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ABSTRACT OF THE DISSERTATION

B-L and Other U(1) Extensions of the Standard Model

by

Nicholas Andrew Pollard

Doctor of Philosophy, Graduate Program in Physics
University of California, Riverside, December 2017

Dr. Ernest Ma, Chairperson

In Particle Physics, the Standard Model has had remarkable success at describing the

experimentally observed interactions between the fundamental particles. In 2012, the LHC

discovered a particle at 125 GeV which is consistent with the Higgs Boson. With this

discovery the Standard Model appears to be complete. However with the experimental

evidence for Dark Matter and Neutrino Mass, one is given pause to think there is physics

beyond the Standard Model. By introducing extensions to the Standard Model, one is

able to build upon previous triumphs while giving possible solutions to currently open and

unexplained phenomena. Within this dissertation a specific class of extensions, the gauged

U(1), will be explored with the various consequences highlighted. Of particular interest is

the Gauged U(1)B−L, where Barionic and Leptonic number are charges. Through the careful

introduction of new particles these classes of models seek to explain the outstanding Dark

Matter and Neutrino masses phenomena along with their possible connections. A general

look at the U(1) extensions are considered as well, where the flexibility of this model class

is demonstrated. This includes previously understood processes, flavor changing neutral
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currents, as well as novel solutions to experimental data such as the once ”observed” 750

GeV excess.
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Chapter 1

Background

1.1 The Standard Model

The Standard Model (SM) of particle physics is remarkably successful at describing

three of the four fundamental particle interactions of the known elementary particles under

the gauge invariant symmetry

SU(3)c × SU(2)L × U(1)Y . (1.1)

This symmetry describes the interactions of fermions and a single scalar, the Higgs

Boson, via the force carrying gauge bosons (the photon, gluons, W±, and Z bosons). The

Higgs mechanism describes the spontaneous symmetry breaking of SU(2)L and explains the

origins of mass for the fermions, the W± and Z bosons. With the discovery of the Higgs

Boson at the LHC in 2012 [5, 6] the SM appears to be a complete, fully renormalizable

quantum field theory of fundamental particle physics [7].
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Despite this success there are several underlying problems for the minimal SM. For

the purposes of this dissertation, neutrino mass and dark matter are of particular interest.

There is a large body of experimental evidence for neutrino flavor oscillation [8], implying

the existence of non-zero neutrino mass, and an overwhelming amount of astrophysical

evidence for the existence of dark matter [9]. Due to both the right-handed neutrino and

dark matter sterile nature, the minimal SM is insufficient to explain either phenomena.

1.2 Neutrino Mass

Experimentally neutrinos are known to oscillate between the three flavors suggest-

ing mass differences between each,

Parameter best-fit 3σ

∆m2
21|10−5eV 2| 7.37 6.93− 7.97

∆m2|10−3eV 2| 2.50(2.46) 2.37− 2.63(2.33− 2.60)

Table 1.1: Current neutrino oscillation data. The first number refers to normal hierarchy
(m1 < m2 < m3) while the second is inverted (m3 < m1 < m2). ∆m2 = ∆2

31 −∆2
21/2 [10]

yet within the minimal SM there is no mechanism by which neutinos obtain mass. There

have been several solutions to this though, the most straight forward is to introduce some

new symmetry by which three right-handed neutrinos may be introduced. These right-

handed neutrinos will then be used to generate neutrino mass. Being electrically neutral,

these right-handed neutrinos may be either Dirac (due to a new imposed charge) or Majo-

rana (implying the right-handed neutrino is its own antiparticle) in nature.

A less obvious method would be to construct neutrino masses via radiative loops.

In this manner new particles may be introduced with fascinating phemenological conse-
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quences. One such example was introduced in 2006 called the Scotogenic model, coming

from the Greek word ”scotos” meaning darkness, a Z2 symmetry was introduced to the

standard model in which the normal SM particles were even whereas three N’s and a scalar

doublet (η+, η0) are odd [11]. What is most interesting, the Scotogenic model suggests a

link between dark matter and neutrino mass.

νi νjNk

η0 η0

〈φ0〉 〈φ0〉

×

Figure 1.1: Radiative generation of neutrino mass [11]

Both of these ideas as well as their consequences will be explored in the coming

chapters.

1.3 Dark Matter

The evidence for Dark Matter stems from a variety of sources, where each source

illuminates several of Dark Matter’s properties. For example, by looking at rotational

velocity of a luminous object one would expect a Keplerian orbit, that for an object at a
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given radius r the rotational velocity would be given by:

v(r) ∝
√
M(r)/r (1.2)

Where M(r) is the amount of matter contained within the object’s orbit. Once r

has passed the region with the majority of the galaxies mass, it is expected that

v(r) ∝ 1/
√
r. (1.3)

Unexpectedly what is seen is that v becomes approximately constant for large values of r.

This alludes to a massive particle which does not absorb or admit photons. While this is just

one example, there are a host of experiments and phenomena such as but not including: the

Cosmic Microwave Background (CMB), Gravitational Lensing, Direct Detection searches,

etc.

Assuming that Dark Matter is a particle, a few important properties can be ob-

served. First, Dark Matter must be electrically neutral. That is, Dark Matter must not

be able to interact with the photon directly but does interact indirectly via it’s mass. We

can also infer the stability of Dark Matter, or if it is not stable that it must have a life

time that is at least as long as the age of the universe. If the Dark Matter candidate in

question interacts with SM particles, careful consideration must be given. If the candidate

interacts directly then limits may be derived from the cu and cd coefficients [12, 13] or from

it’s cross-section [14].
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1.4 Gauged U(1) Extensions to the Standard Model

With both the Neutrino Mass and Dark Matter problems noted above one main

avenue for progress is to introduce minor alterations to the SM such that either, or both,

problem may be addressed. To do this an additional symmetry may be introduced. For

example in 1975 the alteration [15, 16]:

SU(3)c × SU(2)L × SU(2)R × U(1) (1.4)

known as the ”Left-Right Model” was introduced. This model sought to rectify the im-

balance between the left and right handed particles by both introducing a right-handed

neutrino and by reforming the right-handed particles into doublets like their left-handed

counterparts.

Within the context of the Left-Right Model, the electric charge is defined as:

Q =I3L + I3R +X (1.5)

where X is the U(1) charge. Using the known electric charges of the Quarks and Leptons

we find the X charge to be 1/6 for Quarks and −1/2 for Leptons. Thus the U(1) of the

Left-Right Model may be identified as U(1)B−L. As will be commented on shortly, due

to the gauged SU(2)R symmetry, three new bosons, W±R and Z ′, must be included. The

strongest lower mass limit on W±R set at 4.0 TeV set by CMS [17].

Fortunately, the U(1) extension is of interest for this dissertation. Thus, along
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with new particles introduced by the U(1) extension, the properties of the new Z’ boson

are of concern. There are many limits set for this new boson such as, but not limited to,

those set by the LHC and LUX. The benefit of this extension, underneath the new U(1)

charge new particles may be introduced. These particles may be right-hand neutrinos, Dark

Matter candidates, or some other exotic particle, such as Lepto-Quarks.

1.4.1 Z’ Mixing

After the introduction of new particles, the most obvious alteration made when

introducing a new gauged symmetry is to the covariant derivative.

SU(2)L × U(1)Y → Dµ = ∂µ − ıg′qWW a
µτ

a − ıgqBBµ (1.6)

SU(2)L × U(1)Y × U(1)x → Dµ = ∂µ − ıg′qWW a
µτ

a − ıgqBBµ − ıg′′qCCµ (1.7)

where W a
µ , Bµ, and Cµ are the 5 gauged bosons, τa are the SU(2)L generators, g, g′, and g′′

are the coupling constants and qW,B,C are the charges corresponding to the particle which

Dµ is applied. For the bosons to generate mass, the Higgs Mechanism is applied, by which

the modulus squared of covariant derivative applied to scalars with a vacuum expectation

value (v.e.v) is observed

∑
a

|Dµφa|2. (1.8)
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While the results of eq. 1.7 are contingent on the specifics of the model being

considered, it can be stated that W 1, and W 2 will mix to create the W± bosons while W 3,

B, and C will mix to become the photon, Z, and Z ′ bosons.

1.4.2 The Triangle Anomaly

The benefit of making a gauged extension to the SM is that new fermionic particles

may be introduced to explore less understood phenomena. Being a gauged theory though,

special care must be taken with the charges such that the theory remains renormalizable.

By looking at the current conservation, the axial vector anomaly leads to the relation:

〈p, ν, b; k, λ, c|∂µjµa|0〉 =
g2

8π2
εανβλpαkβA

abc (1.9)

where

Aabc = tr[ta, tb, tc] (1.10)

and ta,b,c are the generators of the symmetries used within the triangle diagram. Thus for

the current jµa to remain conserved, Aabc must be zero. In fact Aabc = 0 is a fundamental

consistency condition for chiral gauge theories [18]. Theories meeting this condition are said

to be anomaly free. A detailed discussion of this derivation may be found in [19].

What is most important is how to use this information. The SM is a good first

example to explore. As is well known, the particle content of the SM is listed in table 1.2,
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Particle SU(3)C SU(2)L U(1)Y
(u, d)L 3 2 1/6
uR 3∗ 1 2/3
dR 3∗ 1 −1/3

(ν, e)L 1 2 −1/2
eR 1 1 -1

Table 1.2: Particle content of the SM.

There are four possible anomalies, each imposes a constraint on the model. The

notation used in this dissertation will be, all left-handed particles obtain a positive sign

while all right-handed will obtain a negative. Note that all of the potential anomalies

within the SM cancel as is seen in table 1.3. When a new U(1) gauged symmetry is

introduced, six new anomalies are introduced. Four of these symmetries are analogous to

those demonstrated with the SM and two new restrictions, U(1)Y U(1)2 and U(1)U(1)2Y .

With these six conditions, the charges for the new fermions and the alterations to the original

SM must be considered. One final comment, within the SM as one changes between the

families, the charge distribution is the same between analogous particles. That is, the

Up, Charm and Top quarks all have the same charges. This is not necessary, as long as

these conditions are met any charges may be chosen. For example within the U(1)B−L

model, if three right-handed neutrinos are chosen then these neutrinos may have the charge

distribution (−1,−1,−1) [20] or (5,−4,−4) [1].

8



Anomaly Restriction

SU(3)2CU(1)Y 2*1/6 - 2/3 + 1/3 = 0
SU(2)2LU(1)Y 3*1/6 - 1/2 = 0

U(1)3Y 3*(2* (1/6)3 -(2/3)3 +(1/3)3) +(2*(−1/2)3 +(1)3) = 0
grav2U(1)Y 3(2*1/6 -2/3 +1/3) + (2*-1/2 +1) = 0

Table 1.3: Anomaly restrictions of the SM.
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Part I

Gauged U(1)B−L Extensions of the

Standard Model
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Chapter 2

B-L with Radiative Neutrino mass

and Multipartite Dark Matter

The following chapters are designed to represent the effectiveness of the gauged

B−L symmetry. In this chapter, a unique model is put forth. As opposed to containing just

three right-handed neutrinos, seven electrically-neutral singlet fermions are introduced. The

immediate difference being the former typically has tree-level neutrino mass terms while this

discussion will look at radiative neutrino mass generation. Other consequences (Multipartite

Dark Matter, Leptoquark Fermions) of this model will be explored. The discussion that

follows is based on the work of [2].

