
UC San Diego
UC San Diego Previously Published Works

Title
CoRAL accurately resolves extrachromosomal DNA genome structures with long-read 
sequencing.

Permalink
https://escholarship.org/uc/item/6tt2k2f9

Journal
PCR methods and applications, 34(9)

Authors
Zhu, Kaiyuan
Jones, Matthew
Luebeck, Jens
et al.

Publication Date
2024-10-11

DOI
10.1101/gr.279131.124
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6tt2k2f9
https://escholarship.org/uc/item/6tt2k2f9#author
https://escholarship.org
http://www.cdlib.org/


CoRAL accurately resolves extrachromosomal DNA
genome structures with long-read sequencing
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Extrachromosomal DNA (ecDNA) is a central mechanism for focal oncogene amplification in cancer, occurring in ∼15% of

early-stage cancers and ∼30% of late-stage cancers. ecDNAs drive tumor formation, evolution, and drug resistance by

dynamically modulating oncogene copy number and rewiring gene-regulatory networks. Elucidating the genomic

architecture of ecDNA amplifications is critical for understanding tumor pathology and developing more effective thera-

pies. Paired-end short-read (Illumina) sequencing andmapping have been utilized to represent ecDNA amplifications using a

breakpoint graph, in which the inferred architecture of ecDNA is encoded as a cycle in the graph. Traversals of breakpoint

graphs have been used to successfully predict ecDNA presence in cancer samples. However, short-read technologies are in-

trinsically limited in the identification of breakpoints, phasing together complex rearrangements and internal duplications,

and deconvolution of cell-to-cell heterogeneity of ecDNA structures. Long-read technologies, such as from Oxford

Nanopore Technologies, have the potential to improve inference as the longer reads are better at mapping structural var-

iants and are more likely to span rearranged or duplicated regions. Here, we propose Complete Reconstruction of

Amplifications with Long reads (CoRAL) for reconstructing ecDNA architectures using long-read data. CoRAL recon-

structs likely cyclic architectures using quadratic programming that simultaneously optimizes parsimony of reconstruction,

explained copy number, and consistency of long-read mapping. CoRAL substantially improves reconstructions in extensive

simulations and 10 data sets from previously characterized cell lines compared with previous short- and long-read-based

tools. As long-read usage becomes widespread, we anticipate that CoRAL will be a valuable tool for profiling the landscape

and evolution of focal amplifications in tumors.

[Supplemental material is available for this article.]

Oncogene amplification is one of the most common events in tu-
morigenesis, contributing to tumor initiation and progression
(Beroukhim et al. 2010; Steele et al. 2022). Often, these amplifica-
tions aremediated by the formation of circular, megabase-scale ex-
trachromosomal DNA (ecDNA) (Turner et al. 2017;Wu et al. 2019;
Kim et al. 2020). Previous studies have underscored the impor-
tance of ecDNA in driving tumor formation (Luebeck et al.
2023), evolution (Lange et al. 2022), oncogene-mediated gene reg-
ulation (Hung et al. 2021; Zhu et al. 2021), and drug resistance
(Nathanson et al. 2014; Lange et al. 2022). Thus, profiling the
genetic and structural landscape of small, focal amplifications
(typically < 10 Mb), such as ecDNA, in tumors is critical for under-
standing the mechanisms of tumor progression and developing
more effective therapies.

Because of the large and complex genomes of ecDNA, it re-
mains challenging to accurately infer the set of “amplicon” struc-
tures present in tumors (Deshpande et al. 2019; Luebeck et al.
2020; Chapman et al. 2023). Existing approaches rely on paired-
end, short-read (Illumina) sequencing to identify amplicons
from copy-number profiles and breakpoints, which then can be
represented with an edge-weighted breakpoint graph; ecDNAs can
subsequently be extracted as cycles from the breakpoint graph
(Bafna and Pevzner 1996; Alekseyev and Pevzner 2009; Lin et al.
2014; Deshpande et al. 2019; Hadi et al. 2020). Despite the success
of these approaches in predicting ecDNA presence in cancer sam-
ples (Deshpande et al. 2019; Kim et al. 2020; Luebeck et al. 2023),
short-read reconstructions have several limitations. First, short-
read approaches struggle to handle the highly rearranged nature
of ecDNA and accurately detect breakpoints, especially in repeti-
tive or low-complexity regions. Second, because ecDNA can
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contain multiple copies of large segments that are unique in the
reference (e.g., Fig. 1A), short-read data are limited in their ability
to phase distant breakpoints correctly. Therefore, multiple collec-
tions of paths or cycles in the breakpoint graph can explain the in-
creased copy number equally well, masking the true structure (Fig.
1C). Third, heterogeneity of ecDNA structures might result in
multiple overlapping focal amplifications derived from the same
genomic regions. To address these shortcomings of short-read
technology, existing methods (e.g., AmpliconArchitect [AA])
(Deshpande et al. 2019; Hung et al. 2022) must use heuristics:
for example, extracting cycles with the highest copy number iter-
atively from a breakpoint graph, until a large fraction of the aggre-
gate copy number is explained. Although these heuristic strategies
return multiple small cycles (Fig. 1C) that can later be recombined
(Hung et al. 2022), they are still constrained by the intrinsic limi-
tations of short-read technologies to identify structural variation
and phase together distant breakpoints.

Long reads have the potential to resolve these challenges.
Recent research efforts utilized Oxford Nanopore reads to recon-
struct simple ecDNA, building on off-the-shelf de novo assembly
(Helmsauer et al. 2020). However, de novo assembly methods of-
ten make choices based on underlying assumptions that do not
hold: For example, they assume a diploid genome and that regions
of highmultiplicity are small enough to be spanned by long reads.
However, the heterogeneity of ecDNA structures violates the as-
sumption of ploidy, and the long segments of high multiplicity
(typically 10 kb–1 Mb) in ecDNA are infrequently spanned by a
single read, unlike the repetitive regions encountered in genome
assembly, such as long interspersed nucleotide elements (LINEs),
which are in the 10 kb range. Concurrent with our method pro-
posed below, a new approach, Decoil (Giurgiu et al. 2024), also
aims at reconstructing ecDNA structures with long reads.
However, it does not separatemultiple distinct focal amplifications
in one tumor sample and uses a similar “simple cycle extraction
and combining” heuristic designed for short reads to reconstruct
ecDNAs with high multiplicity segments. An alternative method-

ology utilizes optical mapping (OM) (Cao et al. 2014) to sequence
large (>200 kbp) DNA fragments that span a limited number of the
high multiplicity regions (Luebeck et al. 2020). Although good for
scaffolding, these data cannot precisely detect breakpoints, identi-
fy small structural variations, or resolve nontemplated sequence,
and they work best in conjunction with short-read methods.

