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Contemporary Mathematics

Motivic Serre group, algebraic Sato-Tate group and

Sato-Tate conjecture

Grzegorz Banaszak and Kiran S. Kedlaya

Abstract. We make explicit Serre’s generalization of the Sato-Tate conjec-
ture for motives, by expressing the construction in terms of fiber functors
from the motivic category of absolute Hodge cycles into a suitable category
of Hodge structures of odd weight. This extends the case of abelian varietes,
which we treated in a previous paper. That description was used by Fité–
Kedlaya–Rotger–Sutherland to classify Sato-Tate groups of abelian surfaces;
the present description is used by Fité–Kedlaya–Sutherland to make a similar
classification for certain motives of weight 3. We also give conditions under
which verification of the Sato-Tate conjecture reduces to the identity connected
component of the corresponding Sato-Tate group.

1. Introduction

In [Se2], Serre gave a general approach, in terms of the motivic category for
numerical equivalence, towards the question of equidistribution of Frobenius ele-
ments in families of l-adic representations; this approach puts such questions as
the Chebotarev density theorem and the Sato-Tate conjecture in a common frame-
work. Serre revisited this topic in [Se3], making the description somewhat more
explicit. The purpose of this paper is to follow in this direction, expressing Serre’s
construction in terms of fiber functors from the motivic category of absolute Hodge
cycles into a suitable category of Hodge structures of odd weight. This extends our
previous paper [BK], in which we carried out this program for abelian varieties;
this was motivated by the immediate application to the classification of Sato-Tate
groups of abelian surfaces in [FKRS]. Similarly, the results of this paper are used
in [FKS] to carry out a similar classification for a special class of motives of weight
3, and are expected to find further use in similar classifications for other classes
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2 GRZEGORZ BANASZAK AND KIRAN S. KEDLAYA

of motives of odd weight. (Some modifications are needed to handle cases of even
weight, such as K3 surfaces.) The organization of the paper is as follows.

In chapter 2, we briefly recall some facts about Hodge structures and Mumford-
Tate groups in a fashion suitable for our exposition.

In chapter 3, we extend the notion of twisted decomposable Lefschetz group,
introduced in [BK], to Hodge structures with some extra endomorphism structure.
The twisted decomposable Lefschetz group (Definition 3.4) is the disjoint sum of
Galois twists (Definition 3.3) of the Lefschetz group.

In chapter 4, we work with Hodge structures associated with families of l-adic
representations and prove basic results concerning relations between group schemes

Galg
l,K,1 and Galg

l,K .

In chapter 5, we state the algebraic Sato-Tate conjecture for families of l-
adic representations associated with Hodge structures. We also restate the Sato-
Tate conjecture in this case and prove some basic properties of the algebraic Sato-
Tate group and the Sato-Tate group. In particular, under the algebraic Sato-Tate
conjecture, we establish the isomorphism (Proposition 5.7) between the groups of
connected components of the algebraic Sato-Tate and Sato-Tate groups. We also

introduce Galois twists insideGalg
l,K,1 (see Definition 5.12) and we explain the relation

of these twists to Galois twists of the corresponding Lefschetz group.

In chapter 6, under some mild assumptions on the base field K, we compute

connected components of Galg
l,K,1 (Theorem 6.11). Then, under the algebraic Sato-

Tate conjecture, we make a corresponding computation of connected components
of ASTK and STK (Theorem 6.12). As a consequence, we prove that the Sato-Tate
conjecture holds with respect to STK if and only if it holds with respect to the
connected component of STK (Theorem 6.12).

In chapter 7, we show how to compute Mumford-Tate and Hodge groups for

powers of Hodge structures and similarly how to compute Galg
l,K,1 and Galg

l,K for
powers of l-adic representations. We also observe that in some cases, the Mumford-
Tate conjecture implies the algebraic Sato-Tate conjecture.

In chapter 8, we continue the discussion from chapter 7 of the relationship
between the algebraic Sato-Tate conjecture and the Mumford-Tate conjecture. We
establish conditions for the algebraic Sato-Tate conjecture to hold with the algebraic
Sato-Tate group equal to the corresponding twisted decomposable Lefschetz group.

Chapters 9–11 give the application of chapters 2–8 to the case where the polar-
ized Hodge structures and associated l-adic representations come from motives in
the motivic category of absolute Hodge cycles introduced by Deligne [D1], [DM].
All the assumptions on Hodge structures and associated l-adic representations we
made in chapters 2–5 are satisfied in this case.

At the beginning of chapter 9, we recall some results concerning the category
MK of motives for absolute Hodge cycles. Next, for a motive M of MK we
introduce the Artin motive h0(D) corresponding to D := EndMK

(M) and compute

the motivic Galois group GM0

K(D) of the smallest Tannakian subcategory M0
K(D)

of MK generated by h0(D). Also, let MK(M) denote the smallest Tannakian
subcategory of MK generated byM. From this point on in the paper, we work only
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with homogeneous motives, i.e., motives which occur as factors of motives of the
form hr(X)(m) for some smooth projective variety X over K and some and m ∈ Z.
For M a homogeneous motive, we consider the motivic Galois group GMK(M) and
the motivic Serre group GMK(M),1 (Definition 9.5). We also define Galois twists
(Definition 9.10) inside the motivic Serre group and explain their relation to Galois
twists of the corresponding Lefschetz group. The precise computation of GM0

K(D)

allows us to write down the motivic Serre group as a disjoint union of these twists
(see (9.29)).

At the beginning of chapter 10, we find a sufficient condition (Theorem 10.2)
for the natural map π0(GMK(M),1) → π0(GMK(M)) to be an isomorphism. Theo-
rem 10.2 is the motivic analogue of Theorem 4.8. We then introduce the motivic
Mumford-Tate conjecture and motivic Sato-Tate conjecture.

We start chapter 11 by recalling the relationship between the motivic Mumford-
Tate group with the corresponding Mumford-Tate group and the relation of the mo-
tivic Serre group with the Hodge group. Under Serre’s conjecture that MT(V, ψ) =
MMTK(M)◦, i.e., that the Mumford-Tate group is equal to the connected com-
ponent of the motivic Mumford-Tate group, we define (Definition 11.7) the alge-
braic Sato-Tate group. We collect the main properties of the algebraic Sato-Tate
group in Theorem 11.8. At the end of this chapter, under the assumption that
H(V, ψ) = CD(Iso(V,ψ)), we show that the algebraic Sato-Tate group is the cor-
responding twisted decomposable Lefschetz group (Corollary 11.10). In addition,
under the Mumford-Tate conjecture, we prove the algebraic Sato-Tate conjecture
in this case (Corollary 11.11). We finish by proving, under an assumption on homo-
theties in the associated l-adic representations and under the algebraic Sato-Tate
Conjecture for the base field, that the Sato-Tate conjecture holds with respect to
STK if and only if it holds with respect to the connected component of STK (The-
orem 11.14). Theorem 11.14 may serve of use in proving cases of the Sato-Tate
conjecture, by making it possible to avoid computations involving connected com-
ponents of the Sato-Tate group.

In conclusion, recall that for Absolute Hodge Cycles (AHC) motives (Definition
11.3), Serre’s conjecture MT(V, ψ) = MMTK(M)◦ holds (Remark 11.4). Hence
the algebraic Sato-Tate group is defined (Definition 11.7) unconditionally for AHC
motives. All motives associated with abelian varieties are AHC motives ([D1,
Theorem 2.11]). Moreover, if Mav

K denotes the Tannakian subcategory of MK

generated by abelian varieties and Artin motives, then every motive in Mav
K is an

AHC motive ([DM, Theorem 6.25]). So the algebraic Sato-Tate group is defined
unconditionally for motives in Mav

K (cf. [BK]). It is shown in [DM, Proposition
6.26] that the motives associated with curves, unirational varieties of dimension
≤ 3, Fermat hypersurfaces, and K3 surfaces belong to Mav

K . In general, the Hodge
conjecture implies that every Hodge cycle on a motive is an algebraic cycle, and
Deligne showed that every algebraic cycle is an absolute Hodge cycle ([D1, Example
2.1]). Hence the Hodge conjecture implies that every motive is an AHC motive.

2. Hodge structures and Mumford-Tate group

Let (V, ψ) be a rational, polarized, pure Hodge structure of weight n. Hence V
is a vector space over Q and ψ is a bilinear nondegenerate (−1)n symmetric form
ψ : V × V → Q(−n) such that VC has a pure Hodge structure of weight n. Let
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PHS(Q) denotes the category of rational, polarized, pure Hodge structures. The
category PHS(Q) is abelian and semisimple [D2, Lemme 4.2.3, p. 44] (cf. [PS,
Cor. 2.12, p. 40]). Let Dh := D(V, ψ) := EndPHS(Q)(V, ψ). In particular Dh is a
finite-dimensional semisimple algebra over Q. If (V, ψ) is a simple polarized Hodge
structure, then Dh is a division algebra. By the definition of a Hodge structure,

(2.1) VC := V ⊗Q C =
⊕

n=p+q

V p,q

where V p,q = V q,p and the V p,q are equivariant with respect to the action of the
endomorphism algebra Dh ⊗Q C. Put ψC := ψ ⊗Q C. Recall that Q(−n) is a pure
Hodge structure of weight 2n such that C(−n) = C(−n)n,n. The polarization ψ
can be seen as the morphism ψ : V ⊗Q V → Q(−n) of pure Hodge structures of
weight 2n so that the C-bilinear form ψC : VC × VC → C(−n) has the property

that ψC(V
p,q × V p

′,q′) = 0 if p+ p′ 6= n or q + q′ 6= n.

Remark 2.1. More generally, (T, ϕ) is an integral, polarized, pure Hodge
structure of weight n if T is a free abelian group and ϕ : T × T → Z(−n) is a
nondegenerate Z-bilinear map such that (V, ψ) is a rational, polarized pure Hodge
structure of weight n, where V := T ⊗Z Q and ψ := ϕ⊗Q. Let PHS(Z) denote the
category of integral, polarized, pure Hodge structures.

Remark 2.2. A recent, simple approach to real Hodge and mixed Hodge
structures can be found in [BM1], [BM2].

Remark 2.3. The vector space V defines a commutative group scheme, also
denoted V by abuse of notation, whose points with values in a unital commutative
Q-algebra R are:

V (R) := V ⊗Q R.

If d := dimQ V , then any choice of basis of the vector space V gives an isomorphism
V ∼= Ad of group schemes over Q. We will equip V with the tautological action of
the group scheme GLV .

We will be particularly interested in those elements g ∈ GLV , for which there
exists an element χ(g) ∈ Gm,Q such that ψ(gv, gw) = χ(g)ψ(v, w) for all v, w ∈ V .
The following formulas determine group subschemes of GLV of special interest.

GIso(V,ψ) := {g ∈ GLV : ψ(gv, gw) = χ(g)ψ(v, w) ∀ v, w ∈ V },(2.2)

Iso(V,ψ) := {g ∈ GLV : ψ(gv, gw) = ψ(v, w) ∀ v, w ∈ V }.(2.3)

There is also a map of group schemes

χ : GIso(V,ψ) → Gm,Q

g 7→ χ(g),

which is a character of GIso(V,ψ) such that Iso(V,ψ) = Kerχ.

Remark 2.4. Observe that for every α ∈ Gm,Q by bilinearity of ψ we have:

ψ(α IdV v, α IdV w) = ψ(αv, αw) = α2 ψ(v, w).

Hence

(2.4) α IdV ∈ GIso(V,ψ) and χ(α IdV ) = α2.
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We also observe that:

GIso(V,ψ) =

{
GO(V,ψ) if n even
GSp(V,ψ) if n odd;

(2.5)

Iso(V,ψ) =

{
O(V,ψ) if n even
Sp(V,ψ) if n odd.

