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Featured Article

Hippocampal thinning linked to longer TOMM40 poly-T variant lengths
in the absence of the APOE ε4 variant
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Karen J. Millerb,c,e, Gary W. Smallb,c,e, David A. Merrillb,c,e, Susan Y. Bookheimera,b,c,f
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Abstract Introduction: The translocase of outer mitochondrial membrane 40 (TOMM40), which lies in link-
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age disequilibrium with apolipoprotein E (APOE), has received attention more recently as a prom-
ising gene in Alzheimer’s disease (AD) risk. TOMM40 influences AD pathology through
mitochondrial neurotoxicity, and the medial temporal lobe (MTL) is the most likely brain region
for identifying early manifestations of AD-related morphology changes.
Methods: In this study, we examined the effects of TOMM40 using high-resolution magnetic reso-
nance imaging in 65 healthy, older subjects with and without the APOE ε4 AD-risk variant.
Results: Examining individual subregions within the MTL, we found a significant relationship be-
tween increasing poly-T lengths of the TOMM40 variant and thickness of the entorhinal cortex
only in subjects who did not carry the APOE ε4 allele.
Discussion: Our data provide support for TOMM40 variant repeat length as an important contributor
to AD-like MTL pathology in the absence of APOE ε4.
Published by Elsevier Inc. on behalf of the Alzheimer’s Association.
Keywords: APOE; TOMM40; Hippocampus; Alzheimer’s disease; MRI; Entorhinal cortex
1. Introduction

For more than two decades, the apolipoprotein E (APOE)
gene has been consistently identified as the primary risk
gene for late-onset Alzheimer’s disease, accounting for
approximately 50% of the genetic risk for AD [1–3].
Despite the strength of the APOE ε4 risk variant in
predicting AD, population studies of APOE allele
frequency among AD patients indicate that 36%–50% of
patients do not carry the ε4 variant [4], and that other signif-
icant genetic contributions to disease risk and pathological
thor. Tel.: (310) 794-1021; Fax: (310) 825-8334.

lement@ucla.edu
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progression remain unidentified or uncharacterized for their
role in AD [5]. Possession of the ε4 variant of the APOE
gene does not provide sufficient sensitivity, selectivity, or
power to be used as a predictive tool for AD diagnosis [6],
and much of the last decade of genetics research in AD
has focused on identifying other genetic markers related to
disease risk and age of onset in the hopes of identifying those
more likely to experience future cognitive decline.

Several studies implicate APOE’s neighbor on chromo-
some 19, the translocase of outer mitochondrial membrane
40 (TOMM40) homolog gene, in risk for AD [4–7]. The
variant (rs10524523, “523”) in intron 6 of the TOMM40
gene is a variable length poly-T sequence with lengths clas-
sified as short (14–20 repeats; i.e., “S”), long (21–29 repeats,
i.e., “L”), or very long (.29 repeats, i.e., “VL”). The number
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of T residues in the homopolymer, “N,” is 35, and the spe-
cific variation described by rs10524523 is a 19-base pair
deletion, making the homopolymer T16 (N5 16 T residues)
the variant allele [8,9]. One of the earliest studies of this
variant concluded that the longer length poly-T allele in-
creases risk for AD and decreases age of onset [10]; this
finding was replicated in an independent study a few years
later [11]. Linkage disequilibrium between TOMM40 and
APOE genes ensures that the L poly-T repeat in the
TOMM40 gene is almost always (with rare exceptions) in-
herited with the APOE ε4 allele. However, the ε3 allele is
most commonly with either a VL or an S poly-T variant,
again, with rare exceptions [10,12]. In individuals
homozygous for the ε3 variant, the VL variant was found
to be associated with a higher risk and earlier age of onset
for AD, whereas S variant carriers had a later age of onset
[10]. A review of the APOE-TOMM40 phylogenetic field
suggests that the discovery of the polymorphism in
TOMM40 may improve AD-risk prediction [13].

