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HYDRODYNAMIC PRESSURES ON DAMS DURING EARTHQUAKES

By

Anil K. Chopra

SYNOPSIS

In this report the intensity, distribution and frequency character-
istics of hydrodynamic pressures acting on dams during earthquake are
discussed. TFirst is presented a short review of previous work on this
subject. Then an analysis is made of the pressures generated by the
vertical as well as the horizontal components of the earthquake acceler-
ation. In this analysis it is observed that the dam face is vertical and
rigid, but the full compressibility effect of the water are considered.

The results of the study show that any significant discrepancies
exist between theory and the standard design procedures for tracing
hydrodynamic pressures due to earthquakes. It ig evident that further
congideration must be given to this factor in the design of dams in

selsmic regions.



HYDRODYNAMIC PRESSURES ON DAMS DURING EARTHWUAKES

Introduction

(1)

Westergaard's classical work' ‘has long influenced designers in
considering hydrodynamic forces on dams during earthquakes. Assumptions
involved in hisg solution are that
(i) the dam is infinitely long and has a vertical upstream face
(ii) the reservoir extends to infinity in the upstream direction

(iii) effect of surface waves is ignored, and

(iv) the dam is rigid.
Considering the compressibility of water, the problem was solved for a
harmonic ground motion in the horizontal direction perpendicular to the
dam axis. The hydrodynamic pressure on the dom is chown to be opposite in

phase to the ground acceleration, and thus is equivalent to the inertia

forces of a "virtual mass' moving with the dan, The magnitude of this mass

depends on frequency of the harmonioc und motion, Fourier spectra of

(2)

past earthquakes show significant ampiitudes over a wide range of

frequencies. Therefore the virtusl miss oone . would not be applicable in

determining hydrodynamic responses to sarthouske-type excitations.

Kotsube(j)has shown that Westergasyrd's szolution is valid only when

the period of excitation is greater than the fundamental resonance period
for water pressure.

()

Brahtz and Heilbron' “demonstrated that if the reservoir ig of finite

length (in the upstream direction) with the upstream end immovable, the
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(10,11)

-

allowed for the
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Fquations of Motion

Neglecting the viscosity effects of water and considering the movement

as limited to small amplitudesg, the motion of water is governed by the wave

equation
: 2
% 4 %0 w % (2)
2 i 2
ox” ay” 5 3¢
where ®(x,y,t) is a velocity potential such that
du _ od o3
5o @)
v 9 ;
x_ . (3)

ot Sy
where u,v are respectively the x and y components of displacement of water
in the coordinate system of Figure 1,
W is the unit weight of water,
g is the acceleration of gravity, and

k iz the bulk modulus for water,
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FIG. 1 COORDINATE SYSTEM



The dynamic water pressure p = p(x,y,t) is related to the gradients of

displacement:
N du _ Ov
p=-k 5‘;{'*3}'} (&)
In terms of the potential &,
W
P=3 & (5)

The velocity of pressure waves in water is
C:(.%_%>% (6)
W,

and hence the termvg% in Eq. 1 can be replaced by~i§a
' C



Response to Horizontal Ground Motion

We shall consider an infinitely long dam with a vertical upstream
face and the reservoir extending to infinity in the upstream direction.
The dam is considered rigid. Compressibility of water is considered.
Effect of surface waves is ignored.

Side Conditions

The boundary conditions for the problem are

(i) at the bottom, the velocity in vy direction is zero.

(ii) neglecting the effect of surface waves, the water pressure at
the surface is zero.

(iii) the bottom of the reservoir undergoes a prescribed horizontal
motion; because the daw is considered rigid this implies the
same prescribed moticn of the dam.

(iv) the motions become small at large distances upstream of the dam.

These physical conditions may be expressed as

%@; (x,0,t) = © (1)
g% (x,H,t) = 0 (8)
“6 (i’@‘ r N ’\ ne X"‘
3t (g;; (o,y,t) =V 7 (¢) (9)

A SR . . . : . .
where V "(t) is the prescribed time history of ground acceleration, the super-
script x denoting that the ground motion is in the direction of x-axis.

¢~ 0 a8 X w (10)



Considering the pressure p = p(x%,y,t) as the dynamic pressure which

is zero at t = O, the initial conditions are

(E)(Xfyﬁa) =0 (13—)
9% ,
3z (6y,0) =0 (12)

General Remarks on Method of Solution

e

Procedures sultable for solving Eg. Ltrary excitation

th the

[

véx(t) are: the use of a complex frequency response together w
Fourier Integral, and the use of an impulse response together with the
convolution integral. Thege two methods arve intimately related since
they are essentially Fourier transforms of each other.

