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Abstract

Dictionary learning: analysis of spatial gene expression data and local identifiability theory

by

Siqi Wu

Doctor of Philosophy in Statistics

University of California, Berkeley

Professor Bin Yu, Chair

Spatial gene expression data enable the detection of local covariability and are extremely
useful for identifying local gene interactions during normal development. The abundance of
spatial expression data in recent years has led to the modeling and analysis of regulatory
networks. The inherent complexity of such data makes it a challenge to extract biological
information. In the first part of the thesis, we developed staNMF, a method that combines
a dictionary learning algorithm called nonnegative matrix factorization (NMF), with a new
stability-driven criterion to select the number of dictionary atoms. When applied to a set of
Drosophila early embryonic spatial gene expression images, one of the largest datasets of its
kind, staNMF identified a dictionary with 21 atoms, which we call principal patterns (PP).
Providing a compact yet biologically interpretable representation of Drosophila expression
patterns, PP are comparable to a fate map generated experimentally by laser ablation and
show exceptional promise as a data-driven alternative to manual annotations. Our analysis
mapped genes to cell-fate programs and assigned putative biological roles to uncharacterized
genes. Furthermore, we used the PP to generate local transcription factor (TF) regulatory
networks. Spatially local correlation networks (SLCN) were constructed for six PP that
span along the embryonic anterior-posterior axis. Using a two-tail 5% cut-off on correlation,
we reproduced 10 of the 11 links in the well-studied gap gene network. The performance
of PP with the Drosophila data suggests that staNMF provides informative decompositions
and constitutes a useful computational lens through which to extract biological insight from
complex and often noisy gene expression data.

The biological interpretability of the NMF-derived dictionary motivated us to understand
why dictionary learning works analytically. In particular, if the observed data are generated
from a ground truth dictionary, under what conditions can dictionary learning recovers the
true dictionary? In the second part of the thesis, we studied the local correctness, or local
identifiability, of a particular dictionary learning formulation with the l1-norm objective
function. Suppose we observe N data points xi ∈ RK for i = 1, ..., N , where xi’s are
i.i.d. random linear combinations of the K columns from a square and invertible dictionary
D0 ∈ RK×K . We assumed that the random linear coefficients are generated from either
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the s-sparse Gaussian model or the Bernoulli-Gaussian model. For the population case,
we established a sufficient and almost necessary condition for D0 to be locally identifiable,
i.e., a local minimum of the expected l1-norm objective function. Our condition covers
both sparse and dense cases of the random linear coefficients and significantly improves the
sufficient condition in Gribonval and Schnass (2010). Moreover, we demonstrated that for
a complete µ-coherent reference dictionary, i.e., a dictionary with absolute pairwise column
inner-product at most µ ∈ [0, 1), local identifiability holds even when the random linear
coefficient vector has up to O(µ−2) nonzeros on average. Finally, it was shown that our
local identifiability results translate to the finite sample case with high probability provided
N = O(K logK).
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Chapter 1

Introduction

Biological processes in multicellular organisms depend on spatial and temporal control of gene
expression. Gene products function in the context of other spatially localized gene products
and these interactions have been well characterized for development and tissue differentia-
tion. Recent studies of prenatal [1] and adult human brain [2] revealed widespread anatom-
ical variability in gene networks, which is reflective of developmental processes and of the
distribution of major cell types. Spatially resolved studies of tumors uncovered widespread
intra-tumor heterogeneity [3, 4, 5, 6, 7, 8]. Given the importance of spatio-temporal gene ex-
pression, many efforts are underway to characterize it genome wide. Systematic datasets in-
clude Drosophila gene expression during embryogenesis (Berkeley Drosophila Genome Project
(BDGP), [9]) and oogenesis [10], subcellular mRNA localization [11], and in brain [12], imag-
inal discs [13], central nervous system [14] and other developmental model systems (e.g.
Xenopus [15], Ciona [16] and mouse [17, 18, 19]).

Spatial datasets are complex and quickly surpass the human ability to interpret them.
To represent, search and analyze such large spatial expression datasets, they are commonly
curated with defined controlled vocabulary [9, 17, 18, 19, 20, 21]. Curation using ontologies
is time consuming and requires expert knowledge. Despite significant progress towards au-
tomatic computer annotation through supervised learning based on human labels [22, 23,
24, 25, 26], the subtleties inherent in spatial expression patterns are difficult to capture and
finding related patterns is challenging. An alternative, complementary to ontologies, is the
spatial expression information extracted directly from images [12, 17, 18, 19, 22, 27, 28,
29, 30]. We discovered putative gene interactions by correlating gene expression and per-
forming cluster analysis [27] and others have used sparse Gaussian graphical models [30] to
do the same. Due to data complexity and the large size of image collections, image based
approaches are not routinely used for modeling.

Organ systems develop through the combinatorial action of gene regulatory networks [21,
31], and gene function and regulatory interactions can markedly differ depending on the spa-
tial location [32]. Studies of genomic enhancer elements have shown that wild-type spatial
expression patterns are actually the product of multiple genomic elements. These previous
studies dissected biological enhancers and discovered that complex expression patterns could
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be subdivided into smaller regions [33, 34]. In Drosophila, clustering early embryonic gene ex-
pression patterns recovered groups of cells that likely interact with one another, contributing
to the formation of organs and tissues [27, 33]. These regions are similar to those identified
in studies using laser ablation to determine cell lineage and function [35, 36]. Yakoby et
al. proposed an innovative method to model spatial gene expression in Drosophila follicle
cells as a Boolean combination of smaller building blocks [10]. Due to the small number of
gene expression patterns in their work (81 genes), they were able to produce building blocks
manually. Such an approach is intuitive and conceptually supported by the aforementioned
works on genomic enhancers.

1.1 Dictionary learning to analyze spatial gene

expression patterns

In the first part of the thesis (Chapter 2 – 6), we describe a method that interprets, represents
and analyzes comprehensive spatial gene expression datasets. Specifically, we adapted a
powerful dictionary learning algorithm, nonnegative matrix factorization (NMF) [37], to
learn data-driven representations from large and complex data. Given a data set, dictionary
learning derives a matrix, called dictionary, such that each data point can be expressed as a
linear combination of the columns (or atoms) of the dictionary. Constraints and/or penalties
are often imposed on the dictionary matrix and the linear coefficients. For example, in the
seminal paper of [38], a sparsity penalty was imposed on the linear coefficients to obtain a
sparse code from natural scene image batches that corresponds to a family of receptive fields
similar to those found in primary visual cortex. NMF, on the other hand, requires both the
dictionary and the coefficients to be nonnegative. These constraints enable NMF to learn
”parts-based” representations of objects [37]. NMF has been applied to many fields such as
image processing and computer vision [39], text mining [40], audio signal separation [41] and
bioinformatics [42]. See [43] for a recent review of NMF.

NMF depends on a single parameter, the number K of dictionary atoms. Choosing
this parameter has been a challenging task [42, 44, 45]. In Chapter 3, following the stability
principle [46], we proposed a new stability-based NMF model selection criterion. Specifically,
we exploited the fact that the NMF implementation uses alternating minimization [47],
and reasoned that a good NMF-generated dictionary would be stable when perturbing the
initializations. For each K, we repeat NMF multiple times with randomly sampled data
points as initial inputs and quantify the instability of the resulting dictionaries using an
Amari type measure. We select K that achieves the lowest instability of the dictionaries.
We called this procedure stability-driven NMF, or staNMF. The validity of staNMF was
confirmed by a number of synthetic datasets generated from known dictionaries.

We applied staNMF to a dataset of 1640 spatial gene expression images during early
Drosophila embryogenesis and identified 21 dictionary atoms. These dictionary atoms are
comparable to regions in the pre-organ fate map mentioned earlier [35, 36]. We called these
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dictionary atoms principal patterns (PP), as they can be interpreted as spatial building
blocks of the Drosophila embryo. Using the sparse model selection method LASSO [48]
followed by nonnegative least squares (NLS), we represented each gene expression pattern
as a sparse and nonnegative linear combination of the 21 PP. We used this representation to
predict annotation labels from a control vocabulary [9] and showed that the PP can serve as
an alternative to the traditional annotation approach.

Using the PP-based linear representation for expression patterns, we grouped genes into
overlapping categories and assigned putative biological roles to previously uncharacterized
genes. To understand gene-gene interaction based on expression patterns, we built spatially
local correlation networks (SLCN) to relate transcription factors (TF) in six spatial regions
that span along the embryonic anterior-posterior axis. The constructed networks correctly
reproduced 10 of 11 links in the well-studied gap gene network [49, 50, 51]. Our approach
has the significant potential to become the standard lens for spatial gene expression patterns
and play a critical role in advancing the discovery and modeling of spatially localized gene
networks.

1.2 Understanding dictionary learning: a sufficient

and almost necessary condition for local

identifiability

The biological interpretability of the NMF-derived dictionary motivated us to understand the
theoretical properties of dictionary learning. Despite the empirical success of many dictionary
learning formulations [38, 37, 47], relatively little theory is available to explain why they work.
One line of research addresses the problem of dictionary identifiability [52, 53, 54]: if the data
vectors are generated as sparse linear combinations of the atoms of a true dictionary D0,
under what conditions can we recover D0 by solving the dictionary learning problem? In the
second part of the thesis (Chapter 7 – 9), we study the local identifiability of l1-minimization
dictionary learning. We say that D0 is locally identifiable if it is a local minimum of the
dictionary learning objective function. Instead of putting nonnegative constraints on both
the dictionary and the coefficients, l1-minimization dictionary learning derives the dictionary
by minimizing the average l1-norm of the linear coefficient vectors. Suppose we observe N
data points xi ∈ RK for i = 1, ..., N . The xi’s are i.i.d. random linear combinations of the K
columns from a complete (i.e., square and invertible) reference dictionary D0 ∈ RK×K , where
the random linear coefficients are generated from either the s-sparse Gaussian model or the
Bernoulli-Gaussian model. For the population case in which we observe infinitely many data
points, we established a sufficient and almost necessary condition for the reference dictionary
D0 to be locally identifiable. Our condition characterizes the phase transition phenomenon
of local identifiability and significantly improves the sufficient condition in Gribonval and
Schnass (2010) [52]. For the finite sample case, we showed that similar local identifiability
results hold with high probability if the number of samples N = O(K logK).
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Since it is in general computationally expensive to check our sufficient and almost nec-
essary condition, we also provided tight and easy-to-compute lower and upper bounds to
approximate the quantities involved in the condition. With these bounds, we showed that
for a complete µ-coherent reference dictionary, i.e., a dictionary with absolute pairwise col-
umn inner-product at most µ ∈ [0, 1), local identifiability holds even when the random linear
coefficient vector has up to O(µ−2) nonzeros on average. Moreover, if the sparsity level is
greater than O(µ−2), the reference dictionary is generally not locally identifiable. Our result
is the first to show that O(µ−2) is both achievable and optimal for exact local recovery under
the l1-minimization criterion.

1.3 Organization of the thesis

This thesis is composed of two parts. Part I focuses on the analysis of spatial gene expres-
sion data. We will introduce our data and the preprocessing steps (Chapter 2), develop
staNMF (Chapter 3), interpret the staNMF-derived dictionary (Chapter 4), perform gene
categorization (Chapter 5) and build local gene networks (Chapter 6). Part II is devoted to
theory – local identifiability of dictionary learning. We will give a detailed literature review
and formulate the mathematical problem (Chapter 7), develop results in the population case
(Chapter 8) and in the finite sample case (Chapter 9). Proofs can be found in the Appendix.
We will conclude the thesis by describing future research directions for applications and
theories (Chapter 10).

1.4 Datasets and software

Our data and code are available for download at http://insitu.fruitfly.org/downloads.
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Part I

Analyzing spatial gene expression
using stability-driven nonnegative

matrix factorization
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Chapter 2

Spatial gene expression patterns and
data preprocessing

Identifying gene functions and gene-gene interactions is important for understanding human
organogenesis and developmental diseases. As an animal egg develops from a single cell to
an embryo with a full set of organ systems, combinations of genes are expressed in different
spatial regions to establish body axis and trigger organ formation. Thus, for multicellular
organisms, the study of spatial gene expression patterns is crucial for analyzing regulatory
gene networks and gaining insight into organism development. Spatial expression profiling
using in situ hybridization is one standard approach to systematically examine gene expres-
sion patterns. Large-scale embryonic mRNA expression pattern screens have been completed
or are in progress for a number of model organisms [9, 15, 16, 17, 18, 19]. In this thesis, we
used a set of Drosophila early embryonic spatial gene expression images, one of the largest
datasets of its kind, from the ongoing Berkeley Drosophila Genome Project (BDGP) [9].
However, these images are not aligned and require registration prior to statistical analysis.
Furthermore, gene expression data obtained through this approach contain certain imaging
artifacts. In this chapter, we will address these issues by developing a data preprocessing
pipeline.

2.1 Collecting Drosophila embryonic gene expression

images

We generated a two-dimensional gene expression profile for Drosophila melanogaster during
embryonic development. For each gene, RNA transcripts were detected by hybridization
with an antisense DIG-labeled RNA probe and visualized using immunohistochemistry [9,
55, 21]. The blue stain in the embryo indicates where the gene is expressed (Figure 2.1).
Images of the stained embryos were collected and manually classified into three orientations:
lateral, dorsal and ventral, as well as six developmental stages: stages 1–3, 4–6, 7–8, 9–10,
11–12 and 13–16. Based on the collected images, a trained curator annotated each gene
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with a controlled anatomical vocabulary [20]. In this thesis, we focused on lateral view
embryos of developmental stages 4 – 6 (1 hour 20 min – 3 hours after egg laying at 25◦C).
Using the controlled vocabulary annotation, we removed images annotated solely with the
terms “ubiquitous”, “maternal” or “no staining”. Compared to restricted zygotic expression
patterns, these images had almost uniform expression intensities throughout the embryos
and were therefore less important for our analysis. The resulting dataset contains 1640
images derived from 701 genes, 156 of which encode transcription factors (TF).

Figure 2.1: Stages 4–6 expression images for genes hunchback (hb), knirps (kni) and snail
(sna). The blue stain indicates where the gene is expressed in the embryo.

2.2 Data preprocessing

Embryo registration

Individual Drosophila embryos vary in shape, size and orientation, and can also locate in
different regions of the image (Figure 2.1). Thus, to meaningfully compare gene expression
patterns, we registered each embryo onto a common template. For each image, we first
detected the embryo outline using the segmentation algorithm in [27]. Next, we employed
SPEX2 [28] to transform the near-elliptical embryo onto a standard ellipse template with
long axis 64 pixels and short axis 32 pixels. In some cases, the embryo was flipped in the
horizontal and/or vertical direction(s) such that the anterior part always faces left and the
ventral part always faces down.

Expression pattern extraction

Our embryonic gene expression images were captured using differential interference contrast
(DIC) microscopy. As a result, the shadows induced by DIC are frequently indistinguishable
from expression patterns in grayscale [27]. We developed a least squares (LS) based method
utilizing the color channels to differentiate spatial gene expression from background. Using
Adobe® Photoshop®, we created a training set of 32 images by manually selecting the
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regions of the embryos with gene expression, as detected by the blue dye. For each pixel
inside the ellipse template, we averaged the three RGB values as proxy for gene expressing
intensity and set the intensity outside the segmented region to zero. We then standardized
the expression intensity g of each pixel using the formula (255 − g)/255. Here, 255 is the
number of possible grayscale values. Under this standardization scheme, the maximum gene
expression intensity is one and the minimum is zero.

For i = 1, ..., 32, we represented the i-th manually processed image as a vector si ∈
[0, 1]8192. The vector length 8192 was derived from 128× 64 – the size of the rectangle image
that contained the ellipse template. We predicted the gene expression intensity of each pixel
as a linear combination of the color information of its neighbor pixel at different scales.
Specifically, for each pixel and each color channel, we generated up to the fourth moment
of the intensity at the pixel and within a disk centered at the pixel with radius 2, 4, and
8. Denote the feature matrix by Zi ∈ R8192×49. Each row of Zi corresponds to a pixel and
each column a feature (1 column for the intercept, 4 moments × 4 radii × 3 channels = 48
features). Next, we estimated the linear coefficients using LS:

b̂ = arg min
b∈R49

32∑
i=1

‖si − Zib‖22.

The correlation between the predicted and the manually extracted gene expression is 0.9832.
This number was quite high considering the fact that we had in our training data 8192×32 =
262144 pixels in total but only 48 features.

To extract the gene expression pattern for a new image, we first computed the feature
vector Znew and set snew = Znewb̂. Since the gene expression intensity should value between
zero and one, we further truncated each entry of snew to be in [0, 1]. We then used the result-
ing vector as the extracted gene expression pattern for further analysis. We evaluated our
gene expression extraction procedure on a number of testing images. Our method performed
well as indicated by the high correlation between the gene expression pattern extracted by
the curator and the one predicted by the LS method (Figure 2.2).

Further downsampling and evaluation

The ellipse-registered embryo was further down-sampled to fit in an ellipse template with
long axis 16 pixels and short axis 8 pixels. Such an ellipse template can be embedded in a
rectangle image of 16× 32 pixels for visualization. Inside the rectangle image, there are 405
pixels within the ellipse and 16× 32− 405 = 107 pixels outside. To validate our registration
pipeline, we selected replicates of the same gene and genes with known adjacent expression
patterns, superimposed them, and visually evaluated the matches to deem them satisfactory
(Figure 2.3). See Figure 2.4 for a sample of preprocessed gene expression patterns.
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0.4   0.3  0.2    0.1     0    -0.1 -0.2   -0.3  -0.4

Original image Gene expression 
extracted by curator

Gene expression 
extracted by our method Residuals

A B C D

corr = 0.96

corr = 0.99

corr = 0.93

corr = 0.99

Figure 2.2: Extracting gene expression patterns from images obtained through differential
interference contrast (DIC) microscopy. (A) The original image was standardized to an
image of 64× 128 pixels. (B) A curator used the selection tool in Adobe ® Photoshop® to
extract regions of the Drosophila embryo deemed as having the blue dye. Since we averaged
the three color channels to yield a proxy for gene expression intensity, this resulting image is
displayed in gray scale, with white being the region of low expression, and black the region
of high expression. (C) We extracted gene expression using a linear combination of the
RGB features from the original image. For each example, the correlation indicated in red is
the correlation between the gene expression extracted by curator and that extracted by our
method. (D) The difference between the predicted pattern and the pattern extracted by the
human curator is shown in the residual plot.
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Figure 2.3: Visual evaluation of embryo registration. By overlaying two gene expression pat-
terns with different colors, in this case, red and green, virtual double staining was performed
between the replicates of the same gene (i.e., (A) hb v.s. hb and (C) kni v.s. kni), and
between the replicates of genes one of which is known to be repressor of the other (i.e., (B)
kni v.s. Kr and (D) hb v.s. kni). In both cases, the boundaries of the genes match, indicat-
ing that our registration approach performed reasonably well in transforming a Drosophila
embryo into a common frame of reference.
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Figure 2.4: A sample of gene expression patterns in Drosophila embryos. (A) Expression
patterns of four genes before and after the data preprocessing steps. (B) More examples of
preprocessed gene expression patterns.
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Chapter 3

Stability-driven nonnegative matrix
factorization

In Drosophila development, cell fates are determined before any visible morphological fea-
tures become apparent [35, 36]. They are preceded by the coordinated co-expression of
cohorts of genes in defined spatial regions that divide the embryo into areas with unique
regulatory profiles [27, 33]. Thus, we can think of each spatial gene expression as an additive
and nonnegative linear combination of a set of regions of the embryo. In this chapter, we
will describe a dictionary learning algorithm called nonnegative matrix factorization (NMF)
[37], to identify these additive and positively valued regions. Following the stability principle
[46], we designed a novel stability-based criterion to choose the number of dictionary atoms
in NMF. Our method, called staNMF, performed very well in a number of simulation stud-
ies. When applied to the preprocessed Drosophila embryonic gene expression data, staNMF
identified 21 biologically meaningful dictionary atoms, called principal patterns (PP). Based
on the learned PP, we further utilized LASSO+NLS, a model selection and fitting proce-
dure for nonnegative linear models, to provide compact representations for gene expression
images.

3.1 NMF: formulation and algorithm

NMF is a popular unsupervised learning algorithm that can learn “parts-based” representa-
tion from the input data [37]. It has been used in many fields such as image processing and
computer vision [39], text mining [40], audio signal separation [41] and bioinformatics [42].
See [43] for a recent review of NMF.

Denote by R+ the nonnegative real line. Let X = [x1, ...,xN ] ∈ Rd×N be the data ma-
trix where each column represents a data vector. For a given positive integer K, NMF
finds an entrywise nonnegative dictionary matrix D ∈ Rd×K

+ , under which each vector xi
has nonnegative representations: i.e., xi ≈ Dαααi for a nonnegative vector αααi ∈ RK

+ (Figure
3.1). The nonnegativity constraints on both the dictionary and coefficients enforce the PP
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Figure 3.1: NMF on Drosophila embryonic gene expression image data. For a given number
K, NMF factorizes the nonnegative data matrix X, the columns of which are gene expression
images, into the product of two nonnegative matrices: dictionary D, which contains the K
PP, and coefficient matrix A, which contains the nonnegative coefficients of the images.

to have nonnegative contributions to the observations, resulting in a parts-based representa-
tion for image applications. Mathematically, NMF aims at solving the following nonconvex
optimization problem:

min
D,A=[ααα1,...,αααN ]

‖X−DA‖2F =
N∑
i=1

‖xi −Dαααi‖22,

subject to D ≥ 0, ‖D[, k]‖2 ≤ 1 for k = 1, .., K,

and αααi ≥ 0, for i = 1, ..., N .

Here, D[, k] is the k-th column of the dictionary D. Note that the above formulation of NMF
does not require the data matrix X to be nonnegative in every entry. For some numerical
examples, X is the product of two nonnegative matrices contaminated with noise and hence
can be negative in some entries (see Simulation Experiment 1 in the below section).

For our Drosophila gene expression data, xi is a vector of length 405 that corresponds
to the i-th preprocessed spatial gene expression pattern. To account for possible replicates
of the same gene, we used a weighted version of NMF with the following modified objective
function:

N∑
i=1

w[i]‖xi −Dαααi‖22,

where the weight for the i-th image w[i] is the reciprocal of the number of replicates of
the gene that corresponds to the i-th image (from now on, we will denote the j-th entry
of a vector v ∈ Rm as v[j]). Note that the above objective function can be rewritten as
w[i]‖xi −Dαααi‖22 = ‖

√
w[i]xi −D(

√
w[i]αααi)‖22. Therefore we can simply set x′i =

√
w[i]xi

and use any algorithm that solves original NMF formulation, with X′ = [x′1, ...,x
′
N ] as the
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new data matrix. Denote by (D̂, Â′) the output of the NMF algorithm. The nonnegative
coefficient matrix Â can be retrieved by scaling the i-th column of the matrix Â′ by the
factor w[i]−1/2.

To compute NMF, we used the SPAMS package with the MATLAB interface [47]. SPAMS

implemented a number of online algorithms for dictionary learning and matrix factorization.
The package is fast and scales to large numbers of data points. The NMF algorithm requires
an initial input dictionary. We constructed this input by randomly sampling K columns from
the data matrix X. To compute the dictionary, SPAMS performed alternating minimization:
given the current iteration of the dictionary D, update the nonnegative coefficients αααi’s
using nonnegative least squares (NLS); and given the nonnegative coefficients, update the
dictionary D by solving another series of NLS. We ran the algorithm until convergence.
Clearly, the output dictionary D̂ depends on the initial input. This property can be further
exploited to choose the number of dictionary atoms, as explained in the below section.

3.2 staNMF: stability-driven NMF model selection

In this section, we will address the issue of choosing the number K of dictionary atoms in
NMF. As mentioned, since SPAMS solves NMF by an alternating minimization algorithm, the
output dictionary depends on the initial value. We reasoned that a useful definition of an
optimal NMF-generated dictionary would be reproducibly independent of the initialization
values. We proposed staNMF, a procedure that combined multiple runs of NMF with a
new Amari-type criterion to measure the instability of output dictionaries, to perform model
selection in NMF.

For each K, we ran the NMF algorithm B times. Typically, B = 100 for the Drosophila
gene expression data and other simulated examples presented in the thesis. For each NMF
run, the columns of the initial dictionary were randomly sampled (without replacement)
from the columns of X. The B NMF runs generated output dictionaries D̂b for b = 1, ..., B.

Next, we will introduce a dissimilarity measure for two dictionaries of the same matrix
dimension. Let C ∈ RK×K be the cross correlation matrix between the atoms of two dictio-
naries D1 and D2 with the same number K of atoms. For a matrix H ∈ Rm×n, denote by
H[j, k] its (j, k)-th entry. Since the columns of a dictionary are permutation invariant, to
measure dissimilarity between D1 and D2, we designed the following Amari-type quantity:

diss(D1,D2) =
1

2

(
1

K

K∑
j=1

(
1− max

1≤k≤K
C[k, j]

)
+

1

K

K∑
k=1

(
1− max

1≤j≤K
C[k, j]

))

=
1

2K

(
2K −

K∑
j=1

max
1≤k≤K

C[k, j]−
K∑
k=1

max
1≤j≤K

C[k, j]

)
.