Recent results suggest that the protein encoded by the
TOMM40 gene may affect the development of AD via mito-
chondrial function [12,14]. The protein that TOMM40
encodes, TOM40, is a mitochondrial import channel protein
that facilitates the transport of amyloid-b protein precursor
(APP) and amyloid-b (Ab) transport to the mitochondria
[15,16]. The TOM40 protein acts as a chaperone,
expediting the movement of preproteins through the
channel and assembling them posttranslationally in the
mitochondrion [16]. Because APOE ε4, Ab, and APP have
been found to influence function and motility of mitochon-
dria, it has been postulated that APOE and TOMM40 genes
might mediate disease risk, and lower age of onset, through
mitochondrial dysfunction [10,17–19]. Mitochondrial
dysfunction is a well-documented factor in the pathogenesis
of several age-related diseases, includingParkinson’s disease,
amyotrophic lateral sclerosis, Huntington’s disease, and AD
[20–23].

In homozygous APOE ε3/ε3 subjects, a phylogenetic
experiment suggested that possession of the VL poly-T
repeat was associated with increased disease risk and earlier
age of onset [10]. A separate study revealed similar findings;
possession of the VL poly-T variant in subjects homozygous
for ε3 was linked to developing AD at a higher rate when
they were �79 years old [11]. The authors conclude that
in the absence of ε4, longer poly-T variants increase the like-
lihood of developing AD, where the ε3 allele may be linked
to either an S or a VL poly-T repeat [10].

To pinpoint the biologically relevant endophenotypes that
relate to the TOMM40 gene, it is crucial to investigate
healthy individuals using sensitive metrics to assess the
very earliest manifestations of pathophysiological changes
in the brain, before the onset of clinical symptoms. Although
hippocampal volume is a hallmark brain imaging phenotype
in AD, substantial work has shown that the first brain
changes in AD begin in entorhinal cortex (ERC) [24]. Addi-
tionally, subregional analysis of the medial temporal lobe
(MTL), especially in ERC, can be more sensitive to possible
preclinical morphology differences in both nondemented
APOE ε4 subjects [25] and MCI patients [26] than volu-
metric measures. Our group [27–29] and others [30,31]
have used high-resolution MRI combined with a cortical un-
folding technique that improves visibility of the MTL to
investigate subregional changes in this area, even in nonde-
mented, cognitively intact subjects who carry the at-risk ε4
variant [25].

The aim of the present study was to use high-resolution
imaging combined with subregional data analysis tech-
niques in nondemented, older subjects to investigate the
impact of rs10524523 poly-T alleles on the MTL in vivo,
which is the site of the very earliest structural changes in
AD [32]. We focused analyses on subjects who did not carry
the ε4 risk variant of APOE, to investigate the contribution of
the poly-T variant length in the absence of other known
genetic risk attributable to the APOE gene.
2. Methods

2.1. Participants

The study was conducted with the approval of the Univer-
sity of California, Los Angeles Institutional Review Board;
all subjects signed informed consent forms before participa-
tion. Participants were drawn from a larger study of predic-
tors of cognitive decline by the UCLA Longevity Center
[33,34]. Briefly, volunteers from the local community were
recruited through local advertisements. Subjects were
screened over the phone by research staff of the Longevity
Center. However, subjects meeting criteria for AD or any
other dementia were excluded from the study [35]. Subjects
were also excluded for any history of substance abuse, head
trauma or other major systemic disease affecting brain func-
tion, a history of neurological or psychiatric disorders, and
hypertension or cardiovascular disease.

During their visit to the Longevity Center, subjects under-
went neuropsychological testing and a clinical interview, in
addition to a medical examination and laboratory screening
including blood tests, to rule out medical conditions that
could affect cognitive performance. The present study was
conducted on a subset of 65 of these participants (see
Table 1) who had successfully completed genotyping for
both APOE and TOMM40 and cognitive and imaging pro-
cedures.

2.2. Neuropsychological testing

Neuropsychiatric test scores were divided into the
following domains of cognitive function: processing speed
(trail making test, part A; Stroop test, word reading speed;
Weschler adult intelligence scale-III digit symbol), memory
encoding (Buschke-Fuld selective reminding test, consistent
long-term retrieval; Weschler memory scale-II, logical
memory I and verbal paired associates I), delayed memory
(Weschler memory scale: logical memory II and verbal



