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Exploring the Representation of Linear Functions
Pablo León-Villagrá1 Verena S. Klar1 Adam N. Sanborn2 Christopher G. Lucas1

1 School of Informatics, University of Edinburgh, United Kingdom
2Department of Psychology, University of Warwick, United Kingdom

Abstract
Function learning research has highlighted the importance of
human inductive biases that facilitate long-range extrapola-
tions. However, most previous research is focused on aggre-
gate errors or single-criterion extrapolations. Thus, little is
known about the underlying psychological space in which con-
tinuous relationships are represented. We ask whether people
can learn the distributional properties of new classes of rela-
tionships, using Markov Chain Monte Carlo with People, and
find that (1) people are able to track not just the expected pa-
rameters of a linear function, but information about the vari-
ability of functions in a specific context and (2) in many cases
these spaces over parameters exhibit multiple modes.
Keywords: generalization, function learning, representation

Inductive biases are at the heart of the human ability to gen-
eralize and extrapolate from sparse evidence. For instance,
when we infer labels and properties of new objects or enti-
ties, we rely not just on our experience of past examples, but
on our implicit and explicit expectations about the nature of
categories. Similarly, when we learn relationships between
quantities in function learning, inductive biases make it pos-
sible to distinguish between the boundless possible relation-
ships behind a set of observations (Lucas et al., 2012, 2015).

In order to characterize a person’s inductive biases, it can
be useful to first focus on spaces of possible mental repre-
sentations – sometimes called hypothesis spaces – and the
kinds of inferences they support or preclude. As with cate-
gorization, there have been many proposals about the men-
tal representations supporting function learning, including
exemplar-based approaches (McDaniel & Busemeyer, 2005),
rule-based approaches (Brehmer, 1974), and hybrids or gen-
eralizations of these (DeLosh et al., 1997; Lucas et al., 2015).
These models are typically evaluated by comparing their pre-
dictions to averaged human judgments, either via direct corre-
lations, error relative to the true underlying function, or quali-
tative features including multiple modes (Kalish et al., 2004),
or monotonicity (Bott & Heit, 2004; Kalish, 2013).

While this line of research has shed light on function learn-
ing and the representations and inductive biases that make
it possible, some fundamental questions remain. For exam-
ple, while models that take a distributional approach to func-
tion learning have successfully explained human behavior,
there is little direct evidence that people track distributional
information – uncertainty or variability – when faced with
function learning problems. This question has been unan-
swerable in previous work that relied on aggregated judg-
ments or assumed that individual inductive biases are broadly
similar (Kalish et al., 2007). Even the few studies that
have focused on inference patterns (Kalish, 2013; Wilson et
al., 2015; Schulz et al., 2017), including analyses of per-
participant extrapolations (León-Villagrá et al., 2018), still

neglected this question about the tacit beliefs behind partici-
pants’ judgments. Only recently, experiments have started to
explore the role of uncertainty in function learning. In Schulz
et al. (2015) participants judged functions to be more pre-
dictable when they were smooth or when they exhibited low
variance, much in accordance with the preferences of a prob-
abilistic model. Similarly, Stojic et al. (2018) showed that
participants’ predictive accuracy in a function learning task
correlated with their confidence ratings, again resembling the
uncertainty estimated by a probabilistic model.

Here we expand on this work and attempt to directly char-
acterize how people represent uncertainty when they learn
functions.

Markov Chain Monte Carlo with People
To uncover the psychological space that participants learn
when learning functions we apply Markov Chain Monte
Carlo with People (MCMCP; Sanborn et al., 2010). Sanborn
et al. showed that Markov Chain Monte Carlo can be used as
an experimental method to elicit posterior distributions from
people using a simple forced-choice task. Thus, MCMCP of-
fers a method to explore the psychological representational
space and has been successfully applied to elicit the rep-
resentations of complex stimuli, such as facial affect cate-
gories (Martin et al., 2012). Previously, MCMCP has been
used in a function learning setting1 to examine if partic-
ipants prefer compositional over non-compositional func-
tions (Schulz et al., 2017). Since Schulz et al. were interested
in preferences for types of functions (compositional vs. non-
compositional), the samples presented consisted of discrete
varieties of functions and did not explore the distribution of
function parameters.