Note that when D2 can be transformed into D1 by column permutation, diss(D1,D2) = 0.
Such a definition was inspired by Amari et al. [56], who used a comparable quantity to
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measure the performance of their blind signal separation algorithm. The discrepancy of all
B dictionaries for K was measured by the average Amari-type error of all B(B − 1)/2 pairs
of dictionaries:

Υ(K) =
2

B(B − 1)

∑
1≤b<b′≤B

diss(D̂b, D̂b′).

We selected K that achieved a small Υ(K), i.e., a small discrepancy or instability. Once the
parameter K was determined, we selected the learned dictionary with the minimum NMF
square loss among all B dictionaries.

Brunet et al.’s stability-based criterion

The idea of using stability for NMF model selection was first introduced by Brunet et al.
[42]. However, their stability metric was substantially different from ours. In their paper,
NMF was used for cluster analysis. They proposed to choose K such that their NMF cluster
assignment is most stable. Given a dictionary D with K columns, they assigned the data
vector xi to the k-th cluster, if the nonnegative coefficient for the k-th dictionary atom has
the highest value among all K coefficients. If more than one dictionary atom share the
same coefficient value, the data point is assigned to any of the corresponding clusters with
equal probability. For the clustering defined by NMF, they constructed the connectivity
matrix S, whose (i, j)-th entry is set to one if the i-th and the j-th data points belong to the
same cluster, and zero otherwise. Based on the B NMF runs, they computed the consensus
matrix, S̄, which was defined as the average of all connectivity matrices. They then used
the cophenetic correlation coefficient based on S̄ to measure the clustering stability of NMF.
In their paper, the cophenetic correlation coefficient was defined as the Pearson correlation
coefficient of (1) the distance between the i-th and j-th data points as measured by 1− S̄[i, j]
and (2) the distance between the i-th and j-th data points induced by the average linkage
hierarchical clustering using S̄ as the similarity matrix, for all 1 ≤ i < j ≤ N (recall that N
is the number of data points). The closer the cophenetic correlation coefficient to 1, the more
stable the clustering assignment. To compare with our method, we used the equivalent one
minus the cophenetic correlation coefficient, which is now a measure for clustering instability,
and strived for a minimum value.

Synthetic and real data applications

We tested our staNMF as well as Brunet et al.’s method on a number of synthetic data
with a known ground truth dictionary. While both methods identified the same K for some
examples (Simulation Experiment 1 and 3), it is not surprising that Brunet et al.’s method
failed on the others (e.g., Simulation Experiment 2), as their method was originally designed
for the purpose of cluster analysis. Our staNMF performed consistently well. When applied
to our Drosophila spatial gene expression data, both stability-based methods agreed on
K = 21. Below, we will describe our simulation experiments and the real data application.
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Simulation Experiment 1

In this experiment, we investigated how the two stability-based methods behave for dic-
tionaries with different coherence and linear coefficients with various sparsity. It has been
shown that increased dictionary coherence, or collinearity between dictionary atoms, might
lead to ill-posedness of a number of dictionary learning formulations, see e.g., [52, 53, 54]
and Part II of this thesis. Empirically, we also found it difficult for NMF to recover the
dictionary if the atoms were highly collinear. Therefore, as the coherence of the dictionary
increases, we suspected that it is increasingly challenging for the two stability-based methods
to identify the correct K.
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Length = 200 
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coh D = 

Figure 3.2: Construction of the dictionary in Simulation Experiment 1. In the above illus-
tration, each vertical bar represents a dictionary atom (column). The black region of a bar
indicates the entries that are ones and gray region the entries that are zeros. The parameter
coh ∈ {0, 1, ..., 10} is the number of common entries that are ones between two consecutive
dictionary atoms. It measures also the coherence of the dictionary. From the i-th bar to the
(i+ 1)-th bar, the black region is shifted down by the constant amount 10− coh.

We generated our data as follows. Let coh ∈ {0, 1, ..., 10}. We constructed the ground
truth dictionary D0 ∈ R200×20 as:

D0[j, k] =

{
1, for 1 + (k − 1)(10− coh) ≤ j ≤ 10 + (k − 1)(10− coh),

0, otherwise.

See Figure 3.2 for an illustration of the above dictionary construction. Under this con-
struction, each dictionary atom has exactly 10 entries equal to one and the remaining 190
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entries equal to zero. Furthermore, two consecutive dictionary atoms share coh entries that
are equal to one in common. Thus, the parameter coh controls the coherence of the dictio-
nary, which is defined as the maximum absolute inner product between dictionary atoms.

Next, we generated the entries of the coefficient matrix A0 ∈ R20×1000 as independent and
identical Bernoulli random variable with success probability 0 < p ≤ 1. Set the data matrix
X = D0A0 + E, where E ∈ R200×1000 was a noise matrix with entries drawn independently
and identically from a Gaussian distribution with mean zero and standard deviation 0.1.

For each combination of (p, coh), we ran NMF B = 100 times for 10 ≤ K ≤ 30 and
then applied both stability criteria. The results shown in the Figure 3.3 indicated that when
the dictionary coherence was low, our measure for dictionary instability, Υ(K), had a clear
minimum at K = 20 which was the true number of dictionary atoms. However, as the
dictionary coherence increased, for example, coh = 6, Υ(K) as a function of K changed
shape and multiple local minima with similar stability emerged. This observation supported
our previous conjecture that a higher dictionary coherence made it more difficult for the
staNMF to identify the correct K. It is unclear how the sparsity parameter p affected our
stability criterion.

Brunet et al.’s method behaved similar on the same data (Figure 3.4). However, we
found that the clustering instability measure was versatile across the range of K and had
too many abrupt local minima. On the other hand, our measure of dictionary instability
Υ(K) was much more continuous and predictable. For example, for p = 1 and coh = 2,
Brunet et al.’s stability curve had two almost identical local minima: one at K = 10 and
the other at K = 20. In this case, their method was not robust: slight contamination of the
data might mislead their method to choose K = 10 as the best number of dictionary atoms.
For the same example, staNMF gave a very clear minimum at K = 20.

Simulation Experiment 2: the Swimmer data

In this example, we evaluated staNMF with a dataset that has been widely used in the NMF
literature: the Swimmer data [57, 44, 45]. The dataset contained 256 images each of 32× 32
pixels depicting all possible gestures of an artificial swimmer (Figure 3.5A and B). For each
image, each limb of the swimmer was chosen from one of four gestures for that limb. The
true dictionary therefore consisted of 4 × 4 = 16 atoms and so the number of all possible
combinations of the swimmer gestures was 44 = 256.

For this data, our method recovered the correct K = 16 (Figure 3.5C). However, Brunet
et al.’s method chose K = 14 (Figure 3.5D). To elucidate the reason, we noted that each
swimmer image had equal contribution from four dictionary atoms. Thus under the ground
truth dictionary, each image should be assigned to the corresponding four clusters simultane-
ously. However, Brunet et al.’s approach forced the image to belong to only one cluster. As
a result, it would select any one of the four clusters with equal probability. The randomness
of an image falling into one of the four clusters resulted into clustering instability at K = 16.
In contrast, staNMF did not assume any clustering structure and so it also identified the
correct K for this dataset.
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Real Data: Drosophila gene expression patterns

For each of the 1640 Drosophila gene expression images, we converted the pixel intensities of
the preprocessed expression pattern into a linear vector of length 405 and decomposed the
vector with NMF. We applied both stability-based criteria to the data for 15 ≤ K ≤ 30. The
dictionary learned with K < 15 resulted in PP that were in general too broad, as compared to
the pre-organ partitions in the Drosophila fate map. These PP also led to poor reconstruction
quality when using them to represent the gene expression patterns. Dictionary learned with
K > 30 resulted in PP that were too unstable. For 15 ≤ K ≤ 30, both staNMF and Brunet
et al.’s method identified K = 21 as the optimal number of PP (Figure 3.6A).

We noticed that our stability criterion, Υ(K) had similar values for K = 21 and K = 22.
When comparing the K = 22 dictionary with the K = 21 dictionary, we found that three
PP from the K = 22 dictionary, PP4, PP5 and PP6, were different from the corresponding
PP4 and PP5 of the K = 21 dictionary (Figure 3.7). In particular, PP5 in the K = 21
dictionary was split into PP5 and PP6 in the K = 22 dictionary. The remaining 19 PP were
essentially unchanged. Thus the PP learned using the two different K were very similar. For
simplicity we chose K = 21.

Simulation Experiment 3: the denoised Drosophila data

In Simulation Experiment 1, we demonstrated that dictionary coherence might affect the
two stability-based model selection criteria. As a sanity check for our real data application,
we generated a dataset using the 21 PP learned from the Drosophila data and investigated
whether staNMF can recover the correct number of PP from this artificial data. Specifically,
denote by D̂ ∈ R405×21

+ the learned dictionary which contains the 21 PP and Â ∈ R21×1640
+ the

corresponding nonnegative coefficient matrix. We generated the data matrix X̂ ∈ R405×1640
+

as the “denoised” version of the original data matrix: X̂ = D̂Â. For this dataset, both
staNMF and Brunet et al.’s method selected K = 21 as the optimal number of PP (Figure
3.6B).
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Figure 3.3: NMF model selection using staNMF: Simulation Experiment 1. For each
(p, coh) ∈ {0.1, 0.5, 1}× {0, 2, 6}, we generated the data matrix X from the model described
in Simulation Experiment 1. For each parameter configuration, we ran NMF B = 100 times
for every 10 ≤ K ≤ 30 and then applied our stability criterion. For each plot, the vertical
axis represents the dictionary instability as measured by Υ(K) defined in the text. The
lower the value, the more stable the dictionaries with respect to random initial values.
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Figure 3.4: NMF model selection using Brunet et al.’s clustering instability criterion [42]:
Simulation Experiment 1. The synthetic data are exactly the same as those in Figure 3.3.
For each plot, the vertical axis represents the clustering instability as measured by one minus
the cophenetic correlation coefficient of the NMF cluster consensus matrix (see text). The
lower the value, the more stable the cluster assignment with respect to random initial values.
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Simulation Experiment 2: the Swimmer Data
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Figure 3.5: NMF model selection: Simulation Experiment 2 – the Swimmer dataset [57].
(A) A sample of 25 images containing the artificial swimmers. (B) The 16 dictionary atoms
recovered by NMF. The dark blue region of each basis image corresponds to a limb of the
artificial swimmer, whereas the light blue region indicates the torso of the swimmer. (C)
staNMF identified correctly K = 16. (D) Brunet et al.’s method selected K = 14.
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Simulation Experiment 3: the denoised Drosophila data

K selected by the criterion
True K

15 20 25 30

0.
05

5
0.

06
5

0.
07

5
0.

08
5

K K

D
ic

tio
na

ry
 in

st
ab

ilit
y

C
lu

st
er

in
g 

in
st

ab
ilit

y
C

lu
st

er
in

g 
in

st
ab

ilit
y

K

15 20 25 30

0.
00

0.
02

0.
04

0.
06

K

D
ic

tio
na

ry
 in

st
ab

ilit
y

15 20 25 30

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

15 20 25 30
0.

02
5

0.
03

5
0.

04
5

0.
05

5

Figure 3.6: staNMF and Brunet et al.’s stability criterion on (A) the Drosophila spatial
gene expression data and (B) the corresponding denoised data. The two methods agreed on
K = 21 in both examples. Note that for the real data we do not know the true number of
PP and so only the red dash lines were drawn for the two plots in (A). The denoised data
was constructed as X̂ = D̂Â, where (D̂, Â) is the output dictionary and the nonnegative
coefficient matrix from the NMF.
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Figure 3.7: NMF dictionaries learned with number of dictionary atoms (A) K = 21 and (B)
K = 22. Every PP was normalized to have maximum intensity equal to one.
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3.3 Representing spatial expression patterns by the

learned PP

We evaluated the ability of PP to provide a compact representation for spatial gene expres-
sion patterns. A sparse decomposition of complex expression patterns into additive smaller
components offers a simple and intuitive computational representation of spatial gene expres-
sion. Using nonnegative least squares (NLS), the NMF algorithm gave a nonnegative linear
representation matrix of the data under the learned dictionary. With the nonnegativity as
an implicit sparsity penalty, NLS can be treated as a method to perform model selection
[58]. However, empirically we found that NLS selected more covariates than necessary. To
address this issue, we added a LASSO step before the NLS and showed that this strategy
outperformed the plain NLS approach.

NLS tends to over-select covariates

We generated 1000 data vectors using the model discussed in Simulation Experiment 1 with
dictionary coherence coh = 2 and random linear coefficient sparsity p = 0.2. For each of the
data vector generated, we applied NLS to estimate the nonnegative linear coefficients with
the ground truth dictionary as the covariate matrix. The resulting NLS coefficients contained
many more nonzeros than the true nonnegative linear coefficients used to generated the data
(Figure 3.8A and B). The average support difference between the estimated coefficient and
the true coefficient was 7.29, out of a maximum of 40.

The LASSO+NLS procedure for model selection and fitting

To address the above issue, we employed the following LASSO+NLS procedure. Let x ∈ Rd

be a data vector and D ∈ Rd×K the dictionary or covariate matrix. We first used the LASSO,
or least absolute shrinkage and selection operator [48], with the nonnegative constraints on
the linear coefficients:

(µ̂, β̂(λ)) = arg min
µ∈R+,β∈RK

+

‖x−Dβ − µ‖22 + λ‖β‖1.

With a 10-fold cross-validation, the LASSO regularization parameter λ was chosen to be the
largest among all parameters whose cross-validation error was within one standard error of
the minimum cross-validation error. Denote by β̂lasso the nonnegative linear coefficient at
the selected λ.

Due to the l1-penalty term, the LASSO estimator is biased towards zero for finite samples.
In order to reduce the bias, we fitted NLS on the dictionary atoms selected by the LASSO
[59]. Let S = {k : β̂lasso[k] 6= 0} ⊂ {1, ..., K} be the support of the LASSO coefficient vector
and D[, S] be the submatrix of D with columns indexed by S. We solved the following NLS
problem:

(ν̂, γ̂) = arg min
ν∈R+,γ∈R|S|+

‖x−D[, S]γ − ν‖22,
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Figure 3.8: Effectiveness of the LASSO+NLS model selection and fitting procedure. We
generated 1000 data vectors according to the model described in Simulation Experiment 1,
with dictionary parameter coh = 2 and random linear coefficient sparsity p = 0.2. For each
data vector, using the ground truth dictionary as the covariate matrix, both nonnegative least
squares (NLS) and LASSO+NLS were applied to estimate the linear coefficients. Shown are
the histograms of the number of nonzeros in the linear coefficients of (A) the true model,
(B) the NLS estimates and (C) the LASSO+NLS estimates. If model selection is performed
properly, the resulting distribution of number of nonzeros should match with that of the true
coefficients. Here, the distribution of the number of nonzeros for NLS shifted significantly to
the right (B), indicating that NLS tended to over-select covariates. The LASSO+NLS fitting
procedure, on the other hand, produced number of nonzeros distribution almost identical to
histogram for the true coefficients (C).

where |S| is the size of the set S. The sparse PP (sPP) representation or sPP coefficient for
the data vector x, denote by η ∈ RK

+ , is a vector whose entries indexed by S, η[S] = γ̂ and
entries indexed by the complement of S, η[Sc] = 0.

We applied the LASSO+NLS procedure to our previous simulation example. The dis-
tribution of number of nonzero estimated coefficients per observation now matched that of
the true coefficients (Figure 3.8C). The average support difference between the two reduced
significantly to 0.3.

We used the R package glmnet [60] for the computation.

Application to our data

We applied this PP selection and fitting procedure to our data (Figure 3.10). The average
number of PP chosen by this procedure is 10.4, and the average correlation between the
original expression pattern and the reconstructed pattern is 0.854 (Figure 3.9A and B).
Considering the small number of the selected PP, the correlation measure indicates that
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our model selection and fitting procedure achieved a reasonably good reconstruction quality.
As expected, the correlation increases as the number of PP increases (Figure 3.9C). We
investigated cases with poor performance and found such gene expression patterns are either
faint or with poorly defined boundaries. In addition, non-sparse representations almost
always correspond to ubiquitously expressed genes (Figure 3.9D). As illustrated by the
residual images, errors are most likely to occur at expression pattern boundaries (Figure
3.10).
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Figure 3.9: Spatial gene expression reconstruction quality of the sparse PP (sPP) represen-
tation. (A) Histogram of the number of selected PP per expression pattern. (B) Histogram
of the correlation between a gene expression pattern and the reconstructed pattern (linear
combination of the 21 learned PP using the sPP representation as coefficients). (C) The
relationship between the number of selected PP and the correlation. (D) A sample of ex-
pression patterns represented with more than 20 PP (black box) and a sample of expression
patterns with poor reconstruction quality, i.e., correlation less than 0.35 (red box).
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Figure 3.10: Sparse decomposition of spatial gene expression patterns using the LASSO+NLS
procedure. Shown are a sample of five gene expression patterns (Original), their recon-
structed patterns using the sPP representation (Reconstructed), the difference between the
original and the reconstructed patterns (Residuals) and the contributions from the 21 PP
(sPP representation).
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Chapter 4

Interpreting the learned dictionary –
principal patterns (PP)

In Chapter 3, we developed a stability-driven model selection for NMF and derived 21 dic-
tionary atoms, or principal patterns (PP), based on our Drosophila gene expression data.
In this chapter, we will show that these computationally learned PP are biologically inter-
pretable. First of all, we will link PP to regions of the well-established Drosophila pre-organ
fate map. Next, we will demonstrate PP’s unique biological interpretability by comparing
them with dictionary atoms learned from three other unsupervised learning methods: prin-
cipal component analysis, factor analysis and independent component analysis. Finally, we
will use the PP-based representation to predict manual annotations of gene expression. The
high accuracy in the prediction task and the interpretability of the top predictors indicate
that PP can become a data-driven alternative to the traditional vocabulary-based approach.

4.1 PP and the Drosophila fate map

The 21 learned PP divided the Drosophila embryo into contiguous regions (Figure 4.1). Each
PP is spatially coherent: the intensity is locally continuous and the regions defined by the PP
are interconnected. We grouped the 21 PP into four categories: PP1–5: anterior patterns;
PP6–9: vertical (gap) segmentation stripes; PP10–16: horizontal ventral-dorsal patterns
and; PP17–21: posterior patterns. Furthermore, the PP resemble the pre-tissue and organ
regions in the Drosophila fate map [35, 36], an experimentally determined functional mapping
of spatial regions before availability of gene expression data. In the following paragraph, we
will describe in detail how we linked the PP to fate map.

The Drosophila fate map is a schematic diagram depicting pre-organ regions of a Drosophila
embryo. To link the computationally derived PP to the fate map, we first identified a few
PP that definitely belong to certain regions of the schematic map and assigned the rest
according to their relative positions and shapes. Additionally, we validated our assignments
by finding genes with known biological roles using the PP categories described in Chapter
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Figure 4.1: The Drosophila fate map (center) [35, 36], surrounded by the 21 PP learned by
staNMF. The PP are arrayed according to the corresponding regions of the fate map.

5 and later stage annotation data [21]. For example, PP1 can be easily mapped to foregut,
PP10 to dorsal epidermis, PP16 to ventral mesoderm and PP21 to pole cells as these PP
occupy the four corners of the embryo. Next, for the anterior patterns, we identified PP4 and
PP5 from their locations and shapes as the brain region of the fate map. These assignments
were further substantiated by a number of nervous system genes associated with the two
PP (e.g., numb, oc, D and Doc1). PP2 is between the brain and the foregut region and we
found genes expressed in PP2 associated with either organ, e.g., hb and tll in brain and oc
and hbn in foregut. Therefore we labeled it as either brain or foregut. PP3 is most likely to
be the anterior midgut or anterior ventral mesoderm regions because it is directly beneath
PP1 (foregut) and overlaps with PP16 (mesoderm). Genes expressed in PP3 include known
midgut genes (e.g., egg and ry) and known mesoderm genes (e.g., croc and Mes4). PP6–9
are vertical segmentation patterns that were hinted in the fate map [49]. For the horizon-
tal patterns, PP11 and PP12 are both above the midline of the embryo and hence can be
treated as dorsal epidermis region. The below embryo midline PP14 and PP15 can be either
the ventral neurogenic region or mesoderm, and there is evidence supporting that parts of
the later central nervous system is derived from the mesoderm [61]. PP13 is most often
associated with the ventral neurogenic regions (e.g., SoxN and ind) and the yolk region of
the embryo (not part of the fate map) (e.g., aay and llp4). For the posterior patterns, PP20
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is directly to the left of PP21 (pole cells) and so we labeled it as midgut. This mapping is
also supported by the fact that many midgut genes are expressed in PP20, including sc, Bgb,
esg and Moe. PP17 is labeled as hindgut since it is similar in shape and size to the hindgut
region of the fate map. PP18 and PP19 are directly above and below PP17 respectively and
so they were labeled as hindgut as well. Moreover, we found hindgut genes such as Abd-B,
Mkp3 and D19A in PP17, Doc1, ebi and dm in PP18 and byn, apt and twi in PP19, further
supporting our mapping of PP17–19 to the fate map.

We found that the PP refined the fate map in the dorsal epidermal region, the ventral
neurogenic region, the mesoderm and the hindgut. Some of the refinements are already
biologically supported. For example, the vertical stripes are known to be the result of gap,
pair-rule, polarity and segmentation genes that eventually establish 14 refined stripes that
become morphologically distinguishable in a later stage embryo [49].

4.2 Comparison with factor analysis, PCA and ICA

Can other dictionary learning algorithms recover similar part-based representations as NMF?
In this section, we will compare our NMF derived dictionary with those obtained by a sparse
Bayesian factor model [24], principal component analysis (PCA) and independent component
analysis (ICA) [62]. We will show that only PP recapitulates the underlying biology of cell
and tissue fate map.

Recently, a sparse Bayesian factor model was developed to derive patterns from Drosophila
gene expression data [24] . We applied their algorithm to our images. Since their algorithm
involved MCMC computation, we did not perform model selection for the factor model.
Instead, we set the number of Bayesian factors (BF) to be K = 21 as in NMF for direct
comparison (Figure 4.2). For some of the BF, e.g., BF1, 2, 3, 10, 13, 20 and 21, the intensity
in the negative region is rather uniform and the BF can be associated with the corresponding
PP, e.g., PP1, 2, 3, 11, 16, 20 and 21. However, the biological meaning of the remaining BF
is not immediately clear. For example, BF4 splits the mesoderm region into a positive half
and a negative half, with other positive and negative regions scattering around the embryo.
BF9 seems to be made up from the positive PP8 and the negative PP9. By allowing negative
values in the sparse linear coefficients, some of the BF also appeared to be much broader
than the PP, e.g., BF5, 8 and 16.

Similarly, we compared our PP with PCA and ICA (Figure 4.3). For PCA, as a con-
sequence of the orthogonality constraint, the derived components show oscillating patterns
and are difficult to interpret. For ICA, the negative components in the IC make them less
interpretable. We used the R package FastICA for the computation of ICA [62] .
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Figure 4.2: A comparison between the 21 principal patterns (PP) and the 21 sparse Bayesian
Factors (BF) [24]. (A) The 21 learned PP. Every PP was normalized to have maximum
intensity equal to one. (B) The 21 learned BF. Blue intensity indicates positive value and
red indicates negative values. Every BF was normalized to have maximum absolute intensity
equal to one.

4.3 PP provide a data-driven alternative to human

expert annotations

Traditionally, expert curators annotated BDGP spatial gene expression patterns with a num-
ber of controlled vocabulary terms [9, 17, 18, 19, 20, 21]. These terms represent anatomical
regions of the developing embryo, similar to the fate-map discussed above. To compare
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Figure 4.3: Principal component analysis (PCA) and independent component analysis (ICA)
for the Drosophila gene expression data. (A) The top 24 principal components as ranked by
the corresponding eigenvalues. (B) The 21 independent components.

the 21 learned PP with the anatomical vocabulary, we used the sPP coefficients generated
in Chapter 3 as predictors in a supervised learning approach to classify annotation terms.
We selected 11 stages 4–6 annotation terms with more than 100 images: ectoderm anlage
in statu nascendi (AISN), dorsal ectoderm AISN, procephalic ectoderm AISN, ventral ec-
toderm AISN, mesoderm AISN, trunk mesoderm AISN, amnioserosa AISN, gap, hindgut
AISN, pole cells and visual AISN. For each of the 11 terms, we labeled images annotated
this term as “1”, the rest as “0”. We then fitted an l1-penalized logistic regression (L1LR)
with the sPP coefficients as predictors (see e.g., [63]). To compare with sPP, we also trained
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L1LR using the full expression pattern with 405 pixels, and the sparse Bayesian Factor (BF)
model by [24] (see previous section).

Specifically, for each annotation term, denote by L[i] the label of the i-th image for
i = 1, ..., 1640: L[i] = 1 if the gene corresponding to the image was labeled as expressed in
this term and L[i] = 0 otherwise. To predict the label vector L, we fitted L1LR using three
different covariate sets: (1) the 405 pixels for the pixel-based representation, (2) the 21 sPP
coefficients based on the LASSO+NLS procedure, and (3) the 21 sparse Bayesian Factor (BF)
coefficients. For each annotation term, the observations in each class are weighted by the
reciprocal of the corresponding class size so that the two classes are of the same importance.
A 10-fold cross-validation was performed and the l1-penalization parameter was chosen such
that it was the largest among all parameters whose cross-validation Area Under the ROC
Curve (AUC) was within one standard error of the maximum AUC. We used the R package
glmnet [60] for computation.

