Lawrence Berkeley National Laboratory

Recent Work

Title

Review of Particle Physics (Revised)

Permalink

https://escholarship.org/uc/item/6tm958q0

Journal

Physical Review D54, 592(1/4/2008)

ISSN

0370-2693

Author

Eidelman, S.

Publication Date

2004-06-01

ENDERLY LACORATORY

AUG 8 1975

LBL-100 (Supplement) (formerly UCRL-8030) April 1975

UBBARY AND DOCUMENTS SECTION

REVIEW OF PARTICLE PROPERTIES: SUPPLEMENT TO 1974 EDITION

Particle Data Group

VLADIMIR CHALOUPKA and CLAUDE BRICMAN CERN, 1211 Genève 23, Switzerland

ANGELA BARBARO-GALTIERI, DENYSE M. CHEW, ROBERT L. KELLY, THOMAS A. LASINSKI, ALAN RITTENBERG, ARTHUR H. ROSENFELD, THOMAS G. TRIPPE, FUMIYO UCHIYAMA, and GEORGE P. YOST Lawrence Berkeley Laboratory, University of California Berkeley, California 94720, USA

NAOMI BARASH-SCHMIDT Brandeis University, Waltham, Massachusetts 02154, USA

MATTS ROOS

Department of Nuclear Physics, University of Helsinki
Helsinki 17, Finland

For Reference

Not to be taken from this room

April 1975

(Next complete edition, April 1976, to be published in Reviews of Modern Physics)

Reprinted from Reviews of Modern Physics 47, 535 (1975), by kind permission of the Editor

Printed at the Lawrence Berkeley Laboratory, Berkeley

LBC-100, supplement it

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

0 0 0 0 3 6 0 5 1 0 2

Review of particle properties: Supplement to 1974 edition

Particle Data Group

Vladimir Chaloupka and Claude Bricman

CERN, 1211 Genève 23, Switzerland

Angela Barbaro-Galtieri, Denyse M. Chew*, Robert L. Kelly, Thomas A. Lasinski[†], Alan Rittenberg, Arthur H. Rosenfeld, Thomas G. Trippe, Fumiyo Uchiyama, and George P. Yost

Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720

Naomi Barash-Schmidt

Brandeis University, Waltham, Massachusetts 02154

Matts Roos

Department of Nuclear Physics, University of Helsinki, Helsinki 17, Finland

This supplement to the 1974 edition of "Review of Particle Properties," Particle Data Group [Phys. Lett. 50B, No. 1 (1974)], contains an announcement concerning the postponement of the usual Review, a list of Errata, and a tabulation of the experimental results on the newly discovered mesons.

For several reasons, outlined below, the Particle Data Group has decided to postpone the next regular edition of the "Review of Particle Properties" until April 1976, at which time it will appear in Reviews of Modern Physics. In this supplement we present a brief list of errata to the 1974 edition, and, because of the importance of the recently discovered mesons, we also give addenda to the Data Card Listings containing entries for these particles only. Two mini-reviews in the Listings discuss various aspects of these mesons.

Our reasons for delaying the regular edition are primarily the following: (1) Apart from the excitement generated by the new mesons, there has been somewhat of a shift in the last 2-3 years from experiments studying particle properties to those studying interaction properties. This dimi-

nution in new particle data, especially data of a dramatic nature (again with the exception noted above), leads us to believe that this time we can wait two years for a complete update. (2) In line with the shift in emphasis to interactions, the Berkeley members of the Group have been developing a data storage and retrieval system into which we plan to put all experimental data which we can extract from physics documents (journal articles, preprints, reports, theses, etc.). The primary usage of this system, at least initially, will be for such interaction properties as cross sections, angular and momentum distributions, polarization measurements, and density matrix elements. We are currently in the process of putting together our initial data base and are aiming to produce, as the first output of our system, an "Index of Particle Physics Data".2 This Index will enable the user to locate articles on the basis of beam, target, momentum and, to a limited extent, reaction final state and properties measured. Since this project is presently occupying most of the time of the Berkeley Group, publishing the Review this year would significantly delay the Index. (3) Finally, the recent substantial increases in printing costs also contributed to the decision to postpone publication.

^{*} On leave of absence from University of Paris VI, Paris, France. † Presently at Stanford Linear Accelerator Center, Stanford, California 94305, USA.

[‡] The Berkeley Particle Data Center is jointly supported by the U.S. Energy Research and Development Administration, the Office of Standard Reference Data of the National Bureau of Standards, and the National Science Foundation.

¹ Particle Data Group: V. Chaloupka, C. Bricman, A. Barbaro-Galtieri, D. M. Chew, R. L. Kelly, T. A. Lasinski, A. Rittenberg, Λ. H. Rosenfeld, T. G. Trippe, F. Uchiyama, N. Barash-Schmidt, P. Söding, and M. Roos, Physics Letters **50B**, No. 1 (1974).

² Particle Data Group, "Index of Particle Physics Data", LBL-90 (to be issued).

ERRATA

Following is a list of errata in the 1974 edition of Review of Particle Propperties [Phys. Lett. <u>50B</u>, No. 1 (1974)]. Two page numbers are given for each item; the first is for the Review itself, and the second is for the associated 1974 Particle Properties Data Booklet.

In the Physical and Numerical Constants Table (p. 15/35), the line defining an atmosphere should read:

1 atmosphere = 1033.2275 dynes cm⁻² = 1.01325 bar.

