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Abstract

Acute exposure to high concentrations of H2S causes severe brain injury and long-term 

neurological disorders, but the mechanisms involved are not known. To better understand the 

cellular and molecular mechanisms involved in acute H2S-induced neurodegeneration we used a 

broad-spectrum proteomic analysis approach to identify key molecules and molecular pathways 

involved in the pathogenesis of acute H2S-induced neurotoxicity and neurodegeneration. Mice 

were subjected to acute inhalation exposure of up to 750 ppm of H2S. H2S induced behavioral 

deficits and severe lesions including hemorrhage in the inferior colliculus (IC). The IC was 

microdissected for proteomic analysis. Tandem mass tags (TMT) liquid chromatography mass 

spectrometry (LC-MS/MS)-based quantitative proteomics was applied for protein identification 

and quantitation. LC-MS/MS identified 598, 562, and 546 altered proteomic changes at 2 h, and 

on days 2 and 4 post-H2S exposure, respectively. Of these, 77 proteomic changes were statistically 

significant at any of the 3 time points. Mass spectrometry data were subjected to Perseus 1.5.5.3 

statistical analysis, and gene ontology heat map clustering. Expressions of several key molecules 

were verified to confirm H2S-dependent proteomics changes. Webgestalt pathway 

overrepresentation enrichment analysis with Panther engine revealed H2S exposure disrupted 

several biological processes including metabotropic glutamate receptor group 1 and inflammation 

mediated by chemokine and cytokine signaling pathways among others. Further analysis showed 

that energy metabolism, integrity of blood-brain barrier, hypoxic, and oxidative stress signaling 

pathways were also implicated. Collectively, this broad-spectrum proteomics data has provided 

important clues to follow up in future studies to further elucidate mechanisms of H2S-induced 

neurotoxicity.
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1. Introduction

Hydrogen sulfide (H2S) is a highly neurotoxic colorless gas with a “rotten egg” odor (Chou 

et al., 2016). It is as an environmental pollutant and an occupational hazard in a variety of 

industries including the oil and gas industry, intensive animal farming operations, sewer and 

waste water treatment plants, pulp and paper plants, and gas storage facilities, among several 

others (Chou et al., 2016). It is the second leading cause of fatal gas exposure in the 

workplace after carbon monoxide (Greenberg and Hamilton, 1998). It is estimated that there 

are > 1000 reports of human exposures to H2S each year in the United States (Chou et al., 

2016). Besides exposures under environmental and industrial settings, intentional 

H2Spoisoning for suicide has recently increased in Western and Asian societies (Morii et al., 

2010; Reedy et al., 2011). This is possible because raw chemical ingredients used to 

generate H2S for suicide are readily accessible in local stores (Morii et al., 2010). Also law 

enforcement and first responders called to help, as well as innocent bystanders are at risk of 

acute exposure to H2S (Sams et al., 2013). H2S was previously developed as a chemical 

weapon (Foulkes, 2009). There are concerns of potential nefarious use of this gas by 

terrorists, particularly in confined spaces, such as underground transit systems. For this 

reason, H2S has been identified as a priority chemical for research by the US Department of 

Homeland security (Security, 2017). The central nervous system (CNS) is the primary target 

organ of acute H2S-intoxication and neurotoxicity is the primary cause of death (Tvedt et al., 

1991a; Tvedt et al., 1991b; Snyder et al., 1995; Guidotti, 2015). Short-term effects of acute 

H2S poisoning by inhalation include knockdown, seizures, dyspnea, comma, and death. 

Currently, there is consensus that survivors of acute H2S poisoning develop neurological 

sequelae, which can be incapacitating and last many years often leading to disability (Tvedt 

et al., 1991a; Snyder et al., 1995; Guidotti, 2015). A number of neurological sequelae have 

been reported. These include dizziness, vertigo, ataxia with tendency to fall, insomnia, 

fatigue, anxiety, learning and cognition deficits, hearing impairment, recurrent seizures, lack 

of libido, and increased sensitivity to H2S, among others (Tvedt et al., 1991a; Tvedt et al., 

1991b; Snyder et al., 1995). Extreme cases progress to permanent vegetative states. 

Neurotoxicity, is manifested in individuals acutely exposed to H2S at concentrations > 500 

ppm (Snyder et al., 1995; Guidotti, 2015; Rumbeiha et al., 2016).

Currently, there are no FDA approved drugs for treatment of either short-term or long-term 

effects of acute H2S-induced neurotoxicity. The development of effective therapeutics 

requires a good understanding of the molecular mechanisms and pathways of acute H2S-

inducedneurotoxicity. These mechanisms remain largely unknown. There is an acute need 

for countermeasures for treatment of mass civilian casualties of acute H2S poisoning in the 

field, such as following catastrophic industrial meltdowns or intentional terrorist activities. 

Elucidating molecular mechanisms underlying H2S-induced neurotoxicity is essential in 
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identifying suitable therapeutic targets to counter both immediate and delayed neurotoxic 

effects of acute H2S poisoning in humans.