Prediction performance and model complexity

The prediction performance of the three representations is very similar, as measured by the
cross-validation AUC (Figure 4.4A). On average, the AUC value for the sPP representation
is 0.772, as compared to 0.787 for the pixel-based representation and 0.767 for the BF
representation. Taking into account the standard error of the AUC for each annotation
term, none of the three methods significantly outperforms the others. In terms of model
complexity, on average 17 predictors are selected for the pixel-based L1LR, 7 for our sPP-
based approach, and 8 for the BF-based model (Figure 4.4B).

Stability analysis of the selected predictors

We studied the stability of the selected predictor sets for the three representations. To
interpret the selected predictors, stability is the minimal requirement. For each annotation
term and representation, we measured instability using the Jaccard distance between the
supports of two L1LR coefficients, averaged over all 45 coefficient pairs in the 10-fold cross-
validation. The higher the Jaccard distance, the more unstable the support of the L1LR
coefficients. Our results indicated that the selected L1LR model for the sPP representation
is most stable among the three representations, except for two terms: “dorsal ectoderm”
and “hindgut”, for which the BF approach is slightly better (Figure 4.4C). The pixel-based
approach selects highly unstable predictor sets.

L1LR coefficients for PP and BF

Next, we examined the L1LR coefficients for PP and BF representations (Figure 4.5 and
4.6). For all 11 terms, the PP L1LR coefficients are sparse and the largest L1LR coefficients
are always positive. Furthermore, the top L1LR coefficient – the largest L1LR coefficient in
magnitude – is much larger than the second largest L1LR coefficient in magnitude. These
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Figure 4.4: Predicting annotation terms based on 405 image pixels, the sPP and the BF
(sparse Bayesian Factor) representations. (A) Prediction accuracy as evaluated by the AUC
value. Data are expressed as mean ± SEM. (B) Number of selected predictors in the optimal
model. (C) Stability analysis of the set of selected L1LR predictors for three representations.

facts indicate that the top L1LR PP – the PP that corresponds to the top L1LR coefficient
– is the dominating factor in determining whether a gene expression pattern is labeled with
an annotation term. This also gives motivation to consider only the top L1LR PP when
associating PP with annotation terms in the next subsection. For the BF representation,
the L1LR coefficients are also sparse. But unlike the PP case, the largest L1LR coefficients
are not always positive (e.g., “ventral ectoderm” and “gap”). In addition, some of the largest
L1LR coefficients are much closer to the second largest L1LR coefficients than in the PP
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case: e.g., the terms “mesoderm” and “visual”. This is because the positive regions of some
BF have a significant amount of overlap, e.g., BF12 versus BF13, and BF5 versus BF6. The
overlap between PP is much smaller.

Visualizing L1LR coefficients

For the pixel-based model, we created a visualization of the 405 predictors for each annotation
term by plotting the L1LR coefficient values as pixels in our elliptic embryo shape. To
compare with this visualization, we selected the (top L1LR) PP and BF corresponding to
the largest L1LR coefficients for their respective L1LR models. The pixel-based predictors
consist of scattered points and the top L1LR BF contains negative values, both of which are
difficult to interpret. In contrast, the top L1LR PP consistently showed the annotation term
exactly as a curator would annotate the gene expression.

For some annotation terms, the positive predictors for the pixel based model, the top
L1LR PP and the positive part of the top L1LR BF overlapped with the regions in the embryo
described by the controlled vocabulary terms. For example, for the annotation terms such as
“dorsal ectoderm”, “mesoderm”, “trunk mesoderm” and “pole cells”, the top PP corresponds
to the areas of the embryo that can be easily recognized as those anlagen. On the other hand,
the selected predictors for the pixel-based representation are predominantly isolated pixels
at locations associated with the specific annotation term. Of the 11 annotation terms, all
of the top L1LR PP but only nine of top L1LR BF-based components have positive fitted
L1LR coefficients. For some of the nine terms with positive association for both PP and BF
(e.g., “dorsal ectoderm”, “mesoderm” and “pole cells”), the top L1LR PP and the positive
part of the top L1LR BF have similar shapes and sizes. For other terms such as “hindgut”
and “visual”, the positive part of the top L1LR BF pattern appears to be much broader
than the top L1LR PP.

Discussion

The PP-based representation of gene expression patterns provides a data driven alterna-
tive to a synthetic vocabulary with a manually generated curation approach. Developing
a controlled vocabulary requires prior biological knowledge and visible references and com-
putational annotation demands a sizable training dataset, usually hand curated. In our
studied dataset of early undifferentiated Drosophila embryos, the lack of visible morphologi-
cal reference features has introduced inconsistencies and errors and does not capture the full
richness of the dataset [27]. The early stage annotation dataset is an imperfect gold standard
for objective evaluation but still proved valuable for evaluating accuracy and validation of
capturing the underlying biology. We identified a PP for every organ specific annotation
term in addition to PP not represented by annotations (e.g., segmentation patterns). Using
sPP coefficients, spatial expression patterns are easily combined with other data types to
facilitate biological modeling efforts.
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Figure 4.5: L1LR coefficients for annotation prediction using the sPP representation. For
all 11 terms, the L1LR coefficients are sparse and the largest L1LR coefficients are always
positive. Furthermore, the top L1LR coefficient is much larger than the second largest L1LR
coefficient in magnitude. These facts indicate that the top L1LR PP is the dominating factor
in determining whether a gene expression pattern is labeled with an annotation term.
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Figure 4.6: L1LR coefficients for annotation prediction using the BF representation. The
L1LR coefficients are sparse. But unlike the PP case in Figure 4.5, the largest L1LR coef-
ficients are not always positive (“ventral ectoderm” and “gap”). In addition, some of the
largest L1LR coefficients are much closer to the second largest L1LR coefficients than in the
PP case: e.g., the terms “mesoderm” and “visual”.
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Figure 4.7: Interpretability of the L1LR under the pixel-based, the sPP and the BF rep-
resentations. The pixel-based full image representation: all L1LR coefficients are shown as
pixel values within the embryo; the sPP-based and the BF-based representations: only the
top L1LR PP or BF that corresponds to the largest L1LR coefficient is shown. The scale
goes from -1 to 1 and is color coded respectively from red to blue. For the PP and BF,
“+” indicates that the largest L1LR coefficient is positive, and “-” indicates that the largest
L1LR coefficient is negative.
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Chapter 5

Functional categorization of genes
with PP

We have demonstrated that the staNMF-derived PP are biologically meaningful as they
correspond to pre-organ regions in the previously established Drosophila fate map. In this
chapter, we will utilize the sPP coefficients, obtained through the LASSO+NLS procedure
described in Chapter 3, to systematically associate genes to 21 categories. We also investigate
the fraction of genes shared by a pair of categories and reveal a link between anterior and
posterior embryonic regions. Furthermore, we will relate PP to later stage organ systems,
confirming our earlier mapping of PP to the fate map.

5.1 PP associated gene functions

We defined the term “function” by the experimentally generated fate map that describes the
locations of larval/adult progenitor cells in the blastoderm. These cells give rise to particular
tissues and organs during development. For k = 1, ..., 21, we defined the k-th sPP coefficient
of a gene to be the maximum k-th sPP coefficient among all the replicate patterns of the
same gene. We assigned a gene to PP category k if the k-th sPP coefficients of the gene
exceeded 0.1. The number of genes in each of the 21 PP categories is, on average, 300 genes
ranging from 184 to 395. PP categories 6–9, contain fewer, on average, 223 genes (Figure
5.1 right). In addition, we also found a significant presence of previously uncharacterized
computed genes (CG) in all PP categories: the average percentage of CG per PP category
is 23.4%.

To directly relate genes to each other, we created a heatmap visualization of the sPP co-
efficients for 667 genes that belong to at least one PP category. We ordered the genes by first
associating each of them to the PP with the maximum sPP coefficient, and then performing
a hierarchical clustering of the genes assigned to the same PP (Figure 5.1 left). A surpris-
ingly large fraction of genes (17.8%) exhibit their strongest expression in PP21 (pole cells)
and have limited expression in other PP. We found that only 5.8% of the 156 transcription
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factors are among these PP21 specific genes, confirming previous results [21]. 4.5% of the
667 genes have their strongest expression in segmentation patterns PP6–9, suggesting that
only a small number of genes are dedicated to segmentation. Furthermore, 93.3% of these
genes have been characterized, implying that we know most segmentation genes. We found
genes with known roles in foregut development (croc, hkb and kni) associated with PP1,
segmentation specific genes (Dfd, kn, Kr and tsh) associated with PP6–9, genes essential
for mesoderm/ectoderm development (mes2, sna and sog) associated with PP15, genes es-
sential for pole-cell formation associated with posterior PP21 (lok, pgc and rdx) as well as
previously uncharacterized genes such as CG1663, CG8289, CG9514 and CG10479 in these
PP categories (Figure 5.2).
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Figure 5.1: PP-based gene categorization. Left heatmap: PP expression profile of genes.
Each column corresponds to the sPP coefficients of one gene. Between the red dashed lines
are the genes with the strongest expression in the same PP. Right barplot: numbers of named
and uncharacterized computed genes (CG) in each PP category.

5.2 Relationships between spatial regions

Next, we investigated the relationship between the PP that span the anterior-posterior axis,
i.e. PP1–9, PP17–21. We plotted the fraction of common genes in a pair of PP categories,
defined as the Jaccard distance between the two categories, in relation to the pairwise PP
centroid distance (Figure 5.3). Our results show that when the PP distance is small, the
fraction of common genes is high. However, after the initial decrease, the fraction of common
genes increases as the PP distance increases. An example is the set of genes (49% or 227)
shared between the distant PP2 and PP18 that map to anterior foregut/brain and posterior
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hindgut (Figure 5.3). These genes include known foregut and hindgut development genes
such as Alh, Blimp-1, Btk29A, dm, Mkp3 and rpr. This finding substantiates the previously
identified common origins and gene expression signatures of foregut and hindgut that were
based on manual annotations [36, 21]. Similarly, 229 genes (52%) are shared between PP3
(anterior midgut/mesoderm) and PP19 (hindgut), including known midgut and hindgut
genes, ry, Ect4, Sdc, Pcl, larp and emc, suggesting a more general link between the anterior
and posterior patterns.

Dfd kn CG10479

Kr pdm2 tsh

Mes2 sna sog

CG9005 CG8312 CG12177

lok Pi3K21B pgc

rdx CG8915 CG9925

croc hkb kni

CG1663 CG8289 CG9514

Foregut genes Segmentation genes

Mesoderm genes Pole-cell genes

Figure 5.2: Known genes and uncharacterized computed genes (CG) were found in the
associated PP categories.

5.3 Linking PP and future organ systems

Using our manual annotations, we related gene expression during late organ system (OS)
formation to the PP derived from early embryonic gene expression data. Our annotation
data contains OS label information for the next four developmental stages, i.e., stages 7–8,
9–10, 11–12, 13–16. In our analysis, we selected the following eight OS: visual primordia
system (VisualPr), central nervous system (CNS), ectoderm or epidermis (Ect/Epi), foregut,
midgut, hindgut, mesoderm/muscle (Meso/Muscle) and pole cells. For each stage and OS
combination, we compared the sPP coefficients of genes annotated in the OS to the remain-
ing genes using the Mann-Whitney test and plotted the negative logarithm of the p-values
(Figure 5.4). We found that genes with high expression intensity in PP5, PP10, PP1, PP20,
PP18, PP15-16, PP21 at stage 4-6 are expressed in the tissue corresponding to their fate map
position, VisualPr or CNS, Ect/Epi, foregut, midgut, hindgut, mesoderm, pole-cell respec-
tively. The early mesoderm genes (PP14–16) become expressed in the CNS starting at stage
9 (trx, sna, Traf4 and Caf1). Early mesoderm genes with function during CNS development
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Figure 5.3: The relationship between the fraction of common genes in a pair of PP cate-
gories and the centroid distance of the two PP, for PP1–9, PP17–21. Each dot in the plot
corresponds to a PP pair. Shown also are six genes expressed in both PP2 (brain/foregut)
and PP18 (hindgut), a pair of distant PP.

have been shown before [61], but here we demonstrate a systematic secondary function of
mesoderm specific genes, including previously uncharacterized genes (e.g., CG11247). Genes
in PP from all fate regions appear in the midgut genes at later stages, probably due to its
endodermal origin. Finally, genes originally mapped to the ventral epidermis (PP10) are
strongly present in the foregut at stages 9-12. In contrast, as expected, OS with no map-
pings to the fate map, show no clear bias at later stages. Thus, with molecular data, here we
show for the first time a systematic relationship between the fate map and gene expression
during organ system specification, but not during differentiation.
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Figure 5.4: Relating gene expression during later organ system (OS) formation to the early
stage PP. For each OS and stage range combination, we split the k-th sPP coefficients into
two groups: Group 1 contains the coefficients corresponding to genes that were labeled as
expressed in the OS and at the stage range, and Group 0 contains the coefficients for the
remaining genes. We then performed a Mann-Whitney test for the above two samples.
Shown is the heatmap for the negative logarithm of the p-values.
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Chapter 6

Spatially local correlation networks

Associations between two genes are routinely described by their correlation to each other [64].
In terms of spatial relationships, positive gene interactions exhibit spatial overlap whereas
repressive gene interactions exhibit spatial exclusivity. In the past, attempts to find gene
networks from spatial gene expression datasets correlated patterns over the whole embryo
[27, 30]. However, spatial gene expression patterns are composed of sub-patterns driven by
distinct enhancer elements [33, 34]. Gene interactions are thus context sensitive and not
necessarily spatially uniform. In this chapter, for the first time, we will introduce a learned
local aspect – the use of PP – to identify gene interactions contingent on local expression
context. Spatially local correlation networks (SLCN) are constructed for 156 transcription
factors (TF) from our expression data. Our approach is simple, computationally efficient,
and intuitive as it mimics the way that a human curator would search for potential interacting
patterns. We further test our SLCN using the well-known gap-gene network and are able to
recover 10 out of 11 links.

6.1 PP-based correlation network construction

The Drosophila gap gene network has been studied for decades [49, 50, 51]. It controls
embryonic patterning by regulating the genes required to establish the anterior/posterior
segmentation stripes and is primarily driven by well studied activating and repressive inter-
actions between eight TF. To reconstruct this network solely from our expression data of
156 spatially restricted TF, we selected six PP (PP6–9, PP17 and PP20) corresponding to
the domains of the gap gene network. We called the six PP gap-PP. For each gap-PP, we
identified its directly adjacent PP by visual inspection (Table 6.1).

For each of the six gap-PP, we found all TF expression patterns in the category of the
gap-PP, or its directly adjacent PP, with sPP coefficient greater than threshold 0.1. This
excluded TF with low or no expression in the gap-PP and its nearby regions and hence
reduced the possibility of spurious correlations. Denote this set of patterns by T . We then
computed the weighted correlations for the expression patterns in T with the l1-normalized
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Adjacent PP
PP6 PP4, PP7
PP7 PP6, PP8
PP8 PP7, PP9
PP9 PP8, PP17
PP17 PP9, PP20
PP20 PP17, PP21

Table 6.1: The adjacent PP for the six gap-PP.

PP intensity as the weight vector. Specifically, let u ∈ Rd be a nonnegative vector whose
entries sum up to one and x1,x2 ∈ Rd represent two data vectors, e.g., two gene expression
patterns in T . The local correlation between x1 and x2 with weight u is defined as:

coru(x1,x2) =
covu(x1,x2)

varu(x1)1/2varu(x2)1/2
,

where

varu(x1) =
d∑
j=1

u[j](x1[j]− xT1 u)2, and

covu(x1,x2) =
d∑
j=1

u[j](x1[j]− xT1 u)(x2[j]− xT2 u).

Note that when the u[j] = 1/d for all 1 ≤ j ≤ d, the above correlation is the same as the
sample correlation between data vectors x1 and x2.

As mentioned, many genes had multiple replicate images. For a pair of genes, we defined
the local correlation of the two genes to be the local correlation with the maximum magnitude
between replicate images of one gene and replicate images of the other. For simplicity, we
called this correlation the maximum correlation, although we note that it can be the most
positive or the most negative correlation. By computing this maximum correlation, we
stated that two genes were highly correlated if any of the replicates of the two genes were
highly correlated. Spatial expression patterns for some genes change rapidly within the stage
range considered in this thesis. For example, significant differences in gene expression were
observed for the replicate expression patterns of hb and kni (Figure 2.3). Using maximum
local correlation can therefore help to identify those highly variable genes that were likely to
interact at some point in the developmental timeline.

For each gap-PP, we computed the local correlation for all pairs of genes in the gene
set T defined earlier. The distribution of the correlations was bimodal, with one peak
corresponding to positive correlations and the other to negative correlations (Figure 6.1).
This is due to the way we defined local correlation of two genes, which excluded image pairs
that had close-to-zero correlations. To construct the local network for each gap-PP, we set



CHAPTER 6. SPATIALLY LOCAL CORRELATION NETWORKS 46

PP6

local correlation

F
re

qu
en

cy

−1.0 −0.5 0.0 0.5 1.0

0
10

0
20

0
30

0
40

0

PP7

local correlation

F
re

qu
en

cy

−0.5 0.0 0.5 1.0
0

50
15

0
25

0

PP8

local correlation

F
re

qu
en

cy

−0.5 0.0 0.5 1.0

0
50

10
0

15
0

20
0

PP9

local correlation

F
re

qu
en

cy

−0.5 0.0 0.5 1.0

0
50

15
0

25
0

PP17

local correlation

F
re

qu
en

cy

−1.0 −0.5 0.0 0.5 1.0

0
10

0
20

0
30

0
40

0

PP20

local correlation

F
re

qu
en

cy

−1.0 −0.5 0.0 0.5 1.0
0

10
0

20
0

30
0

Figure 6.1: Histograms of local correlations for the six gap-PP. The two red vertical lines
in each histogram indicate the lower and upper five percentiles of the local correlations,
respectively.

a positive edge between two genes if their local correlation is above the upper five percentile
of all local correlations for the PP and set a negative edge between two genes if their local
correlation is below the lower five percentile. We call the resulting network spatially local
correlation network, or SLCN.

6.2 Evaluation of SLCN with the gap gene network

We evaluated our SLCN construction by comparing interactions found in the six SLCN to
known regulatory interactions of selected trunk and terminal gap genes, giant(gt), hunchback(hb),
knirps(kni), Krüppel(Kr), huckebein(hkb) and tailless(tll). We compared the subnetworks
of the SLCN containing only the six genes (Figure 6.2A) to a schematic network diagram
(Figure 6.2B), as originally depicted in [51]. While the diagram indicates that some gene
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interactions are contingent on spatial position, it does not provide precise locations of the
interactions. To compare with our networks, we devised a method to match the links in
the diagram to our SLCN. For each gap gene, we first created a linearly ordered PP repre-
sentation by placing the six gap-PP anterior to posterior and associating a gap-PP to the
gene if the sPP coefficient for the gap-PP exceeded a threshold of 0.1 (Figure 6.2C). The
gap-PP associated with each gap gene were then merged into one or more connected PP
groups. Based on its relative location in the diagram, we then matched each gene node in
the schematic diagram to a connected PP group for the same gene. We considered an inter-
action between two gene nodes in the schematic network diagram as successfully identified
by our method if the same interaction exists in any SLCN associated with the overlapping
PP in the connected PP groups of the two gene nodes.

For example, the diagram (Figure 6.2B) depicts a repressive link between the anterior
component of gt (i.e. gt1) and Kr. Using our linearly ordered PP representation, we found
the connected PP groups for gt1 and Kr are PP6/7 and PP8, respectively (Figure 6.2C). We
searched for the gt-Kr interaction only in the SLCN of PP7 and PP8, since PP6 and PP8 do
not overlap. In both networks, we found a repressive interaction (or negative correlation).
Hence we considered the anterior gt-Kr link of the schematic gap gene network diagram as
being identified with our model. See Table 6.2 for the validation of the remaining links.

For the six gap genes, our SLCN reconstruction identified 14 interactions (Figure 6.2A).
Eight out of 11 links in the gap gene network diagram have a one-to-one mapping with eight
of the 14 SLCN interactions. In addition, the two gt-Kr links in the gap gene network (Link
1 and 5 in Figure 6.2B) are found in the SLCN of PP7–9 (Links 2, 4 and 7 in Figure 6.2A).
The remaining kni-gt2 link (Link 6 in Figure 6.2B) has no corresponding link in the SLCN.
Therefore, our SLCN recovered 10 out of 11 interactions in the gap gene network. Three of
the 14 SLCN links do not correspond to any interactions in the network diagram. In PP6, we
found a repression link between gt and kni (Link 1 in Figure 6.2A). Gene expression images of
gt and kni revealed a clear complementary pattern towards the anterior end with a negative
local correlation of -0.720 in PP6. In the PP17 SLCN, an activation link between kni and
gt was identified (Link 11 in Figure 6.2A). Since our images covered an interval of around
1.5 hours, the posterior part of kni expression pattern at the early developmental stages 4-6
might have been aligned to the gt gene posterior end at a later time point. Experiments are
needed to confirm or refute these predicted links. Finally, although not described in [51],
the predicted hb–tll activation link in PP9 (Link 6 in Figure 6.2A) is supported by [65].

6.3 Correlating genes on the whole embryo

We compared our PP-based local network results to those obtained by correlating the ex-
pression patterns over the whole embryo, or global correlation analysis. Similar to local
correlation, we defined the global correlation of the two TF as the largest correlation be-
tween the replicates of the two. Next, we specified a cutoff value for the global correlation in
order to form network links. We first combined the six PP-based SLCN into a single network
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Link in gap gene
network

G1 G1 PP G2 G2 PP Overlapping PP Link(s) in SLCN

1 gt1 PP6,7 Kr PP8 PP7,8 2,4
2 hb1 PP6-8 Kr PP8 PP7,8 3
3 hb1 PP6-8 kni PP8,9 PP7-9 5
4 kni PP8,9 Kr PP8 PP8,9 8
5 gt2 PP9 Kr PP8 PP8,9 4,7
6 gt2 PP9 kni PP8,9 PP8,9 No link
7 hb2 PP17,20 kni PP8,9 PP9,17 12
8 gt2 PP9 hb2 PP17,20 PP9,17 9
9 kni PP8,9 tll PP17,20 PP9,17 13
10 gt2 PP9 tll PP17,20 PP9,17 10
11 hb2 PP17,20 hkb PP20 PP17,20 14

Table 6.2: Validating the SLCN with the gap gene network. Link in gap gene network:
link number in the schematic gap gene network (Figure 6.2B). G1 and G2: gene nodes
in the schematic gap gene network. G1 PP and G2 PP: the connected PP group in the
linearly ordered PP representation that correspond to G1 and G2 respectively (Figure 6.2C).
Overlapping PP: the overlapping PP of G1 PP and G2 PP. Link(s) in the SLCN: the link(s)
in the predicted SLCN (Figure 6.2A) that correspond to a link in the schematic gap gene
network. Out of 11 links in the schematic gap gene network, there is one (i.e. Link 6) that
has no corresponding link in the SLCN. There are three links out of 14 in the SLCN that
have no corresponding links in the gap gene network diagram.

such that two TF share a link in the new network if they share a link in at least one of the
six SLCN, regardless of the sign of the link. For fair comparison between the global and local
approaches, the cutoff values for the global correlation network was chosen such that (1) the
resulting network has the same number of links as in the previous combined network and, (2)
the number of positive links is the same as the number of negative links. We converted the
original schematic gap gene network to the “global version” without the spatial information
accordingly: two gap genes share a link if they share a link in the schematic gap gene network
diagram regardless of the location of the interaction (Figure 6.3C). Only three links out of
nine links in the global version of the gap gene network were recovered (Figure 6.3D). An
analysis of the relationship between the local and global correlations indicated that, while for
some gene-gene interactions global correlation is positively correlated with local correlation,
many others have negative correlations (Figure 6.3A). For example, gt and hb are known
to be mutual repressors of one another towards the posterior end of the embryo. The global
correlation was unable to detect this relationship whereas the local correlation succeeded
(Figure 6.3B).
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Figure 6.2: Modeling and validation of the Drosophila gap gene network with spatially
local correlation networks (SLCN). (A) The SLCN for six gap genes. For each of the six
gap-PP, shown is the sub-network of the SLCN that contains the six gap-genes. Links are
numbered from 1 to 14. (B) The gap gene network diagram depicting repressive interactions
of six genes [51]. Links are numbered from 1 to 11 and multiple occurrence of the same
gene are subscripted by numbers (e.g., hb1 and hb2). The directions of the interactions
are not indicated. (C) Expression patterns of the six gap genes and their linearly ordered
PP representation. For each of the six gap genes, the regions diagrammed in blue are
the PP with sPP coefficient greater than or equal to 0.1 for at least one of the replicate
images, while the regions diagrammed in white are the PP with a coefficient less than 0.1
for all replicate images. To evaluate the prediction performance of the SLCN in (A), we
first mapped each node in (B) to a connected PP group in (C). According to (C), gt has
two major components: the anterior part which has expression in PP6 and PP7, and the
posterior part that has expression in PP9. The anterior gt1 and the posterior gt2 symbols in
(B) can be mapped to these two components respectively. hb also has two major connected
PP components: the anterior part which has expression in PP6-8 that corresponds to hb1 in
(B), and the posterior part that has expression in PP17 and PP20 that corresponds to hb2
in (B). For hkb, the only expression in PP20 corresponds to the hkb gene symbol in (B). kni
has two components. The first one in PP6 does not correspond to any node in (B) (the ∗
symbol indicates a region of gene expression with no match in (B)), whereas the second one
in PP8 and PP9 corresponds to the kni symbol in (B). Similarly, the first component of Kr
in PP8 corresponds to the symbol Kr in (B), whereas the posterior part in PP20 does not
appear in (B). Finally, the only component of tll in PP17 and PP20 correspond to the only
tll symbol in (B).
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Figure 6.3: Correlating transcription factors (TF) over the whole embryo (global correlation).
(A) Scatter plots of the global correlation vs. the local correlations for PP7, PP9 and
PP17. The dashed lines correspond to the lower and upper cutoffs for the local correlations
(vertical lines) and global correlations (horizontal lines). The four branches of each plot are
due to the fact that the distributions of both global correlations and local correlations are
bimodal. Highlighted in the scatter plots are the gap-gene links correctly identified by the
local networks but missed by the global network. (B) The PP-based correlation approach
detected locally complementary patterns whereas the global correlation approach failed. The
scatterplot showed the pixel-wise intensity relationship between a pair of expression images
of gt and hb. The green dots corresponded to the pixels in the region defined by PP17, with
dot size proportional to the pixel intensity of PP17. We observed a clear negative association
between the two TF in PP17. However, this association disappears when we consider the
scatterplot of all 405 pixels of the embryo. (C) The gap gene network without the spatial
information. Here, two gap genes share an link if they share an link in the schematic gap
gene network (Figure 6.2B) regardless of the location of the interaction. (D) The gap gene
constructed based on correlation measurements over the whole embryo identified only three
out of nine links of the global version of gap gene network in (C).