Here, we propose Complete Reconstruction of Amplifications
with Long reads (CoRAL), an algorithm for reconstructing ecDNA
amplicon sequence and structure from long reads (such as those
from Oxford Nanopore Technologies or Pacific Biosciences
[PacBio]). CoRAL builds a distinct breakpoint graph for each focal-
ly amplified region, as well as extracts cycles (and walks) from the
breakpoint graph representing ecDNA (and the potential focally
amplified genomes). In cases in which the reads are not always
long enough to span the high multiplicity regions, CoRAL recon-
structs likely cyclic architectures using quadratic programming
that simultaneously optimizes parsimony of reconstruction, ex-
plained copy number, and consistency of long-read mapping.
Through extensive benchmarks on simulated data and previously
characterized cell lines, we report that CoRAL substantially im-
proves breakpoint detection and inference of the order of complex
segments on ecDNA over long-read-based Decoil (Giurgiu et al.
2024) and short-read-based AA (Deshpande et al. 2019) methods.

Results

An overview of the CoRAL method

For better exposition of the results, we first provide a brief descrip-
tion of themethod. A pictorial overview can be found in Figure 1D,
and details can be found in the Methods and Supplemental
Methods S2–S4. CoRAL takes mapped long reads (in BAM format)
as input and begins by identifying focally amplified seed intervals.
The seed intervals can be provided directly or can be derived from
whole-genome CNV calls (e.g., with third-party tools like CNVkit)
(Talevich et al. 2016) of mapped long reads. From the CNV calls,

A B D

C

Long-read

Long-read

Figure 1. Long-read-based ecDNA reconstruction. (A) Native ecDNA structure and copy number. (B) Cartoon of the breakpoint graph derived from the
ecDNA in A. Sequence edges represent segments of the reference genome. Concordant edges connect consecutive sequences with respect to the reference
genome order, and discordant edges connect nonconsecutive genome segments. Nodes are created at the endpoints of each sequence edge and include
source and sink nodes, s and t. (C) Multiple collections of decomposed paths and cycles from the breakpoint graph explain the changes in copy number
and observed SVs. Long reads that span regions of high multiplicity can help resolve the correct cycle. (D) Overview of the CoRAL method.

Nanopore reconstruction of ecDNA with CoRAL
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CoRAL selects genomic segments with minimum thresholds on
copy number and aggregate size as seed intervals (Supplemental
Methods S2).

CoRAL uses these seed intervals to construct a copy-number-
weighted breakpoint graph separately for each amplified region.
The graph construction starts with exploring all amplified intervals
connected to the seed intervals through discordant edges given
by chimeric long-read mappings. Once all amplified intervals are
identified for each focal amplification, a graph structure is orga-
nized by CoRAL to include the genome segments (sequence edges)
from the amplified intervals, the concordant edges that join
neighboring genome segments, and also the discordant edges
within the amplified intervals and those connecting different
amplified intervals. Once the graph structure is fixed, CoRAL re-
computes the copy number for each edge, which can best ex-
plain the long-read coverage on each edge, while maintaining a
balance of copy number between sequence edges and con-
cordant/discordant edges incident on nodes (see Methods)
(Supplemental Methods S3).

As its key step, CoRAL reconstructs potential ecDNA struc-
tures in the breakpoint graph by extracting a minimum number
of cycles and walks from the graph, allowing duplication of nodes
(e.g., Fig. 1C), in which cycles represent the potential ecDNA spe-
cies, and walks represent linearly amplified or rearranged genomic
segments. Each cycle/walk is associated with a positive weight—
corresponding to the copy number—so that the sum of the
length-weighted edges of extracted walks explains a large fraction
of the total copy number of the edges in the breakpoint graph. In
addition, CoRAL takes advantage of the fact that long reads may
span several breakpoints and incorporates these reads as subwalk
constraints. In its cycle extraction, CoRAL also requires a majority
of the subwalk constraints to be satisfied by the resulting cycles
and walks, thus leveraging the power of long reads. CoRAL uses
quadratically constrained programming to solve a multiobjective
optimization that minimizes the number of cycles/walks while
maximizing the explained length-weighted copy number and
the number of subwalk constraints (Methods) (Supplemental
Methods S4). It finally outputs the reconstructed breakpoint
graphs for each focal amplification in the sample, as well as the as-
sociated cycles/walks from the graph. It also optionally outputs
stylistic visualizations of the breakpoint graphs and cycles, as
shown in subsequent results.

Simulation benchmarks

We first assessed the effectiveness of amplicon reconstruction al-
gorithms using simulated sequencing data from synthetic ampli-
con structures (Supplemental Methods S5; Supplemental Tables
S1, S2). To capture the diversity of ecDNA amplicons observed in
patient tumors and cell lines, we simulated 75 distinct cyclic struc-
tures with varying numbers of breakpoints (between one and 20)
from one of three origins: episomal, in which a contiguous region
of the genome is excised from a chromosome; chromothripsis, in
which a mitotic defect leads to the shattering of a lagging chromo-
some and ecDNA formation (Ly et al. 2017; Shoshani et al. 2021);
or, finally, 2-foldback, in which extruding double-stranded DNA
from a stalled replication fork is broken off as ecDNA (Passananti
et al. 1987). Our simulated ecDNAs additionally included internal
structural variants in the form of insertions, deletions, duplica-
tions, and inversions (for more detailed description of the simula-
tion process, see Supplemental Methods S5; for the data, see
Supplemental Table S1). Subsequently, each test data set was gen-

erated by randomly selecting betweenone and five amplicon struc-
tures (from the pool of 75 synthetic amplicons). Reads from long-
read (using Nanosim) (Yang et al. 2017) and Illumina short-read,
paired-end technologies (using Mason) (Holtgrewe 2010) were
simulated from these amplicons at one of three coverages (50×,
100×, or 250× coverage; or approximate copy numbers of 7, 15,
or 37, respectively) and merged with reads from one of five simu-
lated normal, diploid genomes (each with ∼13× coverage). A total
of 50 test data sets were simulated in this fashion and used for
benchmarking amplicon reconstruction (Supplemental Table S2).

