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Abstract 
In this paper, we present a probabilistic algorithm for analyzing cost/performance 

tradeoffs in interactive synthesis of DSP algorithms. Our approach is based on an anal­
ysis of data dependencies combined with a probabilistic scheduling technique in which 
operations are iteratively redistributed to minimize resource cost. Our algorithm may 
consider both memories with different access times and pipelined units with different 
numbers of stages. The output is a shape function illustrating the cost vs. performance 
tradeoff. We have tested this algorithm on several benchmarks including an FIR jilter, a 
linear recurrence solver, and a robot kinematics example. Results show that the average 
error in cost, as compared to manual designs, is 0.41 %, while the average error in per­
formance is 4.90 % without memory access times and 0. 77 % with memory access times. 
The maximum cost (performance) error generated by our algorithm on our benchmarks 
is 5 % (22 %). 
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1 Introduction 

Modern computer-based systems frequently require real-time performance of complex 

data-intensive computations such as video compression or robot control. With the recent 

growth in these real-time application fields, rapid, cost-efficient design of signal processing 

components has become extremely important. 

Several DSP synthesis methodologies have been proposed, most of which advocate a 

three-step approach to the synthesis problem [BrGa90, GMKR92, JMSW91]. The first step 

is allocation, in which both the number and type of functional units are selected for the 

implementation. Next, scheduling assigns operations to control steps, and thirdly, binding 

maps operations to specific functional unit instances. Most synthesis research has focused on 

complete automation of these three tasks; however, an interactive approach is now gaining 

popularity [CPTR89, WRJF92]. 

Interactive synthesis introduces a whole new set of CAD tool requirements. For instance, 

algorithms which select "the best" allocation or schedule are less important for interactive 

synthesis than tools which perform system exploration, provide accurate estimates of design 

quality measures, and indicate design tradeoffs. In other words, the purpose of interactive 

CAD tools is to "suggest" design alternatives and analyze their benefits and drawbacks, 

while the responsibility of choosing the "best" design belongs to the user. 

In this paper, we address the topic of cost/performance design tradeoffs and present 

a new algorithm for generating cost/performance shape functions that may be used by 

other high-level synthesis tools or in an interactive synthesis environment. Our algorithm 

for behavioral shape function generation (BSF) accepts a sequential VHDL description as 

input and outputs a shape function indicating design cost as a function of time. More 

specifically, BSF computes area/time tradeoffs for the data fl.ow portions of the description 

and then combines these results, depending on the control fl.ow structure, to produce a 

shape function for the entire description. The resulting shape function, can be viewed in 

terms of number of clock cycles versus number of functional units allocated or number of 

gates versus execution time in nanoseconds. 

To see the advantage of the shape function approach, we consider the simple example of 

Figure l(a). The cost/performance shape function for this example, expressed in terms of 

clock cycles versus number of allocated units, is illustrated in Figure l(b ). Obviously, there is 

a cost improvement when three clock cycles are allowed rather than two, and for this simple 

example, the designer can easily tell that "the three-cycle design is better". So, a traditional 

allocation algorithm could be used to obtain the design cost; however, for most modern DSP 

algorithms it is extremely difficult, if not impossible, for a designer to manually estimate 
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(Numbers in parentheses represent 
the number of ADD, SUB, and MUL 
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Figure 1: Data fl.ow example with cost/performance shape function. 

the "best" number of clock cycles for a particular design. So, it is not at all clear what 

information should be fed to traditional allocation tools to initiate the synthesis process. 

(Usually, design performance constraints have a tolerance interval to account for flexibility 

in the specification and also manufacturing differences, so there is no "fixed" value for the 

slowest acceptable performance.) The advantage, then, of cost/performance shape functions 

is that the burden of estimation is shifted from the designer to the CAD tool. 

The following are among the most important and novel features of our shape function 

generator, BSF. 

1. BSF's shape function output format allows the designer to select the cost/performance 

tradeoff which is most suitable to his/her needs. 

2. BSF uses a probabilistic approach for data flow allocation which eliminates the need 

to compute schedules or partial schedules for estimation purposes. 

3. BSF has a fast response time which allows the designer to rapidly assess the quality 

of different design options (cost/performance tradeoff, degree of pipelining) and is, of 

course, important in an interactive environment. 

4. BSF performs cost/performance tradeoffs for pipelined functional units when the user 

specifies the number of pipeline stages for each operation type and also considers 

memory access times when the user specifies memory latency. 

5. BSF allows control flow with both conditional branches and bounded-iteration loops 

where any level of nesting is acceptable. 
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The inputs required for BSF are a behavioral design description, clock frequency, number 

of pipeline stages desired for each operation type, and memory latency. 

The remainder of this paper is organized as follows. Section 2 provides a brief survey of 

related work. Section 3 presents a top-down description of algorithm BSF. First, we present 

an overview and then discuss algorithm details in five subsections: pipeline constraint in­

sertion, loop unwinding, basic block allocation, shape function merging, and memory access 

estimation. A small example, used to illustrate algorithm details throughout the paper, is 

also presented in Section 3. Section 4 discusses experimental results for several benchmarks, 

and Section 5 contains concluding remarks. 

2 Related Work 

Obviously, work related to BSF includes both scheduling and allocation algorithms; how­

ever, since BSF evaluates design cost as a function of time, we will restrict our discussion 

to allocation work. We note that while the scheduling and binding problems in synthe­

sis have been well-studied [Camp91, JMSW91, PaKn89), significantly less work has been 

done on allocation. This is largely due to the fact that in traditional, fully automated syn­

thesis, allocation is closely related to the scheduling problem and is difficult to formulate · 

independently. 

The existing work on allocation includes the force-directed approach [PaKn89), the 

Chippe allocation system [BrGa90], the simulated annealing method [DeN e89), and alloca­

tion as a multi-dimensional optimization problem [GMKR92). 

Force-directed allocation begins with a timing constraint and attempts to balance the 

load of components in various clock cycles. While performing load-balancing, a constraint­

satisfying schedule is produced in which the required number functional units is minimized. 

(This algorithm is often referred to as force-directed scheduling, but since the timing con­

straint is fixed and the schedule is designed to minimize the number of functional units, it 

can also be viewed as allocation.) Advantages of this approach include speed and simplicity; 

however, the method is essentially greedy in nature, since it iteratively schedules operations 

according to a cost function. 

Chippe, given timing and area constraints, performs allocation using an expert system. 

This approach may be quite accurate because, for every allocation, an entire design is 

generated to verify that cost and performance requirements are met; however, the process 

of generating a design is very slow so only a few different allocations can be explored. 

In [DeNe89), a simulated annealing approach is presented which simultaneously solves 

the scheduling, allocation, and binding problems, but due to the stochastic nature of the 

problem formulation, many "design dependent" parameters must be specified so the algo-
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rithm requires a lot of "tuning". 

Finally, in [GMKR92], allocation is formulated as a multi-dimensional optimization 

problem which begins with the "fastest possible" design implementation and performs iter­

ative improvement steps according to a cost function (weighted sum of area and performance 

factors). This approach, in some sense, allows for global optimization since iterative im­

provements are considered for ]( units at a time, as opposed to just one-unit optimizations. 