51

Part II

Theoretical dictionary learning: local
identifiability
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Chapter 7

Theoretical dictionary learning:
introduction

In the first part of this thesis, we combined a dictionary learning algorithm, nonnegative ma-
trix factorization (NMF), with a novel stability-based criterion for model selection (staNMF),
to analyze Drosophila embryonic spatial gene expression patterns and build local networks
for transcription factors. The biological interpretability of the NMF-derived dictionary and
the success of the downstream analyses motivated us to investigate why dictionary learning
works. In the second part of this thesis, we will study a particular formulation of dictionary
learning with the l1-norm objective function. By considering a property called local iden-
tifiability, we will study when dictionary learning is a mathematically well-posed problem.
A sufficient and almost necessary condition for local identifiability will be provided for two
reasonable signal generation models. In this chapter, we will first give a review of dictionary
learning theory and introduce a mathematical formulation of our problem.

7.1 Introduction

Expressing signals as sparse linear combinations of a dictionary basis has enjoyed great
success in applications ranging from image denoising to audio compression. Given a known
dictionary matrix D ∈ Rd×K with K columns or atoms, one popular method to recover
sparse coefficients ααα ∈ RK of the signal x ∈ Rd is through solving the convex l1-minimization
problem:

minimize ‖ααα‖1 subject to x = Dααα.

This approach, known as basis pursuit [66], along with many of its variants, has been studied
extensively in statistics and signal processing communities. See, e.g. [67, 68, 69].

For certain data types such as natural image patches, predefined dictionaries like the
wavelets [70] are usually available. However, when a less-known data type is encountered,
a new dictionary has to be designed for effective representations. Dictionary learning, or
sparse coding, learns adaptively a dictionary from a set of training signals such that they
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have sparse representations under this dictionary [38]. One formulation of dictionary learning
involves solving a non-convex l1-minimization problem [71, 52, 53]. Concretely, define

l(x,D) = min
ααα∈RK

{‖ααα‖1, subject to x = Dααα}. (7.1)

We learn a dictionary from the N signals xi ∈ Rd for i = 1, ..., N by solving:

min
D∈D

LN(D) = min
D∈D

1

N

N∑
i=1

l(xi,D). (7.2)

Here, D ⊂ Rd×K is a constraint set for candidate dictionaries. In many signal processing
tasks, learning an adaptive dictionary via the optimization problem (7.2) and its variants is
empirically demonstrated to have superior performance over fixed standard dictionaries [72,
73, 74]. For a review of dictionary learning algorithms and applications, see [75, 76, 77].

Despite the empirical success of many dictionary learning formulations, relatively little
theory is available to explain why they work. One line of research addresses the problem
of dictionary identifiability: if the signals are generated using a dictionary D0 referred to as
the reference dictionary, under what conditions can we recover D0 by solving the dictionary
learning problem? Being able to identify the reference dictionary is important when we
interpret the learned dictionary as for our spatial gene expression data. Let αααi ∈ RK for
i = 1, ..., N be some random vectors. A popular signal generation model assumes that a signal
vector can be expressed as a linear combination of the columns of the reference dictionary:
xi ≈ D0αααi [52, 53, 54]. In this thesis, we will study the problem of local identifiability of
l1-minimization dictionary learning (7.2) under this generating model.

Local identifiability. A reference dictionary D0 is said to be locally identifiable with respect
to an objective function L(D) if D0 is one of the local minima of L. The pioneer work of [52]
(referred to as GS henceforth) analyzed the l1-minimization problem (7.2) for noiseless signals
(xi = D0αααi) and complete (d = K and full rank) dictionaries. Under a sparse Bernoulli-
Gaussian model for the linear coefficients αααi’s, they showed that for a sufficiently incoherent
reference dictionary D0, N = O(K logK) samples can guarantee local identifiability with
respect to LN(D) in (7.2) with high probability. Still in the noiseless setting, [53] extended
the analysis to over-complete (d > K) dictionaries. More recently under the noisy linear
generative model (xi = D0αααi + noise) and over-complete dictionary setting, [54] developed
the theory of local identifiability for (7.2) with l(x,D) replaced by the LASSO objective
function of [48]. Other related works on local identifiability include [78] and [79], who gave
respectively sufficient conditions for the local correctness of the K-SVD [80] algorithm and
a maximum response formulation of dictionary learning.

Contributions. There has not been much work on necessary conditions for local dictionary
identifiability. Numerical experiments demonstrate that there seems to be a phase boundary
for local identifiability (Figure 7.1). The bound implied by the sufficient condition in GS
falls well below the simulated phase boundary, suggesting that their result can be further
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improved. Thus, even though theoretical results for the more general scenarios are available,
we adapt the noiseless signals and complete dictionary setting of GS in order to find better
local identifiability conditions. We summarize our major contributions below:

• For the population case where N =∞, we establish a sufficient and almost necessary
condition for local identifiability under both the s-sparse Gaussian model and the
Bernoulli-Gaussian model. For the Bernoulli-Gaussian model, the phase boundary
implied by our condition significantly improves the GS bound and agrees well with the
simulated phase boundary (Figure 7.1).

• We provide lower and upper bounds to approximate the quantities involved in our
sufficient and almost necessary condition, as it generally requires to solve a series of
second-order cone programs to compute those quantities.

• As a consequence, we show that a µ-coherent reference dictionary – a dictionary with
absolute pairwise column inner-product at most µ ∈ [0, 1) – is locally identifiable
for sparsity level, measured by the average number of nonzeros in the random linear
coefficient vectors, up to the orderO(µ−2). Moreover, if the sparsity level is greater than
O(µ−2), the reference dictionary is generally not locally identifiable. In comparison,
instead of imposing condition on the sparsity level, the sufficient condition by GS
demands the number of dictionary atoms K = O(µ−2), which is a much more stringent
requirement. For over-complete dictionaries, [53] requires the sparsity level to be of
the order O(µ−1). It should also be noted that [79] established the bound O(µ−2)
for approximate local identifiability under a new response maximization formulation
of dictionary learning. Our result is the first to show that O(µ−2) is achievable and
optimal for exact local recovery under the l1-minimization criterion.

• We also extend our identifiability results to the finite sample case. We show that for a
fixed sparsity level, we need N = O(K logK) i.i.d signals to determine whether or not
the reference dictionary can be identified locally. This sample requirement is the same
as GS’s and is the best known sample requirement among all previous studies on local
identifiability.

Other related works. Apart from analyzing the local minima of dictionary learning,
another line of research aims at designing provable algorithms for recovering the reference
dictionary. [81] and [82] proposed combinatorial algorithms and gave deterministic conditions
for dictionary recovery which require sample size N to be exponentially large in the number
of dictionary atoms K. [83] established exact global recovery results for complete dictionar-
ies through efficient convex programs. [84] and [85] proposed clustering-based methods to
estimate the reference dictionary in the overcomplete setting. [86] and [87] provided theo-
retical guarantees for their alternating minimization algorithms. [88] proposed a non-convex
optimization algorithm that provably recovers a complete reference dictionary for sparsity
level up to O(K). While in this thesis we do not provide an algorithm, our identifiability
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Figure 7.1: Local recovery error for the s-sparse Gaussian model (Left) and the Bernoulli(p)-
Gaussian model (Right). The parameter s ∈ {1, ..., K} is the number of nonzeros in each
linear coefficient vector under the s-sparse Gaussian model, and p ∈ (0, 1] is the probability of
an entry of the linear coefficient vector being nonzero under the Bernoulli(p)-Gaussian model.
The data are generated with the reference dictionary D0 ∈ R10×10 (i.e. K = 10) satisfying
DT

0 D0 = µ11T + (1−µ)I for µ ∈ [0, 1), see Example 8.5 for details. For each (µ, s
K

) or (µ, p)
tuple, ten batches of N = 2000 signals {xi}2000i=1 are generated according to the noiseless
linear model xi = D0αααi, with {αααi}2000i=1 drawn i.i.d from the s-sparse Gaussian model or i.i.d
from the Bernoulli(p)-Gaussian model. For each batch, the dictionary is estimated through
an alternating minimization algorithm in the SPAMS package [47], with initial dictionary
set to be D0. The grayscale intensity in the figure corresponds to the Frobenius error of
the difference between the estimated dictionary and the reference dictionary D0, averaged
for the ten batches. The “phase boundary” curve corresponds to the theoretical boundary
that separates the region of local identifiability (below the curve) and the region of local
non-identifiability (above the curve) according to Theorem 1 of this thesis. The “Sufficient
condition (Corollary 1)” and “Necessary condition (Corollary 1)” curves are the lower and
upper bounds given by Corollary 1 to approximate the exact phase boundary. Finally, the
“Sufficient condition (GS)” curve corresponds to the lower bound by GS. Note that for the
s-sparse Gaussian model, the “Sufficient condition (Corollary 1)” and “Necessary condition
(Corollary 1)” curves coincide with the phase boundary.

conditions suggest theoretical limits of dictionary recovery for all algorithms attempting to
solve the optimization problem (7.2). In particular, in the regime where the reference dictio-
nary is not identifiable, no algorithm can simultaneously solve (7.2) and return the ground
truth reference dictionary.

http://spams-devel.gforge.inria.fr
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Other related works include generalization bounds for signal reconstruction errors under
the learned dictionary [89, 90, 91, 92], dictionary identifiability through combinatorial matrix
theory [93], as well as algorithms and theories for the closely related independent component
analysis [94, 95] and nonnegative matrix factorization [96, 97].

7.2 Preliminaries

Notations

For a positive integer m, define JmK to be the set of the first m positive integers, {1, ...,m}.
The notation x[i] denotes the i-th entry of the vector x ∈ Rm. For a non-empty index set
S ⊂ JmK, we denote by |S| the set cardinality and x[S] ∈ R|S| the sub-vector indexed by S.
We define x[−j] := (x[1], ...,x[j − 1],x[j + 1], ...,x[m]) ∈ Rm−1 to be the vector x without
its j-th entry.

For a matrix A ∈ Rm×n, we denote by A[i, j] its (i, j)-th entry. For non-empty sets
S ⊂ JmK and T ⊂ JnK, denote by A[S, T ] the submatrix of A with the rows indexed by S
and columns indexed by T . Denote by A[i, ] and A[, j] the i-th row and the j-th column
of A respectively. Similar to the vector case, the notation A[−i, j] ∈ R(m−1)×n denotes the
j-th column of A without its i-th entry.

For p ≥ 1, the lp-norm of a vector x ∈ Rm is defined as ‖x‖p = (
∑m

i=1 |x[i]|p)1/p, with the
convention that ‖x‖0 = |{i : x[i] 6= 0}| and ‖x‖∞ = maxi |x[i]|. For any norm ‖.‖ on Rm,

the dual norm of ‖.‖ is defined as ‖x‖∗ = supy 6=0
xTy
‖y‖ .

For two sequences of real numbers {an}∞n=1 and {bn}∞n=1, we denote by an = O(bn) if there
is a constant C > 0 such that an ≤ Cbn for all n ≥ 1. For a ∈ R, denote by bac the integer
part of a and dae the smallest integer greater than or equal to a. Throughout this thesis, we
shall agree that 0

0
= 0.

Basic assumptions

We denote by D ⊂ Rd×K the constraint set of dictionaries for the optimization problem
(7.2). In this thesis, since we focus on complete dictionaries, we assume d = K. As in GS,
we choose D to be the oblique manifold [98]:

D =
{
D ∈ RK×K : ‖D[, k]‖2 = 1 for all k = 1, ..., K

}
.

We also call a column of the dictionary D[, k] an atom of the dictionary. Denote by D0 ∈ D
the reference dictionary – the ground truth dictionary that generates the signals. With these
notations, we now give a formal definition for local identifiability:

Definition 7.1. (Local identifiability) Let L(D) : D → R be an objective function. We say
that the reference dictionary D0 is locally identifiable with respect to L(D) if D0 is a local
minimum of L(D).
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Sign-permutation ambiguity. As noted by previous works GS and [53], there is an
intrinsic sign-permutation ambiguity with the l1-norm objective function L(D) = LN(D)
of (7.2). Let D′ = DPΛ for some permutation matrix P and diagonal matrix Λ with ±1
diagonal entries. It is easy to see that D′ and D have the same objective value. Thus, the
objective function LN(D) has at least 2nn! local minima. We can only recover D0 up to
column permutation and column sign changes.

Note that if the dictionary atoms are linearly dependent, the effective dimension is strictly
less than K and the problem essentially becomes over-complete. Since dealing with over-
complete dictionaries is beyond the scope of this thesis, we make the following assumption:

Assumption I (Complete dictionaries). The reference dictionary D0 ∈ D ⊂ RK×K is full
rank.

Let M0 = DT
0 D0 be the dictionary atom collinearity matrix containing the inner-products

between dictionary atoms. Since each dictionary atom has unit l2-norm, M0[i, i] = 1 for all
i ∈ JKK. In addition, as D0 is full rank, M0 is positive definite and |M0[i, j]| < 1 for all
i 6= j.

We assume that a signal is generated as a random linear combination of the dictionary
atoms. In this thesis, we consider the following two probabilistic models for the random
linear coefficients:

Probabilistic models for sparse coefficients. Denote by z ∈ Rm a random vector from
the K-dimensional standard normal distribution.

Model 1 – SG(s). Let S be a size-s subset uniformly drawn from all size-s subsets of JKK.
Define ξξξ ∈ {0, 1}K by setting ξξξ[j] = I{j ∈ S} for j ∈ JKK, where I{.} is the indicator
function. Let ααα ∈ Rm be such that ααα[j] = ξξξ[j]z[j]. Then we say ααα is drawn from the
s-sparse Gaussian model, or SG(s).

Model 2 – BG(p). For j ∈ JKK, let ξξξ[j]’s be i.i.d. Bernoulli random variable with success
probability p ∈ (0, 1]. Let ααα ∈ Rm be such that ααα[j] = ξξξ[j]z[j]. Then we say ααα is
drawn from the Bernoulli(p)-Gaussian model, or BG(p).

With the above two models we can formally state the following assumption for random signal
generation:

Assumption II (Signal generation). For i ∈ JNK, let αααi’s be either i.i.d. s-sparse Gaussian
vectors or i.i.d. Bernoulli(p)-Gaussian vectors. The signals xi’s are generated according to
the noiseless linear model:

xi = D0αααi.

Remarks:
(1) The above two models and their variants were studied in a number of prior theoretical
works, including [52, 53, 54, 99, 88].
(2) By construction, a random vector generated from the s-sparse model has exactly s
nonzero entries. The data points xi’s therefore lie within the union of the linear spans of s
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dictionary atoms (Figure 7.2 Left). The Bernoulli(p)-Gaussian model, on the other hand,
allows the random coefficient vector to have any number of nonzero entries ranging from 0 to
K with a mean pK. As a result, the data points can be outside of any sparse linear span of
the dictionary atoms (Figure 7.2 Right). We refer readers to the remarks following Example
8.5 for a discussion of the effect of non-sparse outliers on local identifiability.
(3) Our local identifiability results can be extended to a wider class of sub-Gaussian distri-
butions. However, such an extension will lead to an increase in complexity of the form of the
quantities involved in our theorems. For proof of concept, we will only focus on the standard
Gaussian distribution.
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Figure 7.2: Data generation for K = 2. Left: the s-sparse Gaussian model with s = 1; Right:
the Bernoulli(p)-Gaussian model with p = 0.2. The dictionary is constructed such that the
inner product between the two dictionary atoms is 0.7. A sample of N = 1000 data points
are generated for both models. For the s-sparse model all data points are perfectly aligned
with the two lines corresponding to the two dictionary atoms. For the Bernoulli(p)-Gaussian
model, a number of data points fall outside the two lines. According to our Theorems 1
and 3, despite those outliers and the high collinearity between the two atoms, the reference
dictionary is still locally identifiable at the population level and with high probability for
finite samples.

In this thesis, we study the problem of dictionary identifiability with respect to the
population objective function E LN(D) (Chapter 8) and the finite sample objective function
LN(D) (Chapter 9). In order to analyze these objective functions, it is convenient to define
the following “group LASSO”-type norms:
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Definition 7.2. For an integer m ≥ 2 and w ∈ Rm.

1. For k ∈ JmK, define

|||w|||k =

∑
|S|=k ‖w[S]‖2(

m−1
k−1

) .

2. For p ∈ (0, 1), define

|||w|||p =
m−1∑
k=0

pbinom(k;m− 1, p)|||w|||k+1,

where pbinom is the probability mass function of the binomial distribution:

pbinom(k;n, p) =

(
n

k

)
pk(1− p)n−k.

Remark:
(1) Note that the above norms |||w|||k and |||w|||p are in fact the expected values of |wTααα|
with the random vector ααα drawn from the SG(s) model and the BG(p) model respectively.
For invertible D ∈ D, it can be shown that the objective function for one signal x = D0ααα is

l(x,D) = ‖Hααα‖1 =
K∑
j=1

|H[j, ]ααα|,

where H = D−1D0. Thus, taking the expectation of the objective function with respect to
x, we end up with a quantity involving either

∑K
j=1 |||H[j, ]|||s or

∑K
j=1 |||H[j, ]|||p. This is the

motivation of defining these norms.
(2) In particular, |||w|||1 = ‖w‖1 and |||w|||m = ‖w‖2.
(3) The norms defined above are special cases of the group LASSO penalty by [100]. For
|||w|||k, the summation covers all size-k subsets of JmK. The normalization factor is the
number of times w[i] appears in the numerator. Thus, |||w|||k is essentially the average of
the l2-norms of all size-k sub-vectors of w. On the other hand, |||w|||p is a weighted average
of |||w|||k’s with binomial probabilities.
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Chapter 8

Population local identifiability

In this chapter, we will establish local identifiability results when infinitely many signals are
observed.

Denote by E l(x1,D) the expectation of the objective function l(x1,D) of (7.1) with
respect to the random signal x1. By the central limit theorem, as the number of signals N
tends to infinity, the empirical objective function LN(D) = 1

N

∑N
i=1 l(xi,D) converges almost

surely to its population mean E l(x1,D) for each fixed D ∈ D. Therefore the population
version of the optimization problem (7.2) is:

min
D∈D

E l(x1,D) (8.1)

Note that we only need to work with D ∈ D that is full rank. Indeed, if the linear span of
the columns of D span(D) 6= RK , then D0ααα1 6∈ span(D) with nonzero probability. Thus D
is infeasible with nonzero probability and so E l(x1,D) = +∞. For a full rank dictionary
D, the following lemma gives the closed-form expressions for the expected objective function
E l(x1,D):

Lemma 8.1. (Closed-form objective functions) Let D be a full rank dictionary in D and
x1 = D0ααα1 where ααα1 ∈ RK is a random vector. For notational convenience, let H = D−1D0.

1. If ααα1 is generated according to the SG(s) model with s ∈ JK − 1K,

LSG(s)(D) := E l(x1,D) =

√
2

π

s

K

K∑
j=1

|||H[j, ]|||s. (8.2)

2. If ααα1 is generated according to the BG(p) model with p ∈ (0, 1),

LBG(p)(D) := E l(x1,D) =

√
2

π
p

K∑
j=1

|||H[j, ]|||p. (8.3)
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For the non-sparse cases s = K and p = 1, we have

LSG(s)(D) = LBG(p)(D) =

√
2

π

K∑
j=1

‖H[j, ]‖2.

Remark: It can be seen from the above closed-form expressions that the two models are
closely related. First of all, it is natural to identify p with s

K
, the fraction of expected number

of nonzero entries in ααα1. Next, by definition, |||.|||p is a binomial average of |||.|||k. Therefore,
the Bernoulli-Gaussian objective function LBG(p)(D) can be treated as a binomial average
of the s-sparse objective function LSG(s)(D).

8.1 A sufficient and almost necessary condition

By analyzing the above closed-form expressions of the l1-norm objective function, we estab-
lish the following sufficient and almost necessary conditions for population local identifiabil-
ity:

Theorem 1. (Population local identifiability) Recall that M0 = DT
0 D0 and M0[−j, j] denotes

the j-th column of M0 without its j-th entry. Let |||.|||∗s and |||.|||∗p be the dual norm of |||.|||s
and |||.|||p respectively.

1. (SG(s) models) For K ≥ 2 and s ∈ JK − 1K, if

max
j∈JKK

|||M0[−j, j]|||∗s < 1− s− 1

K − 1
.

then D0 is locally identifiable with respect to LSG(s).

2. (BG(p) models) For K ≥ 2 and p ∈ (0, 1), if

max
j∈JKK

|||M0[−j, j]|||∗p < 1− p.

then D0 is locally identifiable with respect to LBG(p).

Moreover, the above conditions are almost necessary in the sense that if the reverse strict
inequalities hold, then D0 is not locally identifiable.

On the other hand, if s = K or p = 1, then D0 is not locally identifiable with respect to
LSG(s) or LBG(p).

Proof sketch. Let {Dt}t∈R be a collection of dictionaries Dt ∈ D indexed by t ∈ R and
L(D) = E l(x1,D) be the population objective function. The reference dictionary D0 is a
local minimum of L(D) on the manifold D if and only if the following statement holds: for
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any {Dt}t∈R that is a smooth function of t with non-vanishing derivative at t = 0, L(Dt)
has a local minimum at t = 0. For a fixed {Dt}t∈R, to ensure that L(Dt) achieves a local
minimum at t = 0, it suffices to have the following one-sided derivative inequalities:

lim
t↓0+

L(Dt)− L(D0)

t
> 0 and lim

t↑0−

L(Dt)− L(D0)

t
< 0.

With some algebra, the two inequalities can be translated into the following statement:

max
j∈JKK

∣∣∣M0[−j, j]Tw
∣∣∣ < { 1− s−1

K−1 for SG(s) models

1− p for BG(p) models

where w ∈ RK−1 is a unit vector in terms of the norm |||.|||s or |||.|||p and it corresponds to
the “approaching direction” of Dt to D0 on D as t tends to zero. Since t = 0 has to be a
local minimum for all smooth {Dt}t∈R or approaching directions, by taking the supremum
over all such unit vectors the LHS of the above inequality becomes the dual norm of |||.|||s
or |||.|||p. On the other hand, D0 is not a local minimum if limt↓0+(L(Dt)− L(D0))/t < 0 or
limt↑0−(L(Dt)−L(D0))/t > 0 for some {Dt}t∈R. Thus our condition is also almost necessary.
We refer readers to Section A.1 for the detailed proof.

Local identifiability phase boundary. The conditions in Theorem 1 indicate that pop-
ulation local identifiability undergoes a phase transition. The following equations

max
j∈JKK

|||M0[−j, j]|||∗s = 1− s− 1

K − 1
and max

j∈JKK
|||M0[−j, j]|||∗p = 1− p

define the local identifiability phase boundaries which separate the region of local identifia-
bility, in terms of dictionary atom collinearity matrix M0 and the sparsity level s or p, and
the region of local non-identifiability, under respective models.