In the Relativistic Kinematics Table (p. 21/51), equations 20-1 and 21-1 should read:

$$\gamma = \frac{s + m_b^2 - m_a^2}{2m_b \sqrt{s}} = \frac{m_b + E_a^{1ab}}{\sqrt{s}}$$
 (20-1),

$$\eta = \frac{\sqrt{\Delta(s, m_a^2, m_b^2)}}{2m_b \sqrt{s}} = \frac{P_{inc}}{\sqrt{s}}$$
 (21-1).

In the Particle Detectors, Absorbers, and Ranges section, the Atomic and Nuclear Properties of Materials Table (p. 30/74-75) has several errors; as a result we reproduce the entire table, including updated values where they were available.

In the Electromagnetic Relations section (p. 31/76), ϵ and μ are defined to be the <u>relative</u> permittivity and permeability, respectively, for both CGS and MKSA units. To convert the MKSA formulas to more standard notation, where ϵ and μ are defined to be absolute, substitute

 ϵ for $\epsilon\epsilon_0$, and μ for $\mu\mu_0$.

Atomic and Nuclear Properties of Materials*

Material Z		A	Nuclear cross	Nuclear collision length L _{coll}		Absorption di		dx min ^c	Radiation length L _{rad}		Density ^e [g/cm ³]	Refractive index n;
			section σ'	[g/cm ²		[cm]	MeV g/cm ²	MeV cm	[g/cm ²]	[cm]		() is (n-1)×10 ⁶ for gas
H ₂	1	1.01	0.039	43.0	607	790	4.12	0.292	63.05	890	(0.0708 (0.090)	(1.112 ((140)
D_2	1	2.01	0.074	45.1	273	342	2.07	0.342	126.1	764	0.165	1.128
He	2	4.00	0.134	49.6	397	478	1.94	0.243	94.32	755	{0.125 {(0.178)	{ 1.024 { (35)
Li	3	6.94	0.215	53.6	100.4	120.6	1.65	0.902	82.76	15 5	0.534	-
Be	4	9.01	0.270	55.4	30.0	36.7	1.61	2.97	65.19	35.3	1.848	-
	6	12.01	0.340	58.7	≈37.8	49.9	1.78	≈2.76	42.70	≈27.5	≈1.55 ^f	-
N ₂	7	14.01	0.390	59.7	73.8	99.4	1.82	1.47	37.99	47.0	(0.808 (1.25)	{1.205 {(300)
Ne	10	20.18	0.520	64.4	53.7	74.9	1.73	2.08	28.94	24.0	(1.207 (0.90)	(1.092 (67)
AI .	13	26. 9 8	0.650	68.9	25.5	37.2	1.62	4.37	24.01	8.9	2.70	-
\	18	39.95	0.890	74.5	53.2	80.9	1.51	2.11	19.55	14.0	{1.40 (1.78)	(1.233 (283)
e	26	55.85	1.160	79.9	10.2	17.1	1.48	11.6	13.84	1.76	7.87	
ù	29	63.54	1.270	83.1	9.3	14.8	1.44	12.9	12.86	1.43	8.96	-
n.	50	118.69	2.040	96.6	13.2	22.8	1.28	9.4	8.82	1.21	7.31	-
,	74	183.85	2.810	108.6	5.6	10.3	1.17	22.6	6.76	0.35	19.3	
b	82	207.19	3.080	111.7	9.8	18.5	1.13	12.8	6.37	0.56	11.35	_
J	92	238.03	3.380	116.9	≈6.2	12.0	1.09	≈20.7	6.00	≈0.32	≈18.95	
ir				60.2	50000 ⁹	67500 ⁹	1.82	0.0022	9 36.66	30050 ⁹	{0.00120 {(1.29)	5 ⁹ {1 .000273 ⁹ {(293)
120				58.3	58.3	78.8	2.03	2.03	36.08	36.1	1.00	1.33
i ₂ (bui	bble	chamber 2	(6°K)	43.0	≈683	887	4.12	≈0.26	63.05	≈1000	±0.063 م≈	1.112
2 (but	bble 	chamber 3	1°K) ⁿ	45.1	≈322	403	2.07	≈0.29	126.1	≈900 	≈0.140 ^h	1.110
I−Ne n	nixtu	e (50 mo	le percent)	62.9	154.5	215	1.84	0.75	29.70	73.0	0.407	1.092
ropan	e (C	5H8)j		55.0	134	176	2.28	0.98	45.38	111	{0.41 ⁾ {(2.0)	{1.25 ^J {(1005)
reon .	13B1	. (CF ₃ Br) ^j		74.3	≈49.5	73.5	1.52	≈2.3	16.53	≈11	(8.71)	{1.238 ⁾ {(750)
lford	emuls	sion		79.5	23.6	39.1	1.44	5.49	11.02	2.94	3.815	-
laI				91.9	25.0	41.3	1.32	4.84	9.49	2.59	3.67	1.775
.iF				61.1	23.1	30.7	1.69	4.46	39.25	14.9	2.64	1.394
		(CH ²)		55.7	∞≈59.6	78.4	2.09	≈1.95	44.78	≈48	0.92-0.95	-
lylar (C5H4	U ₂)	tomk	58.5	42.1	56.1	1.91	2.65	39.95	28.7	1.39	-
olysty: .ucite,	rene, Plexi	scintillato glas (C ₅ H ₆	r (CH)" (O ₂)	57.0 57.7	55.2 ≈48.9	68.5 65.0	2.03 1.95	1.97 ≈1.65	43.8 40.55	42.9 ≈34.5	1.032 1.16-1.20	1.581 ≈1.49
			chamber	0	.05%	0.03%		0.073	2	.7%	0.046	-
Shielding	g cor	ocrete ^m		64.9	26.0	32.2	1.70	4.25	26.7	10.7	2.5	-
:0 ₂ n	•			60.4	33800	46000	1.82	0.0033	36.2	20210	(1.79) ⁿ	(410) ⁿ
reon :	12 (CCL ₂ F ₂) ⁿ		68.1	13800	20200	1.64	0.0081	23.7	4810	(4 . 93) ⁿ	(1080) ⁿ
		CAF _z)h			15000						(4.26) ⁿ	(720) ⁿ

