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ARTICLE OPEN

Early microbial markers of periodontal and cardiometabolic
diseases in ORIGINS
Clarisse Marotz 1, Rebecca Molinsky 2, Cameron Martino1,3,4, Bruno Bohn 2, Sumith Roy5, Michael Rosenbaum6, Moïse Desvarieux5,
Melana Yuzefpolskaya7, Bruce J. Paster 8,9, David R. Jacobs2, Paolo C. Colombo7, Panos N. Papapanou10, Rob Knight1,4,11 and
Ryan T. Demmer2,5✉

Periodontitis affects up to 50% of individuals worldwide, and 8.5% are diagnosed with diabetes. The high-comorbidity rate of these
diseases may suggest, at least in part, a shared etiology and pathophysiology. Changes in oral microbial communities have been
documented in the context of severe periodontitis and diabetes, both independently and together. However, much less is known
about the early oral microbial markers of these diseases. We used a subset of the ORIGINS project dataset, which collected detailed
periodontal and cardiometabolic information from 787 healthy individuals, to identify early microbial markers of periodontitis and
its association with markers of cardiometabolic health. Using state-of-the-art compositional data analysis tools, we identified the
log-ratio of Treponema to Corynebacterium bacteria to be a novel Microbial Indicator of Periodontitis (MIP), and found that this MIP
correlates with poor periodontal health and cardiometabolic markers early in disease pathogenesis in both subgingival plaque and
saliva.

npj Biofilms and Microbiomes            (2022) 8:30 ; https://doi.org/10.1038/s41522-022-00289-w

INTRODUCTION
The human oral cavity hosts hundreds of unique microbial taxa.
Within the oral cavity, there are multiple distinct niches that
contain different compositions of microbial taxa. For example the
supra- and subgingival tooth surface, tongue, cheek, and roof of
mouth each harbor consistently distinct microbial communities1.
In the context of severe periodontal disease, the composition of
microbial taxa in the supra and subgingival plaque undergo
dramatic changes2–4. Periodontitis-associated subgingival biofilms
often contain a climax community dominated by Porphyromonas
gingivalis, Treponema denticola, and Tannerella forsythia, referred
to as the ‘red complex’5. The red complex has been studied in
depth for its ability to negatively affect host physiology through
virulence factors and expedite gingival deterioration in severe
diseases. However, less is known about the early microbial
markers of periodontitis and when compositional changes in
plaque biofilms occur relative to disease onset.
Periodontal disease affects nearly half the global population6

and is one of the leading causes of tooth loss7. This disease has
two primary stages, gingivitis and periodontitis. Gingivitis is the
early stage of gum disease where the gingival soft tissue becomes
swollen and may bleed upon provocation due to the presence of
vasculitis and a local inflammatory infiltrate secondary to bacterial
challenge8. With time, inflammation results in a deepening of the
periodontal pocket, further expanding the ecological niche
enabling greater plaque accumulation and host response to
pathogens in the biofilm. Left unresolved, the early stages of
periodontitis occur when the local inflammatory processes induce

a progressive loss of tooth-supporting tissues and eventually
tooth loss.
There is strong evidence for a link between oral health and

cardiometabolic health9–13. While it has long been recognized that
individuals with diabetes are at higher risk for periodontitis, recent
evidence suggests that adverse oral microbial exposures that
underlie periodontitis might also contribute to the etiology of
cardiometabolic diseases, including diabetes. Few studies have
investigated the relationship between oral microbial communities
and markers of both periodontal disease and diabetes risk.
Identifying microbial signatures that emerge early in disease could
help elucidate potential shared microbial etiology of periodontitis
and cardiometabolic disease.
Next-generation sequencing has enabled the high-throughput

collection of detailed microbial information from thousands of
samples. However, this data is inherently compositional, meaning
that the results provide information only on microbial relative
abundance rather than absolute abundance14. Therefore, care
must be taken to avoid false positive or negative findings in these
datasets, particularly because total microbial load can vary largely
among subgingival plaque samples. In this analysis, we use a suite
of compositional data analysis tools to identify differentially
abundant bacteria in relation to measures of periodontal disease
and early biomarkers of cardiometabolic disease.
We applied these tools to a subset of data collected in the Oral

Infections, Glucose Intolerance and Insulin Resistance Study
(ORIGINS)15. This dataset contains information from a large group
of individuals free of clinical cardiometabolic disease, including a
comprehensive periodontal examination, quantitative cardiome-
tabolic markers, as well as 16 S rRNA gene amplicon sequencing
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from saliva and subgingival plaque from both healthy and
diseased sites, processed separately, which allowed us to look
for site-specific microbial markers that could be early indicators of
disease.

RESULTS
Overview of the cohort
Wave 2 of the ORIGINS project recruited 800 participants, 787 of
which had complete data collection for the current analyses. Each
participant underwent extensive periodontal examination and
metabolic measurements as previously described15. The subgin-
gival plaque was collected from healthy (‘shallow’ periodontal
pocket <3mm) and diseased sites (‘deep’ periodontal pocket ≥
4mm) as applicable following a standardized protocol totaling
1107 plaque samples (Fig. 1). Saliva samples were collected in
parallel and processed for a subset of 282 participants. Both saliva
and subgingival plaque samples were processed for 16 S rRNA
gene amplicon sequencing. The average full-mouth pocket depth
(PD) was 1.90 mm, the average attachment loss was 0.59 mm, and
0.31% of sites exhibited bleeding on probing (BOP). 71%, 26%,
and 2% of participants had no or mild periodontitis, moderate
periodontitis or severe periodontitis, respectively, according to the
CDC/AAP definition. As expected, the prevalence and relative
abundance of canonical subgingival plaque pathogens from the
red and orange complex5 were higher in deep versus shallow
periodontal pockets (Table S1).

