponding category by LM. One has a functor from R-Mod to LM
that assigns to each moduleM the complete modular lattice L(M) and to each R-linear
homomorphism a linear morphism in LM (again, the direct image). This functorial
connection drove us to study the results concerning the closure properties of classes
in R-Mod in their lattice counterpart category LM.

The rest of the paper is organized as follows: Section 2 contains the notions and
the definitions of linear morphisms and lattice preradicals. In Section 3 and Section
4, we study torsion theories in the category LM and show their connection with lattice
preradicals. Section 5 describes the big lattice of open classes in LM, and proves that
its skeleton is contained in the big lattice of hereditary torsion classes.

2. Preliminaries

For a bounded lattice L, let us write 0L (resp., 1L) to mean the least (resp., greatest)
element of L. If a,b ∈ L are such that a ⩽ b, we write b/a = {x ∈ L | a ⩽ x ⩽ b} for a general
interval. The initial interval b/0L and the quotient interval 1L/a are special cases.

We denote by L the class of all bounded modular lattices. This class forms a cat-
egory when we consider as morphisms the usual lattice morphisms, this is, functions
that respect the lattice operations of infimum and supremum. However, one can de-
fine different morphisms between lattices of this kind, thus giving rise to a new cate-
gory.

Definition 2.1. [2, Definition 1.1] Let L,L′ ∈ L. The mapping f : L −→ L′ is called a
linear morphism if there exists k ∈ L, called the kernel of f , and a′ ∈ L′ such that the
following two conditions hold:

1) f (x) = f (x∨ k) for all x ∈ L.

2) The function f induces a lattice isomorphism f : 1L/k −→ a′/0L′ such that f (x) =
f (x) for all x ∈ 1L/k.

Following the notation in [2, Proposition 2.2], we name LM the category of linear
modular lattices, whose objects are complete modular lattices and whose morphisms
are linear morphisms.

Observe that for L,L′ ∈ LM, L and L′ are isomorphic in LM if and only if they are
isomorphic as lattices.

Broadly, a preradical σ on a category C is a subfunctor of the identity functor IdC.
This way, a preradical σ on C assigns to each object C a subobject σ (C), and to each
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morphism f : C −→D a morphism σ (f ) : σ (C) −→ σ (D) in LM such that

C
f // D

σ (C)
σ (f ) //

ι

OO

σ (D)

ι

OO

commutes. In particular, as in the category LM the subobjects of a lattice L ∈ LM
correspond to initial intervals in L (see [2, Proposition 2.2(5)]), we have the following

Definition 2.2. A lattice preradical is a functor r : LM −→LM that satisfies the follow-
ing two conditions:

1) r(L) is an initial interval of L.

2) For any linear morphism f : L −→ L′, we have that f (r(L)) ⊆ r(L′). Furthermore,
the restriction to r(L) and corestriction to r(L′) of f is a linear morphism. Thus,
r(f ) : r(L) −→ r(L′) is defined as the restriction and corestriction of f , which is
denoted as f |.

We denote by Lpr the class of lattice preradicals on LM.

Theorem 2.3. The following sentences are equivalent:

1) r ∈ Lpr

2) r is an assignment from LM to LM such that:

(i) r(L) is an initial interval of L for each L ∈ LM.

(ii) For any linear morphism f : L −→ L′ we have that f (r(L)) ⊆ r(L′).

Proof. Follows from [1, Lemma 3.2.].

(Alternatively, assume that (2) holds. Let L,L′ ∈ LM and let f : L −→ L′ be a linear
morphism. Have i : r(L) → L stand for the inclusion mapping, which is of course a
linear morphism. Since LM is a category, the composite f ◦ i, which is the restriction
of f to r(L), is also a linear morphism. But then the corestriction of f ◦ i to r(L′) is
clearly a linear morphism. Therefore, (1) holds.)

Note that preradicals preserve isomorphisms: for L,L′ ∈ LM, if L
f
� L′, then r(L)

f |
�

r(L′).
For a preradical r in Lpr and a lattice L ∈ LM we denote by XrL the element of L

such that r(L) = XrL/0L.

Definition 2.4. For a class C in Lpr , let us define the functions
∨
r∈C
r,

∧
r∈C
r : LM −→ LM

through
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(∨
r∈C
r
)
(L) = (

∨
r∈C
XrL)/0L

and (∧
r∈C
r
)
(L) = (

∧
r∈C
XrL)/0L.

Proposition 2.5. Let C be a class of lattice preradicals. Then
∨
r∈C
r and

∧
r∈C
r are lattice

preradicals.

Proof. By definition, both functions send a lattice L ∈ LM to an initial interval of L.
Given a linear morphism f : L −→ L′, one has that f (r(L)) ⊆ r(L′) for each r ∈ C, so that
f (XrL) ⩽ XrL′ . Since linear morphisms distribute over arbitrary suprema (see [3, Lemma
0.6]), it follows that

f (
∨
r∈C
XrL) =

∨
r∈C
f (XrL) ⩽

∨
r∈C
XrL′ .

Therefore, as linear morphisms are order-preserving (see [3, Corollary 0.4]), f ((
∨
r∈C
r)(L)) ⊆

(
∨
r∈C
r)(L′).

Similarly, as linear morphisms are order-preserving, it follows that f (
∧
r∈C
XrL) ⩽

f (XsL) for all s ∈ C, and thus,

f (
∧
r∈C
XrL) ⩽

∧
r∈C
f (XrL) ⩽

∧
r∈C
XrL′ .

Hence, f ((
∧
r∈C
r)(L)) ⊆ (

∧
r∈C
r)(L′).

Therefore, by Theorem 2.3, both operators are preradicals of lattices.

For r, s ∈ Lpr , we write r ⩽ s if and only if r(L) ⊆ s(L) for every L ∈ LM. Thus
ordered, Lpr is a big lattice, where the supremum and the infimum of a class A in Lpr
are, respectively,

∨
r∈A

r and
∧
r∈A

r.

We say that a preradical is idempotent if r(r(L)) = r(L) for all L ∈ LM, and radical if
r(1L/X

r
L) = XrL/X

r
L for all lattices L ∈ LM.

Lemma 2.6. Let L be a lattice in LM and r a radical on LM. If a ∈ L is such that a ⩽ XrL,
then r(1L/a) = XrL/a.

Proof. Firstly, consider the linear morphism f : L −→ 1L/a given by f (x) = x ∨ a. By
applying the preradical r to f we obtain that f (XrL/0L) = f (r(L)) ⊆ r(1L/a) = Xr1L/a/a,
from which we get that XrL = XrL ∨ a = f (XrL) ⩽ Xr1L/a, so that XrL ⩽ X

r
1L/a

.
Consider now the linear morphism g : 1L/a −→ 1L/X

r
L given by g(x) = x ∨XrL. By

applying r to g we obtain the linear morphism g | : Xr1L/a/a −→ XrL/X
r
L. This time we get

that Xr1L/a ∨X
r
L = XrL, and thus that Xr1L/a ⩽ X

r
L.

Therefore, r(1L/a) = Xr1L/a/a = XrL/a

Proposition 2.7. Let {ri}i∈I be a family of lattice preradicals.
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(i) If ri is idempotent for each i ∈ I , then
∨
i∈I
ri is idempotent.

(ii) If ri is a radical for each i ∈ I , then
∧
i∈I
ri is a radical.

Proof. For (i), let L ∈ LM and j ∈ I . Then,

rj(L) = rj(rj(L)) ⩽ (
∨
i∈I
ri)(rj(L)) ⩽ (

∨
i∈I
ri)((

∨
i∈I
ri)(L)).

Therefore, (
∨
i∈I
ri)(L) ⩽ (

∨
i∈I
ri)((

∨
i∈I
ri)(L)), whence equality follows.

For (ii), let L ∈ LM. Note that X

∧
i∈I
ri

L =
∧
i∈I
XriL . By Lemma 2.6,

(
∧
i∈I
ri)(1L/∧

i∈I
XriL ) = (

∧
i∈I
Xri1L/∧

i∈I
XriL

)/∧
i∈I
XriL = (

∧
i∈I
XriL )/∧

i∈I
XriL .

(Alternatively, write r =
∧
i∈I
ri and let j ∈ I . Consider the linear morphism π : 1L/XrL→

1L/XrjL given by π : x 7→ x∨X
rj
L . Applying r to π yields that

π(Xr1L/XrL
/XrL) = π(r(1L/X

r
L)) ⊆ r(1L/X

rj
L ) ⊆ rj(1L/X

rj
L ) = X

rj
L /X

rj
L ,

so that Xr1L/XrL
∨X

rj
L = π(Xr1L/XrL

) = X
rj
L , that is, Xr1L/XrL

≤ X
rj
L . Therefore, Xr1L/XrL

≤
∧
i∈I
Xrii =

XrL, which means that r(1L/X
r
L) = XrL/X

r
L.)