(2.6)

Definition 2.5. For any pure Hodge structure (not necessarily polarized) de-
fine the cocharacter [D1, p. 42]

(2.7) µ∞,V : Gm(C) → GL(VC)

such that for any z ∈ C×, the automorphism µ∞,V (z) acts as multiplication by z−p

on V p,q for each p+ q = n.

Notice that the complex conjugate cocharacter is

(2.8) µ∞,V : Gm(C) → GL(VC)

such that for any z ∈ C×, the automorphism µ∞,V (z) acts as multiplication by z̄−q

on V p,q for each p+ q = n. Observe that for v ∈ V p,q and w ∈ V n−p,n−q we have:

ψC(µ∞,V (z)v, µ∞,V (z)w) = ψC(z
−pv, zp−nw) = z−nψC(v, w),(2.9)

ψC(µ∞,V (z) v, µ∞,V (z)w) = ψC(z̄
−q v, z̄q−nw) = z̄−nψC(v, w).(2.10)

Hence

(2.11) µ∞,V (C
×) ⊂ GIso(V, ψ)(C).

Since Dh commutes with µ∞,V (C
×) on VC elementwise, it is clear that:

(2.12) µ∞,V (C
×) ⊂ CDh

GIso(V, ψ)(C).

Let S := RC/R Gm. The product µ∞,V µ∞,V restricted to each V p,q ⊕V q,p gives the
homomorphism of real algebraic groups:

(2.13) h∞,V : S → GLVR
.

It follows from (2.9), (2.10) that there is the following commutative diagram:

1 // Iso(VR,ψR)
// GIso(VR,ψR)

// Gm // 1

1 // U(1)

h∞,V

OO

// S

h∞,V

OO

// Gm

−n

OO

// 1

Definition 2.6. (Mumford-Tate and Hodge groups)

(1) The Mumford-Tate group of (V, ψ) is the smallest algebraic subgroup
MT(V, ψ) ⊂ GIso(V,ψ) over Q such that MT(V, ψ)(C) contains µ∞,V (C).

(2) The decomposable Hodge group is DH(V, ψ) := MT(V, ψ) ∩ Iso(V,ψ).
(3) The Hodge group H(V, ψ) := DH(V, ψ)◦ is the connected component of

the identity in DH(V, ψ).

We can equivalently define the Mumford-Tate and Hodge groups as follows.

(1) The Mumford-Tate group of (V, ψ) is the smallest algebraic subgroup
MT(V, ψ) ⊂ GIso(V,ψ) overQ such that MT(V, ψ)(C) contains h∞,V (S(C)).

(2) The Hodge group of (V, ψ) is the smallest algebraic subgroup H(V, ψ) ⊂
Iso(V,ψ) over Q such that H(V, ψ)(C) contains h∞,V (U(1)(C)).
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Remark 2.7. Note that MT(V, ψ) is a reductive subgroup of GIso(V,ψ) [D1,
Prop. 3.6], [PS, Th. 2.19]. It follows by (2.12) that

(2.14) MT(V, ψ) ⊂ CDh
(GIso(V, ψ)).

Moreover H(V, ψ) ⊂ Iso(V, ψ), hence

(2.15) H(V, ψ) ⊂ CDh
(Iso(V, ψ)).

For additional background on Mumford-Tate groups, see the lecture notes of Moo-
nen [Mo1, Mo2].

In our investigation of the algebraic Sato-Tate group for Hodge structures, we
will need to investigate not only Dh but possibly also other subrings D ⊂ EndQ(V )
such that D acts on V ⊗C preserving the Hodge decomposition: DV p,q ⊂ V p,q for
all p+ q = n. Such a D commutes with µ∞,V (C

×) on VC elementwise, hence:

(2.16) µ∞,V (C
×) ⊂ CD GIso(V, ψ)(C).

Hence it follows by (2.16) that

(2.17) MT(V, ψ) ⊂ CD(GIso(V, ψ)).

(2.18) H(V, ψ) ⊂ CD(Iso(V,ψ)).

Definition 2.8. The algebraic group:

(2.19) L(V, ψ,D) := C◦
D(Iso(V, ψ))

is called the Lefschetz group of (V, ψ) and the ring D.

Remark 2.9. By (2.18) and the connectedness of H(V, ψ), we have

(2.20) H(V, ψ) ⊂ L(V, ψ,D).

In particular

(2.21) H(V, ψ) ⊂ L(V, ψ,Dh).

3. Twisted Lefschetz groups

Let D ⊂ EndQ(V ) be a subring such that the action of D of V ⊗ C preserves
the Hodge decomposition, i.e. DV p,q ⊂ V p,q for all p, q.

Fix a number field F and an algebraic closure F . In this paper, K/F will denote
any finite extension contained in F .We assume that the ring D admits a continuous
representation of the absolute Galois group GF of F such that its restriction to GK
is denoted:

(3.1) ρe : GK → AutQ(D).

Definition 3.1. The fixed field of the kernel of ρe will be denoted:

Ke := K
Ker ρe

.

Remark 3.2. The extension Ke/K is finite Galois and GKe = Ker ρe. The
field Ke depends on K; in particular, it is not invariant under base change along
an arbitrary extension L/K. However, it is obvious that Ke will not change if we
change base along an extension L/K such that L ⊂ Ke.
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Definition 3.3. For τ ∈ Gal(Ke/K), define:

(3.2) DLτK(V, ψ,D) := {g ∈ Iso(V, ψ) : gβg
−1 = ρe(τ)(β) ∀β ∈ D}.

Because D is a finite-dimensional Q-vector space, DLτK(V, ψ,D) is a closed sub-
scheme of Iso(V,ψ) for each τ.

Definition 3.4. Define the twisted decomposable algebraic Lefschetz group for
the triple (V, ψ,D) to be the closed algebraic subgroup of Iso(V,ψ) given by

(3.3) DLK(V, ψ,D) :=
⊔

τ∈Gal(Ke/K)

DLτK(V, ψ,D).

For any subextension L/K of F/K, we have DLL(V, ψ,D) ⊆ DLK(V, ψ,D) and

DLid
L (V, ψ,D) = DLid

K(V, ψ,D). Hence:

(3.4) L(V, ψ,D) = DLid
K(V, ψ,D)◦ = DLK(V, ψ,D)◦ =

= DLid
L (V, ψ,D)◦ = DLL(V, ψ,D)◦.

In particular,

(3.5) DLid
Ke

(V, ψ,D) = DLKe(V, ψ,D) = DLF (V, ψ,D) = DLid
F
(V, ψ,D),

(3.6) L(V, ψ,D) = DLKe(V, ψ,D)◦ = DLF (V, ψ,D)◦.

Theorem 3.5. The twisted decomposable Lefschetz groups have the following
properties.

1. DLτK(V s, ψs,Ms(D)) ∼= DLτK(V, ψ,D) for every τ ∈ Gal(Ke/K).
2. Let (Vi, ψi) be polarized Hodge structures and let Di be finite-dimensional

Q-algebras preserving the Hodge structures Vi. Let Di admit a continu-
ous GK-action. Put (V, ψ) :=

⊕t
i=1(Vi, ψi) and D :=

∏t
i=1 Di. Then

DLτK(V, ψ,D) ∼=
∏t
i=1 DLτK(Vi, ψi, Di) for every τ ∈ Gal(Ke/K).

3. Let (Vi, ψi) be polarized Hodge structures and let Di be finite-dimensional
Q-algebras preserving the Hodge structures Vi. Let Di admit a continuous
GK-action. Put (V, ψ) :=

⊕t
i=1(V

si
i , ψsii ) and D :=

∏t
i=1 Msi(Di). Then

DLτK(V, ψ,D) ∼=
∏t
i=1 DLτK(Vi, ψi, Di) for every τ ∈ Gal(Ke/K).

Proof. 1. Let ∆ be the homomorphism that maps Iso(V,ψ) naturally into

(3.7) diag(Iso(V,ψ), . . . , Iso(V,ψ)) ⊆ Iso(V s,ψs) .

Since Q ⊆ D, we have Ms(Q) ⊆Ms(D). Directly from the definition of the twisted
decomposable Lefschetz group, we get DLτK(V s, ψs,Ms(D)) ∼= ∆(DLτK(V, ψ,D)) ∼=
DLτK(V, ψ,D).

2. The proof is very similar to the proof of 1, using the fact that
∏s
i=1 Q ⊂

∏t
i=1 Di.

3. This follows immediately from 1 and 2. �

Remark 3.6. Theorem 3.5 remains true if we replace DLτK(V ′, ψ′, D′) with
DLτK(V ′, ψ′, D′)◦ for all polarized Hodge structures V ′, ψ′ and corresponding rings
D′ with Galois actions that appear in the theorem. Since we have L(V ′, ψ′, D′) =

DLid
K(V ′, ψ′, D′)◦, the Lefschetz group satisfies properties 1–3 of Theorem 3.5.
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Remark 3.7. Observe that we have

DLK(V, ψ,D) := {g ∈ Iso(V,ψ) : ∃ τ ∈ GK ∀β ∈ D gβg−1 = ρe(τ)(β) }

Changing quantifiers we get another group scheme

(3.8) D̃LK(V, ψ,D) := {g ∈ Iso(V,ψ) : ∀β ∈ D ∃ τ ∈ GK gβg−1 = ρe(τ)(β) }

Observe that DLK(V, ψ,D) ⊆ D̃LK(V, ψ,D).

Remark 3.8. Observe that (2.18) implies that

(3.9) H(V, ψ) ⊆ DLid
K(V, ψ,D) ⊆ DLK(V, ψ,D).

4. Hodge structures associated with l-adic representations

Let (V, ψ) be a rational pure polarized Hodge structure of weight n 6= 0. Put
Vl ∼= V ⊗Q Ql and ψl := ψ ⊗Q Ql. Let (Vl, ψl) := (V ⊗Q Ql, ψ ⊗Q Ql) and assume
that the bilinear form ψl : Vl × Vl → Ql(−n) is GK -equivariant and the family of
l-adic representations

(4.1) ρl : GK → GIso(Vl, ψl)

is of Hodge-Tate type and strictly compatible in the sense of Serre. We assume
that outside of a finite set of primes of OK , for each v the complex absolute values

of the eigenvalues of a Frobenius element at v are q
n
2

v .

The form ψl is (−1)n-symmetric by the assumptions on the Hodge structure.
Hence

(4.2) GIso(Vl, ψl) =

{
GO(Vl, ψl) if n even;
GSp(Vl, ψl) if n odd.

Let χ be the character defined in (2.2) and let χc : GK → Z×
l be the cyclotomic

character. Then by the GK -equivariance of ψl we obtain:

(4.3) χ ◦ ρl = χ−n
c .

Remark 4.1. For a representation ρl of Hodge-Tate type, the theorem of
Bogomolov on homotheties (cf. [Su, Prop. 2.8]) applies, meaning that ρl(GK) ∩
Q×
l IdVl

is open in Q×
l IdVl

. Moreover, Bogomolov proved [Bog, Théorème 1] that

ρl(GK) is open in Galg
l,K(Ql).

Remark 4.2. Strictly compatible families of l-adic representations of Hodge-
Tate type arise naturally from étale cohomology. Indeed, if X/K is a proper scheme
and X := X ⊗K F then V il,et := Hi

et(X, Ql) is potentially semistable for each GKv -

representation for every v|l (see [Ts1, Cor. 2.2.3], [Ts2]). Hence the representation

(4.4) ρil,et : GK → GL(V il,et)

is of Hodge-Tate type (cf. [Su, p. 603]).