The latter approach is usual y advantageous for arbitrary excitations
such as earthquakes. However, in this problem it is desirable to determine

the complex frequency response because it provides a direct comparison with

s Y

dgljc it also provides a complete

the results obtained by Westergaar
picture of the variation of response with excitation frequency. The unit
impulse response ig then obtained by determining the inverse Fourier

transform of the complex frequency response.

Complex Frequency Reszponse

It is a property of linear time invariant systems that when the excitation
is steady sbate simple harmonic motion (without beginning or end) then the
regponse is also steady state simple harmonic motion at the same frequency.

The amplitude and phase of the response generally depend on the frequency.
The frequency dependence of the amplitude and phase is described by the

complex frequency response H{w). This has the property that when the
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excitation is the real part of elﬂﬁ;then the response is the real part of
H(w) Jlwt
22 iwt

Equation 9 becomes “ggv(%g > (o,v,t) = 1. 10t (13)
The solution for velocity pgten%iai will be of the form

o(x,¥,8) = H (,y,0) et¢F (1)
where H?(x,y@uﬂ is the complex frequency response for &, Substituting
Eq. 14 in Eq. 1 and using Eq. 6 we get the Helmholtz equation in the

unknown function Hg:

2% 2.2 2
OHy MY , W ox _ (15)
NE 32 2

From Eq. 7 through 10 the boundary conditions on H are

aﬁg (X,Q,w) =0 (16)
Sy
Hg(x,ﬁ,m) = 0 (17)
BH; ( . , (18)
3; O,y sw) = “iﬁ

1w
Hg - 0 88 X —» (19)

Any expression of the form

£

2 2
Oy & . 2, W
Hé(X>Y,w) - e’ {Aﬁos A zg'y + BSin [O *+€j yJ (20)

is a solution of Eq. 15, for any choice of A, B and @. Applying



i1

the boundary condition 16 gives

o 2 :
< % e} "‘P“SE_B = {
{12

which can be satisfied for all x and w only if

B =0
Eg. 20 becomes
)
. X . §
Hy(6,y,0) = e A Cos C)‘;af-%my
o2

Imposing the bcumdéry condition 17

v
éjx A Cos [ + & H =0
A {:;’2

For non trivial solutions

: 2
Cos 2*%}{:0

R
Therefore, @ = 4 /) “- Yo, m=1,2,3.., (21)
C‘_
, o {om-L)w
where M, STEgo m=l, 2,3 ... (22)

Hence Hﬁ(xsyguﬁ may be represented asg an infinite series

% X2~»E§
Hy(x,y,w) = A exp[ e Cos X y (23)
13—:5

m

the sign in Eg. 21 having been chosen to satisfy Eg. 19. The constants

A will now be determined from the condition of Eg. 18,
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From Eq. 23

3Hx i’ 2 S
o (x,y,w) = - A M~y exp[ax m 2 |Cos Ay
= Lo Z e
m=1 C

From Eq. 18

S > 2 2 1
o (o,y,0) = ;ﬁ A P8 _Coshy = - (ok)
¥4 Lo 02
M=

Multiplying both sides of Eq. 24 by Cos Ay, and integrating over
n

(0,H) and utilizing the orthogonality property of cosine functions we get

An : Bﬂ_ (ﬂl)n-l
1wﬁ/&ni;gi (2n-1)n (25)
02

-

Substituting Eg. 25 in Eg. 23

0 2 -
Lo (. n-1 ) E
1%Xxjy’M) BT e (1) — exp| =x/ n 02 MVCOS AT (P6)
=] (2n-1) [a ?“&?
o<
C
From Bg. 1b
o6y t) =g e (-1) exp| -x'n - 2| cos ay (27)
W / “Jl C? )
n= o A
(°n-1) p.° c
n - =
/ (Vi
Therefore from Eq. 5 the dynawic pressure is given by
4 = S
bis : W dwt? ‘ ‘ 5 5.
vt R (-1)" : QX?[ ”ﬁd/xh - w?J Cos »_y (28)
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The complex frequency response for dynamic water pressure is, therefore,

