
UC Irvine
ICS Technical Reports

Title
An algorithm for generation of behavioral shape functions

Permalink
https://escholarship.org/uc/item/6tm5w23k

Authors
Holmes, Nancy D.
Gajski, Daniel D.

Publication Date
1993-07-14

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6tm5w23k
https://escholarship.org
http://www.cdlib.org/

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

An ~lgorithm for Generation of
Behavioral Shape Function§._

,,
Nancy D. Holme§_
Daniel D.-Cajski

Technical Report #93-17
July 14, 1993

Dept. of Information and Computer Science
University of California, Irvine

Irvine, CA 92717
(714) 856- 7063

nholmes@ics.uci.edu
gajski@ics.uci.edu

Abstract
In this paper, we present a probabilistic algorithm for analyzing cost/performance

tradeoffs in interactive synthesis of DSP algorithms. Our approach is based on an anal­
ysis of data dependencies combined with a probabilistic scheduling technique in which
operations are iteratively redistributed to minimize resource cost. Our algorithm may
consider both memories with different access times and pipelined units with different
numbers of stages. The output is a shape function illustrating the cost vs. performance
tradeoff. We have tested this algorithm on several benchmarks including an FIR jilter, a
linear recurrence solver, and a robot kinematics example. Results show that the average
error in cost, as compared to manual designs, is 0.41 %, while the average error in per­
formance is 4.90 % without memory access times and 0. 77 % with memory access times.
The maximum cost (performance) error generated by our algorithm on our benchmarks
is 5 % (22 %).

Contents

1 Introduction 1

2 Related Work 3

3 Algorithm BSF: A Top-Down Description 4

3.1 Pipeline Constraint Insertion 8

3.2 Loop Unwinding ... 10

3.3 Basic Block Allocation 11

3.4 Shape Function Merging 18

3.5 Memory Access Estimation 22

4 Experimental Results 24

5 Conclusions and Future Work 28

List of Figures

1 Data flow example with cost/performance shape function.

2 Main routine. . .

3 A small example.

4 Constraint insertion routine ..

.5 Pipeline constraint insertion.

6 Loop unwinding. . . .

7 Basic block allocation.

8 Global optimization.

9 Global optimization: probability tables.

10 Local optimization

11 Local optimization: probability tables.

12 Shape function merging.

13 Basic block and final shape functions.

14 Memory access estimation.

1.5 Shape functions for FIR filter and Jacobian examples.

List of Tables

1

2

3

4

Block mobilities.

BSF input parameters.

Shape functions without memory access time.

Shape functions with memory access time. . .

2

.5

6

9

10

11

14

16

17

18

19

20

21

23

28

22

2.5

26

27

1 Introduction

Modern computer-based systems frequently require real-time performance of complex

data-intensive computations such as video compression or robot control. With the recent

growth in these real-time application fields, rapid, cost-efficient design of signal processing

components has become extremely important.

Several DSP synthesis methodologies have been proposed, most of which advocate a

three-step approach to the synthesis problem [BrGa90, GMKR92, JMSW91]. The first step

is allocation, in which both the number and type of functional units are selected for the

implementation. Next, scheduling assigns operations to control steps, and thirdly, binding

maps operations to specific functional unit instances. Most synthesis research has focused on

complete automation of these three tasks; however, an interactive approach is now gaining

popularity [CPTR89, WRJF92].

Interactive synthesis introduces a whole new set of CAD tool requirements. For instance,

algorithms which select "the best" allocation or schedule are less important for interactive

synthesis than tools which perform system exploration, provide accurate estimates of design

quality measures, and indicate design tradeoffs. In other words, the purpose of interactive

CAD tools is to "suggest" design alternatives and analyze their benefits and drawbacks,

while the responsibility of choosing the "best" design belongs to the user.

In this paper, we address the topic of cost/performance design tradeoffs and present

a new algorithm for generating cost/performance shape functions that may be used by

other high-level synthesis tools or in an interactive synthesis environment. Our algorithm

for behavioral shape function generation (BSF) accepts a sequential VHDL description as

input and outputs a shape function indicating design cost as a function of time. More

specifically, BSF computes area/time tradeoffs for the data fl.ow portions of the description

and then combines these results, depending on the control fl.ow structure, to produce a

shape function for the entire description. The resulting shape function, can be viewed in

terms of number of clock cycles versus number of functional units allocated or number of

gates versus execution time in nanoseconds.

To see the advantage of the shape function approach, we consider the simple example of

Figure l(a). The cost/performance shape function for this example, expressed in terms of

clock cycles versus number of allocated units, is illustrated in Figure l(b). Obviously, there is

a cost improvement when three clock cycles are allowed rather than two, and for this simple

example, the designer can easily tell that "the three-cycle design is better". So, a traditional

allocation algorithm could be used to obtain the design cost; however, for most modern DSP

algorithms it is extremely difficult, if not impossible, for a designer to manually estimate

1

(Numbers in parentheses represent
the number of ADD, SUB, and MUL
functional units.)

l--v.u1 u2 I I + + I
I I
I + u3 I
l _____ J

(a) data flow example

------ /.! c
::I

4

iii c
3 0

ti c
:J

LL. 2
0
~ .c 1 E
:J
z

<SI
<:)•

~·
<SI

<:)'
~'

0 2 3 4 5 6

Number of Cycles

(b) cost/performance shape function

Figure 1: Data fl.ow example with cost/performance shape function.

the "best" number of clock cycles for a particular design. So, it is not at all clear what

information should be fed to traditional allocation tools to initiate the synthesis process.

(Usually, design performance constraints have a tolerance interval to account for flexibility

in the specification and also manufacturing differences, so there is no "fixed" value for the

slowest acceptable performance.) The advantage, then, of cost/performance shape functions

is that the burden of estimation is shifted from the designer to the CAD tool.

The following are among the most important and novel features of our shape function

generator, BSF.

1. BSF's shape function output format allows the designer to select the cost/performance

tradeoff which is most suitable to his/her needs.

2. BSF uses a probabilistic approach for data flow allocation which eliminates the need

to compute schedules or partial schedules for estimation purposes.

3. BSF has a fast response time which allows the designer to rapidly assess the quality

of different design options (cost/performance tradeoff, degree of pipelining) and is, of

course, important in an interactive environment.

4. BSF performs cost/performance tradeoffs for pipelined functional units when the user

specifies the number of pipeline stages for each operation type and also considers

memory access times when the user specifies memory latency.

5. BSF allows control flow with both conditional branches and bounded-iteration loops

where any level of nesting is acceptable.

2

The inputs required for BSF are a behavioral design description, clock frequency, number

of pipeline stages desired for each operation type, and memory latency.

The remainder of this paper is organized as follows. Section 2 provides a brief survey of

related work. Section 3 presents a top-down description of algorithm BSF. First, we present

an overview and then discuss algorithm details in five subsections: pipeline constraint in­

sertion, loop unwinding, basic block allocation, shape function merging, and memory access

estimation. A small example, used to illustrate algorithm details throughout the paper, is

also presented in Section 3. Section 4 discusses experimental results for several benchmarks,

and Section 5 contains concluding remarks.

2 Related Work

Obviously, work related to BSF includes both scheduling and allocation algorithms; how­

ever, since BSF evaluates design cost as a function of time, we will restrict our discussion

to allocation work. We note that while the scheduling and binding problems in synthe­

sis have been well-studied [Camp91, JMSW91, PaKn89), significantly less work has been

done on allocation. This is largely due to the fact that in traditional, fully automated syn­

thesis, allocation is closely related to the scheduling problem and is difficult to formulate ·

independently.

The existing work on allocation includes the force-directed approach [PaKn89), the

Chippe allocation system [BrGa90], the simulated annealing method [DeN e89), and alloca­

tion as a multi-dimensional optimization problem [GMKR92).

Force-directed allocation begins with a timing constraint and attempts to balance the

load of components in various clock cycles. While performing load-balancing, a constraint­

satisfying schedule is produced in which the required number functional units is minimized.

