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Abstract of the Dissertation

Estimating Unobserved Group Effects

by

Benjamin David Shapiro

Doctor of Philosophy in Economics

University of California, Los Angeles, 2024

Professor Denis Chetverikov, Chair

This dissertation introduces a time-varying unobserved group-period fixed effect esti-

mator designed to address specific challenges in causal inference. The proposed estimator

accommodates scenarios where treated individuals can transition between unobserved groups

following treatment. Developed within a difference-in-differences framework, it is particularly

valuable for controlling violations of parallel trends arising from unobserved group changes.

For example, when estimating the impact of job loss on health outcomes without observing

insurance status, the estimator helps account for the confounding effect of losing insurance

(due to job loss) on health. Additionally, the approach proves useful for estimating the

average treatment effect on the treated (ATT) when treatment compliance is unobserved.

The second chapter introduces a mixed integer optimization (MIO) procedure for

estimating individual group assignments. While prior literature has often relied on K-means

clustering for identifying unobserved group membership, this approach lacks asymptotic

guarantees, and finite sample performance in the presence of non-spherical distributions and

outliers. The MIO formulation, by contrast, provides global optimality and asymptotic guar-

antees, ensuring accurate estimation of group membership and convergence to our theoretical

characterization of the estimator’s distribution. However, due to the NP-Hard nature of the

problem, the MIO approach becomes infeasible for datasets with more than 200 entities.

To address MIO’s computational limitations, the third chapter presents a novel
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branch-and-bound algorithm leveraging proof that our estimators decision boundary is lin-

ear. Instead of directly searching over individual group memberships, the algorithm searches

for the linear decision boundary that determines group assignments. This method signif-

icantly improves computational efficiency, allowing it to handle large-scale problems. For

instance, while the MIO formulation may take months to solve a problem with 1,000 entities,

the branch-and-bound algorithm can solve it within seconds. We show that this optimiza-

tion procedure can offer significant improvements in accuracy over the K-means algorithm.

Although the current implementation is limited to low-dimensional settings with two un-

observed groups, the framework holds promise for extension to high-dimensional settings

involving multiple groups.
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CHAPTER 1

Time Varying Unobserved Group Period Fixed Effects

Estimator

1.1 Introduction

In many applications, researchers encounter challenges when individuals transition be-

tween unobserved groups, which can confound the estimation of effects of interest. For

instance, consider studying the impact of job loss on mental health outcomes. When some-

one loses their job, they may also lose their health insurance. Failing to account for this

change in health insurance status could bias estimates of the true effect of job loss on mental

health.

This study aims to develop a novel estimator to consistently estimate individual group

choices across time, enabling precise estimation of the effect of interest. We develop this esti-

mator within the difference-in-differences framework where we assume treated are changing

groups due to treatment and controls do not change groups. This assumption will allow us

to use the controls as an identification mechanism to connect treated group labels between

pre/post treatment helping us identify group change effects.

This chapter extends the time-varying unobserved group fixed effects estimator intro-

duced by Bonhomme and Manresa (2015) [BM15], who established the specific asymptotic

assumptions required for consistency and asymptotic normality in the panel data setting.

Our contribution is to relax their framework allowing for individuals to transition between

groups over time using a difference-in-difference setting. We also develop a global optimiza-

tion procedure for estimating group membership but that will be discussed more in Chapter
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2 and 3.

This study was motivated by the rise of quasi-experimental methods, the continued re-

liance on traditional fixed effects, and the need for a more flexible fixed effect estimator.

Currie, Kleven, and Zwiers (2020) [CKZ20] document these trends by estimating the fre-

quency different methodologies are mentioned in NBER working papers and top 5 journals.

They found that the use of the difference-in-differences method increased from near zero to

25% of working papers between 1980 and 2016. They also found that the use of fixed effects

increased from 20% to 60% between 1980 and 2016. Suggesting modern economists heavily

rely on difference-in-difference and are increasingly facing unobserved heterogeneity.

To contextualize modern endogeneity issues within quasi-experimental studies, we con-

sider several examples. In Ayyagari and Shane (2015) [AS15], the authors estimate the

impact of medicaid drug coverage expansion on mental health using longitudinal data. They

observe Medicaid eligibility, partially observe private insurance status, and do not observe

Medicaid use.

As a result, they can only estimate the intent-to-treat (ITT) effect, rather than the

average treatment effect on the treated (ATT). If they fully observed all the information

they could estimate the effect of Medicaid drug coverage expansion given a person was

previously insured or uninsured. This would provide a more complete picture of the policies

effect.

Similarly, Gebel and Vobemer (2014) [GV14] estimate the impact of job loss on health

outcomes using longitudinal data, but they do not account for health insurance status, which

introduces a confounding factor into their analysis. By observing health insurance status,

they could disentangle the effect of job loss from the effect of losing insurance, thereby

providing a clearer understanding of how employment loss affects health outcomes. If the

loss of insurance is found to be the primary driver of negative health effects, this would

lend strong support to policies aimed at helping the unemployed maintain health coverage.

These and other examples demonstrate the confounding effects caused by unobserved group

changes in the quasi-experimental settings. Our estimator addresses these challenges by
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estimating individuals group choices over time allowing us to control for these confounding

effects.

1.2 Literature Review

Estimation of latent groups in panel data has been a focus of extensive research, with

various methods proposed, including mixture models, differencing techniques, and factor

models. In this chapter we extend Bonhomme and Manresa (2015) who introduced the

Grouped Fixed Effects (GFE) estimator, a seminal approach for modeling unobserved group

structures by clustering individuals into groups with shared fixed effects through minimizing

the sum of squared residuals. Extensions to the GFE framework include Rivero (2023)

[Riv23], who developed the Weighted Grouped Fixed Effects (WGFE) estimator, addressing

group-specific heteroskedasticity to improve classification accuracy and estimation efficiency.

The GFE estimator is also closely related to the interactive fixed effects (IFE) model proposed

by Bai (2009) [Bai09], which models unobserved heterogeneity as a linear combination of

time-varying factors and individual-specific loadings. While the IFE framework is flexible,

its restrictive assumptions, such as factor orthogonality, limit its practical applicability. Ando

and Bai (2016) [AB16] extended the IFE framework to explicitly account for latent group

structures, combining the strengths of interactive effects and grouped fixed effects for a more

nuanced understanding of unobserved heterogeneity.

An alternative perspective is provided by Bester and Hansen (2016) [BH16], who devel-

oped a latent group fixed effects estimator allowing individual-specific effects to vary within

groups. They identified two primary sources of bias, incidental parameter bias and misspec-

ification bias, and proposed grouping individuals with similar effects or reducing group sizes

to address these. While innovative, practical challenges arise when individual effects can

vary within group.

In a related strand, finite mixture models have been used to estimate latent classes,

with Deb and Trivedi (1997) [DT97] applying a finite mixture negative binomial model to

3



healthcare demand and Sun (2005) [Sun05] using multinomial logistic regression to estimate

latent group choices. A key limitation of finite mixture models is the need to specify the

error term distribution, adding complexity to estimation.

Theoretical insights into the incidental parameter problem also play a crucial role in un-

derstanding biases in panel data models with latent groups. Hahn and Moon (2010) [HM10]

demonstrated that in game-theoretic models with finite equilibria, the incidental parameter

problem is minimal even when the cross-sectional dimension grows exponentially with time.

Additionally, Hahn and Newey (2004) [HN04] introduced a jackknife bias correction method,

providing broader implications for addressing incidental parameter bias.

In this chapter we will assume the number of unknown groups is known. However, when

the number of latent groups is unknown, Bonhomme and Manresa (2015) and Bai (2009) sug-

gested using Bayesian Information Criteria (BIC) for group estimation. Su, Shi, and Phillips

(2016) [SSP16] advanced this by developing the Classifier-Lasso (C-Lasso) method, which

simultaneously identifies group memberships and estimates model parameters. Huang, Jin,

and Su (2020) [HJS20] later extended C-Lasso to nonstationary panels, enabling applications

in dynamic settings.

In summary, these developments highlight the diversity of approaches for modeling latent

groups in panel data, ranging from fixed effects to mixture models and penalized estimation

methods. Extensions of the GFE framework, advancements in factor models, and tools for

estimating unknown group counts provide robust methodologies for addressing unobserved

heterogeneity. The integration of these approaches to handle more complex settings, in-

cluding dynamic group membership and unknown group structures, represents a promising

direction for future research.

1.3 Difference-in-Difference Framework

In this section, we introduce our Difference-in-Differences (DiD) model, which is de-

signed to accommodate multiple time periods and account for effects that vary based on
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unobserved groups. The DiD model is not only widely used in Economics due to its pop-

ularity, but it also provides a powerful framework for leveraging control variables as an

identification mechanism, enabling us to link treated group labels over time. To illustrate,

consider the following data generating process:

yit = λ0
g0it,t

+ ζ0
g0it

1{DiT ′ = 1}+ δ0
g0ib,g

0
ia
Dit + x′itβ

0 + εit (1.1)

In equation 1.1, g0
it represents which group individual i belongs to at time t where 0 is

used to represent the ”true” group or ”true” parameter. We assume that treated individuals

can only change groups at the treatment period, denoted T ′, and there is only one treatment

period. Thus, we can denote the before treatment group as g0
ib ∈ {1, ..., G} and the after

treatment group as g0
ia ∈ {1, ..., G} as described in equation 1.2.

g0
it =


g0
ib, if t < T ′

g0
ia, if t ≥ T ′

(1.2)

Equation 1.1 presents a standard Difference-in-Difference framework with multiple time

periods. For clarity, the components of the model are defined as follows. First, the group-

specific time trends, λ0
g0it,t
∈ ΛGT , account for time-varying trends across different groups.

The treatment status of individual i at time t is captured by Dit, and the intercept for

treated individuals in group g0
it is represented by ζ0

g0it
∈ ZG. This specification allows for not

only a difference in average outcomes between treated and control groups, but also for the

possibility that the within-group differences among treated individuals may differ from those

among controls. If needed, control variables, x′itβ
0 where β0 ∈ Bp, can be incorporated to

address potential violations of the parallel trends assumption. Lastly, the treatment effect

parameter, δ0
g0ib,g

0
ia
∈ ∆G2

, captures the treatment effect while accounting for the individual’s

group membership both before (g0
ib) and during (g0

ia) the treatment period. This ensures that

the effect of treatment can vary not only across time but also depending on an individual’s

group affiliation at different stages. To simplify notation we will denote 1Di = 1{DiT ′ = 1}
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thus our outcome model becomes.

yit = λ0
g0it,t

+ ζ0
g0it

1Di + δ0
g0ib,g

0
ia
Dit + x′itβ

0 + εit (1.3)

1.4 Time Varying Unobserved Group Period Estimator

In this section we develop our time varying unobserved group period fixed effects estima-

tor (TV-GPFE). We estimate our parameters using a least squares framework where we not

only minimize over our parameters but also over all possible individual group combinations

γ = {(g1b, g1a), . . . , (gNb, gNa)} ∈ ΓG
2
. It is important to note that an exhaustive search,

even for relatively small problems, would take an impractically long time to compute. This

poses a significant computational challenge. In the next section, we will propose global and

local estimation procedures based on sample size to address this issue.

(λ̂, ζ̂, δ̂, β̂, γ̂) = argmin
(λ,ζ,δ,β,γ)∈(ΛGT ,ZG,∆G2 ,BP ,ΓG2 )

∑N
i=1

∑T
t=1(yit − λgit,t − ζgit1Di − δgib,giaDit − x′itβ)2 (1.4)

lets also define the infeasible estimator where we know individual group choices for each

period.

(λ̃, ζ̃, δ̃, β̃) = argmin
(λ,ζ,δ,β)∈(ΛGT ,ZG,∆G,BP )

∑N
i=1

∑T
t=1(yit − λg0it,t − ζg0it1Di − δg0ib,g0iaDit − x′itβ)2 (1.5)

In the subsequent sections, we will demonstrate that our TV-GPFE estimator converges

in probability to our infeasible estimator. This implies that we can perform inference around

the distribution of our infeasible estimator, which can be conceptualized as a panel data

model where T approaches infinity.

There are numerous potential extensions to this model and estimator. For instance,

if there is a positive probability of observing an individuals group choice for every possible

group then you no longer need group identification assumptions and optimization will become

faster. Below, we present several other possible extensions for the model.
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1.4.1 Extension 1: Staggered Difference-in-Difference

A widely used approach in Economics is the Staggered Difference-in-Differences (DiD)

model, where treatment is implemented at different times for different individuals. To ac-

count for this staggered treatment, we modify the treatment period indicator to be individual-

specific, denoted as T ′i . Consequently, the treatment indicator Dit is redefined as follows:

Dit =


1 if t ≥ T ′i

0 if t < T ′i

If we assume that the treatment periods for individuals are compact, we can consistently

estimate the individuals’ group selection both before and after treatment, under the same

assumptions as in our current model. This framework enables us to model situations where

treatment timing varies across individuals. Formally, our staggered treatment model is

defined as follows:

yit = λ0
g0it,t

+ ζ0
g0it

1{DiT ′i
= 1}+ δ0

g0ib,g
0
ia
Dit + x′itβ

0 + εit

1.4.2 Extension 2: Intent To Treat

In many applications, we do not directly observe whether individuals were treated (Dit);

rather, we only observe their eligibility for treatment, denoted as Zit. Consequently, we

cannot calculate the Average Treatment on the Treated (ATT) and must instead estimate

the Intent to Treat (ITT) effect. The ITT is essentially the ATT biased towards zero. Ideally,

we aim to estimate the ATT.

Our unobserved groups consist of individuals who comply with the treatment and those

who do not. We hypothesize that if an individual complies with the treatment, they receive

the treatment effect δ; otherwise, they receive no effect. Let us define δgia accordingly.

7



δgia =


δ if Dit = 1

0 if Dit = 0

Now we set up our model to allow for differences in behavior over time between compliers

and non-compliers, as well as distinct intercepts for these groups.

yit = λ0
g0it,t

+ ζ0
g0it

1Di + δ0
g0ia
Zit + x′itβ

0 + εit

By estimating which group each individual is in we can back out ATT when treating

treatment effects as fixed effects.

1.4.3 Extension 3: Multiple Treatments

In certain applications, it is important to evaluate the effectiveness of multiple treat-

ments. To test multiple experiments we can randomly assign individuals to several groups.

Let D′it represent a vector of P treatment group indicators D1
it, ..., D

P
it and let δ′

g0ib,g
0
ia

denote a

vector of P treatment effects δ1
g0ib,g

0
ia
, ..., δP

g0ib,g
0
ia

. We will assume individuals receive the treat-

ment simultaneously but you could staggered treatment over time. As long as the number

of treatment groups and treatment times are compact then using the assumptions laid out

in our asymptotic section we will be able to estimate the following model consistently.

yit = λ0
g0it,t

+ ζ0
g0it

1Di +D′itδg0ib,g0ia + x′itβ
0 + εit

1.4.4 Extension 4: Random Effects

In the current framework, we assume that unobserved group effects are fixed. How-

ever, in some cases, it may be more appropriate to model these effects as originating from

an unknown group-specific distribution. This adjustment introduces significant challenges

in group identification, particularly when the distributions overlap, making it difficult to
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distinguish between groups. Nonetheless, when one group follows a distribution and the

other is fixed, identification becomes more feasible. This situation arises in the compliance

literature, where it is uncertain whether an individual received treatment. If an individual

received the treatment, their outcomes are drawn from the treated distribution; if they did

not, they exhibit a fixed zero treatment effect.

In future research, we aim to demonstrate that by constructing a shrinking window

around the fixed point (zero), it is possible to ensure that the probability of a treated

individual being in this window approaches zero, while the probability of a non-treated

individual being in the window converges to one, as both the number of individuals (N)

and the number of time periods (T) increase. Thus, the model’s success will depend on the

relative growth rates of N and T.

1.5 Optimization

As can be seen in equation 1.4, conducting an exhaustive search over individual group

choices becomes computationally infeasible as the problem size increases. Bonhomme and

Manresa (2015) introduced a K-means procedure that efficiently estimates individual group

choices, though it lacks asymptotic guarantees of correct classification. In this section, we

propose a novel mixed integer optimization approach that ensures the accurate identification

of individuals’ true group memberships, providing a more robust solution in the asymptotic

limit. This procedure was built upon a previous paper on mixed integer optimization for

estimating group choice in a panel data setting. We discuss this in more detail in chapter 2.

1.5.1 Mixed Integer Optimization

Bertsimas, King, and Mazumder (2016) [BKM16] demonstrated that advancements in

integer optimization, coupled with hardware improvements, have led to a remarkable 200

billion-fold increase in computational efficiency. They showed that mixed-integer optimiza-

tion (MIO) could solve the best subset selection problem for instances with N in the thou-
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sands and P in the hundreds within minutes. Moreover, MIO could achieve near-optimal

solutions for instances with N in the hundreds and P in the thousands within minutes. Build-

ing on this work, we aim to develop an MIO formulation to determine group membership

for individuals.

Consider the following optimization procedure. Let p ∈ P be the period, g ∈ G be the

group, N denote the number of individuals, and M be arbitrarily large. zipg ∈ {0, 1} will be

an indicator that determines which group g individual i belongs to at period p. Specifically,

if zipg is 0 for group 1 this enforces ζ̃ip = ζ1 effectively assigning individual i to group 1 for

the respective period.

min
(λ,ζ,δ,β,z)

∑N
i=1

∑T
t=1

(
yit − λ̃ipt − ζ̃ip1Di − δ̃iDit −X ′β

)2

subject to

|ζ̃ip − ζg| ≤ zipgM ∀i, p, g

|λ̃ipt − λgt| ≤ zipgM ∀i, p, g, t

|δ̃i − δg,g′| ≤ zi1gzi2g′M ∀i∑G
g=1 zipg = G− 1 ∀i, p

(1.6)

The computational efficiency stems from the way we search over zipg. Bertsimas et.

al. (2016) provide an excellent summary of the significant computational advancements in

mixed-integer optimization (MIO) over the past two decades. Essentially, these advance-

ments include sophisticated branch-and-bound techniques and effective pruning methods,

which systematically divide and reduce the parameter space during the optimization pro-

cess. By leveraging these methods, we can significantly enhance the speed and accuracy

of our search algorithm, enabling us to handle complex problems more efficiently. To esti-

mate these equations, several computational software options are available, including Gurobi,

CPLEX, and MOSEK.

To further enhance computational efficiency, we can employ several strategies. A straight-

forward approach is to pre-order the groups by ζg, thereby eliminating the need for the algo-
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rithm to establish its own ordering. For instance, arranging them such that ζ1 < ζ2 < · · · <

ζG can streamline the computation process. We could also develop a novel pruning method

that further reduces the parameter space by leveraging the underlying theoretical properties

of the problem. We have developed such a method in the Chapter 3.

min
(λ,ζ,δ,β,z)

∑N
i=1

∑T
t=1

(
yit − λ̃ipt − ζ̃ip1Di − δ̃iDit −X ′β

)2

subject to

|ζ̃ip − ζg| ≤ zipgM ∀i, p, g

|λ̃ipt − λgt| ≤ zipgM ∀i, p, g, t

|δ̃i − δg,g′ | ≤ zi1gzi2g′M ∀i∑G
g=1 zipg = G− 1 ∀i, p

ζg−1 < ζg ∀g ∈ {2, ..., G}

(1.7)

1.5.2 K-Means

The integer optimization problem remains NP-hard, making it computationally infeasi-

ble for large sample sizes. In such cases, we adopt the approach proposed by Bonhomme and

Manresa (2015), which includes leveraging K-Means clustering as a practical alternative.