Write Lid for the class of idempotent lattice preradicals on LM and Lrad for the
class of lattice radicals on LM.

Corollary 2.8. Lid (resp., Lrad) is a big lattice, where the join (resp., meet) operation coin-
cides with that in Lpr .

3. Preradicals and torsion theories on LM
Definition 3.1. Let T ⊆ LM be a class of linear modular lattices closed under isomor-
phisms. We say that T is a pretorsion class if the following holds:

1) For each L ∈ T one has that 1L/a ∈ T for every a ∈ L. In other words, T is closed
under quotient intervals.

2) For each lattice L ∈ LM and any family of elements {xi}i∈I ⊆ L with xi/0L ∈ T ,
∀i ∈ I , we have that (

∨
i∈I
xi )/0L ∈ T .

Remark 3.2. The class of all pretorsion classes in LM, ordered by class inclusion, is a
big lattice, where the meet operation is given by intersection of classes.

Lemma 3.3. Let T be a pretorsion class in LM, and let f : L −→ L′ be a linear morphism.
If x ∈ L is such that x/0L ∈ T then f (x)/0L′ ∈ T .
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Proof. Let us consider the composite of linear morphisms x/0L
i
↪→ L

f
−→ L′ with kernel

k. By the definition of linear morphism,

x/k � (f ◦ i)(x)/0L′ = f (x)/0L′ .

As T is a class closed under quotient intervals, x/k ∈ T . Therefore, f (x)/0L′ ∈ T .

Proposition 3.4. Let r be a lattice preradical. Then

Tr = {L ∈ LM|r(L) = L}

is a pretorsion class.

Proof. Clearly, Tr is a class closed under isomorphisms.

Suppose first that L ∈ Tr and let a ∈ L. Then, the function L
f
−→ 1L/a defined by

f (x) = x ∨ a is a linear morphism. Thus, by applying the lattice preradical r to f we

obtain the linear morphism r(L)
f |
−→ r(1L/a), so that 1L/a = f (L) = f (r(L)) ⊆ r(1L/a)

which in turn implies that 1L/a ∈ Tr .
Suppose now that for L ∈ LM there exists a set of elements {xi}i∈I ⊆ L such that xi/0L ∈
Tr ∀i ∈ I . In order to prove that (

∨
i∈I
xi )/0L ∈ Tr , we will consider the linear morphism ιi :

xi/0L −→ (
∨
i∈I
xi )/0L given by the inclusion mapping, for each i ∈ I . This way, by applying

the lattice preradical r to each ιi , we obtain that xi/0L
ιi |−→ r((

∨
i∈I
xi )/0L), from which it

follows that xi ⩽ X
r
(
∨
i∈I
xi )/0L

. Since the last holds ∀i ∈ I , it then follows that
∨
i∈I
xi ⩽ X

r
(
∨
i∈I
xi )/0L
⩽∨

i∈I
xi , and consequently

∨
i∈I
xi = Xr(∨

i∈I
xi )/0L

. Thus, (
∨
i∈I
xi )/0L ∈ Tr , and Tr is a pretorsion class.

Proposition 3.5. Let T be a pretorsion class. Then, T induces an idempotent lattice pre-
radical r

T
given as follows: for L ∈ LM,

r
T

(L) = (
∨
x∈TL

x)/0L

where TL = {x ∈ L|x/0L ∈ T }.

Proof. Note first that, for each L ∈ LM, one has that r
T

(L) defines an initial interval

of L. Suppose now that L
f
−→ L′ is a linear morphism. Then, for x ∈ TL, Lemma 3.3

gives that f (x)/0L′ ∈ T , that is, f (x) ∈ TL′ . Thus, we have that
∨
x∈TL

f (x) ⩽
∨

x∈TL′
x. With this

last in mind and the fact that linear morphisms preserve intervals and commute with
arbitrary joins [3, Lema 0.6.], it follows that

f (r
T

(L)) = f
(

(
∨
x∈TL

x)/0L
)

= f (
∨
x∈TL

x)/0L′ = (
∨
x∈TL

f (x))/0L′ ⊆ (
∨

x∈TL′
x)/0L′ = r

T
(L′),

and thus, by Theorem 2.3, r
T

is a lattice preradical.
Lastly, we shall verify that r

T
is an idempotent lattice preradical. As T is a pretor-

sion class, for any lattice L ∈ LM it follows that
∨

TL ∈ TL. In this way, one has that
r
T

(L) ∈ T . Consequently, r
T

is an idempotent lattice preradical.
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Write LM-pret for the big lattice of pretorsion classes in LM.

Theorem 3.6. The big lattices Lid and LM-pret are isomorphic.

Proof. On the one hand, by Proposition 3.4, we have a mapping that assigns to each
lattice preradical r the pretorsion class Tr . In particular, when restricted to idempo-
tent preradicals, we get a function ϕ : Lid →LM-pret such that ϕ(r) = Tr . On the other
hand, by Proposition 3.5 we have a mapping ψ : LM-pret→ Lid such that ψ(T ) = r

T
.

Thus, we shall show that the maps ψ and ϕ are inverse to each other.
Let r ∈ Lid . Then, for each L ∈ LM,

(ψ ◦ϕ)(r)(L) = r
Tr

(L) = (
∨

x∈(Tr )L
x)/0L,

where (Tr)L = {x ∈ L | x/0L ∈ Tr}. As r is an idempotent lattice preradical, we have that
XrL ∈ (Tr)L, which in turn implies that

r(L) = XrL/0L ⊆ (
∨

x∈(Tr )L
x)/0L = r

Tr
(L).

Therefore, r ⩽ r
Tr

.
Now, let L ∈ LM and observe that

∨
x∈(Tr )L

x is an element in (Tr)L, that is, r
(
r
Tr

(L)
)

=

r
Tr

(L). With this in mind, by considering the linear morphism given by the inclusion

mapping r
Tr

(L)
ι
↪→ L, and applying r to ι, we obtain that r

Tr
(L) ⊆ r(L). Therefore,

r
Tr
⩽ r, so that (ψ ◦ϕ)(r) = r.
Suppose now that T is a pretorsion class. Then, we have that

L ∈ T ⇐⇒ r
T

(L) = L⇐⇒ L ∈ Tr
T

= (ϕ ◦ψ)(T ).

We shall now verify that ϕ is order-preserving. Let r and r ′ be two idempotent
lattice preradicals such that r ⩽ r ′. Then, for L ∈ Tr we have that L = r(L) ⩽ r ′(L) ⩽
L, which in turn implies that L ∈ Tr ′ . Hence, ϕ(r) ⩽ ϕ(r ′). Clearly, also ψ is order-
preserving.

Therefore, ϕ and ψ are inverse order isomorphisms between Lid and LM-pret. By
[4, Ch. III, Prop 1.1], they are both lattice isomorphisms.

Theorem 3.7. For every lattice preradical r, there exists a largest idempotent lattice pre-
radical r̂ lesser or equal than r.

Proof. Set r̂ = r
Tr

, so that, for each L ∈ LM,

r̂(L) = (
∨

x∈(Tr )L
x)/0L,

where (Tr)L = {x ∈ L|x/0L ∈ Tr}
We know that r̂ is idempotent (see Proposition 3.5).
Note that, as Tr is a pretorsion class, one has that r̂(L) ∈ Tr , for every L ∈ LM. Thus,

if we consider the linear morphism defined by the inclusion mapping r̂(L) ↪→ L, after
applying r we obtain r̂(L) ↪→ r(L). Hence, r̂ ⩽ r.

Let t ∈ Lpr be idempotent with t ⩽ r. Observe that Tt ⊆ Tr . Therefore, making use
of Theorem 3.6,
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t = r
Tt
⩽ r

Tr
= r̂.

Hence, t ⩽ r̂.

Definition 3.8. Let F ⊆ LM be a class closed under isomorphisms. We say that F is a
pretorsion-free class if the following conditions hold:

(i) For each lattice L ∈ F and element x ∈ L, one has that (x/0L) ∈ F . In other words,
F is closed under initial intervals.

(ii) For any L ∈ LM and any family of elements {xi}i∈I ⊆ L with {1L/xi}i∈I ⊆ F , we
have that 1L/∧

i∈I
xi ∈ F

Remark 3.9. The class of all pretorsion-free classes in LM, ordered by class inclusion,
is a big lattice, where the meet operation is given by intersection of classes.

Let 0 stand for the trivial lattice, that is, the lattice with only one element.