^{*)} Table revised January 1975 by J. Engler and F. Monnig. For details and references, see CERN NP Internal Report 74-1.

a) σ of neutrons (ε σ of protons) at 20 GeV from Landolt-Bornstein, New Series I, Vol. 5. Energy dependence for all nuclei ε 1/2 percent/GeV (from 5-25 GeV).

b) L_{coll} = A/(N.σ). In the absorption length the elastic scattering is subtracted.
c) From W.H. Barkas and M.J. Berger, <u>Tables of Energy Losses and Ranges of Heavy Charged Particles</u>, NASA-SP-3013 (1964).

d) From Y.S. Tsai, Pair Production and Bremsstrahlung of Charged Leptons, SLAC-PUB-1365 (1974), Table III.6.

e) Values for solids, or the liquid phase at boiling point, except where noted. Values in parentheses for gaseous phase STP (0°C, 1 atm.), except where noted.

f) Density variable.

g) Gas at 20°C.

h) Density may vary about ±3%, depending on operating conditions.

i) Values for typical working condition with H₂ target: 50 mole percent, 29°K, 7 atm.
j) Values for typical chamber working conditions: Propane ~ 57°C, 8–10 atm. Freon 13B1 ~ 28°C, 8–10 atm.

k) Typical scintillator; e.g. PILOT B and NE 102A have an atomic ratio H/C = 1.10.

t) Values for typical construction: 2 layers 50 μm Cu/Be wires, 8 mm gap, 60% argon, 40% isobutane or CO₂; 2 layers 50 μm Mylar/Aclar foils.

m) Standard shielding blocks, typical composition 0_2 52%, Si 32.5%, Ca 6%, Na 1.5%, Fe 2%, Al 4% plus reinforcing iron bars. Attenuation length $t=115\pm5$ g/cm², also valid for earth (typical $\rho=2.15$) from CERN-LRL-RHEL Shielding exp. UCRL 17841 (1968).

n) Used in Čerenkov counters, value at 26°C and 1 atm. Indices of refraction from E.R. Hayes, R.A. Schluter, and A. Tamosaitis, ANL-6916 (1964).

The New Heavy Mesons

In the following, we shall briefly review the experiments bearing on the recently-discovered $J/\psi(3100)$ and $\psi(3700)$ particles, as well as a peak in the e^+e^- total cross section, tentatively labeled X(4100) (whose resonant nature has not yet been established).

As of March 1975, the best known of these particles is the J/ ψ (3100). A summary of the experiments relevant to this particle is given in Table I. It has been observed in the e⁺e⁻ mass spectrum produced in p-Be collisions at the AGS (AUBERT 74), and in e⁺e⁻, charged hadronic, and also $\mu^+\nu^-$ decay modes

formed at SPEAR (AUGUSTIN 74). It has also been observed in e $^+e^-$ collisions at ADONE (BACCI 74), at DORIS (BRAUNSCHWEIG 74,75; CRIEGEE 75), and at SPEAR (FORD 75), in photoproduction at FNAL (KNAPP1 75), in n-Be collisions at FNAL (KNAPP2 75), and in photoproduction using a mixture of real and low-q² virtual photons at SLAC (DAKIN 75). A Wisconsin-SLAC collaboration has also observed production of the J/ ψ (3100), as well as the ψ (3700), in a bremsstrahlung beam of peak energies ranging from 13.5 to 21.5 GeV (Univ. of Wisconsin-SLAC collaboration, private communication).

TABLE I. List of Experiments Bearing on the $J/\psi(3100)$ Meson.

Accelerator	Authors		De	cay		Comments		
Accelerator	Authors	e [†] e ⁻	μ+μ-	Hadrons	Others			
SPEAR	AUGUSTIN 74 }	×	For ×	rmation in ×	e ⁺ e ⁻ Collisions	•Co-discovery; see AUBERT 74		
1	FORD 75	×	×		YY b	• $\gamma\gamma$ decay mode forbidden if $J=1$, or if $C=-1$ and C conserved		
1	BACCI 74	(See	followi	.ng 3 paper	:s)			
	ASH 74	x x ×						
ADONE {	BALDINI-CELIO 74	×	· ×	×				
1	BARBIELLINI 74	× .		•		· •		
(BRAUNSCHWEIG 74	×			•	•		
DORIS	BRAUNSCHWEIG 75		F	-	γγ, b π ⁰ γ b	• $\gamma\gamma$ decay mode forbidden if $J=1$, or if $C=-1$ and C conserved		
(CRIEGEE 75			×		• Signal in collinear 2-prongs also observed		
			Produ	etion in H	adron Collisions			
(AUBERT 74	×	,			• From p-Be at 28 GeV/c: Co-discovery;		
BNL-AGS	CHRISTENSON 70		×c			see AUGUSTIN 74 • From p-U at 28 GeV/c: Observed a shoulder above 3 GeV in $\mu^+\mu^-$ mass		
FNAL	KNAPP2 75		×			<pre>spectrum •From n-Be at 70 - 250 GeV/c</pre>		
				Photopr	oduction			
FNAL	KNAPP1 75		×			• From γ-Be at 80 - 200 GeV: Observed signal of about 60 events above back-ground.		
SLAC {	DAKIN 75	h	. *			• From γ-Be at 14 - 20.5 GeV: Observed 5 events (where 1 event expected)		
· ·	MARTIN 75	× ^b				• From γ-N at 14 - 20.5 GeV		
CORNELL	ANDREWS 75	×b				• From γ-Be at 11.1 GeV		

^aThese are only $probable \mu^{\dagger}\mu^{-}$ events; they are called "collinear events which are not $e^{+e^{-}}$ ".

bupper limits only.