In the K-Means approach, initial parameters are chosen, after which each individual is

assigned to the group that minimizes their Sum of Squared Errors (SSE). The group member-

ships are then fixed, and the parameters are re-optimized. This iterative process continues

until the change in SSE between iterations falls below a pre-defined epsilon threshold. For

very large datasets, Bonhomme and Manresa incorporate advances in clustering methods,

offering a more efficient variant of the K-Means algorithm. For further technical details, see

the appendix of their work.

1. Let (λs, ζs, δs, βs) be some initial values where we set s = 0.
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2. Compute for all i = {1, . . . , N} :

(gs+1
ib , gs+1

ia ) = argmin
gb,ga

∑T
t=1(yit − λsgit,t − ζ

s
git

1Di − δsgb,gaDit −X ′βs)2

3. Set (λs+1, ζs+1, δs+1, βs+1) equal to

argmin
(λ,ζ,δ,β)

∑N
i=1

∑T
t=1(yit − λgs+1

it ,t − ζgs+1
it

1Di − δgs+1
ib ,gs+1

ia
Dit −X ′β)2

4. If SSEs − SSEs−1 < ε where ε is some pre-defined constant then stop. Otherwise set

s = s+ 1 and go back to step (2).

1.6 Asymptotic Properties

In this section, we will establish the consistency and asymptotic normality of our param-

eters. To achieve this, we will use the following strategy. In Theorem 1, we will demonstrate

the consistency of the non-group dependent parameters and the linear combination of group-

dependent parameters. In Theorem 2, we will leverage Theorem 1 to show uniform consis-

tency in estimating individual group choices over different periods of time. With the ability

to uniformly estimate each individual’s group choice, we can then prove the consistency of

all our TV-GPFE estimators with respect to their infeasible counterparts. Since TV-GPFE

converges in probability to the infeasible estimator, it also converges in distribution. Given

that the infeasible estimator is simply a panel data estimator, we can easily characterize the

asymptotic distribution. To begin, consider the following data generating process:

yit = λ0
g0it,t

+ ζ0
g0it

1Di + δ0
g0ib,g

0
ia
Dit + x′itβ

0 + εit (1.8)

Let g0
it denote the group of individual i at time t, where 0 indicates the true value or true

group. We assume that the number of groups, G, is known and fixed. Importantly, we allow

treated individuals to change groups at the point of treatment, denoted by time T ′. This
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extension goes beyond the current theory proposed by Bonhomme and Manresa (2015) who

assumes individuals remain in the same groups. We also extend their theory by bringing

it to the difference-in-difference model. Where we will use the controls to connect treated

group labels across different periods helping us identify unobserved group change effects.

To establish the consistency of the TV-GPFE estimator, we will consider the following

assumptions.

Assumption 1. Assume there exists a constant M > 0 such that:

- (a) A,Λ, Z,∆, B are compact subsets of RG, RGT , RG, RG2
, RP respectfully.

- (b) E[||xit||2] ≤M where || · || denotes the Euclidean Norm.

- (c) E[εit] = 0 E[ε4it] ≤M

- (d) | 1
NT

∑N
i=1

∑T
s=1

∑T
t=1 E[εitεisxitxis]| ≤M

- (e) 1
N

∑N
i=1

∑N
j=1 |

∑T
t=1

1
T
E[εitεjt]| ≤M

- (f) | 1
N2T

∑N
i=1

∑N
j=1

∑T
t=1

∑T
s=1Cov[εjsεis, εjtεit]| ≤M

- (g) Let x̄g∧g̃,t denote the mean of xit in the intersection of groups g0
it = g, and git =

g̃. For all groupings γ = {(g1b, g1a), ..., (gNb, gNa)} ∈ ΓG
2

we define ρ̂(γ) as the minimum

eigenvalue of the following matrix:

1

NT

N∑
i=1

T∑
t=1

(xit − x̄g0it∧git,t)(xit − x̄g0it∧git,t)
′

Then the plim
N,T→∞

ρ̂(γ) = ρ > 0

For Assumption 1.a, we assume that our parameter space is compact. Additionally,

in Assumption 1.b, we assume that our data is compact. Assumption 1.c posits that our

errors are centered at zero and bounded in the fourth moment. Assumption 1.d requires

weak dependency over time between the product of errors and data. In Assumption 1.e,

we assume weak dependency among individuals for the errors. Assumption 1.f similarly

assumes weak dependency over time for the product of errors. Finally, Assumption 1.g is

requiring our covariate matrix to have full rank condition. Using these assumptions we can

now introduce Theorem 1.
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Theorem 1. Given that Assumption 1 is satisfied, as both N and T tend towards infinity,

we observe the following:

β̂
p−→ β0

1
NT

∑N
i=1

∑T
t=1(λ0

g0it,t
− λ̂ĝit,t + (ζ0

g0it
− ζ̂ĝit)1Di + (δ0

g0ib,g
0
ia
− δ̂ĝib,ĝia)Dit)

2 p−→ 0

In this theorem, we demonstrate that we can consistently estimate the non-group-dependent

parameters as well as linear combinations of the group-dependent parameters. However, to

consistently estimate the individual group-dependent parameters, we must first establish

that we can consistently estimate individuals’ group assignments over time. Leveraging this

result, we further show that individual group assignments can be uniformly estimated for

both the pre-treatment and post-treatment periods. To formalize this, we introduce the

following assumptions First, define θgib,gia,t(1Di , Dit) = λgit,t + 1Diζgit +Ditδgib,gia .

Assumption 2 (2). Assume that as T goes to infinity T ′ grows at some constant rate w.r.t.

T .

-(a1) ∀ (g, g′) ∈ {1, ..., G}2 :

lim infN→∞
1
N

∑N
i=1 1{DiT ′ = 1}1{gib = g, gia = g′} > 0.

-(a2) ∀ g ∈ {1, ..., G} :

lim infN→∞
1
N

∑N
i=1 1{DiT ′ = 0}1{gib = g, gia = g} > 0.

-(a3) ∀(g, g′) ∈ {1, ..., G}2 s.t. (g 6= g′) :

limN→∞
1
N

∑N
i=1 1{DiT ′ = 0}1{gib = g, gia = g′} = 0.

-(b1) For all (g, g̃) ∈ {1, . . . , G}2 such that g 6= g̃:

lim infT→∞
1
T

∑T
t=1 1{DiT ′ = 0}(θ0

g,g,t − θ0
g̃,g̃,t)

2 > cgg̃ > 0

-(b2) For all (gb, ga, g̃b, g̃a) ∈ {1, . . . , G}4 such that (gb 6= g̃b) or (ga 6= g̃a):

lim infT→∞
1
T

∑T
t=1 1{DiT ′ = 1}(θ0

gb,ga,t
− θ0

g̃b,g̃a,t
)2 > cgagbg̃ag̃b > 0

- (c) There exist constants a > 0 and d1 > 0 and a sequence a[t] ≤ e−at
d1 such that,

for all i ∈ {1, . . . , N} and (gb, ga, g̃b, g̃a) ∈ {1, . . . , G}4 such that gb 6= g̃b ∨ ga 6= g̃a, {εit}t,

{θ0
gb,ga,t

− θ0
g̃b,g̃a,t

}t, and {(θ0
gb,ga,t

− θ0
g̃b,g̃a,t

)εit}t are strongly mixing processes with mixing co-
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efficients a[t]. Moreover, E[(θ0
gb,ga,t

− θ0
g̃b,g̃a,t

)εit] = 0.

- (d) There exist constants b > 0 and d2 > 0 such that Pr(|εit| > m) ≤ e1−(m/b)d2 for all

i, t, and m > 0.

- (e) There exists a constant M∗ such that as N,T go to infinity

sup
i∈{1,...,N}

Pr

(
1

T

T∑
t=1

‖xit‖ ≥M∗

)
= o(T−ξ) for all ξ > 0.

Assumptions 2.a and 2.b outline the partitioning of the data by treatment group and

treatment period. Assumption 2.a requires that the probability of an individual being as-

signed to a group remains positive, ensuring that groups are well-defined and identifiable.

Additionally, this assumption holds that controls cannot switch groups across periods. By re-

stricting group switching for controls, we can utilize their time trends to help identify treated

individuals who do switch groups, thus allowing us to estimate the effect of group switching

due to treatment. Assumption 2.b, meanwhile, ensures that the average squared distance

between group fixed effects remains strictly positive as both the sample size N and the time

horizon T increase. This condition is necessary because if the fixed points of the groups

were to overlap, it would become impossible to distinguish between them. Importantly, we

require this condition to hold in both the pre-treatment and post-treatment periods since

the group memberships of treated individuals are estimated separately for each period.

In addition to these structural conditions, Assumptions 2.c, 2.d, and 2.e impose restric-

tions on the dependency structure, error tail behavior, and covariate compactness. As-

sumption 2.c ensures a decay in dependency structures, which limits the extent to which

observations are dependent on each other over time. Assumption 2.d places bounds on the

tails of the error distribution, preventing extreme outliers from disproportionately influenc-

ing the results. Finally, Assumption 2.e imposes compactness constraints on the covariate

space, ensuring that covariates remain well-behaved and bounded over time. Together, these

assumptions allow for dynamic variation in group fixed effects while still maintaining the

conditions necessary for consistent estimation. With these assumptions, along with the re-
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sults of Theorem 1, we establish the framework needed for consistent estimation of group

choice across different time periods.

Theorem 2. Consistent Estimation of Group Choice: Lets assumptions 1 and 2

hold. Then we can show for all ξ > 0, g ∈ {1, ..., G} and as N and T tend to infinity:

Pr
(
supi∈{1,...,N} |ĝib − g0

ib| > ξ
)

= o(1) + o
(
NT−ξ

)
,

Pr
(
supi∈{1,...,N} |ĝia − g0

ia| > ξ
)

= o(1) + o
(
NT−ξ

)
,

(1.9)

Now that we have established consistency in the estimation of group choices, it follows

naturally that our Time-Varying Group-Period Fixed Effects (TV-GPFE) estimators also

converge to their corresponding infeasible estimators. Specifically, these estimators converge

at the same rate as the convergence of group choices over time. This occurs because the

identification of each individual’s group membership is based on an averaging process over

time, which ensures that as time increases, the group membership estimation improves,

leading to our TV-GPFE parameters converging in probability to our infeasible parameters.

Assumption 3. -

-(a) For all (g, g̃) ∈ {1, . . . , G}2 such that g 6= g̃ and For any q ∈ R :

lim infT→∞
1
T

∑T
t=1 1{DiT ′ = 0}(λ0

gt − λ0
g̃t − q)2 > cgg̃ > 0

-(b) For all (g, g̃) ∈ {1, . . . , G}2 such that g 6= g̃ and For any q ∈ R :

lim infT→∞
1
T

∑T
t=1 1{DiT ′ = 1}(λ0

gt − λ0
g̃t − q)2 > cgg̃ > 0

To ensure consistent group matching between treated and control units across pre- and

post-treatment periods, an additional condition is required. Specifically, it is necessary to

guarantee that group-specific time trends are not simple mean shifts of one another. If this

condition is violated, it becomes possible to misalign group time trends when associating

treated group intercepts with control group trends. For instance, one could inadvertently

match the time trend of group g in the control group with the treated group intercept for

g′ 6= g. This would allow for consistent estimation of both treated and control equations
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but would result in mislabeling and misestimating the group-specific parameters. This issue

is elaborated further in the Identification section. Assumption 3 addresses this concern

by ensuring that the time trends exhibit distinct variational differences, enabling correct

matching of groups between treated and control units.

Theorem 3. Asymptotic Equivalency: Let assumptions 1, 2, and 3 hold. Leverage the

results from Theorem 2. Then we can show for all ξ > 0, (g, g̃) ∈ {1, ..., G}2 and as N and

T tend to infinity:

β̂ = β̃ + o(T−ξ)

ζ̂g = ζ̃g + o(T−ξ)

λ̂gt = λ̃gt + o(T−ξ)

δ̂g,g̃ = δ̃g,g̃ + o(T−ξ)

(1.10)

Finally, we would like to uncover the asymptotic distribution of our infeasible estimator.

To do this lets define X as a stacked vector of corresponding indicators and covariates with

respect to our parameters. Furthermore lets define B as the stacked vector of parameters.

Then we can describe our model as 1
NT

∑N
i=1

∑T
t=1(yit −X ′itB̃)2. Now we will prove that our

infeasible estimator B is consistent and asymptotically normal.

Assumption 4. -

- (a) For all i, j, and t: E(Xjtεit) = 0.

- (b) There exist positive definite matrices Σθ and Ωθ such that

Σθ = plimN,T→∞
1

NT

N∑
i=1

T∑
t=1

XitX ′it,

Ωθ = lim
N,T→∞

1

NT

N∑
i=1

N∑
j=1

T∑
t=1

T∑
s=1

E[εitεjsXitX ′it].
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- (c) As N and T go to infinity:

√
1

NT

N∑
i=1

T∑
t=1

Xitεit
d→ N (0,Ωθ).

Using assumptions 1,2, 3, and 4 we can prove our TV-GPFE parameters are consistent

and asymptotically normal.

Theorem 4. Lets assumptions 1,2, 3, and 4 hold, then as N and T go to infinity at a rate

such that for some v > 0 we have N
T v
→ 0.

√
NT (B̂ − B0)

d→ N(0,Σ−1
β ΩβΣ−1

β ) (1.11)

In this section, we extend the framework of Bonhomme and Manresa (2015) to incor-

porate group-specific parameters that vary across periods and subpopulations. Notably, we

allow individuals to transition between groups over time, necessitating modifications to as-

sumptions 2.a and 2.b in their original framework. Specifically, we now assume that groups

are defined within each period and subpopulation, with group separation preserved within

these contexts. This ensures consistent estimation of group membership within each period

and subpopulation, even if the group indices differ across these contexts. We also introduce

a new assumption, Assumption 3, which plays a crucial role in aligning group indices across

periods and subpopulations to ensure accurate matching of groups. Notably, Assumption

3 suggests that group time trends exhibit persistent variational differences, preventing any

mean shifts from overlapping with them. In the following section, we will delve into why this

assumption is essential for the proper labeling of groups. A notable advantage of Assumption

3 is that it provides group separation through the group time trends, eliminating the need

to assume that group treatment effects are non-zero.
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1.7 Treatment Effects and Group Labels

In the previous section, we demonstrated that the parameters of our model can be

consistently estimated and provided a characterization of their asymptotic distribution. In

the following section, we establish that our treatment parameter can be interpreted as the

causal treatment effect. Additionally, we outline the necessary assumptions required for

correctly labeling and matching group indices.

1.7.1 Heterogeneous Treatment Effects

We adopt the Rubin potential outcomes framework for our analysis. Specifically, con-

sider the following data generating process, where Yit(D) represents the potential outcome

conditional on treatment status D, with D ∈ {0, 1}. For instance, Yit(0) denotes the po-

tential outcome for individual i at time t in the absence of treatment. Consistent with our

previous assumptions, we will continue to model the observed outcome Yit following equation

1.3.

yit = Yit(0) +Dit(Yit(1)− Yit(0)) (1.12)

We begin by establishing the following assumptions which are standard to the Rubins

framework. Assumption 5.a assumes the data is generated according to equation 1.12. As-

sumption 5.b posits that the probability of receiving treatment prior to the actual treatment

period is zero. Meanwhile, Assumption 5.c states that the probability of receiving treatment

after the treatment period is a non-negative value.

Assumption 5. -

- (a) ∀i, t, the pairs (yit, Dit) are generated according to equation 1.12.

- (b) ∀ i ∧ t < T ′, the probability P (Dit = 0) = 1

- (c) ∀ i ∧ t ≥ T ′, the probability P (Dit = 1) ∈ (0, 1).

Next, we impose the standard difference-in-differences assumption of parallel trends.

However, our assumption is more specific, we require parallel trends only for treated and
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control individuals who do not switch groups. This refinement is necessary due to our

assumption that control individuals remain in the same group.

Assumption 6. Within Group Parallel Trends ∀g ∈ {1, ..., G}.

E[Yit(0)− Yit-1(0)|Dit = 1, g0
it = g, g0

it−1 = g] =

E[Yit(0)− Yit-1(0)|Dit = 0, g0
it = g, g0

it−1 = g]

While this assumption is sufficient for estimating the treatment effect for individuals who

do not change groups, it does not provide a theoretical framework for determining where

treated individuals would have been had they not switched groups. To address this, we

introduce an additional assumption. This assumption attributes the entire group-switching

effect to the treatment effect parameter for individuals who change groups. Specifically, it

restricts control group parameters from being influenced by group-switching effects. One

interpretation of this assumption is that treatment induces group changes, and therefore,

any group-switching effects should be solely attributed to the treatment effect.

Although this assumption is sufficient for calculating the treatment effect of people who

do not change groups, it does create a theoretical control outcome for treated individuals

who do change group. For that we require an additional assumption. The following assump-

tion contributes the entirety of the group change effect to the treatent effect parameter.

Specifically, it does not allow for a parameter in the controls to partially explain the effect

of group changes. One way to interpret this is treatment is causing individuals to change

groups therefore the group change effect should only be contributed to the treatment effect.

Alternatively, one could relax the treatment parameter to not rely on group changes and

instead contribute the group change effect to the control model. In this scenario we could

drop assumption 7.

Assumption 7. Conditional Independence of Untreated Outcomes with Respect to Group
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Changes

E[Yi,t(0)|Di,t = 1, g0
it = g, g0

it−1 = g′] =

E[Yi,t(0)|Di,t = 1, g0
it = g, g0

it−1 = g]

Using assumptions 5,6,7 and 2.a we can show if groups are known our treatment param-

eter can be interpreted as the average treatment effect on treated (ATT).

E[Yi,t(1)− Yi,t(0)|Di,t = 1, g0
ia = g′, g0

ib = g]

= E[Yi,t(1)− Yi,t-1(0)|Di,t = 1, g0
ia = g′, g0

ib = g]︸ ︷︷ ︸
Total Difference

−

E[Yi,t(0)− Yi,t-1(0)|Di,t = 0, g0
ia = g′, g0

ib = g′]︸ ︷︷ ︸
Post Treatment Group Time Trend

−

(E[Yi,t-1(0)|Di,t = 1, g0
ia = g′, g0

ib = g′]

E[Yi,t-1(0)|Di,t = 1, g0
ia = g, g0

ib = g]︸ ︷︷ ︸
Pre Treatment Group Difference

)

= δ0
g0ib,g

0
ia

1.7.2 Labeling Groups

In many applications, unobserved group effects are not merely nuisance parameters

but are instead the primary effect of interest. For example, if Ayyagari and Shane (2015)

had access to complete health insurance data for all individuals, they could estimate the

differential impact of Medicaid drug coverage expansion on those who were previously insured

versus those who were uninsured. One of the strengths of using difference-in-differences (DiD)

is that, by keeping the control group consistent, we can leverage group-specific time trends

to separately identify treatment effects related to individuals switching between groups and

those who remain in the same group. However, we will need to rely on some additional

assumptions, this section outlines the assumptions needed for consistent estimation and

identification of heterogeneous treatment effects. It also outlines additional assumptions
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needed for labeling groups.

Potential Identification Issue

One of the key strengths of the difference-in-difference framework is its ability to leverage

control groups to help identify treated groups. Specifically, we can detect treated individuals

whose time trends are similar to those of the controls and group them accordingly. However,

additional constraints are necessary to ensure accurate identification of these groups. To

illustrate this, consider the following example, where we analyze the time trends of the

control group over both the pre-treatment and post-treatment periods.

To illustrate this problem, let’s start by considering two control groups, labeled as ”Group

A” (blue) and ”Group B” (red), with distinct time trends. If the difference in time trends

between these two groups is constant over time, we can assume that the separation between

the groups is valid. This is visualized in the plot below, where the blue and red curves

represent the time trends of Groups A and B.