‘ ooy (-1)7t
%
H (x W) = e / 29
NEIAL) e/ _ (29)
n= \ ~
(fn-1) [A 2 w2
n- "";;3
of
It is apparent from Eq. 29 that, in general H; is a complex valued
function.
Comparison with Wegtergaard's sgolution
Taking the real part of Eq. 28 and multiplying by -og gives the
regponse for véx = ~Ug cos wt, which is
n -1
8
x o] T nl. Ay
p (X3Yi¥t) - ﬂ“[z__v (1) COS n Si‘ﬁ (ﬁﬂt - %
n=1 o o
(2n-1) —x ‘”kn
o
i n
7 - ~N
+ Cos uﬁ;/ (-1) Cos M ¥ (30)
—
= 2 P
n=n, (2n-1) )"n -
. 2
where n = minimum value of n such that
- 2
A < = &%
n Ga’,
The pressure on the dam is given by Eg. 30 for x = o,
- Boi s 0=l
_ e -k (1) Cos a ¥y
% Ly b ) :
v (o,y,t) = - m{"f[ Sin wt °
ok 2
= ) .
n=1 (2{1«1)/\/-«;: -2 7
2 i
C
0 s =1 ALY
A ke N
+ Cos wtéi} (=1) Cos "n (31)
n=n

/ QMMZZ""
o (on-1) hn - E§



Eg. 31 is directly comparable with Westergaard's solution, which using

the above notation is

p Nn-1 .
, ® -1) Cos M y
, I o 5
pxiojyaf;) = - ﬁ‘/j Cos wh e (32)
\ i FA D0
1 (2n-1) /X —w
no
! s
5 2z
It is apparent that both solutions are identical if Xﬂ”>)ﬂr In Bg. 32,
1 2

each term of the series represents pressure either with no phase shift or
. O . .
a phase shift of 180" relative to the ground acceleration.
From Eq. 30 the resonant periods T for the dynamic water pressure are given

by the condition

by = m ono= 1,23
or, (en-1)y = W
2H h
or, 2n . UH 33)
w (2n-1)C (33

Therefore the resonant periods Tn are

Ly :
no= 1,2,3, ...

Thus it is clear that Westergasrd's solution is valid only if the period

of excitation is greater than the first resonant period for water pressure.
. .. C e 3)

This has also been established by Kotsubo(gi,

Unit Impulge Response

The response to ground motion
cax
v () = 8(t)
() = 8
where 5(t) is the Dirac delta function, is called the unit impulse response.

The complex frequency response is the Fourier transform of the unit impulse
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response. The Fourier Integral representation of the unit impulse response

x ) .
h'(x,y,t) is therefore

, '”“ JL )
hx(xﬂygt) = L JP Hg(X,y}m) ejw auw (3h)

where the superscript x denotes response to a horizontal ground motion,

(14)

From Tables of Integral Transforms'

2

- 2
A o)
Inverse Fourier Transform of exp x/ & o

o + <

- Io 00, flee P - x%) , t>

where Jo represents the Besgsel Function of first kind of order zero,

I e

X

The inverse Fourier transform of Hé {(x,y,w) (Bq. 29) i.e. the unit
impulse response (Eq. 34) is given by
© t <X
N (,y, 1) = o ’ c
bue NT ()Pt Cos Ay J_(n (ct)®-x7), t -2 (35)
g N 2n-1
n=

In particular the unit impulse response for the dynamic water pressure

at face of the dam is
fes)
Ry 4 - i ‘”l
%, L e O (-1 . NP
o) = ZE) L fH— Ay 0,00 e > (36)

n=i

Kotsubo obtained the above result by the Laplace Transformtechnique(B)°
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It is noted that although water was considered as an ideal fluid in
which case there is no energy dissipating mechanism, the unit impulse response
(Eq. 36) does show a decay with time. This decay of response is directly
associated with the fact that the complex frequency response function has an
imaginary part for certain range of frequencies. Physically it represents
the loss of energy in waves moving away from the dam.

Pressure Response to Arbitrary Ground Motion

The dynamic water pressure on face of dam due to an arbitrary excitation
[ S . . . co s . : -
Vg (t) can be obtained from the unit impulse response (Eq. 36) by the super-

position or convolution integral. Thus,

o t
pX(ogys‘t) = Eﬂq !ml)nml Cos )\nﬁy f {;gx('f) Jo [ch(t”T)] dr (37}
[¢]

ng
2n=-1

¢

n=],
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Resgponse to Vertical Ground Motion

The assumptions and limitations are as before except that the effect
of surface waves is now included.

Side Conditions

Without going into details, the boundary conditions when the boundary
v = 0 is subjected to a known excitation ng(tj (the superscript y denoting

ground motion in direction of y axis) are

b3 oy -
- 5 %ﬂ (x,0,t) =7 Y (¢) (38)
t ¥
3% ob N e
— (x,H,t)+ g (x,H,t) =0 (39)
3" oY
)
2 (o,y,8) =0 (0)
® is pounded as X — o (41)

Eq. 39 represents a wave condition at the free surface of water.