Table 1

Demographic and clinical characteristics of study participants

Cohort

APOE ε4 noncarriers

APOE ε4 carriersS/S group S/L* group L*/L* group

Summed TOMM40

poly-T length ,35

35 , Summed TOMM40

poly-T length ,65

Summed TOMM40

poly-T length .65

35 , TOMM40

poly-T length ,67

n 5 10 n 5 18 n 5 13 n 5 24

Mini-Mental State Examination score 28.8 6 0.8 29.1 6 1.3 28.5 6 1.4 28.7 6 1.0

Age, y 66.1 6 11.0 62.27 6 7.7 62.2 6 9.0 64.4 6 9.9

Educational achievement, y 15.6 6 3.2 16.2 6 1.5 16.7 6 2.6 16.7 6 3.1

Female sex, n (%) 6 (60) 15 (83.3) 9 (69.2) 13 (54.2)

Family history of dementia, n (%) 6 (60) 10 (55.5) 11 (84.6) 13 (54.2)

Hamilton Depression Scale score 1.2 6 1.9 2.4 6 3.2 1.8 6 3.4 2.5 6 3.5

Ethnicity (no. of African-American [%],

Caucasian [%], Asian [%], Latino [%])

3 (30), 0 (0), 7 (70), 0 (0) 1 (6), 0 (0), 17 (94), 0 (0) 0 (0), 1 (8), 11 (85), 1 (8) 1 (4), 1 (4), 20 (83), 2 (8)

Abbreviations: APOE, apolipoprotein E; TOMM40, translocase of outer mitochondrial membrane 40.

NOTE. Subjects were divided into ε4 carriers and noncarriers to begin with, and then noncarriers were subdivided according to the combined length of both

TOMM40 variants. There were no significant differences across the three TOMM40 variant length groups, or between APOE ε4 carrier and noncarrier groups,

according to the characteristics listed in the table.
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paired associates II; Rey-Osterrieth complex figure, delayed
recall; Buschke-Fuld selective reminding test, delayed
recall), and executive functioning (trail making test part B;
verbal fluency FAS and animal naming tests; Stroop test,
interference). Studies using these domains have been re-
ported elsewhere [36–40]. We converted the raw scores to
Z scores (Z 5 [raw score 2 mean]/standard deviation) and
created a domain Z score by averaging the Z scores
belonging to the cognitive tests in each domain.
2.3. DNA sampling and genotyping

DNA samples were aliquoted on 96-well plates for deter-
mination of both APOE and TOMM40 genotypes. Genotyp-
ing for the APOE gene was done by the UCLA Center for
Neurobehavioral Genetics (principal investigator, D. Gesh-
wind, MD, PhD) using standard methods [41]. Genotyping
for TOMM40 using the rs10524523 (“523”) allele was
completed at Polymorphic DNA Technologies (Alameda,
CA, USA, http://www.polymorphicdna.com). TOMM40
polymorphisms were analyzed using polymerase chain reac-
tion and bidirectional direct Sanger sequencing of the DNA
templates on an Applied Biosystems 3730xl DNA Analyzer
(Applied Biosystems, Inc., Carlsbad, CA, USA) followed by
sequence data analysis. This polymorphism, 523, is a homo-
polymer length polymorphism (poly-T) located in an in-
tronic region of TOMM40. The poly-T lengths for each
chromosome were converted into the S, L, and VL standard
labeling [10].
2.4. MRI acquisition

MRI scans were performed on a Siemens 3T Allegra
head-only scanner. Two scans were acquired: (1) sagittal
T1-weighted magnetization-prepared rapid acquisition
gradient echo volumetric scans were acquired to serve as a
guide in sulcal visualization during segmentation procedures
in the same way an atlas is used as a visual reference (repe-
tition time: 2300 ms, echo time: 2.93 ms, slice thickness:
1 mm, 160 slices, in-plane voxel size 1.3 ! 1.3 mm, field
of view [FOV] 256 mm); (2) high-resolution oblique coronal
T2-weighted fast-spin echo sequence scan (repetition time:
5200 ms, echo time: 105 ms, slice thickness: 3 mm, skip
0, 19 slices, in-plane voxel size: 0.39 ! 0.39 mm, FOV:
200 mm).
2.5. Whole-brain structural imaging