The main advantage of this method is robustness (incorporation of pipelined and multicycle 

units); however, design-dependent tuning of the cost function (weighting of the cost function 

parameters) and the optimization control integer ]( is still required. Also, to increase the 

degree of global optimization, the program must consider all possible K-subsets of library 

components and estimate a schedule for each subset. So, increasing the degree of global 

optimization slows down the algorithm. 

The BSF approach to the allocation problem combines the merits of force-directed allo­

cation and multi-dimensional optimization by coupling a probabilistic approach with global 

and local optimization phases (which do not vary with design-dependent parameters). In 

other words, our algorithm employs a global search strategy which does not require extensive 

tuning by the user. It should be noted that BSF allocation considers pipelined functional 

units, conditional statements, and bounded iteration loops. Furthermore, algorithm BSF 

estimates memory access times so that the cost/performance allocation points more accu­

rately reflect the cost/performance tradeoffs performed by human designers. Estimation 

of memory access times is a unique feature of BSF and is not considered in the existing 

allocation literature. 

3 Algorithm BSF: A Top-Down Description 

This section presents a detailed discussion of algorithm BSF, proceeding in a top-down 

fashion. We first describe the principle function of BSF and then present an overview of the 

algorithm body. The most important algorithm subroutines are identified and explained in 

much greater detail in the subsections. We also introduce a small example which serves to 

clarify our explanations throughqut the rest of the paper. 

Given a behavioral design description, the objective function of algorithm BSF is to 

analyze the cost/performance tradeoff and compute a shape function displaying the result 

of the analysis. Figure 2 outlines the body of the algorithm. The "main loop" in BSF is 

the center for loop, which produces a shape function (number of cycles versus number of 

functional units), individually, for each basic block of the description. These functions are 

then combined, according to the control flow, to produce one shape function for the entire 

description. We first present an overview of the main loop and then describe the remaining 

4 



Algorithm BSF() 

Input: A CDFG G = (V, E) 
Output: A shape function F : T --t C where T denotes time in ns, and 

C denotes design cost in number of gates 

begin Algorithm 

for all v; E V such that node_type( v; ) = BASIC_BLOCK do 
DFG[vi] +- inserLpipeline_constraints( DFG[v;] ); 

end for 
G +- loop_unwind( G ); 
G +- flatten_CDFG( G ); 
reverse_topologicaLorder +- topological.sort( G ); 
topologicaLorder +- topological.sort( reverse( G) ); 
Cmin +- maxv,Ev(topologicaLorder[v;]); 
for all v; E V such that node_type( v; ) = BASIC_BLOCK do 

number...1Jf ...cycles+- Cmin; 

while noLminimal( allocation[v;][number...1Jf ...cycles -1]) do 
allocation[ v;] [block .mobility[ vi] [number ...iJf _cycles]] +­

basic_block..allocation( v;, number ...1Jf _cycles ); 
number ...iJf _cycles +- number ...iJf ...cycles+ 1; 

end while 
Cmax +-max{ Cmax, number _of _cycles - 1 }; 
F; +- compute..shape_function( allocation[v;] ); 

end for 
for number_of ...cycles+- Cmin to Cmax do 

F +- merge..shape_functions( allocation, number ...iJf ...cycles ); 
end for 
F +- memory..access_time..adjustment( F ); 
output F; 

end Algorithm 
Figure 2: Main routine. 

portions of the algorithm. 

During each iteration of the main loop, BSF constructs a shape function for some basic 

block in the design description by fixing the number of clock cycles to a constant c and then 

computing an allocation. This process produces one cost/performance point, namely ( c, A) 

where A denotes the allocation for c clock cycles. To obtain the entire shape function for 

the basic block, we iteratively increase the value of c, beginning with c equal to the critical 

path length (ASAP schedule length). We finish when an allocation is produced with at 

most one functional unit for each operation type. For instance, in the example of Figure 1, 

c ranged from 2 to 3, and exactly two allocations were produced. (Notice, however, that we 

have extended our shape function to be defined for all real numbers greater than or equal to 

the critical path length.) The final allocation has 1 adder, 0 subtractors, and 0 multipliers 
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and therefore satisfies the "finishing criterion". 
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Figure 3: A small example. 

Allocation is performed iteratively over the operation types (add, sub, mul ... ) using a 

two-phase algorithm. In other words, we consider the operation types independently (one 

at a time). Let t denote the current operation type, and let c be the current number of 

clock cycles for the basic block execution. Let nj denote the number of functional units 

of type t used during clock cycle j, and let A[t] = max{nj J 1 ::; j ::; c}. In other words, 

A[t] is the allocation for t. In our algorithm, we construct a probability table with c entries 

such that the Ph entry contains the expected value of nj. The idea, then, is to "balance" 

the probability table in order to minimize the maximum table entry (the expected value of 

A[t]). Naturally, there are some constraints on how we can redistribute the probability, so 

it is usually impossible to obtain a completely balanced table (one in which all entries have 

the same value). BSF performs transformations on the probability table in. two phases: 

global optimization and local optimization. In global optimization, the probability table 

is decomposed into zones and probability is "transferred" across zones to p10duce a more 

balanced table. Zone decomposition is necessary to globally redistribute the probability, 
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thereby avoiding some of the local minima in the solution space. In local optimization, a 

greedy algorithm balances the table by reducing the maximum entry. When global and 

local optimization are finished, the maximum table entry is assigned to A[ t]. 

After computing shape functions for the basic blocks, BSF performs shape function 

merging in which a constructive algorithm maps the basic block shape functions into one 

function which represents the cost/performance tradeoff for the entire design. 

As indicated in Figure 2, several subsidiary procedures are required in addition to basic 

block allocation and shape function merging. For example, BSF must augment the data 

flow graph for each basic block with "dummy nodes" to prevent data dependence constraint 

violations caused by use of pipelined units. Also, each loop in the initial description must 

be converted into a series of conditionals. This transformation, called loop unwinding, is 

possible since we assume that all loops have a bounded number of iterations. Both pipeline 

constraint insertion and loop unwinding are performed before basic block allocation. 

The last subsidiary procedure augments the "final" shape function to reflect memory 

access times and is, obviously, performed after shape function merging. 

Note that, so far, we have only described how BSF determines the number of functional 

units needed to implement the data path. To complete the shape function computation, BSF 

must select library modules (which satisfy the designer's pipelining constraints) to perform 

the DFG operations. Recall that in algorithm BSF the designer defines the clock period. 

So, when implementing single cycle or pipelined operations, BSF simply chooses the library 

module with the fewest gates that meets the clock frequency requirement. This approach is 

justified for modern DSP designs which have real-time performance requirements because, 

normally, the idea in such designs is to run the clock at a high frequency and use pipelined 

units to implement the data path. BSF may also allocate multifunctional units; however, the 

user must specify groups of operation types which may be implemented "together" in such 

units. BSF then relabels the affected operations with a new operation type corresponding to 

the multifunctional unit group. Note that BSF does not consider allocation for multicycle 

units. This is due to the fact that many DSP algorithms have highly "symmetrical" data flow 

graphs in which most execution paths are nearly the same length as the critical path; hence, 

multicycle units can rarely be used instead of single cycle or pipelined units to reduce area. 