Periodontal pocket depth is strongly associated with
microbial diversity
We used the robust Aitchison Principal Components Analysis
(RPCA) method16, which accounts for the inherent sparsity and
compositionality of next-generation sequencing experiments14, to
assess beta-diversity across subgingival plaque samples. The first
axis of separation showed distinct clusters of subgingival plaque
collected from shallow versus deep periodontal pockets (Fig. 2A).
Interestingly, the microbial composition of subgingival plaque
samples from shallow periodontal pockets from different

individuals were more similar to each other than the microbial
composition of subgingival plaque samples from a shallow and
deep periodontal pocket in the same person (Fig. 2B). This finding
was only identified using RPCA and not other beta-diversity
metrics (including weighted and unweighted UniFrac17, Jaccard,
and Bray–Curtis), highlighting the ability of this tool to identify
novel beta-diversity patterns that accord with expected patterns
from prior work reporting consistent patterns of microbial
dysbiosis in periodontal subgingival plaque samples16,18,19.
We performed an effect size redundancy analysis (RDA) to

determine which factors explained the variation in microbial
composition across samples20. Thirteen non-redundant factors
were included in the RDA including, six periodontal metrics
(shallow or deep periodontal pocket depth, percent of sites
bleeding on probing, full-mouth classification of periodontal
status using the CDC/AAP periodontitis definition, average
whole-mouth pocket depth, average whole-mouth attachment
loss, and percent of sites with attachment loss >3), three
demographic factors (participant, sex, and age), three metabolic
factors (fasting insulin, prediabetes status, and average systolic
blood pressure) and one lifestyle factor (tobacco-smoking status).
Of these thirteen factors, eight were found to have a significant
effect size (p-value < 0.05).
The factor which explained the most variation was the disease

status of the site adjacent to plaque sampling (i.e., a deep or
shallow periodontal pocket (Fig. 2C)). Overall, periodontal metrics
accounted for most of the explained variance (20%) followed by
demographic factors (1.7%) and lastly metabolic factors (0.6%).
Tobacco smoking did not have a significant effect on subgingival
plaque microbial composition in this analysis (87% of the
participants reported never smoking).
The multinomial regression tool Songbird21 was used to identify

differentially abundant microbes in shallow versus deep period-
ontal pockets. Each amplicon sequence variant (ASV) was assigned
a differential where higher scores reflect relative enrichment in
shallow periodontal pockets, and low scores reflect relative
enrichment in deep periodontal pockets (Table S2). The phyloge-
netic relationship among these ASVs and their associated

Fig. 1 Experimental design. 787 healthy volunteers were recruited to participate in the ORIGINS project. Each participant underwent an
extensive periodontal examination, metabolic assessment, and completed standard questionnaires assessing demographic and risk factor
information. Subgingival plaque samples were collected from teeth with periodontal pockets <4mm depth (healthy) and teeth with
periodontal pockets ≥ 4mm depth (diseased) where applicable. In parallel, unstimulated saliva were collected and processed for a subset of
individuals. In total, 16 S rRNA gene amplicon sequencing data from 1107 subgingival plaque samples and 282 saliva samples was generated
for analysis.
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Songbird differentials were visualized with EMPress18 (Fig. 2D).
ASVs from the genus Treponema tended to have low (disease-
associated) differentials, while ASVs from the genus Corynebacter-
ium tended to have high (health-associated) differentials.

Identifying an early MIP in subgingival plaque
To further characterize these health- and disease- associated ASVs,
we plotted the Songbird differentials from each ASV using the
interactive tool Qurro22. As observed in the phylogenetic analysis,
Treponema ASV differentials were more associated with deep
periodontal pockets, whereas ASVs aligned to the genus
Corynebacterium were more associated with shallow periodontal
pockets (Fig. 3A). To generate a microbial indicator of periodontitis
(MIP), we used Corynebacterium as a ‘reference frame’ and
calculated the log-ratio of all Treponema counts to all Coryne-
bacterium counts. This MIP was significantly higher in deep
compared to shallow periodontal pockets (paired T-test < 0.0001)
and revealed that the ratio of Treponema to Corynebacterium is
roughly even in deep periodontal pockets, whereas the ratio in
shallow periodontal pockets is heavily skewed towards Coryne-
bacterium (Fig. 3B). Importantly, because these are relative

abundance data, we cannot conclude whether this finding is
due to an increase in Treponema or a decrease in Corynebacterium,
but the ratio of these two organisms is a consistent biomarker of
periodontal status.
To validate the robustness of the MIP, we tested the ability of

the MIP to classify samples from shallow versus deep periodontal
pockets. When using the entire dataset (1832 ASVs), samples were
classified with an accuracy of 0.88 ± 0.04. When using just the
subset of data used to generate the MIP (164 ASVs, or less than
10% of all ASVs), samples were classified with an accuracy of
0.83 ± 0.04% (Fig. 3C). To determine whether the MIP had
significantly different accuracy compared to the whole dataset,
stratified k-fold cross-validation with a 50:50 train and test set split
was repeated 10-fold with random shuffling. On each split, a
Random Forests classifier was trained and tested using the whole
table versus the table filtered only for Treponema and Coryne-
bacterium taxa, and the difference in the model performance was
tested for significance on the contingency table between
classifiers using a McNemar’s test23 (Table S3). Additionally, each
fold classifier was evaluated by the ROC AUC between classifiers
(Fig. 3C). In both evaluations, only a one-fold split showed a
significant difference by the classifier, and the mean ROC AUC