Definition 4.3. Let

(4.5) Galg
l,K := Galg

l,K(V, ψ) ⊂ GIso(Vl,ψl)

be the Zariski closure of ρl(GK) in GIso(Vl,ψl) . Put:

(4.6) ρl(GK)1 := ρl(GK) ∩ Iso(Vl,ψl),
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(4.7) Galg
l,K,1 := Galg

l,K,1(V, ψ) := Galg
l,K ∩ Iso(Vl,ψl) .

By the theorem of Bogomolov on homotheties (see Remark 4.1), there is an exact
sequence

(4.8) 1 −→ Galg
l,K,1 −→ Galg

l,K

χ
−→ Gm −→ 1.

Remark 4.4. If ρl is semisimple, then Galg
l,K is reductive; hence in this case

the algebraic group Galg
l,K,1 is also reductive, by virtue of being the kernel of a

homomorphism from a reductive group to a torus.

Naturally ρl(GK)1 ⊆ Galg
l,K,1. Let K ⊆ L ⊂ F be a tower of extensions with

L/K finite. Consider the following commutative diagram with left and middle
vertical arrows injective:

(4.9) 1 // Galg
l,K,1

// Galg
l,K

χ // Gm // 1

1 // Galg
l,L,1

OO

// Galg
l,L

OO

χ // Gm

=

OO

// 1

It is clear that Galg
l,K,1 ∩ Galg

l,L = Galg
l,L,1. If L/K is Galois, then it follows from

the diagram (4.9) that there is a monomorphism:

(4.10) jL/K : ρl(GK)1 / ρl(GL)1 →֒ ρl(GK) / ρl(GL).

Proposition 4.5. Let K ⊂ L ⊂ M with M/K and L/K Galois. The map
jM/K is an isomorphism if and only if jM/L and jL/K are isomorphisms.

We observe that for any finite Galois extension L/K the natural map is an epimor-
phism ZarL/K := Zarl, L/K :

(4.11) ZarL/K : ρl(GK) / ρl(GL) // // Galg
l,K /G

alg
l,L .

The proofs of the following three results: Theorem 4.6, Proposition 4.7, Theo-
rem 4.8, are similar to the proofs of [BK, Theorem 3.1, Proposition 3.2, Theorem
3.3]. Theorem 4.8 is a generalization of the result of Serre [Se3, §8.3.4]. As usual,
for an algebraic group G we put π0(G) := G/G◦.

Theorem 4.6. Let K ⊆ L ⊂ F with L/K finite Galois. The following natural
map is an isomorphism of finite groups:

(4.12) iL/K : Galg
l,K,1/G

alg
l,L,1

∼=
−→ Galg

l,K/G
alg
l,L.

In particular there are the following equalities:

(4.13) (Galg
l,L)

◦ = (Galg
l,K)◦ and (Galg

l,L,1)
◦ = (Galg

l,K,1)
◦.
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Proof. It is clear that Galg
l,L ⊳ Galg

l,K and Galg
l,L,1 ⊳ Galg

l,K,1. On the other hand,

there is a surjective homomorphism ρl(GK)/ρl(GL) → Galg
l,K/G

alg
l,L, so Galg

l,L is a

subgroup of Galg
l,K of finite index. In particular, (Galg

l,L)
◦ = (Galg

l,K)◦.

The following commutative diagram has exact rows. The left and the middle
columns are also exact cf. (4.8).

1

��

1

��

1

��
1 // Galg

l,L,1

��

// Galg
l,K,1

��

// Galg
l,K,1/G

alg
l,L,1

iL∼=

��

// 1

1 // Galg
l,L

χ

��

// Galg
l,K

χ

��

// Galg
l,K/G

alg
l,L

��

// 1

1 // Gm

��

= // Gm

��

// 1

1 1

Then a diagram chase (as in the snake lemma) shows that the third column is

also exact, so the map iL is an isomorphism. Hence it is clear that (Galg
l,L,1)

◦ =

(Galg
l,K,1)

◦. �

Proposition 4.7. Let the weight of the Hodge structure be the odd integer

n = 2m + 1. There is a finite Galois extension L0/K such that Galg
l,L0

= (Galg
l,K)◦

and Galg
l,L0,1

= (Galg
l,K,1)

◦.

Proof. Since the subscheme (Galg
l,K)◦ is open and closed in Galg

l,K and ρl is

continuous, we can find a finite Galois extension L0/K such that ρl(GL0
) ⊂ (Galg

l,K)◦.

Hence Galg
l,L0

⊆ (Galg
l,K)◦. Since we already have the reverse inclusion, we obtain the

first desired equality.
Consider the restriction of the l-adic representation to the base field L0. Using

the Hodge-Tate property of Vl, after taking C points in the exact sequence (4.8)
one can apply the homomorphism h [Se3, p. 114] defined by Serre to get the
homomorphism:

h : Gm(C) → Galg
l,L0

(C)

such that for all x ∈ Gm(C), h(x) acts by multiplication by xp on the subspace
V p,n−p. One checks that χ(h(x)) = xn for every x ∈ Gm(C) (see the diagram
preceding Definition 2.6). Let

w : Gm(C) → Galg
l,L0

(C)

w(x) = x IdVC
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be the diagonal homomorphism; this is well-defined thanks to Remark 4.1. We know
(Remark 2.4) that χ(w(x)) = x2 for every x ∈ Gm(C). Hence the homomorphism

s : Gm(C) → Galg
l,L0

(C)

s(x) := h(x)w(x)−m

is a splitting of χ in the following exact sequence:

1 −→ Galg
l,L0,1

(C) −→ Galg
l,L0

(C)
χ

−→ C× −→ 1.

Observe that Galg
l,L0

(C) is a connected Lie group. Take any two points g0 and g1 in

Galg
l,L0,1

(C). There is a path α(t) ∈ Galg
l,L0

(C) connecting g0 and g1, i.e., α(0) = g0
and α(1) = g1. Define a new path

β(t) := s(χ(α(t)))−1α(t) ∈ Galg
l,K0

(C)

Observe that: χ(β(t)) := χ(s(χ(α(t)))
−1

)χ(α(t)) = χ(α(t))−1χ(α(t)) = 1. We

easily check that β(0) = g0 and β(1) = g1. Hence β(t) ∈ Galg
l,K0,1

(C) connects g0

and g1. It follows that G
alg
l,L0,1

is connected, hence Galg
l,L0,1

= (Galg
l,K,1)

◦. �

Theorem 4.8. Let n be odd. The following natural map is an isomorphism:

iCC : π0(G
alg
l,K,1)

∼=
−→ π0(G

alg
l,K).

Proof. Choose L0 as in Proposition 4.7. Put L := L0 in the diagram of the
proof of Theorem 4.6. Then iCC = iL0

, which is an isomorphism by Theorem
4.6. �

Remark 4.9. The natural continuous action by left translation:

(4.14) GK × π0(G
alg
l,K) → π0(G

alg
l,K)

and Theorem 4.8 give the following continuous action by left translation:

(4.15) GK × π0(G
alg
l,K,1) → π0(G

alg
l,K,1).

5. Algebraic Sato-Tate conjecture

In this chapter we assume that the Hodge structure (V, ψ), the ring D and the
family of l-adic representations ρl : GK → GIso(Vl, ψl) satisfy all the properties
assumed in chapters 2–4. We also assume hereafter that n is odd; the case where n is
even requires some modifications to the definitions, which we will discuss elsewhere.

One of the main objectives of this paper is the investigation of the following
conjecture:

Conjecture 5.1. (Algebraic Sato-Tate conjecture)
(a) For every finite extension K/F and for every l, there exist a natural-in-K reduc-
tive algebraic group ASTK(V, ψ) ⊂ Iso(V,ψ) over Q and a natural-in-K monomor-
phism of group schemes:

(5.1) astl,K : Galg
l,K,1 →֒ ASTK(V, ψ)Ql

.

(b) The map (5.1) is an isomorphism:

(5.2) astl,K : Galg
l,K,1

∼=
−→ ASTK(V, ψ)Ql

.
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Remark 5.2. We say that an algebraic group is reductive if its identity con-
nected component is reductive.

Remark 5.3. The requirement that ASTK(V, ψ) and (5.1) are natural in K
means that for any finite extension L/K there is a natural monomorphism of group
schemes:

ASTL(V, ψ) →֒ ASTK(V, ψ)

making the following diagram commute:

Galg
l,K,1

astl,K// ASTK(V, ψ)Ql

Galg
l,L,1

astl,L//

OO

ASTL(V, ψ)Ql

OO

Definition 5.4. The group ASTK(V, ψ) is called the algebraic Sato-Tate group.
A maximal compact subgroup of ASTK(V, ψ)(C) is called the Sato-Tate group and
is denoted STK(V, ψ).

Remark 5.5. We will make the following abbreviations: ASTK := ASTK(V, ψ)
and STK := STK(V, ψ), whenever they do not lead to a notation conflict.

Remark 5.6. When the Hodge structure (V, ψ) comes from the cohomology
of a smooth, projective variety over K, then Conjecture 5.1 is closely related to the
Tate conjecture.

Choose a suitable field embedding Ql → C and put Galg
l,K,1C

:= Galg
l,K,1 ⊗Ql

C.

Naturally we have π0(G
alg
l,K,1)

∼= π0(G
alg
l,K,1C

). By Theorem 4.8 and an argument

similar to the proof of [FKRS, Lemma 2.8], we have the following.

Proposition 5.7. Assume that the algebraic Sato-Tate conjecture (Conjec-
ture 5.1) holds. Then there are natural isomorphisms

(5.3) π0(G
alg
l,K,1)

∼= π0(ASTK(V, ψ)) ∼= π0(STK(V, ψ)).

Remark 5.8. Assume that the algebraic Sato-Tate conjecture (Conjecture 5.1)
holds. Then obviously the Sato-Tate group STK(V, ψ) is independent of l. Take a
prime v in OK and take a Frobenius element Frv in GK . Following [Se3, §8.3.3]
(cf. [FKRS, Def. 2.9]) one can make the following construction. Let sv be the
semisimple part in SLV (C) of the element

q
−n

2

v ρl(Frv) ∈ Galg
l,K,1(C)

∼= ASTK(V, ψ)(C) ⊂ Iso(V,ψ)(C) ⊂ SLV (C);

since the family (ρl) is strictly compatible, sv is independent of l. By [Hu, Theorem

15.3 (c) p. 99], the semisimple part of q
−n

2

v ρl(Frv) considered in Iso(V,ψ)(C) and in
ASTK(V, ψ)(C) is again sv, and so is again independent of l. Hence conj(sv) in
ASTK(V, ψ)(C) is independent of l. Obviously conj(sv) ⊂ ASTK(V, ψ)(C) is inde-
pendent of the choice of a Frobenius element Frv over v and contains the semisimple

parts of all the elements of conj(q
−n

2

v ρl(Frv)) in ASTK(V, ψ)(C). Moreover, the ele-
ments in conj(sv) have eigenvalues of complex absolute value 1 by our assumptions,
so there is some conjugate of sv contained in STK(V, ψ). This allows us to make
sense of the following conjecture.
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Conjecture 5.9. (Sato-Tate conjecture) The conjugacy classes conj(sv) in
STK(V, ψ) are equidistributed in conj(STK(V, ψ)) with respect to the measure in-
duced by the Haar measure of STK(V, ψ).

Remark 5.10. If we are only interested in the isomorphism (5.3) for a fixed
l, then it is enough to assume the existence of ASTK(V, ψ), as in Conjecture 5.1,
and the existence of astl,K which is an isomorphism for this particular l.