^CNo conclusion drawn, however, on the existence of a narrow resonance.

Data Card Listings

Evidence bearing on the hadronic nature of the $J/\psi(3100)$ comes from the observation of a large forward photoproduction cross section. Using vector dominance arguments one derives a total cross section for $J/\psi(3100)$ on nucleons over a large energy range of the order of 1 mb (ANDREWS 75, DAKIN 75, KNAPP1 75, MARTIN 75). Although this cross section is an order of magnitude smaller than the corresponding cross sections of the well-known vector mesons, it is large enough to suggest that the $J/\psi(3100)$ is probably a hadron.

A preliminary assignment of $I^{G}(J^{P})C = O^{-}(I^{-})$ may be made based on the following arguments. A study of the decay angular distribution into lepton pairs (BRAUNSCHWEIG 74, LYNCH 75), and an observed 3-standard-deviation interference effect with OED in the $\mu^+\mu^-$ decay mode (LYNCH 75) suggest that the $J/\psi(3100)$ has the same JPC quantum numbers as a photon, provided parity is conserved in this decay. Non-observation of 2y decays (BRAUNSCHWEIG 75. FORD 75) supports this interpretation. The observation of a $\Lambda\bar{\Lambda}$ decay mode (SLAC-LBL collaboration, private communication), even though the branching fraction appears to be small, indicates isospin zero, provided the $J/\psi(3100)$ is a hadron and the decay to $\Lambda\Lambda$ is not electromagnetic. If I=0 and C=-1, Gparity must be negative. Support for this assignment comes from the fact (LYNCH 75) that the relative rates for the decay into an odd vs even number of pions is consistent with the assumption that G is conserved in the former and violated in the latter. A natural interpretation, not yet confirmed, is that the $J/\psi(3100)$ is produced in e⁺e⁻ annihilation via a single time-like photon in the direct channel.

The second particle, the $\psi(3700)$, has been observed in e \dot{e} collisions at SPEAR (ABRAMS 74) and at DORIS (CRIEGEE 75), with cross sections of the same order of magnitude as the $J/\psi(3100)$. It is therefore likely that its formation also takes place via one-photon annihilation, and its quantum numbers would therefore be those of the photon, $J^{PC}=1^{--}$. No direct evidence for this assignment exists yet. The decay $\psi(3700) \rightarrow J/\psi(3100) + 2\pi$ (LYNCH 75, ABRAMS 75) suggests that the G-parity is the same as for the $J/\psi(3100)$. If GC =+1, then I is even.

The X(4100) has been observed as a broad enhancement in the ${\rm e^+e^-}$ total cross section at SPEAR (AUGUSTIN 75). Although the interpretation is still unclear, if it is in fact a resonance, then its large width

suggests that it is hadronic. Further, as in the case of the $\psi(3700)$, if one-photon annihilation is responsible for the effect, the quantum numbers would then be those of the photon, $J^{PC}=1^{-1}$.

Note added in proof: after this mini-review was completed, an additional paper, BOYARSKI 75, was received. The results of this paper, which support the above préliminary assignments of the $J/\psi(3100)$ quantum numbers, are included in the following Listings.

Extracting Resonance Widths from e e Colliding Beam

In an e e colliding beam formation experiment, the true shape of an observed resonance is distorted primarily by the effects of (1) soft-photon processes, and (2) beam energy spread due to processes such as quantum fluctuations in emission of synchrotron radiation. The spread in energy due to (2) may usually be approximated by a Gaussian distribution, the effect of which vanishes rapidly at energies sufficiently removed from resonance. The major effect of (1) is a decrease in the effective c.m. energy for some fraction of the collisions, because of the emission of bremsstrahlung by the electron or positron before annihilation. Hence, though the nominal beam energy may be well above the resonance region, a certain fraction of the collisions occur at or near resonance. This gives rise to the well-known high-mass radiative tails of the $J/\psi(3100)$ and $\psi(3700)$ resonances. These radiative processes, taken all together, can decrease the peak cross section for a narrow resonance by 50% or more, depending on the mass and the observed width.

Because of these effects, perhaps the most reliable means for determining resonance widths is to use a method based on the area under the line shape. This method, familiar in nuclear physics, minimizes the sensitivity to the details of the beam energy spread. Corrections for the radiative processes, which depend on the limits of integration of the areas, still need to be made. This discussion assumes the resolution is adequate to allow a reasonable separation of signal from background (which itself is subject to radiative processes).