0 1 2 3 4 5

−0.5

0

0.5

1

1.5

t

y

λ0
At

λ0
Bt

Now, consider adding a treated group before the treatment period. The treated individu-

als may exhibit an intercept shift in their time trends. Below, we darken the treated group’s

trends while keeping the control trends lighter. Notice our group separation conditions are

still satisfied so we can consistently estimate our parameters.
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Here’s where the identification problem becomes evident. Suppose we define the mean

difference between Group A and Group B’s time trends as R, such that λ0
BT = λ0

AT + R.

Now, consider that the estimated treatment effect for Group A is ζB = ζ0
A−R. In this case,

it is possible to misclassify a treated individual from Group A as being in Group B due to

the overlap in time trends. This misclassification can be demonstrated mathematically:

λ0
BT + ζB = λ0

AT +R + ζ0
A −R = λ0

AT + ζ0
A

As shown, the difference between Group A and Group B’s post-treatment time trends

can vanish, making it impossible to distinguish between the groups based purely on time

trends. This highlights the need for additional constraints or information to ensure correct

identification of treated individuals in the difference-in-difference framework. Assumption 3

ensures that group time trends differ in a way that prevents perfect alignment. Specifically,

this implies that it is not possible to shift the time trends of control group B onto the group

equation for treated group A and achieve consistent estimation. Any attempt to do so will

result in a non-vanishing error, ensuring that groups cannot be mismatched asymptotically

between periods and subpopulations.
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1.7.3 Group Labeling

In the previous section, we ensured that the group indices remain consistent between

treated and control units across both the pre-treatment and post-treatment periods. How-

ever, this consistency does not provide explicit labeling of the groups. To correctly label the

groups, we must impose one of the following assumptions.

Monotonic Assumption

In health care research, we frequently encounter situations where insurance status is

unobserved, which can introduce violations of the parallel trends assumption when studying

outcomes that are affected by insurance status. For instance, consider a study examining

the impact of job loss on mental health. If health insurance status is not observed before

and after job loss, the loss of insurance could bias the estimated effect of job loss on mental

health outcomes. In this context, it may be reasonable to assume that individuals with

health insurance exhibit better average health outcomes. Thus, in equation 1.3, the group

with the highest value of ζg in probability will converge to the insured population.

Location Assumption

Alternatively, if we have prior knowledge of the value associated with one of the groups,

and group separation holds, we can leverage this information to identify the groups. For

example, in cases where we do not observe who received treatment but know who was

eligible, we can assume that individuals who did not receive treatment have a treatment

effect of zero, while those who did have a non-zero effect. Consequently, the group with an

estimated treatment effect δ̂g 6= 0 can be identified as the treatment group.

1.8 Conclusion

This paper introduces a novel time-varying unobserved group-period fixed effect es-

timator (TV-GPFE) within a Difference-in-Difference framework. Our model allows for

individuals to change groups over time due to treatment, addressing key limitations of pre-
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vious models that do not account for these dynamics. By developing both global and local

estimators, we offer solutions for both small and large sample sizes, leveraging mixed integer

optimization and K-Means clustering.

Our framework addresses critical challenges in causal inference by correcting violations of

the parallel trends assumption caused by latent group membership, ensuring more accurate

estimation of treatment effects. Additionally, it enables the estimation of the average treat-

ment effect on the treated (ATT) even when compliance with treatment is unobserved. To

achieve these advances, we derive the identification assumptions necessary for handling het-

erogeneous treatment effects and detail the conditions required to consistently label groups

across different periods and subpopulations with varying group selection problems. Further-

more, we develop a mixed integer optimization framework, elaborated in Chapters 2 and

3, which facilitates globally optimal estimation in small-sample settings, providing correct

confidence intervals for complex estimation challenges.

In conclusion, the TV-GPFE model provides a robust approach for estimating treatment

effects in the presence of unobserved, time-varying groups, offering significant improvements

in flexibility and precision over traditional methods.
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1.9 Appendix

1.9.1 Proof of Theorem 1

Let’s begin by defining our time-varying unobserved group period fixed effect estimator.

In this definition, γ0 = (g0
b1, g

0
a1), ..., (g0

bN , g
0
aN) ∈ ΓG represents the true groupings for each

individual for both before and after treatment. Furthermore, γ denotes any specific grouping.

Q̂(λ, ζ, δ, β, γ) = 1
NT

∑N
i=1

∑T
t=1(yit − λgit,t − ζgit1Di

−δgib,giaDit − x′itβ)2

= 1
NT

∑N
i=1

∑T
t=1(εit + (λ0

g0it,t
− λgit,t)

+1Di(ζ
0
g0it
− ζgit) +Dit(δ

0
g0ib,g

0
ia
− δgib,gia)

+x′it(β
0 − β))2

(1.13)

Let’s also define an auxiliary estimator under the implicit assumption that our errors and

data are independent.

Q̃(λ, ζ, δ, β, γ) = 1
NT

∑N
i=1

∑T
t=1((λ0

g0it,t
− λgit,t)

+1Di(ζ
0
g0it
− ζgit) +Dit(δ

0
g0ib,g

0
ia
− δgib,gia)

+x′it(β
0 − β))2 + 1

NT

∑N
i=1

∑T
t=1 ε

2
it

(1.14)

Lemma 1: Let assumption 1 hold, and assume that we know the true number of groups G.

Additionally, note that individuals are allowed to change at the treatment period T ′.

plim
N,T→∞

sup
(λ,ζ,δ,β,γ)∈(ΛGT ,ZG,∆G2 ,BP ,ΓG)

|Q̂(λ, ζ, δ, β, γ)− Q̃(λ, ζ, δ, β, γ)| = 0 (1.15)

Proof:

Q̂(λ, ζ, δ, β, γ)− Q̃(λ, ζ, δ, β, γ) = 2
NT

∑N
i=1

∑T
t=1 εit(λ

0
g0it,t
− λgit,t)

+εit1Di(ζ
0
g0it
− ζgit)

+εitDit(δ
0
g0ib,g

0
ia
− δgib,gia)

+εitx
′
it(β

0 − β)
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First lets show that 2
NT

∑N
i=1

∑T
t=1 εitx

′
it(β

0 − β) = op(1). Using Cauchy Swartz theorem we

have

( 2
NT

∑N
i=1

∑T
t=1 εitx

′
it(β

0 − β))2

= ( 2
N

∑N
i=1(β0 − β)( 1

T

∑T
t=1 εitx

′
it))

2

≤ 4
N2 (
∑N

i=1 ||β0 − β||2)× (
∑N

i=1(|| 1
T

∑T
t=1 εitx

′
it||2)

= ( 4
N

∑N
i=1 ||β0 − β||2)× ( 1

N

∑N
i=1(|| 1

T

∑T
t=1 εitx

′
it||2)

By assumption 1.a we have ||β0 − β||2 is bounded in probability. By assumption 1.d we

have E[ 1
N

∑N
i=1(|| 1

T

∑T
t=1 εitx

′
it||2] ≤ M

T
so by markov inequality this converges in probability

to 0 as T goes to infinity. Then by continuous mapping theorem and the properties of O

operators we have 2
NT

∑N
i=1

∑T
t=1 εitx

′
it(β

0 − β) = op(1)

Next lets show 2
NT

∑N
i=1

∑T
t=1 εit(λ

0
g0it,t
− λgit,t) = op(1). to do this we will show that

2
NT

∑N
i=1

∑T
t=1 εitλgit,t = op(1) uniformly across our parameter space and this will imply

2
NT

∑N
i=1

∑T
t=1 εitλ

0
g0it,t

= op(1). lets specify the before and after treatment groups for nota-

tional convenience λgit,t = λgibgiat

2
NT

∑N
i=1

∑T
t=1 εitλgit,t

= 2
NT

∑G
g=1

∑G
g′=1

∑N
i=1

∑T
t=1 εitλgg′t1(gib = g ∧ gia = g′)

= 2
T

∑G
g=1

∑G
g′=1

∑T
t=1 λgg′t

1
N

∑N
i=1 εit1(gib = g ∧ gia = g′)

Now using Cauchy Swartz inequality for each (g, g′) ∈ {1, ..., G}2 we can show.

( 2
T

∑T
t=1 λgg′t

1
N

∑N
i=1 εit1(gib = g ∧ gia = g′))2

≤ ( 2
T

∑T
t=1 λ

2
gg′t)× ( 2

T

∑T
t=1( 1

N

∑N
i=1 εit1(gib = g ∧ gia = g′))2)

By assumption 1a 2
T

∑T
t=1 λ

2
gg′t is bounded. Next lets show the second term converges in
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probability to 0.

2
T

∑T
t=1( 1

N

∑N
i=1 εit1(gib = g ∧ gia = g′))2

= 2
T

∑T
t=1

1
N2

∑N
i=1

∑N
j=1 εitεjt1(gib = g ∧ gia = g′)1(gjb = g ∧ gja = g′)

= 2
N2

∑N
i=1

∑N
j=1 1(gib = g ∧ gia = g′)1(gjb = g ∧ gja = g′) 1

T

∑T
t=1 εitεjt

≤ 2
N2

∑N
i=1

∑N
j=1 |

1
T

∑T
t=1 εitεjt|

= 2
N2

∑N
i=1

∑N
j=1 |

1
T

∑T
t=1 εitεjt − E[εitεjt] + E[εitεjt]|

≤ 1
N2

∑N
i=1

∑N
j=1 |

1
T

∑T
t=1 εitεjt − E[εitεjt]|+ | 1T

∑T
t=1E[εitεjt]|

By 1e we have 1
N

∑N
i=1

∑N
j=1

1
T

∑T
t=1 |E[εitεjt]| ≤M therefore for our second term above have

1
N2

∑N
i=1

∑N
j=1

1
T
|
∑T

t=1E[εitεjt]| ≤ M
N

. Thus converges in probability as N goes to infinity.

For the first term, by Cauchy Swartz inequality we can show.

( 1
N2

∑N
i=1

∑N
j=1 |

1
T

∑T
t=1 εitεjt − E[εitεjt]|)2

≤ 1
N2

∑N
i=1

∑N
j=1( 1

T

∑T
t=1 εitεjt − E[εitεjt])

2

= 1
N2

∑N
i=1

∑N
j=1

1
T 2

∑T
t=1

∑T
s=1(εitεjt − E[εitεjt])(εisεjs − E[εisεjs])

≤ | 1
T 2N2

∑N
i=1

∑N
j=1

∑T
t=1

∑T
s=1 cov(εitεjt, εisεjs)|

By Assumption 1.g, we have
∣∣∣ 1
TN2

∑N
i=1

∑N
j=1

∑T
t=1

∑T
s=1 cov(εitεjt, εisεjs)

∣∣∣ ≤ M . Thus, we

can show for the corresponding term that
∣∣∣ 1
T 2N2

∑N
i=1

∑N
j=1

∑T
t=1

∑T
s=1 cov(εitεjt, εisεjs)

∣∣∣ ≤
M
T

. Therefore, the first term converges in probability to 0 as T →∞. Hence,

2
T

∑T
t=1

(
1
N

∑N
i=1 εit1(gib = g ∧ gia = g′)

)2

= op(1). Since 2
T

∑T
t=1 λ

2
gg′t is bounded, we also

have
(

2
T

∑T
t=1 λgg′t

1
N

∑N
i=1 εit1(gib = g ∧ gia = g′)

)2

= op(1). Thus, we get our desired result

2
NT

∑N
i=1

∑T
t=1 εitλgit,t = op(1). Since the rate of convergence does not depend on the value of

λ, the result holds uniformly over all λ, implying 2
NT

∑N
i=1

∑T
t=1 εitλ

0
g0it,t

= op(1). Combining

the previous results, we can conclude that 2
NT

∑N
i=1

∑T
t=1 εit

(
λ0
g0it,t
− λgit,t

)
= op(1).

Next we will show 2
NT

∑N
i=1

∑T
t=1 εit1Di(ζ

0
g0it
− ζgit) = op(1). To do this we will show

2
NT

∑N
i=1

∑T
t=1 εit1Diζgit = op(1) uniformly on the parameter space which implies
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2
NT

∑N
i=1

∑T
t=1 εit1Diζ

0
g0it

= op(1). Lets first explicitly define the before and after groups for

notational convenience ζgit = ζgib,gia .

2
NT

∑N
i=1

∑T
t=1 εit1Diζgit

=
∑G

g=1

∑G
g′=1

1
T

∑T
t=1 ζgg′t

2
N

∑N
i=1 1(gib = g ∧ gia = g′)1Diεit

Then for each (g, g′) ∈ {1, ..., G}2 by Cauchy Swartz theorem we have

( 1
T

∑T
t=1 ζgg′t

2
N

∑N
i=1 1(gib = g ∧ gia = g′)1Diεit)

2

≤ ( 1
T

∑T
t=1 ζ

2
gg′t)× ( 1

T

∑T
t=1( 2

N

∑N
i=1 1(gib = g ∧ gia = g′)1Diεit)

2)

By assumption 1.a ( 1
T

∑T
t=1 ζ

2
gg′t) is bounded. So next lets show ( 1

T

∑T
t=1( 2

N

∑N
i=1 1(gib =

g ∧ gia = g′)1Diεit)
2) converges in probability to 0.

( 1
T

∑T
t=1( 2

N

∑N
i=1 1(gib = g ∧ gia = g′)1Diεit)

2)

= 4
N2

∑N
i=1

∑N
j=1 1(gib = g ∧ gia = g′)1(gjb = g ∧ gja = g′)1Di1Dj

1
T

∑T
t=1 εitεjt

≤ 4
N2

∑N
i=1

∑N
j=1 |

1
T

∑T
t=1 εitεjt|

But we already showed in our previous analysis that converges in probability to 0 uniformly.

Therefore leveraging our previous analysis we have 2
NT

∑N
i=1

∑T
t=1 εit1Di(ζ

0
g0it
− ζgit) = op(1)

Next lets show 2
NT

∑N
i=1

∑T
t=1 εitDit(δ

0
g0ib,g

0
ia
− δgib,gia). To do this we will first show

that 2
NT

∑N
i=1

∑T
t=1 εitDitδgib,gia = op(1) uniformly on the parameter space which will im-

ply 2
NT

∑N
i=1

∑T
t=1 εitDitδ

0
g0ib,g

0
ia

= op(1). We assume once your treated your always treated

and prior to treatment the treatment effect is 0.

2
NT

∑N
i=1

∑T
t=1 εitDitδgib,gia

=
∑G

g=1

∑G
g′=1

2
NT

∑N
i=1 1(gib = g ∧ gia = g′)1Di

∑T
t=t′ εitδgg′t

From here we see that the proof follows exactly as the previous results. This implies

2
NT

∑N
i=1

∑T
t=1 εitDit(δ

0
g0ib,g

0
ia
− δgib,gia) = op(1)
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We have just showed the time-varying unobserved group period fixed effect estimator con-

verges in probability to its auxiliary version where errors explicitly treated as independent

from the rest of the model. Next we want to prove that the parameters who do not depend

on unobserved groups converge in probability.

Lemma 2 for all (λ, ζ, δ, β, γ) ∈ (ΛGT , ZG,∆G2
, BP ,ΓG)

Q̃(λ, ζ, δ, β, γ)− Q̃(λ0, ζ0, δ0, β0, γ0) ≥ ρ̂||β − β0||2

where plimN,T→∞ρ̂ = ρ > 0

Proof : Let us denote for every grouping γ = {(g1b, g1a), ..., (gNb, gNa)}.

Σ(γ) =
1

NT

N∑
i=1

T∑
t=1

(xit − x̄g0it∧git,t)(xit − x̄g0it∧git,t)
′

We now arrive at the following result, where the first inequality is derived from the fact that

the squared deviations are minimized when calculated from the sample mean.

Q̃(λ, ζ, δ, β, γ)− Q̃(λ0, ζ0, δ0, β0, γ0) = 1
NT

∑N
i=1

∑T
t=1((λ0

g0it,t
− λgit,t)

+1Di(ζ
0
g0it
− ζgit) +Dit(δ

0
g0ib,g

0
ia
− δgib,gia)

+x′it(β
0 − β))2

≥ 1
NT

∑N
i=1

∑T
t=1(β0 − β)′Σ(γ)(β0 − β)

≥ min
γ∈ΓG

(β0 − β)′Σ(γ)(β0 − β)

≥ min
γ∈ΓG

ρ̂(γ))||β0 − β||2

To show that β̂ is consitent for β0 we have from lemma 1 and the definition of GPFE.

Q̃(λ̂, ζ̂, δ̂, β̂, γ̂) = Q̂(λ̂, ζ̂, δ̂, β̂, γ̂) + op(1) ≤ Q̂(λ0, ζ0, δ0, β0, γ0) + op(1)

= Q̃(λ0, ζ0, δ0, β0, γ0) + op(1)
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So since since Q̃ converges to the truth in probability, by lemma 2 and assumption 1g we

have ||β0 − β||2 = op(1) since the minimum eigenvalue ρ̂(γ) is assumed to be positive in

probability. Lastly we will show the convergence of the quadratic mean.

|Q̃(λ̂, ζ̂, δ̂, β̂, γ̂)− Q̃(λ̂, ζ̂, δ̂, β0, γ̂)| = | 1
NT

∑N
i=1

∑T
t=1 x

′
it(β

0 − β̂)(2(λ0
g0it,t
− ˆλgit,t)

+21Di(ζ
0
g0it
− ˆζgit) + 2Dit(δ

0
g0ib,g

0
ia
− ˆδgib,gia)

+x′it(β
0 − β̂))|

≤ 1
NT

∑N
i=1

∑T
t=1 ||xit||2 × ||β0 − β̂||2

+(4 sup
λt∈ΛG

|λt|)× ||xit|| × ||β0 − β̂||

+(4 sup
ζ∈ZG
|ζ|)× ||xit|| × ||β0 − β̂||

+(4 sup
δ∈∆G2

|δ|)× ||xit|| × ||β0 − β̂||

which is op(1) by assumptions 1a, 1b and consistency of β̂. Combining this with Lemma 1

and 2 we get

Q̃(λ̂, ζ̂, δ̂, β̂, γ̂) = Q̃(λ̂, ζ̂, δ̂, β0, γ̂) + op(1) = Q̂(λ̂, ζ̂, δ̂, β0, γ̂) + op(1) ≤ Q̂(λ0, ζ0, δ0, β0, γ0) + op(1)

= Q̃(λ0, ζ0, δ0, β0, γ0) + op(1)

Therefore Q̃(λ̂, ζ̂, δ̂, β0, γ̂)− Q̃(λ0, ζ0, δ0, β0, γ0) = op(1) which shows.