(This algorithm is often referred to as force-directed scheduling, but since the timing con­

straint is fixed and the schedule is designed to minimize the number of functional units, it

can also be viewed as allocation.) Advantages of this approach include speed and simplicity;

however, the method is essentially greedy in nature, since it iteratively schedules operations

according to a cost function.

Chippe, given timing and area constraints, performs allocation using an expert system.

This approach may be quite accurate because, for every allocation, an entire design is

generated to verify that cost and performance requirements are met; however, the process

of generating a design is very slow so only a few different allocations can be explored.

In [DeNe89), a simulated annealing approach is presented which simultaneously solves

the scheduling, allocation, and binding problems, but due to the stochastic nature of the

problem formulation, many "design dependent" parameters must be specified so the algo-

3

rithm requires a lot of "tuning".

Finally, in [GMKR92], allocation is formulated as a multi-dimensional optimization

problem which begins with the "fastest possible" design implementation and performs iter­

ative improvement steps according to a cost function (weighted sum of area and performance

factors). This approach, in some sense, allows for global optimization since iterative im­

provements are considered for](units at a time, as opposed to just one-unit optimizations.

The main advantage of this method is robustness (incorporation of pipelined and multicycle

units); however, design-dependent tuning of the cost function (weighting of the cost function

parameters) and the optimization control integer](is still required. Also, to increase the

degree of global optimization, the program must consider all possible K-subsets of library

components and estimate a schedule for each subset. So, increasing the degree of global

optimization slows down the algorithm.

The BSF approach to the allocation problem combines the merits of force-directed allo­

cation and multi-dimensional optimization by coupling a probabilistic approach with global

and local optimization phases (which do not vary with design-dependent parameters). In

other words, our algorithm employs a global search strategy which does not require extensive

tuning by the user. It should be noted that BSF allocation considers pipelined functional

units, conditional statements, and bounded iteration loops. Furthermore, algorithm BSF

estimates memory access times so that the cost/performance allocation points more accu­

rately reflect the cost/performance tradeoffs performed by human designers. Estimation

of memory access times is a unique feature of BSF and is not considered in the existing

allocation literature.

3 Algorithm BSF: A Top-Down Description

This section presents a detailed discussion of algorithm BSF, proceeding in a top-down

fashion. We first describe the principle function of BSF and then present an overview of the

algorithm body. The most important algorithm subroutines are identified and explained in

much greater detail in the subsections. We also introduce a small example which serves to

clarify our explanations throughqut the rest of the paper.

Given a behavioral design description, the objective function of algorithm BSF is to

analyze the cost/performance tradeoff and compute a shape function displaying the result

of the analysis. Figure 2 outlines the body of the algorithm. The "main loop" in BSF is

the center for loop, which produces a shape function (number of cycles versus number of

functional units), individually, for each basic block of the description. These functions are

then combined, according to the control flow, to produce one shape function for the entire

description. We first present an overview of the main loop and then describe the remaining

4

Algorithm BSF()

Input: A CDFG G = (V, E)
Output: A shape function F : T --t C where T denotes time in ns, and

C denotes design cost in number of gates

begin Algorithm

for all v; E V such that node_type(v;) = BASIC_BLOCK do
DFG[vi] +- inserLpipeline_constraints(DFG[v;]);

end for
G +- loop_unwind(G);
G +- flatten_CDFG(G);
reverse_topologicaLorder +- topological.sort(G);
topologicaLorder +- topological.sort(reverse(G));
Cmin +- maxv,Ev(topologicaLorder[v;]);
for all v; E V such that node_type(v;) = BASIC_BLOCK do

number...1Jf ...cycles+- Cmin;

while noLminimal(allocation[v;][number...1Jf ...cycles -1]) do
allocation[v;] [block .mobility[vi] [number ...iJf _cycles]] +­

basic_block..allocation(v;, number ...1Jf _cycles);
number ...iJf _cycles +- number ...iJf ...cycles+ 1;

end while
Cmax +-max{ Cmax, number _of _cycles - 1 };
F; +- compute..shape_function(allocation[v;]);

end for
for number_of ...cycles+- Cmin to Cmax do

F +- merge..shape_functions(allocation, number ...iJf ...cycles);
end for
F +- memory..access_time..adjustment(F);
output F;

end Algorithm
Figure 2: Main routine.

portions of the algorithm.

During each iteration of the main loop, BSF constructs a shape function for some basic

block in the design description by fixing the number of clock cycles to a constant c and then

computing an allocation. This process produces one cost/performance point, namely (c, A)

where A denotes the allocation for c clock cycles. To obtain the entire shape function for

the basic block, we iteratively increase the value of c, beginning with c equal to the critical

path length (ASAP schedule length). We finish when an allocation is produced with at

most one functional unit for each operation type. For instance, in the example of Figure 1,

c ranged from 2 to 3, and exactly two allocations were produced. (Notice, however, that we

have extended our shape function to be defined for all real numbers greater than or equal to

the critical path length.) The final allocation has 1 adder, 0 subtractors, and 0 multipliers

5

and therefore satisfies the "finishing criterion".

Control Flow Data Flow

BASIC
BLOCK

BASIC
BLOCK

-------,

:)/,
0 1 +

0
2 I

~~-v3 ..--------~ :
BASIC ____ -- ./' I + u3 I
BLOCK __________

1
l _____ J

I u u u u

: . 1 . 2 %4 I 10 1

I u3 u9 u11 I
* + + I ____ _J I

I I
: I
I us I

- I I__________ -----,

-----~ I
--------------- : vu1 +

0 2 :
I + u3 I

~""-=~~~v7 l _____ J

Figure 3: A small example.

Allocation is performed iteratively over the operation types (add, sub, mul ...) using a

two-phase algorithm. In other words, we consider the operation types independently (one

at a time). Let t denote the current operation type, and let c be the current number of

clock cycles for the basic block execution. Let nj denote the number of functional units

of type t used during clock cycle j, and let A[t] = max{nj J 1 ::; j ::; c}. In other words,

A[t] is the allocation for t. In our algorithm, we construct a probability table with c entries

such that the Ph entry contains the expected value of nj. The idea, then, is to "balance"

the probability table in order to minimize the maximum table entry (the expected value of

A[t]). Naturally, there are some constraints on how we can redistribute the probability, so

it is usually impossible to obtain a completely balanced table (one in which all entries have

the same value). BSF performs transformations on the probability table in. two phases:

global optimization and local optimization. In global optimization, the probability table

is decomposed into zones and probability is "transferred" across zones to p10duce a more

balanced table. Zone decomposition is necessary to globally redistribute the probability,

6

thereby avoiding some of the local minima in the solution space. In local optimization, a

greedy algorithm balances the table by reducing the maximum entry. When global and

local optimization are finished, the maximum table entry is assigned to A[t].

After computing shape functions for the basic blocks, BSF performs shape function

merging in which a constructive algorithm maps the basic block shape functions into one

function which represents the cost/performance tradeoff for the entire design.

As indicated in Figure 2, several subsidiary procedures are required in addition to basic

block allocation and shape function merging. For example, BSF must augment the data

flow graph for each basic block with "dummy nodes" to prevent data dependence constraint

violations caused by use of pipelined units. Also, each loop in the initial description must

be converted into a series of conditionals. This transformation, called loop unwinding, is

possible since we assume that all loops have a bounded number of iterations. Both pipeline

constraint insertion and loop unwinding are performed before basic block allocation.

The last subsidiary procedure augments the "final" shape function to reflect memory

access times and is, obviously, performed after shape function merging.

Note that, so far, we have only described how BSF determines the number of functional

units needed to implement the data path. To complete the shape function computation, BSF

must select library modules (which satisfy the designer's pipelining constraints) to perform

the DFG operations. Recall that in algorithm BSF the designer defines the clock period.