Through a simple extension of the Standard Model of Quarks and Leptons an

addition of one singlet right-handed neutrino per family is included to keep the theory

anomaly-free. For sake of convenience in notation, let these three extra neutral fermion

singlets N be left-handed. In this case their charges under U(1)B−L are (1,1,1). Their

11



additional contributions to the axial-vector anomaly and the mixed gauge-gravitational

anomaly are respectively

(1)3 + (1)3 + (1)3 = 3, (1) + (1) + (1) = 3, (2.1)

which cancel exactly those of the SM quarks and leptons. On the other hand, it has been

known for some time [21] that another set of charges are possible, i.e.

(−5)3 + (4)3 + (4)3 = 3, (−5) + (4) + (4) = 3. (2.2)

Adding also three pairs of neutral singlet fermions with charges (1,−1), naturally

small seesaw Dirac masses for the known three neutrinos may be obtained [22], and a residual

global U(1) symmetry is maintained as lepton number. A further extension in the scalar

sector allows for the unusual case of Z3 lepton number [1] with the appearance of a scalar

dark-matter candidate which is unstable but long-lived and decays to two antineutrinos.

Here we consider another set of possible charges for the neutral fermion singlets, such that

tree-level neutrino masses are forbidden. New scalar particles transforming under U(1)B−L

are then added to generate one-loop Majorana neutrino masses. The breaking of B − L

to Z2 results in lepton parity and thus R parity or dark parity [23] which is odd for some

particles, the lightest neutral one being dark matter. A closer look at the neutral fermion

singlets shows that one may be a keV sterile neutrino, and two others are heavy and stable,

thus realizing the interesting scenario of multipartite dark matter.

12



2.1 Model

The extra left-handed neutral singlet fermions have charges (2, 2, 2, 2,−1,−1,−3),

so that

4(2)3 + 2(−1)3 + (−3)3 = 3, 4(2) + 2(−1) + (−3) = 3. (2.3)

Since there is no charge +1 in the above, there is no connection between them and the

doublet neutrinos ν with charge −1 through the one Higgs doublet Φ which has charge

zero. Neutrinos are thus massless at tree level. To generate one-loop Majorana masses,

the basic mechanism of Ref. [24] is adopted, using the four fermions with charge +2, but

because of the U(1)B−L gauge symmetry, we need both a scalar doublet (η+, η0) and a

scalar singlet χ0.

Particle SU(3)C SU(2)L U(1)Y B L B − L copies R parity

Q = (u, d) 3 2 1/6 1/3 0 1/3 3 +
uc 3∗ 1 −2/3 −1/3 0 −1/3 3 +
dc 3∗ 1 1/3 −1/3 0 −1/3 3 +

L = (ν, e) 1 2 −1/2 0 1 −1 3 +
ec 1 1 1 0 −1 1 3 +

N 1 1 0 0 −2 2 4 −
S 1 1 0 0 1 −1 2 +
S′ 1 1 0 0 3 −3 1 +

Φ = (φ+, φ0) 1 2 1/2 0 0 0 1 +
η = (η+, η0) 1 2 1/2 0 1 −1 1 −

χ0 1 1 0 0 1 −1 1 −
ρ02 1 1 0 0 2 −2 1 +
ρ04 1 1 0 0 4 −4 1 +

Table 2.1: Particle content of proposed model.
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The U(1)B−L gauge symmetry itself is broken by ρ02 with charge −2 and by ρ04

with charge −4. The complete particle content of this model is shown in Table 2.1.

2.2 Radiative Neutrino Mass

Using the four N ’s, radiative Majorana masses for the three ν’s are generated as

shown in Fig. 2.1. [A systematic study of this mechanism under B − L (with only one

fermion and three scalars) appeared [25] but does not include our case, which has four

scalars.]

νi νjNk Nk

η0 η0

ρ02

ρ04

χ0 χ0φ0 φ0

Figure 2.1: Radiative generation of neutrino mass through dark matter.

Note that N, η, χ all have odd R parity, so that the lightest neutral particle among

them is a dark-matter candidate. This is the scotogenic mechanism, from the Greek ’scotos’

meaning darkness. In addition to the η†Φχ trilinear coupling used in Fig. 2.1, there is also

the η†Φχ†ρ2 quadrilinear coupling, which may also be used to complete the loop. There are

4 real scalar fields, spanning
√

2Re(η0),
√

2Im(η0),
√

2Re(χ0),
√

2Im(χ0). We denote their
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mass eigenstates as ζ0l with mass ml. Let the νiNkη
0 coupling be hνik, then the radiative

neutrino mass matrix is given by [24]:

(Mν)ij =
∑
k

hνikh
ν
jkMk

16π2

∑
l

[(yRl )2F (xlk)− (yIl )2F (xlk)], (2.4)

where
√

2Re(η0) =
∑

l y
R
l ζ

0
l ,
√

2Im(η0) =
∑

l y
I
l ζ

0
l , with

∑
l(y

R
l )2 =

∑
l(y

I
l )2 = 1, xlk =

m2
l /M

2
k , and the function F is given by:

F (x) =
x lnx

x− 1
. (2.5)

2.3 Multipartite Dark Matter

Since the only neutral particles of odd R parity are N, η0, χ0, there appears to be

only one dark-matter candidate. However as shown below, there could be two or even four,

all within the context of the existing model.

First note that ρ02,4 have exactly the right U(1)B−L charges to make the (S, S, S′)

fermions massive. The corresponding 3× 3 mass matrix is of the form

MS =


mS1 0 m13

0 mS2 m23

m13 m23 0

 (2.6)

where mS1,mS2 come from 〈ρ02〉 = u2 and m13,m23 from 〈ρ04〉 = u4. If all these entries are

of order 100 GeV to a few TeV, then there are three extra heavy singlet neutrinos in this
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model which also have even R parity. They do not mix with the light active neutrinos ν at

tree level, but do so in one loop. For example, S′ mixes with ν as shown in Fig. 2.2.

ν S ′N N

η0 χ0

φ0

ρ04
Figure 2.2: Radiative generation of ν − S′ mixing.

Similarly S will also mix with ν, using the SNχ0 Yukawa coupling. However, these terms

are negligible compared to the assumed large masses for (S, S, S′) and may be safely ignored.

Consider now the possibility that m13,m23 << mS1,mS2 in MS , then S′ obtains

a small seesaw mass given by

mS′ ' −
m2

13

mS1
− m2

23

mS2
. (2.7)

Let this be a few keV, then S′ is a light sterile neutrino which mixes with ν only slightly

through Fig. 2.2. Hence it is a candidate for warm dark matter. Whereas the usual sterile

neutrino is an ad hoc invention, it has a natural place here in terms of its mass as well as

its suppressed mixing with the active neutrinos.

We now have the interesting scenario where part of the dark matter of the Universe

is cold, and the other is warm. This hybrid case was recently also obtained in a different

radiative model of neutrino masses [26]. Within the present context, there is a third possi-
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bility. If we assign an extra Z2 symmetry, under which S1,2 are odd and all other particles

even, then the only interactions involving S1,2 come from their diagonal U(1)B−L gauge

couplings and the diagonal Yukawa terms f1S1S1(ρ
0
2)
∗ and f2S2S2(ρ

0
2)
∗. This means that

both S1 and S2 are stable and their relic abundances are determined by their annihilation

cross sections to SM particles. In this scenario, dark matter has four components [27].

Since S1,2 are now separated from S′, the m13 and m23 terms inMS are zero and

there is no tree-level mass for S′. However, there is a one-loop mass as shown in Fig. 2.3.

S ′ S ′N N

χ0 χ0

ρ02

ρ04
Figure 2.3: Radiative generation of S′ mass.

This makes it more natural for S′ to be light. A detailed study of the dark-matter phe-

nomenology of this multipartite scenario will be given elsewhere.

2.4 Scalar Sector for Symmetry Breaking

In this model, there is only one Higgs doublet Φ which breaks the SU(2)L×U(1)Y

electroweak symmetry, whereas there are two Higgs singlets ρ2 and ρ4 which break U(1)B−L

to Z2. The most general Higgs potential consisting of Φ, ρ2, ρ4 is given by
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V = µ20Φ
†Φ + µ22ρ

∗
2ρ2 + µ24ρ

∗
4ρ4 +

1

2
µ24[ρ

2
2ρ
∗
4 +H.c.] +

1

2
λ0(Φ

†Φ)2

+
1

2
λ2(ρ

∗
2ρ2)

2 +
1

2
λ4(ρ

∗
4ρ4)

2 + λ02(Φ
†Φ)(ρ∗2ρ2) + λ04(Φ

†Φ)(ρ∗4ρ4)

+ λ24(ρ
∗
2ρ2)(ρ

∗
4ρ4). (2.8)

Let 〈φ0〉 = v, 〈ρ2〉 = u2, 〈ρ4〉 = u4, then the minimum of V is determined by:

0 =µ20 + λ0v
2 + λ02u

2
2 + λ04u

2
4, (2.9)

0 =µ22 + λ02v
2 + λ2u

2
2 + λ24u

2
4 + µ24u4, (2.10)

0 =u4(µ
2
4 + λ04v

2 + λ24u
2
2 + λ4u

2
4) +

1

2
µ24u

2
2. (2.11)

The would-be Goldstone bosons are φ±,
√

2Im(φ0), corresponding to the breaking

of SU(2)L × U(1)Y to U(1)em, and
√

2[u2Im(ρ2) + 2u4Im(ρ4)]/
√
u22 + 4u24, corresponding

to the breaking of U(1)B−L to Z2. The linear combination orthogonal to the latter is a

physical pseudoscalar A, with a mass given by:

mA =
−µ24(u22 + 4u24)

2u4
. (2.12)

The 3 × 3 mass-squared matrix of the physical scalars [
√

2Re(φ0),
√

2Re(ρ2),
√

2Re(ρ4)] is

given by
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M2 =


2λ0v

2 2λ02vu2 2λ04vu4

2λ02vu2 2λ2u
2
2 u2(2λ24u4 + µ24)

2λ04vu4 u2(2λ24u4 + µ24) 2λ4u
2
4 − µ24u22/2u4

 (2.13)

For v2 << u22,4,
√

2Re(φ0) = h is approximately a mass eigenstate which is identified with

the 125 GeV particle discovered at the LHC.

2.5 Gauge Sector

Since φ0 does not transform under U(1)B−L and ρ2,4 do not transform under

SU(2)L × U(1)Y , there is no tree-level mixing between their corresponding gauge bosons

Z and ZB−L. In our convention, M2
ZB−L

= 8g2B−L(u22 + 4u24). The LHC bound on MZB−L

comes from the production of ZB−L from u and d quarks and its subsequent decay to e−e+

and µ−µ+. If all the particles listed in Table 2.1 are possible decay products of ZB−L with

negligible kinematic suppression, then its branching fraction to e−e+ and µ−µ+ is about

0.061. The cu,d coefficients used in the LHC analysis [12, 13] are then

cu = cd =

[(
1

3

)2

+

(
1

3

)2
]
g2B−L ×B(ZB−L → e−e+, µ−µ+) = 1.36× 10−2 g2B−L. (2.14)

From LHC data based on the 7 and 8 TeV runs, a bound of about 2.5 TeV would correspond

to gB−L < 0.24.
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2.6 Conclusion

Using gauge U(1)B−L symmetry, we have proposed a new anomaly-free solution

with exotic fermion singlets, such that neutrino mass is forbidden at tree level. We add

a number of new scalars so that neutrino masses are obtained in one loop through dark

matter, i.e. the scotogenic mechanism. Because of the structure of the new singlets required

for anomaly cancellation, we find a possible dark-matter scenario with four components.