For formation of a resonance of mass M in e^+e^- collisions, with subsequent decay via channel i,

$$\sigma_{i}(w) = \sigma_{0} \frac{\Gamma_{e} \Gamma_{i}/4}{(M-W)^{2} + \Gamma^{2}/4}$$

NEW HEAVY MESONS

where W is the total center of mass energy; Γ , $\Gamma_{\rm e}$, and $\Gamma_{\rm i}$ are the total width and partial widths for coupling to e e and channel i, respectively; and a Breit-Wigner line shape with energy-independent partial widths is assumed. The quantity $\sigma_{\rm o}$ is given by

$$\sigma_0(w) = \frac{4\pi(2J+1)}{w^2}$$

where J is the spin of the resonance. For a narrow resonance, the area under the resonant line is given by

$$A_{i} = \frac{\pi}{2} \frac{\Gamma_{e} \Gamma_{i}}{\Gamma_{e}} \sigma_{0}(M) ,$$

independent of the energy resolution of the apparatus (but after correction for reduction in peak height and radiative tail caused by soft-photon processes). This area is tabulated in the Data Card Listings in the section labeled Integrated Channel Cross Sections. Substituting for σ_{Ω} , we have

$$\frac{\Gamma_e \Gamma_i}{\Gamma} = \frac{M^2}{2(2J+1)\pi^2} A_i ...$$

Determination of the area for different decay channels thus makes it possible to determine the various partial widths.

This mini-review is based largely on "Notes from the SLAC Theory Workshop on the ψ ", ed. R. Pearson, SLAC-PUB-1515 (1974). We also wish to thank J. D. Jackson of LBL, Y.-S. Tsai of SLAC, and M. Chanowitz of LBL for fruitful discussions.

Note on the Data Card Listings

The closing date for data for the following Listings was March 28, 1975. We recognize that, because of the intense interest in, and activity relating to, the new mesons, some of the values tabulated may already be superseded by the time of publication of this supplement. We hope, nevertheless, that these Listings will at least serve as a starting point for those studying the new particles. As always we urge the reader to refer to the original articles for all details.

The meaning of the columns and the various abbreviations appearing below can be found in the Illustrative Key in the 1974 edition of the Review. Several new abbreviations for measurement techniques (or detectors) have been introduced this year; they are

Data Card Listings

	ELEC Electronic detector - combination of chamber counters, etc.		
	DASP DESY double-arm spect:	rometer	
	PLUT DESY PLUTO detector		
	SMAG SPEAR magnetic detector	or	
	SPEC Spectrometer		
J/	$\langle \psi(3100) angle$ 70 J/PSI (3100,JPGI CONSISTE	NT WITH 10)	
	70 J/PS1(3100) MASS (MEV)		
M	(3100.1 APPROX. AUBERT 74 SPEC (3105.1 (3.1). AUGUSTIN 74 SPEC (3105.1 (3.1). AUGUSTIN 74 SPEC (3105.1 (3.1). BRAUNSCH 73 ELEC (3090.1 SPEC). BRAUNSCH 73 ELEC (3090.1 SPEC). BRAUNSCH 75 SPEC (3100.1 APPROX. KNAPPL 75 SPEC (3100.1 APPROX. KNAPPL 75 SPEC (3100.1 APPROX. KNAPPL 75 SPEC (3095.1 (5.1). LYNCH 7	0 3.10 E+E-(+ALL) 0 3.10 E+E-(+C+ALL) 0 3.10 E+E-(+C+ALL) 0 3.10 E+E-(+ALL) 0 3.10 E+E-(+ALL) 0 3.10 E+E-(12EPT.) 0 GAMMA-BEI MU+MU-) 0 3.10 E+E-(+ALL) ENT MASS ERGY CALIBRATION, REFERRED TO IN ON A RECALIBRATION 1 75.	2/75* 2/75* 2/75* 3/75* 2/75* 2/75* 2/75* 2/75* 2/75* 2/75* 3/75* 3/75* 3/75* 2/75*
W BP W CP W B W B W P W C	THESE VALUES (AS WELL AS THE PARTIAL WIDTHS GIV BASED ON INTEGRATED CHANNEL CROSS SECTIONS WITH ASSUMPTIONS THAT JP=1— AND THAT THE TOTAL WIDTH HADRON, LE+ E=1, AND (MUD MU) J WIDTHS. UNLESS RADIATIVE CORRECTIONS ARE ASSUMED INCLUDED (SEE YENNIE 75). (32.1 112.) (49.1 5. (477.) BALOINI- 76 ELEC BOYARSKI 75 SMAG (T77.) (19.) CALCULATED BY US ASSUMING THE TOTAL WIDTH TO BHADRON, LE+ E=1, AND (MUH MU-1 PARTIAL WIDTHS. FRELITINARY RESULTS. FROM OVERALL FIT. SEE NOTE ON BOYARSKI 75 MASS SUPERSEED BY BOYARSKI 75.	THE SUM OF THE OTHERWISE NOTED. JACKSON 74 AND 0 3.10 E+E-(-ALL) 0 3.10 E+E-(-ALL) THE SUM OF THEID	2/75* 3/75* 2/75* 2/75* 2/75* 3/75* 3/75*
	70 J/PS1(3100) PARTIAL DECAY MODES		
P1 P2 P3 P4	J/PSI(3100) INTO E+ E- J/PSI(3100) INTO MU+ MU- J/PSI(3100) INTO HADRONS J/PSI(3100) INTO Z GAMMA	DECAY MASSES .5+ .5 105+ 105	
P5 P6 P7 P8 P9 P10 P11	ABOVE MODE FORBIDDEN IF J=1, OR IF C=-1 (AND SEE BRAUNSCHWEIG 75. JYPSI(3100) INTO PIO GAMMA J/PSI(3100) INTO K+ K- J/PSI(3100) INTO PROTON ANTIPROTON J/PSI(3100) INTO TO FROTON ANTIPROTON J/PSI(3100) INTO TO T	134+ 0 493+ 493 938+ 938 493+ 493+ 139+ 139 139+ 139+ 134 770+ 139	
P12 P13 P14	J/PSI(3100) INTO OMEGA PI+ PI- J/PSI(3100) INTO 7PI J/PSI(3100) INTO LAMBDA ANTILAMBDA	782+ 139+ 139 1115+1115 &	
	70 J/PSI(3100) PARTIAL WIDTHS (KEV	ı	
	SEE NOTE ABOVE ON TOTAL WIDTH.		
W1 P W1 C W1 L W1 P W1 P W1 O W1 L	J/PSI(3)00) INTO E+ E- 4.8 0.6 BOYARSKI 75 SMAG (5.2) (1.3) PRELIMINARY RESULTS NOT INDEPENDENT OF THEIR IC CROSS SECTIONS BELOW. FROM OVERALL FIT. SEE NOTE ON BOYARSKI 75. MASS PRELIMINARY RESULTS. SUPERSEDED BY BOYARSKI 75.	0 3.1 E+E-(*E+E-) 0 3.1 E+E-(*E+E-) 1, IC2, AND IC3	2/75* 2/75* 3/75* 2/75* 2/75* 2/75* 3/75* 3/75*
W2 W2 P W2 O W2 P W2 P W2 D	J/PSI(3100) INTO MU+ MU- (2.4) (1.1) 8ALDINI- 74 ELEC 4.8 0.6 BOYARSKI 75 SMAG PRELIMINARY RESULTS NOT INDEPENDENT OF THEIR IC CROSS SECTIONS BELOW. FROM OVERALL FIT. SEE NOTE ON BOYARSKI 75 MASS		2/75* 2/75* 3/75* 2/75* 2/75* 3/75*
W3 P W3 O W3 P W3 P W3 O	J/PSI(3100) INTO HADRENS 59. 14. BOYARSKI 75 SMAG PRELIMINARY RESULTS NOT INDEPENDENT OF THEIR IC CROSS SECTIONS BELOW. FROM DVERALL FIT. SEE NOTE ON BOYARSKI 75 MASS		2/75* 2/75* 3/75* 2/75* 2/75* 3/75*