From these inputs, ecDNAwas reconstructed using simulated
long reads provided to CoRAL and Decoil (Giurgiu et al. 2024)—a
separate long-read amplicon reconstruction tool—or simulated
short reads provided to AA. Inmost cases, the heaviestCoRAL cycle,
defined as the cycle with the largest length-weighted copy num-
ber, was better at recapitulating the true architecture compared
with the AA cycle (e.g., Fig. 2A). We systematically evaluated the
accuracy of the best reconstruction Wr (as defined as the highest-
scoring reconstructionwith respect to a particular statistic) against
a true cycle Wt using four additional measures defined briefly be-
low (Fig. 2B–E; for more detailed definitions, see Supplemental
Methods S7):

1. Breakpoint graph accuracy reports the proportion of dis-
cordant edges that agree, up to a tolerance of 100 bp, between
the true breakpoint graph Gt and reconstructed breakpoint
graph Gr.

2. Cycle interval overlapmeasures the Jaccard index, weighted
by the number of nucleotides, of the genomic intervals defined
by Wt and Wr.

3. Cyclic longest common subsequence (LCS) measures the
length of the longest common subsequence contained in Wt

and Wr after eliminating intervals that are not found in both,
normalized to the length of Wt.

4. Reconstruction length error reports the difference in
amplicon lengths between Wr and Wt, normalized by the true
amplicon length Wt. We report log2-scaled values.

Across the 50 simulated data sets, we observed consistently
improved reconstruction of CoRAL over AA and Decoil for all
four measures (Fig. 2B–E). Notably, 93% of CoRAL reconstructions
perfectly recapitulated the ground-truth breakpoint graph com-
pared with 51% for Decoil and 4% for AA (Fig. 2B). These results
underscore the improved mapping of structural variants with
long reads.

Although CoRAL outperformed Decoil and AA in all four
measures, both AA and Decoil capture many critical aspects of
the amplicon, such as including the most amplified intervals
(Fig. 2C) and capturing the true ordering of the segments (Fig.
2D). Mostly, CoRAL’s improved performance is reflected in recon-
structed cycle lengths that are most similar to the true cycle (Fig.
2E). In addition, we observe that both AA and CoRAL tend to pro-
duce a main cycle that accounts for a large fraction of length-
weighted copynumber (Supplemental Fig. S1) and that thisweight
ratio is correlated with cycle reconstruction accuracy (Supplemen-
tal Fig. S2). Through these analyses, we also noted several examples
in which the interval ordering is incorrect despite near-perfect re-
covery of breakpoint graph and interval overlap (Supplemental
Fig. S3), reflecting the technological limitations of reads that
were not long enough to resolve the true order of segments.

We also compared reconstruction performance as a function
of the complexity of amplicons (number of segments, or sequence
edges), sequence coverage, their formation context, and level of
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duplication (or multiplicity). We observed that the number of seg-
ments in the true amplicon had modest effects on reconstruc-
tion accuracy (Supplemental Fig. S4), as did coverage (and by
extension copy number) (Supplemental Fig. S5). These observa-
tions suggest that all algorithms, but especially CoRAL, can accu-
rately reconstruct complex ecDNAs at low copy numbers (e.g.,
less than seven). We additionally observed that increasing levels
of segmental or breakpoint multiplicity often resulted in poorer
reconstruction accuracy for all methods tested, although CoRAL
remained mostly robust (Supplemental Fig. S6). However, in con-
sidering the various contexts inwhich ecDNA can form (Bafna and
Mischel 2022), we observed substantial performance differences:
Generally, we observed that chromothripsis amplicons were
most difficult for AA and CoRAL, with Decoil modestly outper-
forming CoRAL; conversely, 2-foldback ampliconsweremost diffi-
cult for Decoil. These observations highlight the importance of
accurately detecting structural variants, which is greatly enhanced
with long reads but can be nevertheless challenging depending on
the complexity of breakpoints (Supplemental Fig. S7).

Amplicon reconstruction in cell lines

Next, we evaluated amplicon reconstruction using matched
Nanopore long-read sequencing and Illumina paired-end short-
read sequencing in seven previously characterized cell lines span-
ning a range of cancer types and amplifications (for a summary, see

Table 1; Supplemental Table S3): COLO320(-DM, -HSR), PC3(-DM,
-HSR), GBM39(-HSR), andCHP-212. Of these seven cell lines, there
are three isogenic pairs in which the amplified oncogene is located
on chromosomal homogeneously staining regions (HSRs) while
maintaining the core cyclic structure, as opposed to ecDNA (e.g.,
COLO320-HSR vs. COLO320-DM). Additionally, we assessed re-
construction in four recently monoclonalized versions of these
cell lines (PC3-DM, PC3-HSR, GBM39ec, and COLO320-DM).
Together, this resulted in a matched Nanopore and Illumina data
for 10 samples for analysis.

CoRAL accurately predicts the existence of ecDNA

We ran the AmpliconClassifier (Luebeck et al. 2023) method to
reconfirm the cyclic structure of the ecDNA amplicons in all
samples. AmpliconClassifier parses the breakpoint graph and
identifies subgraphs as being cyclic (or ecDNA), breakage fusion
bridge, heavily rearranged, or linear-rearranged (Kim et al. 2020).
CoRAL identified altogether 60 amplicons in the 10 cell lines, in-
cluding the main ecDNA (or HSR) amplicon in each sample.
AmpliconClassifier consistently classified the main ecDNA ampli-
con as cyclic with the breakpoint graphs constructed by CoRAL
using long reads and AA using short reads, indicating the existence
of ecDNA (or HSR). Long-read sequencing did not identify new
ecDNA amplicons, and it did not fail to detect previously con-
firmed ecDNA amplicons in the cell line samples.