Three are stable cold Weakly Interaction Massive Particles (WIMPs) and one a keV singlet

neutrino, i.e. warm dark matter with a very long lifetime.
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Chapter 3

B-L with Residual Z3 Symmetry

When three right-handed nuetrinos are added to the standard model under a

U(1)B−L symmetry the most obvious charge assignment is (−1,−1,−1). The discussion

below is based upon [1] where the unconventional assignment (5,−4,−4) is chosen. As

a consequence a residual Z3 symmetry remains after the breaking of U(1)B−L yielding a

possible, long-lived, dark-matter candidate.

Lepton number L is a familiar concept. It is usually defined as a global U(1)

symmetry, under which the leptons of the standard model (SM), i.e. e, µ, τ together with

their neutrinos νe, νµ, ντ have L = 1, and all other SM particles have L = 0. In the case

of nonzero Majorana neutrino masses, this continuous symmetry is broken to a discrete Z2

symmetry, i.e. (−1)L or lepton parity. Consider a gauge B − L extension of the SM, such

that a residual Z3 symmetry remains after the spontaneous breaking of B−L. This is then

a realization of the unusual notion of Z3 lepton symmetry.
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3.1 Neutrino Mass

The conventional treatment of gauge B−L has three right-handed singlet neutrinos

νR1, νR2, νR3 transforming as −1,−1,−1 under B−L. It is well-known that this assignment

satisfies all the anomaly-free conditions for U(1)B−L. However, another assignment [21]

νR1, νR2, νR3 ∼ 5,−4,−4 (3.1)

works as well, because

5− 4− 4 = −3, (5)3 − (4)3 − (4)3 = −3. (3.2)

To obtain a realistic model with this assignment, it was recently proposed [22] that

three additional neutral singlet Dirac fermions N1,2,3 be added with B − L = −1, together

with a singlet scalar χ3 with B − L = 3. Consequently, the tree-level Yukawa couplings

ν̄LNRφ̄
0 and N̄LνR2χ3, N̄LνR3χ3 are allowed, where Φ = (φ+, φ0) is the one Higgs doublet

of the SM. Together with the invariant N̄LNR mass terms, the 6× 5 neutrino mass matrix

linking (ν̄L, N̄L) to (νR, NR) is of the form

MνN =

 0 M0

M3 MN

 (3.3)

where M0 and MN are 3× 3 mass matrices and M3 is 3× 2 because νR1 has no tree-level

Yukawa coupling. This means that one linear combination of νL is massless. Of course, if

the dimension-five term ν̄R1NLχ
2
3 also exists, then M3 is 3× 3 and MνN is 6× 6.
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The form of MνN allows nonzero seesaw Dirac neutrino masses for ν [28], i.e.

Mν 'M0M−1N M3. (3.4)

Without the implementation of a flavor symmetry, any 3× 3Mν is possible. Although the

gauge B − L is broken, a residual global L symmetry remains in this model with ν, l,N all

having L = 1. Because the pairing of any two neutral fermions of the same chirality always

results in a nonzero B − L charge not divisible by 3 units in this model, it is impossible to

construct an operator of any dimension for a Majorana mass term which violates B − L.

Hence the neutrinos are indeed exactly Dirac.

We now add two more scalar singlets: χ2 with B−L = 2 and χ6 with B−L = −6.

The important new terms in the Lagrangian are:

N̄LνR1χ6, χ2NLNL, χ2NRNR, χ3
2χ6, χ2

3χ6. (3.5)

Now B − L is broken by 〈χ3〉 = u3 as well as 〈χ6〉 = u6, and all neutrinos become massive.

If χ2 is absent, then again a residual global L symmetry exists with L = 1 for ν, l,N and

L = 0 for χ3,6. However, the existence of χ2 shows that the residual symmetry is then Z3,

such that χ2 and all leptons transform as ω = exp(2πi/3) under Z3 with χ3,6 ∼ 1. This is

thus the first example of a lepton symmetry which is not Z2 (for Majorana neutrinos), nor

U(1) or Z4 [29, 30] (for Dirac neutrinos). Note that Z3 is also sufficient to guarantee that

all the neutrinos remain Dirac.
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Although there is no stabilizing symmetry here for dark matter, χ2 has very small

couplings to two neutrinos through the Yukawa terms of Eq. (3.5) from the mixing implied

by Eq. (3.3). This means that χ2 may have a long enough lifetime to be suitable for dark

matter, as shown below.

3.2 Gauge Sector

In this model, there is of course a gauge boson Z ′ which couples to B − L. Its

production at the Large Hadron Collider (LHC) is due to its couplings to quarks. Once

produced, it decays into quarks and leptons. In the conventional B − L assignment for

νR, its branching fractions to quarks, charged leptons, and neutrinos are 1/4, 3/8, and

3/8 respectively. These values are obtained by approximating all daughter masses as zero,

then the fermionic decays will be proportional to the daughter particle’s charge squared

multiplied by the number of copies.

In this model, the νR charges are (5,−4,−4), hence their resulting partial widths

are very large. Assuming that Z ′ decays also into χ2, the respective branching fractions

into quarks, charged leptons, neutrinos, and χ2 as dark matter are then 1/18, 1/12, 5/6,

and 1/36. This means Z ′ has an 86% invisible width. Using the production of Z ′ via uū

and dd̄ initial states at the LHC and its decay into e−e+ or µ−µ+ as signature, the current

bound on mZ′ assuming g′ = g, i.e. the SU(2)L gauge coupling of the SM, is about 3 TeV,

based on recent LHC data [12, 13]. However, because the branching fraction into l−l+ is

reduced by a factor of 2/9 in our B − L model, this bound is reduced to about 2.5 TeV,
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again for g′ = g. There is also a similar bound [31] from precision e−e+ → e−e+ measure-

ments at the Large Electron Positron Collider (LEP), i.e. mZ′/g
′ > a few TeV.

Particle Contribution B. R.

Quarks (1/3)2 × 3× 3× 2 + (1/3)2 × 3× 3× 2 = 4 1/18
Charged Leptons (−1)2 × 3 +(−1)2 × 3 = 6 1/12

Neutrinos (−1)2 × 3 + (5)2 +(4)2 +(4)2 = 60 5/6
χ2 (2)2/2 = 2 1/36

Table 3.1: Branching Ratio calculation for this model.

3.3 χ2 as Dark Matter

Consider for simplicity the coupling of χ2 to just one N , with the interaction

Lint =
1

2
fLχ2NLNL +

1

2
fRχ2NRNR +H.c. (3.6)

Let the νL − NL mixing be ζ0 = m0/mN and νR − NR mixing be ζ3 = m3/mN , then the

decay rate of χ2 is

Γ(χ2 → ν̄ν̄) =
mχ

32π
(f2Lζ

4
0 + f2Rζ

4
3 ). (3.7)

If we set this equal to the age of the Universe (13.75× 109 years), and assuming mχ = 100

GeV, fL = fR and ζ0 = ζ3, then fζ2 = 8.75× 10−22. Hence

√
fζ << 3× 10−11 (3.8)
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would guarantee the stability of χ2 to the present day, and allow it to be a dark-matter

candidate. This sets the scale of mN at about 1013 GeV, which is also the usual mass scale

for the heavy Majorana singlet neutrino in the canonical seesaw mechanism.

Since χ2 interacts with nuclei through Z ′, there is also a significant constraint from

dark-matter direct-search experiments. The cross section per nucleon is given by

σ0 =
1

π

(
mχmn

mχ +Amn

)2
(

2g′2

m2
Z′

)2

, (3.9)

where A is the number of nucleons in the target and mn is the nucleon mass. Consider for

example mχ = 100 GeV, then σ0 < 1.25× 10−45 cm2 from the LUX data [32]. This implies

mZ′/g
′ > 16.2 TeV, as shown in Fig. 3.1.

If g′ = g, then mZ′ > 10.6 TeV. This limit is thus much more severe than the LHC bound

of 2.5 TeV. If g′ < g, then both the LHC and LUX bounds on mZ′ are relaxed. However,

it also means that it is unlikely that Z ′ would be discovered at the LHC even with the 14

TeV run.

Consider now the annihilation cross section of χ2χ
∗
2 for obtaining its thermal relic

abundance. The process χ2χ
∗
2 → Z ′ → SM particles is p-wave suppressed and is unlikely

to be strong enough for this purpose. We may then consider the well-studied process

χ2χ
∗
2 → h→ SM particles, where h is the SM Higgs boson. If this is assumed to account for

all of the dark-matter relic abundance of the Universe, then it has recently been shown [33]

that the required strength of this interaction is in conflict with LUX data except for a small

region near mχ = mh/2. On the other hand, another analysis [34] claims that a region with
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Figure 3.1: Lower bound on mZ′/g
′ versus mχ from LUX data.

mχ somewhat greater than mh is still allowed.

In this chapter, we will consider the following alternative scenario. We assume

that the hχ2χ
∗
2 interaction is negligible, so that neither Higgs nor Z ′ exchange is important

for χ2χ
∗
2 annihilation. Instead we invoke the new interactions of Fig. 3.2. Since χ3,6 may

interact freely with h, thermal equilibrium is maintained with the other SM particles. This

scenario requires of course that mχ to be greater than at least one physical mass eigenvalue

in the χ3,6 sector.
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Figure 3.2: χ2χ
†
2 annihilation to χ3,6 final states.

To summarize, χ2 ∼ ω under Z3 and decays into two antineutrinos, but its life-

time is much longer than the age of the Universe. It is thus an example of Z3 dark mat-

ter [35, 36, 37, 38, 39]. It is also different from previous Z2 proposals [40, 41] based on

Ref. [21]. It has significant elastic interactions with nuclei through Z ′ and Higgs exchange

and may be discovered in direct-search experiments. On the other hand, its relic abundance

is determined not by Z ′ or Higgs interactions, but by its annihilation to other scalars of this

model which maintain thermal equilibrium with the SM particles through the SM Higgs

boson. Note that this is also the mechanism used in a recently proposed model of vector

dark matter [42].
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3.4 Scalar Sector

Consider the scalar potential:

V =− µ20(Φ†Φ) +m2
2(χ
∗
2χ2)− µ23(χ∗3χ3)− µ26(χ∗6χ6)

+
1

2
λ0(Φ

†Φ)2 +
1

2
λ2(χ

∗
2χ2)

2 +
1

2
λ3(χ

∗
3χ3)

2 +
1

2
λ6(χ

∗
6χ6)

2 + λ02(χ
∗
2χ2)(Φ

†Φ)

+ λ03(χ
∗
3χ3)(Φ

†Φ) + λ06(χ
∗
6χ6)(Φ

†Φ) + λ23(χ
∗
2χ2)(χ

∗
3χ3) + λ26(χ

∗
2χ2)(χ

∗
6χ6)

+ λ36(χ
∗
3χ3)(χ

∗
6χ6) + [

1

2
f36(χ

2
3χ6) + H.c.] + [

1

6
λ′26(χ

3
2χ6) + H.c.]. (3.10)

Let 〈φ0〉 = v, 〈χ3〉 = u3, 〈χ6〉 = u6, then the minimum of V is determined by:

µ20 =λ0v
2 + λ03u

2
3 + λ06u

2
6, (3.11)

µ23 =λ3u
2
3 + λ03v

2 + λ36u
2
6 + f36u6, (3.12)

µ26 =λ6u
2
6 + λ06v

2 + λ36u
2
3 +

f36u
2
3

2u6
. (3.13)

There is one dark-matter scalar boson χ2 with mass given by:

m2
χ = m2

2 + λ02v
2 + λ23u

2
3 + λ26u

2
6. (3.14)

There is one physical pseudoscalar boson:

A =
√

2Im(2u6χ3 + u3χ6)/
√
u23 + 4u26 (3.15)
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with mass given by:

m2
A = −f36(u23 + 4u26)/2u6. (3.16)