Furthermore, standard "off-shelf" DSP processors can be used to implement algorithms 

with "looser" performance requirements; so, multicycle unit allocation is becoming less 

important. 

The most significant steps of algorithm BSF are 
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1. pipeline constraint insertion, 

2. loop unwinding, 

3. basic block allocation, 

4. shape function merging, and 

.5. memory access estimation. 

These are discussed in detail in the subsequent subsections. Note that step 3, basic block 

allocation, is probabilistic in nature and, together with step 4, forms the main portion of 

the algorithm. Steps 1, 2, and 5 describe novel features of BSF and, hence, warrant further 

explanation. 

The worst-case time complexity of algorithm BSF is O(kM N 3 ) where N is the total 

number of operations (both control :fl.ow and data :fl.ow), Mis the total number of operation 

types, and k is a constant representing the maximum number of iterations taken by a basic 

block during the optimization phases. This, however, is a "loose" analysis. More accurate 

complexity bounds for BSF procedures are given in the subsections. 

We use the small example of Figure 3 to demonstrate the algorithm execution. Both the 

control :fl.ow and data :fl.ow nodes are labelled such that the operation type appears inside of 

the node, and the node ID is written to the upper right-hand side of the node. The control 

:fl.ow portion consists of a conditional branch operation, where each branch contains one 

basic block, followed by a loop operation with one basic block representing the loop body. 

Each _basic block has a dashed line indicating its corresponding data :fl.ow graph. Note that 

the DFG for node v2 is adapted from the HAL example of [PaKn89]. 

We have selected this example to demonstrate our algorithm because it exercises the 

five main steps of BSF (including both global and local optimization phases for basic block 

allocation) and yet is small enough to explain without difficulty. In Section 5, we show the 

performance of BSF on several large examples. 

3.1 Pipeline Constraint Insertion 

Given a data flow graph, the basic idea of pipeline constraint insertion is to add con­

straints (nodes and edges) to the DFG in a way that prevents BSF from "violating" data 

dependencies when computing basic block allocations with pipelined units. A dependency 

violation occurs when the result of an operation is referenced before it "comes out" of the 

pipeline. For example, suppose our data flow graph contains two multiply operations m1 

and m2 such that there is an edge ( m1 , m2 ) from m1 to m2 in the graph. To allocate this 

data path using a 2-stage pipelined multiplier, we must ensure that m1 and m2 are not 



Subroutine inserLpipeline_constraints( D FG[ vi] ) 

Input: Data flow graph DFG[vi] 
Output: Augmented data flow graph DFG[vi] 

begin Subroutine 

for all operation types t such that number_pipeline...stages( t ) > 1 do 
for all u; E V(DFG[v;]) such that node_type( u; ) = t do 

BFS_fevel <- breadth_first...search( DFG[v;], u; ); 

for each Uj E V(DFG[v;]) such that BFS_level[u1] < number_pipeline...stages( t ), 
and u;#uj do 

inserLdummyJlodes( DFG[v;], u;, Uj, number_pipeline...stages(t) - 1 ); 
end for 

end for 
end for 
return augmented data flow graph DFG[vi] 

end Subroutine 
Figure 4: Constraint insertion routine. 

scheduled in consecutive clock cycles. Otherwise, a dependency violation will occur. To 

avoid such a violation, BSF will insert a "dummy" node d in the graph and add the arcs 

(m1 ,d) and (d,m2 ). These "dummy" data flow constraints ensure that the probability of 

scheduling m1 and m2 in consecutive clock cycles is zero. 

The general algorithm for pipeline constraint insertion is illustrated in Figure 4. The 

input to subroutine inserLpipeline_constraints consists of a data flow graph and an array 

indicating the number of pipeline stages for each functional unit type. For each operation 

type t and each vertex Ui of type t, BSF performs a breadth first search on DFG[vi] starting 

with vertex Ui. If the breadth first labelling of a vertex Uj is less than the number of pipeline 

stages for the type t, a dependency violation can occur from Ui to Uj. To prevent this, BSF 

inserts exactly number_pipeline_stages[t] - 1 "dummy" vertices into DFG[vi] and connects 

them in series from Ui to Uj. Figure 5 shows an example of pipeline constraint insertion 

for the basic block v2 of the example in Figure 3. The degree of pipelining is 2 stages for 

multiply operations and 1 stage for add and subtract operations. 

Since the degree of pipelining for a node type is usually very small (not more than 5), 

in the worst case, BSF adds at most O(kn 2 ) nodes to the data flow graph where k < 5 is 

the maximum degree of pipelining for a node type, and n =I V(DFG[vi]) I· Note also that 

the data flow graph DFG[vi] is used only to compute operator mobilities during the basic 

block allocation step. So, the increased size of the graph has little effect on BSF execution 

time. 
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Data flow graph for BASIC_BLOCK v 2 : 

Figure 5: Pipeline constraint insertion. 

The time complexity of pipeline constraint insertion (for all of the basic blocks) is given 

T(n) = kM L (V(DFG[vi]))2 E O(kMN2 ) 

v;EV(G) 

where N = :Z:::::v;EV(G) V(DFG[vi]), node_type( Vi ) = basic_block, and Mis the number of 

operation types. However, for all practical purposes, O(kMN2 ) = O(MN2). 

3.2 Loop Unwinding 

The second important step of algorithm BSF is loop unwinding. Each loop node in the 

control flow portion of the description has an associated integer J( which denotes the tightest 

possible upper bound on the number of loop iterations. (Recall that all loops in the control 

flow are required to be bounded-iteration loops.) In the loop unwinding step, we simply 

replace the loop structure with a series of J( conditional branches followed by increments 

(index updates required only for "for loops") such that the "body" (portion between the 

cond and end_cond nodes) of each conditional branch is the same as the body of the original 

loop. 

Note that a loop body may contain basic blocks, conditional branches, or even other 

loops. In other words, any level of loop nesting (or conditional branch nesting) is "allowed". 

For this reason, we order the loops from the lowest level of the nesting structure to the 

highest and unwind them in this order. So, innermost loops are unwound first. This is not 

absolutely necessary; however, it does simplify the BSF code considerably. 

Figure 6 illustrates the loop unwinding process on the loop from Figure 3, assuming 
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that the number of loop iterations for vs is at most two. It is also assumed that v5 is a "for" 

loop and thus requires an extra addition for the loop index update. Clearly, the "unwound" 

representation is equivalent to the original loop since the non-empty branch is executed if 

and only if the loop body is executed, and the number of conditionals in series is equal to the 

loop bound. The time complexity of procedure loop_unwind is O(lmax I V(G) I +(I V(G) 1) 2 ) 

where lmax is the maximum loop bound, I G I is the size of the flattened control/ data flow 

graph and I G I is the size of the original control/ data flow graph. 