A

B

D

C

E

Figure 2. Overview of simulation benchmarking. (A) True structure compared with CoRAL, Decoil, and AA reconstructions for an example amplicon
(Episomal, eight observed breakpoints). (B–E) Cumulative distributions of CoRAL, Decoil, and AA reconstructions across all simulations for breakpoint graph
accuracy (B), cycle interval overlap (C), cyclic longest common subsequence (D), and rank-order distribution of reconstruction length error (E). Empirical
cumulative densities are reported for B, C, and D; and each point in E corresponds to a simulated amplicon. For more detailed information, see
Supplemental Methods S7.

Nanopore reconstruction of ecDNA with CoRAL
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CoRAL cycles better explain the copy numbers in ecDNA

amplicons

To benchmark the reconstruction quality of CoRAL and AA in cell
lines, we computed the fraction of length-weighted copy numbers
in the breakpoint graph given by the k-heaviest cycles, which we
previously observed correlated with accuracy (with k=1), for k=
3 and k=1, in each of the 10 ecDNA cell lines (Fig. 3A; Supplemen-
tal Fig. S8A; for details of the statistic, see Supplemental Methods
S7). Consistent with simulated data, these results demonstrated
that CoRAL explains a higher fraction of the length-weighted
copy number with fewer cycles. Across all samples, the copy num-
ber explained by the three heaviest cycles was substantially higher
for CoRAL compared with AA (Fig. 3A). The reconstructed cycles of
COLO320-DM (Wu et al. 2019), the monoclonal COLO320-DM
(mono), and the shallow coverage COLO320-DM (Hung et al.
2021) showed consistent heaviest cycle weight ratio (Fig. 3A; Sup-
plemental Fig. S8A), shared many structural features, and con-
tained a similar subset of genes (Fig. 3C,D; Supplemental Table
S4), even as they showed some differences in the reconstructed
amplicons (Supplemental Fig. S9). These differences could reflect
differences in intrinsic heterogeneity or evolution of the cell line
over time, which also resulted in a lower heaviest-cycle-weight ra-
tio in COLO320-DM cells and its isogeneic pair COLO320-HSR, in
comparison to the GBM39 and CHP-212 cell lines with a single
dominating ecDNA structure (Supplemental Fig. S8A; Wu et al.
2019; Helmsauer et al. 2020).

CoRAL cycles satisfy more subwalk constraints

In its optimization, CoRAL takes advantage of the fact that long
reads may span several breakpoints and incorporates these reads
as subwalk constraints that can be satisfied during cycle decomposi-
tion and lend support for accurate reconstruction. As such, we
mapped each long-read subwalk constraint to each AA cycle and
checked if the subwalk constraint can also be satisfied by that cy-
cle. CoRAL satisfied more subwalk constraints compared with AA
(Fig. 3B; Supplemental Fig. S8B), especially for the complex ampli-
cons. For example, CoRAL satisfied 1.5× and 25× more subwalk
constraints in COLO320-DM (mono) and PC3-DM (mono), re-
spectively. Together, these subwalk constraints supportmost junc-
tions of the amplicon (e.g., see Fig. 3C,D), thereby taking
advantage of the long reads that span multiple breakpoints.
Nevertheless, no reconstruction satisfied all subwalk constraints

in either CoRAL or AA, consistent with the high heterogeneity of
ecDNA structure in samples.

CoRAL cycles enable the study of critical aspects of amplicon

structures

Reconstruction supported by long-read subwalk constraints addi-
tionally enabled the study of critical aspects of the amplicon struc-
tures. As one example, Figure 3, E and F, shows the reconstruction
of the twoheaviestCoRAL and the three heaviest AA cycles, respec-
tively, for monoclonal COLO320-DM. To note, the monoclonal
COLO320-DM is a recently derived line from a parental line in
which previous experiments integrating WGS, OM, and in vitro
ecDNA digestion revealed an ecDNA structure of ∼4.3 Mb (Hung
et al. 2021). Here, the automated reconstruction of monoclonal
COLO320-DM using CoRAL also revealed an ecDNA of size 4.4
Mbp (Fig. 3D), which sharedmany structural features with the pre-
vious reconstruction.

One distinct feature of the COLO320-DM MYC amplicon is
the overexpression of a fusion transcript consisting of a truncated,
5′ portion of the lncRNA PVT1 fused to the second exon of the
MYC oncogene (Hung et al. 2021). This is despite PVT1 being po-
sitioned downstream from MYC in the reference genome. As ex-
pected, CoRAL reconstruction of COLO320-DM includes a
breakpoint that connects a truncated, 5′ portion of PVT1 upstream
of exon 2 of MYC, thereby explaining the fused transcript.
Notably, both CoRAL and AA detected the PVT1-MYC fusion
breakpoint in all COLO320-DM samples; however, CoRAL’s cycle
decomposition included this breakpoint in the heaviest (largest
length-weighted CN) cycle across multiple COLO320-DM samples
(Fig. 3C–E; Supplemental Table S4). AA did not include the break-
point in the three heaviest cycles (Fig. 3F); instead, it reports a
smaller cycle of a size of ∼90 kbp containing the breakpoint by it-
self. Furthermore, subwalk constraints owing to long reads linked
truncated PVT1 and MYC on a single molecule. Correspondingly,
CoRAL reconstructions of cycles in COLO320-DM (mono),
COLO320-DM (Hung et al. 2021), and COLO320-DM (Wu et al.
2019) all showed the three elements in a single cycle (Fig. 3C,D;
Supplemental Table S4).