There are three physical scalar bosons spanning the basis [h,
√

2Re(χ3),
√

2Re(χ6)], with

3× 3 mass-squared matrix given by:

M2 =


2λ0v

2 2λ03u3v 2λ06u6v

2λ03u3v 2λ3u
2
3 2λ36u3u6 + f36u3

2λ06u6v 2λ36u3u6 + f36u3 2λ6u
2
6 − f36u23/2u6

 (3.17)

For illustration, we consider the special case λ03 = λ06 = 0, so that h decouples

from χ3,6. It then becomes identical to that of the SM, and may be identified with the 125

GeV particle discovered [5, 6] at the LHC. We now look for a solution with:

S =
√

2Re(−u3χ3 + 2u6χ6)/
√
u23 + 4u26, (3.18)

S′ =
√

2Re(2u6χ3 + u3χ6)/
√
u23 + 4u26, (3.19)

as mass eigenstates. This is easily accomplished for example with:

u3 = 2u6, 4λ3 = λ6 − f36/u6. (3.20)

In this case,
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S = −Reχ3 +Reχ6,m
2
S = 2λ6u

2
6 − 4λ36u

2
6 − 4f36u6, (3.21)

S′ = Reχ3 +Reχ6,m
2
S′ = 2λ6u

2
6 + 4λ36u

2
6, (3.22)

A = Imχ3 + Imχ6,m
2
A = −4f36u6, (3.23)

mZ′ = 12g′u6. (3.24)

The couplings of χ2χ
∗
2 to S and S′ are given by:

χ2χ
∗
2[u6(λ26 − 2λ23)S + u6(λ26 + 2λ23)S

′]. (3.25)

Since S plays the same role in breaking B−L as the Higgs boson h does in breaking

SU(2)L × U(1)Y , it is expected to be massive of order
√
u23 + 4u26 = 2

√
2u6. This allows

mS′ to be adjusted to be very small, then it may serve as a light scalar mediator for χ2

as self-interacting dark matter [43]. This is not a necessary assumption of the model and

requires fine tuning of scalar parameters to achieve. We merely want to demonstrate that

such a possible scenario exists within our model. For mS′ ' 0, we need λ36 = −λ6/2. In

that case, using Eq. (3.20), we find:

m2
S = 16λ3u

2
6, m2

A = m2
S − 4λ6u

2
6. (3.26)

We assume that the relic density of χ2 is dominated by the χ2χ
∗
2 annihilation to

S′S′. This may have to be revised if the semi-annihilation χ2χ2 → χ∗2S
′ is sizeable. Here

we simply assume that λ′26 is small. For illustration, we set to zero the χ2χ
∗
2S
′S′ coupling,
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i.e. λ23 + λ26 = 0, as well as the SS′S′ coupling, i.e. −12λ3 + 6λ6 + 2λ36 − f36/u6 = 0.

This implies λ3 = λ6/2 so that the S′S′S′ coupling is also zero and m2
A = m2

S/2. This

choice of parameters means that only the middle diagram of Fig. 3.2 contributes to the

χ2χ
∗
2 annihilation cross section with:

σ × vrel =
1

64πm2
χ

∣∣∣∣λ226u26m2
χ

∣∣∣∣2 . (3.27)

Equating this to the optimal value [44] of 4.4× 10−26 cm3 s−1 for the correct dark-matter

relic density of the Universe, we find for mχ = 100 GeV

λ26 = 0.0295

(
1 TeV

u6

)
. (3.28)

We assume of course that mA > 2mχ.

For S′ to be in thermal equilibrium with the SM particles, we consider nonzero

values of λ03 and λ06. This is possible in our chosen parameter space if 2λ03 + λ06 ' 0, so

that the S′h mixing is very small and yet the S′S′h coupling λ06v/4
√

2 and S′S′hh coupling

λ06/16 may be significant. Note that the Sh mixing is now fixed at (λ06/λ6)(v/2
√

2u6)

which may yet be suitably suppressed for h to be essentially the one Higgs boson of the SM.

Even if λ03,06 are negligible, the gauge interaction S′AZ ′ may also be sufficient to maintain

thermal equilibrium. This may also affect the magnitude of the self-interacting χ2χ
∗
2 cross

section.
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The h→ S′S′ decay width is given by:

Γ(h→ S′S′) =
λ206v

2

256πmh
=

(
λ06
0.04

)2

0.5 MeV. (3.29)

It is invisible at the LHC because S′ decays slowly to e−e+ only through its mixing with h,

if mS′ ∼ 10 MeV for S′ as a light mediator for the self-interacting dark matter χ2.

3.5 Conclusion

In conclusion, we have considered the unusual case of a gauge B − L symme-

try which is spontaneously broken to Z3 lepton number. Neutrinos are Dirac fermions

transforming as ω = exp(2πi/3) under Z3. A complex neutral scalar χ2 exists which also

transforms as ω. It is not absolutely stable, but decays to two antineutrinos with a lifetime

much greater than that of the Universe. It is thus an example of Z3 dark matter. In ad-

dition to the one Higgs boson h of the SM, there are three neutral scalars S, S′, A and one

heavy vector gauge boson Z ′. From direct-search experiments, mZ′/g
′ is constrained to be

very large, thus making it impossible to discover Z ′ at the LHC even with the current run.

The relic abundance of χ2 is determined by its annihilation into S′ which is a candidate for

the light mediator by which χ2 obtains its long-range self-interaction.
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Part II

Related Extensions and

Phenomenon to U(1)B−L
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Chapter 4

Generalized Gauge U(1) Family

Symmetries

This chapter discusses the charge assignment of an arbitrary U(1) gauged extension

to the Standard Model. Restrictions placed on the particle charge assignment under the

U(1) extension is explored and two sample models will be proposed concluding with some

effects to be observed. This chapter is based upon the previously published work in Ref. [3].

4.1 Anomaly Constraints

The Standard Model governs the interactions between the three families of quarks

and leptons. Under its SU(3)c×SU(2)L×U(1)Y gauge symmetry the right-handed neutrinos

νR do not transform. As a consequence the right-handed neutrinos are not included in the

Minimal Standard Model. Since neutrinos are known to be massive [8], νR should be

considered as additions to the Standard Model. To accomplish this, a possible new family
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gauge symmetry U(1)F is admitted with charges n1,2,3 for the quarks and n′1,2,3 for the

leptons as shown in Table 4.1.

Particle SU(3)C SU(2)L U(1)Y U(1)F
QiL = (u, d)iL 3 2 1/6 ni

uiR 3 1 2/3 ni
diR 3 1 −1/3 ni

LiL = (ν, l)iL 1 2 −1/2 n′i
liR 1 1 −1 n′i
νiR 1 1 0 n′i

Table 4.1: Fermion assignments under U(1)F .

Anomaly cancellation is imposed to constrain n1,2,3 and n′1,2,3. The contributions

of color triplets to the [SU(3)]2U(1)F anomaly sum up to:

[SU(3)]2U(1)F :
1

2

3∑
i=1

(2ni − ni − ni); (4.1)

and the contributions of QiL, uiR, diR, LiL, liR to the U(1)Y [U(1)F ]2 anomaly sum up to:

U(1)Y [U(1)F ]2 :

3∑
i=1

[
6

(
1

6

)
− 3

(
2

3

)
− 3

(
−1

3

)]
n2i +

[
2

(
−1

2

)
− (−1)

]
n′i

2
. (4.2)

Both are automatically zero, as well as the cubic ([U(1)F ]3) and gravitational

(grav2U(1)F ) anomalies, because all fermions couple to U(1)F vectorially. The contribu-

tions of the SU(2)L doublets to the [SU(2)]2U(1)F anomaly sum up to:

[SU(2)]2U(1)F :
1

2

3∑
i=1

(3ni + n′i); (4.3)
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and the contributions to the [U(1)Y ]2U(1)F anomaly sum up to:

[U(1)Y ]2U(1)F :
3∑
i=1

[
6

(
1

6

)2

− 3

(
2

3

)2

− 3

(
−1

3

)2
]
ni +

[
2

(
−1

2

)2

− (−1)2

]
n′i

=

3∑
i=1

(
−3

2
ni −

1

2
n′i

)
. (4.4)

Both are zero if:

3∑
i=1

(3ni + n′i) = 0. (4.5)

n1 n2 n3 n′1 n′2 n′3 Model

1/3 1/3 1/3 −1 −1 −1 B − L [20]

0 0 0 0 1 −1 Lµ − Lτ [47, 48, 49, 50]

1/3 1/3 1/3 0 0 −3 B − 3Lτ [51, 52, 53, 54]

1/3 1/3 1/3 3 −3 −3 Ref. [55]

1 1 −2 1 1 −2 Ref. [56]

a a −2a 0 −1 1 Ref. [57]

Table 4.2: Examples of models satisfying Eq. (4.5).

Furthermore these results can be extended to more than three families, for example in the

case of four families n1,2,3 = 1/3, n4 = −1, and n′1,2,3 = 1, n′4 = −3 [45, 46] as a separate

gauging of B and L. There are many specific examples of models which satisfy the condition

shown in Table 4.2.

We will now discuss two examples which offer some insights to the structure of

mixing among the quark and lepton families. Both models have nontrivial connections
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n1 n2 n3 n′1 n′2 n′3 Model

1 1 0 0 −2 −4 A

1 1 −1 0 −1 −2 B

Table 4.3: Two new models satisfying Eq. (4.5).

between quarks and leptons. Their structures are shown in Table 4.3.

In both cases, with only one Higgs doublet with zero charge under U(1)F , quark

and lepton mass matrices are diagonal except for the first two quark families. This allows

for mixing among them, but not with the third family. It is a good approximation to the

3× 3 quark mixing matrix, to the extent that mixing with the third family is known to be

suppressed. In the leptonic sector, mixing also comes from the Majoranna mass matrix of νR

which depends on the choice of singlets with vacuum expectation values which break U(1)F .

Adding a second Higgs doublet with nonzero U(1)F charge will allow mixing of the first

two families of quarks with the third in both cases. As for the leptons, this will not affect

Model A, but will cause mixing in the charged-lepton and Dirac neutrino mass matrices in

Model B. Flavor-changing neutral currents are predicted with interesting phenomenological

consequences.

4.2 Basic Structure of Model A

Consider first the structure of the 3×3 quark mass matrixMd linking (d̄L, s̄L, b̄L)

to (dR, sR, bR). Using:

Φ1 = (φ+1 , φ
0
1) ∼ (1, 2, 1/2; 0), (4.6)
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with 〈φ01〉 = v1, it is clear that Md is block diagonal with a 2× 2 submatrix which may be

rotated on the left to become:

Md =


cL −sL 0

sL cL 0

0 0 1




m′d 0 0

0 m′s 0

0 0 m′b

 (4.7)

where sL = sin θL and cL = cos θL. We now add a second Higgs doublet:

Φ2 = (φ+2 , φ
0
2) ∼ (1, 2, 1/2; 1), (4.8)

with 〈φ02〉 = v2, so that:

Md =


cL −sL 0

sL cL 0

0 0 1




m′d 0 m′db

0 m′s m′sb

0 0 m′b

 (4.9)

is obtained. At the same time, Mu is of the form:

Mu =


m′u 0 0

0 m′c 0

m′ut m′ct m′t




cR sR 0

−sR cR 0

0 0 1

 , (4.10)

where it has been rotated on the right. Because of the physical mass hierarchy mu <<

mc << mt, the diagonalization of Eq. (4.10) will have very small deviations from unity on

the left. Hence the unitary matrix diagonalizing Eq. (4.9) on the left will be essentially the
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experimentally observed quark mixing matrix VCKM which has three angles and one phase.