In contrast, in this work, we directly explore the distribu-
tional space of the parameters governing the realizations of
linear functions. This allows us to uncover how learned func-
tions are represented, without constraining the participant’s
choices to pre-specified sets of materials.

Adopting MCMCP also allows us to explore novel ques-
tions – do participants represent variability in the training re-
lationships? Do they form a single, deterministic functional
relationship or do they form posterior distributions over pa-
rameters, reflective of the variability in the training? This
question about representation, in turn, can inform more gen-
eral future questions about extrapolation – are typical ex-
trapolation patterns maximum a posteriori judgments given a

1Function learning has been more extensively studied in a closely
related paradigm, iterated learning. Iterated learning experiments
can elicit participants’ shared expectations and have revealed strong
inductive biases for positive linear functions (Kalish et al., 2007).
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learned distribution over parameters? Or do they correspond
to samples from a range of probable parametrizations?

In this work we:

• Evaluate if MCMCP can be successfully adapted to a func-
tion learning paradigm.

• Contrast how functions are represented depending on the
variability of the example sets provided.

Experiment
In this experiment, we examine how participants represent
linear functions when presented with sets of training exam-
ples. We hypothesize that participants learn both the param-
eters generating the function, as well as the variability of the
relationship, i.e. they will learn both how much slopes and in-
tercepts vary, while also learning the specific modes of slopes
and intercepts. Therefore, we expect participants to form pos-
terior distributions over the training parameters, with the vari-
ance of that posterior reflective of the training.

We distinguish between training functions with positive
and negative slopes, since previous research has highlighted
strong inductive biases for these relationships. Similarly,
while it has been shown that people are biased to extrapo-
late in a linear fashion, especially preferring linear functions
where both stimulus and criterion are matched (DeLosh et
al., 1997), extrapolations appear to be influenced by their
proximity to the extrapolation boundaries. In areas of the ex-
trapolation range that are closer to zero, participants seem to
adjust the slope of their extrapolations towards this bound-
ary (Brown & Lacroix, 2017; Kwantes & Neal, 2006). To
test how different offsets and different degrees of steepness
are represented we contrast steep and shallow linear func-
tions. Finally, we expect that highly salient functional re-
lationships, like positive functions for which target and cri-
terion are matched, will be easier to learn and result in more
peaked posterior distributions if the training exhibits low vari-
ability. For high variability training, and especially if the
function is not favored as strongly (for instance a function
with a shallow negative slope) we expect broader, less peaked
posteriors. Finally, we hypothesize that especially in high
variability conditions, some participants will not exhibit uni-
modal posterior distributions and consider several potential
generating functions broadly consistent with the learned func-
tion.

Contrasting these functions resulted in a 2×2×2 between-
subjects design (direction of the function: positive or nega-
tive, steepness: shallow or steep, variability of the training
data: low or high).

Participants
The study was self-certified in accordance with the School
of Informatics Ethics Guidelines. We recruited 454 partic-
ipants (Mage = 33, SDage = 8.63, 91 female, 176 male, 1
other, 186 refused information on gender) on Amazon Me-
chanical Turk. Participants had to have more than 50 ap-
proved HITs and an approval rate of 95% or larger. They

received $1.33 for participation and took an average of 17
minutes (M = 17.25,SD = 8.59) to complete the experiment.
Participants were randomly assigned to one of the 8 condi-
tions.

Materials
The parameters generating the functions in the experimental
conditions differed in the sign of the slopes, as well as in their
steepness. In addition, parameters in the training set exhibited
either low or high variance for intercepts and slopes. For the
full set of experimental conditions, see Table 1.

Table 1: Parametrization for the generating linear functions.
Condition β0 SDβ0 β1 SDβ1

C.5,low 0.25 0.05 0.5 0.025
C1.0,low 0 0.05 1 0.025
C−.5,low 0.75 0.05 −0.5 0.025
C−1.0,low 1 0.05 −1 0.025
C.5,high 0.25 0.3 0.5 0.15
C1.0,high 0 0.3 1 0.15
C−.5,high 0.75 0.3 −0.5 0.15
C−1.0,high 1 0.3 −1 0.15

To create the 25 training sets, corresponding to iid real-
izations of β0,β1 ∼ N (µ,σ), with µ and σ matching the ex-
perimental condition, we systematically sampled 10,000 pairs
and selected the most normal and uncorrelated sets2. Then we
generated the corresponding linear function for a range of 15
points for x in 0–1 for all sets. One of those 15 values was
picked at random and constituted the interpolation target.