So, when implementing single cycle or pipelined operations, BSF simply chooses the library

module with the fewest gates that meets the clock frequency requirement. This approach is

justified for modern DSP designs which have real-time performance requirements because,

normally, the idea in such designs is to run the clock at a high frequency and use pipelined

units to implement the data path. BSF may also allocate multifunctional units; however, the

user must specify groups of operation types which may be implemented "together" in such

units. BSF then relabels the affected operations with a new operation type corresponding to

the multifunctional unit group. Note that BSF does not consider allocation for multicycle

units. This is due to the fact that many DSP algorithms have highly "symmetrical" data flow

graphs in which most execution paths are nearly the same length as the critical path; hence,

multicycle units can rarely be used instead of single cycle or pipelined units to reduce area.

Furthermore, standard "off-shelf" DSP processors can be used to implement algorithms

with "looser" performance requirements; so, multicycle unit allocation is becoming less

important.

The most significant steps of algorithm BSF are

j'

1. pipeline constraint insertion,

2. loop unwinding,

3. basic block allocation,

4. shape function merging, and

.5. memory access estimation.

These are discussed in detail in the subsequent subsections. Note that step 3, basic block

allocation, is probabilistic in nature and, together with step 4, forms the main portion of

the algorithm. Steps 1, 2, and 5 describe novel features of BSF and, hence, warrant further

explanation.

The worst-case time complexity of algorithm BSF is O(kM N 3) where N is the total

number of operations (both control :fl.ow and data :fl.ow), Mis the total number of operation

types, and k is a constant representing the maximum number of iterations taken by a basic

block during the optimization phases. This, however, is a "loose" analysis. More accurate

complexity bounds for BSF procedures are given in the subsections.

We use the small example of Figure 3 to demonstrate the algorithm execution. Both the

control :fl.ow and data :fl.ow nodes are labelled such that the operation type appears inside of

the node, and the node ID is written to the upper right-hand side of the node. The control

:fl.ow portion consists of a conditional branch operation, where each branch contains one

basic block, followed by a loop operation with one basic block representing the loop body.

Each _basic block has a dashed line indicating its corresponding data :fl.ow graph. Note that

the DFG for node v2 is adapted from the HAL example of [PaKn89].

We have selected this example to demonstrate our algorithm because it exercises the

five main steps of BSF (including both global and local optimization phases for basic block

allocation) and yet is small enough to explain without difficulty. In Section 5, we show the

performance of BSF on several large examples.

3.1 Pipeline Constraint Insertion

Given a data flow graph, the basic idea of pipeline constraint insertion is to add con­

straints (nodes and edges) to the DFG in a way that prevents BSF from "violating" data

dependencies when computing basic block allocations with pipelined units. A dependency

violation occurs when the result of an operation is referenced before it "comes out" of the

pipeline. For example, suppose our data flow graph contains two multiply operations m1

and m2 such that there is an edge (m1 , m2) from m1 to m2 in the graph. To allocate this

data path using a 2-stage pipelined multiplier, we must ensure that m1 and m2 are not

Subroutine inserLpipeline_constraints(D FG[vi])

Input: Data flow graph DFG[vi]
Output: Augmented data flow graph DFG[vi]

begin Subroutine

for all operation types t such that number_pipeline...stages(t) > 1 do
for all u; E V(DFG[v;]) such that node_type(u;) = t do

BFS_fevel <- breadth_first...search(DFG[v;], u;);

for each Uj E V(DFG[v;]) such that BFS_level[u1] < number_pipeline...stages(t),
and u;#uj do

inserLdummyJlodes(DFG[v;], u;, Uj, number_pipeline...stages(t) - 1);
end for

end for
end for
return augmented data flow graph DFG[vi]

end Subroutine
Figure 4: Constraint insertion routine.

scheduled in consecutive clock cycles. Otherwise, a dependency violation will occur. To

avoid such a violation, BSF will insert a "dummy" node d in the graph and add the arcs

(m1 ,d) and (d,m2). These "dummy" data flow constraints ensure that the probability of

scheduling m1 and m2 in consecutive clock cycles is zero.

The general algorithm for pipeline constraint insertion is illustrated in Figure 4. The

input to subroutine inserLpipeline_constraints consists of a data flow graph and an array

indicating the number of pipeline stages for each functional unit type. For each operation

type t and each vertex Ui of type t, BSF performs a breadth first search on DFG[vi] starting

with vertex Ui. If the breadth first labelling of a vertex Uj is less than the number of pipeline

stages for the type t, a dependency violation can occur from Ui to Uj. To prevent this, BSF

inserts exactly number_pipeline_stages[t] - 1 "dummy" vertices into DFG[vi] and connects

them in series from Ui to Uj. Figure 5 shows an example of pipeline constraint insertion

for the basic block v2 of the example in Figure 3. The degree of pipelining is 2 stages for

multiply operations and 1 stage for add and subtract operations.

Since the degree of pipelining for a node type is usually very small (not more than 5),

in the worst case, BSF adds at most O(kn 2) nodes to the data flow graph where k < 5 is

the maximum degree of pipelining for a node type, and n =I V(DFG[vi]) I· Note also that

the data flow graph DFG[vi] is used only to compute operator mobilities during the basic

block allocation step. So, the increased size of the graph has little effect on BSF execution

time.

9

by

Data flow graph for BASIC_BLOCK v 2 :

Figure 5: Pipeline constraint insertion.

The time complexity of pipeline constraint insertion (for all of the basic blocks) is given

T(n) = kM L (V(DFG[vi]))2 E O(kMN2)

v;EV(G)

where N = :Z:::::v;EV(G) V(DFG[vi]), node_type(Vi) = basic_block, and Mis the number of

operation types. However, for all practical purposes, O(kMN2) = O(MN2).

3.2 Loop Unwinding

The second important step of algorithm BSF is loop unwinding. Each loop node in the

control flow portion of the description has an associated integer J(which denotes the tightest

possible upper bound on the number of loop iterations. (Recall that all loops in the control

flow are required to be bounded-iteration loops.) In the loop unwinding step, we simply

replace the loop structure with a series of J(conditional branches followed by increments

(index updates required only for "for loops") such that the "body" (portion between the

cond and end_cond nodes) of each conditional branch is the same as the body of the original

loop.

Note that a loop body may contain basic blocks, conditional branches, or even other

loops. In other words, any level of loop nesting (or conditional branch nesting) is "allowed".

For this reason, we order the loops from the lowest level of the nesting structure to the

highest and unwind them in this order. So, innermost loops are unwound first. This is not

absolutely necessary; however, it does simplify the BSF code considerably.

Figure 6 illustrates the loop unwinding process on the loop from Figure 3, assuming

10

Original loop:

I
I
I
I
I
\

A
BASIC
BLOCK

'

\ -----,
\ I vu1 u2 I I + + I ""-....

I I
I + u3 I

l _____ J

Unwound loop:

BASIC
BLOCK

v
~~-10

BASIC
BLOCK

Figure 6: Loop unwinding.

1-vu1 u2 I I + + I

--1 I
I + u3 I
l _____ J

that the number of loop iterations for vs is at most two. It is also assumed that v5 is a "for"

loop and thus requires an extra addition for the loop index update. Clearly, the "unwound"

representation is equivalent to the original loop since the non-empty branch is executed if

and only if the loop body is executed, and the number of conditionals in series is equal to the

loop bound. The time complexity of procedure loop_unwind is O(lmax I V(G) I +(I V(G) 1) 2)

where lmax is the maximum loop bound, I G I is the size of the flattened control/ data flow

graph and I G I is the size of the original control/ data flow graph.

