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Thermohaline mixing in the small&elet number
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ISIMA 2010
- The International Summer Institute for Modeling in Asthggics -

Abstract :  Thermohaline mixing is the mechanism that governs the [Epbteric
compostion of low- and intermediate-mass stars, and exmglbservations in these
stars. It is important to study this instability with the mgdynamic theory, and to
derive prescriptions for the turbulent mixing that can belemented in stellar codes.
In this project, we discuss the formation of salt fingers @bl state, for different per-
turbations, when we use the small Péclet number approximathe dominant mode
of thermohaline mixing is different from the most unstableda.

1 Introduction

Thermohaline mixing is well known in Oceans on Earth. In fdbe term thermo-

haline mixing refers to the part of the large-scale oceatutition that is driven by

global density gradients created by surface heat and cdiervilaxes. The adjective
thermohaline derives from thermo- referring to temperaturd -haline referring to salt
content, factors which together determine the density @fxger. In the polar regions
(Arctic Ocean and Weddell Sea in particular), sea waterstimto ice. Upon solidi-

fying, the salts are rejected because the ice does not @téetirem into its structure:
liquid water is enriched in salts and the density increastsch begins a dive to the
seabed and, eventually, large scale convection. So, thimgnis a double diffusive

instability with two components : one stabilizing (tempera) diffuses faster than the
other (Salt) whose stratification is unstable.

This instability has been already discussed in the liteeatthe first discussion by
Stern (1960) ; Ulrich (1972) was the first to derive a presmipfor this mehcanism
; Schmitt (1979) ; Kippenhahn et al. (1980) extended thecHlsi prescription for the
non-perfect gas, and Denissenkov (2010). In addition,erdboratory, the instability
takes the form of salt fingers (Krishnamurti 2003). Recetitigrmohaline mixing has
been identified as the mechanism that governs the photasgloenposition of low-
and intermediate mass stars (Charbonnel & Zahn 2007). Ih stars, this double
diffusive instability is induced by the inversion of mean letular weight, created by
the reactior’He(*He, 2p)*He on the external wing of the hydrgen burning shell. In
fact, this mixing can explain observed abundances in thgigt stars (Charbonnel &
Lagarde 2010).

In addition, this instability appears in various other aghysical situations, for
instance wherfHe or C-rich material is deposited at the surface of a star in asma



transferring binary (Stothers & Simon 1969; Stancliffe t2907), and when a star
accretes heavy elements during planet formation (Vau2Gid).

Soitis very important to study this instability with the lnpdynamic theory, and to
derive prescriptions for the turbulent mixing that can belemented in stellar codes.
As compared to oceans, a specificity of stellar fluid is ity \vegh thermal diffusivity.
This introduces scale separation effects that are diffttaiftdle in numerical simula-
tions. Here, we shall use the small-Pclet-approximatiothefBoussinesq equations
(Lignires 1999) that avoids this numerical difficulty buillstnables to study the dy-
namics of an highly thermally diffusive atmosphere and irtipalar the thermohaline
convection.

2 Equations for thermohaline instabilty with in small-
Péclet number approximation

2.1 Boussinesq Equations with small-&clet

We consider the Boussinesq equations for thermohalinabiiiy :
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where,l = g+ Ve, + WE; is the velocity vector, p the pressugethe temperature,
andu the mean molecular weight. The z axis refers to the verticatton, while x and
y axis are the horizontal direction&r andKu correspond to the thermal and haline
diffusivity respectively. The vertical velocity, tempémge and salinity perturbations
are of the forme!tsin(mrz)é 1), whereA is the growth rate. We note the wave
numbera® = k?+12 4+ P72, anda? = k% + 12 the horizontal wave number. We consider
the linear casd].[]i = 0.

In stars, the thermal diffusivity largely exceeds the v@toand the haline dif-
fusivity. So with the expression of Péclet number given bigifieres 1999) and his
discussion, we can take small Péclet number in stellaatizdizones. In addition, the
equation of state i% =—006+ou, wherea = % is the coefficient of thermal expan-

sion in stars, andr = % the coefficient of haline contraction in stars. In the conhtex
of Boussinesq approximation, with the small-Péclet nunapproximation and using
this equation of state, we obtain the following equationgfiermohaline mixing.

(A —vO?)TPw = g(a 020 — o02p) (5)
K020 = —Brw (6)
(A —KuD?)p = —Buw 7



wherefr = —% andfy = % are thermal and salinity gradients respectively. Sub-
stituting equations (6) and (7) in (5) gives the followingaguatic equation foh :
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where the wavenumbers have been non-dimensionalized
a=aL ah=anlL (11)
and where we have introduced the thermal and haline Rayteigibers
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2.2 Study of stability

ForC < 0 the discriminanf = B2 — 4C is positive, thus the quadratic equation has two
real roots, of which one is positive, leading to exponemgralwth. This root vanishes
for C =0, namely when
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(13)
The minimum of(Ra,, — Rar) is obtained foaZ = m?1? /2, which yields the instability
condition at small Péclet number :

27
Ra, — Rar > Zn“. (14)
One retrieves the familiar condition for thermal conveatichen one ignoreBa;, and
changes the sign &at (since ther3r < 0).