3.3 Basic Block Allocation 

Given a data flow graph DFG[vi] for basic block Vi and a positive integer number _of _cycles, 

basic block allocation determines the number and type of functional units required to im-
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plement the data path if at most number _of _cycles clock cycles are "allowed" to execute 

the entire description. The basic strategy of the algorithm is to construct a probability 

table which, intuitively, indicates for each node Ui E V( D FG[ vi]) and each clock cycle 

c :=.:; number ..of _cycles the probability that Ui will be scheduled in cycle c. The algorithm 

then makes "adjustments" to the probability table so that it is unlikely, for example, that 

several multiply operations would be scheduled in the same clock cycle. These adjustments 

are performed in two main phases, global optimization and local optimization. Global op­

timization is based on a "zone decomposition" of the probability table and is, obviously, 

a global search strategy which enables BSF to avoid, to some extent, local minima in the 

solution space. After the global optimization, BSF performs an iterative improvement step 

referred to as local optimization and then computes an allocation from the resulting prob­

ability table. 

Figure 7 shows the pseudo-code for the basic block allocation algorithm. Global and local 

optimization code is omitted here but will be explained in Subsections 3.3.1 and 3.3.2. We 

illustrate our algorithm on basic block v2 of the Figure 3 example with number ..of _cycles= 

15, assuming that all functional units are single cycle. For simplicity, we consider only the 

"multiply" nodes (since BSF performs allocation iteratively for each operation type). 

For any flow graph G and an operation Ui, let starLmobility[ui] and end_mobility[ui] 

denote the ASAP and ALAP schedule values for Ui. The mobility for a node Ui is defined as 

its ALAP schedule value minus its ASAP schedule value plus one, and the mobility range 

for Ui is the closed interval [starLmobility[ui], end_mobility[ui]]. 

In algorithm BSF, given a basic block Vi and an integer number ..of _cycles, the num­

ber of clock cycles available to execute Vi is given by block_mobility[ vi][ number ..of _cycles] = 

max...end_mobility-min....starLmobility+l where max_end_mobility =max{ end_mobility[ui] I 
Ui E V(DFG[vi])}, min....starLmobility = min{starLmobility[ui] I Ui E V(DFG[vi])}, and 

mobilities are computed with respect to G, the flattened format of the input description 

(without the hierarchy introduced by basic blocks). In our example, block_mobility[v2][15] = 

7. 

The first step in the basic block allocation, then, is to compute operator mobilities for 

all Ui E DFG[vi], as is done in list scheduling algorithms [JMSW91]. (Note that these 

mobilities are computed with respect to DFG[vi], not G.) The initial mobilities for the 

multiply operators of DFG[v2] are: 

mobility[u1] = 4 starLmobility[u1] = 1 end_mobility[u1] = 4 

mobility[u2] = 4 starLmobility[u2] = 1 end_mobility[u2] = 4 

mobility[u3] = 5 starLmobility[u3] = 1 end_mobility[u3] = 5 
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mobility[ u4] = 6 starLmobility[·u4] = 1 end_mobility[ u4] = 6 

mobility[us] = 4 starLmobildy[u5] = 2 end_mobility[u5] = 5 

mobility[ u6] = 5 starLmobility[ u6] = 2 end_mobility[ u6] = 6. 

BSF then computes initial probability values for each node according to the formula 

probability_value[ui] = b ~'.O [ 1. mo i ity Ui 

The next preliminary step is construction of a mobility table for v2 . A mobility table 

is an array of linked lists with one array entry for each Ui E V(DFG[vi]). A clock cy­

cle c appears in list mobilityJ,able[ ui] if and only if c is contained in the closed interval 

[starLmobility[ui], end_mobility[ui]]. Note that, intuitively, the probability_value of a node 

u; indicates the likelyhood that u; will be scheduled in clock cycle c where c is any cycle on 

mob-ilityJ,able[u;]. This correlation between probability values and mobility table is always 

maintained, throughout the global and local optimization phases. 

Global Optimization 

As shown in Figure 7, global optimization is performed iteratively for each operation 

type t. The input is data flow graph DFG[v;] and integer numberJJj.£ycles. The basic 

idea is to construct a probability table from the DFG mobility information and perform 

"optimizations" on the table. When this is no longer possible (or is timed out after a 

specified number of iterations), we switch to the local optimization phase. The probability 

table is defined as an array ranging from 1 to block_mobility[v;][numberJJj .£ycles] where 

each entry probabilityJ,able[c] denotes the sum of probability_value[u;] over all operations 

u; such that c E mobilityJ,able[u;]. Intuitively, probabilityJ,able[c] indicates the expected 

number of functional units of type t used in cycle c. For example, if probabilityJ,able[c] = 1.5 

for some t, then we require at least 2 functional units of type t to implement the data path. 

Hence, we can compute an allocation allocation[v;][block_mobility[v;][number JJj _cycles]][t] 

for units of type t by taking the maximum value of probabilityJ,able[c], where c has the 

range 1 ~ c ~ block_mobility[v;][number JJj _cycles]. 

Since unit allocation depends on probability table entries, the objective in BSF is to 

minimize the maximum probability table entry. However, for any operation u;, we know 

that 

So, during optimization, 

L probability_value[u;] = 1. 
cEmobi/ity_table[u;] 

number ...of _eye/es 

L probabilityJ,able[c] = k 
c=l 
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Subroutine basic_block_allocation( DFG[v;], number.J)f _cycles ) 

Input: Data flow graph DFG[vi] and an integer number _of ...£ycles 
Output: Allocation allocation[vi][number _i)f _cycles] 

begin Subroutine 

/* Compute Block Mobility * / 
min...starLmobility +-- min{topologicaLorder[u;] I u; E V(DFG[v;])}; 
max_end..mobility +-- max{ number _i)f ...£ycles - reverse_topologicaLorder[u;] 

I u; E V(DFG[v;])}; 
block..mobility[v;][number.J)f ...£ycles] <- max_end..mobility - min_starLmobility + 1; 

/* Sort Data Flow Graph * / 
BB.J)rder <- topologicaLsort( DFG[v;] ); 
BB..reverse_order +--topological.sort( reverse(DFG[v;]) ); 

/* Compute Mobilities and Initial Probability Value * / 
for each u; E V(DFG[v;]) do 

starLmobility[u;] +-- BB_order[u;]; 
end_mobility[u;] +-- block..mobility[v;][number.J)f _cycles] - BB..reverse_order[u;] + 1; 
mobility[u;] +-- end_mobility[ui] - starLmobility[u;] + 1; 
probability_value[u;] +-- mobi~i~y[u;]; 
for each clock cycle c E [starLmobility[u;], end..mobility[u;]] do 

mobility_table[u;] +-- insert( mobility_table[u;], c ); 
end for 

end for 

/* Compute Allocation for each Operation Type * / 
for each operation type t do 

/* Optimization Phases * / 
global..nptimization( DFG[v;], number.J)f _cycles); 
local..nptimization( D FG[ v;], number .J) f _cycles ) ; 

/* Compute Allocation * / 
probability...table[c] +-- probability...table[c] +norm, 

for 1 ~ c ~ block..mobility[v;][number.J)f ..cycles]; 
al/ocation[v;] [block..mobility[v;] [number _i)f _cycles]][t] +--

ceiling( max{probability_array[c] j 1 ~ c ~ block..mobility[v;][number .J)f ...£ycles]} ); 
end for 

end Subroutine 
Figure 7: Basic block allocation. 
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where k is a constant denoting the actual number of operations of type t, and the probability 

table is in its "raw" (not "normalized") form. Thus, to minimize the maximum value in the 

probability table, we must redistribute, or balance, the table entries as much as possible. 