If the weve motion is ignored, the condition becomes

99 (x.m,%) =0 (42)
R Guit

We shall investigate into the errvors involved by ignoring the existence
of surface waves.
The initial conditions are given by Eq. 11 and 12.

Complex Frequency Response

Let VY =1 ;: L

Eq. 28 becomes

"2 (L) o0y = &M (13)



solution for velocity potential

§
W

Wt (!

The problem becomes cne of selving the Helmholtz eg. (15) in the unknown

function ﬁz subject to the boundary conditions

Ay P
5 (x,0,w) = -1 (hs)

ETS e
IH -
ex—  (0,H,0) =B (x,H,0) = 0 (46)

3
.
I

(l7)

[
o

(O s s “*})

Qf is bounded as ¥ —s @ {MB}

Any expression of the form

2“1
854 , 2w
Hg(x,y5(®;u = (A g v + B Sin =y

is a soclution of Eg. 15.
Applying boundary condition 47 we get o = O,

7 ] » y P o A &} A 5 L
Therefore, H@(xay,wj = A Cos gﬁ + B S*n»%i (L9)

Applying now the boundary conditions at y = O (Eg., L5) and v = H
(Eq. 46) leads to two eguations in the unknown constants; solving for

A and B and substituting in Eg. Lo gives

g d Ui{;’ 4 e W
¢ ac %es ¢ (Hy) - sin 7 (H-y) (50)

V¢ WY L C
H"b (Xayaw) - = 5] ”
{ iwh i wH YE
"g"“’: Sin st + Cos w
i C C

From Eq. 50, 4l and 5 one directly obtains the complex frequency response

for water pressure,

Sin 2 (H-y) - %E/ Cos %m (H-y)

wg

(51)

Hg;(x,sya w) =
- WH

W g s
Cog = g Fw Sin o
b CwC C

It may be noted that the solution is independent of x-coordinate.
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Effect of Wave Motion at the Free Surface

The solution when wave motion at the free surface ig ignored ig given

by Ba. 50 corresponding to g = O. Therefore

. WC .
fig(‘{ﬁ;graw)—:« ,r;g (52

Clearly the difference in the two solutions (Equaticns 51 and 52) depend
on the magnitude of quantity ﬁ%
Fourier Spectra and Response Spectra for gtrong motion records of
past earthquekes’ seem to indicate that frequencies of most of the
significant harmonic components lie in the range 1< & < 120 radians per
second. Thusﬁythe largest value of the above quantity is about 6.82 x 10@3
(corresp@nding to w = 1), However, very low frequency harmonics make very
little contribution to the hydrodynamic pressure response in case of typical
reservoir depths cncountered in practice., This is obvious because resonant
frequencies for the rescrvoir are rather high (e.g. fundamental resonant
frequency for 300 ft, deep reservoir is 2L.72 radians per second). Thus
the value of the quantity’%§~ for harmonics of significance is considerably
less than 6.82 x lOKBU

From these arguments without going into any detailed calculations it
can be concluded that the terms in Eg. 51 involving quantity(;q%§>maybe

)

dropped without introducing appreciable errors. Thus, the complex frequency

response given by Egq. 52 ig sufficiently accurate.

Unit Impulse Response

The unit impulse response is given by the inverse Fourier Transform

(14)

of the complex frequency response, From Tables of Integral Transforms
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Sin % (H-v)

ral
the Inverse Fourier transform of - - H T 1s given ty the function
Cos ol
ko]
<~ s o osn=1 o 1 net
~ w | PN 1t 1-11,'&?\\ Sin P % e
fjﬂ L :l_“ ) o X [(ﬂ"‘é’ j ( S 7 (ﬂ 2} H
7 i 1 ; L .
nzi ne-s

The unit impulse response is therefore

gt

Vi v 1) HWC 1 Cos Ay Sin ) et (53)
. )z e s oy &
SR AL = Zn=1 " n

It is apparent from the unit impulse resgponse funchion

does not decay in this case; the complex frequency response (Eg. 52)

is a real valued function and the system is truly undamped.