MCMCP Proposals were generated by two symmetric
Gaussian distributions, to allow both for local, as well as far-
off proposals, σβ0 ∈ [0.14,0.98], σβ1 ∈ [0.21,1.47]. At each
iteration these proposals had a probability of .8 and .2 to be
selected. Proposals were further restricted to be in bounds
β0 ∈ [−0.5,1.5], β1 ∈ [−1.5,1.5], and if less than 4 points
of the function realization were visible on screen, the pro-
posal was automatically rejected and a new proposal was re-
sampled. Participants traversed three different, interleaved
chains, since multiple chains allow a wider application of
convergence diagnostics and reduce the impact of the partic-
ular starting state. The starting values for these chains were
obtained by k-means clustering of pilot data (n = 8, one par-
ticipant per condition). This resulted in the following starting
values β0 = {0.12,0.1,0.58},β1 = {0.92,−0.94,−0.28}, for
chains 1 to 3.

Procedure
Participants were instructed that they would learn the rela-
tionship between two proteins, Zenopin and Mepradin. Par-
ticipants were told that the concentration of Zenopin was re-
lated to Mepradin, but that the extent of that relationship var-

2All Shapiro-Wilk tests yielded p > 0.99, and all correlation co-
efficients were in the range [−.01 .01].
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ied between humans. Participants were also instructed that
they would be presented with examples of the relationship as
observed in different people and that they would be asked to
interpolate the relationship. They were then instructed that
after the training phase they would be presented with pairs
of proposed relationships, all observed for a new person, and
would have to choose which of the two were more likely to
resemble the learned relationship. After reading the set of
instructions, the participants were tested on their comprehen-
sion. If participants did not respond correctly in the question-
naire they had to restart the instructions.

Training Phase In the training phase, participants were
presented with 25 interpolation tasks, presented as scatter
plots. In each task, they were instructed that the scatter plot
depicted the relationship between the two protein concentra-
tions for a new person. They then had to guess the concentra-
tion of the protein by selecting the height of the correspond-
ing value on the plot (on the y-axis). Participants were shown
the correct value as feedback for one second, and, if their
choice deviated by more than ±0.05 from the true value, had
to readjust their selection.

Test Phase The test phase consisted of 240 forced-choice
tasks, corresponding to 80 interleaved iterations of the three
Markov chains. On each trial, participants were presented
with two adjacent scatter plots, one corresponding to the cur-
rent state of the chain and the other reflecting the proposed
new state (in randomized order). Participants had to select
the plot they believed most likely to depict the relationship
in the training phase. After the test phase, participants com-
pleted a short survey, were debriefed, and compensated. See
Figure 1 for a depiction of both training and test phase.

Test PhaseTraining Phase

Figure 1: Participants had to complete a training and a test
phase. In the training phase they were asked to interpolate
the concentration of a fictitious protein for 25 different peo-
ple (with feedback). In the test phase, they were presented
with 240 forced-choice tasks, for which they had to choose
the scatter plot that most resembled the relationship in the
training phase. The choices were presented in random order
and corresponded to a Markov chain, in which the participant
implemented the acceptance function.

Results
We excluded participants from the analysis if their chains
did not converge to the stationary distribution. Many criteria
for convergence checks have been suggested in the literature,

here we applied one of the most commonly used evaluations,
R̂ (Gelman et al., 2013; Vehtari et al., 2019). R̂ estimates the
ratio between within-chain variances and between-chain vari-
ance and thus provides a measure of how (self-)similar chains
are. In general applications R̂ should not exceed a value of
1.1. However, such a strict application of this diagnostic is
not realistic in most MCMCP experiments, since human judg-
ments might exhibit more correlated choices and the number
of iterations in experiments is usually considerably lower than
in standard statistical applications. Therefore, we incremen-
tally calculated R̂ values for chains for each participant and
selected the lowest overall R̂, with the additional constraint
that the first 20 samples of the chain were always discarded
and the resulting chains had to be at least 20 iterations long.
We then used the maximum of the intercept and slope R̂ val-
ues to apply exclusion criteria and determine burn-in.