Q̃(λ̂, ζ̂, δ̂, β0, γ̂)− Q̃(λ0, ζ0, δ0, β0, γ0) = 1
NT

∑N
i=1

∑T
t=1((λ0

g0it,t
− λ̂ĝit,t)

+1Di(ζ
0
g0it
− ζ̂ĝit) +Dit(δ

0
g0ib,g

0
ia
− δ̂ĝib,ĝia))2 = op(1)

(1.16)

This ends the proof of Theorem 1.
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1.9.2 Proof of Theorem 2

In Theorem 2, we begin by demonstrating the consistent estimation of pre- and post-

treatment group choices. Building on this result, we then establish the consistency of the

Group-Period Fixed Effect (GPFE) estimator in relation to the infeasible estimator. Finally

we derive the asymptotic distribution of our infeasible estimator. To formalize this, let us

define for notational simplicity:

θgib,gia,t(1Di , Dit) = λgit,t + 1Diζgit +Ditδgib,gia ,

Where the parameters correspond to both treated and untreated groups. Our first step is

to establish consistency for the estimated parameters, θ̂, in relation to their true values, θ0,

for both the treated individuals (DiT ′ = 1) and untreated groups. Given that the objec-

tive function is invariant to the relabeling of groups, we demonstrate consistency using the

Hausdorff distance, dH , in RG2T , defined as follows:

dH(a, b)2 = max{max(g,g′)∈{1,...,G}2
(

min(g̃,g̃′)∈{1,...,G}2
1
T

∑T
t=1(ag̃g̃′t − bgg′t)2

)
,

max(g̃,g̃′)∈{1,...,G}2
(

min(g,g′)∈{1,...,G}2
1
T

∑T
t=1(ag̃g̃′t − bgg′t)2

)
}

Lemma 3: Lets assume 1a-1g and 2a - 2b hold. We will show as N,T go to infinity we have.

dH(θ0, θ̂)2 P−→ 0

Proof:

Let’s study the terms in the maximum iteratively. We will begin with the first term and

demonstrate it for all (g, g′) ∈ {1, ..., G}2 in the treated and all (g, g) ∈ {1, ..., G} in the

controls.

min
(g̃,g̃′)∈{1,...,G}2

1

T

T∑
t=1

(θ̂g̃g̃′t(1Di , Dit)− θ0
gg′t(1Di , Dit))

2 p−→ 0 (1.17)
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to prove this we can sum over all individuals segmenting it into treated and control groups.

min
(g̃,g̃′)∈{1,...,G}2

1

NT

N∑
i=1

T∑
t=1

(θ̂g̃g̃′t(1Di , Dit)− θ0
gg′t(1Di , Dit))

2

=
∑

d∈{0,1}

1

NT

N∑
i=1

T∑
t=1

min
(g̃,g̃′)∈{1,...,G}2

1(g0
ib = g ∧ g0

ia = g′ ∧DiT ′ = d)(θ̂g̃g̃′t(1Di , Dit)− θ0
gg′t(1Di , Dit))

2

=
∑

d∈{0,1}

(
1

N

N∑
i=1

1(g0
ib = g ∧ g0

ia = g′ ∧DiT ′ = d)

)(
min

(g̃,g̃′)∈{1,...,G}2
1

T

T∑
t=1

(θ̂g̃g̃′t(1Di , Dit)− θ0
gg′t(1Di , Dit))

2

)

By Assumption 2.a, we can disregard the term associated with individuals in the control

group who switch groups. This allows us to decompose the problem into two distinct com-

ponents: treated and control groups.

(
1

N

N∑
i=1

1(g0
ib = g ∧ g0

ia = g′ ∧DiT ′ = 1)

)(
min

(g̃,g̃′)∈{1,...,G}2

1

T

T∑
t=1

(θ̂g̃g̃′t(1Di , Dit)− θ0
gg′t(1Di , Dit))

2

)

+

(
1

N

N∑
i=1

1(g0
ib = g ∧ g0

ia = g ∧DiT ′ = 0)

)(
min

(g̃,g̃)∈{1,...,G}

1

T

T∑
t=1

(θ̂g̃g̃t(1Di , Dit)− θ0
ggt(1Di , Dit))

2

)
(1.18)

Also by assumption 2.a, for all (g, g′) ∈ {1, ..., G}2 we know there is a positive probability

for each group combination to exist for both controls and treated so the first term must be

positive. Thus its suffice to show for treated individuals.

1

NT

N∑
i=1

min
(g̃,g̃′)∈{1,...,G}2

T∑
t=1

1(g0
ib = g ∧ g0

ia = g′ ∧DiT ′ = 1)(θ̂g̃g̃′t(1Di , Dit)− θ0
gg′t(1Di , Dit))

2 p−→ 0

Similarly, by assumption 2.a we know for all (g, g) ∈ {1, ..., G} in the controls the first term

is positive so its suffice to show for control individuals.

1

NT

N∑
i=1

T∑
t=1

min
(g̃,g̃)∈{1,...,G}

1(g0
ib = g ∧ g0

ia = g ∧DiT ′ = 0)(θ̂g̃g̃t(1Di , Dit)− θ0
ggt(1Di , Dit))

2 p−→ 0

So aggregating 1.18 we can bound our minimization with our least squares group predictions
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which we showed by theorem 1 to converge in probability to 0.

∑
d∈{0,1}

1

NT

N∑
i=1

T∑
t=1

min
(g̃,g̃)∈{1,...,G}

1(g0
ib = g ∧ g0

ia = g ∧DiT ′ = d)(θ̂g̃g̃t(1Di , Dit)− θ0
ggt(1Di , Dit))

2

=
1

NT

N∑
i=1

(
min

(g̃,g̃′)∈{1,...,G}2

T∑
t=1

1(g0
ib = g ∧ g0

ia = g′)(θ̂g̃g̃′t − θ0
gg′t)

2

)

≤ 1

NT

N∑
i=1

(
T∑
t=1

1(g0
ib = g ∧ g0

ia = g′)(θ̂ĝĝ′t − θ0
gg′t)

2

)

≤ 1

NT

N∑
i=1

(
T∑
t=1

(θ̂ĝĝ′t − θ0
gg′t)

2

)
p−→ 0

(1.19)

For the second term of our Hausdorff distance minimization equation let us first define:

σ(g, g′) = min
(g̃,g̃′)∈{1,...,G}2

1

T

T∑
t=1

(θ̂g̃g̃′t(1Di , Dit)− θ0
gg′t(1Di , Dit))

2

First we will show σ(g, g′) is one-to-one with probability approaching 1 as T goes to infinity.

let g 6= g̃ or g′ 6= g̃′ then by triangle inequality.

(
1
T

∑T
t=1(θ̂σ(g,g′)t(1Di , Dit)− θ̂σ(g̃,g̃′)t(1Di , Dit))

2
) 1

2 ≥
(

1
T

∑T
t=1(θ

0
gg′t(1Di , Dit)− θ0

g̃g̃′t(1Di , Dit))
2
) 1

2

−
(

1
T

∑T
t=1(θ̂σ(g,g′)t(1Di , Dit)− θ0

gg′t(1Di , Dit))
2
) 1

2

−
(

1
T

∑T
t=1(θ̂σ(g̃,g̃′)t(1Di , Dit)− θ0

g̃g̃′t(1Di , Dit))
2
) 1

2

By assumption 2.b lim infT→∞

(
1
T

∑T
t=1(θ0

gg′t(1Di , Dit)− θ0
g̃g̃′t(1Di , Dit))

2
) 1

2
> cgg′g̃g̃′ for con-

trols and treated. This implies By the first part of the proof and the definition of σ we

know the latter two terms converge in probability to 0. Hence, σ(g, g′) 6= σ(g̃, g̃′) as T goes

to infinity. Therefore, σ(g, g′) is one-to-one and admits a well defined inverse. Where the

inverse finds the group effect that is closest to the inputted true group effect. Now lets show

the second term in dH converges in probability to zero.

min
(g,g′)∈{1,...,G}2

1

T

T∑
t=1

(θ̂g̃g̃′t(1Di , Dit)− θ0
gg′t(1Di , Dit))

2 p−→ 0
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Now with probability approaching 1 we have for all (g̃, g̃′) ∈ {1, ..., G}2 we have using the

results above...

min
(g,g′)∈{1,...,G}2

1

T

T∑
t=1

(
θ̂g̃g̃′t(1Di , Dit)− θ0

gg′t(1Di , Dit)
)2

≤ 1

T

T∑
t=1

(
θ̂g̃g̃′t(1Di , Dit)− θ0

σ−1(g̃,g̃′)t(1Di , Dit)
)2

= min
(h̃,h̃′)∈{1,...,G}2

1

T

T∑
t=1

(
θ̂h̃h̃′t(1Di , Dit)− θ0

σ−1(g̃,g̃′)t(1Di , Dit)
)2 p−→ 0

(1.20)

The Lemma shows that their exists a permutation σ such that 1
T

∑T
t=1(θ̂σ(g,g′)t(1Di , Dit) −

θ0
gg′t(1Di , Dit))

2 p−→ 0. So by relabeling the elements of θ̂ we can take σ(g, g′) = (g, g′) for the

rest of the proofs. For any η > 0 lets define Nη to represent the set of parameters (β, θ) that

satisfy ||β − β0||2 < η and 1
T

∑T
t=1(θgg′t(1Di , Dit) − θ0

gg′t(1Di , Dit))
2 < η for all (g, g′). Now

lets prove that we can consistent estimate group choice.

Lemma B.4: For a small enough η > 0, we have for all δ > 0 and as N and T tend to

infinity,

sup
(θ,β)∈Nη

1

N

N∑
i=1

1
[
ĝib(θ, β) 6= g0

ib ∨ ĝia(θ, β) 6= g0
ia

]
= op(T

−δ).

PROOF: Before we begin, notice to establish the consistency of our group estimates, we

analyze the probability of correctly identifying the true grouping structure. Consider the

probability that our least squares estimator selects a particular grouping, denoted by (g, g′).

Observe that the probability of selecting this grouping is bounded above by the probability

that this grouping exhibits a lower sum of squared errors (SSE) than the true grouping.

Formally, we have:

P ((g, g′) is selected) ≤ P
(
SSE(g,g′) ≤ SSEtrue

)
.

This inequality holds because the properties of the least squares estimator ensure that the

chosen grouping will have at least as small an SSE as the true grouping. However, multiple
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groupings may achieve an SSE that is as low or lower than that of the true grouping.

1{ĝia(θ, β) = g ∧ ĝib(θ, β) = g′} ≤ 1{
∑T

t=1(yit − θgg′t(1Di , Dit)− x′itβ)2

≤
∑T

t=1(yit − θg0ibg0iat(1Di , Dit)− x′itβ)2}

Now we can formalize the probability of our estimator selecting an incorrect grouping, we

start by expressing this probability in terms of the sum of squared errors (SSE) like above.

Specifically, the probability that the estimator chooses an incorrect grouping is bounded

above by the probability that an incorrect grouping has an SSE less than or equal to that

of the true grouping. This can be represented as follows:

1
N

∑N
i=1 1{ĝib(θ, β) 6= g0

ib ∨ ĝia(θ, β) 6= g0
ia} =

∑G
g=1

∑G
g′=1

1
N

∑N
i=1 1{g0

ib 6= g′ ∨ g0
ia 6= g}×

1{ĝib(θ, β) = g′ ∧ ĝia(θ, β) = g}

≤
∑G

g=1

∑G
g′=1

1
N

∑N
i=1 Zigg′(θ, β)

where we define Zigg′(θ, β) to represent the probability that an incorrect grouping exhibits

an SSE less than or equal to that of the true grouping. Formally,

Zigg′(θ, β) = 1{g0
ib 6= g′ ∨ g0

ia 6= g}×

1{
∑T

t=1 (yit − θgg′t(1Di , Dit)− x′itβ)2 ≤∑T
t=1(yit − θg0ibg0iat(1Di , Dit)− x′itβ)2}.

To proceed, we aim to bound Zigg′(θ, β) uniformly over all (θ, β) ∈ Nη by a quantity inde-

pendent of these parameters. For simplicity of notation, we temporarily omit (1Di , Dit) from

θ in the following steps. Then, for any (θ, β) and for all i, we have...

Zigg′(θ, β) = 1{g0
ib 6= g′ ∨ g0

ia 6= g}×

1{
∑T

t=1(θg0ibg0iat − θgg′t)× (εit + x′it(β
0 − β) + θ0

g0ibg
0
iat
−

θ
g0
ib
g0
ia
t
+θgg′t

2
) ≤ 0}

≤ max
h6=g∨h′ 6=g′

1{
∑T

t=1(θhh′t − θgg′t)× (εit + x′it(β
0 − β) + θ0

hh′t −
θhh′t+θgg′t

2
) ≤ 0}
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To analyze the convergence of the final term in probability, we introduce a sequence At

that closely resembles this term. By constructing an appropriate bound on At, we can then

rigorously establish its convergence properties. This approach will provide insight into the

probabilistic behavior of the final term.

AT = |
∑T

t=1(θhh′t − θgg′t)× (εit + x′it(β
0 − β) + θ0

hh′t −
θhh′t+θgg′t

2
)−

(θ0
hh′t − θ0

gg′t)× (εit + θ0
hh′t −

θ0
hh′t+θ

0
gg′t

2
)|

≤ |
∑T

t=1(θhh′t − θgg′t)εit − (θ0
hh′t − θ0

gg′t)εit|

+|
∑T

t=1(θhh′t − θgg′t)x′it(β0 − β)|

+|
∑T

t=1(θhh′t − θgg′t)(θ0
hh′t −

θhh′t+θgg′t
2

)

−(θ0
hh′t − θ0

gg′t)(θ
0
hh′t −

θ0
hh′t+θ

0
gg′t

2
)|

(1.21)

Next, let’s examine the convergence properties of the terms on the right-hand side of equation

1.21. Focusing on the first term in 1.21, we observe that, by applying the Cauchy-Schwarz

Inequality and using our definition of Nη we have...

|
∑T

t=1(θhh′t − θgg′t)εit − (θ0
hh′t − θ0

gg′t)εit)|

= |
∑T

t=1(θhh′t − θ0
hh′t)εit + (θgg′t − θ0

gg′t)εit)|

≤
√∑T

t=1(θhh′t − θ0
hh′t)

2

√∑T
t=1 ε

2
it +

√∑T
t=1(θgg′t − θ0

gg′t)
2

√∑T
t=1 ε

2
it

≤ 2
√
Tη
√

1
T

∑T
t=1 ε

2
it

≤ 2T
√
η
√

1
T

∑T
t=1 ε

2
it

For the second term in 1.21 we can show using the same tricks as before with the knowledge

our parameter space is compact
∑T

t=1(θhh′t − θgg′t)2 ≤ C1T ...

|
∑T

t=1(θhh′t − θgg′t)x′it(β0 − β)|

≤
√∑T

t=1(θhh′t − θgg′t)2

√∑T
t=1(x′it(β

0 − β))2

≤
√
C1T

√
1
T

∑T
t=1(x′it(β

0 − β))2

≤ C1T
√

1
T 2

∑T
t=1 ||xit||2||β0 − β||2

≤ C1T
√
η
√

1
T 2

∑T
t=1 ||xit||2
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For the final term in 1.21 given all our parameters are bounded we can show for some constant

C2 > 0...

|
∑T

t=1(θhh′t − θgg′t)(θ0
hh′t −

θhh′t+θgg′t
2

)−

(θ0
hh′t − θ0

gg′t)(θ
0
hh′t −

θ0
hh′t+θ

0
gg′t

2
)|

=
∑T

t=1(θhh′t − θ0
hh′t + θ0

gg′t − θgg′t)(θ0
hh′t)+

(θhh′t − θ0
hh′t + θ0

gg′t − θgg′t)(
θhh′t+θgg′t

2
)+

(θ0
hh′t − θ0

gg′t)(
θhh′t+θgg′t

2
−

θ0
hh′t+θ

0
gg′t

2
)

≤
√∑T

t=1(θhh′t − θ0
hh′t)

2

√∑T
t=1(θ0

hh′t)
2+√∑T

t=1(θgg′t − θ0
gg′t)

2

√∑T
t=1(θ0

hh′t)
2+√∑T

t=1(θhh′t − θ0
hh′t)

2

√∑T
t=1(

θhh′t+θgg′t
2

)2+√∑T
t=1(θgg′t − θ0

gg′t)
2

√∑T
t=1(

θhh′t+θgg′t
2

)2+√∑T
t=1(θhh′t − θ0

hh′t)
2

√∑T
t=1(1

2
(θ0
hh′t − θ0

gg′t))
2+√∑T

t=1(θgg′t − θ0
gg′t)

2

√∑T
t=1(1

2
(θ0
hh′t − θ0

gg′t))
2

≤
√
Tη
√
C2T

≤ √ηC2T

Combining these results we can show using CS inequality that for all (θ, β) ∈ Nη.

AT ≤ 2T
√
η
√

1
T

∑T
t=1 ε

2
it + C1T

√
η
√

1
T 2

∑T
t=1 ||xit||2 + TC2

√
η

where C1, C2 are independent of η and T if we subtract AT from both sides Zigg′ we can

show...

Zigg′(θ, β) ≤ max
h6=g∨h′ 6=g′

1{
∑T

t=1(θ0
hh′t − θ0

gg′t)× (εit + θ0
hh′t −

θ0
hh′t+θ

0
gg′t

2
) ≤

T2
√
η( 1

T

∑T
t=1 εi,t)

1
2 ) + TC1

√
η( 1

T
||xit||) + TC2

√
η}

Note that the right hand side doesn’t depend on (β, θ) thus it follows that sup
(β,θ)∈Nη

Zigg′(θ, β) ≤
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Z̃igg′ removing the dependency of β, θ on the function Z.

Z̃igg′ = max
h6=g∨h′ 6=g′

1{
∑T

t=1(θ0
hh′t − θ0

gg′t)εit +
∑T
t=1(θ0

hh′tθ
0
gg′t)

2

2
≤

T2
√
η( 1

T

∑T
t=1 εi,t)

1
2 ) + TC1

√
η( 1

T

∑T
t=1 ||xit||) + TC2

√
η}

As a result

sup(θ,β)∈Nη
1
N

∑N
i=1 1 [ĝib(θ, β) 6= g ∨ ĝia(θ, β) 6= g′] ≤ 1

N

∑N
i=1

∑T
t=1 Z̃igg′

Remember, Zigg′ , represents the probability we mislabel an individuals group choice either

before treatment or after treatment. Next we will show the probability of mislabeling goes

to 0 as N and T go to infinity. Fix M̃ > max(
√
M,M∗), where M and M∗ are given by

Assumptions 1 and 2e, respectively. Note E[ε2it] ≤
√
M . We have the following.

Pr(Z̃igg′ = 1) ≤
∑

h6=g∨h′ 6=g′ Pr(
∑T

t=1(θ0
hh′t − θ0

gg′t)εit ≤ −
∑T
t=1(θ0

hh′t+θ
0
gg′t)

2

2

+T2
√
η( 1

T

∑T
t=1 εi,t)

1
2

+TC1
√
η( 1

T

∑T
t=1 ||xit||)

+TC2
√
η)

≤
∑

h6=g∨h′ 6=g′ Pr(
1
T

∑T
t=1 ||xit||) ≥ M̃)

+Pr( 1
T

∑T
t=1(θ0

hh′t − θ0
gg′t)

2 ≤ chh′gg′

2
)

+Pr( 1
T

∑T
t=1 ε

2
i,t ≥ M̃)

+Pr(
∑T

t=1(θ0
hh′t − θ0

gg′t)εit ≤ −T
chh′gg′

4
+ T2

√
η
√
M̃

+TC1
√
η
√
M̃ + TC2

√
η)

(1.22)

The first term on the right hand side will converge in probability to 0 due to assumption

1.b. To bound the last three terms we will rely on the following lemma. Specifically, we

rely on Theorem 6.2 in Rio (2000) [Rio00] whose proof was also outlined by Bonhomme and

Manresa (2015).

LEMMA B.5: Let zt be a strongly mixing process with zero mean, with strong mixing
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coefficients α[t] ≤ e−at
d1 , and with tail probabilities Pr(|zt| ≥ z) ≤ e−z

bd2 , where a, b, d1, and

d2 are positive constants. Then, for all z ≥ 0, we have, for all δ > 0,

T δ Pr

(∣∣∣∣∣ 1

T

T∑
t=1

zt

∣∣∣∣∣ ≥ z

)
−−−→
T→∞

0.