We additionally observed that subwalk constraints and
CoRAL’s cycle reconstructions support a coamplification of the
ncRNA PCAT1 andMYC on COLO320-DM ecDNA (Fig. 3E,F). Pre-
vious DNA FISH experiments also confirmed the coexistence of

Table 1. Overview of cell lines profiled in this study

Cell line name Cancer type Gene(s) Amplification type Monoclonal status Source

PC3DM (mono) Prostate MYC ecDNA Yes This study

PC3HSR (mono) Prostate MYC HSR Yes This study

GBM39 (mono) Glioblastoma EGFRvIII ecDNA Yes This study

COLO320-DM (mono) Colorectal MYC ecDNA Yes This study

COLO320-DM Colorectal MYC ecDNA No (Hung et al. 2021)

COLO320-DM Colorectal MYC ecDNA No (Wu et al. 2019)

GBM39 Glioblastoma EGFRvIII ecDNA No (Wu et al. 2019)

CHP-212 Neuroblastoma MYCN, TRIB2 ecDNA No (Helmsauer et al. 2020)

COLO320-HSR Colorectal MYC HSR No (Wu et al. 2019)

GBM39-HSR Glioblastoma EGFRvIII HSR No (Wu et al. 2019)

Cell type name, cancer type, subset of important amplified oncogenes, amplification type, monoclonal status, and source. (HSR) Homogeneously stain-
ing region, (ecDNA) extrachromosomal DNA.
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these genes on COLO320-DM (extended Fig. 4G) (Hung et al.
2021). The PCAT1 ncRNA is known to repress BRCA2 (Prensner
et al. 2014b), activate MYC (Prensner et al. 2014a), promote cell
proliferation (Xiong et al. 2019), and is upregulated in prostate, co-
lorectal, and other cancers (Xiong et al. 2019). Thus, these CoRAL
cycle reconstructions are also consistent with the regulatory and
pro-oncogenic roles of MYC and PCAT1. Together, these results
highlight the advantages of CoRAL in reconstructing complex
ecDNAs in cell lines and may enable new biological insights into
the coamplification of genetic elements on the same ecDNA
molecule.

CoRAL requires comparable computational resources to AA

We finally compared the computational resources required by
CoRAL and AA to reconstruct all amplicons in these cell lines. To
perform a fair test, we ran CoRAL and AA on the same Ubuntu sys-
tem (2× Intel Xeon X5680 CPU, and 128 GB RAM). Importantly,

we observed that the total running time and memory of CoRAL
was comparable to that of AA for reconstructing the amplicons,
even if an MIQCP was solved for each amplicon (Supplemental
Fig. S10). The most complex sample, COLO320-HSR (Wu et al.
2019), was completed in <22 h (8 ×105 sec) for CoRAL. Further-
more, we found that most focal amplifications except ecDNA are
relatively easy to resolve, with the resulting breakpoint graphs be-
ing small: Out of the 60 amplicons detected by CoRAL across all
samples, only eight required greedy MIQCP, including seven of
the 10 total ecDNA amplicons.

Discussion

Our results suggest that long-read guided reconstruction greatly
improves ecDNA structure resolution, both in individual detection
of breakpoints and in the accuracy of the large-scale predicted
structure. The constrained optimization performed by CoRAL

A E

F

B

C D

Figure 3. Amplicon reconstruction in cell lines. (A) Fraction of length-weighted copy numbers given by the three heaviest cycles, reported by CoRAL and
AA. (B) Number of satisfied subwalk constraints by CoRAL and AA, in cell lines. (C ) The cycle with largest length-weighted CN from previously published
COLO320-DM. (D) The cycle with largest length-weighted CN frommonoclonalized COLO320-DM. In C and D, each blue arc within the cycle indicates a
subwalk constraint satisfied by that cycle. (E) The two cycles with largest length-weighted copy numbers by CoRAL. (F) The three cycles with largest length-
weighted copy numbers by AA.
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reconstructs plausible structures based on selecting a minimum
number of cycles that are consistent with the constraints provided
by long reads, and together, the cycles explain most of the copy
number of the amplicon. On simulated data, most structures
were correctly predicted, and even when they were not, they
were only slightly rearranged from the true structure. Similarly,
in experimental data from cancer cell lines, the three heaviest re-
constructed structures typically explained most of the copy num-
ber. In most cases, the reconstruction provides a reasonable
template for downstream functional studies, including analysis
of regulatory rewiring and chromatin conformation. Of note,
CoRAL’s approach can be seamlessly employed for any long-read
sequencing technology, such as Oxford Nanopore Technologies
or PacBio, in which longer reads will always improve breakpoint
detection and amplicon reconstruction.

It is important to note, however, that long reads by them-
selves are not a panacea, and amplicon reconstruction is different
than genome assembly. In diploid genomes, only two haploid
structures are possible, and the repeated regions are easily spanned
by current long-read technology, except in a few highly repetitive
regions. In contrast, larger regions can occur with multiple copies
on a single ecDNA,making it hard to resolve into one correct struc-
ture. Moreover, heterogeneity of ecDNA may lead to many struc-
tures being present. The ecDNA structures resolved by CoRAL
may only reflect the most abundant structures. Moreover, because
of theminimization of cycle counts, it is possible that the heaviest
cycle given by CoRAL glues together smaller ecDNA cycles that
share the same segments. To avoid such cases, we limit the times
that each discordant edge can be traversed in a cycle or walk based
on empirical observations. Reconstructions from simulated and
real ecDNA amplicons (e.g., COLO320DM) suggested similar cycle
sizes to either ground-truth or previous characterizations. These
considerations will be revised as additional data become available.

Thus, we highlight a few avenues for extending and improv-
ing CoRAL. First, when a sample has concurrent short-read se-
quencing data, one may explore if incorporating low-coverage
long reads (<5×) is sufficient for a hybrid reconstruction. However,
because of the rapid evolution of cancer genomes and spatial het-
erogeneity of tumor samples, the benefit of such an approachmay
only exist when short and long reads are simultaneously generated
from the same biospecimen. Second, CoRAL can be extended to
identify the architectures of chromosomal amplicons, such as
breakage fusion bridge cycles, and ecDNA that have reintegrated
into the genome. Because the reconstructionmethods use only ab-
stractions relating to path constraints and explained copy number,
they can be adapted to other amplifications readily, and this will
also be a focus of future studies. Third, as our understanding of
amplicon structure grows with experimentally verified structures,
that information can be used to improve the constraint space
and optimization criteria for CoRAL and to enhance the simula-
tions of ecDNA or other chromosomal amplifications.