The roles of dictionary atom collinearity and sparsity. Both the dictionary atom
collinearity matrix M0 and the sparsity parameter s or p play roles in determining local
identifiability. Loosely speaking, for D0 to be locally identifiable, neither can the atoms
of D0 be too linearly dependent, nor can the random coefficient vectors that generate the
data be too dense. For the s-sparse Gaussian model, the quantity maxj∈JKK |||M0[−j, j]|||∗s
measures the size of the off-diagonal entries of M0 and hence the collinearity of the dictionary
atoms. In addition, that quantity also depends on the sparsity parameter s. By Lemma A.3
in the Appendix, maxj∈JKK |||M0[−j, j]|||∗s is strictly increasing with respect to s for M0 whose
upper-triangle portion contains at least two nonzero entries (if the upper-triangle portion
contains at most one nonzero entry, then the quantity does not depend on s, see Example
8.4). Similar conclusion holds for the Bernoulli-Gaussian model. Therefore, the sparser the
linear coefficients, the less restrictive the requirement on dictionary atom collinearity.

On the other hand, for a fixed M0, by the monotonicity of maxj∈JKK |||M0[−j, j]|||∗s with
respect to s, the collection of s that leads to local identifiability is of the form s < s∗(M0)
for some function s∗ of M0. Similarly for the Bernoulli-Gaussian model, p < p∗(M0) for
some function p∗ of M0.
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8.2 Examples

Next, we will study some examples to gain more intuition for the local identifiability condi-
tions.

Example 8.1. (1-sparse Gaussian model) A full rank D0 is always locally identifiable at the
population level under a 1-sparse Gaussian model. Indeed, by Corollary A.3 in the Appendix,
|||M0[−j, j]|||∗1 = maxi 6=j |M0[i, j]| < 1 for all j ∈ JKK. Thus, a full rank dictionary D0 always
satisfies the sufficient condition.

Example 8.2. ((K − 1)-sparse Gaussian model) For j ∈ JKK, M0[−j, j] ∈ RK−1. Thus by
Lemma A.3,

|||M0[−j, j]|||∗K−1 = ‖M0[−j, j]‖2.

Therefore the phase boundary under the (K − 1)-sparse model is

max
j∈JKK

‖M0[−j, j]‖2 =
1

K
.

Example 8.3. (Orthogonal dictionaries) If M0 = I, then

max
j∈JKK

|||M0[−j, j]|||∗s = max
j∈JKK

|||M0[−j, j]|||∗p = 0.

Therefore orthogonal dictionaries are always locally identifiable if s < K or p < 1.

Example 8.4. (Minimally dependent dictionary atoms) Let µ ∈ (−1, 1). Consider a dictio-
nary atom collinearity matrix M0 such that M0[1, 2] = M0[2, 1] = µ and M0[i, j] = 0 for all
other i 6= j. By Corollary A.4 in the Appendix,

max
j∈JKK

|||M0[−j, j]|||∗s = max
j∈JKK

|||M0[−j, j]|||∗p = |µ|.

Thus the phase boundaries under respective models are:

|µ| = 1− s− 1

K − 1
and |µ| = 1− p.

Notice that when K = 2 and for the Bernoulli-Gaussian model, the phase boundary agrees
well with the empirical phase boundary in the simulation result by GS (Figure 3 of the GS
paper).

Example 8.5. (Constant inner-product dictionaries) Let M0 = µ11T + (1 − µ)I, i.e.
D0[, i]

TD0[, j] = µ for 1 ≤ i < j ≤ K. Note that M0 is positive definite if and only if
µ ∈ (− 1

K−1 , 1). By Corollary A.5 in the Appendix, we have

|||M0[−j, j]|||∗s =
√
s|µ|.
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Thus for the s-sparse model, the phase boundary is

√
s|µ| = 1− s− 1

K − 1
.

Similarly for the Bernoulli(p)-Gaussian model, we have

|||M0[−j, j]|||∗p = |µ|p(K − 1)
(K−1∑
k=0

pbinom(k,K − 1, p)
√
k
)−1

.

Thus the phase boundary is

|µ| = 1− p
p(K − 1)

K−1∑
k=0

pbinom(k,K − 1, p)
√
k.

Figures 8.1 shows the phase boundaries for different dictionary sizes under the two models.
As K increases, the phase boundary moves towards the lower left of the region. This obser-
vation indicates that recovering the reference dictionary locally becomes increasingly difficult
for larger dictionary size.

The effect of non-sparse outliers. Example 8.5 demonstrates how the presence of non-
sparse outliers in the Bernoulli-Gaussian model (Figure 7.2 Right) affects the requirements
for local identifiability. Set p = s

K
in order to have the same level of sparsity with the SG(s)

model. Applying Jensen’s inequality, one can show that

1− p
p(K − 1)

K−1∑
k=0

pbinom(k,K − 1, p)
√
k <

1√
s

(1− s− 1

K − 1
),

indicating that the phase boundary of the s-sparse models is always above that of the
Bernoulli-Gaussian model with the same level of sparsity. The difference between the two
phase boundaries is the extra price one has to pay, in terms of the collinearity parameter
µ, for recovering the dictionary locally in the presence of non-sparse outliers. One extreme
example is the case where s = 1 and correspondingly p = 1

K
. By Example 8.1, under a

1-sparse model the reference dictionary D0 is always locally identifiable if |µ| < 1. But for
the BG( 1

K
) model, by the remark in Corollary 1, D0 is not locally identifiable if |µ| > 1− 1

K
.

Hence, the requirement for µ in the presence of outliers is at least 1
K

more stringent than
that in the case of no outliers.

However, such a difference diminishes as the number of dictionary atoms K increases.
Indeed, by Lemma 8.2, one can show the following lower bound for the phase boundary of
under the BG(p) model:

1− p
p(K − 1)

K−1∑
k=0

pbinom(k,K − 1, p)
√
k ≥ 1− p√

p(K − 1) + 1
≈ 1√

s
(1− s− 1

K − 1
),

for fixed sparsity level p = s
K

and large K.
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Figure 8.1: Local identifiability phase boundaries for constant inner-product dictionaries,
under Left: the s-sparse Gaussian model; Right: the Bernoulli(p)-Gaussian model. For
each model, phase boundaries for different dictionary sizes K are shown. Note that s

K
∈

{ 1
K
, 2
K
, · · · , 1} and p ∈ (0, 1]. The area under the curves is the region where the reference

dictionaries are locally identifiable at the population level. Due to symmetry, we only plot
the portion of the phase boundaries for µ > 0.

8.3 Approximation bounds

In general, the dual norms |||.|||∗s and |||.|||∗p have no closed-form expressions. According to
Corollary A.2 in the Appendix, computing those quantities involves solving a second order
cone problem (SOCP) with a combinatoric number of constraints. The following Lemma
8.2, on the other hand, gives computationally inexpensive approximation bounds.

Definition 8.1. (Hyper-geometric distribution related quantities) Let m be a positive in-
teger and d, k ∈ {0} ∪ JmK. Denote by Lm(d, k) the hypergeometric random variable with
parameter m, d and k, i.e. the number of 1’s after drawing without replacement k elements
from d 1’s and m − d 0’s. Now for each d ∈ {0} ∪ JmK, define the function τm(d, .) with
domain on [0,m] as follows: set τm(d, 0) = 0. For a ∈ (k − 1, k] where k ∈ JmK, define

τm(d, a) = E
√
Lm(d, k − 1) + (E

√
Lm(d, k)− E

√
Lm(d, k − 1))(a− (k − 1)).

Lemma 8.2. (Lower and upper bounds for |||.|||∗s and |||.|||∗p) Let m be a positive integer and
z ∈ Rm.
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1. For s ∈ JmK,

max

(
‖z‖∞,

√
s

m
max
T⊂JmK

‖z[T ]‖1√
|T |

)
≤ s

m
max
T⊂JmK

‖z[T ]‖1
τm(|T |, s)

≤ |||z|||∗s ≤ max
S⊂JmK,|S|=s

‖z[S]‖2.

2. For p ∈ (0, 1),

max

(
‖z‖∞,

√
p max
T⊂JmK

‖z[T ]‖1√
|T |

)
≤ p max

T⊂JmK

‖z[T ]‖1
τm(|T |, pm)

≤ |||z|||∗p ≤ max
S⊂JmK,|S|=k

‖z[S]‖2.

where k = dp(m− 1) + 1e.

Remark:
(1) We refer readers to Lemma A.8 and A.9 for the detailed version of the above results.
(2) Since we agree that 0

0
= 0, the case where T = ∅ does not affect taking the maximum of

all subsets.
(3) Consider a sparse vector z = (z, 0, ..., 0)T ∈ Rm. By Corollary A.4,

|||z|||∗s = |||z|||∗p = |z| = ‖z‖∞ = max
S⊂JmK,|S|=1

‖z[S]‖2.

So all the bounds are achievable by a sparse vector.
(4) Now consider a dense vector z = (z, ..., z)T ∈ Rm. By Corollary A.5,

|||z|||∗s =
√
s|z| =

√
s

m
max
T⊂JmK

‖z[T ]‖1√
|T |

= max
S⊂JmK,|S|=s

‖z[S]‖2.

Thus the bounds for |||z|||∗s can also be achieved by a dense vector. Similarly, by the upper-
bound for |||z|||∗p,

|||z|||∗p ≤
√
pm+ 1|z|.

On the other hand,

|||z|||∗p ≥
√
p max
T⊂JmK

‖z‖1√
|T |

=
√
p|z| max

T⊂JmK

√
|T | = √pm|z|.

Thus both bounds for |||z|||∗p are basically the same for large pm.
(5) Computation. To compute the lower and upper bounds efficiently, we first sort the
elements of |z| in descending order. Without loss of generality, we can assume that |z[1]| ≥
|z[2]| ≥ ... ≥ |z[m]|. Thus the upper-bound quantity becomes

max
S⊂JmK,|S|=k

‖z[S]‖2 = (
k∑
i=1

z[i]2)1/2.
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For the lower-bound quantities, note that

max
T⊂JmK

‖z[T ]‖1
τm(|T |, k)

= max
d∈JmK

max
T⊂JmK,|T |=d

∑d
i=1 |z[i]|
τm(d, k)

= max
d∈JmK

∑d
i=1 |z[i]|
τm(d, k)

.

Thus, the major computation burden now is to compute τm(d, k) = E
√
Lm(d, k), for all

d ∈ JmK. We do not know a closed-form formula for E
√
Lm(d, k) except for d = 1 or d = m.

In practice, we compute E
√
Lm(d, k) using its definition formula. On an OS X laptop with

1.8 GHz Intel Core i7 processor and 4GB of memory, the function dhyper in the statistics
software R can compute E

√
L2000(d, 1000) for all d ∈ J2000K within 0.635 second. Note that

the number of dictionary atoms in most applications is usually smaller than 2000.
In case m is too large, the LHS lower bounds can be used. Note that

max
T⊂JmK

‖z[T ]‖1√
|T |

= max
d∈JmK

∑d
i=1 |z[i]|√

d
,

which can be computed easily.

For notational simplicity, we will define the following quantities that are involved in
Lemma 8.2:

Definition 8.2. For a ∈ (0, K), define

νa(M0) = max
1≤j≤K

max
S⊂JKK,j 6∈S

‖M0[S, j]‖1
τK−1(|S|, a)

.

Definition 8.3. (Cumulative coherence) For k ∈ JK − 1K, define the k-th cumulative coher-
ence of a reference dictionary D0 as

µk(M0) = max
1≤j≤K

max
S⊂JKK,|S|=k,j 6∈S

‖M0[S, j]‖2.

Remark: The above quantity is actually the l2 analog of the l1 k-th cumulative coherence
defined in [54]. Also, notice that µ1(M0) = maxl 6=j |M0[l, j]| which is the plain mutual
coherence of the reference dictionary.

With the above definitions and as a direct consequence of the above Lemma 8.2, we
obtain a sufficient condition and a necessary condition for population local identifiability:

Corollary 1. Under the notations of Theorem 1, we have

1. Let K ≥ 2 and s ∈ JK − 1K.

• If µs(M0) < 1− s−1
K−1 , then D0 is locally identifiable with respect to LSG(s);
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• If s
K−1νs(M0) > 1− s−1

K−1 , then D0 is not locally identifiable with respect to LSG(s).

2. Let K ≥ 2 and p ∈ (0, 1).

• If µk(M0) < 1−p, where k = dp(K−2)+1e, then D0 is locally identifiable with respect
to LBG(p);

• If pνk(M0) > 1− p, where k = p(K− 1), then D0 is not locally identifiable with respect
to LBG(p).

Remark:

(1) In particular, by Lemma 8.2, if µ1(M0) > 1 − s−1
K−1 or µ1(M0) > 1 − p, then D0 is not

locally identifiable.
(2) We can also replace s

K−1νs(M0) or pνk(M0) by the corresponding lower bound quantities
in Lemma 8.2 which are easier to compute but give weaker necessary conditions.

Comparison with GS. Corollary 1 allows us to compare our local identifiability condition
directly with that of GS. For the Bernoulli(p)-Gaussian model, the population version of the
sufficient condition for local identifiability by GS is:

µK−1(M0) = max
1≤j≤K

‖M0[−j, j]‖2 < 1− p. (8.4)

Note that µK−1(M0) ≥ µk(M0) for k ≤ K − 1.
Thus, our local identifiability result implies that of GS. Moreover, the quantity ‖M0[−j, j]‖2

in inequality (8.4) computes the l2-norm of the entire M0[−j, j] vector and is independent of
the sparsity parameter p. On the other hand, in our sufficient condition max|S|=k,j 6∈S ‖M0[S, j]‖2
computes the largest l2-norm of all size-k sub-vectors of M0[−j, j]. Since k = dp(K−2) + 1e
is essentially pK, in the case where the model is sparse and the dictionary atom collinearity
matrix M0 is dense, the sufficient bound by GS is most conservative compared to ours.

More concretely, let us consider constant inner-product dictionaries with parameter µ > 0
as in Example 8.5. The sufficient condition by GS and the sufficient condition given by
Corollary 1 are respectively

√
Kµ ≤ 1− p and

√
pK + 1µ ≤ 1− p,

showing that the sufficient condition by GS is much more conservative for small value of p.
See Figure 7.1 for a graphical comparison of the bounds for K = 10.

Local identifiability for sparsity level O(µ−2). For notational convenience, let µ =
µ1(M0) be the mutual coherence of the reference dictionary. For the s-sparse model, by
Lemma 8.2, µs(M0) ≤

√
sµ. Thus the first part of the corollary implies a simpler sufficient

condition: √
sµ < 1− s− 1

K − 1
.
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From the above inequality, it can be seen that if 1− s−1
K−1 > δ for some δ > 0, the reference

dictionary is locally identifiable for sparsity level s up to the order O(µ−2).
Similarly for the Bernoulli(p)-Gaussian model, since

µk(M0) ≤
√
pK + 1µ,

we have the following sufficient condition for local identifiability:√
pK + 1µ ≤ 1− p.

As before, if 1 − p > δ for some δ > 0, the reference dictionary is locally identifiable for
sparsity level pK up to the order O(µ−2). On the other hand, the condition by GS requires
K = O(µ−2), which does not take advantage of sparsity.

In addition, by Example 8.5 and the remark under Lemma 8.2, we also know that the
sparsity requirement O(µ−2) cannot be improved in general.

Our result seems to be the first to demonstrate O(µ−2) is the optimal order of sparsity
for exact local recovery of a reference dictionary. For a predefined over-complete dictionary,
classical results such as [67] and [68] show that basis pursuit recovers an s-sparse linear
coefficient vector with sparsity level s up to the order O(µ−1). For over-complete dictionary
learning, [53] showed that exact local recovery is also possible for s-sparse model with s up
to O(µ−1). While our results are only for complete dictionaries, we conjecture that O(µ−2)
is also the optimal order of sparsity level for over-complete dictionaries. In fact, [79] proved
that the response maximization criterion – an alternative formulation of dictionary learning
– can approximately recover the over-complete reference dictionary locally with sparsity level
s up to O(µ−2). It will be of interest to investigate whether the same sparsity requirement
hold for the l1-minimization dictionary learning (7.2) in the case of exact local recovery and
over-complete dictionaries.
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Chapter 9

Finite sample local identifiability

In this chapter, we will present finite sample results for local dictionary identifiability. For
notational convenience, we first define the following quantities:

P1(ε,N ;µ,K) = 2 exp

(
− Nε2

108Kµ

)
,

P2(ε,N ; p,K) = 2 exp

(
−p Nε2

18p2K + 9
√

2pK

)
,

P3(ε,N ; p,K) = 3

(
24

εp
+ 1

)K
exp

(
−pNε

2

360

)
.

Recall that M0 = DT
0 D0 and µ1(M0) is the mutual coherence of the reference dictionary

D0. The following two theorems give local identifiability conditions under the s-sparse
Gaussian model and the Bernoulli-Gaussian model:

Theorem 2. (Finite sample local identifiability for SG(s) models) Let αααi ∈ RK, i ∈ JNK, be
i.i.d SG(s) random vectors with s ∈ JK − 1K. The signals xi’s are generated as xi = D0αααi.
Assume 0 < ε ≤ 1

2
,

1. If

max
j∈JKK

|||M0[−j, j]|||∗s ≤ 1− s− 1

K − 1
−
√
π

2
ε,

then D0 is locally identifiable with respect to LN(D) with probability exceeding

1−K2
(
P1(ε,N ;µ1(M0), K) + P2(ε,N ;

s

K
,K) + P3(ε,N ;

s

K
,K)

)
.

2. If

max
j∈JKK

|||M0[−j, j]|||∗s ≥ 1− s− 1

K − 1
+

√
π

2
ε,
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then D0 is not locally identifiable with respect to LN(D) with probability exceeding

1−K
(
P1(ε,N ;µ1(M0), K) + P2(ε,N ;

s

K
,K) + P3(ε,N ;

s

K
,K)

)
.

Theorem 3. (Finite sample local identifiability for BG(p) models) Let αααi ∈ RK, i ∈ JNK,
be i.i.d BG(p) random vectors with p ∈ (0, 1). The signals xi’s are generated as xi = D0αααi.
Let Kp = K + 2p−1 and assume 0 < ε ≤ 1

2
,

1. If

max
j∈JKK

|||M0[−j, j]|||∗p ≤ 1− p−
√
π

2
ε,

then D0 is locally identifiable with respect to LN(D) with probability exceeding

1−K2 (P1(ε,N ;µ1(M0), Kp) + P2(ε,N ; p,Kp) + P3(ε,N ; p,K)) .

2. If

max
j∈JKK

|||M0[−j, j]|||∗p ≥ 1− p+

√
π

2
ε,

then D0 is not locally identifiable with respect to LN(D) with probability exceeding

1−K (P1(ε,N ;µ1(M0), Kp) + P2(ε,N ; p,Kp) + P3(ε,N ; p,K)) .

The conditions for finite sample local identifiability are essentially identical as their pop-
ulation counterparts. The only difference is a margin of

√
π
2
ε on the RHS of the inequalities.

Such a margin appears in the conditions because of our proof techniques: we show that
the derivative of LN is within O(ε) of its expectation and then impose conditions on the
expectation.

Sample size requirement. The theorems indicate that if the number of signals is a multiple
of the following quantity,

For SG(s):
1

ε2
max

{
µ1(M0)K logK, s logK,

K

s
K log

(
K

εs

)}

For BG(p):
1

ε2
max

{
µ1(M0)K logK, pK logK,

1

p
K log

(
1

εp

)}
then with high probability we can determine whether or not D0 is locally identifiable. For
ease of analysis, let us now treat ε as a constant. Thus, in the worst case, the sample size
requirements for the two models are, respectively,

O(
K logK

s
K

) and O(
K logK

p
).
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Apart from playing a role in determining whether D0 is locally identifiable, the sparsity
parameters s and p also affect the sample size requirement. As discussed in the popula-
tion results, the sparser the linear coefficient αααi, the less constraint on the dictionary atom
collinearity. However, with finite samples, more signals are needed to guarantee the validity
of the local identifiability conditions for sparse models.

Our sample size requirement is similar to that of GS, who shows that O(K logK
p(1−p) ) signals

is enough for locally recovering an incoherent reference dictionary. Our result indicates the
1− p factor in the denominator can be removed.

The following two corollaries are the finite sample counterparts of Corollary 1.

Corollary 2. Under the same assumptions of Theorem 2,

1. (Sufficient condition for SG(s) models) If

µs(M0) ≤ 1− s− 1

K − 1
−
√
π

2
ε,

then D0 is locally identifiable with respect to LN(D), with the same probability bound
in the first part of Theorem 2.

2. (Necessary condition for SG(s) models) If

s

K − 1
νs(M0) ≥ 1− s− 1

K − 1
+

√
π

2
ε,

then D0 is not locally identifiable with respect to LN(D), with the same probability
bound in the second part of Theorem 2.

Corollary 3. Under the same assumptions of Theorem 3,

1. (Sufficient condition for BG(p) models) Let k = dp(K − 1) + 1e. If

µk(M0) ≤ 1− p−
√
π

2
ε,

then D0 is locally identifiable with respect to LN(D), with the same probability bound
in the first part of Theorem 3.

2. (Necessary condition for BG(p) models) Let k = p(K − 1). If

pνk(M0) ≥ 1− p+

√
π

2
ε,

then D0 is not locally identifiable with respect to LN(D), with the same probability
bound in the second part of Theorem 3.
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Remark: As before, denote by µ ∈ [0, 1) the coherence of the reference dictionary. The
above two corollaries together with the remark under Corollary 1 indicate that the reference
dictionary is locally identifiable with high probability for sparsity level s or pK up to the
order O(µ−2).

Proof sketch for Theorem 2 and 3. Similar to the population case, by taking one-
sided derivatives of LN(Dt) with respect to t at t = 0 for all smooth {Dt}t∈R, we derive a
sufficient and almost necessary algebraic condition for the reference dictionary D0 to be a
local minimum of LN(D). Using the concentration inequalities in Lemma A.1 - A.3, we show
that the random quantities involved in the algebraic condition are close to their expectations
with high probability. The population results for local identifiability can then be applied.
The proofs for the two signal generation models are conceptually the same after establishing
Lemma A.6 to relate the |||.|||∗p norm to the |||.|||∗s norm. The detailed proof can be found in
Section A.2.

Comparison with the proof by GS. The key difference between our analysis and that of
GS is that we use an alternative but equivalent formulation of dictionary learning. Instead
of (7.2), GS studied the following problem:

min
D∈D,αααi

1

N

N∑
i=1

‖αααi‖1 (9.1)

subject to xi = Dαααi for all i ∈ JNK.

Note that the above formulation optimizes jointly over D and αααi for i ∈ JNK, as opposed to
optimizing with respect to the only parameter D in our case. For complete dictionaries, this
formulation is equivalent to the formulation in (7.2) in the sense that D̂ is a local minimum
of (7.2) if and only if (D̂, D̂−1[x1, ...,xN ]) is a local minimum of (9.1), see Remark 3.1 of
GS. The number of parameters to be estimated in (9.1) is (K − 1)K + KN , compared to
(K−1)K free parameters in (7.2). The growing number of parameters make the formulation
employed by GS less tractable to analyze under a signal generation model.

GS did not study the population case. In their analysis, GS first obtained an algebraic
condition for local identifiability that is sufficient and almost necessary. However, their
condition is convoluted due to its direct dependence on the signals xi’s. In order to make
their condition more explicit in terms of dictionary atom collinearity and sparsity level, they
then investigated the condition under the Bernoulli-Gaussian model. During the probabilistic
analysis, the sharp algebraic condition was weakened, resulting in a sufficient condition that
is far from being necessary.

In contrast, we start with probabilistic generative models. The number of parameters
is not growing as N increases, which, allows us to study the population problem directly
and to apply concentration inequalities for the finite sample problem. There is little loss
of information during the process of obtaining identifiability results from first principles.
Therefore, studying the optimization problem (7.2) instead of (9.1) is the key to establishing
an interpretable sufficient and almost necessary local identifiability condition.
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Chapter 10

Conclusions

10.1 Summary

In this thesis, we proposed stability-based nonnegative matrix factorization (staNMF) to
decompose spatial gene expression patterns into local principal patterns (PP). When ap-
plied to Drosophila embryonic expression data at early-stage, staNMF identified 21 PP that
correspond to pre-organ regions, providing an informative representation of spatial gene
expression patterns. We demonstrated that PP are a data-driven alternative to manual cu-
ration and facilitate the categorization of gene expression patterns. Our PP-based sparse
representations (sPP) reduce large datasets to manageable scales. They allow suitable human
interrogation and downstream computation on desktop computers while preserving quanti-
tative relationships of full datasets. In addition, staNMF’s utility was further substantiated
by the agreement between our PP-based spatially local networks and the well-studied gap
gene network.

Inspired by the success of NMF on our spatial gene expression data, we proceeded to
understand why dictionary learning works. We analyzed a dictionary learning formulation
with the l1-norm objective function. In the case of noiseless signals and complete dictionaries,
we established a sufficient and almost necessary condition for population local dictionary
identifiability under both the s-sparse model and the Bernoulli-Gaussian model. For finite
samples, we showed that as long as the number of i.i.d signals scales as O(K logK), similar
local identifiability conditions hold with high probability.