Pressure Response to Arbitrary Ground Motion

The dynamic water pressure on face of the dam due to an arbitrar
¥ g

known excitation ng(t) can be obtained from the unit impulse resgponse

(Eq. 53) vy the convolution integral. Thus

o
. e

oY (0,y,t) e

t
X y Fal . »y - \ - . . N .
) k/ Vg (T) Sin Xﬁc(t ()| dmT

o

(54)



Special Case of Incompressible Fluid

Horizontal Ground Motion

When compressibility of water is considered, the complex frequency

response is given by Equation 29:

n=-1 x
® (-1)
H(0,y,w) = b : Cos Ay (29)
P g 5 5 n
n=1 (2n-1) /X "= @
02
If water is taken as incompressible, C = = and Eq. 29 becomes
25
~1
C8wr T (-1)°
H;(O:Y;&ﬁ = = P (-1) Cos th (55)

8 (2n-1)"

The complex frequency response for total lateral force F is given by

H o
ﬁx_,d/‘ﬁ X(0,y,0)dy = 16WH- 2: 1 (56)
- p LRV | - 3
° it &
n=1

(anl)3

2
Let the total hydrcstatic force on the dam be denoted by Fo, Fo = WH /2

Then
¥ 32 ﬁf 1 (57)

The complex frequency responses (Eq. 55 through 57) are now independent
of the excitation frequency ® and the dynamic character of the
response phenomenon is completely suppressed. It may be noted that

Eguation 55 also corresponds to the solution for finite C and @ = O.



22

By the Fourier Integral Theorem, ground acceleration Véx(t) may be

expressed as

oG
2o ur 1 X iwt
£) = e w :
P50 = 2 [ v e e (8)
Zn
s .
where v *(w) = / V) e T at (59)

o

g being the duration of the ground motion.

The hydrodynamic response to ground motion %gx(t) is given by
o0

X 1 % -, X iwt . .
Powit)z g5 [ B 0,5,0) v X(0) M an (60)

o DH3

Introducing Eq. 55 into Eq. 60
on

-1 ‘ o
.\ SwH -1)" 1 o X 0t
PX(OsY;t)z 5 £~w2w~§~ Ces th 5% Vg (®) e dw
7T g n-_fl (anl) = O3 -
= 1
BwH -1)%" v x

or p(o,y,t) = ["’“‘2”” Z LWLMTW Cog kny] Vg (t) (61)

T g n=l (21’1”1)

It is apparent that at any time t, the hydrodynamic pressures depend only
on the value of ground acceleration at that instant.

Total Lateral Force may be obtained by integrating Eg. 61

px(t)=[ 16WH- 1 ] ¥ %(4)

ﬁBg nel (2nml)3 &
on dio"‘x
and P(t) _ [ 3 1 ];}*’x(t) Ve ) (108s5) (62)
Fo n3g n=l (anl)3 & &

If we were only interested in total lateral force Eq. 62 could have been

derived directly from Eq. 57.
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Vertical Ground Motion

When compressibility of water is considered the complex frequency

response for waler pressure is given by Eg. 52.

sV
Sin = (H= S
0V () = 0T (H-y) (52)
Jp XY e o
) Cos T

If water is taken as incompressible then Eq. 52 becomes

74 . W
i Y (,y,0) = 31 sin 3 (H-y).
1Y ’ g W 0
c = Cos wi
¢ C
= W
- g (H"y) (63)

The complex frequency response is now independent of w, and represents
a linear variation of pressures--from zerc at top to gﬁ at the base.

The corresponding expression for total lateral force Fy}is given by

H
. W

P = ¥/ prfogysm) = 55

o
4
and Moo 1 6l
7 3 (64)

Response to arbitrary ground motion ?gy(t) can be obtained through
the frequency domain using the Fourier Integral Theorem and is
W s o
py(09y9t>x - (H‘“Y> v y(t) (65>
g g
It is apparent that at any time t, the hydrodynamic pressures depend only
on the value of ground acceleration at that instant,

The total lateral force PY(t) is given by

B 1 gy (66)

Fo
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Complex Frequency Regponse for Total Lateral Force

Integrating Eq. 29 and 52 over the height, the complex frequency

response for total lateral force on the dam may be expressed asg

2
¥l - 248 (67)
3 L
TE p=1
. 0
(q) = i;;!i L lCes (8)

where () “‘@/aﬁ; aﬁ:mﬁc/RHﬁ being the fundamental resonant frequency for
reservolr of depth H. Superscripts x and y dencte response to horizontal
and vertical ground motions, respectively.

Normalizing Eq. 67 and 68 with respect to the hydrostatic force

2
Fo = Eg:
x &
Fro) . 32 . .
Fo R /. = (69)
& =1 ; =
. (23«;&1)2 (Qnmjl)zmg’zg
y 1-Cos L%
o). 8 1 T EF (70)
Fo 2 2 T
w8 i Cos 5"

~

Figure 2 shows a graphical plot of Eg. 69 and 70.
Pollowing discussion is pertinent to the results presented in Figure £,
(i) The amplitudes of response become large as ( approaches 1, 3, 5,
7, 9, etc. (values corresponding to resonance ), Regonénce is more pronounced
and "sharp” for lower wvalues of Q. For horizontal excitation, there is
almost no increasge in response for values of (1 even very close to 5, 7,
9, 11, etc. This may also be concluded directly from the structure of

Equations 69 and 70.
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(ii) For g« 3 the total force due to vertical ground motion is about
as large as that due to horizontal ground motion; for frequencies such
that O is close to values 1 and 3 the response to vertical ground motion
is larger.