Fig. 2 Beta-diversity and redundancy analysis in subgingival plaque. A RPCA colored by periodontal pocket depth. Permanova pseudo-F
statistic= 397.062, p-value < 0.001. B RPCA distance among pairwise samples; Subgingival plaque samples from shallow periodontal pockets
of different people (n= 308,505 pairs), subgingival plaque samples from deep periodontal pockets samples of different people (n= 54,285
pairs), subgingival plaque samples from shallow versus deep periodontal pockets from the same person (n= 322 pairs), subgingival plaque
samples from shallow versus deep periodontal pockets from different people (n= 259,058 pairs). Each group is significantly different from all
other groups (one-way ANOVA with Tukey’s multiple corrections, p < 0.05). The box shows the quartiles of the dataset while the whiskers
extend to show the rest of the distribution, except for points that are determined to be “outliers” using a method that is a function of the
inter-quartile range. C Redundancy analysis (RDA) estimates the percent microbial diversity explained by each variable. Inset donut chart sums
effect sizes by category; periodontal variables explained the majority of microbial variation (20.0%), followed by demographic variables (1.7%)
and metabolic variables (0.6%). D Empress plot displaying ASV-level phylogeny with branches colored by phylum. Outer bar plot represents
songbird differentials on a color scale where high values (blue color) are taxa associated with health, and low values (red color) are associated
with disease. Inner bar plot highlights features from the genera Corynebacterium (blue) and Treponema (red), which have high and low
Songbird differentials, respectively.
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differed by only 5%. This demonstrates that the classification of
the disease state is almost as accurate for Treponema and
Corynebacterium measurements alone as all taxa.
Other microbial indicators of periodontitis have been proposed

based on the analysis of chronic periodontitis24,25. We assessed
these alternative microbial ratios from Chen et al.24, (Treponema
denticola, Mogibacterium timidum, Fretibacterium spp., and Tanner-
ella forsythia vs. Actinomyces naeslundii and Streptococcus sanguinis;
representing 158 vs 238 ASVs, respectively), and Meuric et al.25,
(Eubacterium, Campylobacter, Treponema, and Tannerella vs. Veillo-
nella, Neisseria, Rothia, Corynebacterium, and Actinomyces; repre-
senting 27 vs. 9 ASVs, respectively) in this dataset. Both of these
microbial ratios significantly discriminated healthy from diseased

subgingival plaque samples. Random Forests classification with
McNemar significance testing as described above showed no
significant improvement of these alternative taxa ratios for
discriminating between healthy versus diseased samples over the
more focused Treponema:Corynebacterium MIP. We focused on the
Treponema:Corynebacterium MIP as a proxy for early microbial
dysbiosis to determine its association with physiological parameters
of early periodontitis and cardiovascular disease.
Interestingly, even in subgingival plaque samples from shallow

sites (n= 779), the MIP was significantly associated with the
percent of sites bleeding on probing across the whole mouth
(Pearson correlation= 0.243, p-value= 8.06e−12) (Fig. 3D). This
indicates that even before clinically meaningful pocketing

Fig. 3 The ratio of Treponema: Corynebacterium is an early microbial indicator of periodontal disease (MIP) in subgingival plaque.
A Differential ranking with Songbird revealed that Treponema sequences in subgingival plaque were associated with deep periodontal
pockets, whereas Corynebacterium sequences were associated with shallow periodontal pockets. B The log-ratio of Treponema:Corynebacterium
significantly distinguishes shallow (H= healthy sites) from deep (D= diseased sites) periodontal pockets and is used as a Microbial Indicator
of Periodontal Disease (MIP). The box shows the quartiles of the dataset while the whiskers extend to show the rest of the distribution, except
for points that are determined to be “outliers” using a method that is a function of the inter-quartile range. C ROC curve displaying the
accuracy of a Random Forest classifier trained on the full dataset (blue) versus trained only on Treponema and Corynebacterium sequences and
log-ratio (green) shows similar accuracy at predicting shallow versus deep periodontal pocket depth. D In plaque collected from shallow
(healthy) subgingival pockets (n= 779), MIP was positively correlated with the percent of sites bleeding on probing (Pearson correlation=
0.243, p-value= 8.06e−12), indicating that microbial changes occur in plaque before clinically meaningful pocketing.
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develops; there are microbial changes in the subgingival plaque
related to gingival inflammation.