3.3 Basic Block Allocation

Given a data flow graph DFG[vi] for basic block Vi and a positive integer number _of _cycles,

basic block allocation determines the number and type of functional units required to im-

11

plement the data path if at most number _of _cycles clock cycles are "allowed" to execute

the entire description. The basic strategy of the algorithm is to construct a probability

table which, intuitively, indicates for each node Ui E V(D FG[vi]) and each clock cycle

c :=.:; number ..of _cycles the probability that Ui will be scheduled in cycle c. The algorithm

then makes "adjustments" to the probability table so that it is unlikely, for example, that

several multiply operations would be scheduled in the same clock cycle. These adjustments

are performed in two main phases, global optimization and local optimization. Global op­

timization is based on a "zone decomposition" of the probability table and is, obviously,

a global search strategy which enables BSF to avoid, to some extent, local minima in the

solution space. After the global optimization, BSF performs an iterative improvement step

referred to as local optimization and then computes an allocation from the resulting prob­

ability table.

Figure 7 shows the pseudo-code for the basic block allocation algorithm. Global and local

optimization code is omitted here but will be explained in Subsections 3.3.1 and 3.3.2. We

illustrate our algorithm on basic block v2 of the Figure 3 example with number ..of _cycles=

15, assuming that all functional units are single cycle. For simplicity, we consider only the

"multiply" nodes (since BSF performs allocation iteratively for each operation type).

For any flow graph G and an operation Ui, let starLmobility[ui] and end_mobility[ui]

denote the ASAP and ALAP schedule values for Ui. The mobility for a node Ui is defined as

its ALAP schedule value minus its ASAP schedule value plus one, and the mobility range

for Ui is the closed interval [starLmobility[ui], end_mobility[ui]].

In algorithm BSF, given a basic block Vi and an integer number ..of _cycles, the num­

ber of clock cycles available to execute Vi is given by block_mobility[vi][number ..of _cycles] =

max...end_mobility-min....starLmobility+l where max_end_mobility =max{ end_mobility[ui] I
Ui E V(DFG[vi])}, min....starLmobility = min{starLmobility[ui] I Ui E V(DFG[vi])}, and

mobilities are computed with respect to G, the flattened format of the input description

(without the hierarchy introduced by basic blocks). In our example, block_mobility[v2][15] =

7.

The first step in the basic block allocation, then, is to compute operator mobilities for

all Ui E DFG[vi], as is done in list scheduling algorithms [JMSW91]. (Note that these

mobilities are computed with respect to DFG[vi], not G.) The initial mobilities for the

multiply operators of DFG[v2] are:

mobility[u1] = 4 starLmobility[u1] = 1 end_mobility[u1] = 4

mobility[u2] = 4 starLmobility[u2] = 1 end_mobility[u2] = 4

mobility[u3] = 5 starLmobility[u3] = 1 end_mobility[u3] = 5

12

mobility[u4] = 6 starLmobility[·u4] = 1 end_mobility[u4] = 6

mobility[us] = 4 starLmobildy[u5] = 2 end_mobility[u5] = 5

mobility[u6] = 5 starLmobility[u6] = 2 end_mobility[u6] = 6.

BSF then computes initial probability values for each node according to the formula

probability_value[ui] = b ~'.O [1. mo i ity Ui

The next preliminary step is construction of a mobility table for v2 . A mobility table

is an array of linked lists with one array entry for each Ui E V(DFG[vi]). A clock cy­

cle c appears in list mobilityJ,able[ui] if and only if c is contained in the closed interval

[starLmobility[ui], end_mobility[ui]]. Note that, intuitively, the probability_value of a node

u; indicates the likelyhood that u; will be scheduled in clock cycle c where c is any cycle on

mob-ilityJ,able[u;]. This correlation between probability values and mobility table is always

maintained, throughout the global and local optimization phases.

Global Optimization

As shown in Figure 7, global optimization is performed iteratively for each operation

type t. The input is data flow graph DFG[v;] and integer numberJJj.£ycles. The basic

idea is to construct a probability table from the DFG mobility information and perform

"optimizations" on the table. When this is no longer possible (or is timed out after a

specified number of iterations), we switch to the local optimization phase. The probability

table is defined as an array ranging from 1 to block_mobility[v;][numberJJj .£ycles] where

each entry probabilityJ,able[c] denotes the sum of probability_value[u;] over all operations

u; such that c E mobilityJ,able[u;]. Intuitively, probabilityJ,able[c] indicates the expected

number of functional units of type t used in cycle c. For example, if probabilityJ,able[c] = 1.5

for some t, then we require at least 2 functional units of type t to implement the data path.

Hence, we can compute an allocation allocation[v;][block_mobility[v;][number JJj _cycles]][t]

for units of type t by taking the maximum value of probabilityJ,able[c], where c has the

range 1 ~ c ~ block_mobility[v;][number JJj _cycles].

Since unit allocation depends on probability table entries, the objective in BSF is to

minimize the maximum probability table entry. However, for any operation u;, we know

that

So, during optimization,

L probability_value[u;] = 1.
cEmobi/ity_table[u;]

number ...of _eye/es

L probabilityJ,able[c] = k
c=l

13

Subroutine basic_block_allocation(DFG[v;], number.J)f _cycles)

Input: Data flow graph DFG[vi] and an integer number _of ...£ycles
Output: Allocation allocation[vi][number _i)f _cycles]

begin Subroutine

/* Compute Block Mobility * /
min...starLmobility +-- min{topologicaLorder[u;] I u; E V(DFG[v;])};
max_end..mobility +-- max{ number _i)f ...£ycles - reverse_topologicaLorder[u;]

I u; E V(DFG[v;])};
block..mobility[v;][number.J)f ...£ycles] <- max_end..mobility - min_starLmobility + 1;

/* Sort Data Flow Graph * /
BB.J)rder <- topologicaLsort(DFG[v;]);
BB..reverse_order +--topological.sort(reverse(DFG[v;]));

/* Compute Mobilities and Initial Probability Value * /
for each u; E V(DFG[v;]) do

starLmobility[u;] +-- BB_order[u;];
end_mobility[u;] +-- block..mobility[v;][number.J)f _cycles] - BB..reverse_order[u;] + 1;
mobility[u;] +-- end_mobility[ui] - starLmobility[u;] + 1;
probability_value[u;] +-- mobi~i~y[u;];
for each clock cycle c E [starLmobility[u;], end..mobility[u;]] do

mobility_table[u;] +-- insert(mobility_table[u;], c);
end for

end for

/* Compute Allocation for each Operation Type * /
for each operation type t do

/* Optimization Phases * /
global..nptimization(DFG[v;], number.J)f _cycles);
local..nptimization(D FG[v;], number .J) f _cycles) ;

/* Compute Allocation * /
probability...table[c] +-- probability...table[c] +norm,

for 1 ~ c ~ block..mobility[v;][number.J)f ..cycles];
al/ocation[v;] [block..mobility[v;] [number _i)f _cycles]][t] +--

ceiling(max{probability_array[c] j 1 ~ c ~ block..mobility[v;][number .J)f ...£ycles]});
end for

end Subroutine
Figure 7: Basic block allocation.

14

where k is a constant denoting the actual number of operations of type t, and the probability

table is in its "raw" (not "normalized") form. Thus, to minimize the maximum value in the

probability table, we must redistribute, or balance, the table entries as much as possible.

During global optimization, BSF balances table entries using a zone decomposition

technique. (See Figure 8 for pseudo-code.) First a norm is computed for the table such that
number..o erations h b t · d h b f norm = bl k b'l't [][b 1 1 , w ere num er _opera ions enotes t e num er o oc _mo i l y Vi num er-LJeye es

operations in Vi with type t, and the probability table is normalized by subtracting norm

from each entry. This produces a table which has both positive and negative entries for the

various cycles. Histograms representing the initial probability table entries, both raw values

and normalized values, for the example DFG[v2] (with block mobility 7 and operation type

multiply) are shown in Figures 9(a) and 9(b), respectively.

After the probability table is normalized, the next step is zone computation. A zone is

defined as a maximal set Zj of consecutive clock cycles such that probability.lable[z] 2". 0 for

all z E Zj or probability.lable[z] < 0 for all z E Zj. For instance, the example of Figure 9(b)

has two zones labelled Z1 and Z2 . Each zone Zj is assigned a type, '-' or '+', depending

on whether its corresponding probability table entries are negative or non-negative, and an

average probability over all table entries in the zone is computed.