We now use the twisted Lefschetz group to obtain an upper bound on the
algebraic Sato-Tate group.

Remark 5.11. We will assume in this and the next three chapters that the
induced action of D on Vl is GK-equivariant. In other words, ∀β ∈ D, ∀vl ∈ Vl and
∀σ ∈ GK :

(5.4) ρl(σ)(β vl) = σ(β) ρl(σ)(vl).

This immediately gives:

(5.5) ρl(σ)βρl(σ
−1)(vl) = σ(β)(vl),

(5.6) ρl(GK)1 ⊆ DLK(V, ψ,D)(Ql).

We will observe, by (5.8) and (5.12) below, that:

(5.7) Galg
l,K,1 ⊆ DLK(V, ψ,D)Ql

,

We are interested in finding polarized Hodge structures (V, ψ) and rings D

for which Galg
l,K,1 = DLK(V, ψ,D)Ql

for each l. In such cases ASTK(V, ψ) =

DLK(V, ψ,D).We explain in this chapter that the equalityGalg
l,K,1 = DLK(V, ψ,D)Ql

is equivalent to Galg
l,Ke,1

= DLKe(V, ψ,D)Ql
.

Definition 5.12. Put:

(Galg
l,K)τ := {g ∈ Galg

l,K : gβg−1 = ρe(τ)(β) ∀β ∈ D},

(Galg
l,K,1)

τ := (Galg
l,K)τ ∩Galg

l,K,1.

Observe that

(5.8) (Galg
l,K,1)

τ ⊆ DLτK(V, ψ,D)Ql
.

Remark 5.13. Let τ̃ ∈ GK be a lift of τ ∈ Gal(Ke/K). The coset τ̃ GKe

does not depend on the lift. The Zariski closure of ρl(τ̃ GKe) = ρl(τ̃ ) ρl(GKe) in

GIso(Vl,ψl) is ρl(τ̃)G
alg
l,Ke

. Since ρl(τ̃ ) ρl(GKe) ⊂ (Galg
l,K)τ then ρl(τ̃ )G

alg
l,Ke

⊂ (Galg
l,K)τ .

Because:

(5.9) ρl(GK) =
⊔

τ∈Gal(Ke/K)

ρl(τ̃ ) ρl(GKe),

then

(5.10) Galg
l,K =

⊔

τ∈Gal(Ke/K)

ρl(τ̃ )G
alg
l,Ke

.
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This implies the following equalities:

(5.11) Galg
l,K =

⊔

τ∈Gal(Ke/K)

(Galg
l,K)τ ,

(5.12) Galg
l,K,1 =

⊔

τ∈Gal(Ke/K)

(Galg
l,K,1)

τ .

Now we observe that ρl(τ̃)G
alg
l,Ke

= (Galg
l,K)τ for all τ. This implies the equality

(Galg
l,K,1)

id = Galg
l,Ke,1

and the following natural isomorphism:

(5.13) Galg
l,K/(G

alg
l,K)id ∼= Gal(Ke/K).

Since DLid
K(V, ψ,D) = DLKe(V, ψ,D) = DLF (V, ψ,D), we get

(5.14) Galg
l,Ke,1

⊆ DLKe(V, ψ,D)Ql
.

Hence by (5.8), (5.13) and Theorem 4.8 there are natural isomorphisms:

(5.15) Galg
l,K,1/(G

alg
l,K,1)

id ∼= DLK(V, ψ,D)/DLid
K(V, ψ,D) ∼= Gal(Ke/K).

Theorem 5.14. The following equalities are equivalent:

(5.16) Galg
l,Ke,1

= DLKe(V, ψ,D)Ql
.

(5.17) Galg
l,K,1 = DLK(V, ψ,D)Ql

.

Let L/K be a finite extension such that L ⊂ F . The following equalities are equiv-
alent:

(5.18) Galg
l,Le,1

= DLLe(V, ψ,D)Ql
.

(5.19) Galg
l,L,1 = DLL(V, ψ,D)Ql

.

Moreover equalities (5.18) and (5.19) imply equalities (5.16) and (5.17).

Proof. The equivalence of (5.16) and (5.17) follows from (5.15). Chang-
ing base to an extension L/K, the equivalence of (5.18) and (5.19) also follows
from (5.15). Observe that Ker(ρe|GL) ⊂ Ker ρe. Hence Ke ⊂ Le. It follows that

DLKe(V, ψ,D) = DLLe(V, ψ,D) and Galg
l,Le,1

⊂ Galg
l,Ke,1

. Hence (5.14) and (5.18)

imply (5.16). �

6. Connected components of ASTK and STK

Remark 6.1. Consider the continuous homomorphism

(6.1) ǫl,K : GK → Galg
l,K(Ql).

Since ρl(GK) is Zariski dense in Galg
l,K , this map induces the continuous epimor-

phism:

(6.2) ǫ̃l,K : GK → π0(G
alg
l,K).

Since (Galg
l,K)◦ is open in Galg

l,K , we get:

(6.3) ǫ−1
l,K((Galg

l,K)◦(Ql)) = Ker ǫ̃l,K = GK0
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for some finite Galois extension K0/K. From Proposition 4.7 and Theorem 4.8

it follows that K0/K is the minimal extension such that Galg
l,K0

= (Galg
l,K)◦ and

Galg
l,K0,1

= (Galg
l,K,1)

◦. In principle, K0 may depend on l; in Proposition 6.5 below,
we will give conditions for the independence of K0 from l. These conditions are
satisfied in the case of abelian varieties; see Remark 6.13.

Let σ̃ ∈ GK be a lift of σ ∈ Gal(K0/K). The coset σ̃ GK0
does not depend on

the lift. By the definition of K0, there is an obvious isomorphism:

(6.4) Galg
l,K/(G

alg
l,K)◦ ∼= Gal(K0/K).

Also, the Zariski closure of ρl(σ̃ GK0
) = ρl(σ̃) ρl(GK0

) in GIso(Vl,ψl) is ρl(τ̃ )G
alg
l,K0

.
Because

(6.5) ρl(GK) =
⊔

σ∈Gal(K0/K)

ρl(σ̃) ρl(GK0
),

by the definition of K0 we have:

(6.6) Galg
l,K =

⊔

σ∈Gal(K0/K)

ρl(σ̃)G
alg
l,K0

.

Remark 6.2. Let Hl,K,1 := ρ−1
l (ρl(GK)1) and K1 := K

Hl,K,1
. Observe that:

ǫ−1
l,K((Galg

l,K,1)
◦(Ql)) = ǫ−1

l,K(Galg
l,K0,1

(Ql)) = ǫ−1
l,K((Galg

l,K0
∩ Iso(Vl,ψl))(Ql)) =

= ǫ−1
l,K(Galg

l,K0
(Ql)) ∩ ǫ−1

l,K(Iso(Vl,ψl)(Ql)) = GK0
∩GK1

= GK0K1
.

Remark 6.3. We observe that K ⊂ Ke ⊂ K0.

Proposition 6.4. Assume Conjecture 5.1 (a) and assume that astl,K and
astl,K0

are isomorphisms for a fixed l. Let L/K0 be a finite Galois extension. Then:

(1) ASTK0
= (ASTK)◦.

(2) STK0
= (STK)◦ up to conjugation in ASTK(C).

(3) ASTK0
= ASTL .

(4) STK0
= STL up to conjugation in ASTK0

(C).

Proof. Consider the following commutative diagram. The bottom row is ex-
act. The right vertical arrow is an isomorphism by (5.3) of Proposition 5.7 (cf.
Remark 5.10).

(6.7) 1 // ASTK0,Ql
// ASTK,Ql

// π0(ASTK,Ql
) // 1

1 // Galg
l,K0,1

astl,K0
∼=

OO

// Galg
l,K,1

astl,K ∼=

OO

// π0(G
alg
l,K,1)

∼=

OO

// 1

Since ASTK0,Ql
is connected (since it is isomorphic to Galg

l,K0,1
), the exactness of

the top row in (6.7) implies ASTK0,Ql
= (ASTK,Ql

)◦ and in particular ASTK0
=

(ASTK)◦. By Proposition 5.7 we obtain π0(STK) = π0(ASTK) and π0(STK0
) =

π0(ASTK0
) = 1. Hence by (1) we have STK0

⊂ (STK)◦ up to conjugation in
ASTK(C) because STK0

is connected and compact and STK maximal compact in
ASTK(C). On the other hand (STK)◦ ⊂ (ASTK)◦(C) = ASTK0

(C) by π0(STK) =
π0(ASTK) and by (1). Hence (STK)◦ ⊂ STK0

up to conjugation in ASTK0
(C)

because STK0
is maximal compact in ASTK0

(C). Hence (2) follows. To prove (3)
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observe that Galg
l,K0,1

= Galg
l,L,1 because Galg

l,L,1 is a normal subgroup of finite index in

Galg
l,K0,1

and Galg
l,K0,1

is connected. Then (3) follows from the following commutative
diagram:

Galg
l,K0,1

astl,K0

∼=
// ASTK0,Ql

Galg
l,L,1

astl,L //

=

OO

ASTL,Ql

OO

and (3) implies (4) directly. �

Proposition 6.5. Assume that Conjecture 5.1 holds for K and K0. Then the
field K0 is independent of l.

Proof. Assume that the corresponding equality to (6.3) holds for l′ andK ′
0. Hence

by Remark 5.3, the assumptions and Proposition 6.4 we have (ASTK)◦ ∼= ASTK0

∼=
ASTK′

0
. Then from continuity of the maps ǫl′,K and ǫ̃l′,K we find out thatK ′

0 ⊂ K0.

By symmetry, from continuity of the maps ǫl,K and ǫ̃l,K we obtain K0 ⊂ K ′
0. �

Remark 6.6. Let C ∈ N be fixed. Then Proposition 6.5 has the following
version for all l ≥ C.

Proposition 6.7. Assume that for every l ≥ C the homomorphisms astl,K
and astl,K0

are isomorphisms. Then the field K0 is independent of l ≥ C.

The surjectivity of (4.10) is a subtle point in the computation of Sato-Tate
groups. Below we find conditions for the surjectivity. Let L/K be a finite Galois
extension. Consider the following commutative diagram where ZarL/K := Zarl, L/K
and ZarL/K, 1 := Zarl, L/K, 1 .

(6.8) ρl(GK)/ρl(GL)
ZarL/K // // Galg

l,K/G
alg
l,L

ρl(GK)1/ρl(GL)1
ZarL/K, 1 //

jL/K

OO

Galg
l,K,1/G

alg
l,L,1

∼=iL/K

OO

We put

l̄ =

{
l if l > 2
8 if l = 2.

Let K(µ⊗n
l̄

) := K̄Kerχ̃n
c , where χ̃nc : GK → Aut(µ⊗n

l̄
) is the n-th power of the

cyclotomic character mod l̄.

Lemma 6.8. Let L/K be a finite Galois extension. Assume that:

(1) L ∩ K(µ⊗n
l̄

) = K;

(2) 1 + lZl IdVl
⊂ ρl(GK);

(3) ZarL/K is an isomorphism.

Then the maps jL/K and ZarL/K, 1 are isomorphisms.
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Proof. By assumption (3), the upper horizontal arrow in (6.8) is an isomor-
phism. The left vertical arrow (see (4.10)) is a monomorphism, and by Theorem
4.6 the right vertical arrow is an isomorphism. To show the theorem, it is enough
to prove that the bottom horizontal arrow ZarL/K, 1 is an epimorphism. For each

σ ∈ Gal(L/K) we can choose, by assumption (1), a lift σ̃ ∈ Gal(F/K) such that

σ̃ |K(µ⊗n

l̄
) = IdK(µ⊗n

l̄
).