Evaluating the MIP in saliva
Collection of subgingival plaque is not trivial and requires clinically
trained professionals. Saliva requires less time and participant
burden to collect and can be done remotely. We performed 16 S
rRNA gene amplicon sequencing on a subset of saliva samples
(n= 282) collected in parallel to the subgingival plaque samples
from the same individuals. Because the saliva and subgingival
plaque samples were processed with different sequencing
strategies at different institutions, we first assigned taxonomy to
the Human Oral Microbiome Database (HOMD), a well-curated
database of full-length 16 S rRNA gene amplicon sequences found
in the human oral cavity26. We collapsed the subgingival plaque
and saliva datasets to the species level and merged the tables
together. Beta-diversity analysis of the merged table revealed that,
as suspected from previous research, saliva and subgingival
plaque had compositionally distinct microbial communities
(Fig. 4A). The majority of microbial taxa in the merged table were
found in both subgingival plaque and saliva, although each niche
also contained distinct microbiota, with subgingival plaque being
more diverse than saliva (Fig. 4B).
Effect size analysis using RDA of just the saliva table revealed

different factors that drive microbial diversity in saliva compared
to subgingival plaque (Fig. 4C). Eight factors were included in the
RDA, including two demographic factors (participant and age),

three metabolic factors (average systolic blood pressure, BMI, and
prediabetes status), two periodontal factors (average whole-
mouth attachment loss and average whole-mouth periodontal
pocket depth), and one lifestyle factor (tobacco-smoking status).
Overall, the percent explained was much lower in saliva compared
to subgingival plaque (5.8% versus 22.3%, respectively). The only
significant factors in the saliva RDA were smoking status and
participant (Fig. 4C). Despite clear differences in microbial
community composition between saliva and subgingival plaque,
the MIP was significantly correlated (Pearson R= 0.387, p-value=
3.97E−11) (Fig. 4D).

MIP and periodontal measures
We assessed the correlation of the MIP with various whole-mouth
periodontal measures. Subgingival plaque MIP was positively,
significantly correlated with the percent of sites bleeding on
probing, mean full-mouth pocket depth, and mean full-mouth
attachment loss (Table 1). Subgingival plaque MIP was also very
highly correlated with Faith’s phylogenetic diversity, a measure-
ment of alpha diversity that accounts for phylogenetic related-
ness27. All of these correlations held true when looking at only
samples from healthy sites, again suggesting that microbial
community shifts precede detectable disease (Table S4).
Saliva MIP was significantly correlated with average full-mouth

pocket depth, but not percent of sites bleeding on probing or
attachment loss (Table 2). This held true when looking only at
participants with moderate or severe periodontitis but not healthy

Fig. 4 Plaque and saliva are compositionally distinct but have correlated MIP. A Beta-diversity analysis with RPCA shows distinct clustering
of saliva vs. subgingival plaque samples (PERMANOVA < 0.001). B Venn diagram of 16 S rRNA gene amplicon sequencing data collapsed to the
species level shows a majority of microbial species were identified in both saliva and subgingival plaque, and that subgingival plaque was
more diverse. C Redundancy analysis (RDA) estimates the percent microbial diversity explained by each variable. Inset donut chart sums effect
sizes by category; unlike subgingival plaque, saliva microbial diversity is driven by lifestyle or demographic variables and is not significantly
explained by metabolic or periodontal measures. D Microbial indicator of periodontal disease (MIP) was significantly correlated between
subgingival plaque and saliva samples, despite having been processed at different institutes with different sequencing parameters and being
related to different variables (Pearson R= 0.387, p-value= 3.97E-11).
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participants, suggesting that microbial changes in the subgingival
pocket precede microbial changes in saliva (Table S5). Saliva MIP
was also strongly correlated with Faith’s phylogenetic diversity in
all patients.

MIP and metabolic metrics
The overarching goal of the ORIGINS project is to identify
associations between oral microbes, oral health, and cardiometa-
bolic health. To this end, we evaluated the correlation of the MIP
with various cardiometabolic health metrics. Subgingival plaque
MIP was positively, significantly correlated with average systolic
and diastolic blood pressure, fasting insulin levels and HOMA-IR,
after adjusting for age, sex, race, BMI, and smoking status (Table 3).
Together these results suggest that the microbial changes
underlying periodontal health are also associated with cardiome-
tabolic health.
Saliva MIP was not significantly correlated with cardiometabolic

metrics after adjusting for age, sex, race, BMI, and smoking status
(Table 4).

Quartiles of MIP and metabolic metrics and periodontal
measures
We evaluated the correlation of quartiles of subgingival plaque
MIP with various periodontal measures and cardiometabolic
health metrics (Table 5). As quartiles of subgingival plaque MIP

increase, mean full-mouth attachment loss, mean full-mouth
pocket depth, percent of sites bleeding on probing, and Faith’s
phylogenetic diversity all increased significantly even after
adjusting for age, sex, race, BMI, and smoking status. Similarly,
average systolic and diastolic blood pressure, fasting insulin levels,
and HOMA-IR are positively, significantly correlated with quartiles
of MIP. In addition, we evaluated the correlation of quartiles of
saliva MIP with various periodontal measures and cardiometabolic
health metrics and (Table 6). Quartiles of saliva MIP were only
positively, significantly correlated with mean full-mouth pocket
depth and Faith’s phylogenetic diversity after adjusting for age,
sex, race, BMI, and smoking status.

DISCUSSION
In a cohort of 787 healthy individuals, we were able to identify
early microbial markers of periodontal disease. Microbial composi-
tion in subgingival plaque was most strongly explained by
periodontal metrics such as subgingival pocket depth and percent
of sites bleeding on probing. Both RPCA beta-diversity analysis
and redundancy analysis (RDA) showed that the microbial
composition in periodontal plaque was more similar between
different individuals with the same periodontal phenotype (i.e.,

Table 2. Microbial indicator of periodontal disease (MIP) in saliva (n=
282) and multiple measures of periodontal disease.