To calculate intracranial volume (ICV) estimates to
normalize subregional hippocampal thickness values, we
used FreeSurfer [42] on whole-brain T1-weighted scans.
This software suite uses tissue contrast to determine the
boundary between gray matter (GM), white matter (WM),
and the pial surfaces of the brain to calculate the difference
between vertices plotted as a mesh surface for each of the
layers across the entire cortex. After the automated portion
of the FreeSurfer pipeline is complete, each subject’s scan
is visually checked for accuracy. Minimal manual edits
were completed by a single individual when necessary
(TMH). ICV values from FreeSurfer were used to normalize
hippocampal complex thickness as detailed subsequently.
2.6. High-resolution hippocampal structural imaging

Cortical unfolding is used to improve visualization of the
convoluted MTL cortex by flatting the entire three-
dimensional (3D) volume into a 2D flat map [25,27,29].
We use a technique that maximizes resolution in-plane
(0.39 ! 0.39 mm), where there is significant variability in
subregional structure, and increases signal-to-noise ratio
by using thicker slices in the long axis where there is less
variability in structure. We acquired T2 images

http://www.polymorphicdna.com
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perpendicular to the long axis of the hippocampus to mini-
mize the variability in slice-to-slice changes across the im-
ages. Thus, we maximize in-plane resolution and recover
signal by increasing thickness in the invariant longitudinal
axes, creating maximally resolved anisotropic voxels, while
minimizing variability from slice to slice [27–29]. We begin
by manually definingWM and cerebral spinal fluid (CSF) on
the in-plane oblique coronal images. To maximize segmen-
tation, these original images are interpolated by a factor of 7.
Then, up to 18 continuous layers of GM are grown out from
the boundary of WM, using a region-expansion algorithm to
cover all pixels of GM between WM and CSF space
(Fig. 1A). Boundary demarcations divided the following
subregions encompassed by GM: cornu ammonis (CA)
fields 1, 2, and 3, the dentate gyrus (DG), subiculum (sub),
ERC, perirhinal cortex, parahippocampal cortex (PHC),
and the fusiform gyrus (FUS) (Fig. 1B and C). Because of
limits in resolution in CA fields 2 and 3 and DG, we treat
these regions as a single entity (CA23DG). This strip of
GM is used as the input for the unfolding procedure, an iter-
ative algorithm based on multidimensional scaling (http://
ccn.ucla.edu/wiki/index.php/Unfolding). Boundary delinea-
tions were projected to their corresponding coordinates in
flat map space (Fig. 1D).
Fig. 1. High-resolution hippocampal image processing and thickness calculations

the strip of gray matter (GM) in the medial temporal lobe that encompasses the sub

in blue. This is done by manually segmenting cerebrospinal fluid and white matter

layer reach the cerebrospinal fluid boundary. (B) The boundaries between media

Demarcations shown here include CA23DG j CA1 (orange), CA1 j subiculum (sub

low). (C) Each subregion is considered separately for cortical thickness calculation

location in two-dimensional flat map space and then extended for form complete an

in in-plane space as a gray-scale map of thickness values between maximum (wh
To calculate thickness, we computed the distance for each
voxel in in-plane space to the nearest non-GM voxel, we
took the maximum distance value in 2D voxels of the corre-
sponding 3D voxels across all layers and multiplied by two
and calculated the mean thickness in subregions by aver-
aging thickness of all 2D voxels (Fig. 1E). Cortical thickness
within subregions was averaged over both hemispheres.

We corrected for differences in head size across subjects
by normalizing hippocampal thickness values to ICV esti-
mates. The following formula was used to normalize thick-
ness values: ICV-corrected thickness 5 ([thickness in mm/
ICV in mm3] ! 106). Multiplying by 106 results in values
at the same order of magnitude as original thickness
estimates.
2.7. Statistical analyses

Statistical models were used to investigate the effect of
TOMM40 genetic variant lengths on subregional MTL thick-
ness in the absence of theAPOE ε4 variant. As has been done
previously in the literature to condense the largest number of
potential genotype combinations into subgroups, the L and
VL alleles were pooled into an L* group; participants with
the S/S genotype were compared with those carrying only
. (A) The goal of high-resolution hippocampal image processing is to isolate

regions of the hippocampus proper and surrounding neocortex, shown in (A)

(WM) and growing sequential layers of GM from the edge of WM until the

l temporal lobe subregions are marked according to anatomical landmarks.