Data Card Listings

NEW HEAVY MESONS

70 J/PS1(3100) BRANCHING RATIOS		BALDINI- 74 NCL 11 711 BALDINI-CELIO.BACCI+ (FRASCATI+ROMA)	
R1 J/PS1(3100) INTO (E+ E-)/(HADRONS) (P11/(P3) R1 P (0.13) (0.04) BALDINI- 74 ELEC 0 3.10 E+E-(+ALL) R1 P PRELIMINARY RESULTS NOT INDEPENDENT OF THEIR ICI AND IC3 CROSS R1 P SECTIONS BELOW.	2/75* 2/75* 2/75* 2/75*	BARDIELL 17 NCL 11 718 BARDIELL INI, BERMORAD+ (FRAS-MARD+P1SA-ROMA) BRAUNSCH 74 PC 538 353 BRAUNSCHKEIG+ (AACHEN+HAMB+MUNICH+TOKYO) JACKSON 74 MEMO JDJ/74-4 J.D. JACKSON, D. SCHARRE (LBL)	
R2 J/PSI(3100) INTO (MU+ MU-)/(HADRONS) (P2)/(P3) R2 P (0.09) (0.03) BALDINI- 74 ELEC 0 3.10 E+E-(+ALL) R2 P PRELIMINARY RESULTS NOT INDEPENDENT OF THEIR IC2 AND IC3 CROSS R2 P SECTIONS BELOW-	2/75* 2/75* 2/75*	ANDREMS 75 PRL 34 231 ++MARVEY,LOBKOHICZ,MAY,NOROBERG (ROCH+CORN) ALSO 75 UR-518 ANDREWS,HARVEY,LOBKOHICZ,MAY+ (ROCH+CORN) BOYARSKI 75 SLACL572-LBL3695 *BREIDEMBACH,ABRAMS, BIGGS* (SLAC+LBL) BRAUNSCH 75 L 538 491 BRAUNSCHETG+ (BACHEN+HAMD+WUNTCH+TOKYO) CRIEGEE 75 PL 538 499 *OFENNE,FRANKE,HORLITZ,KRECHLOCK* (DESY)	
R3 J/PSI(3100) INTO (E+ E-)/(MU+ MU-) (P1)/(P2) R3 O 1.00 0.05 BOYARSKI 75 SMAG 0 3.1 E+E-(2LEPT.) R3 O 0.93 0.10 FORD 75 SPC 0 3.1 E+E-(2LEPT.) R3 O FROM OVERALL FIT. SEE MOTE ON BOYARSKI 75 MSS. R3 AVG 0.986 0.045 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0)	2/75* 3/75* 2/75* 3/75*	CRIEGEE 15 PL 53B 489 + DENME-FRANKE, HORLITZ, KRECHLOCK** OAKIN 75 UMNEP 75-1 **KREISLER BOLON HEILEN (MASA-MITS-SLAC) FORD 75 PRL 34 604 **BERON, HILGER, HMFSTADTER** KNAPP1 75 COO-1195-316 **LEE, BRONSTEIN** (COLU+HAMA-CORN-ILL-FRAN) KNAPP2 75 COO-1195-316 **LEE, BRONSTEIN** (COLU+HAMA-CORN-ILL-FRAN) KNAPP2 75 CORAL GABLES CON **AUGUSTIN, MBRAMS, BRIGGS** KNAPP1 75 CORAL GABLES CON **AUGUSTIN, MBRAMS, BRIGGS** VENNE 75 PRL 34 288 **DOLON, DAKIN, FELDMAN, HANSON** (MIT***ASA**SLAC) YENNIE 75 PRL 34 239 OR. YENNIE **CORNELL CORNELL CORNEL CORNELL CORNELL CORN	
R4 J/PSI(3100) INTO (2 GAMMA)/(E+ E-) R4 B (0.050)CR LESS CL=.90 BRAUNSCH 75 DASP 0 3.1 E+E-(GAMMAS) R4 B NOT INDEPENDENT OF THEIR ICL AND IC4 CROSS SECTIONS BELOW.	2/75* 2/75*	******* ******** ******** ******** *****	
	i	ψ(3700) 71 PSI (3700,JPG=) 1=	
R5 B (0.13) OR LESS CL=.90 BRAUNSCH 75 DASP 0 3.1 E+E-(GAMMAS) R5 B NOT INDEPENDENT OF THEIR IC1 AND IC5 CROSS SECTIONS BELOW.	2/75*		
R6 J/PSI(3100) INTO (3P! (INCL. RHO PI))/TOTAL (P9) R6 P OBSERVED LYNCH 75 SMAG 0 3.1 E+E- R6 P PRELIMINARY RESULT.	2/75* 2/75* 2/75*	71 PSI(3700) MASS (MEV)	