Proposition 3.10. Let r ∈ Lpr be a preradical. Then, the class

Fr = {L ∈ LM|r(L) = 0}

is a pretorsion-free class.

Proof. Clearly, Fr is a class closed under isomorphisms. Thus, let us first consider
L ∈ Fr and x ∈ L. As x/0L is an initial interval of L, we have the inclusion mapping
ι : x/0L ↪→ L, from which we get ι| : r(x/0L) −→ 0 after applying the preradical r. There-
fore, r(x/0L) = 0, and thus, x/0L ∈ Fr .

Let now L ∈ LM, and let {xi}i∈I be a family of elements in L such that {1L/xi}i∈I ⊆ Fr .
If for each j ∈ I we consider the linear morphism fj : 1L/

∧
i∈I
xi −→ 1L/xj , with correspon-

dence rule fj(y) = y∨xj , then after applying the preradical r we get fj | : r(1L/
∧
i∈I
xi) −→ 0,

from which we have that Xr(1L/
∧
i∈I
xi )
∨ xj = xj , that is, Xr(1L/

∧
i∈I
xi )
⩽ xj . Since this last holds

for each j ∈ I , it follows that r(1L/
∧
i∈I
xi) = 0, and thus, 1L/

∧
i∈I
xi ∈ Fr . Therefore, Fr is a

pretorsion-free class.

Proposition 3.11. Let F be a pretorsion-free class in LM. Then, F gives rise to a radical
r
F

defined, in each L ∈ LM, by

r
F

(L) = (
∧
x∈FL

x)/0L

where FL = {x ∈ L|1L/x ∈ F }.

Proof. We claim that r
F

is a lattice preradical. Indeed, first observe that r
F

(L) is an
initial interval of L, for each L ∈ LM. Let now f : L −→ L′ be a linear morphism. For
x′ ∈ FL′ , we can take the linear morphism g : L′ −→ 1L′ /x′ such that g : y 7−→ y ∨ x′,

and thus consider the composite of linear morphisms L
f
−→ L′

g
−→ 1/x′. From this

composition, we get that

8



1L/kg◦f � (g ◦ f )(1L)/x′,

where kg◦f is the kernel of the linear morphism g ◦ f .
As F is closed under initial intervals and 1L′ /x′ ∈ F , then (g ◦ f )(1L)/x′ ∈ F . Fur-

thermore, since F is closed under isomorphisms, we have that 1L/kg◦f ∈ F . This
last means that kg◦f ∈ FL, which in turn implies that

∧
x∈FL

x ≤ kg◦f . Also, note that

x′ = (g ◦ f )(kg◦f ) = f (kg◦f )∨ x′. Hence, if we set XrFL =
∧
x∈FL

x, we have that

f (XrFL ) ≤ f (kg◦f ) ≤ x′,

as linear morphisms are order-preserving maps [2, Corollary 1.4]. Furthermore, since
the latter holds for every x′ ∈ FL′ , we then have that f (XrFL ) ≤

∧
x′∈FL′

x′ = XrFL′ . Therefore,

by Theorem 2.3, r
F

is a lattice preradical. Finally, by how r
F

was constructed, it is
straightforward that r

F
is a radical.

Write LM-prf for the big lattice of pretorsion-free classes in LM.

Theorem 3.12. The big lattices Lrad and LM-prf are anti-isomorphic.

Proof. On the one hand, by Proposition 3.10, we have ϕ : Lrad → LM-prf such that
ϕ(r) = Fr . On the other hand, by Proposition 3.11, we have ψ : LM-prf→ Lrad such
that ψ(F ) = r

F
. We shall show that ϕ and ψ are inverse to each other, and further, they

are order-reversing.
Let us first consider a radical r, and the radical given by (ψ ◦ϕ)(r) = r

Fr
. For any

lattice L ∈ LM one has that r(1L/X
r
L) = 0 since r is a radical. Thus,

∧
{x ∈ L|r(1L/x) =

0} ≤ XrL, so that r
Fr

(L) ⊆ r(L). Conversely, let x ∈ L such that r(1L/x) = 0. Then, by
applying the radical r to the linear morphism f : L −→ 1L/x given by f (z) = z

∨
x, we

get f | : r(L) −→ 0, from which it follows that XrL ≤ x. Therefore, r(L) ⊆ r
Fr

(L), and thus,
r = r

Fr
= (ψ ◦ϕ)(r).

Let now F be a pretorsion-free class. Then, for L ∈ LM, we have that

L ∈ Fr
F

⇐⇒ r
F

(L) = 0⇐⇒
∧

FL = 0L⇐⇒ 0L ∈ FL⇐⇒ L ∈ F ,

because
∧

FL ∈ FL. Therefore, (ϕ ◦ψ)(F ) = F .
Lastly, let us show that ψ is order-reversing. If F ⊆ F

′ then for every lattice L ∈ LM
we have that FL ⊆ F

′
L, thus,

∧
x∈FL

x ⩾
∧
x∈F ′L

x. Therefore, r
F
′ (L) ⩽ r

F
(L) for all L ∈ LM, this

is, ψ(F ′) = r
F
′ ⩽ r

F
= ψ(F ). Clearly, also ϕ is order-reversing.

Therefore, ϕ and ψ are inverse order anti-isomorphisms between Lrad and LM-prf.
By [4, Ch. III, Prop 1.1], they are both lattice anti-isomorphisms.

Theorem 3.13. For every lattice preradical r, there exists a least radical r greater or equal
than r.

9



Proof. Set r = r
Fr

, so that, for L ∈ LM, r(L) = (
∧

x∈(Fr )L
x)/0L, where (Fr)L = {x ∈ L|r(1L/x) = 0}.

We know that r is a radical (see Proposition 3.11). We claim that r ≤ r. Indeed, as Fr

is a pretorsion-free class, we have that r(1L/X
r
L) = 0. Thus, for the linear morphism

f : L −→ 1L/X
r
L such that f (y) = y ∨ XrL, after applying r we get f | : r(L) −→ XrL/X

r
L.

Therefore, XrL ∨X
r
L = XrL, that is, r(L) ⩽ r(L).

Now, if s is a radical such that r ⩽ s, then Fs ⊆ Fr . Keeping in mind the proof of
Theorem 3.12, it follows that

r = r
Fr
⩽ r

Fs
= s.

Therefore, r ⩽ s.

Theorem 3.14. Let r ∈ Lpr . Then, the following hold:

(i) If r is a radical, so is r̂.

(ii) If r is idempotent, so is r.

Proof. (i) In order to show that r̂(1L/X
r̂
L) = 0 for all L ∈ LM, it suffices to verify that

1L/X
r̂
L does not have any initial intervals in Tr other than the trivial one. Indeed,

suppose that y/X r̂L is any initial interval of 1L/X
r̂
L belonging to Tr . Let us consider the

inclusion mappingX r̂L/0L ↪→ y/0L. Then, after applying r, we get thatX r̂L/0L ↪→ r(y/0L).
From the last, we have that X r̂L ⩽ X

r
y/0L

. As r is a radical, by Lemma 2.6 we have that

y/X r̂L = r(y/X r̂L) = Xry/0L/X
r̂
L. Thus, y = Xry/0L , and hence, y/0L ∈ Tr . Therefore, y ⩽ X r̂L,

which in turn implies that y/X r̂L = 0.
(ii) In order to show that r is an idempotent lattice preradical, we need to prove

that r(XrL/0L) = XrL/0L for each L ∈ LM. To do that, by definition of r, it suffices to show
thatXrL/0l has no quotient intervals in Fr other than the trivial one. Thus, let us assume
thatXrL/y is a quotient interval ofXrL/0L lying in Fr . Consider now the linear morphism
f : 1L/y −→ 1L/X

r
L given by f (z) = z∨XrL. By applying r to f , and seeing as 1L/X

r
L ∈ Fr ,

we get f | : Xr1L/y/y −→ XrL/X
r
L, from which we see that Xr1L/y ⩽ X

r
1L/y
∨XrL = XrL. Then, as

XrL/y ∈ Fr and Fr is closed under initial intervals, we have that Xr1L/y/y ∈ Fr . Moreover,
r being idempotent, Xr1L/y/y = r(Xr1L/y/y) = 0. Thus, y = Xr1L/y . This last implies that

1L/y ∈ Fr with which we have that XrL ⩽ y. Therefore, XrL/y = 0.

Definition 3.15. Let L,M,N ∈ LM. We say that the sequence of linear morphisms

L
f
−→M

g
−→N is exact if f (1L) is the kernel of g.

A sequence of more than two linear morphisms is exact if each consecutive pair of
morphisms forms an exact sequence.