) (red), parahippocampal gyrus j sub (light green), and fusiform gyrus (yel-

s. (D) Demarcations are projected from in-plane space to the corresponding

d smooth boundaries between subregions. (E) Cortical thickness is visualized

ite) and minimum (black) values.

http://ccn.ucla.edu/wiki/index.php/Unfolding
http://ccn.ucla.edu/wiki/index.php/Unfolding
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one S allele (pooled S/L and S/VL, hereinafter S/L*) and
also compared with participants carrying no S alleles
(pooled L/L, L/VL, and VL/VL, hereinafter L*/L* [9]). To
assess whether varying TOMM40 poly-T lengths were asso-
ciated with thinner hippocampal cortex in individual subre-
gions in the absence of APOE ε4, we computed a
multivariate analysis of covariance (MANCOVA) with
thicknesses of all subregions as the dependent variables, cat-
egorical groups of additive poly-T lengths as the predictors
(S/S, S/L*, and L*/L*), and age, education, sex, and
MMSE as covariates. To assess whether varying TOMM40
poly-T lengths were associated with cognitive performance
in the absence of APOE ε4, we computed a MANCOVA
with Z-scaled cognitive performance scores as dependent
variables, poly-T lengths as predictors (S/S, S/L*, and L*/
L*) and age, education, sex, and MMSE as covariates.
3. Results

Of the 65 subjects enrolled, 24 subjects carried at least
one copy of the ε4 variant for the APOE gene and 41 were
non-ε4 carriers. Among the APOE ε4 noncarriers, the
APOE genotype was as follows: 1 APOE ε2/ε2, 3 APOE
ε2/ε3, and 37 APOE ε3/ε3 subjects. There were no differ-
ences in clinical and demographic variables across the
groups (Table 1); however, we also included age, education,
sex, and MMSE score as covariates in the multivariate anal-
ysis. Ethnicity is also reported in Table 1; however, the
Fig. 2. Distribution of translocase of outer mitochondrial membrane 40 (TOMM40

rized first by whether they were APOE ε4 carriers or noncarriers, then grouped acc

distribution of non-ε4 carrier subjects is shown in panel A, whereas ε4 carriers are

in the ε3/ε3 cohort were either S (,21) or VL (�30). In agreement with the previou

TOMM40 variants [10], most ε4 carriers (n 5 20) possessed as least one L TOM

carriers showed a distribution (A) where most subjects possessed two short S cop

variant (n 5 12), or a heterozygous combination of S/VL (n 5 16). As demon

sake, we chose to continue the nomenclature for S/L and S/VL carriers to be po

L/VL, and VL/VL) were pooled into an L*/L* group.
number of subjects enrolled in each category was too small
to study the effect of ethnicity on TOMM40 poly-T lengths
and hippocampal thickness separately. Fig. 2 shows the
breakdown of TOMM40 variant lengths among subjects by
APOE genotype.

TheMANCOVA revealed a significant relationship between
longer poly-T lengths and thickness (F(14,54) 5 3.61,
P 5 .0003, excluding the ε2s: F(14,46) 5 3.29, P 5 .001) in
non-ε4 carriers. Follow-up univariate analyses indicated that
ERC thickness was significantly associated with longer poly-
T lengths (F(2,33) 5 16.21, P , .0001; excluding the ε2s:
F(2,30) 5 14.67, P , .0001), with the L*/L* group showing
significantly reduced thickness compared with both the S/L*
and S/S groups (both P , .0001) (Fig. 3). In addition, PHC
thickness was marginally associated with increasing poly-T
lengths (F(2,33) 5 3.22, P 5 .054; excluding the ε2s:
F(2,30)5 3.28, P5 .051). No other subregions showed signif-
icant differences between increasing poly-T variant lengths in
either ε4-carriers or noncarriers (Fig. 4). We did not find a sig-
nificant relationship between TOMM40 poly-T lengths and
Z-scaled cognitive score in any of the five domains of cognitive
function.
4. Discussion