Previous state-of-the-art tools using short reads like AA
(Deshpande et al. 2019) are very accurate in determining if a focal
amplification ismediated by ecDNA formation and in determining
the amplified regions. However, they have difficulties in recon-
structing the full structure or in determining all the regions that
participate in one ecDNA molecule. These challenges are partially
resolved by targeted deep profiling of a specific subset of ampli-
cons at the expense of not observing the full amplification land-
scape (Hung et al. 2022). CoRAL not only offers improvements
as a standalone tool but can also be used in conjunction with
the targeted approaches, either by refining existing reconstruc-

tions or by providingmore accurate and unambiguous reconstruc-
tions of complex amplicons in targeted enrichment protocols. In
summary, CoRAL will be a valuable tool in the arsenal for analyz-
ing complex focal amplifications, such as ecDNA, in tumor ge-
nomes, especially as long-read technologies continue to offer
cheaper, longer, and more accurate reads.

Methods

CoRAL takes mapped long reads (in BAM format) as input, con-
structs a copy-number-weighted breakpoint graph, decomposes
the breakpoint graph into a collection of cycles or paths, and out-
puts the reconstructed breakpoint graph as well as the resulting cy-
cles/paths from decomposition of the breakpoint graph. A
pictorial overview of CoRAL procedure is given in Figure 1D.

Below, we start with an abstract definition of the breakpoint
graph followed by a high-level description of the construction.
The copy-number-weighted breakpoint graph (Bafna and
Pevzner 1996; Alekseyev and Pevzner 2009; Lin et al. 2014;
Deshpande et al. 2019; Hadi et al. 2020), denoted by
G = (V, E = Es < Ec < Ed, CN), encodes a collection of nonoverlap-
ping intervals on a given reference genome, which are amplified,
reordered, or reoriented. A brief description is provided here,
with details in Supplemental Methods S1:

• Each v∈V represents the start or end coordinate of an interval, or
the special source nodes s, t (defined below). Let lv denote the lo-
cation of node v.

• Es represents sequence edges, which join the start and end coordi-
nates of an interval.

• Ec represents concordant edges so that (u, v)∈Ec if lv− lu= 1, where
v is the start coordinate of the canonically larger interval on the
reference genome represented by a sequence edge.

• Ed represents discordant edges, generated when (sufficient) reads
map to discordant intervals. Thus, (u, v)∈Ed if |lv− lu|≠1 if the
read connecting u to v changes orientation or if the nodes are
on different chromosomes. A discordant edge could connect
the start (or end) coordinate of an interval to itself (an inverted
duplication or foldback).

• All edges areweighted using the real-valued functionCN: E→Q+

denoting the copy number. The CN is computed based on an as-
sumption of diploidy for the majority of base pairs on the ge-
nome. We require that the CN assignment be “balanced,” for
each (u, v)∈Es, as follows:

∑
(w,u)[Ec<Ed

CN(w, u) = CN(u, v)

=
∑

(v,w)[Ec<Ed

CN(v, w), ∀(u, v) [ Es. (1)

By definition, each node in a breakpoint graph is connected to a
single sequence edge, and to a single concordant edge as well,
but it may connect to multiple discordant edges. The source nodes
s and t connect to the canonically smallest and canonically largest
coordinate on the reference genome from a collection of consecu-
tive intervals connected by concordant edges, or a sequence edge
that is only connected to another sequence edge with smaller
CN by concordant edges and therefore is deemed to violate the ba-
lanced CN constraint without the source connections. Edges con-
nected to source nodes are treated as discordant edges. For an
example of a breakpoint graph constructed by CoRAL from the
ecDNA in Figure 1A, see Figure 1B.We denote amaximal collection
of genomic intervals connected by concordant edges as an ampli-
fied interval and denote the union of all amplified intervals and
their (discordant) connections as an amplicon. Note that a tumor
sample could contain multiple amplicons whose intervals are
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nonintersecting. CoRAL constructs a distinct breakpoint graph for
each amplicon.

Breakpoint graph construction with CoRAL

To build the breakpoint graph for an amplicon, CoRAL first deter-
mines all amplified intervals included in the amplicon. CoRAL re-
quires seed amplified intervals (Supplemental Fig. S11A) as a starting
point to search for all connected amplified intervals contained in
an amplicon. The seed amplified intervals can be derived from
whole-genome CNV calls (e.g., with third-party tools like
CNVkit) (Talevich et al. 2016) of mapped long reads. From the
CNV calls, we select the genomic segments adjacent to each other
with aminimum threshold of copy number as well as the aggregat-
ed size as seed intervals (Supplemental Methods S2).

With the seed amplified intervals, CoRAL searches for ampli-
fied intervals connected to seed intervals (by discordant edges) us-
ing a breadth first search (BFS). For BFS, CoRAL maintains a list, I ,
of amplified intervals in all amplicons it explored or discovered so
far, initialized as the list of seed intervals, and a set, E, representing
the connections between amplified intervals through discordant
edges. Each pair of intervals (ai, aj) [ E (i ≤ j) is labeled by the
breakpoints connecting two loci within the intervals ai and aj, re-
spectively. The main iteration explores the next unvisited interval
ai in I , indicating a new amplicon (connected component), until
all amplified intervals in I are visited. Let L be a priority queue
used in the interval search starting from ai, which is initialized
with a single element ai. Each step of the interval search pops
the first interval a0 in L and extracts all breakpoints supported by
chimeric alignments connecting a locuswithin a0 to another locus
on the reference genome. These breakpoints are greedily clustered
(with the procedure described in Supplemental Methods S2), and
the new locus l determined by a cluster bpa0,l of breakpoints of
the size at least of haploid coverage is chosen to be further explored
(Supplemental Fig. S11B). If the new locus falls into an existing in-
terval ae [ I , thenmark interval ae as visited, augment the label set
of (a0, ae) with bpa0,l, and only append ae to L if it was not previous-
ly visited. Otherwise, CoRALwill extend l to a new amplified inter-
val including l, depending onwhether l is amplified from the CNV
calls. If l is amplified, CoRAL will append the new interval an=
[chrl, max(sl − δ, l − Δ), min(el+ δ, l+Δ)] to both L and I , where sl
and el are the start and end coordinate of the amplified CN seg-
ments including l in CNV calls. If l is not amplified, CoRALwill ap-
pend the new interval an = [chrl, l− δ, l+ δ] to L and I . In either case,
CoRAL also labels the connection (a0, an) with {bpa0,l} and adds it to
E. The amplified interval search starting from ai is repeated until L
becomes empty. A pseudocode of the above procedure, as well as
the selection of Δ and δ, is discussed in detail in Supplemental
Methods S2.