Zones are then paired, and a "best" pair is selected for balancing. The idea of balancing

is to "transfer" probability from one zone to another by choosing a node that may be sched­

uled in either zone and "removing" it from 1 clock cycle in the zone with the greater average.

Specifically, two zones Zj1 and Zj2 are paired if and only if zone_type[Zj1]1:zone_type[Zj2]

and there exists an operation Ui such that c1 E mobility_table[ui] and c2 E mobility-1able[ui]

where c1 E Zj1 and c2 E Zj2· In our example, there is one zone pair {Z1, Z2}. Next, BSF

selects one pair { Zji, Zj2 } from the list of zone pairs such that the difference in average

probability between the zones is maximized. Let us assume, without loss of generality, that

zone_type[Zj1] ='-'and zone_type[Zj2] = '+'. Then the selected zone pair zone_pair_sel

is the one in which zone..average[Zj2] - zone_average[Zj1] is maximized.

The next step is to choose an operation and a clock cycle from which to elicit the

transfer between the selected zones. The chosen operation, or transfer candidate, Ui is the

one with maximum probability value such that mobility.lable[ui] contains at least one clock

cycle from each zone in zone_pair _sel. We then choose the clock cycle c with maximum

probability table entry such that c E mobility_table[ui] and c E Zj2 and let cycle....sel =
c. For the example of Figure 9(b), transfer _candidate = u5 and cycle_sel = c2. The

resulting probability table configuration is shown in Figure 9(c). Notice that the maximum

probability table entry may actually increase during global optimization, which indicates

that, in fact, BSF may accept some locally "bad" moves which will eventually result in a

15

Subroutine globaLoptimization(DFG[v;], number.JJf _cycles)

Input: Data flow graph DFG[v;] and an integer number _ofcycles
Output: Probability table probability_table

begin Subroutine

/* Global Optimization * /
globaLloop:

for each u; E V(DFG[u;]) such that node_type(u;) = t do
probability-1able[c] +-- probability-1able[c] + probability_value[u;],

Ye E mobility_table[u;];
end for
let number..Dperations +--the number of operations in DFG[vi] of type t;
norm number_o erations .

+-- block...niobility v, number_of _cycles '

probability-1able[c] +-- probability-1able[c] - norm,
for 1::; c::; block...mobility[v;][number.JJf _cycles];

zone_list +-- compute....zones(probability-1able) ;
zone_type[zi] +-- compute....zone_type(z;), Yz; E zone_list
avg_zone_probability[zi] +-- compute....zone_avg(z;), Yz; E zone_list
zone_pair Ji st +-- compute....zone_pairs(zone_/ist, zone_type);
if the number of zone pairs is greater than zero then

zone_pair ...sel +-- select....zone_pair(zone_pair Ji st, avg_zone_probability) ;
trnnsf er _candidite +-- selecLtransfer_candidate(zone_pair ...sel) ;
cycle_sel +- selecLcycle(trans! er _candidite, zone_pair ...sel);
delete(mobility_table[cyc/e_sel], trans/ er _candidate);
mobility[transf er _candidate] +- mobility[transf er _candidate] - l;

probability_value[transf er _candidate] = mobility[tran~Jer_candidate];
if global optimization is not timed out then

goto globaLloop
end if

end if

end Subroutine
Figure 8: Global optimization.

better solution.

To complete the probability transfer, we delete cycle..,sel from mobility.lable[ui] and

update probability_value[ui] accordingly. The whole global optimization process is then

repeated (begining with a probability table update) until we reach a point where no zone

pairs can be constructed.

The time complexity of the global optimization for a basic block Vi is

O(k1 (1 V(DFG[vi]) I xblock_mobility[vi][number ..1Jf _cycles]

+number _of _cycles+ (block.mobility[vi][number ..1Jf _cycles]) 2))

where k1 denotes the number of iterations required for the optimization process.

16

c1 :t::tM1ittttt:t

c2 lfltttlU@tllflft
~ lilt:t:t:::i~::::t:Mtlt:t:

c 4 if1tt:ttt1:1:1:namt:@r:1ttn

cs i\@jijififiifilttt:

c., 0.00

(a} probability table

:::::mmm cs

::::n:::::nt.w.:n::nt: c.,

Zone z
2

(b) normalized probability table

~ i:l@ffjjfi
Zone z 1

c4 f@ii.lil

(c} probability table after 1
global transfer

Figure 9: Global optimization: probability tables.

Local Optimization

BSF's local optimization algorithm is a simple greedy heuristic which transfers prob­

ability away from the maximum probability table entry and terminates when any further

transfer operations would increase max_table...entry. More specifically, BSF selects the max­

imum probability table entry, say probabilityJable[c] and a transfer candidate ui such that

probability_value[ui] is maximum over all Uj with c E mobilityJable[uj]· The algorithm

then deletes c from mobiz.ityJable[ui], updates probability_value[ui], and recomputes the

probability table entries. If there has been an increase in maxJable...entry, the old con­

figuration of the probability table is restored and local optimization terminates; otherwise,

the process is repeated. (See Figure 10.) The time complexity of local optimization is

O(k2(number ..JJf ...cycles+ I V(DFG[vi]) I xblock_mobility[vi][number ..JJj _cycles])) where

k2 is the number of iterations needed for optimization. (Note also that, for local optimiza­

tion, the probability table is restored to the non-normalized form.)

Figure 11 illustrates a local optimization step for the D FG[v2] example. In this example,

the global optimization process converges after 7 iterations leaving the probability table in

the configuration of Figure ll(a). The mobility table entries at this point are:

U1 - c1,c2,c3,c4

U2 - C1, C2, C3, C4

U3 - C1, c2, C3, C4, C5

U4 - c1,c2,c3,c4,c5

U5 - C4, C5

17

Subroutine locaL..optimization(DFG[v;], number...Df _cycles)

Input: Data flow graph DFG[vi] and an integer number _ofcycles
Output: Allocation allocation[vi][number ...Df-cycles]

begin Subroutine

/* Local Optimization * /
locaLJoop:

cyc/e_max <- max{probability..table[c] I 1 :Sc :S block.mobility[vi][number...Df _cycles]};
transfer _candidate +- max{probability_value[u;] I cyc/e_max E mobilty_table[ui],

cardinality(mobilty_table[u;]) > 1};
if {probability_value[u;] I cyc/e_max E mobilty_table[u;]}#0 then

delete(mobility.tab/ e[eye/ e_max], transfercandidate);
mobility[transf er _candidate] <- mobility[transfer _candidate] - 1;

probability_value[transf er _candidate] = mobility[tran;foer_candidate];
old_probability..table +-probability.table;
probability.table +- adjusLprobability(probability.table);
new....cycle_max +- max{probability...array[c]

I 1 :Sc :S block_mobility[vi][number...Dfcycles]};
if new....cycle_max < cycle_max then

goto local.loop
else

probability.table <- old_probability..table;
end if

end if

end Subroutine
Figure 10: Local optimization.

The maximum probability clock cycle is cycle c4 with probability.table[c4] = 1.40. BSF

deletes c4 from the mobility table of u5 since us has the largest probability value. The

resulting table configuration, after the transfer operation, is shown in Figure ll(b). After

2 further transfers, local optimization terminates with the table configuration shown in

Figure 11(c) and BSF is ready for allocation computation, shape function computation,

and shape function merging. For our example, the resulting allocation is 1 multiplier.