PROOF: Let s2 = supt>1(
∑

s≥1 E|ztzs|). Note that s2 <∞ under the condition of Lemma

B.5. Let also d = d1d2
d1+d2

. By evaluating inequality (1.7) in Merlevède, Peligrad, and Rio

(2011) [MPR11] at λ = T
z
4 and r = T

1
2 , we obtain that there exists a constant f > 0

independent of T such that, for all z > 0 and T ≥ 1,

Pr

(∣∣∣∣∣ 1

T

T∑
t=1

zt

∣∣∣∣∣ ≥ z

)
≤ 4

(
1 + T

1
2
z2

16s2

)−( 1
2)T

1
2

+
16f

z
exp

−a(T 1
2 z

4b

)d
 .

Lemma B.5 directly follows.

It is crucial to note that this needs to hold for every individual across all time periods.

Therefore, the groups must be separated for each treatment group with unique group pa-

rameters in each period. Without this separation, we cannot guarantee that the probability

will hold. This requirement marks a significant difference from Bonhomme and Manresa.

Additionally, we relax their group separation condition by allowing the series to be bounded

below in the limit, without requiring the existence of the limit. Specifically, we must estab-

lish new group separation and probability assumptions for each period and treatment group

with unique group parameters. Next we must utilize results from exponential inequalities.

We now bound the last three terms in 1.22 using this inequality. From Assumptions 1a and

2b we can show where h 6= g ∨ h′ 6= g′ we have for all treatment groups and periods. In

particular, we need to assume group separation for each period and subpopulation with its

own unique group parameter.

We now bound the last three terms in 1.22 using Lemma B.5. Lets start with Pr( 1
T

∑T
t=1(θ0

hh′t−

θ0
gg′t)

2 ≤ chh′gg′

2
). Using Fatou’s lemma and assumption 2.b we know the following is true for
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all h 6= g ∨ h′ 6= g′ .

lim
T→∞

1

T

T∑
t=1

E
[
(θ0
hh′t − θ0

gg′t)
2
]
> chh′gg′ .

So when T is large enough

1

T

T∑
t=1

E
[
(θ0
hh′t − θ0

gg′t)
2
]
>

2chh′gg′

3
.

By utilizing Lemma B.5 and defining zt as (θ0
hh′t−θ0

gg′t)
2−E

[
(θ0
hh′t − θ0

gg′t)
2
]
, where zt satisfies

the assumption 1a that its expectation equals zero and also meets the tail conditions for a

strongly mixing process as described in 2c. Additionally, by setting z =
chh′gg′

6
, it can be

demonstrated that, for any δ > 0, as T approaches infinity the term converges in probability

to 0.

Pr
(

1
T

∑T
t=1(θ0

hh′t − θ0
gg′t)

2 ≤ chh′gg′

2

)
= Pr

(
1
T

∑T
t=1(θ0

hh′t − θ0
gg′t)

2 − E
[
(θ0
hh′t − θ0

gg′t)
2
]
≤ chh′gg′

2
− 1

T

∑T
t=1 E

[
(θ0
hh′t − θ0

gg′t)
2
])

≤ Pr
(

1
T

∑T
t=1(θ0

hh′t − θ0
gg′t)

2 − E
[
(θ0
hh′t − θ0

gg′t)
2
]
≤ chh′gg′

2
− 2chh′gg′

3

)
≤ Pr

(∣∣∣ 1
T

∑T
t=1(θ0

hh′t − θ0
gg′t)

2 − E
[
(θ0
hh′t − θ0

gg′t)
2
]∣∣∣ ≤ chh′gg′

6

)
= Pr

(∣∣∣ 1
T

∑T
t=1 zt

∣∣∣ ≤ z
)
≤ o(T−δ)

Next lets examine Pr( 1
T

∑T
t=1 ε

2
i,t ≥ M̃). We can apply the strongly mixing conditions to

the third term in 1.22 by setting zt = ε2it − E(ε2it) and z = M̃ −
√
M . Note this satisfies the

strongly mixing conditions by assumption 1c and 2c yielding for all δ > 0.

Pr

(
1

T

T∑
t=1

ε2it ≥ M̃

)
= o(T−δ)

Finally, we proceed to bound the remaining term in equation (1.22). To achieve this, let c

be defined as the minimum of chh′gg′ , from Assumption 2(b), over all cases where h̄ 6= ḡ or

h̃ 6= g̃. Then, we obtain
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η ≤

(
c

8(2
√
M̃ + C1

√
M̃ + C2)

)2

.

Consider zt = (θ0
hh′t − θ0

gg′t)εit and set z =
chh′gg′

8
. Now utilize assumption 2.c and for η that

satisfies the above condition we establish the following for all h̄ 6= ḡ or h̃ 6= g̃.

Pr
(

1
T

∑T
t=1(θ0

hh′t − θ0
gg′t)εit ≤ −

chh′gg′

4
+ 2
√
η
√
M̃ + C1

√
η
√
M̃ + C2

√
η
)

≤ Pr
(

1
T

∑T
t=1(θ0

hh′t − θ0
gg′t)εit ≤ −

chh′gg′

8

)
≤ Pr

(∣∣∣ 1
T

∑T
t=1(θ0

hh′t − θ0
gg′t)εit

∣∣∣ ≥ chh′gg′

8

)
= Pr

(∣∣∣ 1
T

∑T
t=1 zt

∣∣∣ ≥ z
)
≤ o(T−δ)

Note that {(θ0
hh′t− θ0

gg′t)εit}t satisfies the tail conditions in assumption 2.d. but we will have

to change the b coefficients because Pr(|εit| > m
2sup|θ|) ≤ e1−(m/b)d2 . Also note that this only

holds for every individual because we are requiring group separation condition for treated

and controls in pre- and post- treatment periods. Combining all these results and using

assumption 2e we find for η satisfying out previous condition and all δ > 0

1
N

∑N
i=1

∑G
g=1

∑G
g′=1 Pr(Z̃igg′ = 1) ≤ (G4 +G2) sup

i=1,..,N
Pr( 1

T

∑T
t=1 ||xit||) ≥ M̃)

+o(T−δ) = o(T−δ)

Finally, we have for all η satisfying the condition above, and all δ > 0, ε > 0. using the

markov inequality and the results above we prove Lemma B.4.

Pr

(
sup

(θ,β)∈Nη

1

N

N∑
i=1

1
[
ĝib(θ, β) 6= g0

ib ∨ ĝia(θ, β) 6= g0
ia

]
> εT−δ

)

≤ Pr

(
1

N

N∑
i=1

G∑
g=1

G∑
g′=1

Z̃igg′ > εT−δ

)
≤

E
(

1
N

∑N
i=1

∑G
g=1

∑G
g′=1 Z̃igg′

)
εT−δ

= o(1),
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1.9.3 Proof of Theorem 3

Having established that group choice can be consistently estimated, we now proceed to

demonstrate that our time-varying unobserved group-period fixed effect estimator converges

to the infeasible estimator. We begin by proving this convergence for θ̂gib,gia,t(1Di , Dit). Given

that our group choice proof applies to both treated and control groups, specifically including

treated units in both pre- and post-treatment periods, we can extend the convergence result

to λ̂git,t, ζ̂git , and δ̂gib,gia .

Q̂(θ, β) = 1
NT

∑N
i=1

∑T
t=1(yit − θĝib(λ,ζ,δ,β),ĝia(λ,ζ,δ,β),t(1Di , Dit)− x′itβ)2 (1.23)

and

Q̃(θ, β) = 1
NT

∑N
i=1

∑T
t=1(yit − θg0ib,g0ia,t(1Di , Dit)− x′itβ)2 (1.24)

Let η > 0 be small enought to satisfy Lemma B4 then using assumptions 1a-1c and lemma

B4 we can see for all δ > 0.

sup
(θ,β)∈Nη

∣∣∣Q̂(θ, β)− Q̃(θ, β)
∣∣∣ = op(T

−δ). (1.25)

Now, by consistency of β̂ (Theorem 1) and θ̂ (Lemma B.3), we have, as N and T tend to

infinity for all periods and treatment groups,

Pr((θ̂, β̂) 6∈ Nη)→ 0. (1.26)

Similiarly, (θ̃, β̃) are also consistent under the conditions of Theorem 1, we have for all

periods and treatment groups.

Pr((θ̃, β̃) 6∈ Nη)→ 0. (1.27)
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By combining 1.25 and 1.26 we have for all δ > 0 as N and T tend to infinity,

Q̂(θ̂, β̂)− Q̃(θ̂, β̂) = op(T
−δ). (1.28)

We can prove it with the following...

Pr
[∣∣∣Q̂(θ̂, β̂)− Q̃(θ̂, β̂)

∣∣∣ > εT−δ
]
≤ Pr

(
(θ̂, β̂) 6∈ Nη

)
+Pr

[
sup(θ,β)∈Nη

∣∣∣Q̂(θ, β)− Q̃(θ, β)
∣∣∣ > εT−δ

]
,

(1.29)

Which is o(1) by 1.25 and 1.26. Analagously we can combine 1.25 and 1.27 to show

Q̂(θ̃, β̃)− Q̃(θ̃, β̃) = op(T
−δ). (1.30)

By combining 1.28 and 1.30 with the the fact our hats consistently estimate our tildes we

can show.

0 ≤ Q̃(θ̂, β̂)− Q̃(θ̃, β̃) = Q̂(θ̂, β̂)− Q̂(θ̃, β̃) + op(T
−δ) ≤ op(T

−δ).

It follows that for all periods and treatment groups.

Q̃(θ̂, β̂)− Q̃(θ̃, β̃) = op(T
−δ). (1.31)
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Using 1.31 we can now prove consistency for our parameters. Lets start with β. We get the

fourth equality from our first order conditions of least square estimators.

Q̃(θ̂, β̂)− Q̃(θ̃, β̃) = 1
NT

∑N
i=1

∑T
t=1(yit − θ̂g0ib,g0ia,t(1Di , Dit)− x′itβ̂)2−

(yit − θ̃g0ib,g0ia,t(1Di , Dit)− x′itβ̃)2

= 1
NT

∑N
i=1

∑T
t=1(yit − θ̃g0ib,g0ia,t(1Di , Dit)

−(θ̂g0ib,g0ia,t(1Di , Dit)− θ̃g0ib,g0ia,t(1Di , Dit))

−x′itβ̃ − x′it(β̂ − β̃))2

−(yit − θ̃g0ib,g0ia,t(1Di , Dit)− x′itβ̃)2

= 1
NT

∑N
i=1

∑T
t=1 2(yit − θ̃g0ib,g0ia,t(1Di , Dit)− x′itβ̃)×

(−(θ̂g0ib,g0ia,t(1Di , Dit)− θ̃g0ib,g0ia,t(1Di , Dit))− x′it(β̂ − β̃))+

(−(θ̂g0ib,g0ia,t(1Di , Dit)− θ̃g0ib,g0ia,t(1Di , Dit))− x′it(β̂ − β̃))2

= 1
NT

∑N
i=1

∑T
t=1(−(θ̂g0ib,g0ia,t(1Di , Dit)− θ̃g0ib,g0ia,t(1Di , Dit))− x′it(β̂ − β̃))2

≥ (β̃ − β̂)′ 1
NT

∑N
i=1

∑T
t=1((xit − x̄g0ib,g0ia,t)(xit − x̄g0ib,g0ia,t)

′)(β̃ − β̂)

≥ ρ̂||β̃ − β̂||2

(1.32)

by assumption 1g ρ̂
p→ ρ and ρ > 0 implying (β̃ − β̂) = o(T−δ) for all δ > 0. Next

lets show this work for θ̂g0ib,g0ia,t(1Di , Dit). Next we we show that 1
T

∑T
t=1(θ̂g0ib,g0ia,t(1Di , Dit) −

θ̃g0ib,g0ia,t(1Di , Dit))
2 = o(T−δ). Lets use 1.32 and 1.31 and assumption 1.b and we can show

using the same first order condition logic we applied to the previous equation

1

NT

N∑
i=1

T∑
t=1

(−(θ̂g0ib,g0ia,t(1Di , Dit)− θ̃g0ib,g0ia,t(1Di , Dit)))
2 = o(T−δ)
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which by 2a implies for all (g, g′) ∈ {1, .., G}2

1

NT

N∑
i=1

T∑
t=1

(−(θ̂gg′t(1Di , Dit)− θ̃gg′t(1Di , Dit)))
2 = o(T−δ)

Because of our our tail assumption and lemma B.5 we see that our sequence converges for

each t.

(θ̃gg′t(1Di , Dit)− θ̂gg′t(1Di , Dit)) = o(T 1−δ)

But since δ > 0 we can generalize this to be...

(θ̃gg′t(1Di , Dit)− θ̂gg′t(1Di , Dit)) = o(T−δ)

Recall we defined θg0ib,g0ia,t(1Di , Dit) = λg0it,t+1Diζg0it +Ditδg0ib,g0ia . We know that our θ function

must converge for each subgroup for both pre and post treatment periods. To estimate our

group time trends lets use the controls where DiT ′ = 0. Notice we are estimating each groups

time trends for both pre and post treatment since controls do not change groups.

λ̃gt − λ̂gt = o(T−δ)

Given that our time trends and group selection are consistently estimated, we can proceed by

using the treated units in the pre-treatment period to estimate the treated group intercepts

(i.e., when DiT ′ = 1 and t < T ′). However, its possible to have an identification issue as

there is the potential issue of mislabeling the groups. In particular, if for some g 6= g′ we

have λ0
gt = c+λ0

g′t then its possible to match the group time trend to the wrong treatment

group as explained in the identification section. By leveraging assumption 3 we ensure that

λ0
gt − ζ0

g − λ̂g′t − ζ̂g′ 6= o(T−δ) by mis-estimating ζ̂g′ thus guaranteeing:

λ̃gt + ζ̃g − λ̂gt − ζ̂g = o(T−δ)

This approach allows for the consistent estimation of the treated group intercepts, ζg, for
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each group.

Theorem 2 ensures that individuals facing the same set of parameters are correctly grouped.

However, it does not guarantee consistent labels across sub-groups with different unobserved

group parameters. For example, it doesn’t ensure that group indices align between treated

and control groups, which could lead to misinterpreted treatment effects. To ensure con-

sistent labeling between treated and control groups, we rely on an additional assumption:

the time trends of the groups should not merely differ by a mean shift. As long as this

assumption holds, we achieve consistent labeling using the least squares framework. Further

discussion on this is provided in the identification section.

ζ̃g − ζ̂g = o(T−δ)

With the consistent estimation of the previous parameters for our group, we can estimate

our group-dependent treatment effects using the post-treated group. We show that we can

consistently estimate our treatment effect parameter (i.e., when DiT ′ = 1 for t ≥ T ′).

λ̃gt + ζ̃g + δ̃gg′ − λ̂gt − ζ̂g − δ̃gg′ = o(T−δ)

δ̃gg′ − δ̂gg′ = o(T−δ)

1.9.4 Proof of Theorem 4

In Theorem 4 we showed our time varying group period fixed effect estimators parameters

converges in distribution to their respective parameters in the infeasible estimator. Next lets

characterize the distribution of our infeasible estimator which is a panel data model with

multiple time periods. Let 1gi,t×Di be a G× 1 vector indicating which group i is in at time t

if i is treated otherwise its all zeros. Let 1git,t be a GT × 1 vector indicating which group i is

in at time t. Let 1g2i be a G×G vector indicating which group i before and after treatment.
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Then we have...

1
NT

∑N
i=1

∑T
t=1 (yit − (ζ̃g0it1Di+

λ̃g0it,t + δ̃g0ib,g0iaDit + x′itβ̃))2

= 1
NT

∑N
i=1

∑T
t=1 (yi,t −


1gi,t×D

1gi,t,t

1g2i

xit



′
ζ̃

λ̃

δ̃

β̃

)2

= 1
NT

∑N
i=1

∑T
t=1 (yi,t −X ′i,tB̃)2

(1.33)

Using Assumption 4 we will show can show
√
NT (B̃ − B0)

d→ N(0,Σ−1
β ΩβΣ−1

β ). First lets

decompose...
√
NT (B̃ − B0) =

√
NT ((X ′X )−1X ′Y − B0)

= ( 1
NT
X ′X )−1 1√

NT
X ′ε

By assumption 4.c we know that 1√
NT
X ′ε =

√
1
NT

∑N
i=1

∑T
t=1X ′itεit

d→ N (0,Ωθ). By assump-

tion 4.b we can show Σθ = plimN,T→∞
1
NT

∑N
i=1

∑T
t=1XitX ′it = 1

NT
X ′X and is invertible.

Then by Slutsky theorem we have we can characterize the distribution of our infeasible

parameters.

√
NT (B̃ − B0) = ( 1

NT
X ′X )−1 1√

NT
X ′ε d→ N(0,Σ−1

β ΩβΣ−1
β )

Since theorem 2 tells us our TV-GPFE parameters converge in probability, therefore distri-

bution, to our infeasible parameters we have (B̂−B̃) = o(T−δ). Therefore we can characterize

the distribution of our TV-GPFE parameters using the same distribution.

√
NT (B̂ − B0) = ( 1

NT
X ′X )−1 1√

NT
X ′ε d→ N(0,Σ−1

β ΩβΣ−1
β ) (1.34)

In this formulation we are letting T go to infinity so the traditional estimator of Ω which

treats T as fixed doesn’t work. We can instead use Hansen (2006) who allowed for T →∞
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to estimate Ω.

Ω̂β =
1

NT

N∑
i=1

N∑
j=1

T∑
t=1

T∑
s=1

ε̂itε̂jsXitX ′it
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CHAPTER 2

Mixed Integer Optimization Formulation For Grouped

Heterogeneity in Panel Data

2.1 Introduction

Integer optimization problems are widespread in economics, with applications ranging

from subset selection in high-dimensional settings to portfolio selection and bundling deci-

sions. Due to the NP-hard nature of these problems, economists have traditionally relied on

local approximations, structural assumptions, or convex relaxations to render the problems

tractable. However, recent advances in integer optimization algorithms have significantly

improved solution efficiency, opening up new possibilities for tackling previously intractable

problems. In this chapter, I develop a mixed integer optimization approach to address the is-

sue of Grouped Heterogeneity in Panel Data. By leveraging these algorithmic advancements,

I demonstrate that we can now estimate complex models in mere seconds.

2.2 Background

From 1991 to 2015, both hardware and algorithmic advancements contributed to a re-

markable 450-billion-fold increase in solution efficiency for integer optimization problems

[BKM16]. These improvements have continued with modern optimization platforms, such

as Gurobi, with its 2024 version achieving nearly twice the speed compared to its 2016 ver-

sion. Additionally, emerging technologies, including quantum computing, enhanced multi-

threading capabilities, and novel algorithmic developments—such as those proposed in this
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chapter—suggest that this trend of increasing computational efficiency is likely to persist.

These advancements hold substantial promise for integer optimization ability to tackle in-

creasingly complex problems in the years to come.

Bertsimas et. al. (2016) demonstrated that integer optimization could effectively be used

to solve subset selection problems for small to medium-sized problems with high precision,

as formulated below:

min
β

1

2
‖y −Xβ‖2

2 + λ‖β‖0, (2.1)

where the L0-norm ‖β‖0 directly penalizes the number of non-zero coefficients, thus en-

couraging a sparse solution. However, in practical applications, the field has largely adopted

the Lasso as an alternative approach for subset selection. The Lasso reformulates the prob-

lem by substituting the L0-norm constraint with the L1-norm constraint, transforming the

problem into a convex optimization problem, which can be solved more efficiently, particu-

larly in high-dimensional datasets:

min
β

1

2
‖y −Xβ‖2

2 + λ‖β‖1. (2.2)

This approximation is widely used due to its balance between computational efficiency

and sparsity, despite its limitations in exact subset selection. Notably, Bertsimas et al.