N Mean MIP
parameter estimate

Standard error p-value

Attachment Loss 217 0.011 0.0292 0.71

Pocket Depth 217 0.053 0.0155 0.001

%BOP 217 0.010 0.0056 0.07

Faith_pd 208 0.80 0.097 <0.0001

All models control for age, sex, race, BMI, and smoking status. Attachment
Loss average attachment loss. Pocket Depth average periodontal pocket
depth, %BOP percent of sites bleeding on probing, Faith_pd Faith’s
phylogenetic diversity. Samples lacking even a single read count aligning
to either the genus Treponema or Corynebacterium were dropped (since the
logarithm of zero is undefined). Bolded values represent statistically
significant Pearson correlations for linear trend (p < 0.05).

Table 3. Microbial indicator of periodontal disease (MIP) in
subgingival plaque (n= 787) is correlated with markers of
cardiometabolic health.

N Mean MIP parameter
estimate

Standard error p-value

Meansbp 678 0.41 0.159 0.01

Meandbp 678 0.36 0.127 0.01

Glucosecrc 676 0.070 0.1122 0.53

Insulin 667 0.14 0.065 0.03

HOMA-IR 676 0.0004 0.00016 0.02

HbA1c 678 0.003 0.0065 0.60

All models control for age, sex, race, BMI, and smoking status. Mean
subgingival plaque was calculated if the participant supplied both a
diseased and healthy site. Meansbp mean systolic blood pressure,
meandbp mean diastolic blood pressure, glucosecrc fasting glucose,
fasting insulin, HOMA-IR Homeostatic Model Assessment for Insulin
Resistance measurement, HbA1C hemoglobin A1c. Bolded values repre-
sent statistically significant Pearson correlations for linear trend (p < 0.05).

Table 4. Microbial indicator of periodontal disease (MIP) in saliva (n=
282) is not correlated with markers of cardiometabolic health.

N Mean MIP parameter
estimate

Standard error p-value

Meansbp 217 0.13 0.492 0.80

Meandbp 217 0.18 0.374 0.64

Glucosecrc 215 −0.16 0.317 0.62

Insulin 217 0.007 0.1826 0.97

HOMA-IR 215 −0.00007 0.00045 0.88

HbA1c 217 −0.009 0.0262 0.73

All models control for age, sex, race, BMI, and smoking status. Meansbp
mean systolic blood pressure, meandbp mean diastolic blood pressure,
glucosecrc fasting glucose, fasting insulin, HOMA-IR Homeostatic Model
Assessment for Insulin Resistance measurement, HbA1C hemoglobin A1c.
Bolded values represent statistically significant Pearson correlations for
linear trend (p < 0.05).

Table 1. Microbial indicator of periodontal disease (MIP) in
subgingival plaque (n= 787) and multiple measures of periodontal
disease.

N Mean MIP
parameter estimate

Standard error p-value

Attachment Loss 671 0.032 0.0095 0.001

Pocket Depth 671 0.035 0.0051 <0.0001

%BOP 670 0.014 0.0025 <0.0001

Faith_pd 678 0.65 0.031 <0.0001

Mean subgingival plaque was calculated if participant supplied both a
diseased and healthy site. All models control for age, sex, race, BMI and
smoking status. Attachment Loss average attachment loss. Pocket Depth
average periodontal pocket depth, % BOP percent of sites bleeding on
probing, Faith_pd Faith’s phylogenetic diversity. Samples lacking even a single
read count aligning to either the genus Treponema or Corynebacterium were
dropped (since the logarithm of zero is undefined). Bolded values represent
statistically significant Pearson correlations for linear trend (p < 0.05).
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shallow or deep pockets), compared to plaque from a shallow
versus deep periodontal site within the same person. This finding
replicates prior publications showing similar patterns. Since
previous studies have shown increased microbial burden in
subgingival pockets with periodontitis28, it is likely that microbial
load varied greatly across the samples in this dataset, and
therefore, it is crucial to use scale-invariant analyses. This point is
underscored by the fact that this result was not observed using
metrics that do not account for compositionality (e.g., UniFrac,
Bray–Curtis), which can be greatly affected by microbial load21.
RDA further revealed that saliva microbial communities were

influenced by different factors compared to subgingival plaque.
For instance, while tobacco smoking did not have a significant
effect size in subgingival plaque microbial composition, it had the
biggest effect size in saliva microbial composition. This is in line
with previous reports showing that microbial composition in oral
washes was affected by smoking status29, while subgingival
plaque is not greatly affected by smoking status30. Together, these

results demonstrate that saliva and subgingival plaque microbial
communities are driven by different environmental factors.
We used the factor with the highest effect size on microbial

diversity in subgingival plaque, whether the sample came from a
deep or shallow pocket, to identify a microbial indicator of early
periodontal disease. Using reference frames, we calculated the
log-ratio of Treponema:Corynebacterium and found that it sig-
nificantly differentiated healthy from diseased periodontal pocket
sites. This log-ratio was used as a MIP. Previous studies have
proposed alternative MIPs24,25, which were also significantly
different between health and disease in this dataset, but were
not statistically more predictive than the Treponema:Corynebacter-
ium ratio for discriminating disease type. We must acknowledge
that identifying microbial biomarkers in next-generation sequen-
cing datasets always carries the risk for false positives, but in this
study, we focused on the Treponema and Corynebacterium ASVs
because the ability of all the species and strains of these genera to
significantly discriminate sites of early disease before clinically
meaningful deep pockets formed suggests that these

Table 5. Quartiles of Microbial Indicator of Periodontal Disease (MIP) in subgingival plaque and multiple measures of periodontal disease and
markers of cardiometabolic health.