3.4 Shape Function Merging

When optimization is completed, we are left with a series of shape functions, one for each

basic block. The next step in the algorithm is to merge these into one final shape function

representing the cost/performance tradeoff for the entire design. As shown in the pseudo­

code of Figure 12, the algorithm for shape function merging has three main parts. First,

conditionals are ordered according to their level in the nesting structure with innermost

18

c1

c2

c3

c4

cs

CG

c., 0.00

(a) probability table

cs!"""'======

cGI"""====

c., 0.00

(b) probability table after 1
local transfer

CG rn:rnr:m«.i.:
c., 0.00

(c) final state of probability
table

Figure 11: Local optimization: probability tables.

conditionals preceeding outermost conditionals in the order. In the second step, a heuristic

is used to decide which points of the basic block shape functions must be merged at the

present time, and finally, the selected points are merged according to the ordering from the

first step. The complexity of shape function merging is 0((1 V(G) I) I V(G) I) where G
denotes the original control/ data flow graph and G denotes the flattened version.

Since step 1 is done analogously to loop ordering from Subsection 3.2, we begin by

explaining point selection. The point selection step is necessary because, during basic

block allocation, an increment in the total number of cycles results in an increment in

block mobility for each of the basic blocks. However, when we combine basic blocks and

conditionals in series according to the control flow structure, such increments may not be

feasible. In other words, incrementing block mobility for all of the basic blocks may exceed

the number _of _cycles input and, hence, cause a timing constraint violation. Consider the

example of Figure 3 when number _of _cycles = 13. In this case,

block_mobility[v2][13] = 5,

block_mobility[v3][13] = 5,

block_mobility[v6][13] = 3, and

block_mobility[v10][13] = 3,

initially. However, if we were to merge the shape function points corresponding to these

block mobilities, the minimum number of cycles needed for the computation would be 15,

which is a constraint violation. For this reason, we must reduce the block mobility value

for some of the basic blocks until the constraint on the number of cycles is satisfied.

To remedy a constraint violation, we first find an execution path which violates the

19

Subroutine merge..shape_functions(allocation, number...of _cycles)

Input: Data flow graph DFG[v;] and an integer number _of ...I:ycles
Output: Shape function F : T--+ C

begin Subroutine

condition_order <---- order_conditions(CDFG);
for each basic block Vi E V(CDFG) do

currenLblock...mobility[vi] <---- block_mobility[vi][number...of _cycles];
end for
while currenLcycles(number...of...I:ycles) > number...of_cycles do

currenLpath <---- compute_path_violation(CDFG);
block...sel <-

minimum ... wsUncrease(CDFG, numbe1·...of ...I:ycles, block_mobility, currenLpath);
currenLblock...mobility[block...sel] <---- currenLblock...mobility[block _sel] - 1;

end while
for each conditional branch cb; in the order specified by cond...order do

for each branch bj do
cost[bj] <---- sequentiaLmerge(bj);
intermediate_a/location[bj J <---- sequentiaLmerge_allocation(bj) ;

end for
cost[cb;] <---- maxb1 cost[bj];
intermediate_allocation[cbi] [t] <---- maxb1 intermediate_allocation[cbi] [t],

for all operation types t;
end for
let B denote those conditionals/basic blocks at the outermost level of nesting;
F[number ...of ...I:ycles] <---- sequentiaLmerge(B);

end Subroutine
Figure 12: Shape function merging.

number of cycles constraint and then choose the basic block block....sel on the path whose

cost increases the least if we reduce its block mobility by one. We invoke the decrement

by letting current.hlock....mobility[block....sel] +--- current.hlock_mobility[block...sel] - l. (Note

that current.hlock_mobility[vj] has been initialized to block_mobility[vj][numberof _cycles]

for each basic block Vj E V(G).) This process is repeated until the number of cycles

constraint is satisfied.

Table 1 lists the final values of currenLblock_mobility used to compute the shape func­

tion for the example of Figure 3, and Figure 13(a-d) depicts the basic block shape functions.

The x-axes of the shape function plots are labelled with the initial basic block mobilities,

and the number of clock cycles corresponding to the block mobilities are shown below in

parentheses.

We compute the final shape function as follows. For each condition, in the specified order

from step 1, we compute an allocation. This requires us first to merge the shape functions

20

!!! ·;:: 4
::i

iii
c:
0 3 ·r;
c:
::J
u. 2
Ci
....
Gl
.lJ
E
::J
z

0

2l ·;:: 4
::i
iii
c:
0 3
~
c:
::J
u. 2
Ci
....
Gl

.lJ
E
::J
z

0

Allocation: (ADD,SUB,MUL)

4 5 6 7 8
(12) (13) (14) (15) (16)

Number of Cycles

(a) basic block v 2

Allocation: (ADD,SUB.MUL)

2 3 4 5 6
(12) (13) (14) (15) (16)

Number of Cycles

(c) basic block v 6

!l ·;::
:::>
iii
c:
~
0
c:
:I
u.
Ci
....
Ill

.lJ
E
::J z

5

4

3

2

0

2l Allocation: (ADD,SUB.MUL)
·;:: 4
::>
iii
c:

3 0
-~
c:
::J
u. 2
Ci
;
.lJ
E
::J
z

0 4 5 6 7 8
(12) (13) (14) (15) (16)

Number of Cycles

(b) basic block v 3

!!! Allocation: (ADD,SUB.MUL)
·;:: 4
::>
iii
c:

3 0 . ..,
0
c:
::J
u. 2
Ci ._
Gl

.lJ
E
::J
z

0 2 3 4 5 6
(12) (13) (14) (15) (16)

Number of Cycles

(d) basic block v 10

'i>
"'

'i>
"' ~- {\-'

'i> "" "" "' "' "' (::' ~' ~-
• "" "' (::' ·-
Allocation: (ADD,SUB,MUL)

12 13 14 15 16 17

Number of Cycles

(e) combined shape function

Figure 13: Basic block and final shape functions.

21

Number of Cycles Basic Block

V2 V3 U5 UlQ

12 4 4 2 2
13 4 4 2 3
14 4 4 3 3
15 7 7 2 2
16 7 7 2 3
17 7 7 3 3

Table 1: Block mobilities.

for the basic blocks or conditionals connected in series along the branch. (Note that any con­

ditional appearing on the branch already has a shape function computed since it must have

occurred earlier in the ordering.) To accomplish this we use a sequential merge operation.

For each of the operation types, we simply take the maximum of intermediate_allocation[bj],

over all of the basic block and conditionals bj on the branch. We compute the conditional

shape function by taking the maximum allocation over all the branches for each operation

type (parallel merge). To complete the process, we perform a sequential merge on the basic

blocks and conditionals at the outermost level of nesting. Note that this merging process is

really just determining the maximum allocation, for each operation type, over all of the basic

block shape functions. (Of course, BSF must factor in the cost of comparators for the cond

operations.) However, by performing merges in the above manner, we are producing shape

functions for each conditional branch of the description, without increasing the worst case

complexity of algorithm BSF (or procedure merge..shape_functions, for that matter) and

with only a very small increase in running time (overhead due to condition ordering). By

storing these intermediate allocations, BSF can rapidly display shape functions for different

control flow segments of the design description, at the request of the designer.

Finally, BSF outputs a cost in gates (functional units)/performance inns (cycles) shape

function for the design description. For instance, the final shape function for the example

of Figure 3 is shown in Figure 13(e).

3.5 Memory Access Estimation

The BSF memory access estimator is based on the idea that the number of memory

accesses required for a design can be computed as a function of the degree of parallelism.

The basic idea is as follows. Consider the example of Figure 14(a). BSF first computes an

ASAP schedule for the data flow graph which, of course, corresponds to the most parallel

implementation. Based on this schedule, any variable which is "not used" in consecutive

clock cycles or consecutive loop iterations is not retained in any register and must be fetched

22

from memory if it is used again. Similarly, if several references to a variable occur within

in consecutive cycles or loop iterations, the variable would be stored in a register so only

one fetch is required. For instance, in our example, if we use a 2-multiplier architecture as

shown in Figure 14(b), only 6 (4 loads, 2 stores) memory accesses are required. The leftmost

input labels to the multipliers denote the values used during the first iteration through the

data path (first conditional), while the rightmost labels represent the data required for the

second iteration (second conditional). Note that for the entire computation, each variable

bo, bi, xo, and x1 must be fetched exactly once, and two results must be stored (one for

each iteration), if we assume that input registers are initialized to one. However, for the

1-multiplier architecture of Figure 14(c), 12 (8 loads, 4 stores) memory accesses are needed

(four iterations through the data path, with different source operands for each iteration).