During global optimization, BSF balances table entries using a zone decomposition 

technique. (See Figure 8 for pseudo-code.) First a norm is computed for the table such that 
number..o erations h b t · d h b f norm = bl k b'l't [ ][ b 1 1 , w ere num er _opera ions enotes t e num er o oc _mo i l y Vi num er-LJ ....eye es 

operations in Vi with type t, and the probability table is normalized by subtracting norm 

from each entry. This produces a table which has both positive and negative entries for the 

various cycles. Histograms representing the initial probability table entries, both raw values 

and normalized values, for the example DFG[v2 ] (with block mobility 7 and operation type 

multiply) are shown in Figures 9(a) and 9(b), respectively. 

After the probability table is normalized, the next step is zone computation. A zone is 

defined as a maximal set Zj of consecutive clock cycles such that probability.lable[z] 2". 0 for 

all z E Zj or probability.lable[z] < 0 for all z E Zj. For instance, the example of Figure 9(b) 

has two zones labelled Z1 and Z2 . Each zone Zj is assigned a type, '-' or '+', depending 

on whether its corresponding probability table entries are negative or non-negative, and an 

average probability over all table entries in the zone is computed. 

Zones are then paired, and a "best" pair is selected for balancing. The idea of balancing 

is to "transfer" probability from one zone to another by choosing a node that may be sched­

uled in either zone and "removing" it from 1 clock cycle in the zone with the greater average. 

Specifically, two zones Zj1 and Zj2 are paired if and only if zone_type[ Zj1]1:zone_type[ Zj2] 

and there exists an operation Ui such that c1 E mobility_table[ui] and c2 E mobility-1able[ui] 

where c1 E Zj1 and c2 E Zj2· In our example, there is one zone pair {Z1, Z2}. Next, BSF 

selects one pair { Zji, Zj2 } from the list of zone pairs such that the difference in average 

probability between the zones is maximized. Let us assume, without loss of generality, that 

zone_type[Zj1] ='-'and zone_type[Zj2] = '+'. Then the selected zone pair zone_pair_sel 

is the one in which zone..average[Zj2] - zone_average[Zj1] is maximized. 

The next step is to choose an operation and a clock cycle from which to elicit the 

transfer between the selected zones. The chosen operation, or transfer candidate, Ui is the 

one with maximum probability value such that mobility.lable[ui] contains at least one clock 

cycle from each zone in zone_pair _sel. We then choose the clock cycle c with maximum 

probability table entry such that c E mobility_table[ui] and c E Zj2 and let cycle....sel = 
c. For the example of Figure 9(b ), transfer _candidate = u5 and cycle_sel = c2. The 

resulting probability table configuration is shown in Figure 9( c ). Notice that the maximum 

probability table entry may actually increase during global optimization, which indicates 

that, in fact, BSF may accept some locally "bad" moves which will eventually result in a 
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Subroutine globaLoptimization( DFG[v;], number.JJf _cycles ) 

Input: Data flow graph DFG[v;] and an integer number _of ....cycles 
Output: Probability table probability_table 

begin Subroutine 

/* Global Optimization * / 
globaLloop: 

for each u; E V(DFG[u;]) such that node_type(u;) = t do 
probability-1able[c] +-- probability-1able[c] + probability_value[u;], 

Ye E mobility_table[u;]; 
end for 
let number..Dperations +--the number of operations in DFG[vi] of type t; 
norm number_o erations . 

+-- block...niobility v, number_of _cycles ' 

probability-1able[c] +-- probability-1able[c] - norm, 
for 1::; c::; block...mobility[v;][number.JJf _cycles]; 

zone_list +-- compute....zones( probability-1able ) ; 
zone_type[zi] +-- compute....zone_type( z; ), Yz; E zone_list 
avg_zone_probability[zi] +-- compute....zone_avg( z; ), Yz; E zone_list 
zone_pair Ji st +-- compute....zone_pairs( zone_/ist, zone_type ); 
if the number of zone pairs is greater than zero then 

zone_pair ...sel +-- select....zone_pair( zone_pair Ji st, avg_zone_probability ) ; 
trnnsf er _candidite +-- selecLtransfer_candidate( zone_pair ...sel ) ; 
cycle_sel +- selecLcycle( trans! er _candidite, zone_pair ...sel ); 
delete( mobility_table[ cyc/e_sel], trans/ er _candidate ); 
mobility[transf er _candidate] +- mobility[transf er _candidate] - l; 

probability_value[transf er _candidate] = mobility[tran~Jer_candidate]; 
if global optimization is not timed out then 

goto globaLloop 
end if 

end if 

end Subroutine 
Figure 8: Global optimization. 

better solution. 

To complete the probability transfer, we delete cycle..,sel from mobility.lable[ui] and 

update probability_value[ui] accordingly. The whole global optimization process is then 

repeated (begining with a probability table update) until we reach a point where no zone 

pairs can be constructed. 

The time complexity of the global optimization for a basic block Vi is 

O(k1 (1 V(DFG[vi]) I xblock_mobility[vi][number ..1Jf _cycles] 

+number _of _cycles+ (block.mobility[vi][number ..1Jf _cycles]) 2 )) 

where k1 denotes the number of iterations required for the optimization process. 
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Figure 9: Global optimization: probability tables. 

Local Optimization 

BSF's local optimization algorithm is a simple greedy heuristic which transfers prob­

ability away from the maximum probability table entry and terminates when any further 

transfer operations would increase max_table...entry. More specifically, BSF selects the max­

imum probability table entry, say probabilityJable[c] and a transfer candidate ui such that 

probability_value[ui] is maximum over all Uj with c E mobilityJable[uj]· The algorithm 

then deletes c from mobiz.ityJable[ui], updates probability_value[ui], and recomputes the 

probability table entries. If there has been an increase in maxJable...entry, the old con­

figuration of the probability table is restored and local optimization terminates; otherwise, 

the process is repeated. (See Figure 10.) The time complexity of local optimization is 

O(k2( number ..JJf ...cycles+ I V(DFG[vi]) I xblock_mobility[vi][number ..JJj _cycles])) where 

k2 is the number of iterations needed for optimization. (Note also that, for local optimiza­

tion, the probability table is restored to the non-normalized form.) 