Similar to Ramlee et al. (2017), we excluded participants
who exhibited R̂≥ 2. Furthermore, we excluded participants
who required more than one correction in the interpolation
task. Given that the interpolation function was deterministic,
most participants did not require many corrections (Mdn =
0,Q1 = 0,Q3 = 1,max = 44).

In total, these methods led to the exclusion of 262 partici-
pants (convergence exclusions: 224, interpolation exclusions:
72). This high number of exclusions was to be expected given
the correlated, bi-variate parameter space and previous re-
sults (Sanborn et al., 2010). For group sizes after exclusion,
see Table 2. For an overview of how the forced-choice task
results in the posterior distribution, see Figure 2.

Determining Burn-in
To determine how many trials were required on average for
the Markov chains to converge, we used the iteration for
which R̂ was optimal for each participant. On average, chains
required 33 iterations to reach optimal burn-in and the result-
ing optimal R̂ values were well below 2, MR̂ = 1.4,SD = 0.2.
Conditions did not differ considerably in terms of the opti-
mal iterations or the resulting R̂ values. For the full list of
per-condition burn-in values, see Table 2. For all subsequent
analysis, we discarded all points of the chain before the per-
participant burn-in.

Table 2: Participants in each condition before (Ntotal) and after
exclusion (N). Mburn-in, SDburn-in, as well as mean acceptance
probabilities averaged over participants (Macc,SDacc).

Condition Ntotal N Mburn-in SDburn-in Macc SDacc
C.5,low 48 25 34.88 14.49 35 17
C1.0,low 63 21 31.37 12.01 42 10
C−.5,low 52 19 34.37 13.73 37 13
C−1.0,low 64 22 29.59 11.59 38 15
C.5,high 59 35 32.29 13.22 38 14
C1.0,high 57 26 32.08 12.24 45 9
C−.5,high 56 29 35.66 12.75 42 13
C−1.0,high 55 15 29.40 10.67 36 12
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Figure 2: The 240 choices submitted by the participants cor-
responded to three Markov chains. By accepting or reject-
ing proposed parametrizations for the functions, participants
traversed this representational space and eventually converge
to a region reflecting the posterior over parameters. For this
participant, the chains converge after 35 iterations for β0 and
after 15 iterations for β1. The corresponding distribution af-
ter this burn-in period closely matches the true relationship
learned in the training phase, both in terms of its mean and
variance (dashed line and grey range).

Acceptance Probabilities
Acceptance rates for MCMC samples should range between
20–40% (Roberts, Gelman, & Gilks, 1997). Mean acceptance
probability was in that range, M = 39%,SD = 13, indicating
that the proposals were wide enough to traverse the param-
eter space. Between conditions, the mean acceptance prob-
abilities for participants varied, ranging from 35 to 45%, for
all acceptance probabilities, see Table 2. For each condition,
acceptance probabilities for each chain did not vary substan-
tially and were similar to the general acceptance rates (not
shown).

Posterior Distributions
Slopes differed significantly between positive- and negative-
slope conditions, with participants trained on negative slopes
preferring negative slopes, Mβ1 = −0.16,SDβ1 = 0.53, and
participants trained on positive slopes preferring positive
slopes, Mβ1 = 0.19,SDβ1 = 0.45, t(165.33) = −4.74, p <

.00013.
For conditions with negative slopes in the training sets,

steep and shallow conditions exhibited significantly differ-
ent posterior slopes, with lower slopes for steep compared
to shallow conditions, M−.5 =−0.05,SD−.5 = 0.45,M−1.0 =
−0.29,SD−1.0 = 0.59, t(65.58) = 2.08, p = .041. For condi-
tions with positive slopes in the training sets there was also a
significant difference in posterior slopes. However, this dif-
ference was not in the predicted direction, as slopes in the
shallow condition were on average larger than in the steep
condition, M.5 = 0.29, SD.5 = 0.4, M1.0 = 0.05, SD1.0 = 0.47,
t(89.75) = −2.89, p = .005. Posterior intercepts in con-
ditions with negative training slopes did not differ signifi-
cantly between steep and shallow conditions, M−.5 = 0.52,

3All tests are unequal variance, two-sided t-tests.
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Figure 3: Posterior densities for intercepts and slopes and true
values and standard deviation (dashed lines) in the experi-
mental conditions. The posterior densities exhibited multiple
modes, some centered in close proximity of the true parame-
ters.