(2016) showed that modern advances in integer optimization not only make it feasible to

solve small to medium-sized problems using the Best Subset Selector but also demonstrate

that this approach outperforms the Lasso in terms of identifying the correct sparsity structure

and predictive performance. This finding suggests that the field may benefit from a renewed

focus on mixed integer optimization techniques rather than relying solely on relaxation-based

methods.

In this chapter, we address the problem of unobserved group heterogeneity, specifically

within the context of fixed effects models, where individuals make unobserved group choices,
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and these unobserved group effects introduce bias in parameter estimation. This problem

was most recently developed by Bonhomme and Manresa (2015), who formulated it in terms

of a panel dataset where both the model parameters and potential group memberships are

simultaneously estimated. The objective function for this model is given by:

(θ̂, α̂, γ̂) = argmin
(θ,α,γ)∈Θ×AGT×ΓG

N∑
i=1

T∑
t=1

(yit − x′itθ − αgit)
2
, (2.3)

Where yit represents the dependent variable, xit the vector of covariates, θ the coefficients,

and αgit the group-specific fixed effect. Due to the combinatorial nature of searching over

all possible group assignments, solving this optimization problem through exhaustive search

quickly becomes computationally infeasible. Bonhomme and Manresa (2015) addressed this

challenge by using a K-means clustering algorithm to estimate individual group assignments

iteratively. Their iterative procedure is summarized in Algorithm 1 below.

Algorithm 1:

1. Let (θ(0), α(0)) ∈ Θ× AGT be some initial values, and set s = 0.

2. For each i ∈ {1, . . . , N}, compute:

g
(s+1)
i = arg min

g∈{1,...,G}

T∑
t=1

(
yit − x′itθ(s) − α(s)

gt

)2

. (2.4)

3. Update the parameter estimates by solving:

(
θ(s+1), α(s+1)

)
= arg min

(θ,α)∈Θ×AGT

N∑
i=1

T∑
t=1

(
yit − x′itθ − αg(s+1)

i t

)2

. (2.5)

4. Increment s by 1 and repeat from Step 2 until numerical convergence.

While this iterative procedure is computationally feasible, it is not guaranteed to converge

to the global optimum, as it can get trapped in local minima. In this chapter, we develop

a mixed integer optimization formulation for this problem that enables us to compute the

global minimum, thereby improving the robustness of parameter estimates. We demonstrate
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that, under certain distributional assumptions, this global approach yields substantially bet-

ter results, offering more accurate estimates of group heterogeneity and reducing bias in the

estimation process.

2.3 Literature Review

Clustering algorithms have long been used to classify data based on minimizing a sum

of squares objective function. One of the earliest formalizations of this approach was Lloyd’s

(1957) work on the continuous K-means algorithm [Llo82]. Since then, K-means has become

a cornerstone in the clustering literature, with numerous extensions (see Bock 2008 for a

comprehensive review [Boc08]).

Despite its popularity, K-means suffers from several well-documented limitations: it is

sensitive to initialization, struggles with non-spherical cluster shapes, and is highly affected

by outliers. Ahmed, Seraj, and Islam (2020) provide an extensive review of these shortcom-

ings [ASI20]. Addressing these challenges requires alternative methods with better finite-

sample performance for clustering group data.

Recent efforts to address the limitations of traditional clustering include the work of

Chetverikov and Manresa (2021) [CM22], which extends Bonhomme and Manresa’s frame-

work. They propose a model where covariates are structured as:

xit =
M∑
m=1

ρimα
m
g(i)t + zit,

where zit is a zero-mean component independent of group-time-specific effects. Under these

assumptions, they develop a Spectral Estimator, which is computationally efficient and easy

to implement. However, the method’s reliance on structural constraints for the covariates

may limit its applicability in more general settings.

Chu (2017) [Chu17] takes a different approach by introducing a Composite Quasi-Likelihood

(CQL) Estimator for dynamic panel data models with unobserved group heterogeneity and
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spatially dependent errors. This method offers three key contributions: (1) it integrates

parameter estimation with latent group classification to address unobserved heterogeneity,

(2) it remains robust to misspecified group structures, avoiding reliance on instrumental

variables, and (3) it achieves computational feasibility through iterative updates, even in

the presence of non-convexity. These innovations enhance both estimation efficiency and

classification accuracy, providing practical solutions for empirical applications in complex

panel data settings.

However, these methods either require structural assumptions or are local approxima-

tions. Instead, we explore a Mixed Integer Optimization (MIO) approach which gives exact

solutions without any additional structural assumptions. The use of MIO in least squares

problems has a rich history, first outlined by Lazimy (1957) [Laz82], who formulated the

problem as a mixed integer quadratic programming problem. While MIO problems are

NP-hard, advances in algorithms such as Branch-and-Bound (see Lawler 1966 for a review

[LW66]) make them computationally feasible for certain problems.

MIO is not new to economics. For example, Mansini, Ogryczak, and Speranza (2015)

[MOS15] extensively discussed its applications in portfolio optimization, and Parisio and

Glielmo (2011) [PG11] used MIO to solve economic scheduling problems. We will be focus

on using MIO to cluster linear models.

In the context of clustering, Burgard, Pinheiro, and Schmidt (2023) [BPS24] employed

MIO to solve support vector machinery problems under the assumption of linearly separable

classes. While promising, this approach requires strong structural assumptions about the

data-generating process to ensure the decision boundary is correct.

A similar approach to our work is the Mixed Integer Non-Linear Programming (MINLP)

formulation of the Minimum-Sum-of-Squares Clustering (MSSC) problem. Burgard et al.

(2023) [BMH23] extended this formulation with novel heuristics to improve computational

efficiency. Our approach builds on this work but differs by leveraging a linear model for

clustering rather than minimizing to centroids. This added structure allows for more efficient

heuristics, which will be detailed in Chapter 3.
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An additional consideration is clustering in high-dimensional spaces. Adding irrelevant

covariates can degrade clustering performance due to the curse of dimensionality. While we

focus on low-dimensional settings in this chapter, Chapter 3 will address the high-dimensional

case and propose a potential solution in the appendix. There is a broad literature discussing

alternative solutions to high-dimensional clustering problems (see Sim et al. 2013 [SGZ13]

and Souvenir et al. 2005 [SP05]), which may be worth exploring further.

Our approach in Chapter 2 but in particular Chapter 3 will provide a computational

feasible global optimization procedure for clustering groups in linear regressions even for

large N . We believe this approach provides more attractive finite sample properties than

the others currently adopted in the literature. This is primarily due to its ability to find the

exact solution without additional structural constraints.

2.4 The Framework

Following the methodology of Bonhomme and Manresa (2015), we address the challenge

of modeling unobserved grouped heterogeneity in panel data settings, where the objective is

to capture the effect of latent group structures on observed outcomes. Specifically, we aim

to estimate three sets of parameters through the following optimization problem:

(θ̂, α̂, γ̂) = argmin
(θ,α,γ)∈Θ×AGT×ΓG

N∑
i=1

T∑
t=1

(yit − x′itθ − αgit)
2
,

In this framework, θ represents the vector of coefficients associated with the observed

covariates xit, while α denotes a set of group-specific fixed effects, with αgit capturing un-

observed heterogeneity across groups. Additionally, γ comprises the parameters that govern

the assignment of each observation to one of G latent groups. This framework is particu-

larly suited to settings where unobserved factors affect the outcome systematically across

groups. By introducing group-level fixed effects, it provides a means to improve predictive

accuracy and to address biases arising from omitted variables that vary by group, allowing
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us to differentiate within-group variation from across-group variation more precisely.

A critical aspect of this approach is that it requires consistent and asymptotically normal

estimates of the parameters (θ, α, γ), which are theoretically achievable if the optimization

algorithm finds the global minimum of the objective function. However, identifying the global

minimum is computationally challenging due to the combinatorial complexity of assigning

individual observations to groups. Bonhomme and Manresa (2015) addressed this challenge

by employing a K-means clustering algorithm, which offers computational efficiency and

demonstrated robustness in simulation settings. Nevertheless, the K-means-based approach

does not guarantee convergence to the global minimum, which may introduce biases in

inference, particularly in constructing confidence intervals for parameters.

In this chapter, we advance this methodology by developing a novel mixed integer op-

timization formulation that is guaranteed to find the global minimum. By ensuring con-

vergence to the global minimum, this approach enables accurate estimation of confidence

intervals, offering improved reliability and robustness in inference for models with unob-

served grouped heterogeneity. This formulation enhances the methodological rigor of grouped

fixed-effects models in panel data, ensuring both computational feasibility and theoretical

consistency in parameter estimation.

2.5 Mixed Integer Optimization Formulation

In this section, we address the challenge of estimating unobserved group-period effects

in a time-varying fixed effect framework by reformulating the estimation problem as a mixed

integer optimization problem. The goal is to minimize the residual sum of squares while

accurately capturing the grouping structure and the associated fixed effects. The problem

is initially defined as:

(θ̂, α̂, γ̂) = argmin
(θ,α,γ)∈Θ×AGT×ΓG

N∑
i=1

T∑
t=1

(yit − x′itθ − αgi,t)
2
, (2.6)
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To transform this into a mixed integer optimization problem that explicitly handles

discrete group assignments, we introduce binary indicators to represent group membership

dynamically and reformulate the model as follows:

min
(θ,α,α̃,z)

∑N
i=1

∑T
t=1 (yit − x′itθ − α̃it)

2

subject to

α̃it − αgt ≤ zigM ∀i, g

α̃it − αgt ≥ −zigM ∀i, g∑G
g=1 zig = G− 1 ∀i,

(2.7)

where θ is the coefficient vector for the covariates, and α̃it denotes the individual group-

period fixed effect. We introduce the binary variable zig, which takes the value 1 if individual i

is assigned to group g and 0 otherwise, to enforce discrete group assignments. The parameter

M is a sufficiently large constant to ensure computational feasibility in enforcing group

constraints.

In this setup, the constraint α̃it − αgt ≤ zigM and α̃it − αgt ≥ −zigM ensures that α̃it

takes on the group-period fixed effect αgt only when zig = 0. When zig = 1, this constraint is

non-binding due to the large constant M , satisfying the inequality trivially. To ensure that

each individual is assigned to exactly one group, we impose the constraint
∑G

g=1 zig = G−1,

which acts as a selection mechanism for group membership.

This integer optimization formulation provides a structured approach to estimating time-

varying group effects. By embedding group-period effects into a discrete optimization frame-

work, we introduce flexibility in handling dynamic group memberships while minimizing the

residual variance. The mixed-integer nature of the problem aligns well with branch-and-

bound techniques, which facilitate efficient exploration of feasible solutions.
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2.5.1 Branch and Bound

While an exhaustive search is theoretically possible, it quickly becomes impractical.

For instance, if we had a problem with 50 individuals across 2 groups, your typical com-

puter would take years to solve this problem. However, by employing a Branch and Bound

approach, we can solve this problem within seconds.

Our method employs a Branch and Bound framework, which systematically explores

group assignments by branching over individual group choices and bounding the problem

using the current set of assignments. Each node in the tree represents the group assignment

for an individual i, while each branch corresponds to a specific group choice. For instance,

at a branch representing group g for individual i, we assign zig = 1.

Once an individual’s group is fixed, we solve Equation 2.7 using the current set of con-

strained individuals (i.e., those assigned in earlier steps along the tree). Since the remaining

individuals (those yet to be assigned) remain unconstrained, this formulation provides a

lower bound for the sum of squared errors (SSE). This is because as we move further down

the tree and impose additional constraints, the SSE can only increase.

Consequently, if the SSE at any node exceeds the SSE of the current best solution (leaf

node), we can prune its branches. This ensures that the pruned node cannot lead to the

globally optimal solution, improving computational efficiency while preserving optimality.

The efficiency of the search is enhanced by using relaxation, initializing with an optimal leaf

node, and pruning. Our approach consists of five refined steps:

1. Individual Ordering in the Tree: Strategically ordering individuals within the

tree enhances search efficiency, allowing us to prioritize and reach potentially optimal

branches more quickly.

2. Initial Feasible Leaf Node: We start by identifying an initial feasible leaf node to

establish a preliminary upper bound on the Sum of Squared Errors (SSE). This initial

solution provides a benchmark, enabling early pruning of branches that cannot offer
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an improvement.

3. Search Strategy: A structured search strategy is employed to minimize the number

of nodes we explore, optimizing our path to verification of the global optimal solution.

4. Continuous Relaxation: At each node in the tree traversal, we solve a continuous re-

laxation of the integer-constrained problem. This relaxation, where integer constraints

are temporarily lifted, yields a lower bound for the SSE at that node.

5. Branch Pruning: Using both the relaxed bounds and the updated global best, we

prune branches at nodes where the SSE lower bound exceeds the best known leaf node

SSE. This indicates that further exploration down that path cannot yield the global

optimal solution, thereby significantly reducing the search space.

6. Updating the Global Best Leaf Node: As we explore the tree, any newly encoun-

tered feasible leaf node with a lower SSE than our current best becomes the updated

global best. This updated leaf node further tightens the SSE bound, enhancing our

ability to prune suboptimal branches.

7. Termination: The search concludes when all branches are pruned or the SSE values

of all frontier nodes exceed the current best SSE, confirming that the global minimum

has been identified.

Each of these steps contributes to an efficient search for the optimal group assignments,

ensuring that the algorithm quickly converges to the global minimum. Lets discuss a few in

more detail.

2.5.1.1 Ordering Nodes

When ordering individuals in nodes, our objective is to initially select individuals in a

way that minimizes the likelihood of misclassifying someone’s group early on in the tree,

allowing this risk to increase gradually as we progress. To achieve this, we first use a K-
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means algorithm to assign individuals to groups, providing a preliminary grouping structure.

Under these group-level assignments, we run our regression model.

We construct our decision tree by alternating focus between groups, prioritizing individu-

als based on their distance from regression lines. Initially, we select individuals farthest from

the regression lines of other groups, ensuring that early decisions in the tree have significant

consequences for the sum of squared errors (SSE). This approach leverages the assumption

that if K-means clustering performed well, early misclassifications will have a large impact,

guiding the tree construction toward the correct structure. As a result, individuals closest

to decision boundaries are addressed later in the process, allowing the latter stages of the

algorithm to fine-tune the decision lines.

2.5.1.2 Search Strategy

In the branch-and-bound framework, search strategies are critical for structuring the

algorithm’s exploration and pruning of the search tree. These strategies directly impact com-

putational efficiency and the speed of convergence to an optimal solution, which is especially

important in combinatorial and integer optimization contexts. Common search strategies

include breadth-first, depth-first, and best-first searches. However, our approach customizes

the search based on the ordering of nodes, with a particular emphasis on navigating group

decision boundaries accurately.

Our search strategy begins with a depth-first search (DFS). The primary motivation

behind DFS is to reach a feasible solution quickly by traveling deeply down each branch,

allowing us to establish an initial upper bound early in the search. This upper bound

facilitates pruning by eliminating branches that cannot yield better solutions, reducing un-

necessary calculations as we proceed. Once we identify the first feasible leaf node, we switch

to a breadth-last strategy.

The breadth-last strategy revisits nodes at deeper levels but focuses on nodes closer to de-

cision boundaries that might otherwise be overlooked in a pure depth-first framework. This
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allows the search to refine the solution further by examining boundary cases. This combined

strategy reaches a solution similar to the K-means initial group assignment via DFS, fol-

lowed by boundary refinement via breadth-last allows us to identify any misclassifications or

boundary ambiguities, achieving a more precise solution.

This hybrid approach leverages the computational efficiency of DFS for rapid solution

identification, then systematically broadens the search near boundaries where the K-means

clustering assumptions may falter. As a result, this strategy focuses computational resources

on refining the nonlinear boundary, leading to a more robust classification while minimizing

the risk of misclassification near decision boundaries.

2.5.2 Simulation Results Comparing MIO and K-means Formulations

In this section, we present simulation studies to evaluate the performance of our Mixed-

Integer Optimization (MIO) formulation relative to the K-means approach. We generate data

from a normal distribution with two groups, separated by a mean difference. The degree

of overlap between the groups is controlled by the standard errors, where 3 standard errors

correspond to significant overlap and 1 standard error represents minimal to practically no

overlap. Table 2.1 provides a summary of the results, showing that the MIO formulation

consistently achieves superior group classification accuracy, particularly in scenarios with

substantial group overlap.

In addition to accuracy improvements, computational efficiency was a critical consider-

ation for this approach. Our findings indicate that the MIO formulation offers significant

advantages in computational efficiency over exhaustive search. For example, we estimate that

solving a scenario with 50 entities using exhaustive search would take approximately 356,820

years on our hardware1. Furthermore, when comparing two scenarios with 20 entities—one

with extended time—the results suggest that the MIO approach scales effectively with time.

However, challenges arose in cases with N = 100 and significant group overlap, indicating

that the MIO formulation has its limitations in such high-complexity settings. We partially

1This estimate assumes a computational capacity of 1011 operations per second.

61



address this concern in the next section.

Table 2.1: Simulation Results Comparing MIO and K-means Formulations

Entities = 20 Entities = 50 Entities = 20
MIO K-means MIO K-means MIO

Time Horizon 24 24 20 20 50
Sum of Squared Errors (SSE) 3866.15 3972.36 983.97 983.97 8136.43

Group Accuracy (%) 88.00 80.00 100.00 100.00 97.25
Run Time (seconds) 125.00 0.0161 8474.00 0.0177 357.00

Standard Deviation (SD) 3 3 1 1 3

SSE denotes Sum of Squared Errors, and SD represents the standard deviation of the noise.

These results underscore the robustness of the MIO formulation in achieving higher group

classification accuracy compared to K-means, particularly under conditions with substantial

noise. Furthermore, the computational efficiency and scalability of the MIO approach pro-

vide significant advantages over exhaustive search, making it a practical solution for larger

datasets.

2.5.3 Improving Efficiency of MIO Algorithm

If you know more about your problem, additional constraints can dramatically reduce

the time complexity for finding the optimal solution. In this section we explore one general

constraint. In 2.8, we present a comprehensive framework to identify the global minimum

solution for the unobserved group heterogeneity problem. Given that the indexing of groups

lacks inherent meaning, we impose an ordering on the group effect parameters by arranging

them in ascending order based on their index values. This ordering effectively reduces

redundant comparisons, as it eliminates the need for the algorithm to evaluate permutations

such as whether group 1’s effect is greater than group 2’s or vice versa. This structured

approach simplifies the search space and enhances algorithmic efficiency.
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min
(Θ,α,α̃,z)

∑N
i=1

∑T
t=1 (yit − x′itθ − α̃it)

2

subject to

α̃it − αgt ≤ zigM ∀i, g∑G
g=1 zig = G− 1 ∀i,

αg,t ≤ αg+1,t ∀g ∈ {1, ..., G− 1}

(2.8)

2.5.4 Simulations Assessing Enhanced Efficiency in MIO Formulations

In this section, we compare formulation 2.8 with the additional constraint to the K-

means solution, focusing on improvements in computational efficiency, particularly regard-

ing runtime. We are using the same setup that we used in the previous simulations. In

our previous simulations, solving the 50-entity problem required approximately 2.3 hours.

With the new formulation, the same problem was completed in just 33 seconds—a dramatic

improvement. While this advancement makes the 100-entity problem with overlap feasible,

solving the N = 200 case remains challenging due to excessive computational time.

Table 2.2: Comparison of MIO and GFE Performance Metrics

20 Entities 50 Entities 20 Entities
Metric MIO GFE MIO GFE MIO

Time Periods 24 24 20 20 50
Sum of Squared Errors (SSE) 3934.4 4029.1 965.03 965.03 8088.88

Group Accuracy (%) 87.0 71.25 100.0 100.0 98.0
Runtime (sec) 6.9 0.01325 33.0 0.01575 42.35

Standard Deviation (SD) 3 3 1 1 3

SSE denotes Sum of Squared Errors, and SD represents the standard deviation of the noise.