Now Md of Eq. (4.9) has exactly seven parameters, the three diagonal masses m′d,m
′
s,m

′
b,

the angle θL, the off-diagonal mass m′sb which can be chosen real, and the off-diagonal mass

m′db which is complex. With the input of the three quark mass eigenvalues md,ms,mb and

VCKM , these seven parameters can be determined.

Consider the diagonalization of the real mass matrix:


a 0 s1c

0 b s2c

0 0 c

 = VL


a(1− s21/2) 0 0

0 b(1− s22/2) 0

0 0 c(1 + s21/2 + s22/2)

V †R, (4.11)

where s1,2 << 1 and a << b << c have been assumed. To determine VL and VR we utilize

their properties as a unitary matrix, that is:

VLV
†
L = V †LVL = VRV

†
R = V †RVR = 1 (4.12)

By multiplying our matrix by it’s Hermitian Conjugate on the right(left) we can eliminate

V †R(VL):
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
a 0 s1c

0 b s2c

0 0 c




a 0 0

0 b 0

s1c s2c c

 =

= VL


a(1− s21/2) 0 0

0 b(1− s22/2) 0

0 0 c(1 + s21/2 + s22/2)



2

V †L (4.13)

Thus we obtain:

VL =


1− s21/2 −s1s2b2/(b2 − s21c2 − a2) s1

s1s2a
2/(b2 + s22c

2 − a2) 1− s22/2 s2

−s1 −s2 1− s21/2− s22/2

 , (4.14)

and:

V †R =


1 s1s2ab/(b

2 − a2) −s1a/c

−s1s2ab/(b2 − a2) 1 −s2b/c

s1a/c s2b/c 1

 . (4.15)
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Hence:

VCKM =


cL −sL 0

sL cL 0

0 0 1




eiα 0 0

0 1 0

0 0 1

VL, (4.16)

where α is the phase transferred from m′db.

Comparing the above with the known values of VCKM [10], we obtain

s1 = 0.00886, s2 = 0.0405, sL = −0.2253, eiα = −0.9215 + i0.3884, (4.17)

with md = m′d, ms = m′s, mb = m′b to a very good approximation.

4.3 Scalar sector of Model A

In addition to Φ1,2, we add a scalar singlet:

σ ∼ (1, 1, 0; 1), (4.18)

then the Higgs potential containing Φ1,2 and σ is given by:
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V =m2
1Φ
†
1Φ1 +m2

2Φ
†
2Φ2 +m2

3σ̄σ + [µσΦ†2Φ1 +H.c.]

+
1

2
λ1(Φ

†
1Φ1)

2 +
1

2
λ2(Φ

†
2Φ2)

2 +
1

2
λ3(σ̄σ)2 + λ12(Φ

†
1Φ1)(Φ

†
2Φ2)

+ λ′12(Φ
†
1Φ2)(Φ

†
2Φ1) + λ13(Φ

†
1Φ1)(σ̄σ) + λ23(Φ

†
2Φ2)(σ̄σ). (4.19)

Let 〈φ01,2〉 = v1,2 and 〈σ〉 = u, then the minimum of V is determined by:

0 = v1(m
2
1 + λ1v

2
1 + (λ12 + λ′12)v

2
2 + λ13u

2) + µv2u, (4.20)

0 = v2(m
2
2 + λ2v

2
2 + (λ12 + λ′12)v

2
1 + λ23u

2) + µv1u, (4.21)

0 = u(m2
3 + λ3u

2 + λ13v
2
1 + λ23v

2
2) + µv1v2. (4.22)

For m2
2 large and positive, a solution exists with v22 << v21 << u2, i.e.

u2 ' −m
2
3

λ3
, v21 '

−m2
1 − λ13u2
λ1

, v2 '
−µv1u

m2
2 + λ23u2

. (4.23)

Hence the scalar particle spectrum of Model A consists of a Higgs boson h very much like

that of the SM withm2
h ' 2λ1v

2
1, a heavy Higgs boson which breaks U(1)F withm2

σ ' 2λ3u
2,

and a heavy scalar doublet very much like Φ2 with m2(φ+2 , φ
0
2) ' m2

2 + λ23u
2.
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4.4 Gauge sector of Model A

With the scalar structure already considered, the Z − ZF mass-squared matrix is

given by:

M2
Z,ZF

=

g2Z(v21 + v22)/4 −gZgF v22/2

−gZgF v22/2 g2F (u2 + v22)

 . (4.24)

The Z−ZF mixing is then (gZ/2gF )(v22/u
2). For v2 ∼ 10 GeV and u ∼ 1 TeV, this is about

10−4, well within the experimentally allowed range.

Since ZF couples to quarks and leptons according to n1,2,3 and n′1,2,3, its branching

fractions to e−e+ and µ−µ+ are given by 2n′1,2
2/(12

∑
n2i +3

∑
n′i

2). Since n′1 = 0, we need

consider only the branching fraction ZF → µ−µ+ to compare against data. For Model A, it

is about 2/21. The cu,d coefficients used in the experimental search [12, 13] of ZF are then:

cu = cd = 2g2F (2/21). (4.25)

For gF = 0.13, a lower bound of about 4.0 TeV on mZF
is obtained from the

Large Hadron Collider (LHC) based on the preliminary 13 TeV data by comparison with

the published data from the 7 and 8 TeV runs. Note however that if ZF → e−e+ is ever

observed, this particular model is ruled out.
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4.5 Flavor-changing interactions

Whereas the SM Z boson does not mediate any flavor-changing interactions, the

heavy ZF does because it distinguishes families. For quarks,

LZF
= gFZ

µ
F (ū′γµu

′ + c̄′γµc
′ + d̄′γµd

′ + s̄′γµs
′). (4.26)

Using Eqs. (4.14) and (4.15) to express the above in terms of mass eigenstates for the d

sector, and keeping only the leading flavor-changing terms, we find:

L′ZF
= gFZ

µ
F [s1(d̄LγµbL+ b̄LγµdL)+s2(s̄LγµbL+ b̄LγµsL)−s1s2(d̄LγµsL+ s̄LγµdL)]. (4.27)

From the experimental values of the B0 − B̄0, B0
S − B̄0

S , and KL − KS mass

differences, severe constraints on g2F /m
2
ZF

are obtained, coming from the operators:

(d̄LγµbL)2 +H.c., (s̄LγµbL)2 +H.c., (d̄LγµsL)2 +H.c. (4.28)

respectively. Using typical values of quark masses and hadronic decay and bag parame-

ters [58], we estimate the various Wilson coefficients to find their contributions as follows:
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∆MB =4.5× 10−2 s21(g
2
F /m

2
ZF

) GeV3, (4.29)

∆MBs =6.4× 10−2 s22(g
2
F /m

2
ZF

) GeV3, (4.30)

∆MK =1.9× 10−3 s21s
2
2(g

2
F /m

2
ZF

) GeV3. (4.31)

Using Eq. (4.17) and assuming that the above contributions are no more than 10%

of their experimental values [10], we find the lower limits on mZF
/gF to be 10.2, 9.5, 0.84

TeV respectively. This is easily satisfied for mZF
> 4.0 TeV with gF = 0.13 from the LHC

bound discussed in the previous section.

In the scalar sector, since Φ1,2 both contribute to Md, the neutral scalar field

orthogonal to the SM Higgs field will also mediate flavor-changing interactions. The Yukawa

interactions are:

LY =
h1√
2v1

(m′dd̄
′
Ld
′
R +m′ss̄

′
Ls
′
R +m′bb̄

′
Lb
′
R) +

h2√
2v2

(m′dbd̄
′
Lb
′
R +m′sbs̄

′
Lb
′
R). (4.32)

Extracting again the leading flavor-changing terms, we obtain:

L′Y =

(
h2√
2v2
− h1√

2v1

)
(s1mbd̄LbR + s2mbs̄LbR − s1s2msd̄LsR

− s1s2mds̄LdR − s1s22mdb̄LdR − s32msb̄LsR), (4.33)
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where the physical scalar (v1h2 − v2h1)/
√
v21 + v22 = H + iA is a complex field, with mH '

mA.

Assuming negligible mixing between H or A with the SM h (identified as the 125

GeV particle observed at the LHC), we consider the following effective operators [59]:

s21m
2
b

8v22

(
1

m2
H

− 1

m2
A

)
(d̄LbR)2 − s21s

2
2mbmd

4v22

(
1

m2
H

+
1

m2
A

)
(d̄LbR)(d̄RbL) +H.c., (4.34)

s22m
2
b

8v22

(
1

m2
H

− 1

m2
A

)
(s̄LbR)2 − s42mbms

4v22

(
1

m2
H

+
1

m2
A

)
(s̄LbR)(s̄RbL) +H.c., (4.35)

s21s
2
2m

2
s

8v22

(
1

m2
H

− 1

m2
A

)
(d̄LsR)2 − s21s

2
2msmd

4v22

(
1

m2
H

+
1

m2
A

)
(d̄LsR)(d̄RsL) +H.c. (4.36)

The upper bounds on (1/v22)[(1/m2
H)− (1/m2

A)] from ∆MB,∆MBs ,∆MK are then

(4.5× 10−9, 5.3× 10−9, 4.5× 10−3) GeV−4, (4.37)

respectively, whereas those on (1/v22)[(1/m2
H) + (1/m2

A)] are

(1.4× 10−4, 1.7× 10−5, 8.0× 10−5) GeV−4. (4.38)

For v2 = 10 GeV, these are easily satisfied with for example mH = 500 GeV and mA = 520

GeV.
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4.6 Lepton sector of Model A

With the chosen U(1)F charges (0,−2,−4) of Table 4.3, the charged-lepton and

Dirac neutrino mass matrices (Ml andMD) are both diagonal. As for the 3× 3 Majorana

mass matrix MR of νR, it depends on the choice of scalar singlets which break U(1)F . We

have already used σ ∼ 1 [see Eq. (4.18)] to induce a small v2 [see Eq. (4.23)]. Call that σ1

and add σ2,4 ∼ 2, 4, with vacuum expectation values u1,2,4 respectively. Then

MR =


M0 M1 M2

M1 M3 0

M2 0 0

 , (4.39)

where M0 is an allowed invariant mas term, M1 comes from u2, and M2,3 from u4. The

seesaw neutrino mass matrix is then

Mν =MDM−1R MT
D =


0 0 a

0 b c

a c d

 , (4.40)

where the two texture zeros appear because of the form ofMR andMD being diagonal [60].

This form is known to be suitable for a best fit [61] to current neutrino-oscillation data with

normal ordering of neutrino masses.
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4.7 Basic structure of Model B

The quark structure of Model B is basically the same as that of Model A, with

the second Higgs doublet now having two units of U(1)F charge, i.e.

Φ2 = (φ+2 , φ
0
2) ∼ (1, 2, 1/2; 2). (4.41)

Hence σ2 ∼ (1, 1, 0; 2) is needed for the σ2Φ
†
2Φ1 term in Eq. (17).

In the gauge sector, again ZF → e−e+ is zero, and the branching fraction ZF →

µ−µ+ is now 2/51. The cu,d coefficients are then

cu = cd = 2g2F (2/51). (4.42)

For the same choice of gF = 0.13 for Model A, the present experimental lower

bound from LHC data is reduced from 4.0 TeV to 3.7 TeV. For quarks,

LZF
= gFZ

µ
F (ū′γµu

′ + c̄′γµc
′ − t̄′γµt′ + d̄′γµd

′ + s̄′γµs
′ − b̄′γµb′). (4.43)

Using Eqs. (12) and (13) to express the above in terms of mass eigenstates for the

d sector, and keeping only the leading flavor-changing terms, we find:

L′ZF
= 2gFZ

µ
F [−s1(d̄LγµbL + b̄LγµdL)− s2(s̄LγµbL + b̄LγµsL) + s1s2(d̄LγµsL + s̄LγµdL)].