We show here that in older, normal control subjects who
do not carry the APOE ε4 variant, longer TOMM40 poly-T
lengths are significantly associated with thinner ERC. Our
) variant lengths by apolipoprotein E (APOE) group. Subjects were catego-

ording to the combined length of both TOMM40 poly-T length variants. The

shown in panel B. Similar to the previous reports [7,43], most poly-T lengths

s reports that the ε4 variant is typically bound by linkage disequilibrium to L

M40 variant, although four subjects were homozygous for VL (B). Non-ε4

ies of the TOMM40 variant (S/S, n 5 10), two copies of the very long VL

strated, there were no non-APOE ε4 subjects. However, for consistency’s

oled into an S/L* group much like participants carrying no S alleles (L/L,



Fig. 3. Entorhinal cortex (ERC) thickness for ε4 non-carriers by translocase

of outer mitochondrial membrane 40 (TOMM40) variant length. Averaged

ERC thickness for subjects in each of the TOMM40 summed variant length

group (S/S group: 2.45 mm, S/L* group: 2.40 mm, and L*/L* group:

2.13 mm). Univariate analyses indicated that ERC thickness was signifi-

cantly associated with increasing poly-T lengths (F(2,33) 5 16.21,

P , .0001), with the VL group showing a significantly reduced thickness

compared with both the L and S groups (both P , .0001).
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results demonstrate an association between the TOMM40
poly-T variant and subregional morphological differences
Fig. 4. Hippocampal complex unfolding reveals subregional relationship with incre

poly-T variants. A cortical unfolding procedurewas used to produce a flat map of th

the statistical association between TOMM40 poly-T variant length and cortical th

neocortex. Results revealed that ERC thickness was significantly associated with i

icantly reduced thickness compared with both the L and S groups (both P , .000

associated with increasing poly-T lengths (P 5 .054). No other subregions showe

ε4 carriers or noncarriers.
in the MTL only in subjects who do not carry the APOE
ε4 risk variant. The pattern of cortical thinning in subjects
with low APOE risk, but elevated TOMM40 risk, closely
resembles that seen in healthy, older APOE ε4 carriers.
To our knowledge, this is the first investigation to investi-
gate the effect of the TOMM40 gene on brain morphology
in MTL subregions. These data highlight the importance of
assessing multiple risk variants to detect morphological
differences in healthy, older adults before the possible
onset of clinical symptoms. Our results also underscore
the importance of investigations that assess the integrity
of the ERC in healthy, older adults when assessing risk
for AD and highlight the utility of imaging tools that isolate
individual subregions of the MTL, including the ERC. We
suggest that, given the growth of automated hippocampal
segmentation tools in recent years [44], assessing the struc-
tural integrity of the ERC plays a crucial role in assessing
risk for AD, even in nondemented healthy, older control
subjects.

Novel brain imaging techniques reveal structural changes
that may be phenotypic in prodromal AD. For decades, the
most prominent genetic marker for preclinical manifesta-
tions of the disease has been theAPOE ε4 variant on chromo-
some 19. TOMM40’s location in proximity to theAPOE gene
has prompted queries for whether the effects noted for this
asing length of translocase of outer mitochondrial membrane 40 (TOMM40)

e hippocampal complex. Regions are color coded according to the strength of

ickness in individual subregions within the hippocampus and surrounding

ncreasing poly-T lengths (P , .0001), with the VL group showing a signif-

1). In addition, parahippocampal cortex thickness was almost significantly

d significant differences between increasing poly-T variant lengths in either
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newly discovered gene areworking in concert with, indepen-
dently of, or instead of APOE’s effects. Because TOMM40 is
in strong linkage disequilibrium with APOE on chromosome
19, the ε4 allele of APOE is almost exclusively linked to the
L poly-T variant. As suggested in an article detailing the full
impact of the TOM40-mediated mitochondrial protein
import mechanism in aging [15], the effects of the VL/VL
genotype may be associated with presymptomatic events in
younger people that are masked by later pathology in
advanced AD. Several studies have suggested that SNPs
within TOMM40 are associated with increased risk for AD
[45–55] or associated endophenotypes of the disease,
including cognitive performance [56] and hippocampal atro-
phy [57] independently of APOE. However, other studies
failed to replicate the association between TOMM40 variants
and risk for AD [58,59]. These results underscore the
importance of further investigations into the relationship
between these multiple risk variants and suggest the need
for investigations in younger, healthy subjects before the
appearance of more widespread brain changes in later
disease stages.