At the end of interval search, all intervals I are visited, and
each connected component of amplified intervals by breakpoint
edges with sufficient support of long reads forms an amplicon
(Supplemental Fig. S11C). After BFS, CoRAL postprocesses the am-
plified intervals discovered in I by merging (1) adjacent (in CNV
calls) or overlapping intervals or (2) intervals on the same chromo-
some that are not adjacent but have close (i.e., within ≤2δ–bp vi-
cinity) breakpoint connections. Two intervals belonging to
different amplicons are brought into the same amplicon after
merging. CoRAL will then search for breakpoints within a single
(merged) amplified interval (Supplemental Fig. S11D). Finally,
CoRAL builds the actual breakpoint graph for each amplicon. It
will split each amplification interval into sequence edges if there
are breakpoint edges connecting to the middle of that interval
and will add concordant edges connecting two adjacent sequence
edges on the reference genome (Supplemental Fig. S11E).

CN assignment

Once the graph structure G is fixed, CoRAL recomputes the CN for
each edge in G (Supplemental Fig. S11E), as the initial CNV calls
used for amplified interval search may not follow the balance re-
quirement (Equation 1), and they do not account for concordant
and discordant edges. Let the diploid long-read coverage be θ.
CoRAL assumes that the majority of the donor genome is not am-
plified and estimates θ as the coverage on the 40th percentile of CN
segments sorted by their initial CNV calls. Given θ, CoRALmodels
the total number of nucleotides on each sequence edge (u, v)∈Es as
a normal distribution with mean and variance θ · CN(u, v) · l(u, v),
where l(u, v) denotes the length (in base pairs) of the sequence
edge, and the number of reads supporting each concordant
and discordant edge (u, v) [ Ec < Ed as a Poisson with mean
θ · CN(u, v). To estimate CN, CoRAL computes the maximum like-
lihood of CN using the joint distribution of observed number of
nucleotides on each sequence edge and the observed read counts
on each concordant/discordant edge with the constraint that CN
is balanced (Supplemental Methods S3). The optimization prob-
lem was solved using CVXOPT package.

Cycle extraction

We are interested in paths and cycles that alternate between se-
quence and breakpoint (i.e., concordant or discordant) edges;
thus, by definition, if the path contains node s (respectively, t),
it must be the first (respectively, last) node in the path. Define
an alternating sequence of nodes as a sequence v1, v2,… , vw, where
for all 1≤ i<w, (vi, vi+1)∈E and the edges alternate between se-
quence and breakpoint edges. Define a walk in G as an alternating
sequence v1, v2,… , vw, where v1 = s, vw= t. A path is a walk with no
node repeated (vi= vj⇔ i= j). A cyclic walk or cycle is an alternating
sequence v1, v2,… , vw of nodes where v1 = vw≠ s, t. The cycle is sim-
ple if no node except the first/last one is repeated.

The amplicon encoded by G is composed of a superposition of
cycles and walks with high copy numbers. For all sequence edges
(u, v)∈Es, define the length-weighted copy number using Cl(u, v) =
CN(u, v) · l(u, v). Similarly, for graph G,

Cl(G) =
∑

(u,v)[Es

Cl(u, v). (2)

Our goal is to identify aminimumnumber of cycles and walks (de-
noted as Wi), each associated with a positive weight, correspond-
ing to the copy number (based on the assumption of uniform
coverage) (see Supplemental Fig. S12), so that the sum of weights
on all edges in all walks composes a large fraction of Cl(G).
Furthermore, the long reads that spanmultiple (at least two) break-
points in G also provide us with a collection of subwalks
P = { p1, . . . , pm}, and the reconstructed walks must simultane-
ously be consistent with a large fraction of these subwalks
(Supplemental Methods S4).

The complexity of cycle extraction and rationale for CoRAL’s
optimization procedure can be shown through an example ill-
ustration (Supplemental Fig. S13). The breakpoint graph in
Supplemental Figure S13A consists of segments A, B, and C as-
sumed for simplicity to be of equal length. The optimization in
CoRAL will decompose it into a single cycle of copy number 50,
with a duplication of segment B (right panel). The decomposition
is also supported by the subwalk constraint given by the long read
that connects segments A, B, and C. Even if the long read were not
present, this cycle is still a parsimonious solution compared to an
alternative decomposition with two cycles (one containing A and
B, the other containing B and C).

Supplemental Figure S13B has a similar graph structure
but with different copy numbers on segments. The best
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decomposition is given by one cycle containing A and Bwith copy
number 80 and a second cycle containing A, B (two copies), and C
with copy number 10. The total length-weighted copy number of
the graph is 200 (assuming segments of length one). Cycle 1 ex-
plains 80% and cycle 2 explains 20% of the copy number. Other
decompositions of cycles are indeed possible. For example, if the
subwalk constraint given by the long read were not present, an al-
ternative decomposition with 90 copies of cycle 1 and 10 copies of
a different cycle 2 containing only segments B and C would also
explain all length-weighted copy numbers in the graph. On the
other hand, a more parsimonious decomposition into one single
cycle with copy number 10, with segment A repeating nine times
and segment B repeating 10 times is not allowed because it violates
the upper bound on the multiplicity of segments in the cycle (see
auxiliary constraint 3 in the MIQCP formulation below). For the
same reason, the decomposition into one single cycle is not al-
lowed in Supplemental Figure S13C.