MIP Quartile 1 (N= 258) MIP Quartile 2 (N= 259) MIP Quartile 3 (N= 259) MIP Quartile 4 (N= 259) p-value

Attachment Loss N= 257 0.53 ± 0.039 N= 255 0.54 ± 0.039 N= 256 0.62 ± 0.039 N= 257 0.71 ± 0.040 0.001

Probing Depth N= 257 1.82 ± 0.021 N= 255 1.87 ± 0.021 N= 256 1.93 ± 0.021 N= 257 2.03 ± 0.021 <0.0001

%BOP N= 257 0.27 ± 0.01 N= 254 0.29 ± 0.01 N= 256 0.34 ± 0.01 N= 257 0.35 ± 0.01 <0.0001

Faith_pd N= 258 11.2 ± 0.13 N= 259 13.0 ± 0.12 N= 259 14.8 ± 0.12 N= 259 16.1 ± 0.13 <0.0001

Meansbp N= 258 116.6 ± 0.66 N= 257 116.4 ± 0.66 N= 257 117.7 ± 0.66 N= 257 118.2 ± 0.66 0.01

Meandbp N= 258 71.8 ± 0.53 N= 257 72.1 ± 0.52 N= 257 73.3 ± 0.53 N= 257 73.5 ± 0.53 0.003

Glucosecrc N= 257 84.9 ± 0.46 N= 259 84.6 ± 0.46 N= 258 84.7 ± 0.46 N= 258 85.0 ± 0.46 0.28

Insulin N= 258 7.5 ± 0.28 N= 259 7.8 ± 0.27 N= 259 8.2 ± 0.27 N= 259 8.3 ± 0.28 0.04

HOMA-IR N= 257 0.016 ± 0.001 N= 259 0.016 ± 0.001 N= 258 0.017 ± 0.001 N= 258 0.018 ± 0.001 0.02

HbA1c N= 258 5.28 ± 0.027 N= 259 5.27 ± 0.027 N= 259 5.26 ± 0.027 N= 259 5.28 ± 0.027 0.97

Values represent the mean ± the standard error of the mean. Linear mixed models were used in order to control for within Pearson correlation. All models
control for age, sex, race, BMI, and smoking status. Attachment Loss average attachment loss, Pocket Depth average periodontal pocket depth, %BOP percent
of sites bleeding on probing; meansbp mean systolic blood pressure, meandbp mean diastolic blood pressure, glucosecrc fasting glucose, fasting insulin,
HOMA-IR homeostatic model assessment of insulin resistance, HbA1C hemoglobin A1c, Bolded values represent statistically significant Pearson correlations
for linear trends (p < 0.05).

Table 6. Quartiles of Microbial Indicator of Periodontal Disease (MIP) in saliva and multiple measures of periodontal disease and markers of
cardiometabolic health.

MIP Quartile 1 (N= 70) MIP Quartile 2 (N= 74) MIP Quartile 3 (N= 68) MIP Quartile 4 (N= 70) p-value

Attachment Loss N= 52 1.05 ± 0.093 N= 54 0.91 ± 0.095 N= 50 0.85 ± 0.092 N= 53 1.00 ± 0.095 0.6177

Probing Depth N= 52 1.72 ± 0.050 N= 54 1.81 ± 0.051 N= 50 1.85 ± 0.050 N= 53 1.87 ± 0.051 0.0305

%BOP N= 52 0.26 ± 0.018 N= 54 0.26 ± 0.018 N= 50 0.29 ± 0.017 N= 53 0.27 ± 0.018 0.3702

Faith_pd N= 51 12.08 ± 0.314 N= 54 13.10 ± 0.324 N= 50 14.43 ± 0.312 N= 53 15.28 ± 0.322 <0.0001

Meansbp N= 52 119.2 ± 1.55 N= 54 121.7 ± 1.59 N= 50 119.2 ± 1.55 N= 53 119.2 ± 1.60 0.7583

Meandbp N= 52 74.2 ± 1.18 N= 54 76.2 ± 1.21 N= 50 74.1 ± 1.18 N= 53 74.8 ± 1.22 0.9893

Glucosecrc N= 52 88.9 ± 1.01 N= 54 86.0 ± 1.02 N= 50 86.8 ± 0.99 N= 51 87.3 ± 1.03 0.3732

Insulin N= 52 7.97 ± 0.576 N= 54 7.97 ± 0.589 N= 50 7.96 ± 0.574 N= 53 7.97 ± 0.593 0.9995

HOMA-IR N= 52 0.018 ± 0.0014 N= 54 0.016 ± 0.0014 N= 50 0.017 ± 0.0014 N= 51 0.017 ± 0.0014 0.8211

HbA1c N= 52 5.35 ± 0.084 N= 54 5.39 ± 0.086 N= 50 5.35 ± 0.083 N= 53 5.24 ± 0.086 0.3920