Figure 11 illustrates a local optimization step for the D FG[ v2] example. In this example, 

the global optimization process converges after 7 iterations leaving the probability table in 

the configuration of Figure ll(a). The mobility table entries at this point are: 

U1 - c1,c2,c3,c4 

U2 - C1, C2, C3, C4 

U3 - C1, c2, C3, C4, C5 

U4 - c1,c2,c3,c4,c5 

U5 - C4, C5 

17 



Subroutine locaL..optimization( DFG[v;], number...Df _cycles) 

Input: Data flow graph DFG[vi] and an integer number _of ....cycles 
Output: Allocation allocation[ vi][ number ...Df-cycles] 

begin Subroutine 

/* Local Optimization * / 
locaLJoop: 

cyc/e_max <- max{probability..table[c] I 1 :Sc :S block.mobility[vi][number...Df _cycles]}; 
transfer _candidate +- max{probability_value[u;] I cyc/e_max E mobilty_table[ui], 

cardinality( mobilty_table[u;] ) > 1}; 
if {probability_value[u;] I cyc/e_max E mobilty_table[u;]}#0 then 

delete( mobility.tab/ e[ eye/ e_max], transfer ....candidate ); 
mobility[transf er _candidate] <- mobility[transfer _candidate] - 1; 

probability_value[transf er _candidate] = mobility[tran;foer_candidate]; 
old_probability..table +-probability.table; 
probability.table +- adjusLprobability( probability.table ); 
new....cycle_max +- max{probability...array[c] 

I 1 :Sc :S block_mobility[vi][number...Df ....cycles]}; 
if new....cycle_max < cycle_max then 

goto local.loop 
else 

probability.table <- old_probability..table; 
end if 

end if 

end Subroutine 
Figure 10: Local optimization. 

The maximum probability clock cycle is cycle c4 with probability.table[c4] = 1.40. BSF 

deletes c4 from the mobility table of u5 since us has the largest probability value. The 

resulting table configuration, after the transfer operation, is shown in Figure ll(b ). After 

2 further transfers, local optimization terminates with the table configuration shown in 

Figure 11( c) and BSF is ready for allocation computation, shape function computation, 

and shape function merging. For our example, the resulting allocation is 1 multiplier. 

3.4 Shape Function Merging 

When optimization is completed, we are left with a series of shape functions, one for each 

basic block. The next step in the algorithm is to merge these into one final shape function 

representing the cost/performance tradeoff for the entire design. As shown in the pseudo­

code of Figure 12, the algorithm for shape function merging has three main parts. First, 

conditionals are ordered according to their level in the nesting structure with innermost 
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Figure 11: Local optimization: probability tables. 

conditionals preceeding outermost conditionals in the order. In the second step, a heuristic 

is used to decide which points of the basic block shape functions must be merged at the 

present time, and finally, the selected points are merged according to the ordering from the 

first step. The complexity of shape function merging is 0((1 V(G) I) I V(G) I) where G 
denotes the original control/ data flow graph and G denotes the flattened version. 

Since step 1 is done analogously to loop ordering from Subsection 3.2, we begin by 

explaining point selection. The point selection step is necessary because, during basic 

block allocation, an increment in the total number of cycles results in an increment in 

block mobility for each of the basic blocks. However, when we combine basic blocks and 

conditionals in series according to the control flow structure, such increments may not be 

feasible. In other words, incrementing block mobility for all of the basic blocks may exceed 

the number _of _cycles input and, hence, cause a timing constraint violation. Consider the 

example of Figure 3 when number _of _cycles = 13. In this case, 

block_mobility[v2][13] = 5, 

block_mobility[v3][13] = 5, 

block_mobility[v6][13] = 3, and 

block_mobility[v10][13] = 3, 

initially. However, if we were to merge the shape function points corresponding to these 

block mobilities, the minimum number of cycles needed for the computation would be 15, 

which is a constraint violation. For this reason, we must reduce the block mobility value 

for some of the basic blocks until the constraint on the number of cycles is satisfied. 

To remedy a constraint violation, we first find an execution path which violates the 
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Subroutine merge..shape_functions( allocation, number...of _cycles) 

Input: Data flow graph DFG[v;] and an integer number _of ...I:ycles 
Output: Shape function F : T--+ C 

begin Subroutine 

condition_order <---- order_conditions( CDFG ); 
for each basic block Vi E V(CDFG) do 

currenLblock...mobility[vi] <---- block_mobility[vi][number...of _cycles]; 
end for 
while currenLcycles( number...of...I:ycles) > number...of_cycles do 

currenLpath <---- compute_path_violation( CDFG ); 
block...sel <-

minimum ... wsUncrease( CDFG, numbe1·...of ...I:ycles, block_mobility, currenLpath ); 
currenLblock...mobility[block...sel] <---- currenLblock...mobility[block _sel] - 1; 

end while 
for each conditional branch cb; in the order specified by cond...order do 

for each branch bj do 
cost[bj] <---- sequentiaLmerge( bj ); 
intermediate_a/location[bj J <---- sequentiaLmerge_allocation( bj ) ; 

end for 
cost[cb;] <---- maxb1 cost[bj]; 
intermediate_allocation[cbi] [t] <---- maxb1 intermediate_allocation[cbi] [t], 

for all operation types t; 
end for 
let B denote those conditionals/basic blocks at the outermost level of nesting; 
F[number ...of ...I:ycles] <---- sequentiaLmerge( B ); 

end Subroutine 
Figure 12: Shape function merging. 

number of cycles constraint and then choose the basic block block....sel on the path whose 

cost increases the least if we reduce its block mobility by one. We invoke the decrement 

by letting current.hlock....mobility[block....sel] +--- current.hlock_mobility[block...sel] - l. (Note 

that current.hlock_mobility[vj] has been initialized to block_mobility[vj][number ....of _cycles] 

for each basic block Vj E V(G).) This process is repeated until the number of cycles 

constraint is satisfied. 

Table 1 lists the final values of currenLblock_mobility used to compute the shape func­

tion for the example of Figure 3, and Figure 13( a-d) depicts the basic block shape functions. 

The x-axes of the shape function plots are labelled with the initial basic block mobilities, 

and the number of clock cycles corresponding to the block mobilities are shown below in 

parentheses. 

We compute the final shape function as follows. For each condition, in the specified order 

from step 1, we compute an allocation. This requires us first to merge the shape functions 
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Number of Cycles Basic Block 

V2 V3 U5 UlQ 

12 4 4 2 2 
13 4 4 2 3 
14 4 4 3 3 
15 7 7 2 2 
16 7 7 2 3 
17 7 7 3 3 

Table 1: Block mobilities. 

for the basic blocks or conditionals connected in series along the branch. (Note that any con­

ditional appearing on the branch already has a shape function computed since it must have 

occurred earlier in the ordering.) To accomplish this we use a sequential merge operation. 

For each of the operation types, we simply take the maximum of intermediate_allocation[bj], 

over all of the basic block and conditionals bj on the branch. We compute the conditional 

shape function by taking the maximum allocation over all the branches for each operation 

type (parallel merge). To complete the process, we perform a sequential merge on the basic 

blocks and conditionals at the outermost level of nesting. Note that this merging process is 

really just determining the maximum allocation, for each operation type, over all of the basic 

block shape functions. (Of course, BSF must factor in the cost of comparators for the cond 

operations.) However, by performing merges in the above manner, we are producing shape 

functions for each conditional branch of the description, without increasing the worst case 

complexity of algorithm BSF (or procedure merge..shape_functions, for that matter) and 

with only a very small increase in running time (overhead due to condition ordering). By 

storing these intermediate allocations, BSF can rapidly display shape functions for different 

control flow segments of the design description, at the request of the designer. 

Finally, BSF outputs a cost in gates (functional units )/performance inns (cycles) shape 

function for the design description. For instance, the final shape function for the example 

of Figure 3 is shown in Figure 13(e). 