The nonspecific nature of APOE’s effects in AD was the
original impetus leading investigators to postulate that other
genes/proteins in the chromosomal interval containing
APOEmight be responsible for the wide variation in genetic
risk associated with AD [10,45]. The ε4 risk variant is
neither necessary nor sufficient for disease onset, and
genetics research alone is unlikely to definitively diagnose
AD [60]. However, identifying which markers have the
greatest sensitivity and specificity among those identified
as markers for AD risk will allow us to assess and follow
subjects with the greatest likelihood of cognitive decline
related to genetic risk for AD-onset over time, thereby
strengthening the likelihood of maximizing the effect of cur-
rent therapeutic interventions and testing novel therapies as
they are developed. Additionally, within this analysis, the
four subjects who carried at least one copy of the APOE
ε2 variant were analyzed in the non-APOE ε4 group as the
intention was to investigate the effect of TOMM40 poly-T
length in the absence of the APOE ε4 variant. The data
here are too small to analyze APOE ε2 subjects separately,
but we suggest that in future, larger datasets, the question
of whether TOMM40-associated morphology differences
exist in APOE ε2 carriers is worthy of investigating.

It is noteworthy that the genotype and family history
of AD distribution in the population studied here differs
from that found in a random sampling of the general pop-
ulation. Typically, 20%–25% of the general public
carries at least one copy of the ε4 variant [61–63],
whereas in the present study, 37% carried at least one
APOE ε4 copy. Additionally, depending on genotype,
54%–85% of subjects in this study reported a family
history of dementia compared with 10% in the general
population.

Our recruitment method yielded a sample of highly
motivated, physically healthy subjects concerned about
age-related memory problems and resulted in a sample
enriched for possession of the ε4 risk variant. Although
the sample may not be representative of the general popu-
lation, having a higher concentration of subjects with the
APOE ε4 variant does not explain the cortical thickness
differences in ERC between the genetic groups. Addition-
ally, as mentioned in the statistical methods section, family
history was used as a covariate, ensuring any effect of that
factor was not responsible for the morphology results.
Finally, genotype and family history percentages reported
here are similar to those reported in our laboratory
[25,64,65] and others [66,67].

Additional limitations must also be acknowledged. The
sample size is small, and, unfortunately, the ethnic break-
down across the groups resulted in limited diversity for sta-
tistical analysis. The analytical method of cortical
unfolding reported here is an extremely time-consuming
technique. However, advances in imaging methodology,
both in image acquisition and in data analysis, are expected
to make more rapid analysis possible in the near future.
Larger analyses should address race and ethnicity given
that they are known to vary with dementia risk [68] and
are also suspected to vary with TOMM40 variant length
[69]. Finally, we also acknowledge that future studies
will be more powerful in detecting differences in
morphology associated with genetic risk using longitudinal
assessment as opposed to the cross-sectional analysis we
report here [70].

These results demonstrate specific subregional morpho-
logical changes within the MTL related to the TOMM40
gene in the absence of the APOE ε4 risk factor. Identifying
relationships between gene-brain risk metrics in the
absence of the APOE ε4 allele promises to shed light on
the question of which ε4 negative subjects are at greater
risk for AD progression. As clinical trials of novel AD
treatments continue, identifying biomarkers that isolate
subjects at greater risk for AD than the general population
will enhance our ability to identify subjects likely to benefit
from these interventions and demonstrate results from
effective treatments.
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RESEARCH IN CONTEXT

1. Systematic review: Several studies implicate apoli-
poprotein E (APOE)’s neighbor on chromosome
19, translocase of outer mitochondrial membrane
40 (TOMM40), in Alzheimer’s disease (AD) risk.
In homozygous APOE ε3 subjects, a phylogenetic
experiment suggested that possession of longer-
length poly-T repeats was associated with increased
disease risk and earlier age of onset, but further
structural magnetic resonance imaging studies have
shown mixed results.

2. Interpretation: To our knowledge, this is the first
study to investigate the effect of TOMM40 on
morphology in medial temporal lobe subregions
and show thinner entorhinal cortex (ERC) in older,
heterogeneous APOE ε3 control subjects with longer
TOMM40 poly-T lengths. We focused on subjects
who do not carry the ε4 risk variant of APOE, to
investigate the contribution of the poly-T variant
length in the absence of APOE risk.

3. Future directions: Our results underscore the impor-
tance of assessing the ERC in healthy, older adults
when investigating risk for AD and highlight the
importance of identifying gene-brain risk metrics in
the absence of APOE ε4.
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