10.2 Future directions

Given the success of our approach for early stage Drosophila embryos, we expect this method
to be applicable to derive meaningful data-driven representations for other data. Currently,
we are extending the staNMF analysis to spatial gene expression data from later stage
Drosophila embryos. In our preliminary analysis, staNMF was applied to about 700 seg-
mented and aligned late stage Drosophila hindguts. We identified a set of PP that compart-
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mentalize the developing gut and match some previously described areas of differentiation
[101, 102]. Moreover, the utility of staNMF is not limited to spatial data. We used staNMF
to analyze RNA-seq measurements of Drosophila genes for different organs, developmental
stages and toxin exposures. The learned PP revealed activation of ovary and testis specific
genes as a result of toxin exposure, suggesting a novel link between toxins and epigenetic
inheritance. In a separate project, we collected heart specific enhancer data from mouseEn-
code [103], FANTOM5 [104], including DNA methylation, DNAS-seq and histone modifica-
tion measurements. Using staNMF, we identified histone marks such as H3K27ac, H3K4me
as key features defining active mouse heart enhancers. In addition, a random forest classifier
performed nearly equally well for predicting active enhancers from raw data as from the PP
representation, further demonstrating NMF as an efficient and biologically meaningful tool
for dimension reduction.

Another research direction is stability analysis of the learned PP. Like all other data ac-
quisition procedures, our image collection and preprocessing pipeline suffers from a variety
of noise ranging from imprecise staging to registration artifacts. In addition, the alternating
minimization implementation of NMF is intrinsically a random algorithm due to random
starting values and stochastic gradient descent [47]. These two sources of randomness will
ultimately affect the quality of the learned PP as well as any PP-based downstream analyses.
In order to quantify the uncertainty of the learned PP, it is necessary to design a statistical
inference procedure that takes into account the two sources of randomness. One possible ap-
proach is to introduce suitable data perturbations to the original data (e.g., shifts and local
distortions of the expression images, adding noise) and combine them with various NMF ini-
tialization schemes. PP learned from each perturbation+NMF initialization can be matched
using a greedy matching algorithm and the variability for each matched PP can be computed
as our uncertain measure. In addition, this uncertainty measure can also be propagated into
our PP-based gene categorization and spatially local network construction. We hope that
research towards this direction can enable researchers to understand the variability of the
learned data representation and subsequent analyses.

With an empirically defined cutoff, we were able to reconstruct the known Drosophila gap
gene regulatory network using PP-based local correlations. In practice, subnetworks from a
larger biological network are usually known. How do we incorporate this prior information
when building networks? In recent social network research, a technique called link prediction
is used to construct networks in a supervised fashion [105, 106, 107]. The idea is to treat a
known interaction as positive class and a known non-interaction as negative class, and train
a binary classifier such as support vector machine or random forest. The feature vector can
include our local correlation and any other pairwise distance metrics between a pair of genes.
By allowing an easy integration of additional information, this approach is expected to yield
better results for constructing local gene networks.

There are also several directions for further development of dictionary learning theory.
First of all, in this thesis we only focused on the local behaviors of the l1-norm objective
function. As pointed out by [52], numerical experiments in two dimensions suggested that
local minima are in fact global minima, see Figure 2 of [52]. Thus, it is of interest to
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investigate whether the conditions developed in this thesis for local identifiability are also
sufficient and almost necessary for global identifiability.

Moreover, one can extend our results to a wider class of sub-Gaussian distributions other
than the standard Gaussian distribution considered in this thesis. We foresee little technical
difficulties for this extension. However, it should be noted that the quantities involved
in our local identifiability conditions, i.e., the |||.|||∗s and |||.|||∗p norms, are consequences of
the standard Gaussian assumption. Under a different distribution, it can be even more
challenging to compute and approximate those quantities.

Next, it would also be desirable to improve the sufficient conditions of [53] and [54] for
over-complete dictionaries and noisy data. One of the implications of our identifiability
condition is that local recovery is possible for sparsity level up to order O(µ−2) for a µ-
coherent reference dictionary. We conjecture the same sparsity requirement holds for the
over-complete and/or the noisy signal case. In either case, the closed-form expression for
the objective function is no longer available. A full characterization of local dictionary
identifiability requires us to develop new techniques to analyze the local behaviors of the
objective function.

We are also planning to establish similar identifiability results for NMF. Prior work on
NMF identifiability gave sufficient conditions that are usually too strong to hold [57, 108].
We hope that our models and techniques for l1-minimization dictionary learning can lead
to better NMF identifiability conditions. On the other hand, we note that identifiability is
only a minimal requirement for dictionary learning to be mathematically well-posed. This
type of analysis does not give a practical algorithm to recover the dictionary. A number
of recent works have been devoted to provable algorithms for sparse dictionary learning
[83, 84, 85, 86, 87, 88]. For NMF, algorithms and theoretical analyses were provided for
a convex formulation [109, 110]. We hope to extend these results to the more frequently
used alternating minimization algorithm. A careful combination of the framework by [87] to
analyze alternating minimization and the recent progress on nonnegative least squares [58]
might help us to gain insight into this NMF algorithm.
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Appendix A

Proofs of Part II results

In this appendix, we will present detailed proofs of our results on dictionary local identifia-
bility. Let L(D) be a function of D ∈ D and {Dt}t∈R be the collection of dictionaries Dt ∈ D
parameterized by t ∈ R. By definition, {Dt}t∈R passes through the reference dictionary D0

at t = 0. To ensure that D0 is a local minimum of L(D), it suffices to have

lim
t↓0+

L(Dt)− L(D0)

t
> 0 and lim

t↑0−

L(Dt)− L(D0)

t
< 0,

for all {Dt}t∈R that is a smooth function of t. On the other hand, if either of the above strict
inequalities holds in the reverse direction for some smooth {Dt}t∈R, then D0 is not a local
minimum of L(D).

Since D0 is full rank by assumption, the minimum eigenvalue of M0 = DT
0 D0 is strictly

greater than zero. By continuity of the minimum eigenvalue of DT
t Dt (see e.g. Bauer-Fike

Thoerem), when Dt and D0 are sufficiently close, Dt should also be full rank. Thus without
loss of generality we only need to work with full rank dictionary Dt. For any full rank
D ∈ D, there is a full rank matrix A ∈ RK×K such that D = D0A. For any k ∈ JKK, by
the constraint ‖D[, k]‖2 = 1, the matrix A should satisfy A[, k]TM0A[, k] = 1. Define the
set for all such A’s as:

A = {A ∈ RK×K : A is invertible and A[, k]TM0A[, k] = 1 for all k ∈ JKK}. (A.1)

It follows immediately that the set {D0A : A ∈ A} is the collection of D ∈ D such that D
is full rank. Thus, to ensure that D0 is a local minimum of L(D), it suffices to show

∆+(L, {At}t) := lim
t↓0+

L(D0At)− L(D0)

t
> 0, (A.2)

∆−(L, {At}t) := lim
t↑0−

L(D0At)− L(D0)

t
< 0, (A.3)

for all smooth functions {At}t∈R with At ∈ A and A0 = I. In addition, to demonstrate
that D0 is not a local minimum of L(D), it suffices to have (A.2) or (A.3) hold in the
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reverse direction for some {At}t with the aforementioned properties. We will be using this
characterization of local minimum to prove local identifiability results for both the population
case and the finite sample case.

A.1 Proofs of the population results

Proof of Lemma 8.1

Proof. Since E||Hααα1||1 =
∑K

j=1 E|H[j, ]ααα1|, it suffices to compute E|H[j, ]ααα1|. Let S be any
nonempty subset of JKK. Recall that the random variable S1 ⊂ JKK denotes the support of
random coefficient ααα1. Conditioning on the event {S1 = S}, the random variable H[j, ]ααα1

follows a normal distribution with mean 0 and standard deviation ‖H[j, S]‖2. Hence

E |H[j, ]ααα1| = E[E[|H[j, ]ααα1| |S1]] =

√
2

π
E‖H[j,S1]‖2.

(1) Under the s-sparse Gaussian model, P(S1 = S) =
(
K
s

)−1
for any |S| = s. Thus we have

E‖H[j,S1]‖2 =

(
K

s

)−1 ∑
S:|S|=s

‖H[j, S]‖2 =
s

K
|||H[j, ]|||s.

Hence the objective function for the s-sparse Gaussian model is

LSG(s)(D) =
K∑
j=1

E |H[j, ]ααα1| =
√

2

π

s

K

K∑
j=1

|||H[j, ]|||s.

In particular, for s = K, |||H[j, ]|||K = ‖H[j, ]‖2 and so

LSG(s)(D) =

√
2

π

K∑
j=1

‖H[j, ]‖2.

(2) Under the Bernoulli(p)-Gaussian model, P(S1 = S) = p|S|(1− p)K−|S|. So we have

E[‖H[j,S1]‖2] =
K∑
k=1

∑
S:|S|=k

pk(1− p)K−k‖H[j, S]‖2

= p

K−1∑
k=0

pbinom(k;K − 1, p)|||H[j, ]|||k+1.

Therefore for p ∈ (0, 1), the objective function under the Bernoulli-Gaussian model is

LBG(p)(D) =
K∑
j=1

E |H[j, ]ααα1| =
√

2

π
p

K∑
j=1

|||H[j, ]|||p.
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Finally, if p = 1, we have

LBG(p)(D) =

√
2

π

K∑
j=1

‖H[j, ]‖2.

Proof of Theorem 1

Proof. (1) Let us first consider the s-sparse Gaussian model. By (A.2) and (A.3), to ensure
that D0 is a local minimum of LSG(s)(D), it suffices to show

∆+(LSG(s), {At}t) > 0 and ∆−(LSG(s), {At}t) < 0, (A.4)

for all smooth functions {At}t with At ∈ A, where A is defined in (A.1), and A0 = I. Note
that by Lemma 8.1,

∆+(LSG(s), {At}t) =

√
2

π

s

K

K∑
j=1

lim
t↓0+

1

t

(∣∣∣∣∣∣A−1t [j, ]
∣∣∣∣∣∣
s
− |||I[j, ]|||s

)
. (A.5)

For a fixed j ∈ JKK, we have(
K − 1

s− 1

)∣∣∣∣∣∣A−1t [j, ]
∣∣∣∣∣∣
s

=
∑

S:|S|=s,j∈S

‖A−1t [j, S]‖2 +
∑

S:|S|=s,j 6∈S

‖A−1t [j, S]‖2 (A.6)

Denote by Ȧ0 ∈ RK×K the derivative of {At}t at t = 0. Since At ∈ A for all t ∈ R, it can
be shown that

M0[, k]T Ȧ0[, k] = 0 for all k ∈ JKK. (A.7)

By (A.7), we have

Ȧ0[j, j] = −
∑
i 6=j

M0[i, j]Ȧ0[i, j] for all j ∈ JKK. (A.8)

Now notice that

dA−1t
dt

∣∣∣∣
t=0

= −A−10 Ȧ0A
−1
0 = −Ȧ0. (A.9)

Combining the above equality with Lemma A.12 and A.13, we have

lim
t↓0+

1

t

(
‖A−1t [j, S]‖2 − ‖I[j, S]‖2

)
=

{
−Ȧ0[j, j] if j ∈ S
‖Ȧ0[j, S]‖2 if j 6∈ S
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Therefore

lim
t↓0+

1

t

(∣∣∣∣∣∣A−1t [j, ]
∣∣∣∣∣∣
s
− |||I[j, ]|||s

)
= −Ȧ0[j, j] +

(
K − 1

s− 1

)−1 ∑
S:|S|=s,j 6∈S

‖Ȧ0[j, S]‖2. (A.10)

Combining (A.5), (A.6), (A.8) and (A.10), we have√
π

2

K

s
∆+(LSG(s), {At}t) = −

K∑
j=1

Ȧ0[j, j] +

(
K − 1

s− 1

)−1∑
j

∑
S:|S|=s,j 6∈S

||Ȧ0[j, S]||2

=
K∑
j=1

(∑
i 6=j

M0[i, j]Ȧ0[j, i] +

(
K − 1

s− 1

)−1 ∑
S:|S|=s,j 6∈S

‖Ȧ0[j, S]‖2
)
.

Similarly, one can show√
π

2

K

s
∆−(LSG(s), {At}t) =

K∑
j=1

(∑
i 6=j

M0[i, j]Ȧ0[j, i]−
(
K − 1

s− 1

)−1 ∑
S:|S|=s,j 6∈S

‖Ȧ0[j, S]‖2
)
.

Thus for s ∈ JK − 1K, to establish (A.4) it suffices to require for each j ∈ JKK,∣∣∣∑
i 6=j

M0[i, j]Ȧ0[j, i]
∣∣∣ < K − s

K − 1

(
K − 2

s− 1

)−1 ∑
S:|S|=s,j 6∈S

‖Ȧ0[j, S]‖2 =
K − s
K − 1

∣∣∣∣∣∣∣∣∣Ȧ0[j,−j]
∣∣∣∣∣∣∣∣∣
s
.

(A.11)

for any Ȧ0 such that Ȧ0[j,−j] 6= 0. Since Ȧ0[j, i] is a free variable for i 6= j, (A.11) is
equivalent to ∣∣∣M0[−j, j]Tw

∣∣∣ < K − s
K − 1

,

for all w ∈ RK−1 such that |||w|||s = 1. Thus by the definition of the dual norm, it suffices
to have

|||M0[−j, j]|||∗s = sup
|||w|||s=1

∣∣∣M0[−j, j]Tw
∣∣∣ < K − s

K − 1
.

Therefore, the condition

max
1≤j≤K

|||M0[−j, j]|||∗s <
K − s
K − 1

= 1− s− 1

K − 1
. (A.12)

is sufficient for D0 to be locally identifiable with respect to the objective function LSG(s).
Similiarly, one can check that if the reversed strict inequality in (A.12) holds, D0 is not

a local minimum of LSG(s)(D). Thus we complete the proof for the s-sparse model.
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(2) Now consider the Bernoulli(p)-Gaussian model for p ∈ (0, 1). First of all, note that we
have √

π

2

1

p
∆±(LBG(p), {At}t) =

K∑
j=1

lim
t→0±

1

t

(∣∣∣∣∣∣A−1t [j, ]
∣∣∣∣∣∣
p
− |||I[j, ]|||p

)
=

K∑
j=1

(∑
i 6=j

M0[i, j]Ȧ0[j, i]± (1− p)
K−2∑
k=0

pk(1− p)K−2−k
∑

S:|S|=k+1,j 6∈S

‖Ȧ0[j, S]‖2
)

=
K∑
j=1

(
Ȧ0[j,−j]TM0[−j, j]± (1− p)

K−2∑
k=0

pbinom(k;K − 2, p)
∣∣∣∣∣∣∣∣∣Ȧ0[j,−j]

∣∣∣∣∣∣∣∣∣
k+1

)

=
K∑
j=1

(
Ȧ0[j,−j]TM0[−j, j]± (1− p)

∣∣∣∣∣∣∣∣∣Ȧ0[j,−j]
∣∣∣∣∣∣∣∣∣
p

)
.

Thus, similar to the s-sparse Gaussian case, it can be shown that a sufficient condition for
local identifiability is ∣∣M0[−j, j]Tw

∣∣ < 1− p,

for all j ∈ JKK and all w ∈ RK−1 such that |||w|||p = 1. The above condition is equivalent to

max
1≤j≤K

|||M0[−j, j]|||∗p < 1− p.

The rest of the proof can be proceeded as in the case of the s-sparse Gaussian model.
(3) Now let us consider the non-sparse case where s = K or p = 1. In this case, since
the objective functions are the same under both models (see Theorem 1), we only need to
consider the s-sparse Gaussian model. If s = K, the RHS quantity in Inequality (A.11) is
zero. Thus, the reference dictionary is not locally identifiable if∣∣∣M0[−j, j]Tw

∣∣∣ > 0,

for some j ∈ JKK and w ∈ RK−1. Thus, if M0 is not the identity matrix, or equivalently, if
the reference dictionary D0 is not orthogonal, D0 is not locally identifiable.

Next, let us deal with the case where D0 is orthogonal. Let D ∈ D be a full rank
dictionary and W = D−1. Since D0 is orthogonal, ‖W[j, ]D0‖2 = ‖W[j, ]‖2. By the fact
that WD = I and ‖D[, j]‖2 = 1, we have 1 = W[j, ]D[, j] ≤ ‖W[j, ]‖2‖D[, j]‖2 = ‖W[j, ]‖2,
where the equality holds iff W[j, ]T = ±D[, j].

Under the K-sparse Gaussian model,

LSG(K)(D) =

√
2

π

K∑
j=1

‖W[j, ]D0‖2 =

√
2

π

K∑
j=1

‖W[j, ]‖2 ≥
√

2

π
K = LSG(K)(D0),
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where the equality holds for any D such that DTD = I. Thus, LSG(K)(D0) = LSG(K)(D0U)
for any orthogonal matrix U ∈ RK×K , i.e. the objective function remains the same as we
rotate D0. Therefore, D0 is not a local minimum of LSG(K).

In conclusion, D0 is not locally identifiable when s = K or p = 1.

A.2 Proofs of the finite sample results: Theorem 2

and Theorem 3

Proof. We will first recall the signal generation procedure in Section 7.2. Let z be a K-
dimensional standard Gaussian vector, and ξξξ ∈ {0, 1}K be either an s-sparse random vector
or a Bernoulli random vector with probability p. Let z1, ..., zN and ξξξ1, ..., ξξξN be identical
and independent copies of z and ξξξ respectively. For each i ∈ JNK and j ∈ JKK, define
αααi[j] = zi[j]ξξξi[j]. For S ⊂ JKK with 1 ≤ |S| ≤ K − 1, define

χi(S) =

{
1 if ξξξi[k] = 1 for all k ∈ S and ξξξi[k] = 0 for all k ∈ Sc,
0 otherwise.

On the other hand, if S = JKK, define χi(S) = 1 if ξξξi[k] = 1 for all k ∈ JKK and χi(S) = 0
otherwise. As in the population case, in the following analysis we will work with full rank
dictionaries D. First of all, notice that

l(D,xi) = ‖D−1xi‖1 = ‖D−1D0αααi‖1 =
K∑
j=1

∣∣A−1[j, ]αααi∣∣ =
K∑
j=1

K∑
k=1

 ∑
S:|S|=k

|A−1[j, S]zi[S]|χi(S)

 .

Next, we have

∆+(l(.,xi), {At}t) = lim
t↓0+

1

t
(l(D0At,xi)− l(D0,xi))

=
K∑
j=1

(
−

K∑
k=1

∑
S:j∈S,|S|=k

Ȧ0[j, j]|zi[j]|χi(S)

− sgn(zi[j])
K∑
k=2

∑
S:j∈S,|S|=k

∑
l∈S,l 6=j

Ȧ0[j, l]zi[l]χi(S)

+
K−1∑
k=1

∑
S:j 6∈S,|S|=k

|Ȧ0[j, S]zi[S]|χi(S)

)
. (A.13)

Here sgn(x) is the sign function of x ∈ R such that sgn(x) = 1 for x > 0, sgn(x) = −1 for
x < 0 and sgn(x) = 0 for x = 0. By (A.8), the first term in (A.13) can be rearranged as
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follows

−
K∑
j=1

|zi[j]|
K∑
k=1

∑
S:j∈S,|S|=k

Ȧ0[j, j]χi(S) =
K∑
j=1

|zi[j]|
K∑
k=1

∑
S:j∈S,|S|=k

∑
l 6=j

M0[l, j]Ȧ0[l, j]χi(S)

=
K∑
j=1

∑
l 6=j

M0[j, l]Ȧ0[j, l]

|zi[l]| K∑
k=1

∑
S:l∈S,|S|=k

χi(S)

 .

The second term in (A.13) can be rewritten as

−
K∑
j=1

sgn(zi[j])×
∑
l 6=j

(Ȧ0[j, l]zi[l])×
K∑
k=2

∑
S:{j,l}∈S,|S|=k

χi(S).

For j, l ∈ JKK such that j 6= l, define the following quantities

Fi[l, j] = M0[j, l]|zi[l]|
K∑
k=1

∑
S:l∈S,|S|=k

χi(S), (A.14)

Gi[l, j] = sgn(zi[j])zi[l]
K∑
k=2

∑
S:{j,l}∈S,|S|=s

χi(S), (A.15)

whereas F[j, j] = G[j, j] = 0. For each j ∈ JKK, also define

ti[j](w) =
K−1∑
k=1

∑
S:j 6∈S,|S|=k

|w[S]Tzi[S]|χi(S). (A.16)

Let F̄, Ḡ and t̄ be the sample average of Fi, Gi and ti respectively. With the definitions
(A.14) – (A.16), we have

∆+(LN , {At}t) =
1

N

N∑
i=1

∆+(l(.,xi), {At}t)

=
K∑
j=1

1

N

N∑
i=1

(
Ȧ0[j, ]Fi[, j] + Ȧ0[j, ]Gi[, j] + ti[j](Ȧ0[j, ])

)
=

K∑
j=1

(
Ȧ0[j, ]F̄[, j]− Ȧ0[j, ]Ḡ[, j] + t̄[j](Ȧ0[j, ])

)
On the other hand,

∆−(LN , {At}t) =
K∑
j=1

(
Ȧ0[j, ]F̄[, j]− Ȧ0[j, ]Ḡ[, j]− t̄[j](Ȧ0[j, ])

)
.
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Now for j ∈ JKK, s ∈ JK − 1K and p ∈ (0, 1), define

Ej(s) = {w ∈ RK , |||w[−j]|||s = 1,w[j] = 0},

Fj(p) = {w ∈ RK , |||w[−j]|||p = 1,w[j] = 0}.

Thus to ensure that D0 is a local minimum, it suffices to have for each j ∈ JKK,

Hj(w) :=
∣∣wT F̄[, j]−wT Ḡ[, j]

∣∣− t̄[j](w) < 0,

for all w ∈ Ej(s) for the s-sparse Gaussian model or all w ∈ Fj(p) for the Bernoulli(p)-
Gaussian model.
(1) For the s-sparse Gaussian model, let j ∈ JKK and define

hj(w) =

√
2

π

s

K

(∣∣wTM0[, j]
∣∣− K − s

K − 1

)
,

which can be thought of as the expected value of Hj(w). Note that by triangle inequality,

sup
w∈Ej(s)

|Hj(w)− hj(w)|

≤ sup
w∈Ej(s)

∣∣∣∣∣wT

(
F̄[, j]−

√
2

π

s

K
M0[, j]

)∣∣∣∣∣+ sup
w∈Ej(s)

∣∣wT Ḡ[, j]
∣∣+ sup

w∈Ej(s)

∣∣∣∣∣t̄[j](w)−
√

2

π

s

K

K − s
K − 1

∣∣∣∣∣
=

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣F̄[−j, j]−

√
2

π

s

K
M0[−j, j]

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
∗

s

+
∣∣∣∣∣∣Ḡ[−j, j]

∣∣∣∣∣∣∗
s

+ sup
w∈Ej(s)

∣∣∣∣∣t̄[j](w)−
√

2

π

s

K

K − s
K − 1

∣∣∣∣∣ .
(A.17)

Thus, supw∈Ej(s) |Hj(w) − hj(w)| > s
K
ε implies at least one of the three terms on the RHS

is greater than s
K
ε
3
. Using a union bound and by Lemma A.1–A.3, we have

P

{
sup

w∈Ej(s)
|Hj(w)− hj(w)| > s

K
ε

}
≤ 2K exp

(
− Nε2

108K‖M0[−j, j]‖∞

)
+ 2K exp

(
− s

K

Nε2

18(s/K)s+ 9
√

2s

)
+ 3

(
24K

εs
+ 1

)K
exp

(
− s

K

Nε2

360

)
. (A.18)

It is easy to see that the event
{

supw∈Ej(s) |Hj(w)− hj(w)| ≤ s
K
ε
}

implies

sup
w∈Ej(s)

hj(w)− s

K
ε ≤ sup

w∈Ej(s)
Hj(w) ≤ sup

w∈Ej(s)
hj(w) +

s

K
ε. (A.19)
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On the other hand,

sup
w∈Ej(s)

hj(w) =

√
2

π

s

K

(
|||M0[−j, j]|||∗s −

K − s
K − 1

)
.

Thus, if |||M0[−j, j]|||∗s < K−s
K−1 −

√
π
2
ε, supw∈Ej(s)Hj(w) < 0 except with probability at

most the bound in (A.18). To ensure D0 to be a local minimum, it suffices to have
supw∈Ej(s)Hj(w) < 0 for all j ∈ JKK. Thus, if |||M0[−j, j]|||∗s <

K−s
K−1 −

√
π
2
ε for all j ∈ JKK,

we have

P {D0 is locally identifiable} ≥ P

{
max
j

sup
w∈Ej(s)

Hj(w) < 0

}

≥ 1− P

{
max
j

sup
w∈Ej(s)

Hj(w) ≥ 0

}

≥ 1−
K∑
j=1

P

{
sup

w∈Ej(s)
Hj(w) ≥ 0

}

≥ 1−
K∑
j=1

P

{
sup

w∈Ej(s)
|Hj(w)− hj(w)| > s

K
ε

}

≥ 1− 2K2 exp

(
− Nε2

108K maxl 6=j |M0[l, j]|

)
− 2K2 exp

(
− s

K

Nε2

18(s/K)s+ 9
√

2s

)
− 3K

(
24K

εs
+ 1

)K
exp

(
− s

K

Nε2

360

)
.