Definition 3.16. We say that a preradical r ∈ Lpr is left exact if for any exact sequence
of linear morphisms

0 −→ L
f
−→M

g
−→N −→ 0,

10



one has that
0 −→ r(L)

f |
−→ r(M)

g |
−→ r(N )

is exact.

Definition 3.17. Let C ⊆ LM be a class closed under isomorphisms. We call C a heredi-
tary class if for any lattice L ∈ LM and any elements a ⩽ b ⩽ c in L with c/a ∈ C, one has
that b/a ∈ C.

Lemma 3.18. Let f : L −→ L′ be a linear morphism with kernel k. Then, the following
holds:

(i) For any x,y ∈ L, one has that f (x) = f (y)⇔ x∨ k = y ∨ k.

(ii) f (k) = 0 and k is the greatest element in L with this property. Thus, the kernel of a
linear morphism is unique.

Proof. See [2, Proposition 1.3].

Definition 3.19. A linear morphism f : L −→M is a linear monomorphism if f induces,
via corestriction, a lattice isomorphism f : L −→ f (1L)/0M . Clearly, the sequence 0→

L
f
→M is exact if, and only if, f is a linear monomorphism.

Theorem 3.20. Let r ∈ Lpr . Then, the following properties are equivalent:

(i) r is left exact;

(ii) for any lattice L ∈ LM and elements a ≤ b in L, one has that Xra/0L = a∧Xrb/0L ;

(iii) r is idempotent and its corresponding pretorsion class Tr is a hereditary class.

Proof. (i) =⇒ (ii) The sequence

0 −→ a/0L
ι−→ b/0L

f
−→ b/a −→ 0,

where ι is the inclusion mapping and f (x) = x∨ a, is exact. Further, as r is left exact,

0 −→ Xra/0L/0L
ι|
−→ Xrb/0L/0L

f |
−→ Xrb/a/a

is also an exact sequence, so that Xra/0L is the kernel of f |. Now, as a∧Xrb/0L ⩽ a, and
linear morphisms are increasing mappings [2, Corollary 1.4], we have that

f |(a∧Xrb/0L) = f (a∧Xrb/0L) ⩽ f (a) = a
∨
a = a.

Thus, a∧Xrb/0L ⩽ X
r
a/0L

by Lemma 3.18-(ii). On the other hand, as Xra/0L ⩽ a and
Xra/0L ⩽ X

r
b/0L

, it follows that Xra/0L ⩽ a∧X
r
b/0L

. Therefore, Xra/0L = a
∧
Xrb/0L .

(ii) =⇒ (i) Let

0 −→ L
f
−→M

g
−→N −→ 0

11



be an exact sequence in LM. We will show that

0 −→ XrL/0L
f |
−→ XrM /0M

g |
−→ XrN /0N

is exact. Now, as XrL ⩽ 1L, by [2, Corollary 1.4] we have that

g |
(
f |(XrL)

)
= g

(
f (XrL)

)
= (g ◦ f )(XrL) ⩽ (g ◦ f )(1L) = 0N .

Further, for any y ∈ XrM /0M with g |(y) = 0N , the exactness of the sequence defined by
f and g implies that y ⩽ f (1L). Hence, y ⩽ f (1L)∧XrM . Observe that, putting a = f (1L)
and b = 1M , the hypothesis implies that

Xrf (1L)/0M
= f (1L)

∧
XrM .

Also, as f is a linear monomorphism, there exist isomorphisms, given by appropriate
restrictions and corestrictions of f , between L and f (1L)/0M and thus between r(L) and
r
(
f (1L)/0M

)
, so that Xrf (1L)/0M

= f (XrL). This way, we reach that y ⩽ f |(XrL). Therefore,

f |(XrL) is the greatest element in XrM /0M satisfying g |
(
f |(XrL)

)
= 0N ; this is, f |(XrL) is the

kernel of g |.
The remaining exactness follows from [2, Corollary 1.6]. Indeed, having kernel

zero, f is injective. Then, f | is injective, so its kernel is zero.
(ii) =⇒ (iii) Let L ∈ LM. Since XrL ⩽ 1L, applying the hypothesis to this pair yields

that XrXrL/0L
= XrL ∧X

r
L = XrL, whence r(r(L)) = r(L).

Now, if a ⩽ b ⩽ c are any elements in L such that c/a ∈ Tr , by applying the hypothe-
sis, this time to the elements b ⩽ c within the lattice c/a, one gets that

Xrb/a = b∧Xrc/a = b∧ c = b.

Hence, b/a ∈ Tr , and thus, Tr is a hereditary class.
(iii) =⇒ (ii) On the one hand, we have that Xra/0L ⩽ a∧X

r
b/0L

. On the other hand, as
Tr is a hereditary class and Xrb/0L/0L = r(b/0L) ∈ Tr , then a∧Xrb/0L/0L ∈ Tr . Thus, when ap-

plying r to the inclusion mapping a∧Xrb/0L/0L
ι
↪→ a/0L, we obtain a∧Xrb/0L/0L = r(a∧Xrb/0L/0L)

ι|
↪→

Xra/0L/0L, which implies that a∧Xrb/0L ⩽ X
r
a/0L

. Therefore, a
∧
Xrb/0L = Xra/0L .

By Theorem 3.20(ii), the class of left exact preradicals is closed under infima, so
this class is a big lattice. Then, bearing in mind Theorem 3.20(iii), appropriate restric-
tions of the bijections in Theorem 3.6 yield

Corollary 3.21. The big lattice of left exact preradicals inLpr is isomorphic to the big lattice
of hereditary pretorsion classes in LM.

Definition 3.22. A linear morphism f : L −→M is a linear epimorphism if f (1L) = 1M ,
so that its induced lattice isomorphism is of the form f : 1L/kf −→ M. Clearly, the

sequence L
f
→M→ 0 is exact if, and only if, f is a linear epimorphism.

By [2, Proposition 2.2(4)], epimorphisms in the category LM coincide with the sur-
jective linear morphisms. These, in turn, coincide with the linear epimorphisms.
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Theorem 3.23. Let r be a lattice preradical. Then the following properties are equivalent:

(i) r preserves epimorphisms;

(ii) r is a radical and Fr is closed under quotient intervals.

(iii) For any lattice L ∈ LM and elements a ⩽ b in L, one has that Xr1L/b = b∨Xr1L/a.

Proof. (ii) =⇒ (i) Let us first note that, whenever L
ϕ
−→M is an epimorphism, we can

regard M as a quotient interval of L of the form 1L/y. Suppose now that r is a radical
and Fr is closed under quotient intervals. Then, 1L/X

r
L ∈ Fr for each L ∈ LM. Further,

1L/XrL ∨ y ∈ Fr since Fr is closed under quotient intervals.

Let 1L/y
g
−→ 1L/y ∨XrL such that g(z) = z ∨ XrL. Then, after applying r to g, we get

r(1L/y)
g |
−→ y ∨XrL/y ∨XrL, from which it follows that z ∨ XrL = y ∨ XrL, ∀z ∈ r(1L/y). In

particular, we have that Xr1L/y ∨X
r
L = y ∨XrL, so that Xr1L/y ⩽ y ∨X

r
L.

Thus, for the linear epimorphism L
ϕ
−→ 1L/y given by ϕ(x) = x ∨ y, after applying

the radical r we get XrL/0L
ϕ|
−→ r(1L/y). It follows that XrL∨y = ϕ(XrL) ⩽ Xr1L/y . Therefore,

ϕ|(XrL) = XrL ∨ y = Xr1L/y .

Hence, it follows that ϕ| is a surjective linear morphism; this is, an epimorphism in
LM.
(i) =⇒ (iii) Consider the linear epimorphism 1L/a

π−→ 1L/b such that π : x 7→ x∨b. Ap-

plying r we get r(1L/a)
π|
−→ r(1L/b), which by hypothesis is also a linear epimorphism.

This means that Xr1L/a ∨ b = Xr1L/b.
(iii) =⇒ (ii) Let L ∈ LM. Applying the hypothesis to the couple 0L ⩽ X

r
L we get that

Xr1L/XrL
= XrL ∨X

r
L = XrL and therefore r is a radical.

Also, if L ∈ Fr and b ∈ L, applying the hypothesis to the elements 0L ⩽ b we obtain that

Xr1L/b = b∨XrL = b∨ 0L = b.

Therefore, 1L/b ∈ Fr and thus Fr is closed under quotient intervals.

A class inLM is said to be cohereditary if and only if it is closed under isomorphisms
and under quotient intervals.

By Theorem 3.23(iii), the class of epimorphism-preserving lattice preradicals is
closed under suprema, and thus is a big lattice, which, in view of Theorem 3.23(ii), is
anti-isomorphic to the big lattice of cohereditary pretorsion-free classes in LM.