(iii) Both responses diminish rapidly as $ becomes large. However

the effects of vertical ground moticn for 2<3 are not quite as small
as indicated by the total pressure. This is evident from the characteristics
of Equation 5@axfo£ values of Q<2 the pressure is of same sign over the
height; the pressure changes sign once if 2< <k, The number of times
that the sign of pressure reverses increases ag () becomes larger, and the
total force is small because the positive and negative areas partially
cancel each other.

(iv) 1If water is taken as incompressible, the solutions are given by
Eq. 57 and 6k. They correspond to the limit of general (compressible)

golutions as Q approaches zero,

0]

Although the horizontal axis in Figure 2 degenerates to a point when

water 1s considered incompressible (because then C is infinite)ﬁ the corres-
ponding solutions are sgowm,by'hﬁfizonﬁal lines to indicate that they are
independent of excitation frequency., It is apparent thaﬁ‘the assumption

of incompressible water changes completely the vesponse characteristics,

In earthquake type excitation, frequencies are distributed over a wide range

and hence this assumption may lead to large errors. This will be discussed

further in connection with computed vesponses for El Centro 1940 earthquake.



Numerical Evaluation of Barthquake Responses

The determination of hydrodynamic pressures generated on a dam due
to a prescribed earthquake involveg the numerical evaluation of Equations
37 and 54, The functions ﬁéX(t} and %éy(t) represent respectively the
acceleration time history of a horizontal and the vertical component of the
ground motion,

The form of Eq. 37 and 54 is not suitable for numerical evaluation
because the upper limit of the integrals, t, appears in the integrands.
If we use the expression in this form it would be necessary to start from
?’z O in evaluating the integrals for every new value of t. TFor Eg. 54
this difficulty can be surmounted by making use of the addition theorem for

trigonometric functions

- Cos » ot 8in A C7
n n

5 't - W\ LR ¥
Sln\{)xna(t r) I Sin ) Ct Cos 1 Cy

Thus Eq. 54 becomes

i ot , ’ e Vo,
?y(dﬁygt}fz iyg , gnii Cos knY”{ S5in tht‘!p vg (r) Cos XnCT dr
| zijl +
=Cos A Ct f ¥ V(%) sin  C1 dr\ (71)
n g n T f

O
In this form the value of the integral at time t-At can be utilized to
obtain its value at time t,
Besgsel functions do not possesg addition theorems in the strict sense
of the term i.e. it is not possible to express Jo(Z +z) as an algebraic

function of Jo(Z) and Joiz)(15)q
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The following series representation, however, exists:

i

-~ o0
2 2 R ‘ . P
. 7 + AN 7. Cos I . . oa 70
Jo {A/A z 2z, Co @}WL E. Jm(z) Jm(z) Cos me (72)
m=0

where E = {

O
O

N
=
e

Thus, there seem to be two alternatives available to evaluate the integrals
in Equation 37--(i) each time an increment is made in t, all previcus

values are discarded and the integration process is repeated starting from

fede

series

0w
©

T =0, and (ii) Eq. 72 used to express JO‘%hC<tw'ﬂ a n

products of Bessel functions, and value of the integral for time t- At

used in obtaining its value at time +,

However, the second approach seems to offer no advantage over the
first, which is more direct, because the evaluation of an infinite series
of products of Bessel functions for each value of the argument (thﬁ is an
impractically long computation process.

' The first approach was therefore chosen; Simpson's rule with parabolic
interpolation was used to evaluate all integrals. A computer program was

developed to evaluate Eq. 37 and 71.
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Hydrodynamic Response to El Centro, 1940 Earthquake

Figure 3 shows two components of the strong motion record obtained
during the El Centro, 1940 earthguake. The peak ground acceleration in
the North-South direction is 0.32g, and is 0.28g in the vertical direction
(g is the acceleration due to gravity).

The physical constants chosen for water were: unit weight W = 62.5 pcf,
velocity of pressure waves = L4720 fps.

Three reservoir depths were choser--100, 300, and 600 feet. These
cover the usual range of inferest. The pressures were obtained by numerical
integration of Eq. 37 and 51. At any instant of time the pressures
may be integrated over the depth to obtain the total lateral force; the
base-overturning moment can alsc be obtained by an integration over the
depth. These gquantities have been normalized with respect toc the correspond-
ing hydrostatic quantities and are plotted in Figures 4 through 6.