We resolve the multiobjective challenge using mixed integer
quadratically constrained programing (MIQCP). The MIQCP
works with two parameters: α as the minimum fraction of
length-weighted copy number explained, and β as the minimum
fraction of path constraints satisfied. Additionally, parameter k de-
noting the maximum number of cycles/walks allowed is learned
starting with k=10, according to two modes. In the full mode
(MIQCP-full) described below, the MIQCP attempts a solution
with at most k walks that satisfy other constraints or that returns
“infeasible.” The value of k is doubled until feasibility is reached
or k> |E|. The greedy mode is described later. We implement
both quadratic programs through the Python 3 interface of
Gurobi 10.0.1.

MIQCP-full utilizes the following key variables:

• wi∈Q>0 denotes the copy number for walk Wi (1≤ i≤ k), and
zi ∈ {0, 1} indicates if wi>0.

• xuvi∈Z≥0 represents the number of times walk Wi traverses
(u, v) for each edge (u, v)∈E and 1≤ i≤ k.

• Pj∈ {0, 1} indicates if subwalk constraint pj is satisfied for 1≤ j≤m.

The MIQCP(k, α, β) objective is given by

min
∑k

i=1

zi
︸�︷︷�︸
#walks

− 1
Cl(G)

∑k

i=1

∑
(u,v)[Wi>Es

wi ·xuvi · l(u,v)
︸���������������������︷︷���������������������︸

fractionofCl(G) explained

− 1
m

∑m

j=1

Pj

︸���︷︷���︸
fraction of subwalkssatisfied

,

(3)
subject to the constraints

wi≤zi ·Cl(G), (4)
∑k

i=1

∑
(u,v)[Wi>Es

wi ·xuvi · l(u,v)≥a ·Cl(G), (5)

∑m

j=1

Pj≥b ·m. (6)

Equation 4 ensures thatwi=0 if zi=0, ∀i=1, . . .,k, and Equations 5
and 6 ensure thatminimum fractions of the length-weighted copy
number and subwalk constraints are satisfied. The unsatisfied frac-
tions also contribute a small amount to the MIQCP objective. To
ensure that cycles and walks have their nodes connected and sat-
isfy the alternating-edge structure, wemust satisfy several auxiliary
constraints, enumerated below, with details in the Supplemental
Methods (Equations S4.6–S4.23):

1. Each Wi should form a valid walk of alternating sequence and
breakpoint (i.e., concordant or discordant) edges.

2. The total CN of all cycles/walks passing through an edge (u, v)∈
E is at most Cl(u, v).

3. We require that each cycle/walk traverses through a discordant
edge (u, v) atmost R(u, v) times. By default, the value of R(u, v) is
estimated for each discordant edge (u, v)∈Ed based on the num-
ber of (long) reads supporting that edge (for details, see
Supplemental Methods S4).

4. Each walkWi (if zi>0) either forms a cycle starting at node v1≠
s, t or starts at s and ends at t. IfWi forms a cycle, we require that
the concordant or discordant edge connected to v1 occurs only
once in the cycle.

5. xuvi and zi are consistent. zi=1⇔ xuvi>0 for some (u, v)∈E.
6. Connectivity. We use auxiliary variables to encode the “dis-

covery order” of the nodes in walk Wi. These variables number
the nodes from “1” for the start node and increment by one for
each subsequent node in the cycle/walk.

7. Subwalk constraints. We enforce a weak constraint by re-
quiring each walk pj [ P to be present as a subgraph of the
graph induced by some walk Wi.

MIQCP-greedy(α, β, γ, ɛ)

For a large graph (e.g., |E| > 100), MIQCP-full could be resource in-
tensive. Therefore, we also implemented anMIQCPwith the addi-
tional parameters γ and ɛ, but not k, that identifies only a single
walk maximizing the copy number and additional subwalk con-
straints satisfied, with parameter γ controlling the weight of the
two objectives. Let

�P = {j |path pj is not satisfied by any previously selected walk}.

Then, the greedy MIQCP objective to identify the next walk Wi is
given by

max
∑

(u,v)[Wi>Es

w · xuv · l(u, v)+ g ·
∑

j[�P

Pj. (7)

Each time a newwalk is computed, its copy number is removed for
all edges it passed through, and �P is updated. The procedure is re-
peated until either a · Cl(G) copy numbers and β ·m subwalk con-
straints are explained by the currently selected walks or the copy
number of next walk is less than 1 · Cl(G) for parameter ɛ. We em-
pirically set g = 0.01Cl(�G)/|�P|, where �G denotes the remaining
length-weighted copy number of G after removing the copy num-
bers from the last walk, and ɛ =0.005. The greedy MIQCP is solved
using the same set of auxiliary constraints as before.

Implementation details

In practice, if G has |E| > 100 edges, we use the iterative
greedyMIQCP, until either 90%of length-weighted copy number
is removed from the graph or the length-weighted copy number
of the next cycle is <1% of the total amount in the breakpoint
graph. Otherwise, we run full-MIQCP with α = 0.9, β= 0.9.
Initially, k = 10, and it is doubled until a feasible solution is
reached. If doubling the number of cycles/paths leads to
more than 10,000 variables in the integer program, we
switch to greedy-MIQCP. CoRAL provides users an option to
postprocess the greedy-MIQCP solutions with full MIQCP with
a = min (0.9, 1− Cl(�G)/Cl(G)), b = min (0.9, 1− |�P|/|P|).

Data access

All raw and processed sequencing data generated in this study
have been submitted to the NCBI BioProject database (https://
www.ncbi.nlm.nih.gov/bioproject/) under accession number
PRJNA1110283. Other short-read and long-read sequencing data
used in this study can be found in Supplemental Methods S6.
The version of CoRAL used in the presented analysis is included
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as Supplemental Code. An up-to-date version of CoRAL is available
on GitHub (https://github.com/AmpliconSuite/CoRAL).
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