R7 J/PSI(3100) INTO (SPI (INCL. OMEGA PI PI))/TOTAL R7 P OBSERVED LYNCH 75 SMAG 0 3.1 E+E- R7 P PRELIMINARY RESULT.	2/75* 2/75* 2/75* 2/75*	M L (3695.) (4.) ABRAMS 74 SMAG 0 3.7 E+E-(+ALD) M S (3680.3) CRIEGGE 75 PLUT 0 3.70 E+E-(+ALD) M LP (3684.) (5.) LYNCH 75 SMAG 0 3.70 E+E-(+ALL) M L LYNCH 75 IS A REEVALUATION OF ABRAMS 74 BASEO ON A RECALIBRATION M L OF THE SPEAR BEAM ENERGY. M S FRORD OF ABOUT 1 PER CENT FROM THE UNCERTAINTY IN CALIBRATION OF	2/75* 2/75* 2/75* 2/75* 2/75* 2/75*
R8 J/PSI(3100) INTO (K+ K- PI+ PI-)/TOTAL (P8) R8 P OBSERVED LYNCH 75 SMAG 0 3.1 E+E- R8 P PRELIMINARY RESULT.	2/75* 2/75* 2/75*	M S. ERROR OF ABOUT I PER CENT FROM THE UNCERTAINTY IN CALIBRATION OF M S. THE BEAR PENERGY. M P PRELIMINARY RESULTS.	2/75* 2/75*
R9 J/PSI(3100) INTO (PROTON ANTIPROTON)/TOTAL (P7) R9 P OBSERVEO LYNCH 75 SMAG O 3-1 E+E- R9 P PRELIMINARY RESULT.	2/75* 2/75* 2/75*	71 PSI(3700) WIDTH (KEV)	
R10 J/PS1(3)00) INTO (E+ E-)/TOTAL R10 0 0.069 0.009 BOYARSK! 75 SMAG 0 3-1 E+E-(+E+E-) R10 0 FROM OVERALL FIT. SEE NOTE ON BOYARSK! 75 MASS.	3/75* 3/75* 3/75*	M P 200. TO 1000. M P UPPER AND LOURE LIMITS OBTAINED IN DIFFERENT WAYS, SEE LYNCH 75. M P PRELIMINARY RESULT.	2/75* 2/75* 2/75*
R11 J/PSI(3100) INTO (MU+ MU-)/TOTAL (P2) R11 0 0.069 0.009 BOYARSKI 75 SMAG 03.1 E+E-(MU+MU-) R11 0 FROM OVERALL FIT. SEE NOTE ON BOYARSKI 75 MASS.	3/75* 3/75*	71 PSI(3700) PARTIAL DECAY MODES	
R12 JPS(13100) 1NTO (HADRONS)/TOTAL R12 J 0 -86 NO.002 BOYARSKI 75 SMAG 0 3-1 E+E-(+HAD,) R12 O FROM OVERALL FIT. SEE NOTE ON BOYARSKI 75 MAG 0	3/75* 3/75*	PI PSI(3700) INTO E+ E5+ .5 P2 PSI(3700) INTO MU+ MU105+ 105 P3 PSI(3700) INTO HOPKINS .105+ 105	
	3/75*	P4 P51(3700) INIT DJPS1(3100) PI+ PI- 3100+ 139+ 139 P5 P51(3700) INIT JJPS1(3100) NAVTHING P6 P51(3700) INIT JJPS1(3100) NEUTRALS	
70 J/PSI(3100) INTEGRATED CHANNEL CROSS SECTIONS (UNITS=NANOBARN*GEV=MICROBARN*MEV=MILLIBARN*KEV)			
FOR A DISCUSSION OF THIS QUANTITY, SEE THE MINI-REVIEW ABOVE ON EXTRACTING RESENANCE WIDTHS. WE GIVE THE INTEGRATED CHANNEL CROSS SECTION IN THE NORMAL DATA COLUMNS AND THE CORNERYOUND VALUE OF (PI+PI-W) IN THE COMMENTS FOR THE COMMENT OF THE CO		71 PSI(3700) PARTIAL WIDTHS (KEV) W1 PS1(3700) INTG E+ E- (G1) W1 P (2+2) (0+6) LYNCH 75 SMAG 0 E+ E- +(ALL) W1 P PRELIMINARY RESULT, USING J=1. 71 PSI(3700) BRANCHING RATIOS	2/75* 2/75* 2/75*
1C1 .1/PS1(3100) FROM F+ F= 1NTO F+ F= CHANNEL(1-1)	2/75* 2/75*	R1 PS1(3700) INTO (J/PS1(3100) PI+ PI-)/ALL (P4) R1 (0.31) (0.04) ABRAMS 75 SMAG 0 3.7 E+E-(+ALL)	2/75* 2/75*
IC1 S (0.459) (0.110) BARBIELL 74 ELEC 0 .187 +050 KEV IC1 B 0.56 0.12 BRAUNSCH 74 DASP 0 .23 +05 KEV	2/75* 2/75* 2/75*	R2 PSI(3700) INTC (J/PSI(3100) ANYTHING)/ALL (P5) R2 (0.54) (0.08) ABRAMS 75 SMAG 0 3.7 E+E-(+ALL)	2/75* 2/75*