BASIC
BLOCK

BASIC
BLOCK

(b) 2-multiplier implementation

MUL

(a) data flow graph (c) 1-multiplier implementation

Figure 14: Memory access estimation.

In general, we observe that for any basic block, the number of memory accesses required

follows the reduction in the number of functional units allocated. Let t denote the functional

23

unit type with the maximum number of operations with in-degree zero. For any functional

unit reduction, let J0 = Jinal....allocation[c][t], and let fn = final....allocat-ion[c + l][t], where

c is the number of clock cycles before the reduction. Then, the new number of in memory

accesses Mc+i required for the reduced allocation is given by

Since we can compute the number of memory access required for the most parallel repre­

sentation directly from the basic blocks in O((J G J) 2) time, we may simply apply the above

formula to determine the increase in memory accesses caused by a reduced allocation. Each

application of the formula takes O(M) time where M denotes the number of operation

types.

Note that if the memory has multiple ports, we can simply divide the number of mem­

ory accesses for the most parallel implementation by the number of ports on the memory

and then apply the same formula to compute the number of accesses needed for reduced

allocations. We note, however, that the above technique is likely to be more accurate for

designs with one-port memories.

4 Experimental Results

Algorithm BSF has been implemented in C on a SUN SPARC 2 workstation and tested

on several signal processing benchmarks including a finite impulse response(FIR) filter, a

jacobian(Jac) computation for solving robot kinematic equations [PaMu93], and a linear

recurrence solver(LRS). In our experiments, we used an sth order FIR filter with 16 inputs

and a 4th order linear recurrence solver with 8 equations. The jacobian was computed

for a robot arm with 8 joints. These benchmarks were chosen because they are "real­

world" examples and are representative of modern signal processing computations. The

experimental results for algorithm BSF, both with and without memory access estimation,

are compared with a number of manual designs for the benchmarks [BaJG93]. It should be

noted that the library used for functional unit allocation is [Tosh90].

Table 2 shows the input parameter values used during the series of experiments. For

each operation type, the number of pipeline stages input to BSF is the same as in the

manual designs so that we can make a fair comparison. Note that we considered both non­

pipelined and pipelined designs for the FIR filter. The pipelined designs are denoted by

FIR_pl and FIR_p2. The last column in the table indicates the number of different input

descriptions tested for each design. For example, we tried three different filter descriptions,

row major(RM), column major(CM), and diagonal major(DM). It should be noted that

the input description does have some effect on the BSF output since there are presently

24

Design Clock Freq. Mem. Lat. Num. of Pipeline Stages Num. of Desc.
ADD MUL COMP

FIR 100 ns 100 ns 1 1 1 3
FIR_Fl 15 ns 10 ns 1 2 1 1
FIR_F2 12 ns 10 ns 2 3 1 1

.Jae 15 ns 10 ns 1 3 1 1
LRS 100 ns 100 ns 1 1 1 1

Table 2: BSF input parameters.

no transformations which can decide equivalence among arbitrary input descriptions. Also,

BSF's clock cycle input was different from the manual design clock frequency in some cases

(non-pipelined FIR) since BSF does not estimate chaining.

Experimental results for BSF without (with) memory access times are shown in Table 3

(Table 4). Since the output produced by BSF is a shape function mapping time in ns

onto area in gates, it is not possible for us to reproduce the entire function in our result

table. Instead, we show the "corner" points for the shape function (i.e. those points where

a reduction in cost occurs). For instance, in Figure 15, the "dotted" points on the shape

functions correspond to the corner points listed in Table 4. In addition, the points required

for computing BSF error with respect to manual designs are listed in the tables.

Let F: T -cl- C be a shape function and let (x, y) denote a manual design cost/performance

point. Obviously, to compute the error of F with respect to (x, y), we must compare (x, y)

with a point on F, say (xF,YF)· We select the point (xF,YF) on F which is closest in

"normalized" Manhattan distance to (x, y). Normalized Manhattan distance is defined as

follows. Let XN = Xmax - Xmin where Xmax (xmin) is the maximum (minimum) cost value

computed by BSF or appearing in a manual design. Similarly, let YN = Ymax - Ymin where

Ymax (Ymin) is the maximum (minimum) performance value computed by BSF or appearing

in a manual design. (By maximum performance value for BSF, we mean the value at which

no operation type has a functional unit allocation greater than 1.) Then, for two points

(x1, Y1) and (x2, Y2), the normalized Manhattan distance between them is given by

d = abs(x1 - x2) + abs(y1 - Y2).
XN YN

We used normalized rather than traditional Manhattan distance when selecting a reference

point because the normalized distance, in some sense, gives equal consideration to the cost

and performance values for both the BSF shape functions and the manual designs. We

define two kinds of percentage error for BSF shape functions, cost error and performance

error. The cost error of F with respect to (x, y) is given by abs(yp-y), and the performance
y

error of F with respect to (x, y) is abs(x:-x)

25

Example Algorithm BSF Hand Design % Error BSF Execution Time
Time FU Area Time FU Area Perf. Cost CPU Real
(ns) (gates) (ns) (gates) sec min: sec

FIR (RM) 6,500 11,968 55.14 2:09.58
8,000 11,968 8,000 11,968 0.00 % 0.00 %

8,000 11,454 0.00 % 4.49 %
8,100 5,992
14,000 5,992 14,000 5,992 0.00 % 0.00 %
17,200 4,498
17,300 3,004
17,699 3,004 20,800 3,004 14.90 % 0.00 %
17,700 1,510
31,000 1,510 31,000 1,510 0.00 % 0.00 %

FIR (CM) 8,900 11,968 56.33 2:17.45
9,600 11,968 9,600 11,968 0.00 % 0.00 %
10,500 5,992
16,800 5,992 16,800 5,992 0.00 % 0.00 %
19,600 4,498
19,700 3,004
20,100 1,510
31,000 1,510 31,000 1,510 0.00 % 0.00 %

FIR (OM) 6,500 11,968 56.42 2:05.77
8,099 11,968 9,600 11,454 15.63 % 4.49 %
8,100 5,992

16,800 5,992 16,800 5,992 0.00 % 0.00 %
17,200 4,498
17,300 3,004
17,699 3,004 20,800 3,004 14.90 % 0.00 %
17,700 1,510
31,000 1,510 31,000 1,510 0.00% 0.00 %

FIR_pl 225 6,368 2.00 3:42.82
390 6,368 480 6,368 18.75 % 0.00 %
405 3,184
750 3,184 825 3,184 9.09 % 0.00 %
765 1,592

1,530 1,592 1,530 1,592 0.00 % 0.00 %
FIR_p2 204 6,968 1.54 3:56.54

336 6,968 432 6,968 22.00 % 0.00 %
348 3,484
624 3,484 696 3,484 10.34 % 0.00 %
636 1,742

1,248 1,742 1,248 1,742 0.00 % 0.00 %
Jae 15,735 105,940 37.27 3:15.36

15,855 67,620
15,975 51,960
16,200 50,300
16,215 41,640
17,910 34,640
17,925 32,980
17,940 25,980
17,969 25,980 18,360 25,980 2.29 % 0.00 %
17,970 24,320
17,985 17,320
18,135 15,660
18,495 8,660
29,360 8,660 29,360 8,660 0.00 % 0.00 %

LRS 4,900 4,964 1.28 0:07.75
5,000 4,964 5,000 4,964 0.00 % 0.00 %
5,700 2,490
6,500 1,510
9,000 1,510 9,000 1,510 0.00% 0.00 %

Table 3: Shape functions without memory access time.