Definition 3.24. Let C be a class in LM. We say that C is closed under extensions if for
any L,M,N ∈ LM, and any exact sequence

0 −→ L −→M −→N −→ 0

with L,N ∈ C, one has that M ∈ C.
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We saw in Theorem 3.6 that there exists a bijection between the class of pretorsion
classes in LM, and the class of idempotent preradicals in Lpr . Next we show another
bijection —a restriction of the first one—, now between the class of pretorsion classes
which are closed under extensions, and the class of idempotent radicals in Lpr .

Theorem 3.25. Let T be a pretorsion class, and let r be the idempotent lattice preradical
corresponding to T . Then, T is a class closed under extensions if, and only if, r is a radical.

Proof. =⇒) Suppose that r is not a radical. Then, there exists a lattice L ∈ LM for which
r(1L/X

r
L) , 0. Thus, XrL < X

r
1L/X

r
L
. This way, we can form the exact sequence

0 −→ XrL/0L −→ Xr1L/XrL
/0L −→ r(1L/X

r
L) −→ 0.

As the preradical r is idempotent by hypothesis, we have that both of XrL/0L and
r(1L/X

r
L) belong to T . Moreover, since T is closed under extensions, one has that

Xr1L/XrL
/0L ∈ T . This last contradicts the fact that XrL is the greatest element in L such

that the initial interval XrL/0L in T .
⇐=) Let L ∈ LM and a ∈ L. Assume that

0 −→ a/0L −→ L −→ 1L/a −→ 0

is an exact sequence with a/0L,1L/a ∈ T . Then, after applying r to the inclusion map-
ping a/0L ↪→ L, we get a/0L ↪→ XrL/0L, so that a ⩽ XrL. As r is a radical, by Lemma 2.6
we have that 1L/a = r(1L/a) = XrL/a. Therefore, XrL = 1L, that is, L ∈ T .

Dually, we have the following

Theorem 3.26. Let F be a pretorsion-free class, and let r be the radical corresponding to
F . Then, F is a class closed under extensions if, and only if, r is idempotent.

Proof. =⇒) Suppose that r is not idempotent. Then, there exists a lattice L ∈ LM such
that XrXrL/0L

< XrL. With this in mind, we can form the exact sequence

0 −→ XrL/X
r
XrL/0L

−→ 1L/X
r
XrL/0L

−→ 1L/X
r
L −→ 0.

Now, as by hypothesis r is a radical, it follows that r(XrL/X
r
XrL/0L

) = 0 = r(1L/X
r
L), from

which we have that both of XrL/X
r
XrL/0L

and 1L/X
r
L belong to F . Further, since F is closed

under extensions, 1L/X
r
XrL/0L

∈ F , which contradicts the fact that XrL is the least element
in L such that 1L/X

r
L ∈ F . Therefore, r is an idempotent lattice preradical.

⇐=) Let L ∈ LM and let a ∈ L. Assume that

0 −→ a/0L −→ L
π−→ 1L/a −→ 0

is an exact sequence with a/0L,1L/a ∈ F . Thus, after applying r to π we get π| :
XrL/0L −→ a/a so that XrL ∨ a = π(XrL) = a, that is, XrL ⩽ a. Further, one has that

XrL/0L = r(XrL/0L) ⊆ r(a/0L) = 0L/0L,

which implies that XrL = 0L. Therefore, L ∈ F , and hence, F is closed under extensions.
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We call a pretorsion class closed under extensions a torsion class. Likewise, we
call a pretorsion-free class closed under extensions a torsion-free class. Thus, given an
idempotent radical r, we can associate to r the torsion class Tr = {L ∈ LM|r(L) = L},
and the torsion-free class Fr = {L ∈ LM|r(L) = 0}. Also, for any torsion class T (resp.,
torsion-free class F ), r

T
(resp., r

F
) is an idempotent radical.

Let C be a category with a zero object. For objectsA,B of C, let us writeHomC(A,B) =
0 to mean that the only morphism from A to B is the zero morphism, that is, the com-
posite A→ 0→ B.

Definition 3.27. Let C be a category with a zero object. A torsion theory for C is a pair
(T ,F ) of classes of objects of C such that the following holds:

(i) For any T ∈ T and any F ∈ F , one has that HomC(T ,F) = 0.

(ii) If C ∈ C is such that HomC(C,F) = 0 for all F ∈ F , then C ∈ T .

(iii) If C ∈ C is such that HomC(T ,C) = 0 for all T ∈ T , then C ∈ F .

Remark 3.28. Observe that for each class T (resp., F ) of objects in C there is at most
one class F (resp., T ) of objects in C such that (T ,F ) is a torsion theory.

Also, let (T1,F1), (T2,F2) be torsion theories in a category C with a zero object. Then,

T1 ⊆ T2 if and only if F2 ⊆ F1

Theorem 3.29. There is a one-to-one correspondence between torsion theories in LM and
idempotent radicals on LM.

Proof. Let us first assume that r is an idempotent radical on LM. We claim that (Tr ,Fr)
is a torsion theory. Indeed, given any linear morphism f : T −→ F, with T ∈ Tr and F ∈
Fr , one has that r(f ) : T −→ 0, so that f = 0. Now, let L ∈ LM such thatHomLM(L,F) = 0,
for all F ∈ Fr . Then, as r is a radical, 1L/X

r
L ∈ Fr . Thus, the linear morphism f :

L −→ 1L/X
r
L such that f (y) = y ∨XrL is the zero morphism, so that 1L ∨XrL = XrL, from

which it follows that XrL = 1L. Therefore, L ∈ Tr . Likewise, let L ∈ LM be such that
HomLM(T ,L) = 0 for all T ∈ Tr . As r is idempotent, r(L) ∈ Tr . Hence, when considering
the inclusion mapping ι : r(L) −→ L, we get that ι = 0, so that r(L) = 0. Therefore, L ∈ Fr ,
showing that (Tr ,Fr) is a torsion theory.

We shall now show that for each torsion theory (T ,F ) in LM, T is a torsion class
and F is a torsion-free class. We will first consider the class T . From Definition 3.27,
it is straightforward to verify that T is closed under isomorphisms.
Let T ∈ T and x ∈ T , and assume that f : 1T /x −→ F is a linear morphism, for some
F ∈ F . Then, from the commutative diagram

1T /x F

T

f

∨x 0
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we see that f (1T ) = f (1T ∨ x) = 0F , so that f = 0. Thus, T is closed under quotient
intervals. Let now L ∈ LM and let {xi}i∈I be a family of elements in L such that xi/0L ∈ T
for every i ∈ I . If F ∈ F and f : (

∨
i∈I
xi )/0L −→ F is a linear morphism, then for each j ∈ I ,

we have the diagram

∨
i∈I
xi/0L F

xj /0L,

f

ιj
0

where ιj is the inclusion mapping. As the diagram is commutative, f (xj) = (f ◦ ιj)(xj) =
0F . Furthermore, since the latter holds for each j ∈ I , and as linear morphisms com-
mute with arbitrary joins (see [3, Lema 0.6]), we have that f (

∨
i∈I
xi) =

∨
i∈I
f (xi) = 0F .

Therefore, (
∨
i∈I
xi )/0L ∈ T , showing that T is a pretorsion class. We lastly show that T is

closed under extensions. Suppose that 0 −→ x/0L −→ L −→ 1L/x −→ 0 is an exact se-
quence with x/0L,1L/x ∈ T . Given a linear morphism f : L −→ F, with F ∈ F , we have
the commutative diagram

L F

x/0L

f

i
0

(where i is the inclusion mapping) from which it follows that f (x) = (f ◦ i)(x) = 0F ,
so that x ⩽ k, where k is the kernel of f . Considering this and the linear morphism

1L/x
∨k
−→ 1L/k, we have the commutative diagram

1L/k f (1L)/0F F

1L/x

f j

∨k
0

where j is the appropriate inclusion mapping. Thus, f (1L) = j(f̄ (1L ∨ k)) = 0F . Hence,
L ∈ T , and thus, T is a torsion class.