ICI S PRELIMINARY RESULTS. BARBIELLINI 74 VALUE SPERSEDES BACCI 74. ICI S SYSTEMATIC ERRORS AND RADIATIVE CORRECTIONS ARE NOT INCLUDED. ICI C WE CALCULATE ICI FROM THEIR VALUE OF (PIP)****	2/75* 2/75* 2/75*	R3 PSI(3700) INTO (J/PSI(3100) NEUTRALS)/(J/PSI(3100) ANYTHING) R3 (0.46) (0.03) ABRAMS 75 SMAG 0 3.7 E+E-(-ALL)	2/75* 2/75* 2/75*
ICI P PRELIMINARY RESULT. ICI D ME CALCULATE (P1*P1*M) FROM THEIR VALUE OF IC1. ICI B RADIATIVE CORRECTIONS NOT INCLUDED.	2/75* 2/75* 2/75*	****** ******* ******** ******** ******	
IC2 J/PSI(3100) FRCM E+ E- INTO MU+ MU- CHANNEL(1-2) IC2 P (0.61) (0.18) BALDINI- 74 ELEC 0 .25 +08 KEV IC2 P PRELIMINARY RESULT. WE CALCULATE (P1*P2*W) FROM THEIR VALUE IC2 P OF IC2.	2/75* 2/75* 2/75* 2/75*	**************************************	
IC3 J/PSI(3100) FROM E+ E- INTO HADRONS CHANNEL(1-3) IC3 PA (4.7) (1.6) ASH 74 ELEC 0 2.0 +7 KEV IC3 P (6.7) (2.4) BALDINI- 74 ELEC 0 2.8 +- 1.0 KEV IC3 P PRELIMINARY RESULTS. WE CALCULATE (P1*P3*W) FROM THEIR VALUE	2/75*	ABRAMS 75 LBL3669-SLAC1556 +BRIGGS,BUYARSKI,BREIDENBACH+ (LBL+SLAC) AUBERT 75 PRL 33 1624 +BECKER,BIGGS,BURGER,GLENN+ (NIT+BNL) CRIEGEE 75 PL 538 489 +DEHNE,FRANKE,HORLITZ,KRECHLOCK+ (DESY) LYNCH 75 CORAL GABLES CON.+AUGUSTIN.4BRAMS,BRIGGS+ (SLAC+LBL)	
IC3 P OF IC3. IC3 A RADIATIVE CORRECTIONS APPARENTLY NOT INCLUDED.	2/75* 2/75*	****** ******** ******* ******* *******	
IC4 J/PSI(3)00) FROM e* E- INTO 2 GAMMA CHANNEL(1**) IC4 B (0.028)ICA LESS CL**90 BRAUNSCH 75 DASP 0 *012 OR LESS KEV IC4 CONSISTENT HITH ZERO FORO 75 SPEC 0 IC4 B RADIATIVE CORRECTIONS NOT INCLUDED.	2/75* 2/75* 2/75* 2/75*	72 x (4100, JPG= 1 I=	
ICS J/PSI(3100) FROM E+ E- INTO PIG GAMMA CHANNEL(1-5) IC5 B (0.673) OR LESS CLE.90 BRAUNSCH 75 DASP 0.030 OR LESS KEV IC5 B RADIATIVE CORRECTIONS NOT INCLUDED.	2/75* 2/75* 2/75*	OBSERVED AS A BROAD (250-300 MEV) ENHANCEMENT IN ELECTRON-POSITRON TOTAL CROSS SECTION AT SPEAR (AUGUSTIN 751. INTERPRETATION UNCLEAR BETHEEN NEW THRESHOLD AND A BROAD RESONANCE. OMITTED FROM TABLE.	
****** ******** ******* ******** ******			
REFERENCES FOR J/PSI(3100) CHRISTEN 70 PRL 25 1523 CHRISTENSON,HICKS,LEDERMAN+ (COLU+BNL+CERN)		72 X(4100) MASS (MEV)	
ABRAMS 74 PRL 33 1453 +BRIGGS,AUGUSTIN,BGYARSKI+ (LBL+SLAC)		M (4150.) AUGUSTIN 75 SPEAR 0 2.4-5.0 E+E	2/75*
AUBERT 74 PRL 33 1404 + BECKER, BIGGS, BURGER, CHEN, EVERHART (MIT-BNL) AUGUSTIN 74 PRL 33 1406 + BDYARSKI, ABRAMS, BRIGGS+ (SLAC+LBL) BACCI 74, PRL 33 1406 + BARTOLI, BARBARINO, BABELLLINI+ (FRASCATI)		REFERENCES FOR X(4100) AUGUSTIN 75 PRL 34 764 +BOYARSKI,ABRAMS.BRIGGS+ (SLAC+LBL)	
ALSO 74 PRL 33 1649 FOR ERRATA		****** ******** ******* ******** ******	