3.5 Memory Access Estimation 

The BSF memory access estimator is based on the idea that the number of memory 

accesses required for a design can be computed as a function of the degree of parallelism. 

The basic idea is as follows. Consider the example of Figure 14( a). BSF first computes an 

ASAP schedule for the data flow graph which, of course, corresponds to the most parallel 

implementation. Based on this schedule, any variable which is "not used" in consecutive 

clock cycles or consecutive loop iterations is not retained in any register and must be fetched 
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from memory if it is used again. Similarly, if several references to a variable occur within 

in consecutive cycles or loop iterations, the variable would be stored in a register so only 

one fetch is required. For instance, in our example, if we use a 2-multiplier architecture as 

shown in Figure 14(b ), only 6 ( 4 loads, 2 stores) memory accesses are required. The leftmost 

input labels to the multipliers denote the values used during the first iteration through the 

data path (first conditional), while the rightmost labels represent the data required for the 

second iteration (second conditional). Note that for the entire computation, each variable 

bo, bi, xo, and x1 must be fetched exactly once, and two results must be stored (one for 

each iteration), if we assume that input registers are initialized to one. However, for the 

1-multiplier architecture of Figure 14(c), 12 (8 loads, 4 stores) memory accesses are needed 

(four iterations through the data path, with different source operands for each iteration). 

BASIC 
BLOCK 

BASIC 
BLOCK 

(b) 2-multiplier implementation 

MUL 

(a) data flow graph (c) 1-multiplier implementation 

Figure 14: Memory access estimation. 

In general, we observe that for any basic block, the number of memory accesses required 

follows the reduction in the number of functional units allocated. Let t denote the functional 
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unit type with the maximum number of operations with in-degree zero. For any functional 

unit reduction, let J0 = Jinal....allocation[c][t], and let fn = final....allocat-ion[c + l][t], where 

c is the number of clock cycles before the reduction. Then, the new number of in memory 

accesses Mc+i required for the reduced allocation is given by 

Since we can compute the number of memory access required for the most parallel repre­

sentation directly from the basic blocks in O((J G J) 2 ) time, we may simply apply the above 

formula to determine the increase in memory accesses caused by a reduced allocation. Each 

application of the formula takes O(M) time where M denotes the number of operation 

types. 

Note that if the memory has multiple ports, we can simply divide the number of mem­

ory accesses for the most parallel implementation by the number of ports on the memory 

and then apply the same formula to compute the number of accesses needed for reduced 

allocations. We note, however, that the above technique is likely to be more accurate for 

designs with one-port memories. 

4 Experimental Results 

Algorithm BSF has been implemented in C on a SUN SPARC 2 workstation and tested 

on several signal processing benchmarks including a finite impulse response( FIR) filter, a 

jacobian(Jac) computation for solving robot kinematic equations [PaMu93], and a linear 

recurrence solver(LRS). In our experiments, we used an sth order FIR filter with 16 inputs 

and a 4th order linear recurrence solver with 8 equations. The jacobian was computed 

for a robot arm with 8 joints. These benchmarks were chosen because they are "real­

world" examples and are representative of modern signal processing computations. The 

experimental results for algorithm BSF, both with and without memory access estimation, 

are compared with a number of manual designs for the benchmarks [BaJG93]. It should be 

noted that the library used for functional unit allocation is [Tosh90]. 

Table 2 shows the input parameter values used during the series of experiments. For 

each operation type, the number of pipeline stages input to BSF is the same as in the 

manual designs so that we can make a fair comparison. Note that we considered both non­

pipelined and pipelined designs for the FIR filter. The pipelined designs are denoted by 

FIR_pl and FIR_p2. The last column in the table indicates the number of different input 

descriptions tested for each design. For example, we tried three different filter descriptions, 

row major(RM), column major(CM), and diagonal major(DM). It should be noted that 

the input description does have some effect on the BSF output since there are presently 
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Design Clock Freq. Mem. Lat. Num. of Pipeline Stages Num. of Desc. 
ADD MUL COMP 

FIR 100 ns 100 ns 1 1 1 3 
FIR_Fl 15 ns 10 ns 1 2 1 1 
FIR_F2 12 ns 10 ns 2 3 1 1 

.Jae 15 ns 10 ns 1 3 1 1 
LRS 100 ns 100 ns 1 1 1 1 

Table 2: BSF input parameters. 

no transformations which can decide equivalence among arbitrary input descriptions. Also, 

BSF's clock cycle input was different from the manual design clock frequency in some cases 

(non-pipelined FIR) since BSF does not estimate chaining. 

Experimental results for BSF without (with) memory access times are shown in Table 3 

(Table 4). Since the output produced by BSF is a shape function mapping time in ns 

onto area in gates, it is not possible for us to reproduce the entire function in our result 

table. Instead, we show the "corner" points for the shape function (i.e. those points where 

a reduction in cost occurs). For instance, in Figure 15, the "dotted" points on the shape 

functions correspond to the corner points listed in Table 4. In addition, the points required 

for computing BSF error with respect to manual designs are listed in the tables. 

Let F: T -cl- C be a shape function and let (x, y) denote a manual design cost/performance 

point. Obviously, to compute the error of F with respect to (x, y), we must compare (x, y) 

with a point on F, say (xF,YF)· We select the point (xF,YF) on F which is closest in 

"normalized" Manhattan distance to ( x, y). Normalized Manhattan distance is defined as 

follows. Let XN = Xmax - Xmin where Xmax (xmin) is the maximum (minimum) cost value 

computed by BSF or appearing in a manual design. Similarly, let YN = Ymax - Ymin where 

Ymax (Ymin) is the maximum (minimum) performance value computed by BSF or appearing 

in a manual design. (By maximum performance value for BSF, we mean the value at which 

no operation type has a functional unit allocation greater than 1.) Then, for two points 

(x1, Y1) and (x2, Y2), the normalized Manhattan distance between them is given by 

d = abs(x1 - x2) + abs(y1 - Y2). 
XN YN 

We used normalized rather than traditional Manhattan distance when selecting a reference 

point because the normalized distance, in some sense, gives equal consideration to the cost 

and performance values for both the BSF shape functions and the manual designs. We 

define two kinds of percentage error for BSF shape functions, cost error and performance 

error. The cost error of F with respect to ( x, y) is given by abs(yp-y), and the performance 
y 

error of F with respect to ( x, y) is abs(x:-x) 
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Example Algorithm BSF Hand Design % Error BSF Execution Time 
Time FU Area Time FU Area Perf. Cost CPU Real 
(ns) (gates) (ns) (gates) sec min: sec 

FIR (RM) 6,500 11,968 55.14 2:09.58 
8,000 11,968 8,000 11,968 0.00 % 0.00 % 

8,000 11,454 0.00 % 4.49 % 
8,100 5,992 
14,000 5,992 14,000 5,992 0.00 % 0.00 % 
17,200 4,498 
17,300 3,004 
17,699 3,004 20,800 3,004 14.90 % 0.00 % 
17,700 1,510 
31,000 1,510 31,000 1,510 0.00 % 0.00 % 