2.6 Summary

In this chapter, we introduced a Mixed Integer Optimization (MIO) formulation to esti-

mate the unobserved time-varying group choice fixed effect model in panel data. Our results

demonstrate that the proposed MIO approach improves both the accuracy and precision of
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estimates compared to the commonly used K-means method. The formulation proved feasible

in noisy environments with significant group overlap for problems up to N = 100. However,

for larger datasets with substantial overlap, particularly when N > 200, the computational

time becomes impractical.

To address these limitations, the next chapter presents a novel algorithm that combines

Branch-and-Bound techniques with the structural properties of linear models in least squares.

This new global optimization procedure aims to efficiently identify either the global optimum

or a close approximation to it, even for large-scale problems where N can reach up to 1

million.
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CHAPTER 3

Linear Search Algorithm for Unobserved

Heterogeneity in Panel Data

While Mixed Integer Optimization over individual group choice offers a globally optimal

solution to the challenge of unobserved group heterogeneity, it remains an NP-hard problem,

making it computationally infeasible for large sample sizes. In this chapter, we harness

properties of least squares estimators to significantly reduce the computational complexity.

Specifically, We prove the decision boundary must be linear then re-formulate the problem

to search for the decision boundary which implies individuals group choices. We motivate

this approach by demonstrating that under strong assumptions about group membership the

NP-hard group selection problem can be transformed into one with linear time complexity

relative to N. Afterwards, we relax these assumptions to develop a Linear Search Algorithm.

Through simulations, we show that this approach not only accommodates large sample sizes

but also consistently outperforms K-means in terms of accuracy.

3.1 The Problem

To start, let us revisit the issue of unobserved group heterogeneity in panel data settings.

The estimation problem can be framed as follows:

(θ̂, α̂, γ̂) = argmin
(θ,α,γ)∈Θ×AGT×ΓG

N∑
i=1

T∑
t=1

(yit − x′itθ − αgit)
2
,

The challenge lies in accurately estimating θ, our parameter of interest, which suffers
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from bias due to our omitted unobserved group time trends αgit. This unobserved group

heterogeneity complicates the optimization by introducing unknown group assignments that

must be inferred simultaneously with the main parameters.

Mixed Integer Optimization (MIO) over individual group choices provides a framework

for obtaining consistent estimates of these parameters, but the computational burden is

significant; being NP-hard, MIO becomes impractical for datasets with large N . Similarly, K-

means clustering, while faster, struggles to capture the complex, dynamic group structures in

panel data, often leading to imprecise group assignments and inaccurate parameter estimates.

This chapter explores how leveraging properties of linear models in least squares es-

timation can reduce the computational complexity of group assignment, allowing for more

scalable and efficient estimation procedures that retain accurate parameter estimation across

large N .

3.2 Characterizing The Decision Boundary

To improve the MIO formulation, we aim to exploit certain properties of the least

squares estimator to reduce computational complexity. Our first approach is to characterize

the decision boundary for group assignment. Then we will bound the location the decision

boundary must cross through. By identifying both the shape and location of this boundary,

we can reduce number of group combinations we search over.

To achieve this, we take the least squares estimates, θ̂ and α̂, as given, and focus on the

group assignment decision for a particular individual i. Specifically, the decision boundary

for assigning individual i to group g versus an alternative group g̃ occurs when the Sum

of Squared Errors (SSE) is equal for both assignments, rendering the algorithm indifferent

between the two choices.
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∑T
t=1(yit − α̂git − x′itθ̂)2 =

∑T
t=1(yit − α̂g̃it − x′itθ̂)2∑T

t=1 y
2
it − 2yit(α̂git − x′itθ̂) + (α̂git − x′itθ̂)2 =

∑T
t=1 y

2
it − 2yit(α̂g̃it − x′itθ̂) + (α̂g̃it − x′itθ̂)2∑T

t=1−2yit(α̂git − x′itθ̂) + (α̂git − x′itθ̂)2 =
∑T

t=1−2yit(α̂g̃it − x′itθ̂) + (α̂g̃it − x′itθ̂)2∑T
t=1−2yit(α̂git − α̂g̃it) =

∑T
t=1(α̂g̃it − x′itθ̂)2 − (α̂git − x′itθ̂)2∑T

t=1−2yit(α̂git − α̂g̃it) =
∑T

t=1(α̂g̃it + 2x′it + α̂git)(α̂g̃it − α̂git)∑T
t=1−2yit(α̂git − α̂g̃it) =

∑T
t=1(α̂g̃it + α̂git)(α̂g̃it − α̂git) + 2x′it(α̂g̃it − α̂git)yi

xi

> (α̂gi − α̂g̃i) =
∑T
t=1(α̂g̃it+α̂git)(α̂git−α̂g̃it)

2

(3.1)

From this decomposition, it is apparent that the decision boundary is represented by a

hyperplane in the data space R(1+P )T where P is the number of covariates and T is the number

of time periods. The linearity of this optimal decision boundary in both finite samples and

asymptotically will provide crucial leverage in constructing a more efficient algorithm.

We can simplify this problem further by considering an alternative estimator. Bon-

homme and Manresa (2015) assume that individuals remain in the same group over time.

By averaging across time, the group assignment problem remains unchanged. While this

approach sacrifices some time variation, it reduces the search space and minimizes errors

around the regression line, both of which significantly decrease the computational burden of

the optimization process. The time-averaged estimator is formulated as follows:

(θ̂, ˆ̄α, γ̂) = argmin
(θ,α,γ)∈Θ×AGT×ΓG

N∑
i=1

(ȳi − x̄′iθ − ᾱgi)
2
, (3.2)

where ȳi and x̄′i denote the time-averaged outcomes and covariates, respectively. Under

this estimator, the decision boundary remains linear (see proof in Appendix). Specifically,

the decision boundary lies equidistant between the regression lines corresponding to the two

groups, as given by:
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ȳi =
ˆ̄αg̃ + ˆ̄αg

2
+ x̄′iθ̂ (3.3)

This linear decision rule further facilitates computational efficiency, making it highly

applicable to large-scale problems.

3.2.1 Locating The Decision Boundary: A Motivating Example

Having established that the decision boundary is linear, the next step is to identify its

potential location. Under strong assumptions regarding group composition, we can pinpoint

a single location where the decision boundary must necessarily lie. Furthermore, under

these assumptions, we demonstrate that the computational complexity of estimating our

parameters is linear in N in the two-dimensional setting. In this section, we will first present

this motivating example based on these restrictive assumptions and then proceed to relax

these assumptions to extend the framework to more general cases.

To develop an intuitive understanding of this problem, we turn to the estimator presented

in Equation 3.2. By leveraging properties of least squares estimators, we can characterize

the group intercepts. For a given group , the group-specific intercept can be expressed as:

ˆ̄αg = ¯̄yg − ¯̄x′gθ̂ (3.4)

where ¯̄yg and ¯̄xg represent the group-level means of the dependent variable and independent

variables, respectively, and denotes the estimated coefficients. To proceed, let us redefine

Equation 3.3 using our definition of group-specific intercept above and derive its implications:

ȳi =
¯̄yg̃−¯̄x′g̃ θ̂+¯̄yg−¯̄x′g θ̂

2
+ x̄′iθ̂

ȳi =
¯̄yg̃+¯̄yg

2
−

¯̄x′g̃ θ̂+¯̄x′g θ̂

2
+ x̄′iθ̂

(3.5)

This reformulation enables us to make precise assumptions about the relationship be-

tween our observable data and the decision boundary’s location. Specifically, under certain
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assumptions about the number of groups and their composition, we can identify a unique

point where the decision boundary must reside. We now formalize the intuition with the

following theorem:

Theorem 5. Assume there are two groups with an equal number of individuals in each

group. Under this symmetry, the decision boundary for the following problem must lie at the

midpoint of the group-level means, denoted by (¯̄x′, ¯̄y) .

(θ̂, ˆ̄α, γ̂) = argmin
(θ,α,γ)∈Θ×AGT×ΓG

N∑
i=1

(ȳi − x̄′iθ − ᾱgi)
2
,

Given that the linear decision boundary must pass through (¯̄x′, ¯̄y), we can use an efficient

algorithm to identify the globally optimal decision boundary. In the two-dimensional case,

the algorithm starts with an initial line and iteratively rotates it clockwise N − 1 times to

align just above the next closest vector. This will explore all possible group combinations.

However, the process becomes significantly more complex in higher-dimensional settings.

In the case of two covariate dimensions, the algorithm may require up to (N − 1)2 itera-

tions. This occurs because the plane first ”snaps” to the nearest vector along one covariate

dimension. Then, holding these two points fixed, it rotates by snapping to the closest vector

along the other dimension, orthogonal to the first two points. This sequence involves N − 1

rotations for each dimension, resulting in the iterative process. Thus, in low-dimensional set-

tings, the algorithm operates with linear complexity in N , but in higher-dimensional cases,

its complexity appears to scale polynomially with N depending on the number of covariates.

3.2.1.1 Linear Rotation Algorithm

In this section, we describe the current implementation of the algorithm. It will have a

similar flavor as the Gomroy Cutting Plane Method [Gom10]. Throughout, we assume a

two-group setting with an equal number of individuals in each group. We also assume the

single covariate setting but it is easily extended to the multi covariate setting.
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Step 1: Initialization

Initialize a two-dimensional vector v with any direction. For example, if you had a single

covariate you could initialize at [0, 1]. For all vectors in the space (x, y), subtract their mean

(¯̄x, ¯̄y) to obtain the centered vectors (x̃, ỹ), where:

x̃ = x− ¯̄x, ỹ = y − ¯̄y.

Step 2: Group Classification

Classify each vector (x̃, ỹ) into one of two groups using the perpendicular vector to v, denoted

as v′. Note, it does not matter how the perpendicular vector is oriented. Compute the dot

product of v′ with each (x̃, ỹ):

Dot product = v′ · (x̃, ỹ).

If the dot product is greater than 0, classify the vector into Group 1; otherwise, classify it

into Group 0.

Step 3: Regression and Error Calculation

Using the current group classification and estimate the following regression model:

(θ̂, ˆ̄α) = argmin
(θ,α)∈Θ×AGT

N∑
i=1

(ȳi − x̄iθ − ᾱgi)
2 ,

Compute the sum of squared errors (SSE) and save for later comparison.

Step 4: Rotation of the Vector

Identify the vector closest to the current v. To do this:

1. Compute the angle of each (x̃, ỹ) using the arctangent function:

θ = arctan(x̃, ỹ).

2. Find the angle closest to v in the clockwise direction.
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3. Update v to align with the selected (x̃, ỹ) using a rotation matrix:

vnew =

[
cos(∆θ) − sin(∆θ)
sin(∆θ) cos(∆θ)

]
v,

where ∆θ is the angular difference between v and the selected vector (x̃, ỹ). This
rotation ensures the updated v points in the direction of the selected vector.

Rotate v by the difference in angles, which changes the group classification of the corre-

sponding vector.

Step 5: Iterative Optimization

Repeat Steps 2 through 4 for N−1 rotations, where N is the number of vectors in the space.

Track the group classifications and SSE values for each iteration. After completing all rota-

tions, select the group classification that corresponds to the smallest SSE. This classification

represents the globally optimal solution.

3.2.1.2 Linear Rotation Algorithm Simulations

This section presents a simulation study to evaluate the performance of the proposed

Linear Rotation (LR) algorithm compared to K-means. The primary focus of this study is

to illustrate the computational efficiency and robustness of the LR algorithm.

To simulate the data, we generate an independent variable X ∼ N (0, 10) with N = 1000

observations and a noise term ε ∼ N (0, 3). The data is partitioned into two groups, with

an equal proportion of individuals (50% per group). Each group is characterized by distinct

intercepts (0 and 7, respectively), while the slope parameter (θ) is fixed at 7. This setup

introduces sufficient overlap between the groups, creating a challenging estimation problem.

Specifically, such overlap creates issues for optimization procedures like MIO as there are

many points where placing them in either group creates similar lower bounded SSE’s. For

N equal to 1000 is could take our MIO formulation in Chapter 2 months or even years to

solve. Figure 3.1 provides a visual illustration of the simulated data structure, highlighting

the separation between the groups and the overall linear trend.
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Figure 3.1: Example of Simulated Data with Two Overlapping Groups.

We will compare our LR algorithm with K-means the current suggestion for large sample

environments. We initialize our K-means algorithm by randomly assigning individuals to

one of two groups (50/50 split) and then running a linear regression to estimate the pa-

rameters. This initialization ensures favorable conditions for K-means, given the normality

of the data and the equal group proportions. In subsequent sections, we will demonstrate

a data-generating process in which the performance of the K-means algorithm significantly

deteriorates, highlighting its sensitivity to initial conditions with respect to the underlying

data distribution.

Table 3.1 summarizes the results comparing the LR algorithm with K-means over 1000

simulations. We find that the LR algorithm reduces SSE by 12.6% relative to the K-means
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approach but only increases group accuracy by 1%. We believe K-means is misclassifying

outliers. We believe this because K-means is known to have trouble with outliers. Further-

more, if it misclassifies them, this would create leverage causing large increases in SSE. We

also find that it only took 10 seconds for the LR algorithm to classify 1000 individuals group

choices. This is a dramatic improvement over our MIO formulation which would have taken

several months to solve this problem.

Table 3.1: Performance Comparison Between LR and the K-means GFE Models

Metric LR (Linear Rotation) K-means (Group Fixed Effects)

Sum of Squared Errors (SSE) 5541.93 6346.28

Group Accuracy (%) 88.6 87.7

Runtime (seconds) 10.1 3.4

Notes: For this analysis, we simulated data for 1000 individuals across 1000 simulations.

Two groups with intercepts 7 units apart were generated, with a variance of 3. This setup

introduced overlap between groups, making them not perfectly separable.

To better understand the performance of these algorithms we plot their θ estimates in

Figure 3.2. Given the true value of θ is 7, we find that both estimators seem to be unbiased

but the LR estimator has a tighter distribution.

73



Figure 3.2: Distribution of Theta Estimates

3.3 Bounding the Decision Boundary

In the previous sections, we discussed a motivating example that transformed the NP-

hard group choice problem into a tractable one. However, this was achieved under the

assumptions that there must be two groups, the groups share the same slope, and the

number of individuals in each group is equal. In this section, we relax the assumption that

the groups must have an equal number of individuals and demonstrate how we can identify

a region through which the decision boundary must pass.

To explore this, let us return to our simplified setting and revisit the problem of two unob-

served groups. Consider the characterization of the decision boundary outlined in Equation

(3.6). In the two-group setting (denoted as A and B), we can reformulate the boundary as

follows:
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ȳi =
¯̄yA+¯̄yB

2
− ¯̄xAθ̂+¯̄xB θ̂

2
+ x̄′iθ̂ (3.6)

Notice, if we set x̄′i =
¯̄x′A+¯̄x′B

2
this would lead to ȳi =

¯̄yA+¯̄yB
2

the decision boundary must

pass through (
¯̄x′A+¯̄x′B

2
,

¯̄yA+¯̄yB
2

). If we could bound bound this region, then we would know

the area which the decision line must pass through. Specifically, we will create conservative

bounds by bounding each individual dimension. To find the minimum of the weighted average
¯̄x′A+¯̄x′B

2
do the following steps:

Determining the Minimum Point

1. For each dimension of X ′, denoted Xp, Assign the smallest value of Xp to Group A:

¯̄xpA = min(Xp),

where Xp = {x1, x2, . . . , xn} represents the set of scalar values.

2. Distribute the remaining values of Xp to Group B, ensuring:

¯̄xpB =

∑
Xp −min(Xp)

|Xp| − 1
.

Thus, the minimum point at which the decision boundary could cross the X-dimension is
given by:

¯̄Xp
min =

¯̄xpB + ¯̄xpA
2

.

Determining the Maximum Point

1. For the same dimension of X ′, denoted Xp, Assign the largest value of Xp to Group B:

¯̄xpB = max(Xp).

2. Distribute all other values of Xp to Group A, resulting in:

¯̄xpA =

∑
Xp −max(Xp)

|Xp| − 1
.
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The maximum point at which the decision boundary could cross the Xp-dimension is then:

¯̄Xp
max =

¯̄xpB + ¯̄xpA
2

.

Similarly, to bound
¯̄yA+¯̄yB

2
, the same procedure is applied to the scalar values in Y , yielding:

( ¯̄Ymin,
¯̄Ymax),

These operations define the bounds for the weighted averages of X and Y :

( ¯̄X ′min,
¯̄X ′max,

¯̄Ymin,
¯̄Ymax).

Since the problem is convex, we can guarantee that the decision boundary must cross a point

that lies within the rectangle defined by these bounds. This region represents all feasible

points for the decision boundary:

Rectangle: [ ¯̄X1
min,

¯̄X1
max]× . . .× [ ¯̄XP

min,
¯̄XP

max]× [ ¯̄Ymin,
¯̄Ymax].

3.4 Optimization Algorithm for Least Squares Classification

Next, we will leverage the rectangular bounds and the linear decision boundary to

create a relatively fast global optimization algorithm for our least squares problem. The

algorithm is designed to systematically identify the optimal decision boundary within a

bounded rectangular region. The primary objective is to classify data points into distinct

groups while minimizing the Sum of Squared Errors (SSE) of a regression model fitted to

the classified data. By leveraging a decision tree framework, the algorithm iteratively refines

candidate decision boundaries by segmenting the rectangle, classifying points based on their

spatial relationships, and evaluating potential solutions against a lower bound of the SSE.

This approach ensures computational efficiency through strategic pruning. Branches

of the decision tree are terminated early if their lower bound SSE exceeds the current best

solution. Additionally, the method handles unclassified points by either exploring all possible
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group assignments or further subdividing the decision segments. The iterative refinement

process converges on the optimal segmentation, leveraging convexity to guarantee that the

solution lies within the specified bounds.

In the analysis that follows, we focus on a simplified model with a single covariate, where

the data is averaged over time. This approach is chosen because increasing the dimensionality

of the covariates not only expands the dimensionality of the rectangle and decision boundary

but also increases the number of segments that must be matched, adding to the computa-

tional burden. While we believe there are promising methods to effectively reduce the excess

dimensionality of covariates and simplify the computational process (See Appendix), we leave

this exploration to future work.

Step 1: Segment the Rectangle

Given the rectangle [ ¯̄Xmin,
¯̄Xmax]× [ ¯̄Ymin,

¯̄Ymax], each side, k, is divided into S equal segments.

Segments on the X-axis and Y -axis are defined as follows:

Xks = ¯̄Xmin + s ·∆X, for s = 0, . . . , S, ∆X =
¯̄Xmax − ¯̄Xmin

S
,

Yks = ¯̄Ymin + s ·∆Y, for s = 0, . . . , S, ∆Y =
¯̄Ymax − ¯̄Ymin

S
.

This process creates a grid of segments along the boundaries of the rectangle, represented

by their endpoints. For example, (Xk0, Yk0, Xk1, Yk1) is the first segment for side k.

Step 2: Pair Segments to Create Initial Nodes

Pair each segment s on side k with every segment s′ on any other side k′ 6= k. Each pair

of segments defines a potential area through which the decision line must pass. These pairs

form the initial nodes in the decision tree. This process creates 6S2 pairs. Notice if we

increased the dimensionality of our rectangle the number and nature of pairs would increase.
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Step 3: Classify Data Points and Compute Lower Bound SSE

For each node, decision lines are constructed by connecting the endpoints of the paired

segments. Four decision lines are defined using the four endpoints of the segment to create

boundaries within which the true decision line must lie. For example, one decision line can

be expressed as:

L1 : y = m1x+ c1,

where:

m1 =
Yk′1 − Yk0

Xk′1 −Xk0

, c1 = Yk0 −m1Xk0.