Figure 4 shows the time higtory of normalized lateral force and
normalizedbase-overturning moment for a 100 ft. deep reservoir, the
ground motion being the North-South component of El Centro, 1940 earthquake.
The maximum absclute value of normalized lateral force ig O.44 and the
maximum normalized overturning moment is 0.50. The variation of response
with time is quite similar to the time history of ground motion itself.

This is so because the frequencies of the 100 ft. deep reservoir are quite
high (aﬁ = 7h.1 rads per sec) and the system responds almost like a rigid

body during the earthqguake.
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The responses to vertical ground motion show a large build-up of forces
oscillating at almost the first natural frequency wl( 4.1 rads per sec or
11.8 cps). TForces as large as three times hydrostatic forces cccur becsuse
(i) there is no dissipation of energy in the system and (ii) the vertical
ground motion used has strong high frequency components.

Figure 5 shows time history of hydrodynamic forces on a dam storing
a 300 ft. deep reservoir, The response to vertical ground motion shows
predominant frequencies of 4 cps. and 12 cps. The regponse continues to
build-up even after 8 secs. of the earthquake.

Time history of response to horizontal ground motion is now significantly
different from the ground motion itself. The peak values of normalized
lateral force and overturning moment are 0.57 and 0,64 regpectively.

Figure 6 shows time history of hydrodynamic forces on a dam gtoring
a 600 ft. deep reservoir. The normalized lateral force due to vertical
ground motion is varying with a frequency of almost 2 cps., the amplitude
being about 0.25 for a major part of the response.

The peak values of normalized lateral force and overburning moment
due to horizontal ground motion are respectively 0.71 and 0.80. 'The ﬁime
histdry*of response, is as shown in Figure 6a, and has predominant frequencies
close to 2 cps.

If water were considered incompressible, the total lateral forces would
vary with time in exactly the same manner as the ground accelerations
themselves (Eq. 62 and 66). For horizontal ground motion, the normalized

. is the ground

lateral force at any time would be 10085§%§(Eq0 62) where g

acceleration at that instant of time. Thus the maximum normsalized lateral
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force due to N-S component of E1 Centro (1940) earthquake will be 0,35,
If ag is the vertical ground acceleration at any time, the normalized
lateral force on the dam at that instant of time is & (Bg. 66). Thus the
maximum value of the normalized lateral force due to the vertical com-
ponegt of E1 Centro (19&0) earthquake iz 0,28, Comparison of results
for incompressible water with those obtained by considering compress-
ibility effects is presenﬁed in Table I, where the maximum absoclute
value of normalized lateral force due to T1 Centro (1940) earthquake

|

(N-S component) are listed.

Table I

Comparison of Peak Responses

Reservoir Compressibility Compressibility Percent
Depth Considered ‘ Tenored Error
100 ft. ORI 0,35 20
300 ft. 0.57 0.35 39
600 ft, 0.71 0.35 51

The large errors involved if compressibility of water is ignored
are apparent from Table I. If peak responses are the only quantities
of concern, the above comparison is indicative of the order of errors
involved in an incompressible solution. If one were interested in the
complete time-history of responses, discussion and estimation of errvors
is more complicated. For all reservoir depths, neglecting compressibility
leads to response time=history identical to ground acceleration time history.

This result seems reasonable for reservoir depths less than 100 ft. However,
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there ig very little similarity between "exact' response (considering
compressibility effects) and ground acceleration histories for larger
reservoir depths. The frequency characteristics of hydrodynamic response,
ignoring compressibility of walter are completely different than the

"exact" solution; their effects on a dam would therefore be guite different.
Significant errors are also introduced in responses to vertical ground

motion by ignoring compressibility of water.
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T

Comparison with Present Design Practice

16,17), o C .
(16, {)1n,evaluat1ng hydrodynamic forces
. . ‘ : (oy . .. ,, .

on dams is based on Zangar's work ~’, in which water was considered as

(1)

may also be used to determine

The present design practice

incompressible, Westergaard's results
hydrodynamic ferces(18319)n Ag shown in this work, ignoring compressibility
effects leads to rather large errors in hydrodynamic response and therefore
it is unsatisfactory to use results based on this assumption, Westergaard's
work recognizes compressibility effects but is restricted to harmonic

ground motions, with period greater than the first resonant periocd for

water pressure. As is well known, strong earthguake motions are random in
character and contain a wide range of frequency components. Thus, results
for harmonic ground motions cannot be appliied with confidence for designing
against strong earthquake motions.