On the other hand, to ensure D0 is not locally identifiable with high probability, it suffices
to have |||M0[−j, j]|||∗s >

K−s
K−1 +

√
π
2
ε for some j ∈ JKK. Indeed, under that condition, the
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LHS inequality in (A.19) implies supw∈Ej(s)Hj(w) > 0. Therefore

P {D0 is not locally identifiable} ≥ P

{
sup

w∈Ej(s)
Hj(w) > 0

}

≥ 1− P

{
sup

w∈Ej(s)
Hj(w) ≤ 0

}

≥ 1− P

{
sup

w∈Ej(s)
|Hj(w)− hj(w)| > s

K
ε

}

≥ 1− 2K exp

(
− Nε2

108K‖M0[−j, j]‖∞

)
− 2K exp

(
− s

K

Nε2

18(s/K)s+ 9
√

2s

)
− 3

(
24K

εs
+ 1

)K
exp

(
− s

K

Nε2

360

)
.

(2) For the Bernoulli(p)-Gaussian model, define

νj(w) =

√
2

π
p
(∣∣wTM0[, j]

∣∣− (1− p)
)
.

Similar to (A.17), by triangle inequality,

sup
w∈Fj(p)

|Hj(w)− νj(w)|

≤

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣F̄[−j, j]−

√
2

π
pM0[−j, j]

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
∗

p

+
∣∣∣∣∣∣Ḡ[−j, j]

∣∣∣∣∣∣∗
p

+ sup
w∈Fj(p)

∣∣∣∣∣t̄[j](w)−
√

2

π
p(1− p)

∣∣∣∣∣ .
Then the analysis can be carried out in a similar manner using the parallel version of the
concentration inequalities, i.e. Part 2 of Lemma A.1–A.3.

A.3 Concentration inequalities

We will make frequent use of the following version of Bernstein’s inequality. The proof of
the inequality can be found in, e.g. Chapter 14 of [111].

Theorem A.3.1. (Bernstein’s inequality) Let Y1, ..., YN be independent random variables
that satisfy the moment condition

EY m
i ≤

1

2
× V ×m!×Bm−2,
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for integers m ≥ 2. Then

P

{
1

N
|
N∑
i=1

Yi − EYi| > ε

}
≤ 2 exp

(
− Nε2

2V + 2Bε

)
.

Lemma A.1. (Uniform concentration of F̄[−j, j]) For i ∈ JNK, let Fi ∈ RK×K be defined
as in (A.14) and F̄ = (1/N)

∑N
i=1 Fi.

1. Under the s-sparse Gaussian model with s ∈ JK − 1K,

P

{∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣F̄[−j, j]−

√
2

π

s

K
M0[−j, j]

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
∗

s

>
s

K
ε

}
≤ 2K exp

(
− Nε2

12K‖M0[−j, j]‖∞

)
,

for 0 < ε ≤ 1.

2. Under the Bernoulli-Gaussian model with parameter p ∈ (0, 1),

P


∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣F̄[−j, j]−

√
2

π
pM0[−j, j]

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
∗

p

> pε

 ≤ 2K exp

(
− Nε2

12(K + 2p−1)‖M0[−j, j]‖∞

)
,

for 0 < ε ≤ 1.

In particular, if ‖M0[−j, j]‖∞ = 0, then the RHS bound is trivially zero.

Proof. (1) First of all, we will prove the inequality for the s-sparse model. Notice that by
Lemma 8.2, we have∣∣∣∣∣

∣∣∣∣∣
∣∣∣∣∣F̄[−j, j]−

√
2

π

s

K
M0[−j, j]

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
∗

s

≤ max
|S|=s,j 6∈S

‖F̄[S, j]−
√

2

π

s

K
M0[S, j]‖2

≤
√
smax

l 6=j
|F̄[l, j]−

√
2

π

s

K
M0[l, j]|.

For convenience, define

vi[l] = |zi[l]|
K∑
k=1

∑
|S|=k,l∈S

χi(S)−
√

2

π

s

K
.

for i ∈ JNK and l ∈ JKK. Note that
∑K

k=1

∑
l∈S,|S|=k χi(S) = 1 with probability

(
K
s

)−1(K−1
s−1

)
=

s
K

. Thus

E

 K∑
k=1

∑
|S|=k,l∈S

χi(S)

m

=
s

K
.
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For m ≥ 1, by Jensen’s inequality |a+b
2
|m ≤ 1

2
(|a|m + |b|m) and E|Z|m ≥ (E|Z|)m =

(
2
π

)m
2 ,

where Z is a standard Gaussian variable. In addition, E|Z|m ≤ (m− 1)!! ≤ 2−
m
2 m!. Hence

E|vi[l]|m ≤ 2m−1

(
E|zi[l]|m +

(
2

π

)m
2 ( s

K

)m)
≤ 2× E|Z|m × 2m−1

≤ 2×
(

1

2

)m
2

m!× 2m−1

=
1

2
× 4s

K
×m!× (

√
2)m−2.

Thus by Bernstein’s inequality, we have

P

{∣∣∣∣∣ 1

N

N∑
i=1

vi[l]

∣∣∣∣∣ > ε

}
≤ 2 exp

(
− Nε2

2(4 s
K

+
√

2ε)

)
.

Therefore,

P

{∣∣∣∣∣M0[j, l]
1

N

N∑
i=1

vi[l]

∣∣∣∣∣ > s

K
ε

}
≤ 2 exp

(
− s

K

Nε2

2(4M0[j, l]2 +
√

2 |M0[j, l]| ε)

)
≤ 2 exp

(
− s

K

Nε2

2 |M0[j, l]| (4 +
√

2ε)

)
≤ 2 exp

(
− s

K

Nε2

12 |M0[j, l]|

)
.

for ε ≤ 1. Notice that if M0[j, l] = 0 the LHS probability is trivially zero. Using a union
bound, we have

P

{
‖F̄[−j, j]−

√
2

π

s

K
M0[−j, j]‖∞ >

s

K
ε

}
= P

{
max
l 6=j
|M0[j, l]

1

N

N∑
i=1

vi[l]| > ε

}

≤ 2K exp

(
− s

K

Nε2

12‖M0[−j, j]‖∞

)
.

Therefore

P

{∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣F̄[−j, j]−

√
2

π

s

K
M0[−j, j]

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
∗

s

>
s

K
ε

}
≤ P

{
√
s‖F̄[, j]−

√
2

π

s

K
M0[, j]‖∞ >

s

K
ε

}

≤ 2K exp

(
− Nε2

12K‖M0[−j, j]‖∞

)
.
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(2) Now let us consider the Bernoulli-Gaussian model. Notice that by Lemma A.6, for
s−1
K−1 ≥ p, we have∣∣∣∣∣

∣∣∣∣∣
∣∣∣∣∣F̄[−j, j]−

√
2

π
pM0[−j, j]

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
∗

p

≤

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣F̄[−j, j]−

√
2

π
pM0[−j, j]

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
∗

s

≤
√
s

∥∥∥∥∥F̄[−j, j]−
√

2

π
pM0[−j, j]

∥∥∥∥∥
∞

.

Now let s = dpK − p+ 1e ≤ pK + 2. For i ∈ JNK and l ∈ JKK, define

ui[l] = |zi[l]|
K∑
k=1

∑
|S|=s,l∈S

χi(S)−
√

2

π
p.

Note that the event
{∑K

k=1

∑
|S|=k,l∈S χi(S) = 1

}
is the same as the event that {αααi[l] = 1},

which, happens with probability p. Thus

E

 K∑
k=1

∑
|S|=k,l∈S

χi(S)

m

= p.

Similar to the case of s-sparse model,

E |ui[l]|m ≤
1

2
× 4p×m!×

(√
2
)m−2

.

By Bernstein’s inequality, we have

P

{∣∣∣∣∣ 1

N

N∑
i=1

ui[l]

∣∣∣∣∣ > ε

}
≤ 2 exp

(
− Nε2

2(4p+
√

2ε)

)
.

Therefore

P


∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣F̄[−j, j]−

√
2

π
pM0[−j, j]

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
∗

p

> pε

 ≤ P

{
√
s‖F̄[, j]−

√
2

π
pM0[, j]‖∞ > pε

}

≤ 2K exp

(
−p
s

Nε2

2‖M0[−j, j]‖∞(4 +
√

2ε)

)
≤ 2K exp

(
− Nε2

12(K + 2p−1)‖M0[−j, j]‖∞

)
,

for ε ≤ 1.
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Lemma A.2. (Uniform concentration of Ḡ[−j, j]) For i ∈ JNK, let Gi ∈ RK×K be defined
as in (A.15) and Ḡ = (1/N)

∑N
i=1 Gi.

1. Under the s-sparse Gaussian model with s ∈ JK − 1K,

P
{∣∣∣∣∣∣Ḡ[−j, j]

∣∣∣∣∣∣∗
s
>

s

K
ε
}
≤ 2K exp

(
− s

K

Nε2

2(s/K)s+
√

2s

)
,

for 0 < ε ≤ 1.

2. Under the Bernoulli-Gaussian model with parameter p ∈ (0, 1),

P
{∣∣∣∣∣∣Ḡ[−j, j]

∣∣∣∣∣∣∗
p
> pε

}
≤ 2K exp

(
−p Nε2

p(pK + 2) +
√

2(pK + 2)

)
,

for 0 < ε ≤ 1.

Proof. The proof is highly similar to that of Lemma A.1 and so we will omit some common
steps.
(1) We first prove the concentration inequality for the s-sparse model. Notice that∣∣∣∣∣∣Ḡ[−j, j]

∣∣∣∣∣∣∗
s
≤
√
smax

l 6=j
|Ḡ[l, j]|.

In addition,

E

 K∑
k=2

∑
{j,l}∈S,|S|=k

χi(S)

m

= E

 K∑
k=2

∑
|S|=k,{j,l}∈S

χi(S)


=

(
K

s

)−1(
K − 2

s− 2

)
=

s(s− 1)

K(K − 1)
≤ (

s

K
)2.

Thus

E|Gi[l, j]|m ≤ 2−m/2m!× (
s

K
)2 =

1

2
× (

s

K
)2 ×m!× (

1√
2

)m−2.

By Bernstein inequality:

P

{
| 1
N

N∑
i=1

Gi[l, j]| > ε

}
≤ 2 exp

(
− Nε2

2(s/K)2 +
√

2ε)

)
.
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Thus we have

P
{∣∣∣∣∣∣Ḡ[−j, j]

∣∣∣∣∣∣∗
s
>

s

K
ε
}
≤ P

{√
smax

l 6=j
|Ḡ[l, j]| > s

K
ε

}
≤ 2K exp

(
− (s/K)2N(ε2/s)

2(s/K)2 +
√

2(s/K)(ε/
√
s))

)
≤ 2K exp

(
− s

K

Nε2

2(s/K)s+
√

2sε

)
≤ 2K exp

(
− s

K

Nε2

2(s/K)s+
√

2s

)
,

for ε ≤ 1.
(2) For Bernoulli-Gaussian model, notice that∣∣∣∣∣∣Ḡ[−j, j]

∣∣∣∣∣∣∗
p
≤
∣∣∣∣∣∣Ḡ[−j, j]

∣∣∣∣∣∣∗
s
≤
√
smax

l 6=j
|Ḡ[l, j]|,

for s = dpK − p+ 1e ≤ pK + 2. Also,

E|Gi[l, j]|m ≤ 2−m/2m!× p2 =
1

2
× p2 ×m!× (

1√
2

)m−2.

Thus

P
{∣∣∣∣∣∣Ḡ[−j, j]

∣∣∣∣∣∣∗
s
> pε

}
≤ P

{√
smax

l 6=j
|Ḡ[l, j]| > pε

}
≤ 2K exp(−p N(ε2)

2ps+
√

2s
)

≤ 2K exp

(
−p Nε2

p(pK + 2) +
√

2(pK + 2)

)
,

for ε ≤ 1.

Lemma A.3. (Uniform concentration of t̄[j](w)) For i ∈ JNK, let ti be a function from RK

to RK defined as in (A.16) and t̄ = (1/N)
∑N

i=1 ti. Recall that for j ∈ JKK, s ∈ JK− 1K and
p ∈ (0, 1),

Ej(s) = {w ∈ RK , |||w[−j]|||s = 1,w[j] = 0},
Fj(p) = {w ∈ RK , |||w[−j]|||p = 1,w[j] = 0}.

1. Under the s-sparse Gaussian model with s ∈ JK − 1K,

P

{
sup

w∈Ej(s)
|t̄[j](w)−

√
2

π

s

K

K − s
K − 1

| > s

K
ε

}
≤ 3

(
8K

εs
+ 1

)K
exp

(
− s

K

Nε2

40

)
,

for 0 < ε ≤ 1
2
.
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2. Under the Bernoulli-Gaussian model with parameter p ∈ (0, 1),

P

{
sup

w∈Fj(p)

|t̄[j](w)−
√

2

π
p(1− p)| > pε

}
≤ 3

(
8

εp
+ 1

)K
exp

(
−pNε

2

40

)
,

for 0 < ε ≤ 1
2
.

Proof. (1) Under the s-sparse model, we have

E|ti[j](w)|m = E

 ∑
|S|=s,j 6∈S

|w[S]Tzi[S]|χi(S)

m

=
∑

|S|=s,j 6∈S

E|w[S]Tzi[S]|mEχi(S)

=

(
K

s

)−1 ∑
|S|=s,j 6∈S

E|w[S]Tzi[S]|m.

Notice that we have used the facts that the events χi(S)’s are mutually exclusive and that
zi[S] and χi(S) are independent. Since the random variable w[S]Tzi[S] has distribution
N(0, ‖w[S]‖2), E|w[S]Tzi[S]|m = ‖w[S]‖m2 E|Z|m ≤ 2−

m
2 m!. Therefore

E|ti[j](w)|m ≤ 2−
m
2 m!

(
K

s

)−1 ∑
j 6∈S,|S|=s

‖w[S]‖m2 .

Note that by Lemma A.5, |||w[−j]|||s ≥ ‖w[−j]‖2 ≥ ‖w[S]‖2 for all S such that j 6∈ S. For
w ∈ Ej(s), |||w|||s = 1 and so ‖wS‖2 ≤ 1, which, further implies that ‖w[S]‖m2 ≤ ‖w[S]‖2.
Thus we have

E|ti[j](w)|m ≤ 2−
m
2 m!

(
K

s

)−1 ∑
j 6∈S,|S|=s

‖w[S]‖2

≤ 2−
m
2 m!

s(K − s)
K(K − 1)

|||w[−j]|||s

= 2−
m
2 m!

s(K − s)
K(K − 1)

For a fixed j, define

Ui(w) = ti[j](w)−
√

2

π

s

K

K − s
K − 1

.

Notice that EUi(w) = 0. In addition,

E|Ui(w)|m ≤2mE|ti[j](w)|m ≤ 1

2
× 4

s

K

K − s
K − 1

×m!× (
√

2)m−2.
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By Bernstein’s inequality

P

{
1

N
|
N∑
i=1

Ui(w)| > s

K
ε

}
≤ 2 exp

(
− s

K

Nε2

2(4K−s
K−1 +

√
2ε)

)
≤ 2 exp

(
− s

K

Nε2

10

)
,

for 0 < ε ≤ 1/2. Now let {wi} be an δ-cover of Ej(s). Since Ej(s) is contained in the unit

ball {w ∈ RK−1 : ‖w‖2 ≤ 1}, there exists a cover such that |{wl}| ≤
(
2
δ

+ 1
)K−1

. For any
w,w′ ∈ Ej(s), we have

|Ui(w)− Ui(w′)| ≤
∑

j 6∈S,|S|=s

∣∣(w[S]−w′[S])Tzi[S]
∣∣χi(S).

Let Z be a standard Gaussian variable. We have

P

 ∑
|S|=s,j 6∈S

∣∣w[S]Tzi[S]
∣∣χi(S) > ε

 =

(
K − 1

s

)−1 ∑
|S|=s,j 6∈S

P
{∣∣w[S]Tzi[S]

∣∣ > ε
}

=

(
K − 1

s

)−1 ∑
|S|=s,j 6∈S

P {‖w[S]‖2|Z| > ε}

≤ P {‖w‖2|Z| > ε} .

Let Zi, i = 1, ..., N , be i.i.d standard Gaussian variables. By the one-sided Bernstein’s
inequality,

P

{
1

N

N∑
i=1

|Zi| ≥ 2

}
≤ exp

(
−

N(2−
√

2/π)2

2(4 +
√

2(2−
√

2/π)

)
≤ exp

(
−N

8

)
.

Now let δ = s
K
ε
4
. Thus

P

{
sup

‖w−w′‖2≤δ
| 1
N

N∑
i=1

(Ui(w)− Ui(w′))| >
s

K

ε

2

}
≤ P

{
sup

‖w′−w‖2≤δ

1

N

N∑
i=1

|Ui(w)− Ui(w′)| >
s

K

ε

2

}

≤ P

{
sup

‖w′−w‖2≤δ

1

N

N∑
i=1

‖w −w′‖2|Zi| >
s

K

ε

2

}

≤ P

{
δ

1

N

N∑
i=1

|Zi| >
s

K

ε

2

}
≤ P

{
1

N

N∑
i=1

|Zi| > 2

}

≤ exp

(
−N

8

)
.

By triangle inequality

sup
‖w′−w‖2≤δ

| 1
N

N∑
i=1

Ui(w
′)| ≤ sup

‖w′−w‖2≤δ
| 1
N

N∑
i=1

(Ui(w)− Ui(w′))|+ |
1

N

N∑
i=1

Ui(w)|.
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Using a union bound, we have

P{ sup
‖w′−w‖2≤δ

∣∣∣∣∣ 1

N

N∑
i=1

Ui(w
′)

∣∣∣∣∣ > s

K
ε} ≤ P

{
sup

‖w−w′‖2≤δ

∣∣∣∣∣ 1

N

N∑
i=1

(Ui(w)− Ui(w′))

∣∣∣∣∣ > s

K

ε

2

}

+ P

{∣∣∣∣∣ 1

N

N∑
i=1

Ui(w)

∣∣∣∣∣ > s

K

ε

2

}

≤ exp

(
−N

8

)
+ 2 exp

(
− s

K

Nε2

40

)
≤ 3 exp

(
− s

K

Nε2

40

)
,

for 0 < ε ≤ 1. Now apply union bound again,

P

{
sup

w∈Ej(s)

1

N
|
N∑
i=1

Ui(w)| > s

K
ε

}
≤ P

{
max
l

sup
||w−wl||2≤δ

1

N
|
N∑
i=1

Ui(w)| > s

K
ε

}

≤ 3

(
8K

εs
+ 1

)K
exp

(
− s

K

Nε2

40

)
.

(2) For w ∈ Fj(p), under the Bernoulli-Gaussian model:

E |ti[j](w)|m = E|Z|m
K−1∑
k=1

∑
|S|=k,j 6∈S

‖w[S]‖m2 × pk(1− p)K−k

≤ E|Z|mp
K−1∑
k=1

∑
|S|=k,j 6∈S

‖w[S]‖2 × pk−1(1− p)K−k

= E|Z|mp(1− p)
K−2∑
k=0

∑
|S|=k+1,j 6∈S

‖w[S]‖2 × pk(1− p)K−2−k

= E|Z|mp(1− p)|||w[−j]|||p = E|Z|mp(1− p)
≤ 2−m/2m!p(1− p).

Notice that we have used the fact that ‖w[S]‖2 ≤ ‖w[−j]‖2 ≤ |||w[−j]|||p = 1 for all S such
that j 6∈ S. For each fixed w, define

Vi(w) = ti[j](w)−
√

2

π
(1− p)p.

Now we have

E|Vi(w)|m ≤2mE|ti[j](w)|m ≤ 1

2
× 4p(1− p)×m!× (

√
2)m−2.

The remaining parts of the proof can be preceeded exactly as in the case of the s-sparse
model, noticing that we only need to replace s

K
by p, and K−s

K−1 by 1− p.
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A.4 Dual analysis of |||.|||s and |||.|||p
In this section, we will characterize the dual norms |||.|||∗s and |||.|||∗p by second order cone
programs (SOCP). The characterization is helpful for deriving bounds for these special norms
in the next section.

Lemma A.4. For i ∈ JMK, let Ai be an ki ×K with rank ki. For z ∈ RK, define

‖z‖A =
M∑
i=1

‖Aiz‖2.

Then the dual norm of ‖.‖A is

‖v‖∗A = inf

{
max
i
‖yi‖2,yi ∈ Rki ,

M∑
i=1

AT
i yi = v

}
.

Proof.

‖v‖∗A = sup
z 6=0

vTz

‖z‖A
= sup

{
vTz : ‖z‖A ≤ 1

}
.

Introducing Lagrange multiplier λ ≥ 0 for the inequality constraint, the above problem is
equivalent to the following

‖v‖∗A = sup
z

{
inf
λ≥0

{
vTz + λ(1− ‖z‖A)

}}
= sup

z

{
inf
λ≥0

{
vTz + λ(1−

M∑
i=1

‖Aiz‖2)
}}

.

The dual problem is

d = inf
λ≥0

{
sup
z

{
vTz + λ(1−

M∑
i=1

‖Aiz‖2)
}}

.

Notice that ‖Aiz‖2 = sup{zTAT
i ui : ‖ui‖2 ≤ 1}. Hence

d = inf
λ≥0

{
λ+ sup

z,u

{
zT (v − λ

M∑
i=1

AT
i ui) : ‖ui‖2 ≤ 1

}}
.

Since the vector z can be arbitrary, in order to have a finite value, we must have λ
∑M

i=1 AT
i ui =

v. Now let yi = λui, the problem becomes

d = inf
λ≥0

{
λ :

M∑
i=1

AT
i yi = v, ‖yi‖2 ≤ λ

}
.
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The above problem is exactly equivalent to

inf

{
max
i
‖yi‖2,yi ∈ Rki ,

M∑
i=1

AT
i yi = v

}
.

Finally, notice that the original problem is convex and strictly feasible. Thus Slater’s condi-
tion holds and the duality gap is zero. Hence

||v||∗A = inf

{
max
i
‖yi‖2,yi ∈ Rki ,

M∑
i=1

AT
i yi = v

}
.

The following corollary gives an alternative characterization of |||.|||s and |||.|||p:

Corollary A.1. Denote by yS ∈ R|S| a variable vector indexed by the set S (as opposed to
being a subvector of y). For z ∈ Rm, we have

|||z|||∗s = inf

max
|S|=s
‖yS‖2 : yS ∈ Rs,

∑
|S|=s

ET
SyS = z

 ,

and

|||z|||∗p = inf

max
S
‖yS‖2 : yS ∈ R|S|,

m−1∑
k=0

pbinom(k;m− 1, p)
∑
|S|=k+1

ET
SyS = z

 ,

where ES = I[S, ]/
(
m−1
|S|−1

)
and I ∈ Rm×m is the identity matrix.

Proof. This is simply a direct application of Lemma A.4.

Corollary A.2. The dual norms |||.|||∗s and |||.|||∗p can be computed via a Second Order Cone
Program (SOCP).

Proof. Introducing additional variable t ≥ 0, the problem of computing |||z|||∗s is equivalent
to the following formulation

inf
t,yS

t s.t. ‖yS‖2 ≤ t for all S such that |S| = s

and
∑
|S|=s

ET
SyS = z.

Notice that the above program is already in the standard form of SOCP. The case of |||.|||∗p
can be handled in a similar manner.
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A.5 Inequalities of |||.|||s and |||.|||p and their duals

As demonstrated in the last section, it is in general expensive to compute |||.|||∗s and |||.|||∗p. In
this section, we will derive sharp and easy-to-compute lower and upper bounds to approxi-
mate these quantities.

Lemma A.5. (Monotonicity of |||z|||s and |||z|||p) Let z ∈ Rm. |||z|||1 = ‖z‖1 and |||z|||m =
‖z‖2. For 1 ≤ l < k ≤ m, we have |||z|||l ≥ |||z|||k; similarly for 0 < p < q < 1, |||z|||p ≥ |||z|||q.
Furthermore, the equalities hold iff the vector z contains at most one non-zero entry.

Proof. By definition, we have

|||w|||1 =

∑
|S|=1 ‖w[S]‖2(

m−1
1−1

) = ‖w‖1.

Similarly,

|||w|||m =

∑
|S|=m ‖w[S]‖2(

m−1
m−1

) = ‖w‖2.

For 1 ≤ k ≤ m− 1, let S ′ be a subset of JmK such that |S ′| = k + 1. By triangle inequality∑
|S|=k,S⊂S′

‖z[S]‖2 ≥ k‖z[S ′]‖2,

where the equality holds iff ‖z[S ′]‖0 ≤ 1. Thus∑
|S′|=k+1

∑
|S|=k,S⊂S′

‖z[S]‖2 ≥ k
∑

|S′|=k+1

‖z[S ′]‖2,

and the equality holds iff ‖z‖0 ≤ 1. Notice that the LHS of the above inequality is simply
(m− k)

∑
|S|=k ‖z[S]‖2. Therefore

|||z|||k =

(
m− 1

k − 1

)−1 ∑
|S|=k

‖z[S]‖2 ≥
(
m− 1

k

)−1 ∑
|S|=k+1

‖z[S]‖2 = |||z|||k+1,

and so the inequality holds.
For |||.|||p, let Y be a random variable that follows the binomial distribution with param-

eters m − 1 and p. Observe that |||z|||p = E|||z|||Y+1, where the expectation is taken with
respect to Y . If ‖z‖0 > 1, |||z|||k is strictly decreasing in k by the first part. Hence, |||z|||p as
a function of p is also strictly decreasing on (0, 1). Indeed, it can be shown that

d

dp
|||z|||p =

m−1∑
k=0

pbinom(k;K − 1, p)
(
|||z|||k+1 − |||z|||k

)
< 0.