Recall the natural exact sequence:

(6.9) 1 → Iso(Vl,ψl) → GIso(Vl,ψl)
χ

−→ Gm → 1.

Since ρl(GK) ⊂ Galg
l,K(Ql) ⊂ GIso(Vl,ψl)(Ql), the choice of the lift σ̃ and the equality

(4.3) give χ(ρl(σ̃)) ∈ 1 + l̄Zl ⊂ Gm(Ql). Hence
√
χ(ρl(σ̃)) ∈ 1 + lZl because

(1 + lZl)
2 = 1 + l̄Zl. By assumption (2), there exists γ̃ ∈ GK such that ρl(γ̃) =√

χ(ρl(σ̃)) IdVl
. By Remark 2.4, we have χ(α IdVl

) = α2 for any α ∈ Q×
l . Hence:

(6.10) χ(ρl(σ̃γ̃
−1)) = χ(ρl(σ̃))χ(ρl(γ̃))

−1 = 1.

It follows that ρl(σ̃γ̃
−1) ∈ ρl(GK)1. Since:

(6.11) ρl(GK) =
⋃

σ∈Gal(L/K)

ρl(σ̃) ρl(GL) =
⊔′

σ∈Gal(L/K)
ρl(σ̃) ρl(GL)

then by assumption (3):

(6.12) Galg
l,K =

⋃

σ∈Gal(L/K)

ρl(σ̃)G
alg
l,L =

⊔′

σ∈Gal(L/K)
ρl(σ̃)G

alg
l,L.

where
⊔′

σ∈Gal(L/K) is the summation over some set of σ ∈ Gal(L/K) such that

ρl(σ̃) ρl(GL) are all different cosets of ρl(GL) in ρl(GK). Because of (6.12) we have

(Galg
l,K)◦ ⊂ Galg

l,L. It is obvious that Gm IdVl
⊂ (Galg

l,K)◦. Hence ρl(γ̃)) ∈ (Galg
l,K)◦ ⊂

Galg
l,L. Hence ρl(σ̃)G

alg
l,L = iL/K(ρl(σ̃γ̃

−1)Galg
l,L,1) and it follows that ZarL/K, 1 is an

epimorphism. �

Corollary 6.9. Let L/K be a finite Galois extension. Assume that:

(1) L ∩ K(µ⊗n
l̄

) = K;

(2) 1 + lZl IdVl
⊂ ρl(GK);

(3) ZarL/K is an isomorphism;
(4) GK/GL ∼= ρl(GK)/ρl(GL).

Then each coset of GK/GL has the form σ̃1GL such that:

(1) ρl(σ̃1) ∈ ρl(GK)1;
(2) ρl(GK)1 =

⊔
σ̃1GL

ρl(σ̃1) ρl(GL)1;

(3) Galg
l,K,1 =

⊔
σ̃1GL

ρl(σ̃1)G
alg
l,L,1.

Proof. Pick elements σ̃ ∈ GK which represent all of the cosets of GL in GK .
Because of assumption (4), we have:

(6.13) ρl(GK) =
⊔

σ̃ GL

ρl(σ̃) ρl(GL).

By Lemma 6.8, the map jL/K is an isomorphism. Hence for every σ̃ there is σ̃1 ∈ GK
such that ρl(σ̃1) ∈ ρl(GK)1 and ρl(σ̃)ρl(GL) = ρl(σ̃1)ρl(GL). By assumption (4)
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we obtain σ̃ GL = σ̃1GL. Since jL/K is an isomorphism, the claim (2) holds. The
claim (3) follows because ZarL/K, 1 is an isomorphism by Lemma 6.8. �

Theorem 6.10. Assume that:

(1) Ke ∩ K(µ⊗n
l̄

) = K;

(2) 1 + lZl IdVl
⊂ ρl(GK).

Then all arrows in the following commutative diagram are isomorphisms:

(6.14) ρl(GK)/ρl(GKe)
ZarKe/K

∼=
// Galg

l,K/G
alg
l,Ke

ρl(GK)1/ρl(GKe)1
ZarKe/K, 1

∼=
//

jKe/K ∼=

OO

Galg
l,K,1/G

alg
l,Ke,1

∼=iKe/K

OO

Proof. By (5.9) and (5.10), the upper horizontal arrow ZarKe/K in diagram
(6.14) is an isomorphism. Now the assumptions (1) and (2) and Lemma 6.8 show
that all of the arrows in (6.14) are isomorphisms. �

Theorem 6.11. Assume that:

(1) K0 ∩ K(µ⊗n
l̄

) = K,

(2) 1 + lZl IdVl
⊂ ρl(GK).

Then all arrows in the following commutative diagram are isomorphisms:

(6.15) ρl(GK)/ρl(GK0
)

ZarK0/K

∼=
// Galg

l,K/G
alg
l,K0

ρl(GK)1/ρl(GK0
)1

ZarK0/K, 1

∼=
//

jK0/K ∼=

OO

Galg
l,K,1/G

alg
l,K0,1

∼=iK0/K

OO

Moreover each coset of GK/GK0
has the form σ̃1GK0

such that:

(1) ρl(σ̃1) ∈ ρl(GK)1;
(2) ρl(GK)1 =

⊔
σ̃1GK0

ρl(σ̃1) ρl(GK0
)1;

(3) Galg
l,K,1 =

⊔
σ̃1GK0

ρl(σ̃1)G
alg
l,K0,1

.

Proof. It follows from (6.5) and (6.6) that the upper horizontal arrow ZarK0/K

in diagram (6.15) is an isomorphism. Now the assumptions (1) and (2) and Lemma
6.8 show that all of the arrows in (6.15) are isomorphisms. The isomorphism
(6.5) shows that the assumption (4) of Corollary 6.9 is fulfilled, i.e., GK/GK0

∼=
ρl(GK)/ρl(GK0

). Hence the claims (1)–(3) follow by Corollary 6.9. �

Theorem 6.12. Assume Conjecture 5.1 (a) and assume that for some l :

(1) K0 ∩ K(µ⊗n
l̄

) = K;

(2) 1 + lZl IdVl
⊂ ρl(GK);

(3) astl,K is an isomorphism.

Then:

(6.16) ASTK,Ql
=

⊔
σ̃1 GK0

ρl(σ̃1) ASTK0,Ql
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(6.17) STK =
⊔

σ̃1 GK0

ρl(σ̃1) STK0

In particular the Sato-Tate conjecture (Conjecture 5.9) on the equidistribution of
normalized Frobenii in the representation ρl with respect to STK holds if and only
if the conjecture holds for the representation ρl |GK0

with respect to STK0
.

Proof. By Theorem 6.11 we get

(6.18) Galg
l,K,1 =

⊔
σ̃1 GK0

ρl(σ̃1)G
alg
l,K0,1

.

Hence by Proposition 5.7 we get the equality (6.16) which, under base change to C,
taking C-points and restricting to maximal compacts, gives the equality (6.17). �

Let us now specialize the previous discussion to abelian varieties.

Remark 6.13. Fix an embedding of K into C. Let (V, ψ) be the Hodge
structure associated to an abelian variety A over K (i.e., n = 1, V := H1(AC,Q),
and ψ is the pairing induced by a polarization of A). Take D to be End(AF )Q
(noting that this coincides with Dh = D(V, ψ)). Let Tl(A) be the l-adic Tate
module of A and let Vl := Vl(A) := Tl(A)⊗Zl

Ql. Let ρl be the Galois representation
of GK on Vl. In this case, all the assumptions made in chapters 2–5 are satisfied,
and the resulting definitions agree with the corresponding definitions made in [BK].

J.-P. Serre proved [Se4] that the index e(l) of the group of homotheties in
ρl(GK) in the group of all homotheties is bounded when l varies. Hence there is
c ∈ N such that (Z×

l )
c IdVl

⊂ ρl(GK) for all l. Hence for every l coprime to c, we
obtain 1 + lZl IdVl

⊂ ρl(GK). In this way, Serre established independence of K0

from l; an explicit description of K0 in terms of fields of definition of torsion points
was later given by Larsen–Pink [LP].

Corollary 6.14. With notation as in Remark 6.13, suppose that A/F sat-
isfies the Mumford-Tate conjecture, H(V, ψ) = L(V, ψ,D), and DLKe(V, ψ,D) is
connected. Then for l ≫ 0, the Sato-Tate conjecture holds for A/K with respect to
ρl, if and only if the conjecture holds for A/K0 with repect to ρl |GK0

.

Proof. Obviously for l ≫ 0 the condition (1) of Theorem 6.12 holds. The
condition (2) of Theorem 6.12 holds for l ≫ 0 by the result of Serre [Se4] discussed
in Remark 6.13 or by the result of Wintenberger [W, Corollary 1, p. 5] showing
the Lang conjecture. The condition (3) of Theorem 6.12 holds by [BK, Theorem
6.1]. �

Corollary 6.15. With notation as in Remark 6.13, put g := dim A, and let E
be the center of D. Assume that either g ≤ 3 or A is absolutely simple of type I, II
or III in the Albert classification with g

de odd, where d2 = [D : E] and e := [E : Q].
Then for l ≫ 0, the Sato-Tate conjecture holds for A/K with respect to ρl, if and
only if the conjecture holds for A/K0 with repect to ρl |GK0

.

Proof. By [BGK1, Theorem 7.12, Cor. 7.19], [BGK2, Theorem 5.11, Cor.
5.19] and [BK, Theorem 6.11], abelian varieties considered in this corollary satisfy
the Mumford-Tate conjecture and the properties: H(A) = L(A) and DLKe(A)
connected. Hence the corollary follows by Corollary 6.14. �

Remark 6.16. Some additional cases for which the conclusion of Corollary 6.15
holds are provided by the Jacobians of (certain) hyperelliptic curves, thanks to the
work of Zarhin [Z1, Z2].
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7. Mumford-Tate group and Mumford-Tate conjecture

For A an abelian variety over K and (VA, ψA) the associated polarized Hodge
structure (as in Remark 6.13), there is the following result.

Theorem 7.1. (Deligne [D1, I, Prop. 6.2], Piatetski-Shapiro [P-S], Borovoi
[Bor]; see also [Se1, §4.1]) For any prime number l,

(7.1) (Galg
l,K)◦ ⊆ MT(VA, ψA)Ql

.

The classical conjecture for A/K states:

Conjecture 7.2. (Mumford-Tate) For any prime number l,

(7.2) (Galg
l,K)◦ = MT(VA, ψA)Ql

.

There is a general Mumford-Tate conjecture in the context of Hodge structures
associated with l-adic representations [UY].

Conjecture 7.3. (Mumford-Tate) For any prime number l,

(7.3) (Galg
l,K)◦ = MT(V, ψ)Ql

.

Remark 7.4. Assume that analogously to (7.1) there is the following inclusion:

(7.4) (Galg
l,K)◦ ⊆ MT(V, ψ)Ql

.

We see that (7.4) is equivalent to the inclusion

(7.5) (Galg
l,K,1)

◦ ⊆ H(V, ψ)Ql
,

while the Mumford-Tate conjecture is equivalent to the equality

(7.6) (Galg
l,K,1)

◦ = H(V, ψ)Ql
.

This follows immediately from the following commutative diagram in which every
column is exact and every horizontal arrow is a containment of corresponding group
schemes. (Recall that n is odd.)