(4.44)
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This differs from Eq. (4.25) only by an overall factor of −2. As for the scalar

sector, Eqs. (4.32) and (4.33) remain the same. Altogether, this means that Eqs. (4.9) to

(4.17) are also valid in Model B.

4.8 Lepton sector of Model B

With the chosen U(1)F charges (0,−1,−2) of Table 4.3, the charged-lepton and

Dirac neutrino mass matrices are given by

Ml =


m′e 0 m′eτ

0 mµ 0

0 0 m′τ

 , MD =


m′1 0 0

0 m′2 0

m′31 0 m′3

 . (4.45)

Using the scalar singlets σ1 ∼ 1 as well σ2, the νR Majorana mass matrix is again

given by Eq. (4.39). Now even though MD is not diagonal, Eq. (4.40) is still obtained,

thereby guaranteeing a best fit to current neutrino-oscillation data. The difference from

Model A is the presence of τ − e transitions from the nondiagonal Ml. However, for

m′eτ/m
′
τ < 0.1, the branching fraction of τ → eµ−µ+ is less than 2 × 10−11, far below the

current bound of 4.1× 10−8.

4.9 Application to LHC anomalies

Whereas ZF also mediates b→ sµ−µ+, its effect is too small in Models A and B to

explain the tentative LHC observations of B → K∗µ−µ+ and the ratio of B+ → K+µ−µ+

to B+ → K+e−e+ [62]. The reason is the stringent bound on mZF
from LHC data as
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a function of gF through the parameters cu,d of Eqs. (4.25) and (4.42). Suppose we take

n1,2,3 = (0, 0, 1) and n′1,2,3 = (0,−3, 0), then ZF couples to only µ−µ+ and b′b̄′, thus allowing

for b − s mixing, but cu,d = 0. This evades the direct LHC bound, and may be used to

explain the B anomalies if they persist. Of course, Eqs. (4.29) to (4.31) still hold, and a

full analysis of the detailed structure of B → K∗µ−µ+ will be required.

4.10 Conclusion

We have generalized the B − L symmetry as a gauge U(1)F extension of the

standard model, where quarks and leptons of each family may transform differently. We

have considered two new examples (A and B), each with two Higgs doublets and restricted

quark mass matrices consistent with data. The new ZF gauge boson couples differently

to each quark and lepton family, and is constrained by present data to be heavier than

about 4 TeV if gF = 0.13. Future data may reveal just such a ZF belonging to this class of

models. Flavor-changing interactions are suitably suppressed by the assignments of quarks

and leptons under U(1)F . In the leptonic sector, with the addition of a minimal set of Higgs

singlets, a Majorana neutrino mass matrix of two texture zeros may be obtained, leading

to a best fit of neutrino-oscillation data with normal ordering of neutrino masses.
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Chapter 5

Phenomenology of the Utilitarian

Supersymmetric Standard Model

Since the announcement [63, 64] by the ATLAS and CMS Collaborations at the

Large Hadron Collider (LHC) of a diphoton excess around 750 GeV, numerous papers [65]

have appeared explaining its presence or discussing its implications. In August of 2016, the

750 GeV excess was not confirmed indicating this as a statistical fluctuation [66]. In this

chapter, we study the phenomenology of a model proposed in 2002 [67], which has exactly

all the necessary and sufficient particles and interactions for this purpose. They were of

course there for solving other issues in particle physics. However, the ”observed” diphoton

excess may well be a first revelation [68] of this model, including its connection to dark

matter.

This 2002 model extends the supersymmetric standard model by a new U(1)X

gauge symmetry. It replaces the µ term with a singlet scalar superfield which also couples
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to heavy color-triplet superfields which are electroweak singlets. The latter are not ad hoc

inventions, but are necessary for the cancellation of axial-vector anomalies. It was shown

in Ref. [67] how this was accomplished by the remarkable exact factorization of the sum of

eleven cubic terms, resulting in two generic classes of solutions [69]. Both are able to enforce

the conservation of baryon number and lepton number up to dimension-five terms. As such,

the scalar singlet and the vectorlike quarks are indispensible ingredients of this 2002 model.

They are thus naturally suited for explaining the observed diphoton excess. In 2010 [70], a

specific version was discussed, which will be the subject of this paper as well. An important

byproduct of this study is the discovery of relaxed supersymmetric constraints on the Higgs

boson’s mass of 125 GeV. This is independent of the diphoton excess’ lack of confirmation.

5.1 Model

Consider the gauge group SU(3)C × SU(2)L × U(1)Y × U(1)X with the particle

content of Ref. [67]. For n1 = 0 and n4 = 1/3 in Solution (A), the various superfields

transform as shown in Table 1. There are three copies of Q, uc, dc, L, ec, N c, S1, S2; two

copies of U,U c, S3; and one copy of φ1, φ2, D,D
c.

The only allowed terms of the superpotential are thus trilinear, i.e.

Qucφ2, Qdcφ1, Lecφ1, LN cφ2, S3φ1φ2, N cN cS1, (5.1)

S3UU
c, S3DD

c, ucN cU, ucecD, dcN cD, QLDc, S1S2S3. (5.2)
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Superfield SU(3)C SU(2)L U(1)Y U(1)X
Q = (u, d) 3 2 1/6 0

uc 3∗ 1 −2/3 1/2
dc 3∗ 1 1/3 1/2

L = (ν, e) 1 2 −1/2 1/3
ec 1 1 1 1/6
N c 1 1 0 1/6

φ1 1 2 −1/2 −1/2
φ2 1 2 1/2 −1/2
S1 1 1 0 −1/3
S2 1 1 0 −2/3
S3 1 1 0 1

U 3 1 2/3 −2/3
D 3 1 −1/3 −2/3
U c 3∗ 1 −2/3 −1/3
Dc 3∗ 1 1/3 −1/3

Table 5.1: Particle content of proposed model.

The absence of any bilinear term means that all masses come from soft supersymmetry

breaking, thus explaining why the U(1)X and electroweak symmetry breaking scales are not

far from that of supersymmetry breaking. As S1,2,3 acquire nonzero vacuum expectation

values (VEVs), the exotic (U,U c) and (D,Dc) fermions obtain Dirac masses from 〈S3〉,

which also generates the µ term. The singlet N c fermion gets a large Majorana mass from

〈S1〉, so that the neutrino ν gets a small seesaw mass in the usual way. The singlet S1,2,3

fermions themselves get Majorana masses from their scalar counterparts 〈S1,2,3〉 through

the S1S2S3 terms. The only massless fields left are the usual quarks and leptons. They then

become massive as φ01,2 acquire VEVs, as in the minimal supersymmetric standard model

(MSSM).

Because of U(1)X , the structure of the superpotential conserves both B and (−1)L,

withB = 1/3 forQ,U,D, andB = −1/3 for uc, dc, U c, Dc; (−1)L odd for L, ec, N c, U, U c, D,Dc,
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and even for all others. Hence the exotic U,U c, D,Dc scalars are leptoquarks and decay

into ordinary quarks and leptons. The R parity of the MSSM is defined here in the same

way, i.e. R ≡ (−)2j+3B+L, and is conserved. Note also that the quadrilinear terms QQQL

and ucucdcec (allowed in the MSSM) as well as ucdcdcN c are forbidden by U(1)X . Proton

decay is thus strongly suppressed. It may proceed through the quintilinear term QQQLS1

as the S1 fields acquire VEVs, but this is a dimension-six term in the effective Lagrangian,

which is suppressed by two powers of a very large mass, say the Planck mass, and may

safely be allowed.

5.2 Gauge Sector

The new ZX gauge boson of this model becomes massive through 〈S1,2,3〉 = u1,2,3,

whereas 〈φ01,2〉 = v1,2 contribute to both Z and ZX . The resulting 2×2 mass-squared matrix

is given by [71]

M2
Z,ZX

=

 (1/2)g2Z(v21 + v22) (1/2)gZgX(v22 − v21)

(1/2)gZgX(v22 − v21) 2g2X [(1/9)u21 + (4/9)u22 + u23 + (1/4)(v21 + v22)]

 . (5.3)

Since precision electroweak measurements require Z − ZX mixing to be very

small [72], v1 = v2, i.e. tanβ = 1, is preferred. With the 2012 discovery [5, 6] of the

125 GeV particle, and identified as the one Higgs boson h responsible for electroweak sym-

metry breaking, tanβ = 1 is not compatible with the MSSM, but is perfectly consistent

here, as shown already in Ref. [70] and in more detail in the next section.
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Consider the decay of ZX to the usual quarks and leptons. Each fermionic partial

width is given by

Γ(ZX → f̄f) =
g2XMZX

24π
[c2L + c2R], (5.4)

where cL,R can be read off under U(1)X from Table 1. Thus

Γ(ZX → t̄t)

Γ(ZX → µ+µ−)
=

Γ(ZX → b̄b)

Γ(ZX → µ+µ−)
=

27

5
. (5.5)

This will serve to distinguish it from other Z ′ models [73].

At the LHC, limits on the mass of any Z ′ boson depend on its production by u

and d quarks times its branching fraction to e−e+ and µ−µ+. In a general analysis of Z ′

couplings to u and d quarks,

L =
g′

2
Z ′µf̄γµ(gV − gAγ5)f, (5.6)

where f = u, d. The cu, cd coefficients used in an experimental search [12, 13] of Z ′ are then

given by

cu =
g′2

2
[(guV )2 + (guA)2]B(Z ′ → l−l+), cd =

g′2

2
[(gdV )2 + (gdA)2]B(Z ′ → l−l+), (5.7)

where l = e, µ. In this model
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cu = cd =
g2X
4
B(Z ′ → l−l+). (5.8)

To estimate B(Z ′ → l−l+), we assume ZX decays to all SM quarks and leptons

with effective zero mass, all the scalar leptons with effective mass of 500 GeV, all the

scalar quarks with effective mass of 800 GeV, the exotic U,D fermions with effective mass

of 400 GeV (needed to explain the diphoton excess), and one pseudo-Dirac fermion from

combining S̃1,2 (the dark matter candidate to be discussed) with mass of 200 GeV. We find

B(Z ′ → l−l+) = 0.04, and for gX = 0.53, a lower bound of 2.85 TeV on mZX
is obtained

from the LHC data based on the 7 and 8 TeV runs.

5.3 Scalar Sector

Consider the scalar potential consisting of φ1,2 and S1,2,3. Whereas there are 2

copies of S3 and 3 copies each of S1,2, we can choose one copy each to be the one with

nonzero vacuum expectation value. We then assume that the superpotential linking them

is given by

W = fS3φ1φ2 + hS3S2S1, (5.9)

which is of course missing some terms. We have neglected them for simplicity. Its contri-

bution to the scalar potential is
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VF = f2(Φ†1Φ1 + Φ†2Φ2)S
∗
3S3 + h2(S∗1S1 + S∗2S2)S

∗
3S3 + |fΦ†1Φ2 + hS1S2|2, (5.10)

where φ1 has been redefined to Φ1 = (φ+1 , φ
0
1). The gauge contribution is

VD =
1

8
g22[(Φ†1Φ1)

2 + (Φ†2Φ2)
2 + 2(Φ†1Φ1)(Φ

†
2Φ2)− 4(Φ†1Φ2)(Φ

†
2Φ1)]

+
1

8
g21[−(Φ†1Φ1) + (Φ†2Φ2)]

2

+
1

2
g2X

[
−1

2
Φ†1Φ1 −

1

2
Φ†2Φ2 −

1

3
S∗1S1 −

2

3
S∗2S2 + S∗3S3

]2
. (5.11)

The soft supersymmetry-breaking terms are

Vsoft = µ21Φ
†
1Φ1 + µ22Φ

†
2Φ2 +m2

3S
∗
3S3 +m2

2S
∗
2S2 +m2

1S
∗
1S1

+ [m12S
∗
2S

2
1 +AffS3Φ

†
1Φ2 +AhhS3S2S1 +H.c.]. (5.12)

In addition, there is an important one-loop contribution from the t quark and its supersym-

metric scalar partners:

Vt =
1

2
λ2(Φ

†
2Φ2)

2, (5.13)

where
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λ2 =
6G2

Fm
4
t

π2
ln

(
mt̃1

mt̃2

m2
t

)
(5.14)

is the well-known correction which allows the Higgs mass to exceed mZ .