SD−.5 = 0.21, M−1.0 = 0.6, SD−1.0 = 0.3, t(62.84) = 1.38,
p = .174, nor for conditions with positive training slopes,
M.5 = 0.35, SD.5 = 0.2, M1.0 = 0.5, SD1.0 = 0.25, t(88.71) =
3.31, p = .001.

Equally, per-participant SD for slopes did not differ signifi-
cantly between high and low variability conditions, Mlow,β1 =
0.49, SDlow,β1 = 0.26, Mhigh,β1 = 0.55, SDlow,β1 = 0.25,
t(180.07) = −1.39, p = .166. However, for intercepts, per-
participant SD did differ significantly between high and low
variability conditions, with high variance conditions result-
ing in higher SD, Mlow,β0 = 0.26, SDlow,β0 = 0.11, Mhigh,β1 =
0.31, SDlow,β1 = 0.11, t(182.48) =−2.46, p = .015.

Visual inspection revealed that in all conditions posterior
distributions were multimodal and heavily skewed, which
complicated the analysis. In general, the posterior densities
suggested that the modes of the posterior distributions were
often close to the learned parameters, see Figure 3, for a se-
lection of posterior distributions for one participant in each
condition, see Figure 4.

Since the mean and standard deviations of multimodal,
heavily skewed distributions are not good representations of
the underlying data and we were interested in characteristic
modes of the distributions, we used mixture models to iden-
tify dominant modes of the posterior distributions.
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Figure 4: Posterior densities for one participant in each con-
dition. Lines represent the true values and standard deviations
(dashed lines) in the experimental conditions.

Table 3: Posterior means and variances per condition, for
function intercepts (β0) and slopes (β1).

Condition Mβ0 SDβ0 Mβ1 SDβ1

C.5,low 0.34 0.32 0.32 0.62
C1.0,low 0.52 0.40 0.00 0.78
C−.5,low 0.49 0.37 −0.02 0.73
C−1.0,low 0.65 0.40 −0.40 0.77
C.5,high 0.35 0.39 0.27 0.71
C1.0,high 0.47 0.40 0.07 0.81
C−.5,high 0.54 0.40 −0.07 0.77
C−1.0,high 0.52 0.44 −0.20 0.83

Estimating Posterior Density Clusters We estimated
Gaussian mixture models that best described the distributions
for each experimental condition. We incrementally increased
the number of components and selected the model with the
lowest BIC4. The clustering produced a moderate number of
clusters, reflecting the multimodal nature of the data. In gen-
eral, each condition was estimated to correspond to a mixture
of 1–8 clusters (M = 4.5,SD = 2.56), and the largest clus-
ters closely matched the different training conditions. For
KL-divergences between training distribution and the inferred
clusters, see Table 5, for the number of clusters, weights,
means and covariances for the largest clusters, see Table 4,

4Estimating the mixtures with a Bayesian Dirichlet process mix-
ture model yielded very similar results.

for plots of the clusters, see Figure 5.

Table 4: The total number of clusters (Nc) assigned was gen-
erally low and the weight of the largest clusters was relatively
large (16–100%).
Condition NC wc=1 µβ0,c=1 SDβ0,c=1 µβ1,c=1 SDβ1,c=1

C.5,low 8 0.2 0.15 0.02 0.69 0.14
C1.0,low 8 0.17 0.07 0.01 0.84 0.1
C−.5,low 1 1.0 0.49 0.14 -0.01 0.53
C−1.0,low 4 0.42 0.93 0.03 -0.98 0.04
C.5,high 2 0.81 0.24 0.10 0.54 0.21
C1.0,high 3 0.46 0.24 0.1 0.75 0.13
C−.5,high 5 0.31 0.93 0.09 -0.65 0.2
C−1.0,high 5 0.39 0.9 0.08 -0.95 0.07

Table 5: KL-divergence between the training distribution and
the three largest clusters. In general, one of the largest clus-
ters corresponded well to the training distribution.