Magnitudes of hydrodynamic forces typically considered in design are
of the order of 10 percent of the hydrostatic forces. These are then
applied on the dam as static forces for purposes of stress and stability
analysis.

Results presented in this work show that much larger hydrodynamic
forces may develop during strong earthquakes, e.g. the maximum value of
total hydrodynamic force on a dam due to El Centro, 1940 earthquake (North-
South component ) for a 600 feet deep regervolr is about 71 percent of the
total hydrostatic force. From the time-history of responses presented

here, i1t is apparent that these large hydrodynamic forcesg act on the dam
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for short durations of time and that the forces reverse in direction mary
times during an earthquake. Considering the maximum force developed during
an earthquake as a static force for purposes of stress and stability analysis
would obviously lead to extremely conservative designs.

It should be noted that these computed forces are only approximations
to the actual forces that may develop, because the analysis has not accounted
for the flexibility of the dam. However, on the basis of these results it
seems necessary to recognize the possibility of large hydrodynamic forces

being developed for short durations of time.
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Conclusions

Expressions have been developed for determining the complete distribution
of hydrodynamic pressures over the height of the dam at any time during
arbitrary vertical and horizontal ground motions. This investigation has
led to the following conclusions:

L. The complex frequency response to horizontal ground motion is a

valued function for excitation periods greater than the first resonant

compl

essure. Thus, Westergaard's solution and the concept of a

L |
ERGI]

"virtual mass” to represent hydrodynamic effects is not valid in this range
of excitation periods.

2. Although water is considered as an ideal fluid, the unit impulse
response to horizontal ground motion decays with time. This decay of respong
is directly associated with energy in waves moving away from the dam.

3. The response to vertical ground motion is independent of the horizontal
coordinate and depends only on the depth of reservoir. The complex frequency
response is real valued for all frequencies.

. Errors that may be introduced in regponses to vertical ground
motion by ignoring surface waves are quite small. Complex frequency responses
indicate that effects of vertical ground motion which are customarily ignored
are guite gignificant.

2. The unit impulse response to vertical ground motion does not' decay

with time, thus the system is truly undamped in this case.
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6. Complex frequency responses neglecting water compressibility
effects are independent of excitation frequency, Bignificant errors are
involved in this sclution over the entire frequency range; the error
approaches zero as the excitation frequency approaches zero.

7. The peak values asg we;l as the frequency characteristics of

:

hydrodynamic response to arbitrary ground motions, dgnoring compressibilit
v Y g s 2 -

i

of water are completely different compared to the "exact’ solution {consider-
ing compressibility effects); their effects on a dam would therefore be quite
different.

8. Hydrodynamic forces considered in present design practice are
based elther on Zangar's results which ignore compressibility of water or
on Westergaard's work which considers only a harmonic ground motion. There
are serious deficiencies in both of these approaches,

9. Results presented indicate that forces mich larger than presently
considered for design purposes could develope during earthquakes. However,
for economical designs it may be important to recognize that these large
forces are developed usually for short durations of ime and also that they

may be altered by the flexit

ility of the dam.

The responses to vertical ground motion which have been determined
here are not completely satisfactory because the mathemetical model considered
dees not allow for any energy dissipation in the system. Even the small

amounts of energy which would be dissipated in the physical system may reduce
the responses considerably. In addition, if response predicted by the type
of analysis presented here is large, effects of interaction between dam and

reservolr and between reservoir and foundatiocn may be significant enough to

alter the response considerably.
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H(w)
b

Constant
Constant

Velocity of pressure waves of water.
Percent of error,

Base of natural logarithum,
Total hydrostatic force.

Total lateral force in complex frequency response.
Gravity acceleration.

Depth of the reservoir.

Complex frequency response for ¢,
Complex frequency response,

Unit impulse response.

;vﬁjf

Bessel Function of first kind.
Bulk modulus of water.

Length of the reservoir.
Summation index.

Summation index.

Minimum value of n.

Total lateral force.

Dynamic water pressure.

Duration of the ground motion.

Period of harmonic ground motion

Ll



Tn Resonant period.

t Time

u x~component of displacement of water.
&éy Horizontal ground acceleration,

agy Vertical ground acceleration.

v y-component of displacement of water.

W Unit!weighﬁ of water.

be Horgzontal cb@rdin&te position,

v Vertical coordinate position.

Cg Ground acceleration at any instant of time.
8(t) Dirac Delta Function

)y Constant defined by Eq. (22)

] Velocity potential.

@ ==
1

o) Circular freguency.
n(

W
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