FIR (CM) 8,900 11,968 56.33 2:17.45 
9,600 11,968 9,600 11,968 0.00 % 0.00 % 
10,500 5,992 
16,800 5,992 16,800 5,992 0.00 % 0.00 % 
19,600 4,498 
19,700 3,004 
20,100 1,510 
31,000 1,510 31,000 1,510 0.00 % 0.00 % 

FIR (OM) 6,500 11,968 56.42 2:05.77 
8,099 11,968 9,600 11,454 15.63 % 4.49 % 
8,100 5,992 

16,800 5,992 16,800 5,992 0.00 % 0.00 % 
17,200 4,498 
17,300 3,004 
17,699 3,004 20,800 3,004 14.90 % 0.00 % 
17,700 1,510 
31,000 1,510 31,000 1,510 0.00% 0.00 % 

FIR_pl 225 6,368 2.00 3:42.82 
390 6,368 480 6,368 18.75 % 0.00 % 
405 3,184 
750 3,184 825 3,184 9.09 % 0.00 % 
765 1,592 

1,530 1,592 1,530 1,592 0.00 % 0.00 % 
FIR_p2 204 6,968 1.54 3:56.54 

336 6,968 432 6,968 22.00 % 0.00 % 
348 3,484 
624 3,484 696 3,484 10.34 % 0.00 % 
636 1,742 

1,248 1,742 1,248 1,742 0.00 % 0.00 % 
Jae 15,735 105,940 37.27 3:15.36 

15,855 67,620 
15,975 51,960 
16,200 50,300 
16,215 41,640 
17,910 34,640 
17,925 32,980 
17,940 25,980 
17,969 25,980 18,360 25,980 2.29 % 0.00 % 
17,970 24,320 
17,985 17,320 
18,135 15,660 
18,495 8,660 
29,360 8,660 29,360 8,660 0.00 % 0.00 % 

LRS 4,900 4,964 1.28 0:07.75 
5,000 4,964 5,000 4,964 0.00 % 0.00 % 
5,700 2,490 
6,500 1,510 
9,000 1,510 9,000 1,510 0.00% 0.00 % 

Table 3: Shape functions without memory access time. 
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Example Algorithm BSF Hand Design % Error BSF Execution Time 
Time FU Area Time FU Area Perf. Cost CPU Real 
(ns) (gates) (ns) (gates) sec min: sec 

FIR (RM) 12,100 11,968 55.14 2:05.83 
18,000 11,968 18,000 11,968 0.00 % 0.00 % 

18,000 11,454 0.00 % 4.49 % 
18,500 5,992 
33,000 5,992 33,000 5,992 0.00 % 0.00 % 
50,100 4,498 
50,400 3,004 50,400 3,004 0.00 % 0.00 % 
51,600 1,510 
62,000 1,510 62,000 1,510 0.00 % 0.00 % 

FIR (CM) 13,500 11,968 56.33 2:12.45 
19,899 11,968 21,600 11,968 0.08 % 0.00 % 
19,900 5,992 
42,000 5,992 42,000 5,992 0.00 % 0.00 % 
51,500 4,498 
51,800 3,004 
53,000 1,510 
76,260 1,510 76,260 1,510 0.00 % 0.00 % 

FIR (DM) 12,100 11,968 56.42 2:12.96 
18,499 11,968 21,600 11,454 14.35 % 4.49 % 
18,500 5,992 
39,600 5,992 39,600 5,992 0.00 % 0.00 % 
50,100 4,498 
50,400 3,004 50,400 3,004 0.00 % 0.00 % 
51,600 1,510 
74,000 1,510 74,400 1,510 0.00 % 0.00 % 

FIR-Pl 570 6,368 2.34 3:26.32 
630 6,368 630 6,368 0.00 % 0.00 % 
960 3,184 
975 3,184 975 3,184 0.00 % 0.00 % 

1,695 1,592 
1,800 1,592 1,800 1,592 0.00 % 0.00 % 

FIR-P2 480 6,968 1.80 3:56.31 
552 6,968 552 6,968 0.00 % 0.00 % 
792 3,484 
816 3,484 816 3,484 0.00 % 0.00 % 

1,380 1,742 
1,464 1,742 1,464 1,742 0.00 % 0.00 % 

Jae 15,795 105,940 35.95 3:24.29 
15,975 67,620 
16,050 51,960 
16,380 50,300 
16,395 41,640 
18,150 34,640 
18,165 32,980 
18,240 25,980 
18,240 25,980 
18,254 25,980 18,720 25,980 2.56 % 0.00 % 
18,255 24,320 
18,390 17,320 
18,405 15,660 
19,275 8,660 
30,320 8,660 30,320 8,660 0.00 % 0.00 % 

LRS 8,900 4,964 1.70 0:18.95 
9,400 4,964 9,400 4,964 0.00 % 0.00 % 

13,000 2,490 
21,000 1,510 
21,300 1,510 21,300 1,510 0.00% 0.00 % 

Table 4: Shape functions with memory access time. 
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BSF's average cost error over the 22 manual designs 0.41 % regardless of whether or 

not memory access time is considered. The average performance error for BSF is 4.90 % 

without memory access times and 0.77 % with memory access times. Note, however, that 

in most cases both the cost and performance errors are zero. This clearly demonstrates that 

BSF can provide quite accurate information to the designer. 

Figures 15( a) and 15(b) illustrate BSF shape functions (with memory access times), 

plotted against manual designs, for the FIR filter (row major description, non-pipelined) 

and jacobian examples, respectively. 

Finally, we note that BSF execution times are relatively fast for examples of all sizes. 

For instance, the jacobian data flow graph has over 100 nodes and must be computed for 

8 loop iterations; however, the execution time is only slightly over 3 minutes, which is not 

substantially larger than execution times for the other examples. Also, the response times 

for examples tested with and without memory access times are very similar. So, while 

assessment of memory access times greatly improves the usefulness of our result to the 

designer, it does not significantly increase execution time. It should be noted that BSF is 

a prototype implementation, and more careful coding might improve run times. 
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Figure 15: Shape functions for FIR filter and Jacobian examples. 

5 Conclusions and Future Work 

In this paper, we have presented a probabilistic algorithm for cost/performance shape 

function generation in interactive synthesis. The algorithm works on descriptions with 
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conditionals and bounded-iteration loops with any level of nesting. Pipelined functional 

units and memory access times are considered. Algorithm BSF has been implemented 

in C on a SUN SPARC 2 workstation, and tested on several examples including an FIR 

filter, a linear recurrence solver, and a Jacobian computation used to solve robot kinematic 

equations in real time. Experimental results show that the algorithm produces at most a 

.5 % (22 %) cost (performance) error as compared to manual designs. The average cost error 

is 0.41 %, and the average performance error is 4.90 % (0.77 %) without (with) memory 

access times. The execution time is less than 4.00 minutes in real time (the time that 

the user must sit and wait to get results) for all examples considered. Therefore, we have 

demonstrated feasibility of "good" cost/performance tradeoff tools in interactive synthesis 

environments. 

In the future, we would like to develop interactive synthesis algorithms for analyzing 

other design cost metrics such as packaging cost, yield, and testability. 
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