We now consider the class F . From Definition 3.27, it is straightforward to verify
that F is closed under isomorphisms.
Let F ∈ F and let x/0F be an initial interval of F. Given a linear morphism f : T −→
x/0F , with T ∈ T , we have the commutative diagram

x/0F F

T

i

f
0

(where i is the inclusion mapping) from which we see that f = 0. Thus, F is closed
under initial intervals. Let now L ∈ LM and let {xi}i∈I be a family of elements of L such
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that 1L/xi ∈ F for every i ∈ I . Given T ∈ T , and a linear morphism f : T −→ 1L/
∧
i∈I
xi ,

for each j ∈ I consider the commutative diagram

1L/
∧
i∈I
xi 1L/xj

T

∨xj

f
0

from which it follows that f (1T ) ∨ xj = xj . As the last holds for all j ∈ I , we have
that f (1T ) ⩽

∧
i∈I
xi , and consequently, f = 0. Therefore, 1L/

∧
i∈I
xi ∈ F , showing that F

is a pretorsion-free class. Lastly, we shall verify that F is closed under extensions.
Suppose that 0 −→ x/0L −→ L −→ 1L/x −→ 0 is an exact sequence with x/0L,1L/x ∈ F .
If f : T −→ L is a linear morphism, with T ∈ T , then, from the commutative diagram

L 1L/x

T

∨x

f 0

we get that f (1T ) ⩽ x. Further, as x/0L ∈ F , we have the commutative diagram

f (1T )/0L x/0L

T

i

f ↾ 0

(where i is the inclusion mapping and f ↾ stands for the corestriction of f ) which
shows that f = 0. Therefore, L ∈ F , and hence, F is a torsion-free class.

Let us now prove that r
T

, the idempotent radical corresponding to the torsion class
T , coincides with r

F
, the idempotent radical corresponding to the torsion-free class F .

We shall use the tools developed in the proofs of Theorems 3.6 and 3.12. We have the
torsion theories (T ,F ) and (Tr

T

,Fr
T

). Since T = Tr
T

, Remark 3.28 gives that Fr
T

=
F = Fr

F

. Thus, both being radicals, r
T

= r
F

. (Symmetrically, one can also consider
the torsion theories (T ,F ) and (Tr

F
,Fr

F
) and obtain from them, since F = Fr

F
, that

Tr
F

= T = Tr
T

, so that, both being idempotent, r
T

= r
F

. )
We have assigned to each idempotent radical r a torsion theory (Tr ,Fr), and to each

torsion theory (T ,F ) an idempotent radical r
T

= r
F

. It is clear that these processes are
mutually inverse.

Remark 3.30. If (T ,F ) is a torsion theory, then Fr
T

= Fr
F

= F and Tr
F

= Tr
T

= T .

For a torsion theory (T ,F ) in a category with a zero object, we call T the torsion
class of (T ,F ) and F the torsion-free class of (T ,F ).
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Remark 3.31. Let C be a class in LM. Then, C is a torsion (resp., torsion-free) class if
and only if C is the torsion (resp., torsion-free) class of a torsion theory. Indeed, for
a given torsion class T (resp., torsion-free class F ), the proof of Theorem 3.29 yields
that (T ,Fr

T

) (resp., (Tr
F

,F )) is a torsion theory.
(In a general category with a zero object, let us take this to be the definition of a

torsion (resp., torsion-free) class.)

Definition 3.32. Given a class C within a category D with a zero object, we define the
left class L(C) and the right class R(C), generated by C, as follows:

L(C) = {F ∈ D|HomD(C,F) = 0,∀C ∈ C};

R(C) = {T ∈ D|HomD(T ,C) = 0,∀C ∈ C}.

Remark 3.33. A pair (T ,F ) of classes of objects in a category with a zero object is a
torsion theory if and only if T = R(F ) and F = L(T ).

Lemma 3.34. Let A be a category with a zero object. The operators L and R, defined on the
big lattice of classes of objects in A, define a Galois connection.

Proof. Let C,D be classes in A such that C ⊆ D. Then, clearly, L(D) ⊆ L(C) and R(D) ⊆
R(C). Now, given C ∈ C, one has that HomA(C,L) = 0 for each L ∈ L(C). Thus, C ∈
R(L(C)), and hence, C ⊆ R(L(C)). Symmetrically, C ⊆ L(R(C)).

As for any Galois connection, we have

Corollary 3.35. For any class C in a category with a zero object, we have that LRL(C) = L(C)
and RLR(C) = R(C).

Corollary 3.36. The operators RL and LR are closure operators on the big lattice of classes
of objects in a category with a zero object (as is the case with any Galois connection). The
closed classes, respectively, are the torsion classes and the torsion-free classes.

Proof. We prove only the claim about closed classes. If C = RL(C) (resp., C = LR(C)),
then (C,L(C)) (resp., (R(C),C)) is a torsion theory. Conversely, for a torsion theory (T ,F ),
one has that T = R(F ) = RLR(F ) = RL(T ) and that F = L(T ) = LRL(T ) = lR(F ).

Observe that (R(L(C)),L(C)) is the torsion theory whose torsion class R(L(C)) is the
smallest torsion class containing C. (Indeed, if T is a torsion class such that C ⊆ T , then
RL(C) ⊆ RL(T ) = T .) We call it the torsion theory generated by C. Similarly, (R(C),L(R(C)))
is the torsion theory whose torsion-free class L(R(C)) is the smallest torsion-free class
containing C. We call it the torsion theory cogenerated by C.

Theorem 3.37. If C is a cohereditary class in LM, then

R(L(C)) = {L ∈ LM|∀x ∈ L,x < 1,∃y > x with y/x ∈ C}.
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Proof. By definition, we have that F ∈ L(C) if, and only if, HomLM(C,F) = 0 for all
C ∈ C. We now show that the last holds if, and only if, F does not have nonzero initial
intervals in C. Indeed, for necessity, note that, if x/0F is a non-trivial initial interval of
F lying in C, then the inclusion mapping x/0F ↪→ F is a nonzero linear morphism. For
sufficiency, assume that f : C −→ F is a non-trivial linear morphism for some C ∈ C.
Then, from f we get a lattice isomorphism f : 1C/k −→ a/0F , which implies, C being
cohereditary, that a/0F is a non-trivial initial interval of F lying in C.

Now, we know that T ∈ R(L(C)) if, and only if, HomLM(T ,F) = 0, ∀F ∈ L(C). Let us
verify that this holds if and only if T does not have quotient intervals lying in L(C)
other than the trivial one. For necessity, note that, if T has a non-trivial quotient
interval 1T /x in L(C), then π : T −→ 1T /x such that π : t 7→ t ∨ x is a non-trivial linear
morphism. For sufficiency, suppose that f : T −→ F is a non-trivial linear morphism,
with F ∈ L(C). Then the induced isomorphism f : 1T /k −→ a/0F , and the fact that L(C)
is closed under initial intervals, yield that T has a non-trivial quotient interval in L(C).

Considering the above, it follows that T ∈ R(L(C)) if, and only if, any nonzero quo-
tient interval of T contains a nonzero initial interval lying in C.

Corollary 3.38. If r is an idempotent lattice preradical, then r is the idempotent radical
that corresponds to the torsion theory generated by the class Tr .

Proof. By Theorem 3.13 and Theorem 3.14, r is the least idempotent radical greater or
equal than r. Thus, the torsion class of its corresponding torsion theory is the smallest
one containing the class Tr . Hence, it is the torsion theory generated by Tr .

Recall that an element a of a bounded lattice L is called essential (resp., superfluous)
in L if and only if for every b ∈ L such that b , 0L (resp., b , 1L) it happens that a∧b , 0L
(resp., a∨ b , 1L).

For L,M ∈ LM, we say that M is an essential extension (resp., a superfluous cover) of
L if and only if L is isomorphic to an initial interval x/0M (resp., a quotient interval
1M /x) of M, where x is essential (resp., superfluous) in M.

Lastly, a class C in LM is said to be closed under essential extensions (resp., closed
under superfluous covers) if and only if whenever L ∈ C and M is an essential extension
(resp., a superfluous cover) of L, one has that M ∈ C.

Theorem 3.39. Let C be a class in LM. Then,

(i) If C is hereditary, then L(C) is closed under essential extensions.

(ii) If C is cohereditary, then R(C) is closed under superfluous covers.

Proof. (i) Let L ∈ L(C) and let M ∈ LM be an essential extension of L. We may suppose
that L = 1L/0M ⊆M, where 1L is an essential element of M. If C ∈ C and f : C −→M is
a linear morphism, then f induces a lattice isomorphism f : 1C/k −→ f (1C)/0M where
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k is the kernel of f . Thus, there exists x ∈ C such that f (x) = f (1C)∧ 1L. Observe that

the composite x/0C
ι
↪→ C

f
→ M, where ι is the inclusion mapping, takes values in L,

seeing as linear morphisms preserve the order. Consider the corestriction x/0C
(f ◦ι)↾
−→ L

of f ◦ ι to L, and note that, since C is a hereditary class, x/0C ∈ C. Hence, the linear
morphism (f ◦ ι) ↾ is zero, so that f (1C)∧ 1L = f (x) = 0. Therefore, f (1C) = 0. Hence,
f = 0, and thus, M ∈ L(C).