Condition KLc=1 KLc=2 KLc=3
C.5,low 2.18 1.1 1.95
C1.0,low 1.74 42.1 5.85
C1.0,low 1.35 − −
C−1.0,low 0.31 1.76 24.16
C.5,high 0.83 10.37 −
C1.0,high 1.06 9.76 2.95
C−.5,high 1.49 2.66 4.25
C−1.0,high 1.02 59.27 11.09

Per-Participant Clusters To evaluate if the source of the
multimodality in our data was due to averaging over diverse
cohorts of participants, or if individual participants produced
multimodal posteriors, we performed the same clustering pro-
cedure on a per-participant basis. Participant posterior distri-
butions were characterized by 1–12 clusters (M = 3.11,SD =
1.96,Q1 = 1,Q2 = 3,Q3 = 4), suggesting that the poste-
rior distributions were composed of multimodal individual
distributions. Furthermore, some participants with optimal
R̂ (≤ 1.1) also exhibited multiple clusters, indicating that
the multimodality was not simply due to poor convergence
(M = 1.89,SD = 1.36,NR̂≤1.1 = 9).

The number of clusters did not differ significantly between
low- and high-variance conditions, Mlow = 2.98,SDlow =
1.94,Mhigh = 3.1,SDhigh = 1.57, t(164.24) = −0.49, p =
.312. Neither did the variance of the largest cluster for
slopes differ significantly, Mlow = 0.1,SDlow = 0.13,Mhigh =
0.1,SDhigh = 0.11, t(172.43) = 0.11, p = .545. However, for
intercepts the variance of the largest clusters was significantly
different, with smaller cluster variances for low-variance con-
ditions, Mlow = 0.04,SDlow = 0.03,Mhigh = 0.05,SDhigh =
0.04, t(189.85) =−2.09, p = .048.
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Figure 5: Clusters obtained by fitting a Gaussian mixture model (oval shapes). The top three clusters (colored shapes) accounted
for a large proportion of the data and in general matched the distribution learned in the training phase well (mean parameters of
the true distribution in yellow).

Discussion
We have found some evidence that participants represent the
functions learned in training as distributions over parameters.
Furthermore, the modes of these distributions were, in many
cases, aligned with the true parameters. In addition, for inter-
cepts, but not for slopes, these distributions were affected by
differences in the variability of training. Finally, our results
suggest that the learned distributional spaces over function
parameters can exhibit multiple modes.

The multimodality in the posterior distributions allows for
two interpretations. First, it is possible that participants truly
evaluated distinct candidate representations, and thus multi-
modal posterior distributions characterized their hypothesis
space. It is plausible that highly salient relationships, in ad-
dition to the implied parameters in the training, constitute the
psychological space when learning sets of varying functions.
However, the multimodality might also arise from our exper-
imental method. One issue could be the number of iterations.
Theoretically, MCMCP is well suited to discover complex,
multimodal distributions, but practically many more sam-
ples could be necessary to achieve convergence to the poste-
rior distribution. Since extremely large numbers of iterations
might not be feasible from an experimental perspective, one
practical test of our results could be starting the chains of later
participants at the endpoints of previous participants (Martin
et al., 2012).

Future research should clarify the source of multimodality,
for instance by comparing our results with results obtained
by multidimensional scaling (MDS). If such a comparison
corroborates our results, these insights into the structure of
psychological spaces could, in turn, provide invaluable guid-
ance for future generalization research. In addition, MDS
would also allow us to address two shortcomings of the cur-
rent study: its exclusive focus on linear functions, and the po-
tential influence of perceptual similarity of functions on par-
ticipants’ forced choices. First, similarity judgments obtained
via MDS could be used to determine if participants are well
described by linear models, or if non-linear representations
underlie their judgments. These results would allow us to de-
termine if the multimodal representations observed in our ex-
periment were the result of a lack of satisfactory choices or a
genuine characteristic of learning. Second, MDS would allow
us to chart sets of perceptually similar samples. It is plausible
that intercepts and slopes can affect notions of similarity of
linear functions differently. For example, if functions sharing
the same slope but very different intercepts are judged more
similar than functions with similar slopes and intercepts, such
non-linear interactions could explain the multimodality ob-
served in our experiment.

While more research is required, our results also highlight
the importance of a plurality of experimental approaches and
methods in the study of human generalization. Most of previ-
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ous research has focused on averaged errors or single extrap-
olations. Here, we suggest that to fully understand human
generalization, characteristic errors, in combination with ex-
trapolation patterns, and evaluation and exploration of the un-
derlying hypothesis spaces are required.
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