APPENDIX A. PROOFS OF PART II RESULTS 106

If ‖z‖0 ≤ 1, then |||z|||1 = |||z|||m and so d
dp
|||z|||p = 0. Therefore |||z|||p = |||z|||1 is a constant in

p. On the other hand, if |||z|||p = |||z|||q for 0 < p < q < 1, by the fact that d
dp
|||z|||p ≤ 0, we

must have d
dp
|||z|||p = 0 and so |||z|||k−1 = |||z|||k for all k ∈ JmK. Thus ‖z‖0 ≤ 1.

Corollary A.3. (Monotonicity of |||z|||∗s and |||z|||∗p) Let z ∈ Rm. |||z|||∗1 = ‖z‖∞ and |||z|||∗m =

‖z‖2. For 1 ≤ i < j ≤ m, we have |||z|||∗i ≤ |||z|||
∗
j ; similarly for 0 < p < q < 1, |||z|||∗p ≤ |||z|||

∗
q.

Furthermore, the equalities hold iff the vector z contains at most one non-zero entry.

Proof. This is a direct consequence of Lemma A.5 and the dual norm definition |||z|||∗ =

supy 6=0
zTy
|||y||| .

Lemma A.6. Let p ∈ (0, 1) and k = d(m− 1)p+ 1e. For any z ∈ Rm, we have

1. |||z|||p ≥ |||z|||k.

2. |||z|||∗p ≤ |||z|||
∗
k.

Proof. Define the function f with domain on [1,m] as follows: let f(1) = |||z|||1 = ‖z‖1; for
i ∈ Jm− 1K and a ∈ (i, i+ 1], define

f(a) = |||z|||i + (|||z|||i+1 − |||z|||i)(a− i).

It is clear that f is piecewise linear by construction. In addition, by Lemma A.10, f is also
convex. Notice that |||z|||p = E|||z|||Y+1 = Ef(Y + 1), where Y is a random variable from the
binomial distribution with parameters m− 1 and p. By Jensen’s inequality,

Ef(Y + 1) ≥ f(EY + 1) = f((m− 1)p+ 1).

Thus by Lemma A.5, |||z|||p ≥ |||z|||k for all k ≥ (m− 1)p+ 1. So the first part follows.

To upperbound |||z|||∗p, notice that if k ≥ (m− 1)p+ 1,

|||z|||∗p = sup
w 6=0

wTz

|||w|||p
≤ sup

w 6=0

wTz

|||w|||k
= |||z|||∗k.

For the following lemmas, the quantities τm(d, a) and Lm(d, k) are defined as in Definition
8.1.

Lemma A.7. (Approximating τm(d, a)) For d ∈ JmK and a ∈ (0,m]:

τm(d, a) ≤
√
da

m
.
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Proof. For k ∈ JmK, by Jensen’s inequality,

E
√
Lm(d, k) ≤

√
ELm(d, k) =

√
dk

m
.

Note that the last equality follows from the expectation of a hypergeometric random variable.
Now suppose a ∈ (k− 1, k]. By the above inequality and apply Jensen’s inequality one more
time, we have

τm(d, a) = (k − a)E
√
Lm(d, k − 1) + (1− (k − a))E

√
Lm(d, k)

≤ (k − a)

√
d(k − 1)

m
+ (1− (k − a))

√
dk

m
=

√
da

m
.

Lemma A.8. (Lower bounds for |||z|||∗s and |||z|||∗p) Let z ∈ Rm. We have

1. For s ∈ JmK,

|||z|||∗s ≥
s

m
max
T⊂JmK

‖z[T ]‖1
τm(|T |, s)

≥ max

(
‖z‖∞,

√
s

m
max
T⊂JmK

‖z[T ]‖1√
|T |

)
.

2. For p ∈ (0, 1),

|||z|||∗p ≥ p max
T⊂JmK

{( m∑
k=0

pbinom(k,m, p)τm(|T |, k)
)−1
‖z[T ]‖1

}

≥ p max
T⊂JmK

‖z[T ]‖1
τm(|T |, pm)

= max

(
‖z‖∞,

√
p max
T⊂JmK

‖z[T ]‖1√
|T |

)
.

Proof. (1) Note that by definition,

|||z|||∗s = sup
w

zTw

|||w|||s

Let d ∈ JmK and T ⊂ JmK such that |T | = d. Define w ∈ Rm such that w[i] = 1 for i ∈ T
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and w[i] = 0 for i ∈ T c. We have:

|||w|||s =

(
m− 1

s− 1

)−1 ∑
|S|=s

‖w[S]‖2 =

(
m− 1

s− 1

)−1 min(s,d)∑
l=max(0,s+d−m)

∑
|S|=s,|S∩T |=l

‖w[S]‖2

=

(
m− 1

s− 1

)−1 min(s,d)∑
l=max(0,s+d−m)

∑
|S|=s,|S∩T |=l

√
l

=

(
m− 1

s− 1

)−1 min(s,d)∑
l=max(0,s+d−m)

(
d

l

)(
m− d
s− l

)√
l

=
m

s
E
√
Lm(d, s) =

m

s
τm(d, s).

Thus for all d ∈ JmK and any subset T such that |T | = d, we have shown

|||z|||∗s ≥
s

m

‖z[T ]‖1
τm(d, s)

.

Note that if d = 1, E
√
Lm(d, s) = s

m
. Therefore

s

m

‖z[T ]‖1
τm(d, s)

≥ ‖z‖∞,

Moreover, by Lemma A.7,

τm(d, s) ≤
√
ds

m
.

Hence we have
s

m

‖z[T ]‖1
τm(d, s)

≥
√

s

m

‖z[T ]‖1√
d

,

and the first part of the claim follows.



APPENDIX A. PROOFS OF PART II RESULTS 109

(2) For the same w ∈ Rm defined previously,

|||w|||p =
m−1∑
k=0

pbinom(k,m− 1, p)|||w|||k+1

= m

m−1∑
k=0

pbinom(k,m− 1, p)
τm(d, k + 1)

k + 1

= m
m−1∑
k=0

(
m− 1

k

)
pk(1− p)m−k−1 1

k + 1
τm(d, k + 1)

=
1

p

m−1∑
k=0

(
m

k + 1

)
pk+1(1− p)m−(k+1)τm(d, k + 1)

=
1

p

m∑
k=0

(
m

k

)
pk(1− p)m−kτm(d, k).

Thus for all d ∈ JmK and any subset T such that |T | = d, we have shown

|||z|||∗p ≥ p
( m∑
k=0

pbinom(k,m, p)τm(d, k)
)−1
‖z[T ]‖1.

Next, we will show
m∑
k=0

pbinom(k,m, p)τm(d, k) ≤ τm(d, pm).

To this end, let us first notice that the LHS quantity is a binomial average of τm(d, k) with
respect to k. By construction, τm(d, .) is piecewise linear. Furthermore, τm(d, .) is also
concave by Lemma A.11. Now let Y be a random variable having the binomial distribution
with parameters m and p. By Jensen’s inequality,

m∑
k=0

pbinom(k,m, p)τm(d, k) = Eτm(d, Y ) ≤ τm(d,EY ) = τm(d,mp).

In particular, if d = 1, it is easy to see that τm(d,mp) = p. So

p

(
max

T⊂JmK,|T |=1

( m∑
k=0

pbinom(k,m, p)τm(|T |, k)
)−1
‖z[T ]‖1

)
≥ ‖z‖∞.

On the other hand, by Lemma A.7,

τm(d, pm) ≤
√

d

m

√
pm =

√
pd.
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Therefore

p
( m∑
k=0

pbinom(k,m, p)τm(d, k)
)−1
‖z[T ]‖1 ≥

√
p
‖z[T ]‖1√

d
,

and the proof is complete.

Lemma A.9. (Upper bounds for |||z|||∗s and |||z|||∗p) Let z ∈ Rm.

1. For s ∈ JmK,
|||z|||∗s ≤ max

|S|=s
‖z[S]‖2.

2. For p ∈ (0, 1),
|||z|||∗p ≤ max

|S|=k
‖z[S]‖2,

where k = dp(m− 1) + 1e.

Proof. To establish the upper bound, we will use the equivalent formulation of |||.|||∗s in
Corollary A.1. For S ⊂ JmK of size s, as in Corollary A.1, let ES = I[S, ]/

(
m−1
s−1

)
where

I ∈ Rm×m is the identity matrix. If we set yS = z[S], then
∑
|S|=s ET

SyS = z and so {yS} is
feasible. Therefore

|||z|||∗s ≤ max
|S|=s
‖z[S]‖2.

The upperbound of |||z|||∗p follows from the inequality |||z|||∗p ≤ |||z|||
∗
k for k = dp(m − 1) + 1e

by the second part of Lemma A.6.

Corollary A.4. (1-sparse vectors) Let z = (z, 0, ..., 0)T ∈ Rm. We have

|||z|||∗s = |||z|||∗p = |z|.

Proof. These are direct consequences of Lemma A.8 and Lemma A.9.

Corollary A.5. (All-constant vectors) Let z ∈ Rm be such that z[i] = z for all i ∈ JmK. We
have

1. |||z|||∗s =
√
s|z|.

2. |||z|||∗p = mp
(∑m

k=0 pbinom(k,m, p)
√
k
)−1
|z|.

Proof. First of all, note that L(m, k) = k and E
√
L(m, k) =

√
k. Thus by Lemma A.8 and

A.9, we have
|||z|||∗s =

√
s|z|.

So the first part of the claim is verified. Next, by Lemma A.8,

|||z|||∗p ≥ mp
( m∑
k=0

pbinom(k,m, p)
√
k
)−1
|z|.
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On the other hand, for S such that |S| = s, we can define

yS =
mp√
s

( m∑
k=0

pbinom(k,m, p)
√
k
)−1

(z, ..., z)T ∈ Rs,

For notation simplicity, let c = 1
mp

(∑m
k=0 pbinom(k,m, p)

√
k
)

. As in Corollary A.1, for

S ⊂ JmK, let ES = I[S, ]/
(
m−1
|S|−1

)
. For i ∈ JmK, we have

m−1∑
k=0

pbinom(k;m− 1, p)
∑
|S|=k+1

(ET
SyS)[i] = c−1

m−1∑
k=0

pbinom(k;m− 1, p)
1√
k + 1

= c−1
z

mp

m∑
k=0

pbinom(k;m, p)
√
k = z.

Thus by Corollary A.1,

|||z|||∗p ≤ max
S
‖yS‖2 = mp

( m∑
k=0

pbinom(k,m, p)
√
k
)−1
|z|,

and the proof is complete.

Lemma A.10. (Convexity of |||z|||k) Let z ∈ Rm, where m ≥ 3. For k ∈ Jm − 2K, we have
the following inequality

|||z|||k + |||z|||k+2 ≥ 2|||z|||k+1. (A.20)

Proof. We will first show that the claim is true for k = m − 2. Notice that in this case
|||z|||k+2 = |||z|||m = ‖z‖2. If ‖z‖2 = 0, the inequality (A.20) is trivially true. Now suppose
‖z‖2 > 0, dividing both sides of the inequality by ‖z‖2, we have(

m− 1

m− 3

)−1 ∑
|S|=m−2

‖z[S]‖2
‖z‖2

+ 1 ≥ 2

(
m− 1

m− 2

)−1 ∑
|S|=m−1

‖z[S]‖2
‖z‖2

.

Now let x = (x1, ..., xm)T ∈ Rm be such that xi = z[i]2/‖z‖22. It suffices to show

∑
|S|=m−2

(∑
i∈S

xi

)1/2

+
(m− 1)(m− 2)

2
≥ (m− 2)

m∑
i=1

√
1− xi, (A.21)

for all x ≥ 0 entry-wise such that
∑

i xi = 1. We will now prove the above inequality by
induction on m. First of all, notice that for the base case where m = 3, we need to show:

√
x1 +

√
x2 +

√
x3 + 1 ≥

√
1− x1 +

√
1− x2 +

√
1− x3,
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with the constraints xi ≥ 0 and x1 + x2 + x3 = 1. For fixed x3, let

f(x1) =
√
x1 +

√
1− x1 − x3 +

√
x3 + 1−

√
x1 + x3 −

√
1− x1 −

√
1− x3.

We will show that f(x1) is minimized at x1 = 0 or x1 = 1−x3. Suppose now x1 > 0. Taking
derivative with respect to x1:

f ′(x1) =
1

2
(

1
√
x1
− 1√

1− x1 − x3
− 1√

x1 + x3
+

1√
1− x1

).

Let l(x1) = 1√
x1
− 1√

x1+x3
. Note that f ′(x1) = 1

2
l(x1)− 1

2
l(1− x3 − x1). Now we have

l′(x1) =
1

2
(x1 + x3)

−3/2 − 1

2
x1
−3/2.

So l(x1) is decreasing on (0, 1−x3) and by symmetry the function l(1−x3−x1) is increasing
on (0, 1−x3). On the other hand, since limx1↓0+ l(x1) = +∞ and limx1↓0+ l(1−x3−x1) = −∞,
we know that f ′(x1) > 0 on (0, 1−x3

2
) and < 0 on (1−x3

2
, 1 − x3). Thus, the minimum of f

can only be attained at the boundaries, i.e. x1 = 0 or x1 = 1− x3. In either case we have

√
x1 +

√
x2 +

√
x3 + 1−

√
1− x1 −

√
1− x2 −

√
1− x3

≥
√
x2 +

√
x3 −

√
1− x2 −

√
1− x3 = 0,

as x2 + x3 = 1. So we establish (A.21) for m = 3.
Suppose (A.21) is also true for m = n − 1. For m = n, similar to the m = 3 case, for

fixed x3, ..., xn, define

f(x1) =
∑
|S|=n−2

(∑
i∈S

xi

)1/2

+
(n− 1)(n− 2)

2
− (n− 2)

n∑
i=1

√
1− xi,

subject to xi ≥ 0 and
∑

i xi = 1. Again, we will show f attains its minimum at either x1 = 0
or x1 = 1−

∑n
i=3 xi. Notice that∑

|S|=n−2

(∑
j∈S

xj

)1/2
=

∑
|S|=n−3,1,26∈S

(
x1 +

∑
j∈S

xj

)1/2
+

∑
|S|=n−4,1,26∈S

(
x1 + x2 +

∑
j∈S

xj

)1/2
+

∑
|S|=n−3,1,2 6∈S

(
x2 +

∑
j∈S

xj

)1/2
+
( n∑
j=3

xj

)1/2
=

n∑
i=3

(
x1 +

n∑
j=3

xj − xi
)1/2

+
∑

3≤i<j≤n

(1− xi − xj)1/2

+
n∑
i=3

(1− x1 − xi)1/2 +
( n∑
j=3

xj

)1/2
.
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In addition,

n∑
i=1

(1− xi)1/2 = (1− x1)1/2 +
(
x1 +

n∑
j=3

xj

)1/2
+

n∑
i=3

(1− xi)1/2.

Taking derivative with respect to x1,

f ′(x1) =
1

2

( n∑
i=3

(
x1 +

n∑
j=3

xj − xi
)−1/2

−
n∑
i=3

(1− x1 − xi)−1/2

+ (n− 2)(1− x1)−1/2 − (n− 2)
(
x1 +

n∑
i=3

xi

)−1/2)
.

Now let

l(x1) =
n∑
i=3

(
x1 +

n∑
j=3

xj − xi
)−1/2

− (n− 2)
(
x1 +

n∑
j=3

xj

)−1/2
.

So 2f ′(x1) = l(x1)− l(1−
∑n

i=3 xi − x1). Again

l′(x1) = −1

2

n∑
i=3

(
x1 +

n∑
j=3

xj − xi
)−3/2

+
n− 2

2

(
x1 +

n∑
j=3

xj

)−3/2
.

It is easy to see that l′(x1) < 0 and so l(x1) is decreasing on (0, 1 −
∑n

i=3 xi − x1). On the
other hand limx1↓0+ l(x1) = +∞. By symmetry f ′(x1) > 0 on

(
0, 1

2
(1 −

∑n
i=3 xi − x1)

)
and

< 0 on
(
0, 1

2
(1 −

∑n
i=3 xi − x1)

)
. So f attains its minimum at x1 = 0 or x1 = 1 −

∑n
i=3 xi.

Hence we have∑
|S|=n−2

(∑
i∈S

xi

)1/2
+

(n− 1)(n− 2)

2
− (n− 2)

n∑
i=1

(1− xi)1/2

≥
( ∑
|S|=n−3,16∈S

+
∑

|S|=n−2,16∈S

)(∑
j∈S

xj

)1/2
+

(n− 2)(n− 3)

2
− (n− 2)

n∑
i=2

(1− xi)1/2. (A.22)

By the induction assumption that (A.21) holds when m = n− 1, we have∑
|S|=n−3,16∈S

(∑
j∈S

xj

)1/2
+

(n− 2)(n− 3)

2
≥ (n− 3)

n∑
i=2

(1− xi)1/2.

Thus (A.22) is greater than or equal to

− (n− 2)(n− 3)

2
+

∑
|S|=n−2,16∈S

(∑
j∈S

xj

)1/2
+

(n− 1)(n− 2)

2
− (n− 2)−

n∑
i=2

(1− xi)1/2

=
∑

|S|=n−2,16∈S

(∑
j∈S

xj

)1/2
−

n∑
i=2

(1− xi)1/2 =
n∑
i=2

(1− xi)1/2 −
n∑
i=2

(1− xi)1/2 = 0.
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Thus we have verified the claim that (A.21) and hence (A.20) holds for k = m − 2 for all
m ≥ 3. To establish the case for general 1 ≤ k ≤ m− 2, we again perform induction on the
(m, k)-tuple. Note that the base case m = 3 and k = 1 has been previously proved. Suppose
(A.20) holds for m = n − 1 and 1 ≤ k ≤ n − 3. Now consider m = n and 1 ≤ k < n − 2.
Notice that

|||z|||k =
1

n− k

(
n− 1

k − 1

)−1 ∑
|T |=n−1

∑
|S|=k,S⊂T

‖z[S]‖2

=(n− 1)

(
n− 2

k − 1

)−1 ∑
|T |=n−1

∑
|S|=k,S⊂T

‖z[S]‖2

=(n− 1)
∑
|T |=n−1

|||z[T ]|||k.

By the induction assumption, for all T such that |T | = n− 1, we have:

|||z[T ]|||k + |||z[T ]|||k+2 ≥ 2|||z[T ]|||k+1.

Therefore

|||z|||k + |||z|||k+2 − 2|||z|||k+1 = (n− 1)
∑
|T |=n−1

(|||z[T ]|||k + |||z[T ]|||k+2 − 2|||z[T ]|||k+1) ≥ 0.

Thus the claim also holds for m = n and 1 ≤ k < n− 2, completing the proof.

A.6 Miscellaneous

Lemma A.11. (Concavity of E
√
Lm(d, k)) Let d ∈ JmK. For k ∈ Jm− 2K, we have

E
√
Lm(d, k) + E

√
Lm(d, k + 2) ≤ 2E

√
Lm(d, k + 1). (A.23)

where the geometric random variable Lm(d, k) is defined as in Definition 8.1.

Proof. Suppose we are now sampling without replacement from a pool of numbers with d
1’s and m − d 0’s. For i ∈ JmK, denote by Xi ∈ {0, 1} the i-th outcome. It is easy to see
that Lm(d, k) and

∑k
i=1Xi have the same distribution. To show (A.23), it suffices to prove

the following conditional expectation inequality:√
Lm(d, k) + E[

√
Lm(d, k + 2) | Lm(d, k)] ≤ 2E[

√
Lm(d, k + 1) | Lm(d, k)]

Note that the above inequality follows if for all 0 ≤ a ≤ min(d, k):

√
a+ E

√
a+Xk+1 +Xk+2 ≤ 2E

√
a+Xk+1



APPENDIX A. PROOFS OF PART II RESULTS 115

It is easy to see that

E
√
a+Xk+1 =

d− a
m− k

√
a+ 1 + (1− d− a

m− k
)
√
a.

E
√
a+Xk+1 +Xk+2 =

d− a
m− k

× d− a− 1

m− k − 1

√
a+ 2 + 2× d− a

m− k
× m− k − (d− a)

m− k − 1

√
a+ 1

+
m− k − (d− a)

m− k
× m− k − (d− a)− 1

m− k − 1

√
a.

By elementary algebra, it can be shown that

2E
√
a+Xk+1 −

√
a− E

√
a+Xk+1 +Xk+2

=
d− a
m− k

× d− a− 1

m− k − 1
× (2
√
a+ 1−

√
a+ 2−

√
a) ≥ 0,

The inequality follows since f(x) =
√
x is a concave function. Thus the proof is complete.

Lemma A.12. Let x(t) = (x1(t), ..., xm(t))T ∈ Rm be an m-dimensional function on [0, ε)
such that: (1) x1(0) = 1 and for all i ≥ 2, xi(0) = 0; (2) The derivative ẋi(t) exists and is
bounded for all t ∈ (0, ε). We have

lim
t↓0+

‖x(t)‖2 − ‖x(0)‖2
t

= lim
t↓0+

ẋ1(t).

Proof.

lim
t↓0+

‖x(t)‖2 − ‖x(0)‖2
t

= lim
t↓0+

(
∑m

i=1 x
2
i (t))

1/2 − 1

t

= lim
t↓0+

∑m
i=1 x

2
i (t)− 1

t
((

m∑
i=1

x2i (t))
1/2 + 1)−1

=
1

2
lim
t↓0+

∑m
i=1 x

2
i (t)− 1

t

=
1

2
(lim
t↓0+

x21(t)− 1

t
+

m∑
i=2

lim
t↓0+

x2i (t)

t
)

=
1

2
(lim
t↓0+

x1(t)− 1

t
(x1(t) + 1) +

m∑
i=2

lim
t↓0+

x2i (t)

t
)

= lim
t↓0+

x1(t)− 1

t
+

1

2

m∑
i=2

lim
t↓0+

x2i (t)

t
.

By mean value theorem, for each t ∈ (0, ε), there exists δt ∈ (0, t) such that x1(t) − 1 =
ẋ1(δt)t. Thus the first term simply becomes limt↓0+ ẋ1(t). By the same argument, for each
i ∈ {2, ...,m}, xi(t) = ẋi(δt)t for some δt ∈ (0, t). Since ẋi(t) is bounded, we have

lim
t↓0+

x2i (t)

t
= lim

t↓0+
ẋi(δt)

2t = 0.
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Therefore the claim is verified.

Lemma A.13. Let x(t) = (x1(t), ..., xm(t))T ∈ Rm be an m-dimensional function on [0, ε)
such that: (1) xi(0) = 0 for all i = 1, ...,m; (2) The derivative ẋi(t) exists for all t ∈ (0, ε).
We have

lim
t↓0+

‖x(t)‖2
t

= ‖ lim
t↓0+

ẋ(t)‖2.

Proof.

lim
t↓0+

‖x(t)‖2
t

= lim
t↓0+

(
m∑
i=1

(
xi(t)

t
)2)1/2 = (

m∑
i=1

(lim
t↓0+

xi(t)

t
)2)1/2 = ‖ lim

t↓0+
ẋ(t)‖2.

Lemma A.14. Let a = (a1, ..., am)T ∈ Rm where a1 6= 0 and x(t) = (x1(t), ..., xm(t))T ∈ Rm

be an m-dimensional function on [0, ε) such that: (1) x1(0) = 1 and for all i ≥ 2, xi(0) = 0;
(2) The derivative ẋi(t) exists and is bounded for all t ∈ (0, ε). We have

lim
t↓0+

|aTx(t)| − |a1|
t

= |a1| lim
t↓0+

ẋ1(t) + sgn(a1)
m∑
i=2

ai lim
t↓0+

ẋi(t).

Proof. Without loss of generality, assume a1 > 0. Since x1(0) = 1 and for all i ≥ 2, xi(0) = 0,
by continuity, for sufficiently small t, we have

|aTx(t)| − |a1|
t

=
|a1x1(t) +

∑m
i=2 aixi(t)| − a1
t

=
a1x1(t)− a1 +

∑m
i=2 aixi(t)

t
.

Therefore, by the same argument in the proof of Lemma A.12,

lim
t↓0+

|aTx(t)| − |a1|
t

= lim
t↓0+

a1x1(t)− a1
t

+ lim
t↓0+

m∑
i=2

aixi(t)

t

= a1 lim
t↓0+

ẋ1(t) +
m∑
i=2

ai lim
t↓0+

ẋi(t).

Lemma A.15. Let a = (a1, ..., am)T ∈ Rm and x(t) = (x1(t), ..., xm(t))T ∈ Rm be an m-
dimensional function on [0, ε) such that: (1) xi(0) = 0 for all i = 1, ...,m; (2) The derivative
ẋi(t) exists for all t ∈ (0, ε). We have

lim
t↓0+

|aTx(t)|
t

=

∣∣∣∣∣
m∑
i=1

ai lim
t↓0+

ẋi(t)

∣∣∣∣∣ .
Proof. The proof is similar to that of Lemma A.13.
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