(ii) Let L ∈ R(C) and suppose that M ∈ LM is a superfluous cover for L, so that
L = 1M /0L ⊆M and 0L is superfluous inM. Given a latticeC ∈ C and a linear morphism
f : M −→ C, we have a lattice isomorphism f : 1M /k −→ f (1M)/0C where k is the
kernel of f , induced by f . Consider the following composition of the restriction and
corestriction of f followed by the inclusion mapping:

1M/k ∨ 0L
f |
−→ f (1M )/f (k ∨ 0L)

ι
↪→ 1C/f (k ∨ 0L).

As C is cohereditary, we have that 1C/f (k ∨ 0L) ∈ C. Likewise, R(C) is cohereditary, so
that 1M/k ∨ 0L ∈ R(C). This way, the composite ι ◦ (f |) is the zero morphism. Therefore,
f |(1M) = f |(k ∨ 0L), and thus, 1M = k ∨ 0L. It follows that k = 1M , and thus, f = 0.
Hence, M ∈ R(C).

4. TTF classes.

Definition 4.1. A class T ⊆ LM is a TTF class when it is both a torsion class and a
torsion-free class. This happens precisely when there are classes C,F ⊆ LM such that
(C,T ) and (T ,F ) are both torsion theories.

Note that, if T is a TTF class, then the torsion theory (T ,F ) is hereditary1. In
addition, a hereditary torsion class T is a TTF class if, and only if, for any lattice L ∈ LM
and any subset of elements {xi}i∈I ⊆ L with {1L/xi}i∈I ⊆ T , one has that 1L/∧

i∈I
xi ∈ T .

Lemma 4.2. Let T is a TTF class, with (C,T ) and (T ,F ) torsion classes. If (C,T ) is hered-
itary, then C ⊆ F .

Proof. Let t be the idempotent radical corresponding to T . Then, for L ∈ C, we have
that t(L) ∈C∩T = {0}. Thus, L ∈ F .

Definition 4.3. Let (T ,F ) be a torsion theory and let t be its associated idempotent
radical. We say that (T ,F ) splits if, for each lattice L ∈ LM, there exists x ∈ L such that

XtL ∨ x = 1L and XtL ∧ x = 0L.

Lemma 4.4. Let T be a TTF class, with (C,T ) and (T ,F ) torsion classes. Then, the follow-
ing statements are equivalent:

1We say that a torsion theory is hereditary if and only if its torsion class is hereditary.
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(i) C = F .

(ii) For any lattice L ∈ LM, we have that 1L = XcL∨X
t
L and 0L = XcL∧X

t
L. Here c and t are

the idempotent radicals associated, respectively, to (C,T ) and to (T ,F ).

(iii) The torsion theories (C,T ) and (T ,F ) both split.

(iv) The torsion theory (C,T ) is hereditary and splits.

(v) The torsion theory (C,T ) is hereditary and the class F is TTF.

Proof. (i) =⇒ (ii). We know that Fc = T , which is closed under quotient intervals.
Thus, by Theorem 3.23, c preserves epimorphisms.

Let us now consider L ∈ LM and h : L −→ 1L/XcL ∨XtL given by h(y) = y ∨ (XcL ∨ X
t
L).

As t is a radical, t(1L/X
t
L) = 0, so that 1L/X

t
L ∈ F = C. Further, as C is cohereditary,

1L/XcL ∨XtL ∈ C. This way, when applying c to the linear epimorphism h, we obtain h| :
XcL/0L −→ 1L/XcL ∨XtL, which again is an epimorphism. Therefore,

1L = h|(XcL) = XcL ∨ (XcL ∨X
t
L) = XcL ∨X

t
L.

Finally, as C and T are both hereditary, XcL ∧XtL/0L ∈C∩T = {0}. Hence,

XcL ∧X
t
L = 0L.

(ii) =⇒ (i) On the one hand, if L ∈ C, then XcL = 1L. Thus, XtL = XcL ∧X
t
L = 0L, which

implies that t(L) = 0. Hence, L ∈ F . On the other hand, if L ∈ F , we have that XtL = 0L,
which implies that XcL = XcL ∨X

t
L = 1L. Thus, L ∈C. Therefore C = F .

(i) =⇒ (v) As C = F , we have that C is a hereditary class, that is, (C,T ) is hereditary.
Moreover, F is TTF since (C,T ) = (F ,T ) is a torsion theory.

(v) =⇒ (i) As (C,T ) is hereditary by hypothesis, Lemma 4.2 yields that C ⊆ F . Now,

if F ∈ F and T ∈ T is such that there exists a linear morphism F
g
−→ T , then we get that

1F/k � g(1F)/0T . However, as by hypothesis F is TTF, it is cohereditary. Likewise, as T
is TTF by general hypothesis, it is hereditary. Hence, we have that 1F/k ∈ T ∩F = {0},
which implies that k = 1F , and consequently, g = 0. Therefore F ∈C and thus, F ⊆C.

(i) =⇒ (iv) As C = F , then C is a hereditary class, that is, (C,T ) is hereditary.
Further, as (i) implies (ii), for each lattice L ∈ LM we have that 1L = XcL ∨ X

t
L and

0L = XcL ∧X
t
L, which implies that the torsion theory (C,T ) splits.

(iv) =⇒ (i). As (C,T ) is hereditary, by Lemma 4.2 we get that C ⊆ F . Let us show
that F ⊆C. Take F ∈ F . Write c for be the idempotent radical associated to the torsion
theory (C,T ). As (C,T ) splits, there exists y ∈ F such that XcF ∨ y = 1F and XcF ∧ y = 0F .
Then, we have the following cases:

(a) If XcF = 0F , then F ∈ T ∩F = {0} and, of course, 0 ∈C.

(b) If y = 0F , then XcF = XcF ∨ y = 1F , so that F ∈C.
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(c) If XcF , 0F and y , 0F , then XcF and y are independent elements as XcF ∧ y = 0F .
Further, as c is an idempotent lattice preradical we have that XcXcF /0F

= XcF . Thus,
when applying [3, Proposition 1.3] to the join XcF ∨ y = 1F , we get that

XcF ∨X
c
y/0F

= XcXcF /0F
∨Xcy/0F = XcF .

This last, in turn, implies that Xcy/0F ⩽ X
c
F ∧ y = 0F . Thus, y/0F ∈ T . Moreover,

y/0F ∈ F as F ∈ F and F is hereditary. Therefore, we have that y/0F ∈ T∩F = {0},
and hence, y = 0F , which contradicts the hypothesis.

Thus, in all possible cases, F ∈C, and hence, F ⊆C.
(ii) =⇒ (iii). Clear.
(iii) =⇒ (i). We show first that C ⊆ F . Let C ∈C. Write t for the idempotent radical

associated to the torsion theory (T ,F ). Then, as by hypothesis (T ,F ) splits, there exists
y ∈ C such that XtC ∨ y = 1C and XtC ∧ y = 0C . We have the following cases:

(a) If XtC = 0C , then C ∈ F .

(b) If y = 0C , thenXtC = XtC∨y = 1C , and hence, C ∈C∩T = {0}. Therefore, C = 0 ∈ F .

(c) If both of XtC and y are not 0C , then XtC and y are independent elements as
XtC ∧ y = 0C . Let c stand for the idempotent radical associated to the torsion
theory (C,T ). Note that, as XtC/0C ∈ T , we have that c(XtC/0C) = 0. Thus, when
applying [3, Proposition 1.3] to the join XtC ∨ y = 1C , we get that

1C = XcC = Xc
XtC /0C

∨Xcy/0C = 0C ∨Xcy/0C .

Hence, Xcy/0C = 1C , so that y = 1C . But then, XtC = 0C , which is a contradiction.

Therefore, in all possible cases, C ∈ F , and hence, C ⊆ F .
As the torsion theory (C,T ) splits, we have that F ⊆C, as it is shown in (iv) =⇒ (i).

Therefore, F = C.

5. Open classes.

Definition 5.1. Let L be a lattice with a least element and let a ∈ L.
We say that an element b ∈ L is a pseudocomplement of a in L if b is maximal such

that a∧ b = 0L, this is, if a∧ c = 0L and c ⩾ b, then c = b.
We say that b ∈ L is a strong pseudocomplement of a in L if b is the greatest element

such that a∧ b = 0L, that is, if a∧ c = 0L, then c ⩽ b.

Definition 5.2. A lattice Lwith a least element is (strongly) pseudocomplemented if each
element of L has a (strong) pseudocomplement in L.
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We will denote by LMS , LMI and LMC the subcategories of LM that are, respec-
tively, upper continuous, lower continuous and continuous.