Once the decision lines are defined, data points are classified based on their position relative

to these lines. Note relative depends on which sides our segments are on but we leave the

details to the appendix. If the sides were left and right. Then for each data point (xk, yk),

points above all decision lines are assigned to Group G1, while points below all decision lines

are assigned to Group G2. For instance:

G1 : points satisfying yk > mlxk + cl, ∀l ∈ {1, 2, 3, 4}

G2 : points satisfying yk < mlxk + cl, ∀l ∈ {1, 2, 3, 4}

Points that lie between the lines are labeled as unclassified and excluded from further anal-

ysis. Next, the linear regression problem is solved for the set of all classified points which

we will denote with Ñ .

(θ̂, ˆ̄α) = argmin
(θ,α)∈Θ×A2

Ñ∑
i=1

T∑
t=1

(ȳi − x̄′iθ − ᾱgi)
2
, where gi ∈ {1, 2}.

Finally, we compute The Sum of Squared Errors (SSE) for classified points. This SSE

serves as a lower bound since unclassified points are removed, and their inclusion would only

increase the SSE.

SSELB =
∑
i

(yi − ŷi)2 .
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Step 4: Compare SSE to the Current Best SSE

The current best SSE is initialized using a baseline solution, currently we are using the K-

Means clustering result, denoted as SSEBest. For each node, if SSELB > SSEBest, the branch

is pruned. If SSELB ≤ SSEBest, the number of unclassified points, denoted u, is evaluated.

If u ≤ 5, all 2u possible classifications of the unclassified points are enumerated. For each

classification, the SSE is computed as:

SSEnew =
∑
i

(yi − ŷi)2 .

If SSEnew < SSEBest, the best SSE is updated. If u > 5, each segment is subdivided in

half. These subdivided segments from one side are paired with those from the other side,

generating four new branches for further exploration.

Step 5: Iterate Through the Tree

After completing one level of the decision tree, the new branches are taken, and the process

is repeated until no branches remain. The classification corresponding to the smallest SSE,

SSEBest, represents the global minimum for the least squares problem.

3.5 Example of the Process

This figure illustrates an example of a single node in the decision tree, as described in

the segmentation and classification process. The red rectangle represents the bounds of the

current region under consideration, [X̄min, X̄max] × [Ȳmin, Ȳmax]. At this node, the sides of

the rectangle have been divided into segments, and a specific pairing of segments is being

evaluated. The green lines on the edges of the rectangle correspond to the selected segment

endpoints for this pairing.
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Figure 3.3: Example of Segmenting Data with Bounding Box

From these segments, four decision lines are constructed, shown as the dashed black

lines. These lines are defined by connecting the endpoints of the paired segments, creating

boundaries that divide the data points into distinct regions. The decision lines split the space

into three parts: the area to the left of all the decision lines, the area to the right of all the

decision lines, and the region in between. These regions determine the initial classification

of the data points.

In this example, the red points are classified into G1 (Group 1), as they lie on one

side of the decision lines. The purple points are classified into G2 (Group 2), lying on the

opposite side of the decision lines. Points that fall between the two lines, within the region
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of uncertainty, remain unclassified at this step. These unclassified points are excluded from

the regression analysis at this node.

At this stage, the classified points are used to fit the regression model and the Sum of

Squared Errors (SSE) is calculated. This SSE represents the lower bound for the current

node since unclassified points are ignored. The algorithm then compares this lower bound

SSE with the current best SSE obtained from previous nodes or the initial K-Means solution.

If the lower bound SSE is greater than the current best SSE, this branch of the decision tree

is pruned, and no further exploration is conducted. Otherwise, if the lower bound SSE is

promising, the algorithm continues by either resolving the classification of the unclassified

points or further refining the segments by subdividing them into smaller sections.

3.6 Simulations

In this section, we present a simulation demonstrating not only the computational effi-

ciency of our Linear Search algorithm but also an example of a distribution where K-means

performance is highly dependent on initial conditions. We assume the following data gener-

ating process where g(i) represents the unobserved individuals group choice.

Yi = Xiθ + εi + αg(i)

We simulate a dataset of 100 individuals, where each individual’s X variable is in-

dependently drawn with equal probability (50%) from one of two Cauchy distributions:

Cauchy(0, 0.35) or Cauchy(10, 0.35). If an individual’s X value is sampled from the first

distribution, there is a 90% probability that they are assigned to Group A (denoted as the red

group). Conversely, if their X value is sampled from the second distribution, the probability

of being assigned to Group A is reduced to 10%.

Individuals assigned to Group A are given an intercept of 70, while those not in Group A

are assigned an intercept of 10. This setup results in data with heavy-tailed characteristics.
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The errors are modeled as independently and identically distributed normal random variables

with mean 0 and standard deviation 5 (ε ∼ N(0, 5)). The true value of the slope parameter

is set to β = 8. A visual representation of the resulting distribution and corresponding group

assignments is provided below.

Figure 3.4: Example of Segmenting Data with Bounding Box

We selected this distribution specifically for its sparse tails, which can amplify the effects

of misclassifications, leading to significant leverage and substantial swings in the estimated

β values. K-means appears to struggle with correcting poor initializations under these con-

ditions. Interestingly, we observed that reducing the variance of the error term exacerbated

the performance of K-means rather than improving it. This behavior suggests that higher
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variance may provide K-means with additional flexibility to escape local minima, though the

underlying mechanism for this phenomenon warrants further investigation.

After running the simulations, we observe the following results. Both K-means and Linear

Search perform well in terms of group classification accuracy, with Linear Search achieving

an impressive 99.9% accuracy compared to 98.8% for K-means. In terms of computational

efficiency, both methods are relatively fast: Linear Search completes in an average of 2

seconds, while K-means is exceptionally quick, requiring less than a second on average.

However, a stark difference emerges in their ability to estimate parameters accurately.

On average, Linear Search achieves a 24% reduction in the Sum of Squared Errors (SSE)

relative to K-means, with reductions as high as 84% in certain cases. The impact of this

improvement on the variance between the true effect and the estimated effect is presented

in Table 3.2, highlighting the superior precision of the Linear Search approach.

Table 3.2: Performance Comparison Between LS and GFE Models

Metric LS (Linear Search) K-means

Variance of Beta 12.18 603.61

Group Accuracy (%) 99.97 98.93

Runtime (seconds) 2.101 0.008

Notes: reduced SSE by at most 84.795% and on average 24.686%

To better understand where this variances is coming from in figure 3.5 we plot all of

the betas from our 1000 simulations. Notice that there is a serious bias towards 0 for

the K-means estimator. Furthermore notice that our distribution for our global optimizer

is approximately normal whereas you can see the K-means is unusual. Theoretically, our

distribution should be normal given our errors are normal showing that there is problem

with estimating confidence intervals in K-means.
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Figure 3.5: Example of Segmenting Data with Bounding Box

3.7 Early Stopping

As problem sizes increase, the computational burden of the optimization procedure also

grows. Specifically, the presence of data points located near the true decision boundary

significantly slows the optimization process. This phenomenon arises because these points

make it challenging to separate groups, increasing the complexity of the search for the true

slope. However, in practice, we observe that the algorithm efficiently identifies the general

region where the true decision boundary, and thus the true slope lies. This suggests that

stopping the algorithm early may be a practical approach if the region of uncertainty for the
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true slope becomes sufficiently narrow.

We simulate data for N = 1, 000, 000 entities, where the covariates xi are drawn from a

normal distribution with mean 5 and standard deviation 5. Random noise εi is added, drawn

from a normal distribution with mean 0 and standard deviation 15. Entities are randomly

assigned to one of two groups, with 500,000 entities in each group. Group membership affects

the intercept: entities in Group 1 receive an intercept of 10, while entities in Group 2 receive

an intercept of 70. The true slope β is set to 8. The outcome yi is generated according to

the model:

yi = xiβ + αg(i) + εi,

Where αg(i) is the group-specific intercept. Due to the overlap in the covariates and

random error, the data exhibit substantial overlap, with many points lying near the halfway

point between the groups.
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Figure 3.6: Data Generating Process

We run the optimization procedure for a full day, allowing the algorithm to refine the

segmentation of the data. At the end of the run, we examine the remaining segments and

calculate the maximum and minimum slopes (β) across all segments. This analysis reveals

that the estimated slope lies within the range [7.873, 8.107], while the true slope is β = 8.

The results demonstrate that, even for extremely large problems with significant group

overlap, the optimization procedure can provide tight bounds on the true slope. These

findings suggest that the method is robust and capable of delivering meaningful insights

even under challenging conditions.
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3.8 Summary

Addressing unobserved group heterogeneity in panel data presents significant challenges,

as it requires simultaneous parameter estimation and group assignment. While Mixed Inte-

ger Optimization (MIO) provides a solution, in practice the NP-hard nature of the problem

renders it impractical for large datasets. This section demonstrated how structurally con-

straining the regression line inherently constrains the shape and location of the decision

boundary. By leveraging these constraints, we avoid directly searching over individual group

assignments, focusing instead on the feasible region where the decision boundary must lie.

Simulations reveal that this approach is vastly more computationally efficient than MIO,

solving problems in under a minute that would otherwise take years. Additionally, we high-

lighted the pitfalls of K-means clustering under certain distributions, where it can fail dra-

matically, underscoring the necessity of a global optimization framework for these problems.

While there remains much to refine and extend within this framework, the initial results are

promising.
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3.9 Appendix

3.9.1 Total Number of Matched Segments

Let us divide each side into S segments. Our objective is to match the segments of each side

with the segments of all other sides. First, observe that there are six possible pairings of the

sides: Left-Right, Left-Bottom, Left-Top, Right-Bottom, Right-Top, and Bottom-Top.

For each of these six pairings, since each side has S segments, there are S2 possible

matches between the two sides. Therefore, the total number of matches across all pairings

is:

6 · S2 = 6S2.

3.9.2 High Dimensional Covariates

When the dimension of our covariate X is high, we increase the dimensions of both

the rectangle and the decision boundary. Unfortunately, this also increases the number

of matched segments that we need to search over. Beyond 4 or 5 dimensions, the curse

of dimensionality creates a large search space, significantly slowing down the optimization

procedure. This phenomenon poses challenges not only for our optimization procedure but

also for any clustering method attempting to accurately identify clusters. In what follows,

we provide a preliminary suggestion for addressing this issue. However, we believe further

work is needed in this area.

Suppose we have the following model, where β is the effect of interest, and Z ′ is a covariate

matrix of control variables:

yit = xitβ + Z ′itω + αg(i)t + εit.

The challenge arises because the inclusion of controls increases the dimensionality of the

clustering problem, potentially degrading the optimization procedure’s ability to identify
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the true clusters. To better understand this, let M be the orthogonal projection matrix

associated with Z ′. If we partial out Z ′, we obtain:

My = Mxβ +Mαg(i)t +Mεit.

This approach successfully reduces the problem to a two-dimensional space, where our

optimization procedure has empirically performed well. However, if the grouping vector is

correlated with any dimension of Z ′, this partialing out process may corrupt the grouping

structure, violating the assumptions necessary for consistent estimation of group assignments.

Thus, our suggestion is to carefully decide which dimensions are likely to be correlated

with the way individuals group themselves. By partialing out as many other dimensions as

possible, the optimization procedure’s ability to estimate groups can be enhanced, improving

both accuracy and efficiency.

3.9.3 Classification of Groups

In step 3 in section 3.4 we mentioned group classification depended on its relative position

of the decision lines. In what follows we describe exactly how we determine which group you

are on given the sides of the segments you are matching between.

1. Left-Right Segments:

• group1: Points are above all the decision line.

• group2: Points are below all the decision line.

2. Left-Top Segments:

• group1: Points are above the lines and to the left of a vertical line.

• group2: Points are below the lines and to the right of a vertical line.

3. Left-Bottom Segments:
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• group1: Points are below the lines and to the left of a vertical line.

• group2: Points are above the lines and to the right of a vertical line.

4. Top-Bottom Segments:

• group1: Points are below a negatively sloped line, above a positively sloped line,

and to the left of vertical lines.

• group2: Points are above a negatively sloped line, below a positively sloped line,

and to the right of vertical lines.

5. Top-Right Segments:

• group1: Points are above the line and to the right of a vertical line.

• group2: Points are below the line and to the left of a vertical line.

6. Bottom-Right Segments:

• group1: Points are below the line and to the right of a vertical line.

• group2: Points are above the line and to the left of a vertical line.

3.9.4 Aggregate Decision Boundary Proof

(ȳi − ˆ̄αg − x̄′iθ̂)2 = (ȳi − ˆ̄αg̃ − x̄′iθ̂)2

ȳ2
i − 2ȳi( ˆ̄αg + x̄′iθ̂) + (ˆ̄αg + x̄′iθ̂)

2 = ȳ2
i − 2ȳi( ˆ̄αg̃ + x̄′iθ̂) + (ˆ̄αg̃ + x̄′iθ̂)

2

−2ȳi( ˆ̄αg + x̄′iθ̂) + (ˆ̄αg + x̄′iθ̂)
2 = −2ȳi( ˆ̄αg̃ + x̄′iθ̂) + (ˆ̄αg̃ + x̄′iθ̂)

2

−2ȳi( ˆ̄αg − ˆ̄αg̃) = (ˆ̄αg̃ + x̄′iθ̂)
2 − ( ˆ̄αg + x̄′iθ̂)

2

−2ȳi( ˆ̄αg − ˆ̄αg̃) = (ˆ̄αg̃ + x̄′iθ̂ + ˆ̄αg + x̄′iθ̂)( ˆ̄αg̃ − ˆ̄αg)

2ȳi = (ˆ̄αg̃ + ˆ̄αg + 2x̄′iθ̂)

ȳi =
ˆ̄αg̃+ˆ̄αg

2
+ x̄′iθ̂

(3.7)

3.9.5 Proof of Theorem 5

Previously we showed our estimator can take on the following form.
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ȳi =
¯̄yg̃+¯̄yg

2
− ¯̄xg̃ θ̂+¯̄xg θ̂

2
+ x̄′iθ̂ (3.8)

If there are two groups (g, g̃) and the have equal number of individuals we can show

averaging over the group averages is just the average of the data since Ng = Ng̃.

1
2

(∑
i∈G

ȳi
Ng

+
∑

i∈G̃
ȳi
Ng̃

)
= 1

2

(∑
i∈G

ȳi
Ng

+
∑

i∈G̃
ȳi
Ng

)
=
∑N

i=1
ȳi

2Ng

= ¯̄y

(3.9)

similarly we can show..

1
2

(∑
i∈G

x̄′iθ̂

Ng
+
∑

i∈G̃
x̄′iθ̂

Ng̃

)
= 1

2

(∑
i∈G

x̄′iθ̂

Ng
+
∑

i∈G̃
x̄′iθ̂

Ng

)
=
∑N

i=1
x̄′iθ̂

2Ng

= ¯̄xθ̂

(3.10)

Now we can transform 3.8 into the following.

ȳi = ¯̄y − ¯̄xθ̂ + x̄′iθ̂ (3.11)

Notice if we set x̄′i = ¯̄x our answer is ¯̄y. This makes sense, because if this was a 1 group

regression it would run through the center of our data.

91



References

[AB16] Tomohiro Ando and Jushan Bai. “Panel data models with grouped factor structure
under unknown group membership.” Journal of Applied Econometrics, 31(1):163–
191, 2016.

[AS15] Padmaja Ayyagari and Dan M Shane. “Does prescription drug coverage improve
mental health? Evidence from Medicare Part D.” Journal of health economics,
41:46–58, 2015.

[ASI20] Mohiuddin Ahmed, Raihan Seraj, and Syed Mohammed Shamsul Islam. “The
k-means algorithm: A comprehensive survey and performance evaluation.” Elec-
tronics, 9(8):1295, 2020.

[Bai09] Jushan Bai. “Panel data models with interactive fixed effects.” Econometrica,
77(4):1229–1279, 2009.

[BH16] C Alan Bester and Christian B Hansen. “Grouped effects estimators in fixed
effects models.” Journal of Econometrics, 190(1):197–208, 2016.

[BKM16] Dimitris Bertsimas, Angela King, and Rahul Mazumder. “Best Subset Selection
VIA a Modern Optimization Lens.” The Annals of Statistics, 44(2):813–852, 2016.

[BM15] Stephane Bonhomme and Elena Manresa. “Grouped Patterns of Heterogeneity in
Panel Data.” Econometrica, 83(3):1147–1184, 2015.

[BMH23] Jan Pablo Burgard, Carina Moreira Costa, Christopher Hojny, Thomas Kleinert,
and Martin Schmidt. “Mixed-integer programming techniques for the minimum
sum-of-squares clustering problem.” Journal of Global Optimization, 87(1):133–
189, 2023.

[Boc08] Hans-Hermann Bock. “Origins and extensions of the k-means algorithm in cluster
analysis.” Electronic journal for history of probability and statistics, 4(2):1–18,
2008.

[BPS24] Jan Pablo Burgard, Maria Eduarda Pinheiro, and Martin Schmidt. “Mixed-integer
quadratic optimization and iterative clustering techniques for semi-supervised sup-
port vector machines.” TOP, pp. 1–38, 2024.

[Chu17] Ba Chu. “Composite Quasi-Maximum Likelihood Estimation of Dynamic Panels
with Group-Specific Heterogeneity and Spatially Dependent Errors.” 2017.

[CKZ20] Janet Currie, Henrik Kleven, and Esmée Zwiers. “Technology and big data are
changing economics: Mining text to track methods.” In AEA Papers and Pro-
ceedings, volume 110, pp. 42–48. American Economic Association 2014 Broadway,
Suite 305, Nashville, TN 37203, 2020.

92



[CM22] Denis Chetverikov and Elena Manresa. “Spectral and post-spectral estimators for
grouped panel data models.” arXiv preprint arXiv:2212.13324, 2022.

[DT97] Partha Deb and Pravin K Trivedi. “Demand for medical care by the elderly: a
finite mixture approach.” Journal of applied Econometrics, 12(3):313–336, 1997.

[Gom10] Ralph E Gomory. Outline of an algorithm for integer solutions to linear programs
and an algorithm for the mixed integer problem. Springer, 2010.

[GV14] Michael Gebel and Jonas Voßemer. “The impact of employment transitions
on health in Germany. A difference-in-differences propensity score matching ap-
proach.” Social science & medicine, 108:128–136, 2014.

[HJS20] Wenxin Huang, Sainan Jin, and Liangjun Su. “Identifying latent grouped patterns
in cointegrated panels.” Econometric Theory, 36(3):410–456, 2020.

[HM10] Jinyong Hahn and Hyungsik Roger Moon. “Panel data models with finite number
of multiple equilibria.” Econometric Theory, 26(3):863–881, 2010.

[HN04] Jinyong Hahn and Whitney Newey. “Jackknife and analytical bias reduction for
nonlinear panel models.” Econometrica, 72(4):1295–1319, 2004.

[Laz82] Rafael Lazimy. “Mixed-integer quadratic programming.” Mathematical Program-
ming, 22:332–349, 1982.

[Llo82] Stuart Lloyd. “Least squares quantization in PCM.” IEEE transactions on infor-
mation theory, 28(2):129–137, 1982.

[LW66] Eugene L Lawler and David E Wood. “Branch-and-bound methods: A survey.”
Operations research, 14(4):699–719, 1966.

[MOS15] Renata Mansini, Wlodzimierz Ogryczak, and M Grazia Speranza. Linear and
mixed integer programming for portfolio optimization, volume 21. Springer, 2015.
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