1

��

1

��

1

��
(Galg

l,K,1)
◦

��

// DH(V, ψ)Ql

��

// IsoVl,ψl

��
(Galg

l,K)◦

��

// MT(V, ψ)Ql

��

// GIsoVl,ψl

��
Gm

= //

��

Gm
= //

��

Gm

��
1 1 1

The Mumford-Tate and Hodge groups do not behave well in general with re-
spect to products of Hodge structures, as can be seen in the case of abelian vari-
eties [G, p. 316]. However, one has the following simple and well-known result (see
for instance [Mo2, (4.10)]); for more detailed discussions of products, see any of
[Ha, MZ, Z3].
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Theorem 7.5. The Mumford-Tate groups of Hodge structures have the follow-
ing properties.

1. An isomorphism of rational, polarized Hodge structures α : (V1, ψ1) →
(V2, ψ2) induces isomorphisms MT(V1, ψ1) ∼= MT(V2, ψ2) and H(V1, ψ1) ∼=
H(V2, ψ2).

2. For (V, ψ) is a rational, polarized Hodge structure, let (V, ψ)s :=
∏s
i=1(V, ψ).

Then MT((V, ψ)s) ∼= MT((V, ψ)) and H((V, ψ)s) ∼= H((V, ψ)).

One can make a corresponding calculation also on the Galois side.

Theorem 7.6. We have the following results.

1. An isomorphism φ : (V1,l, ψ1,l) → (V2,l, ψ2,l) of Ql[GF ]-modules induces

isomorphisms: Galg
l,K(V1,l, ψ1,l) ∼= Galg

l,K(V2,l, ψ2,l) and Galg
l,K,1(V1,l, ψ1,l) ∼=

Galg
l,K,1(V2,l, ψ2,l).

2. If (Vl, ψl) is a Ql[GF ]-module then for any positive integer s, Galg
l,K(V sl , ψ

s
l )

∼=

Galg
l,K(Vl, ψl) and G

alg
l,K,1(V

s
l , ψ

s
l ) = Galg

l,K,1(Vl, ψl).

Proof. 1. Obvious.
2. There is a natural isomorphism ρl,V s

l

∼= ∆ρl,Vl
in which ∆ρl,Vl

: GK →
GIso((Vl)

s, ψsl ) is the natural diagonal representation ∆ρl,Vl
= diag(ρl,Vl

, . . . , ρl,Vl
).

Hence

ρl,V s
l
(GK) ∼= ∆ρl,Vl

(GK) ∼= ρl,Vl
(GK),

This gives

Galg
l,K(V sl , ψ

s
l )

∼= ∆Galg
l,K(Vl, ψl) ∼= Galg

l,K(Vl, ψl).

Moreover

Galg
l,K,1(V

s
l , ψ

s
l ) = Galg

l,K(V sl , ψ
s
l ) ∩ Iso((Vl)s,ψs

l )
∼= ∆Galg

l,K(Vl, ψl) ∩ Iso((Vl)s,ψs
l )

∼= Galg
l,K(Vl, ψl) ∩ Iso((Vl),ψl) = Galg

l,K,1(Vl, ψl).

�

Corollary 7.7. If the Mumford-Tate conjecture holds for V then it holds for
V s for any positive integer s.

Proof. It follows from Theorems 7.5 and 7.6. �

Remark 7.8. Observe that if the Mumford-Tate conjecture holds for (V, ψ)

and K is such that Galg
l,K is connected, then for any s ≥ 1 :

(7.7) Galg
l,K,1((V, ψ)

s) = H((V, ψ)s)Ql
.

Hence the algebraic Sato-Tate conjecture holds for (V, ψ)s for any s ≥ 1 with

(7.8) ASTK((V, ψ)s) = H((V, ψ)s).
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8. Some conditions for the algebraic Sato-Tate conjecture

Let A be an abelian variety over K and let DA := EndF (A) ⊗Z Q. For the
polarized Hodge structure (VA, ψA), the inclusion H(VA, ψA) ⊆ L(VA, ψA, DA) can
be strict, which makes the Mumford-Tate conjecture a subtle problem. Mum-
ford [Mu] exhibited examples of simple abelian fourfolds for which H(VA, ψA) 6=
L(VA, ψA, DA). These examples have trivial endomorphism ring, but the con-
struction was generalized by Pohlmann [Poh] to include some abelian varieties
of CM type (see [MZ] for further discussion). Notwithstanding such construc-
tions, in many cases where A has a large endomorphism algebra as compared to
its dimension (e.g., under the hypotheses of Corollary 6.15), one can show that
H(VA, ψA) = L(VA, ψA, DA) and that the Mumford-Tate conjecture holds.

Returning to the general case, let D ⊂ EndQ(V ) be a Q-subalgebra. Let D
admit a continuous GF -action. Let (V, ψ) be a D-equivariant, polarized Hodge
structure. Let (Vl, ψl) := (V ⊗Q Ql, ψ ⊗Q Ql) be a family of Galois representations
associated with the polarized Hodge structure (V, ψ). In this chapter, we assume
that the inclusion (7.4) holds. In this setting, we say that the Mumford-Tate con-
jecture for (V, ψ) is explained by endomorphisms if the Mumford-Tate conjecture
holds and H(V, ψ) = L(V, ψ,D). The following theorem asserts that in cases where
the Mumford-Tate conjecture is explained by endomorphisms and the twisted de-
composable Lefschetz group over F is connected, the algebraic Sato-Tate conjecture
is in a sense also explained by endomorphisms.

Theorem 8.1. Assume that the following conditions hold.

1. H(V, ψ) = L(V, ψ,D) = DLKe(V, ψ,D).

2. (Galg
l,K)◦ = MT(V, ψ)Ql

.

Then (5.17) holds for every l. Consequently, the algebraic Sato-Tate conjecture
(Conjecture 5.1) holds for (V, ψ) with

(8.1) ASTK(V, ψ) = DLK(V, ψ,D).

Proof. It is enough to prove (5.19). By our assumptions and Remark 7.4,

we get (Galg
l,Ke,1

)◦ = H(V, ψ)Ql
= L(V, ψ,D)Ql

= DLKe(V, ψ,D)Ql
. It follows that

DLKe(V, ψ,D)Ql
is also connected for every l, and by (5.14) we obtain (Galg

l,Ke,1
)◦ =

Galg
l,Ke,1

for every l. �

Remark 8.2. Under the assumptions of Theorem 8.1, the results of Theorems
7.5, 7.6 and 3.5 show that the algebraic Sato-Tate conjecture holds for V s for all s ≥
1 with ASTK(V s, ψs) = DLK(V s, ψs,Ms(D)) ∼= DLK(V, ψ,D) = ASTK(V, ψ,D).

Conversely, if the algebraic Sato-Tate conjecture for (V, ψ,D) is explained by
endomorphisms, so is the Mumford-Tate conjecture.

Theorem 8.3. Assume that (5.17) and (8.1) hold for every l (so in particu-

lar, the algebraic Sato-Tate conjecture holds). Moreover, assume that (Galg
l,K)◦ ⊂

MT(V, ψ)Ql
. We then have the following.

1. H(V, ψ) = L(V, ψ,D).

2. (Galg
l,K)◦ = MT(V, ψ)Ql

.

Proof. By our assumptions and Remark 7.4 (see (7.5)), we have

(8.2) (Galg
l,K,1)

◦ ⊆ H(V, ψ)Ql
⊆ L(V, ψ,D)Ql

= DLK(V, ψ,D)◦Ql
.
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By (8.1) we get

(8.3) (Galg
l,K,1)

◦ = H(V, ψ)Ql
= L(V, ψ,D)Ql

= DLK(V, ψ,D)◦Ql
.

Hence by Remark 7.4, we obtain (Galg
l,K)◦ = MT(V, ψ)Ql

. Moreover, since H(V, ψ) is

closed in L(V, ψ,D), (8.3) gives

(8.4) H(V, ψ) = L(V, ψ,D).

�

Remark 8.4. Recall that

(8.5) L(V, ψ,D) = DLK(V, ψ,D)◦ ⊳ DLid
K(V, ψ,D) ⊳ DLK(V, ψ,D).

Consider the following epimorphism of groups:

(8.6) DLK(V, ψ,D)/L(V, ψ,D) → DLK(V, ψ,D)/DLid
K(V, ψ,D) ∼= G(Ke/K).

If (V, ψ,D) satisfies the assumptions of Theorem 8.1, then the epimorphism (8.6)
is an isomorphism. In this case we have an identification

(8.7) π0(ASTK(V, ψ,D)) ∼= Gal(Ke/K).

9. Motivic Galois group and motivic Serre group

In the following sections we will give construction of the general algebraic Sato-
Tate group in the category of motives for absolute Hodge cycles. See [DM] (cf.
[Ja1], [Pan], [Se2]) concerning the construction and properties of the category of
motives for absolute Hodge cycles. We will also make the ℓ-adic realization of this
construction explicit, and show that if a suitably motivic form of the Mumford-Tate
conjecture holds then the algebraic Sato-Tate conjecture holds as well.

Remark 9.1. The category of motives for absolute Hodge cycles enjoys very
nice properties: it is a semisimple abelian category and its Hom’s are finite-dimen-
sional Q-vector spaces. It is mainly due to the fact that the definition of Hom’s is
explained via the Betti, étale and de Rham realizations [DM, Prop. 6.1, p. 197].
The advantage of use of this category of motives is that we do not need to assume
standard conjectures in our constructions.

Definition 9.2. Let K be a number field. Choose an embedding of K into
K. Let MK (resp. MK) (see [DM]) be the motivic category for absolute Hodge

cycles over K (resp. K). The Betti realization defines the fiber functor HB :

(9.1) HB : MK → VecQ.

The functor HB factors through the functor

(9.2) MK → MK , M 7→M :=M ⊗K K.

For M ∈ MK let MK(M) denote the smallest Tannakian subcategory of MK

containing M. Let HB|MK(M) be the restriction of HB to MK(M).

Definition 9.3. The motivic Galois groups are defined as follows [DM], [Se2]:

(9.3) GMK := Aut⊗(HB),

(9.4) GMK(M) := Aut⊗(HB |MK(M)).
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The algebraic groups GMK(M) are reductive but not necessarily connected (see
[DM, Prop. 2.23, p. 141], cf. [DM, Prop. 6.23, p. 214], [Se2, p. 379]). Observe
that the finite-dimensional Q-vector space HomMK

(M, N) ∈ M0
K is a discrete

GK-module, so we consider it as an Artin motive. Recall that M0
K is equivalent

to RepQ(GK), the category of finite-dimensional Q-vector spaces with continuous
actions of GK .

Definition 9.4. Fix a motive M and put:

(9.5) D := D(M) := EndMK
(M)

Let h0(D) denote the Artin motive corresponding toD. Let M0
K(D) be the smallest

Tannakian subcategory of M0
K containing h0(D) and put:

(9.6) GM0

K(D) := Aut⊗(H0
B|M

0
K(D)).

There is a natural embedding of motives [DM, p. 215], [Ja1, p. 53]:

(9.7) h0(D) ⊂ EndMK(M)(M) = EndMK
(M).

Recall that EndMK(M)(M) =M∨⊗M ∈ MK(M). In addition GM0

K

∼= GK , so we

observe that
GM0

K(D)
∼= Gal(Ke/K).

Since MK is semisimple [DM, Prop. 6.5] and MK(M) is a strictly full subcate-
gory of MK , the motive h0(D) splits off of EndMK(M)(M) in MK . Moreover the

semisimplicity of MK , together with the observation that M0
K and MK(M) are

strictly full subcategories of MK , shows that the top horizontal and left vertical
maps in the following diagram are faithfully flat (see [DM, (2.29)]):

(9.8) GMK

����

// // GK

����
GMK(M)

// // Gal(Ke/K)

In particular all homomorphisms in (9.8) are surjective.