3 2D Simulations in the non-linear regime : the domi-
nant mode

In order to explore the non-linear regime, and know the damiimode of the thermo-
haline instability, we use the code Balaitous. It is a 3D cibd¢ uses a pseudo-spectral
Fourier method in the horizontal directions and compactdidifferences in the verti-
cal. We compute two dimensions simulations, with 101x128 goints. The vertical
extend of the domain ik and the horizontal one isr®. In the horizontal direction
the boundary conditions are periodic. At the bottom and taffases, the velocity
satisfies stress-free impenetrable boundary conditiorig Wie perturbations of mean
molecular weight and temperature vanish there.

The initial conditions are inspired from the solution of theear equations (5)- (7)
; for the velocity componentsy&ndd), and the mean molecular weiglit)( We take
respectively :



W = Wp sin(m7i2) cog &xX) (15)

m
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A Ky
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whereay, is an integer.

We takeRas, = 100 and?a“ =1000. In these conditions, we find the most unstable
mode for linear growth rate,, = 3.92. In order to determine the dominant mode of
thermohaline instability, we compute simulations with tperturbations which have
two different horizontal wave numbers, and the same irgtmaplitude.

In table 1, we show the different models computed, with défe horizontal wave
numbers.

3.1 a,=4and?2

Figure 1 shows the vertical velocity mt= 7 as a function of time, for model computed
with initial wavenumbersy, = 4 anda, = 2. The system tends towards a stable solution
whent = 30. Figure 2 represents the mean molecular weight in gregnwiie system

is stable. The system tends directly towards a stable solutith the formation of two
salt fingers. This fingers take the form of mushroom.
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Figure 1: The vertical component of velocity as a functiortiofe, for model with
initial wavenumbersy, = 4, a, = 2.

3.2 a,=4and5

Figure 3 shows the vertical velocityxat= 7 as a function of time, for model with initial
wavenumbersy, = 4 anday, = 5. The system tends towards an intermediate solution
whent = 20, and after a stable solution whiexr 200.

Figure 4 represents the mean molecular weight in grey, wiesytstem is in inter-
mediate state (left panel) with four saltfingers, and statdée (right panel) with only
two saltfingers.



Figure 2: Salinity (in grey) at t=225, for model with initbvenumbera, = 4, a,, = 2.

Figure 3: The vertical component of velocity as a functiortiofe, for model with
initial wavenumbersy, = 4, a, = 5.

3.3 a,=5and9

Figure 5 shows the vertical velocity at= 7 as a function of time. The system, as for
previous model, tends towards an intermediate solutioPO)t=and then into a stable
solution (t ¢150). Figure 6 represents the mean moleculahivan grey, when the
system is in intermediate state, and stable state respictithe system forms five salt
fingers on the intermediate state, and then three on stalbiioso



Figure 4: Salinity (in grey) at t=90s (left) and at t=225 i for model with initial
wavenumbersy, = 4, a, = 5.
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Figure 5: The vertical component of velocity as a functiortiofe, for model with
an,=5a,=09.

4 Conclusions and future work

We applied the small-Péclet number approximation to theaggns of thermohaline
mixing. In these conditions, we have obtained a conditiothefmohaline instablity,
linked directly with the thermal and haline Rayleigh nunbd&rhen we have computed
nine models with two perturbations which have two diffefemtizontal wave numbers,
in order to determine the dominant mode. We have shown teaddiminant mode is
different from the most unstable mode.



Figure 6: Salinity (in grey) at t=90s (left) and at t=225 {rig for model witha,, = 4
anp =b5.

For all our models, the system tends towards a stable solutith two or three
salt fingers. In addition, the table 1 shows two differentletions. First, when the
horizontal wave number is lower than the most unstable ntb@esystem tends directly
to the stable mode. Second, when the horizontal wave nursligher than the most
unstable mode, the system evolves to an intermediate atadehen to the final stable
state.

The dominant mode of thermohaline mixing, in these condgjas different from
the most unstable mode.

In addition, we can study the aspect ratio of salt fingerss tdfined as the ratio
between the length and width of fingers. In our conditionsarfiputation, we obtain
an aspect ratio equal to the normalized horizontal waveruntnd we have seen that
an, is always superior to 1. In fact, the efficiency of mixing deg@e sensitively on this
aspect ratio. The diffusive coefficient is given with the atijon 18, wherex is the
aspect ratio of salt fingers, according to Ulrich (1972) :

8 -0
D, = énzaZK(g)(DTfD) (18)

In future work, we must computed other simulations with elifnt parameters in
order to understand the effects on aspect ratio of salt finged thus on the efficiency
of thermohaline mixing, with two and three dimensions siatiohs
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Table 1: Models computed with two different initial horizahwave numbers (given
in second column). The third and fourth columns give the nendb saltfingers in the
computational domain
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