Let 〈φ01,2〉 = v1,2 and 〈S1,2,3〉 = u1,2,3, we study the conditions for obtaining a

minimum of the scalar potential V = VF + VD + Vsoft + Vt. We look for the solution

v1 = v2 = v which implies that

µ21 =µ22 + λ2v
2 (5.15)

0 =µ21 +Affu3 + f2(u23 + v2) +
1

2
g2X

(
v2 +

1

3
u21 +

2

3
u22 − u23

)
+ fhu1u2. (5.16)

We then require that this solution does not mix the Re(φ1,2) and Re(S1,2,3) sectors. The

additional conditions are

0 = Aff + (2f2 − g2X)u3, (5.17)

0 =
1

3
g2Xu1 + fhu2, (5.18)

0 =
2

3
g2Xu2 + fhu1. (5.19)

Hence

u1 =
√

2u2, fh =
−
√

2g2X
3

. (5.20)
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The 2× 2 mass-squared matrix spanning [
√

2Re(φ01),
√

2Re(φ02)] is

M2
φ =

 κ+ g2Xv
2/2 −κ+ g2Xv

2/2 + 2f2v2

−κ+ g2Xv
2/2 + 2f2v2 κ+ g2Xv

2/2 + 2λ2v
2

 , (5.21)

where

κ = (2f2 − g2X)u23 +
2

3
g2Xu

2
2 +

1

2
(g21 + g22)v2. (5.22)

For λ2v
2 << κ, the Higgs boson h ' Re(φ01 + φ02) has a mass given by

m2
h '

(
g2X + 2f2 + λ2

)
v2, (5.23)

whereas its heavy counterpart H ' Re(−φ01 + φ02) has a mass given by

m2
H ' (4f2 − 2g2X)u23 +

4

3
g2Xu

2
2 + (g21 + g22 − 2f2 + λ2)v

2. (5.24)

The conditions for obtaining the minimum of V in the S1,2,3 directions are

0 =m2
3 + g2Xu

2
3 +

(
3h2 − 4

3
g2X

)
u22 +

√
2Ahhu

2
2

u3
, (5.25)

0 =m2
2 + 2m12u2 +

(
2h2 +

8

9
g2X

)
u22 +

(
h2 − 2

3
g2X

)
u23 +

√
2Ahhu3, (5.26)

0 =m2
1 + 2m12u2 +

(
h2 +

4

9
g2X

)
u22 +

(
h2 − 1

3
g2X

)
u23 +

1√
2
Ahhu3. (5.27)

The 3× 3 mass-squared matrix spanning [
√

2Re(S1),
√

2Re(S2),
√

2Re(S3)] is given by
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m2
11 =

4

9
g2Xu

2
2 −

1√
2
Ahhu3 +

1

3
g2Xv

2, m2
22 = 2m2

11 − 2m12u2, (5.28)

m2
12 = m2

21 = 2
√

2m12u2 +Ahhu3 + 2
√

2

(
h2 +

2

9
g2X

)
u22 −

√
2

3
g2Xv

2, (5.29)

m2
33 = 2g2Xu

2
3 −
√

2Ahhu
2
2/u3 + (2f2 − g2X)v2, (5.30)

m2
13 = m2

31 = Ahhu2 + 2
√

2

(
h2 − 1

3
g2X

)
u3u2, (5.31)

m2
23 = m2

32 =
√

2Ahhu2 + 2

(
h2 − 2

3
g2X

)
u3u2. (5.32)

The 5× 5 mass-squared matrix spanning

[
√

2Im(φ01),
√

2Im(φ02),
√

2Im(S1),
√

2Im(S2),
√

2Im(S3)] has two zero eigenvalues, corre-

sponding to the would-be Goldstone modes

(1, 1, 0, 0, 0) and (v/2,−v/2,−
√

2u2/3,−2u2/3, u3), (5.33)

for the Z and ZX gauge bosons. One exact mass eigenstate isA12 = [2Im(S1)−
√

2Im(S2)]/
√

3

with mass given by

m2
A12

= −6m12u2. (5.34)

Assuming that v2 << u22,3, the other two mass eigenstates are A ' −Im(φ01) + Im(φ02) and

AS ' [u3Im(S1) +
√

2u3Im(S2) +
√

2u2Im(S3)]/
√
u22 + 3u23/2 with masses given by
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m2
A ' (4f2 − 2g2X)u23 +

4

3
g2Xu

2
2, (5.35)

m2
AS

' −Ahh
(

3u3√
2

+

√
2u22
u3

)
, (5.36)

respectively. The charged scalar H± = (−φ±1 + φ±2 )/
√

2 has a mass given by

m2
H± = (4f2 − 2g2X)u23 +

4

3
g2Xu

2
2 + (g22 − 2f2)v2. (5.37)

5.4 Physical Scalars and Pseudoscalars

In the MSSM without radiative corrections,

m2
H± = m2

A +m2
W , (5.38)

m2
h,H =

1

2

(
m2
A +m2

Z ∓
√

(m2
A +m2

Z)2 − 4m2
Zm

2
A cos2 2β

)
, (5.39)

where tanβ = v2/v1. For v1 = v2 as in this model, mh would be zero. There is of

course the important radiative correction from Eq. (5.14), but that alone will not reach

125 GeV. Hence the MSSM requires both large tanβ and large radiative correction, but a

significant tension remains in accommodating all data. In this model, as Eq. (5.23) shows,

m2
h ' (g2X + 2f2 + λ2)v

2, where v = 123 GeV. This is a very interesting and important

result, allowing the Higgs boson mass to be determined by the gauge U(1)X coupling gX in

addition to the Yukawa coupling f which replaces the µ parameter, i.e. µ = fu3. There is
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no tension between mh = 125 GeV and the superparticle mass spectrum. Since λ2 ' 0.25

for m̃t ' 1 TeV, we have the important constraint

√
g2X + 2f2 ' 0.885. (5.40)

For illustration, we have already chosen gX = 0.53. Hence f = 0.5 and for u3 = 2

TeV, fu3 = 1 TeV is the value of the µ parameter of the MSSM. Let us choose u2 = 4 TeV,

then mZX
= 2.87 TeV, which is slightly above the present experimental lower bound of 2.85

TeV using gX = 0.53 discussed earlier.

As for the heavy Higgs doublet, the four components (H±, H,A) are all degenerate

in mass, i.e. m2 ' (4f2 − 2g2X)u23 + (4/3)g2Xu
2
2 up to v2 corrections. Each mass is then

about 2.78 TeV. In more detail, as shown in Eq. (5.37), m2
H± is corrected by g22v

2 = m2
W

plus a term due to f . As shown in Eq. (5.24), m2
H is corrected by (g21 + g22)v2 = m2

Z plus a

term due to f and λ2. These are exactly in accordance with Eqs. (5.38) and (5.39).

In the S1,2,3 sector, the three physical scalars are mixtures of all three Re(Si)

components, whereas the physical pseudoscalar A12 has no Im(S3) component. Since only

S3 couples to UU c, DDc, and φ1φ2, a candidate for the 750 GeV diphoton resonance must

have an S3 component. It could be one of the three scalars or the pseudoscalar AS , or

the other S3 without VEV. In the following, we will consider the last option, specifically

a pseudoscalar χ with a significant component of this other S3. This allows the χUU c,

χDDc and χφ1φ2 couplings to be independent of the masses of U , D, and the charged

higgsino. The other scalars and pseudoscalars are assumed to be much heavier, and yet to

be discovered.
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5.5 Diphoton Excess

In this model, other than the addition of N c for seesaw neutrino masses, the

only new particles are U,U c, D,Dc and S1,2,3, which are exactly the ingredients needed to

explain the diphoton excess at the LHC. The allowed S3UU
c and S3DD

c couplings enable

the one-loop gluon production of S3 in analogy to that of h.

g

g

S3

U,D

U,D

Figure 5.1: One-loop production of S3 by gluon fusion.

The one-loop decay of S3 to two photons comes from these couplings as well as S3φ1φ2.

γ

γ

S3

U,D, φ

U,D, φ

Figure 5.2: One-loop decay of S3 to two photons.

In addition, the direct S1S2S3 couplings enable the decay of S3 to other final

states, including those of the dark sector, which contribute to its total width. The fact that

the exotic U,U c, D,Dc scalars are leptoquarks is also very useful for understanding [74]

other possible LHC flavor anomalies. In a nutshell, a desirable comprehensive picture of
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possible new physics beyond the standard model is encapsulated by this existing model. In

the following, we assume that the pseudoscalar χ is the 750 GeV particle, and show how

its production and decay are consistent with the present data.

The production cross section through gluon fusion is given by

σ̂(gg → χ) =
π2

8mχ
Γ(χ→ gg)δ(ŝ−m2

χ). (5.41)

For the LHC at 13 TeV, the diphoton cross section is roughly [75]

σ(gg → χ→ γγ) ' (100 pb)× (λg TeV)2 ×B(χ→ γγ), (5.42)

where λg is the effective coupling of χ to two gluons, normalized by

Γ(χ→ gg) =
λ2g
8π
m3
χ. (5.43)

Let the χQ̄Q coupling be fQ, where Q is a leptoquark fermion, then

λg =
αs
πmχ

∑
Q

fQF (m2
Q/m

2
χ), (5.44)

where [76]

F (x) = 2
√
x

[
arctan

(
1√

4x− 1

)]2
, (5.45)

which has the maximum value of π2/4 = 2.47 as x→ 1/4. Let f2Q/4π = 0.21 and
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F (m2
Q/m

2
χ) = 2.0 (i.e. mQ = 380 GeV) for all Q = U,U,D, then λg = 0.49 TeV−1. For the

corresponding

Γ(χ→ γγ) =
λ2γ
64π

m3
χ, (5.46)

the φ± higgsino contributes as well as U,D. However, its mass is roughly fu3 = 1 TeV, so

F (xφ) = 0.394, and

λγ =
2α

πmχ

∑
ψ

NψQ
2
ψfψF (xψ), (5.47)

where ψ = U,U,D, φ± and Nψ is the number of copies of ψ. Using f2φ/4π = 0.21 as well,

λγ = 0.069 TeV−1 is obtained. We then have Γ(χ → γγ) = 10 MeV and Γ(χ → gg) = 4.0

GeV.If B(χ→ γγ) = 2.5×10−4, then σ = 6 fb, and the total width of χ is 40 GeV, in good

agreement with data [63, 64].