In the construction ofMK [DM, p.200–203] one starts with effective motives

h(X) and morphisms between them:

(9.9) HomMK (h(X), h(Y )) := Mor0AH(X, Y ) := CHdAH(X × Y )

where X and Y are smooth projective over K and X is of pure dimension d. This
leads swiftly (via Karoubian envelope construction etc.) to the definition of the
motivic category for absolute Hodge cycles MK . In particular HomMK (M, N),
for any M,N ∈ MK , are relatively easy to handle. The obvious grading of the
cohomology ring brings the decomposition of the identity on h(X) into a sum of
the natural projectors:

(9.10) idh(X) =
∑

i≥0

πi

As a result we get the natural decomposition [DM, p. 201–202]:

(9.11) h(X) =
⊕

i≥0

hi(X)
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where hi(X) := (h(X), πi). See also [Ja1] and [Pan] for additional information
about MK .

Since MK is abelian and semisimple, every motive M ∈ MK is a direct sum-
mand of h(X)(m), the twist of h(X) by the m-th power of the Lefschetz mo-
tive L := h2(P1) for some m ∈ Z. The direct summands of motives of the form
hr(X)(m) will be called homogeneous motives. Let L/K be a field extension such
that K ⊂ L ⊂ K. Then in ML, the motive M ⊗K L ∈ ML is a direct summand of
the motive h(X ⊗K L)(m).

Observe that HB|MK(hr(X)) (hr(X)) = HB(h
r(X)) = Hr(X(C), Q) and

V := Hr(X(C), Q) admits a Q-rational polarized Hodge structure of weight r with
polarization ψr. The polarization comes up as follows. It is shown in [DM, pp.
197–199] (cf. [Pan, p. 478–480], [Ja1, pp. 2–4]) that if dim X = d, then there is

an element ψr ∈ CH2d−r
AH (X ×X) such that for every embedding σ : K →֒ C, ψr

induces a Q-bilinear map:

(9.12) ψr : Hr
σ(X(C), Q)×Hr

σ(X(C), Q) → Q(−r)

which gives the polarization ψrR := ψr ⊗Q R of the real Hodge structure:

(9.13) ψrR : Hr
σ(X(C), R)×Hr

σ(X(C), R) → R(−r).

It is then shown [DM, Prop. 6.1 (e), p. 197] that the Hodge decomposition of
V ⊗Q C is D = D(M)-equivariant for M = hr(X).

In effect, for any homogeneous motive M ∈ MK , this induces the polarization
of the real Hodge structure associated with the rational Hodge structure on the
Betti realization V := HB(M). The Hodge decomposition of V ⊗Q C is again
D = D(M)-equivariant.

From now on in this paper, M will always denote a homogeneous motive.

By the definition and properties of Aut⊗(HB |MK(M)), cf. [DM, p. 128–130]
and computations in [DM, p. 198–199], we have:

(9.14) GMK(M) ⊂ GIso(V,ψ) .

Definition 9.5. Define the following algebraic groups:

GMK(M),1 := GMK(M) ∩ Iso(V,ψ)

G◦
MK(M),1 := (GMK(M))

◦ ∩ Iso(V,ψ) .

The algebraic group GMK(M),1 will be called the motivic Serre group.

Remark 9.6. Serre denotes the group GMK(M),1 by G1
MK(M) [Se2, p. 396].

Definition 9.7. For any τ ∈ Gal(Ke/K), put

(9.15) GIsoτ(V,ψ) := {g ∈ GIso(V,ψ) : gβg
−1 = ρe(τ)(β) ∀β ∈ D}.

We have:

(9.16)
⊔

τ∈Gal(Ke/K)

GIsoτ(V,ψ) ⊂ GIso(V,ψ) .
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Observe that

(9.17) GIsoid(V,ψ) = CD(GIso(V,ψ)).

Remark 9.8. The bottom horizontal arrow in the diagram (9.8) is

(9.18) GMK(M) → GMK(D)
∼= Gal(Ke/K).

Let g ∈ GMK(M) and let τ := τ(g) be the image of g via the map (9.18). Hence for
any element β ∈ D considered as an endomorphism of V we have:

(9.19) gβg−1 = ρe(τ)(β).

Definition 9.9. For any τ ∈ Gal(Ke/K), put

(9.20) GτMK(M) := {g ∈ GMK(M) : gβg
−1 = ρe(τ)(β), ∀β ∈ D}.

It follows from (9.19), (9.20), and the surjectivity of (9.18) that

(9.21) GMK(M) =
⊔

τ∈Gal(Ke/K)

GτMK(M)

It is clear from (9.14) and (9.15) that

(9.22) GτMK(M) ⊂ GIsoτ(V,ψ) .

Hence (9.19) and (9.21) give

(9.23) (GM(M))
◦ ⊳ Gid

MK(M) ⊳ GMK(M).

The map (9.18) gives the following natural map:

(9.24) GMK(M),1 → Gal(Ke/K).

Definition 9.10. For any τ ∈ Gal(Ke/K) put

(9.25) GτMK(M),1 := {g ∈ GMK(M),1 : gβg−1 = ρe(τ)(β), ∀β ∈ D}.

It follows that there is the following equality

(9.26) GτMK(M),1 = GMK(M),1 ∩G
τ
MK(M).

Let τ ∈ Gal(Ke/K). By (3.2), (3.3), (9.22) we have

GτMK(M),1 ⊂ DLτK(V, ψ,D)(9.27)

GMK(M),1 ⊂ DLK(V, ψ,D).(9.28)

The equality (9.21) gives:

(9.29) GMK(M),1 =
⊔

τ∈Gal(Ke/K)

GτMK(M),1

Hence:

(9.30) (GMK(M),1)
◦ ⊳ Gid

MK(M),1 ⊳ GMK(M),1,

so (9.26) gives:

(9.31) GMK(M),1/G
id
MK(M),1 ⊂ GMK(M)/G

id
MK(M).



MOTIVIC SERRE GROUP AND ALGEBRAIC SATO-TATE GROUP 27

Remark 9.11. The l-adic representation

(9.32) ρl : GK → GL(Vl)

associated with M factors through GMK(M)(Ql) (see [Pan, Corollary p. 473–474]
cf. [Se2, p. 386]). Hence

(9.33) Galg
l,K ⊂ GMK(M)Ql

where GMK(M)Ql
:= GMK(M) ⊗Q Ql.

10. Motivic Mumford-Tate and Motivic Serre groups

Since X/K is smooth projective and hence proper, Remarks 4.1 and 4.2 show
that Vl := Hr(X, Ql), the l-adic realization of the motive hr(X), is of Hodge-
Tate type. Hence the image of the representation ρl, contains an open subset of
homotheties of the group GL(Vl) [Su, Prop. 2.8], and similarly for any Tate twist
such that Hr(X, Ql(m)) has nonzero weights.

Remark 10.1. In the previous statement, the assumption of nonzero weights is
essential. Indeed, if X has dimension d, then H2d(X, Ql(d)) ∼= Ql as GK -modules.
Hence the action of GK on H2d(X, Ql(d)) is trivial, so the image of the Galois
representation is a trivial group and hence does not contain homotheties.

From now until the end of the paper, let M ∈ MK be a motive which is a direct
summand of a motive of the form hr(X)(m).We assume that the l-adic realization of
hr(X)(m) has nonzero weights with repect to the GK-action. The l-adic realization
of M is a Ql[GF ]-direct summand of the l-adic realization of hr(X)(m). Hence the
l-adic representation corresponding to Vl := Hl(M) has image that contains an
open subgroup of homotheties.

In the following commutative diagram, all horizontal arrows are closed immer-
sions and the columns are exact.

1

��

1

��

1

��
Galg
l,K,1

��

// GMK(M),1Ql

��

// Iso(Vl,ψl)

��
Galg
l,K

��

// GMK(M)Ql

��

// GIso(Vl,ψl)

��
Gm

��

= // Gm

��

= // Gm

��
1 1 1

In particular it follows that:

(10.1) Galg
l,K,1 ⊂ (GMK(M),1)Ql

.

We have the following analogue of Theorem 4.8.
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Theorem 10.2. Assume that G◦
MK(M),1 is connected. Then the following map

is an isomorphism:

iM : π0(GMK(M),1)
∼=
−→ π0(GMK(M)).

Proof. We will write M(M) for MK(M) in the following commutative dia-
gram to make notation simpler.

1

��

1

��

1

��
1 // (GM(M),1)

◦

��

// GM(M),1

��

// π0(GM(M),1)

iM

��

// 1

1 // (GM(M))
◦

��

// GM(M)

��

// π0(GM(M))

��

// 1

1 // Gm

��

= // Gm

��

// 1

1 1

By definition the rows are exact. The middle column is exact by the definition of
GMK(M),1 and the exactness of the middle column in the previous diagram. Hence
the map iM is surjective. SinceG◦

MK(M),1 has the same dimension asGMK(M),1 and

by assumption G◦
MK(M),1 is connected, we then have G◦

MK(M),1 = (GMK(M),1)
◦.

Hence the left column is also exact. This shows that iM is an isomorphism. �

Remark 10.3. Since GMK(M) is reductive, the middle vertical column of the
diagram of the proof of Theorem 10.2 shows that GMK(M),1 is also reductive.

Corollary 10.4. Assume that G◦
MK(M),1 is connected. Then there are natural

isomorphisms

GMK(M),1/G
id
MK(M),1

∼=
−→ GMK(M)/G

id
MK(M),

(10.2)

Gid
MK(M),1/ (GMK(M),1)

◦
∼=
−→ Gid

MK(M)/ (GMK(M))
◦,

(10.3)

GMK(M),1/G
id
MK(M),1

∼=
−→ DLK(V, ψ,D)/ DLid

K(V, ψ,D)
∼=
−→ Gal(Ke/K).

(10.4)

In particular the natural map (9.24) is surjective.

Proof. This follows from (8.6), (9.23), (9.30), (9.31), the surjectivity of (9.18)
and Theorem 10.2. �

Definition 10.5. The algebraic groups:

MMTK(M) := GMK(M)

MSK(M) := GMK(M),1
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will be called the motivic Mumford-Tate group and (as before) the motivic Serre
group for M respectively.

Conjecture 10.6. (Motivic Mumford-Tate) For any prime number l,

(10.5) Galg
l,K = MMTK(M)Ql

.

By the diagram above Theorem 10.2, Conjecture 10.6 is equivalent to the fol-
lowing.

Conjecture 10.7. (Motivic Sato-Tate) For any prime number l,

(10.6) Galg
l,K,1 = MSK(M)Ql

.

Remark 10.8. Conjecture 10.6 is equivalent to the conjunction of the following
equalities:

(Galg
l,K)◦ = (MMTK(M)Ql

)◦(10.7)

π0(G
alg
l,K) = π0(MMTK(M)Ql

).(10.8)

Similarly, Conjecture 10.7 is equivalent to the conjunction of the following equali-
ties:

(Galg
l,K,1)

◦ = (MSK(M)Ql
)◦(10.9)

π0(G
alg
l,K,1) = π0(MSK(M)Ql

).(10.10)

11. The algebraic Sato-Tate group

As in the previous section, we work with motivesM which are direct summands
of motives of the form hr(X)(m); in this section, we propose a candidate for the
algebraic Sato-Tate group for such motives. We prove, under the assumption in
Definition 11.7, that our candidate for algebraic Sato-Tate group is the expected
one. In particular the assumption of Definition 11.7 holds if M is an AHC motive
(see Definition 11.3 and Remark 11.4).