26

Example Algorithm BSF Hand Design % Error BSF Execution Time
Time FU Area Time FU Area Perf. Cost CPU Real
(ns) (gates) (ns) (gates) sec min: sec

FIR (RM) 12,100 11,968 55.14 2:05.83
18,000 11,968 18,000 11,968 0.00 % 0.00 %

18,000 11,454 0.00 % 4.49 %
18,500 5,992
33,000 5,992 33,000 5,992 0.00 % 0.00 %
50,100 4,498
50,400 3,004 50,400 3,004 0.00 % 0.00 %
51,600 1,510
62,000 1,510 62,000 1,510 0.00 % 0.00 %

FIR (CM) 13,500 11,968 56.33 2:12.45
19,899 11,968 21,600 11,968 0.08 % 0.00 %
19,900 5,992
42,000 5,992 42,000 5,992 0.00 % 0.00 %
51,500 4,498
51,800 3,004
53,000 1,510
76,260 1,510 76,260 1,510 0.00 % 0.00 %

FIR (DM) 12,100 11,968 56.42 2:12.96
18,499 11,968 21,600 11,454 14.35 % 4.49 %
18,500 5,992
39,600 5,992 39,600 5,992 0.00 % 0.00 %
50,100 4,498
50,400 3,004 50,400 3,004 0.00 % 0.00 %
51,600 1,510
74,000 1,510 74,400 1,510 0.00 % 0.00 %

FIR-Pl 570 6,368 2.34 3:26.32
630 6,368 630 6,368 0.00 % 0.00 %
960 3,184
975 3,184 975 3,184 0.00 % 0.00 %

1,695 1,592
1,800 1,592 1,800 1,592 0.00 % 0.00 %

FIR-P2 480 6,968 1.80 3:56.31
552 6,968 552 6,968 0.00 % 0.00 %
792 3,484
816 3,484 816 3,484 0.00 % 0.00 %

1,380 1,742
1,464 1,742 1,464 1,742 0.00 % 0.00 %

Jae 15,795 105,940 35.95 3:24.29
15,975 67,620
16,050 51,960
16,380 50,300
16,395 41,640
18,150 34,640
18,165 32,980
18,240 25,980
18,240 25,980
18,254 25,980 18,720 25,980 2.56 % 0.00 %
18,255 24,320
18,390 17,320
18,405 15,660
19,275 8,660
30,320 8,660 30,320 8,660 0.00 % 0.00 %

LRS 8,900 4,964 1.70 0:18.95
9,400 4,964 9,400 4,964 0.00 % 0.00 %

13,000 2,490
21,000 1,510
21,300 1,510 21,300 1,510 0.00% 0.00 %

Table 4: Shape functions with memory access time.

'27

BSF's average cost error over the 22 manual designs 0.41 % regardless of whether or

not memory access time is considered. The average performance error for BSF is 4.90 %

without memory access times and 0.77 % with memory access times. Note, however, that

in most cases both the cost and performance errors are zero. This clearly demonstrates that

BSF can provide quite accurate information to the designer.

Figures 15(a) and 15(b) illustrate BSF shape functions (with memory access times),

plotted against manual designs, for the FIR filter (row major description, non-pipelined)

and jacobian examples, respectively.

Finally, we note that BSF execution times are relatively fast for examples of all sizes.

For instance, the jacobian data flow graph has over 100 nodes and must be computed for

8 loop iterations; however, the execution time is only slightly over 3 minutes, which is not

substantially larger than execution times for the other examples. Also, the response times

for examples tested with and without memory access times are very similar. So, while

assessment of memory access times greatly improves the usefulness of our result to the

designer, it does not significantly increase execution time. It should be noted that BSF is

a prototype implementation, and more careful coding might improve run times.

__., BSFShapeFunoton
12

X Manual Design

11

10

12 ao " "
&•cU:lon Tim• (lnthous.,d• of ns)

(a) FIR filler (row major)

110

100

90

I ao

~ 70

il
~ eo

g 50

~
40

30

20

10

10

__... BSF Slape Fun::lion

X Ma.mal De&9'1

15 20 .. 30 ••
Execution Tim•{ln thC1.1•1nd• of ns)

(b) Jacobian

Figure 15: Shape functions for FIR filter and Jacobian examples.

5 Conclusions and Future Work

In this paper, we have presented a probabilistic algorithm for cost/performance shape

function generation in interactive synthesis. The algorithm works on descriptions with

28

conditionals and bounded-iteration loops with any level of nesting. Pipelined functional

units and memory access times are considered. Algorithm BSF has been implemented

in C on a SUN SPARC 2 workstation, and tested on several examples including an FIR

filter, a linear recurrence solver, and a Jacobian computation used to solve robot kinematic

equations in real time. Experimental results show that the algorithm produces at most a

.5 % (22 %) cost (performance) error as compared to manual designs. The average cost error

is 0.41 %, and the average performance error is 4.90 % (0.77 %) without (with) memory

access times. The execution time is less than 4.00 minutes in real time (the time that

the user must sit and wait to get results) for all examples considered. Therefore, we have

demonstrated feasibility of "good" cost/performance tradeoff tools in interactive synthesis

environments.

In the future, we would like to develop interactive synthesis algorithms for analyzing

other design cost metrics such as packaging cost, yield, and testability.

Acknowledgements

This work was partially supported by Semiconductor Research Corporation Grant #92-

DJ-269 and National Science Foundation Grant MIPS 8922851, and we gratefully acknowl­

edge their support. We also extend our gratitude to Frank Park for providing us with

the robot kinematics example and to Smita Bakshi and Hsiao-Ping Juan for supplying the

manual designs. Furthermore, we would like to thank Loganath Ramachandran for lending

us the VHDL to intermediate representation compiler.

References

[BaJG93] S. Bakshi, H.-P. Juan, and D. D. Gajski, "Architectural Exploration," Techni­

cal Report #93-10, Department of Information and Computer Science, University of

California at Irvine.

[BrGa90] F. Brewer and D. Gajski, "Chippe: A System for Constraint-Driven Behavioral

Synthesis," IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, vol. 9, no. 7, July 1990.

[Camp91] R. Camposano, "Path-Based Scheduling for Synthesis,'' IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol.10, no. 1, January 1991.

[CPTR89] C.M. Chu, M. Potkonjak, M. Thaler, and J. Rabaey, "HYPER: An Interactive

Synthesis Environment for High Performance Real Time Applications", Proceedings of

the International Conference on Computer Design, pp. 432-435, 1989.

29

[DeNe89] S. Devadas and R. Newton, "Algorithms for Hardware Allocation in Data Path

Synthesis," IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Sy.stems, vol. 8, no. 7, July 1989.

[GMKR92] P. Gutberlet, J. Muller, H. Kramer, and W. Rosenstiel, "Automatic Module

Allocation in High-Level Synthesis," Proceeding.s of the European Design Automation

Conference (EURO-DA.CJ, pp. 328-333, 1992.

[JMSW91] R. Jain, A. Mujumdar, A. Sharma, and H. Wang, "Empirical Evaluation of

Some High-Level Synthesis Scheduling Heuristics," Proceeding.s of the 28th Design Au­

tomation Conference, pp. 210-215, 1991.

[PaMu93] F. C. Park and A. P. Murray, "Computational and Modeling Aspects of the

Product-of-Exponentials Formula for Robot Kinematics," To appear in IEEE Tran.s­

actions on Automatic Control, 1993.

[PaKn89] P. G. Paulin and J.P. Knight, "Force-Directed Scheduling for the Behavioral Syn­

thesis of ASICs," IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, vol. 8, no. 6, June 1989.

[Tosh90] Toshiba ASIC Gate Array Library, Toshiba Corporation, Tokyo, Japan, 1990.

[WRJF92] R.A. Walker, S. Ramabadran, R. Joshi, and S. Flatland, "Increasing User In­

teraction During High-Level Synthesis", Proc. MICR0-92, 1992.

30