Note the important fact that we have considered 380 GeV for the mass of the

leptoquark fermions. If they are leptoquark scalars, then their mass would be constrained

by LHC data to be above 1 TeV or so. As fermions, Q has odd R parity, and must decay into

the lightest supersymmetric particle, which is discussed in more detail below. We assume

200 GeV for this particle, hence there is no useful bound on mQ at present.

As mentioned earlier, there are 2 copies of S3 and 3 copies each of S1,2. In addition

to the ones with VEVs in their scalar components, there are 5 other superfields. One pair

S̃1,2 may form a pseudo-Dirac fermion, and be the lightest particle with odd R parity. It

will couple to χ, say with strength fS which is independent of all other couplings that we
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have discussed, then the tree-level decay χ → S̃1S̃2 dominates the total width of χ and is

invisible.

Γ(χ→ S̃1S̃2) =
f2S
8π

√
m2
χ − 4m2

S . (5.48)

For mχ = 750 GeV and mS = 200 GeV, we find Γ = 36 GeV if fS = 1.2. These

numbers reinforce our numerical analysis to support the claim that χ is a possible candidate

for the 750 GeV diphoton excess. Note also that λg and λγ have scalar contributions which

we have not considered. Adding them will allow us to reduce the fermion contributions we

have assumed and still get the same final results.
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Figure 5.3: Allowed region for diphoton cross section of 6.2± 1 fb.

If we disregard the decay to dark matter (fS = 0), then the total width of χ is

dominated by Γ(χ→ gg), which is then less than a GeV. Assuming that the cross section for

the diphoton resonance is 6.2± 1 fb [75], we plot the allowed values of f2Q/4π versus mQ for

both fS = 1.2 which gives a total width of about 40 GeV for χ, and fS = 0 which requires

much smaller values of f2Q/4π. Since χ must also decay into two gluons, we show the diject
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exclusion upper limits (∼ 2 pb) from the 8 TeV data in each case as well. Our choice of

the pseudoscalr χ to be the 750 GeV diphoton resonance is motivated by the necessity of

large couplings to U,D leptoquark fermions for explaining the large width of about 40 GeV

observed by ATLAS. If we take the evidence of CMS that this width is narrow, then as

Fig. 3 shows, we can have much smaller couplings and much greater masses for U,D. In

that case, we can use a physical scalar, with mass-squared matrix given in Eqs.(5.28) to

(5.32), which is directly associated with the µ term.

5.6 Scalar Neutrino and Neutralino Sectors

In the neutrino sector, the 2× 2 mass matrix spanning (ν,N c) per family is given

by the well-known seesaw structure:

Mν =

 0 mD

mD mN

 , (5.49)

where mD comes from v2 and mN from u1.There are two neutral complex scalars with

odd R parity per family, i.e. ν̃ = (ν̃R + iν̃I)/
√

2 and Ñ c = (Ñ c
R + iÑ c

I )/
√

2. The 4 × 4

mass-squared matrix spanning (ν̃R, ν̃I , Ñ
c
R, Ñ

c
I ) is given by

M2
ν̃,Ñc =



m2
ν̃ 0 ADmD 0

0 m2
ν̃ 0 −ADmD

ADmD 0 m2
Ñc +ANmN 0

0 −ADmD 0 m2
Ñc −ANmN


. (5.50)
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In the MSSM, ν̃ is ruled out as a dark-matter candidate because it interacts elas-

tically with nuclei through the Z boson. Here, the AN term allows a mass splitting between

the real and imaginary parts of the scalar fields, and avoids this elastic-scattering constraint

by virtue of kinematics. However, we still assume their masses to be heavier than that of

S̃1,2, discussed in the previous section.

In the neutralino sector, in addition to the 4×4 mass matrix of the MSSM spanning

(B̃, W̃3, φ̃
0
1, φ̃

0
2) with the µ parameter replaced by fu3, i.e.

M0 =



M1 0 −g1v1/
√

2 g1v2/
√

2

0 M2 g2v1/
√

2 −g2v2/
√

2

−g1v1/
√

2 g2v1/
√

2 0 −fu3

g1v2/
√

2 −g2v2/
√

2 −fu3 0


, (5.51)

there is also the 4× 4 mass matrix spanning (X̃, S̃3, S̃2, S̃1), i.e.

MS =



MX

√
2gXu3 −2

√
2gXu2/3 −

√
2gXu1/3

√
2gXu3 0 hu1 hu2

−2
√

2gXu2/3 hu1 0 hu3

−
√

2gXu1/3 hu2 hu3 0


. (5.52)
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The two are connected through the 4× 4 matrix:

M0S =



0 0 0 0

0 0 0 0

−gxv1/
√

2 −fv2 0 0

−gXv2/
√

2 −fv1 0 0


. (5.53)

These neutral fermions are odd under R parity and the lightest could in principle

be a dark-matter candidate. To avoid the stringent bounds on dark matter with the MSSM

alone, we assume again that all these particles are heavier than S̃1,2, as the dark matter

discussed in the previous section.

5.7 Dark Matter

The 5 × 5 mass matrix spanning the 5 singlet fermions (S̃1, S̃2, S̃1, S̃2, S̃3), corre-

sponding to superfields with zero VEV for their scalar components, is given by:

MS̃ =



0 m0 0 0 m13

m0 0 0 0 m23

0 0 0 M3 M2

0 0 M3 0 M1

m13 m23 M2 M1 0


. (5.54)

Note that the 4 × 4 submatrix spanning (S̃1, S̃2, S̃1, S̃2) has been diagonalized to

form two Dirac fermions. We can choose m0 to be small, say 200 GeV, and M1,2,3 to be

71



large, of order TeV. However, because of the mixing terms m13,m23, the light Dirac fermion

gets split into two Majorana fermions, so it should be called a pseudo-Dirac fermion.

The dark matter with odd R parity is the lighter of the two Majorana fermions,

call it S̃, contained in the pseudo-Dirac fermion formed out of S̃1,2 as discussed in Sec. 5.6.

It couples to the ZX gauge boson, but in the nonrelativistic limit, its elastic scattering cross

section with nuclei through ZX vanishes because it is Majorana. It also does not couple

directly to the Higgs boson h, so its direct detection at underground search experiments is

very much suppressed. However, it does couple to AS which couples also to quarks through

the very small mixing of AS with A. This is further suppressed because it contributes only

to the spin-dependent cross section. To obtain a spin-independent cross section at tree level,

the constraint of Eqs. (5.17) to (5.19) have to be relaxed so that h mixes with S1,2,3.

Let the coupling of h to S̃S̃ be ε, then the effective interaction for elastic scattering

of S̃ with nuclei through h is given by

Leff =
εfq
m2
h

S̃S̃q̄q, (5.55)

where fq = mq/2v = mq/(246 GeV). The spin-independent direct-detection cross section

per nucleon is given by

σSI =
4µ2DM
πA2

[λpZ + (A− Z)λn]2, (5.56)

where µDM = mDMMA/(mDM +MA) is the reduced mass of the dark matter. Using [77]
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λN =

∑
u,d,s

fNq +
2

27

1−
∑
u,d,s

fNq

 εmN

(246 GeV)m2
h

, (5.57)

with [78]

fpu = 0.023, fpd = 0.032, fps = 0.020, (5.58)

fnu = 0.017, fnd = 0.041, fns = 0.020, (5.59)

we find λp ' 3.50 × 10−8 GeV−2, and λn ' 3.57 × 10−8 GeV−2. Using A = 131,

Z = 54, and MA = 130.9 atomic mass units for the LUX experiment [14], and mDM = 200

GeV, we find for the upper limit of σSI < 1.5× 10−45 cm2, the bound ε < 6.5× 10−4.

We have already invoked the χS̃1S̃2 coupling to obtain a large invisible width for

χ. Consider now the fermion counterpart of χ, call it S̃′, and the scalar counterparts of S̃1,2,

then the couplings S̃′S̃1S2 and S̃′S̃2S1 are also fS = 1.2. Suppose one linear combination of

S1,2 , call it ζ, is lighter than 200 GeV, then the thermal relic abundance of dark matter is

determined by the annihilation S̃S̃ → ζζ, with a cross section times relative velocity given

by:

σ × vrel =
f4ζm

2
S′

√
1−m2

ζ/m
2
S

16π(m2
S′ +m2

S −m2
ζ)

2
. (5.60)

Setting this equal to the optimal value [44] of 2.2×10−26 cm3/s, we find fζ ' 0.62

for mS′ = 1 TeV, mS = 200 GeV, and mζ = 150 GeV. Note that ζ stays in thermal

equilibrium through its interaction with h from a term in VD. It is also very difficult to be
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produced at the LHC, because it is an SM singlet, so its mass of 150 GeV is allowed.

5.8 Conclusion

The utilitarian supersymmetric U(1)X gauge extension of the Standard Model of

particle interactions proposed 14 years ago [67] allows for two classes of anomaly-free models

which have no µ term and conserve baryon number and lepton number automatically. A

simple version [70] with leptoquark superfields is especially interesting because of existing

LHC flavor anomalies.

The new ZX gauge boson of this model has specified couplings to quarks and

leptons which are distinct from other gauge extensions and may be tested at the LHC. On

the other hand, a hint may already be discovered with the announcements by ATLAS and

CMS of a diphoton excess at around 750 GeV. It may well be the revelation of the singlet

scalar (or pseudoscalar) S3 predicted by this model which also predicts that there should

be singlet leptoquarks and other particles that S3 must couple to. Consequently, gluon

fusion will produce S3 which will then decay to two photons together with other particles,

including those of the dark sector. This scenario explains the observed diphoton excess, all

within the context of the original model, and not an invention after the fact.

Since S3 couples to leptoquarks, the S3 → l+i l
−
j decay must occur at some level.

As such, S3 → e+µ− would be a very distinct signature at the LHC. Its branching fraction

depends on unknown Yukawa couplings which need not be very small. Similarly, the S3

couplings to φ1φ2 as well as leptoquarks imply decays to ZZ and Zγ with rates comparable

to γγ.
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An important byproduct of this study is the discovery of relaxed supersymmetric

constraints on the Higgs boson’s mass of 125 GeV. It is now given by Eq. (5.23), i.e.

m2
h ' (g2X +2f2 +λ2)v

2, which allows it to be free of the tension encountered in the MSSM.

This prediction is independent of the diphoton excess.

Most importantly, since S3 replaces the µ parameter, its association with the

750 GeV excess implies the existence of supersymmetry. If confirmed and supported by

subsequent data, it may even be considered in retrospect as the first evidence for the long-

sought existence of supersymmetry.
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Part III

Summary
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Chapter 6

Conclusion

As mentioned in chapter 1 the SM cannot accommodate the neutrino mass and

dark matter experimental observations. One possible explanation is to introduce a gauged

U(1) extension.

In Part I, two examples of gauged U(1)B−L models are introduced. Chapter 2

exotic fermion singlets are introduced such that neutrino mass is generated at the one-

loop level through dark matter (i.e. the scotogenic mechanism). In chapter three, three

right-handed neutrinos are introduced with the unconventional charge (5,−4,−4) and the

U(1)B−L is spontaneously broken to Z3 lepton number. These three right-handed neutri-

nos, along with three pairs of neutral singlets NL,R are connected to the SM left-handed

neutrinos via two unique scalars χ3,6 such that the neutrinos are Dirac with see-saw mass

generation. A complex neutral scalar χ2 is also introduced under this symmetry, which while

not absolutely stable, decays with a lifetime greater than that of the Universe yielding an

example of Z3 dark matter.
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In Part II, three further examples of gauged U(1) models are introduced. In

Chapter 4 a generalized look at gauged U(1) models. Under the assumption that the

entire particles family contains the same charge, a restriction is derived from the triangle

anomaly. Using this condition two models were put forth and how these models affected

both the quark and lepton sectors was explored. In Chapter 5, a U(1) supersymmetric

gauged extension was made to the SM. A prediction for the 750 GeV diphoton excess was

proposed as well as the LHC constraints put on the gauged Zx boson were explored.
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