Remark 11.1. One observes ([Pan, Corollary p. 473–474], cf. [Se2, p. 379])
that

(11.1) MT(V, ψ) ⊂ (GMK(M))
◦

Hence we get:

(11.2) H(V, ψ) ⊂ (GMK(M),1)
◦

Recall that CD(Iso(V,ψ)) = DLid
K(V, ψ,D). It follows by (9.17), (9.22), (9.23),

and (11.1) we get:

(11.3) MT(V, ψ) ⊂ (GMK(M))
◦ ⊂ Gid

MK(M) ⊂ CD(GIso(V,ψ)).

Similarly by (9.27), (9.30), and (11.2) that:

(11.4) H(V, ψ) ⊂ (GMK(M),1)
◦ ⊂ Gid

MK(M),1 ⊂ CD(Iso(V,ψ)).

Remark 11.2. Observe that (11.3) gives an approximation for π0(G
id
MK(M))

and (11.4) gives an approximation for π0(G
id
MK(M),1).
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We observe that for n odd the equality

(11.5) H(V, ψ) = CD(Iso(V,ψ))

is equivalent to the following equality:

(11.6) MT(V, ψ) = CD(GIso(V,ψ)).

Definition 11.3. A motive M ∈ MK will be called an AHC motive if every
Hodge cycle on any object of MK(M) is an absolute Hodge cycle (cf. [D1, p. 29],
[Pan, p. 473]).

Remark 11.4. J-P. Serre conjectured [Se2, sec. 3.4] the equality MT(V, ψ) =
MMTK(M)◦. By [DM] the conjecture holds for abelian varieties A/K and for
AHC motives M (cf. [Pan, Corollary p. 474]).

Remark 11.5. In [Se2, p. 380] there are examples of the computation of
MMTK(M) = GMK(M). In [BK, Theorems 7.3, 7.4], we compute MMTK(M) for
abelian varieties of dimension ≤ 3 and families of abelian varieties of type I, II and
III in the Albert classification.

If Serre’s conjecture MT(V, ψ) = MMTK(M)◦ holds for M, then by (9.33) the
containment (7.4) holds:

(11.7) (Galg
l,K)◦ ⊂ MT(V, ψ)Ql

and for n odd it is equivalent to:

(11.8) (Galg
l,K,1)

◦ ⊂ H(V, ψ)Ql
.

In particular (11.7) and (11.8) hold for AHC motives (cf. Remark 11.4).

Remark 11.6. To obtain Galg
l,K as an extension of scalars to Ql of an expected

algebraic Sato-Tate group defined over Q, the assumption in the following definition
is natural in view of (11.2), (11.8), Theorem 10.2 and Remark 11.4.

Definition 11.7. Assume that MT(V, ψ) = MMTK(M)◦. Then the algebraic
Sato-Tate group ASTK(M) is defined as follows:

(11.9) ASTK(M) := MSK(M).

Every maximal compact subgroup of ASTK(M)(C) will be called a Sato-Tate group
associated with M and denoted STK(M).

Theorem 11.8. Assume that we have MT(V, ψ) = MMTK(M)◦. Then the
group ASTK(M) is reductive and:

ASTK(M) ⊂ DLK(V, ψ,D),(11.10)

ASTK(M)◦ = H(V, ψ)(11.11)

π0(ASTK(M)) = π0(MMTK(M)),(11.12)

π0(ASTK(M)) = π0(STK(M)).(11.13)

Galg
l,K,1 ⊂ ASTK(M)Ql

, i.e. Conjecture 5.1 (a) holds for M.(11.14)
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Proof. The group ASTK(M) is reductive by Remark 10.3. Moreover (11.10)
is just (9.28). By assumption MT(V, ψ) = (GMK(M))

◦ and the equality DH(V, ψ) =
H(V, ψ) (which holds n odd), we have:

(11.15) G◦
MK(M),1 = (GMK(M))

◦ ∩ Iso(V,ψ) = MT(V, ψ) ∩ Iso(V,ψ) = H(V, ψ).

Hence G◦
MK(M),1 is connected and

(11.16) ASTK(M)◦ = (GMK(M),1)
◦ = G◦

MK(M),1,

so (11.11) follows. The equality (11.12) follows directly from the Theorem 10.2.
Equality (11.13) follows since ASTK(M)◦(C) is a connected complex Lie group and
any maximal compact subgroup of a connected complex Lie group is a connected
real Lie group. (11.14) follows by (10.1) and the assumption (see also Definitions
10.5 and 11.7). �

Corollary 11.9. Under the assumptions that MT(V, ψ) = MMTK(M)◦ and
DH(V, ψ) = H(V, ψ), there are the following commutative diagrams with exact rows:

(11.17) 0 // H(V, ψ)

��

// ASTK(M)

��

// π0(ASTK(M))

��

// 0

0 // L(V, ψ,D) // DLK(V, ψ,D) // π0(DLK(V, ψ,D)) // 0

(11.18)

0 // π0(Gid
MK(M),1)

��

// π0(ASTK(M))

��

// Gal(Ke/K)

=

��

// 0

0 // π0(DLid
K(V, ψ,D)) // π0(DLK(V, ψ,D)) // Gal(Ke/K) // 0

Proof. The exactness of the top row of the Diagram (11.17) follows from
(11.11). The exactness of the top row of the Diagram (11.18) follows immediately
from Corollary 10.4. �

Corollary 11.10. Assume that H(V, ψ) = CD(Iso(V,ψ)). Then

(11.19) ASTK(M) = DLK(V, ψ,D).

Proof. It follows by the assumption and (11.4) that

π0(G
id
MK(M),1) = π0(DLid

K(V, ψ,D)) = 1.

Hence the middle vertical arrow in the diagram (11.18), which is the right vertical
arrow in the diagram (11.17), is an isomorphism. Since L(V, ψ,D) = (CD Iso(V,ψ))

◦,
by assumption we have H(V, ψ) = L(V, ψ,D). Hence the left vertical arrow in the
diagram (11.17) is an isomorphism, and so the middle vertical arrow in the diagram
(11.17) is an isomorphism. �

Corollary 11.11. If H(V, ψ) = CD(Iso(V,ψ)) and the Mumford-Tate conjec-
ture holds for M , then the algebraic Sato-Tate conjecture holds:

Galg
l,K,1 = ASTK(M)Ql

.
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Proof. By (10.1) and Corollary 11.10:

Galg
l,K,1 ⊂ ASTK(M)Ql

= DLK(V, ψ,D)Ql
.

By the assumption H(V, ψ) = DLKe(V, ψ,D). By virtue of the equivalence of (5.19)

and (5.17), we only need to prove that (Galg
l,K,1)

◦ = H(V, ψ)Ql
which is equivalent

to the Mumford-Tate conjecture by Remark 7.4 . �

Remark 11.12. Theorem 11.8 and its Corollaries 11.9, 11.10 and 11.11 show
that ASTK(M) from Definition 11.7 is a natural candidate for the algebraic Sato-
Tate group for the motive M .

Remark 11.13. Let M be a homogeneous motive which is a direct summand
of hi(X)(m). Put W := Hi(X(C), Q(m)). If ψ is the polarization of the Hodge
stucture on W then we will also denote by ψ the induced polarization on V =
HB(M) (see Chapter 9). Observe also that Wl := Hi

et(X, Ql(m)). We will denote
by ρWl

the natural representation ρWl
: GK → GIso(Wl,ψl)(Ql).

Theorem 11.14. Let M be a motive that is a summand of hi(X)(m) with
nonzero weights. Let the Hodge structure associated with M have pure odd weight
n. Assume that Conjecture 5.1 (a) holds for M and there is c ∈ N such that
(Z×
l )

c IdWl
⊂ ρWl

(GK) for all l. Moreover assume that for some l coprime to
c :

(1) K0 ∩ K(µ⊗n
l̄

) = K,

(2) astl,K is an isomorphism with respect to ρl.

Then the Sato-Tate Conjecture holds for the representation ρl : GK → GIso(Vl,ψl)(Ql)
with respect to STK(M) if and only if it holds for ρl : GK0

→ GIso(Vl,ψl)(Ql) with
respect to STK0

(M).

Proof. Because Vl is a subquotient of Wl as a Ql[GK ]-module, we have
(Z×
l )

c IdVl
⊂ ρl(GK) for all l. Since l is coprime to c then 1 + lZl ⊂ (Z×

l )
c.

Hence the assumptions in this theorem guarantee that all assumptions of Theorem
6.12 are satisfied. Hence Theorem 11.14 follows by Theorem 6.12. �
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[FKS] F. Fité, K.S. Kedlaya, and A.V. Sutherland, Sato-Tate groups of some weight 3 motives,
preprint, arXiv:1212.0256v3 (2015).

[G] B. Gordon, A survey of the Hodge conjecture for abelian varieties, Appendix B in “A
survey of the Hodge conjecture”, by J. Lewis, (1999), American Mathematical Society,
297–356.

[Ha] F. Hazama, Algebraic cycles on nonsimple abelian varieties, Duke. Math. J. 58 (1989),
31–37.

[Hu] J. E. Humphreys, Linear algebraic groups, Springer-Verlag, (1975).
[Ja1] U. Jannsen, Mixed Motives and Algebraic K-Theory, Lecture Notes in Math. 1400,

Springer, 1990.
[Ja2] U. Jannsen, Motives, numerical equivalence, and semisimplicity, Invent. Math. 107

(1992), 447–452.
[Ja3] U. Jannsen, Motivic sheaves and filtrations on Chow groups, in Motives, AMS Proc.

Symp. Pure Math. 55 (1994), vol. I, 245–302.
[LP] M. Larsen, R. Pink, A connectedness criterion for l-adic Galois representations, Israel

J. Math. 97 (1997), 1–10.
[Mo1] B. Moonen, Notes on Mumford-Tate groups, lecture notes (1999) available at

http://www.math.ru.nl/~bmoonen/Lecturenotes/CEBnotesMT.pdf.
[Mo2] B. Moonen, An introduction to Mumford-Tate groups, lecture notes (2004) available at

http://www.math.ru.nl/~bmoonen/Lecturenotes/MTGps.pdf .
[MZ] B.J.J. Moonen and Yu.G. Zarhin, Hodge classes on abelian varieties of low dimension,

Math. Ann. 315 (1999), 711–733.
[Mu] D. Mumford, A note of Shimura’s paper “Discontinuous groups and abelian varieties,”

Math. Ann. 181 (1969), 345–351.
[Pan] A.A. Panchishkin, Motives for Absolute Hodge Cycles, in Motives, AMS Proc. Symp.

Pure Math. 55 (1994), vol. I, 461–483.
[PS] C. A. M. Peters, J. H. M. Steenbrink, Mixed Hodge structures, Ergebnisse der Math. und

ihrer Grenzgebiete, Springer-Verlag (2008).
[P-S] I.I. Piatetski-Shapiro, Interrelations between the Tate and Hodge hypotheses for abelian

varieties (in Russian), Mat. Sb. 85 (1971), 610–620.
[Poh] H. Pohlmann, Algebraic cycles on abelian varieties of complex multiplication type, Annals

of Math. 88 (1968), 161–180.
[Se1] J.-P. Serre, Representations l-adiques, in S. Iyanaga (Ed.), Algebraic Number Theory,

Japan Society for the Promotion of Science, Kyoto University Press, 1977, pp. 177–193.
[Se2] J.-P. Serre, Propriétés conjecturales des groupes de Galois motiviques et des

représentations ℓ-adiques, in Motives, AMS Proc. Symp. Pure Math. 55 (1994), vol.
I, 377– 400.

[Se3] J.-P. Serre, Lectures on NX(p), A.K. Peters, 2012.
[Se4] J.-P. Serre, Letter to K. Ribet, Jan. 29, 1981, in Œuvres. Collected Papers. IV. 1985-

1998, Springer-Verlag, Berlin, 2000.
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