Now, if r ∈ Lpr and Cr denotes the class of all lattice preradicals t ∈ Lpr such that
t ∧ r = 0, then, for any chain C ⊆ Cr and any L ∈ LMS one has that

((
∨
t∈C
t)∧ r)(L) = XrL ∧ (

∨
t∈C
XtL)/0L =

∨
t∈C

(XtL ∧X
r
L)/0L = 0.

Thus, if we assume the global choice axiom, the big lattice of lattice preradicals on the
category LMS is pseudocomplemented.

Definition 5.3. We say that a class C ⊆ LM is open if it is closed under isomorphisms,
initial intervals, and quotient intervals.

Theorem 5.4. The big lattice of open classes in LM is strongly pseudocomplemented.

Proof. Let C ⊆ LM be an open class. We will show that the class

C⊥⩽,/ = {L ∈ LM| L contains no nonzero subinterval in C}

is an open class, and further, is a strong pseudocomplement of C in LM. First, it is
straightforward that C⊥⩽,/ is closed under isomorphisms and under initial and quo-
tient intervals. Now, if L ∈ C ∩C⊥⩽,/ , as 1L/0L is an interval of L, one has that L = 0.
Lastly, suppose that D ⊆ LM is an open class satisfying C ∩D = {0}. Then, for L ∈ D,
since D is open, any subinterval of L belongs to D. Thus, L cannot contain nonzero
subintervals in C. Therefore, L ∈ C⊥⩽,/ .

Lemma 5.5. Let C be an open class in LMS and let L ∈ LMS . If {xi}i∈I is an upper directed
subset of L such that xi/0L ∈ C⊥⩽,/ , for all i ∈ I , then (

∨
i∈I
xi )/0L ∈ C⊥⩽,/ .

Proof. We proceed by contradiction. Assume there exists a non-trivial subinterval
b/a ∈ C contained in (

∨
i∈I
xi )/0L. Thus, the hypotheses give that

b = b∧ (
∨
i∈I
xi) =

∨
i∈I

(xi ∧ b).

Further, as C⊥⩽,/ is hereditary, xi ∧ b/0L ∈ C⊥⩽,/ for all i ∈ I .
Note that, if a ⩾ xi ∧ b for all i ∈ I , it would follow that a = b, which is not possible

since we are assuming that b/a , 0. Hence, there exists i0 ∈ I such that xi0 ∧ b ⩽̸ a. This
way, by the modularity of L, it follows that

0 , xi0 ∧ b/(xi0 ∧ b)∧ a � (xi0 ∧ b)∨ a/a = (xi0 ∨ a)∧ b/a ∈ C.

The latter leads us to a contradiction, as xi0 ∧ b/(xi0 ∧ b)∧ a = xi0 ∧ b/xi0 ∧ a would be a non-zero
subinterval in C of xi0 ∧ b/0L ∈ C⊥⩽,/ . Therefore, (

∨
i∈I
xi )/0L ∈ C⊥⩽,/ .

Remark 5.6. Following a similar argument, one shows the dual result to Lemma 5.5.
This states that, if C is an open class in LMI , and if L ∈ LMI has a lower directed subset
{xi}i∈I such that the intervals 1l/xi ∈ C⊥⩽,/ for all i ∈ I , then 1L/∧

i∈I
xi ∈ C⊥⩽,/ .
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Recall that the skeleton of a strongly pseudocomplented lattice L is the set of ele-
ments of L that are strong pseudocomplements.

Theorem 5.7. The skeleton of the big lattice of open classes in LMS is contained in the big
lattice of hereditary torsion classes.

Proof. As previously noted, the pseudocomplement C⊥⩽,/ of an open class C is closed
under initial and quotient intervals. We will then show that it is closed under exten-
sions and “suprema of initial intervals”.

(Extensions) Let 0 → a/0L ↪→ L
∨a→ 1L/a → 0 be an exact sequence such that a/0L

and 1L/a belong to C⊥⩽,/ . In case L is not an element of C⊥⩽,/ , we would have a nonzero
interval d/c of L belonging to C. Now, L being a modular lattice, a∨ c/c � a/a∧ c ∈ C⊥⩽,/ as
a/0L ∈ C⊥⩽,/ . Also, (a∨ c)∧ d/c lies in C since it is a subinterval of d/c; however, it is also a
subinterval of a∨ c/c ∈ C⊥⩽,/ . Therefore (a∨ c)∧ d = c.

Consider now the composite d/c
i
↪→ 1L/c

∨a→ 1L/a∨ c. We claim that ( ∨a)◦i is a linear
monomorphism. If x ∈ d/c satisfies that x ∨ a = c ∨ a, then, as x ≤ a∨ x and x ≤ d, it
holds that x ≤ (a∨ x)∧ d = (a∨ c)∧ d = c. As x ∈ d/c we conclude that x = c.
Lastly, we have that 1L/a∨ c ∈ C⊥⩽,/ as 1L/a ∈ C⊥⩽,/ . Thus, d/c ∈ C ∩ C⊥⩽,/ , which is a
contradiction coming from initially assuming that L is not an element of C⊥⩽,/ .

(Suprema of initial intervals) Let L ∈ LMS and let {xi}i∈I ⊆ L such that xi/0L ∈ C⊥⩽,/
for all i ∈ I . Our task is to show that (

∨
i∈I
xi )/0L ∈ C⊥⩽,/ . Indeed, assume that I is well

ordered. Let us denote yj =
∨
i⩽j
xi . We will prove, relying on the well-ordering of I ,

that yj /0L ∈ C⊥⩽,/ for all j ∈ I . Let us then assume that yi/0L ∈ C⊥⩽,/ for all i < k, but
yk/0L < C⊥⩽,/ . Then, there is an interval 0 , b/a ∈ C contained in yk/0L. Also, note that

yk =
∨
i⩽k
xi = (

∨
i<k
xi)∨ xk = (

∨
i<k
yi)∨ xk.

As {yi}i<k is an upper directed subset of L, with yi/0L ∈ C⊥⩽,/ for all i < k, it follows by
Lemma 5.5 that (

∨
i<k
yi )/0L ∈ C⊥⩽,/ .

Let us make zk =
∨
i<k
yi , so that yk = zk∨xk. Due to the modularity of L, we have that

C⊥⩽,/ ∋ zk/0L ⊇ zk ∧ b/zk ∧ a = zk ∧ b/(zk ∧ b)∧ a

� (zk ∧ b)∨ a/a = (zk ∨ a)∧ b/a ∈ C.

Thus, zk ∧ b = zk ∧ a. It follows that

b/a = b/(zk ∧ a)∨ a = b/(zk ∧ b)∨ a = b/(zk ∨ a)∧ b

� (zk ∨ a)∨ b/zk ∨ a = zk ∨ b/zk ∨ a.

By making b′ = zk ∨ b and a′ = zk ∨ a, we get that b/a � b′/a′ ⊆ yk/0L is such that b′ ⩾ zk
and b′ ⩾ b.

Analogously, setting b′′ = xk ∨ b′ and a′′ = xk ∨ a′ yields that

b′/a′ � b′′/a′′ ⊆ yk/0
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with b′′ ⩾ xk and b′′ ⩾ b′. Further, as yk = (zk ∨ xk) ⩽ b′′ ⩽ yk, it follows that b′′ = yk.
Note that, as a′′ < b′′ = (zk ∨ xk), a′′ cannot be greater or equal to both of zk and xk.
Hence, we can assume without loss of generality that xk ⩽̸ a′′. Then, (xk ∧a′′) < xk, and
thus,

0 , xk/xk ∧ a′′ � xk ∨ a′′/a′′ ∈ C,

which is a contradiction since xk/0L ∈ C⊥⩽,/ . Because the contradiction arises from
assuming the existence of b/a, we conclude that yk/0L ∈ C⊥⩽,/ .

Finally, since yi/0L ∈ C⊥⩽,/ for all i ∈ I , and {yi}i∈I is upper directed, by Lemma 5.5
it follows that (

∨
i∈I
yi )/0L = (

∨
i∈I
xi )/0L ∈ C⊥⩽,/ .

Remark 5.8. By duality, from the proof of Theorem 5.7 we obtain that the skeleton of
open classes in LMI is contained in the big lattice of cohereditary torsion-free classes.
Moreover, the skeleton of the big lattice of open classes in LMC is contained in the big
lattice of T T F classes.

Corollary 5.9. The big lattice of left exact preradicals in LMS is strongly pseudocomple-
mented.

Proof. We know that the big lattice of left exact preradicals in LMS is isomorphic to the
big lattice of hereditary pretorsion classes in LMS . A hereditary pretorsion class is an
open class. Due to Theorem 5.7, the pseudocomplement as an open class of a heredi-
tary pretorsion class turns out to be a hereditary torsion class, to which corresponds a
left exact radical.
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