Values represent the mean ± the standard error of the mean. Linear mixed models were used in order to control for within Pearson correlation. All models
control for age, sex, race, BMI, and smoking status. Attachment Loss average attachment loss, Pocket Depth average periodontal pocket depth, %BOP percent
of sites bleeding on probing, meansbp mean systolic blood pressure, meandbp mean diastolic blood pressure, glucosecrc fasting glucose, fasting insulin,
HOMA-IR homeostatic model assessment of insulin resistance, HbA1C hemoglobin A1c. Bolded values represent statistically significant Pearson correlations
for linear trends (p < 0.05).
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phylogenetic branches have been evolutionarily conserved in
subgingival plaque biofilm formation.
Subgingival plaque MIP was significantly correlated with poor

periodontal health across a wide range of metrics when only
looking at healthy plaque samples, suggesting that microbial
communities change before the disease is clinically detectable.
Red complex organisms canonically associated with periodontitis
in the literature were also positively correlated with periodontal
disease status, but they were not as widely prevalent across
samples which complicates scale-invariant analyses. This is likely
due to the fact that periodontitis prevalence was low and the
extent and severity of disease was relatively mild and in the early
stages compared to many other studies of periodontitis.
Remarkably, phylogenetically informed alpha diversity was also

strongly correlated with MIP in both saliva and subgingival plaque
across all periodontal status categories. Both Treponema and
Corynebacterium species have been identified as microbial
scaffolds in plaque biofilms. In the context of healthy periodontal
plaque, reproducible biofilms with a specific taxonomic organiza-
tion, referred to as ‘hedgehog’ biofilms, are widely prevalent31. In
the context of severe periodontitis, Treponema taxa have been
found in the deepest sections of the periodontal pocket, as they
are especially sensitive to oxygen compared to Corynebacterium,
and form close associations with diverse rod-like bacteria32–34. In
light of our finding that the ratio of Treponema to Corynebacterium
increases in periodontal disease, this suggests that the biofilm
structure shifts from being scaffolded primarily by Corynebacter-
ium to Treponema, where Treponema biofilms are more phylo-
genetically diverse than Corynebacterium biofilms.
One outstanding question that emerges from this analysis is

whether microbial dysbiosis is the cause or symptom of period-
ontitis; does the subgingival pocket first get deeper, providing a
microbial niche which Treponema species are particularly adept at
colonizing? Or does Treponema colonization and protease release
cause subgingival pocket deepening? The data here are sugges-
tive that Treponema first colonizes the periodontal pocket and
drives disease, because we see the MIP ratio correlating with
pocket depth even before the site would be labeled as diseased
(i.e., <3 mm depth). Further, Treponema can move through
viscous environments, including between and through tissue35.
However, further longitudinal studies are required to validate this
hypothesis.
Despite the fact that saliva has a compositionally distinct

microbiome compared to subgingival plaque, is driven by
different metadata variables, and was sequenced independently
with different parameters, we found that the MIP was significantly
correlated between plaque and saliva. Saliva MIP was also
correlated with poor periodontal health, although only in
participants with moderate to severe periodontitis. Previous work
has found that saliva flow shapes microbial organization in
plaque36, providing a potential explanation for the correlation in
microbial dysbiosis in these distinct microbial communities. One
limitation of this analysis was that only a subset of samples had
paired saliva sequencing, and increasing the number of saliva
samples analyzed could further clarify the potential for saliva
microbial composition as a readout for periodontal status, as has
been previously suggested by smaller-scale studies37–39.
Periodontal disease and cardiometabolic health have been

found to co-associate across diverse populations40,41. This
association is potentially bidirectional. On the one hand, poor
cardiovascular health has been suggested to increase the risk of
periodontitis42, where factors like dysglycemia, receptor for
advanced glycation end-product activity and immunological
response could contribute to disease. On the other hand,
microbial dysbiosis common in periodontitis has been suggested
as a risk factor for cardiometabolic disease, since it can evoke
persistent inflammation41,43. To further explore these associations,
we evaluated the correlation of our MIP with various

cardiometabolic measurements. We show that specific taxa
associated with periodontal disease (the MIP) in subgingival
plaque are also significantly correlated with blood pressure,
fasting insulin, and HOMA-IR. There was a correlation between
subgingival plaque MIP and cardiovascular health markers even in
participants with no periodontitis. This suggests that the early
origins of these diseases are intricately linked. One potential
mechanism could be changed in the enterosalivary nitrate
metabolism pathway, which affects systemically available nitric
oxide and directly influences cardiometabolic outcomes44. For
example, Treponema colonization and subsequently increased
alpha diversity could be leading to depletion of oral nitrate
reducers and nitrite depletion. However, any potential cause-and-
effect relationship remains to be determined.
Through this large-scale analysis of wave 2 of the ORIGINS

cohort15, we identified a simple microbial signature based on two
common oral taxa associated with periodontal status that also
correlates with biomarkers of cardiometabolic disease. Impor-
tantly, these microbial community composition transitions appear
to occur early in disease before severe periodontitis is evident or
clinical cardiovascular disease develops. The results from this
analysis suggest that these microbial changes occur first in plaque,
and as disease progresses can be identified in saliva. Future
longitudinal sampling will allow for more definitive determina-
tions of how the Treponema:Corynebacterium ratio is potentially
involved in the pathogenesis of periodontal and cardiometabolic
diseases.

METHODS
Sample collection
ORIGINS is an occupation-based cohort study among members of the
Service Employees International Union 1199 designed to investigate the
relationship between oral microbial community composition and glucose
metabolism. Periodontal examination, subgingival plaque, and saliva
collection were performed as previously described15. In summary,
1188 subgingival plaque samples (4 samples from 297 participants) were
collected from the most posterior tooth per quadrant (excluding third
molars) via sterile curettes after removal of the supragingival plaque.
Unstimulated saliva was collected from each participant in parallel.

Ethical approval
The Institutional Review Board at Columbia University and the University of
Minnesota approved the study protocol. All participants provided written
informed consent.

DNA extraction and 16 S rRNA gene sequencing
DNA was extracted from subgingival plaque and saliva samples at The
Forsyth Institute. 16 S rRNA gene amplicon sequencing was performed on
subgingival plaque samples by The Forsyth Institute using primers
targeting variable regions 3 and 4; Forward- CCTACGGGAGGCAGCAG
(341 f) and Reverse- GGACTACHVGGGTWTCTAAT (806r). Sequencing was
performed on a MiSeq using a Paired End 250 cycle kit.
16 S rRNA gene amplicon sequencing libraries on DNA extracted from

saliva was performed at UC San Diego using the Earth Microbiome Project
protocol45,46 with primers targeting the v4 region; Forward- GTGYC
AGCMGCCGCGGTAA (515 f) and Reverse- GGACTACNVGGGTWTCTAAT
(806r). Sequencing was performed on a MiSeq using a Paired End 150
cycle kit.

Sequence analysis
Raw reads were analyzed with QIIME2. Demultiplexed sequences were
quality-filtered with default parameters in qiime quality-filter q-score;
namely, reads were trimmed after the first appearance of three basecalls
with a PHRED score of four or less, and the entire read was removed if the
read was truncated to <75% of the input sequence. Quality filtered
forward-read sequences were denoised using Deblur47 with the default
parameters. Samples with less than 1000 quality-filtered reads were
removed from downstream analysis. In order to remove reads aligned to
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chloroplast or mitochondrial genes, sequences were aligned using a
classifier pretrained on the GreenGenes v13_8 database with 99%
sequence homology using sklearn48. Sequences aligned to mitochondria
or chloroplast were removed using filter-table --p-exclude (0.005% of the
entire dataset). A phylogenetic tree was created using fragment insertion
via SEPP49. Taxonomy was assigned using sklearn48 against the HOMD
database version 15.126. All features not present in at least 1% of samples
were excluded from downstream analysis.
The final quality-filtered subgingival plaque table contained 43,709,128

reads (97.6% of the raw dataset) across 1107 samples (99.2% of total
collected samples) with a total of 1832 amplicon sequence variants (ASV)
(26.9% of all identified ASVs), of which 99.5% were assigned to at least the
phylum level. The final quality-filtered saliva table contained 4,892,251
(99.6% of the raw dataset) reads across 282 samples (100% of sequenced
samples) with a total of 859 ASVs (73.0% of all identified ASVs), of which
99.5% were assigned to at least the phylum level.

Differential abundance testing
To determine which taxa are associated with which phenotypes in our
dataset, we used the concept of Reference Frames21. This tool accounts for
the compositional nature of next-generation sequencing experiments14. In
brief, comparing relative abundances among sample groups can be
misleading when the total microbial load is unknown, as is the case in this
dataset. To avoid these pitfalls, we used the machine learning tool Songbird
(https://github.com/biocore/songbird) to perform multinomial regression and
then ranked each ASV by its coefficient in the regression model to determine
each taxon’s relative differential across a given phenotype. Periodontal pocket
depth was used as the formula in the model. The number of random test
samples held back for validation in the model was 111 (10%). We used a
batch size of ten with 500 epochs (number of passes through the entire
dataset to train the model), a learning rate of 0.001 and a differential prior of
10. The resulting ranks (differentials.qza) were visualized with Qurro22 and
allowed us to prioritize which taxa were most associated with a given
phenotype.
To identify taxa associated with shallow versus deep periodontal

pockets, we browsed the highest and lowest-ranked microbes in this
category using Qurro. ASVs assigned to the genus Corynebacterium were
mostly associated with shallow pockets, whereas ASVs assigned to the
genus Treponema were mostly associated with deep pockets. To generate
a microbial indicator of periodontitis (MIP), we used Corynebacterium as a
‘reference frame’ and calculated the log ratio of all Treponema counts to all
Corynebacterium counts.

Classification
A Random Forests (Breiman 2001) (RF) model was trained to predict
disease status based on shallow (pocket depth <3mm) versus deep
(pocket depth > 4mm) periodontal pockets. The RF model was trained
using a Stratified K-Folds cross-validation (CV) with 10-Fold CV splits. On
each CV split, an RF model with 500 estimators was trained, and RF
probability predictions were compared to the test set using the Receiver
Operating Characteristic (ROC). The mean and standard deviation from the
mean were calculated for the Area Under the Curve (AUC) across the 10-
fold CV. This classification was performed on the whole ASV level data
table and compared to the table filtered for only members of Treponema
and Corynebacterium concatenated with the log-ratio of Treponema to
Corynebacterium. All classification was performed through Scikit-learn (v.
0.22.2)48. To determine statistical significance, stratified k-fold cross-
validation with a 50:50 train and test set split was repeated 10-fold with
random shuffling. On each split, a Random Forests classifier was trained
and tested using the whole table, versus the table filtered only for
Treponema and Corynebacterium taxa, and the difference in the model
performance was tested for significance on the contingency table between
classifiers using a McNemar’s test23.

Reporting Summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
All sequencing data and sample metadata are available through Qiita50 under study
ID 11808 for saliva data and study ID 14375 for subgingival plaque samples. Raw

sequence data is also available through EBI accession PRJEB50306 for saliva samples
and accession PRJEB50261 for subgingival plaque samples.
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