We recently developed an inhalation mouse model of acute H2S intoxication that exhibits 

key phenotypes of short- and long-term effects of acute H2S poisoning in victims and 

survivors (Anantharam et al., 2017). Briefly, this model is unique because normal walking 

mice without anesthesia are exposed to H2S by inhalation, recapitulating the typical 

exposure scenario, following accidents, or during suicide. Clinically, mice suddenly 

collapse, have seizures, and are dyspneic during exposure. Surviving mice manifest motor 

deficits on rotarod and open field tests, and developed neurodegeneration, faithfully 

recapitulating the human condition. The objective of this study was to use this mouse model 

to investigate proteomic changes following acute H2S-exposure to identify novel toxic 

mechanisms that could potentially be targeted for therapeutic intervention. These studies 

focused on the central inferior colliculus (IC), part of the brainstem, because our previous 

studies revealed this to be the most sensitive brain region to H2S-induced neurodegeneration 

(Anantharam et al., 2017). However, we also previously observed histopathological changes 

in other parts of the brain, especially the thalamus and cortex (Anantharam et al., 2017). 

This ground breaking H2S-study demonstrated, for the first time, that H2S exposure induces 

significant proteomic changes in the IC, including albumin (Alb) leakage, 

neuroinflammation, and oxidative stress, which collectively play an important role in the 

execution of H2S-induced neurotoxicity and neurodegeneration.

2. Materials and methods

2.1. Materials

H2S gas was purchased from Airgas (La Porte, TX). RNeasy mini kit was purchased from 

Qiagen (Germantown, MD). High Capacity cDNA RT kit were purchased from 

ThermoFisher Scientific (Waltham, MA). RT2 SYBR Green ROX qPCR Mastermix and 

primers for Gapdh were purchased from Qiagen (Valencia, CA). Primary antibodies against 

Alb, hypoxia inducing factor 1 alpha (Hif-1α), and Vimentin (Vim) were purchased from 

Cell signaling (Danvers, MA). Primary antibodies against nuclear factor-like 2 (Nrf2) and 3-

Oxoacid CoA Transferase 1 (Oxctl) were purchased from Abeam (Cambridge, MA). 

Primary antibody against Fas was purchased from SantaCruz Biotechnology (SantaCruz, 

CA). Primary antibody against NeuN was purchased from Millipore (Billerica, MA). U-

PLEX combo kit against TNF-α was purchased from Meso Scale Diagnostics (Rockville, 

MD).

2.2. Animals and treatment

This study was approved by Iowa State University Animal Care and Use Committee. Seven- 

to eight-week-old male C57 BL/6 J mice were used because previous studies from our lab 

showed that males were more sensitive than females. The mice were housed at room 

temperature of 20–22 °C under a 12-h light cycle, and a relative humidity of 35–50%. 

Protein rodent maintenance diet (Teklad HSD Inc., WI, US) and water were provided ad 

libitum. Prior to H2S exposure on day 1, all mice were acclimated to breathing air for 40 min 

for two consecutive days. Freely moving unanesthetized mice were exposed either to normal 
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breathing air (Control) or to 650–750 ppm H2S (H2S-treated) either once or to 2–7 short-

term exposures. Both breathing air and H2S were supplied from compressed gas cylinders. 

The inhalation dosage of H2S was selected basing on published literature indicating 

concentrations of H2S > 500 ppm are associated with knockdown and neurotoxicity in 

human (Snyder et al., 1995; Guidotti, 2015; Rumbeiha et al., 2016). Typically, humans are 

exposed once, but repeated exposures have been reported (Ahlborg, 1951). For purposes of 

studying the progression of neurotoxicity, separate groups of mice in this study were 

euthanized after receiving either only one or 2–7 acute exposures. For proteomic studies, the 

first batch of mice was terminated on the first day, day 1, only 2 h post exposure. Others 

were terminated on days 2 and 4. Negative controls were exposed to normal breathing air 

daily and euthanized on day 4. The gas exposure paradigm is summarized in Fig. 1. Animals 

were cared for in accordance with the Institutional Animal Care and Use committee 

guidelines.

2.3. Behavioral assessment

The VersaMax open field test was used to assess motor deficits induced by H2S. We used 

this test because previous studies in the lab had indicated it to be sensitive to acute H2S 

intoxication in this mouse model (Anantharam et al., 2017). Ataxia and other movement 

disorders are frequently reported neurological sequelae in survivors of acute H2S poisoning 

(Ahlborg, 1951; Tvedt et al., 1991a; Tvedt et al., 1991b). Spontaneous activity was 

measured using an automated computer device (Model RXYZCM-16; Accuscan, Columbus, 

OH, USA). The activity chamber’s dimensions are 40 × 40 × 30.5 cm, and it is made of 

Plexiglas with a Plexiglas lid. The lid has holes for ventilation. Data was analyzed using 

VersaMax Analyzer (Model CDA-8; Accuscan). Mice were placed in the activity chamber 

for acclimation 2 min prior to recording for 10 min. Vertical activity, horizontal activity, and 

distance traveled were measured.

2.4. Histopathology and immunohistochemistry

Mice were euthanized 2 h after the last H2S exposure. They were deeply anesthetized with a 

cocktail of 100 mg/kg BW ketamine and 10 mg/kg BW xylazine via intraperitoneal (IP) 

injection. The thoracic cavity was opened to expose the heart and fresh 4% 

paraformaldehyde (PFA, pH 7.4) was injected through the left ventricle. After perfusion, the 

skull was opened and brains were post-fixed in 4% PFA for 24–48 h before removal from 

the skull. Brains were processed in paraffin, sectioned at 5 μm, and stained with hematoxylin 

and eosin (H&E), and examined microscopically. Immunohistochemistry was used to 

visualize live and degenerating neurons. Neurons were stained with NeuN antibody 

(abl77487, Abeam, Cambridge, MA) using an indirect immunostaining protocol. 

Diaminobenzidine was used as chromogen. Stained sections were examined using a Nikon 

Eclipse Ci-L microscope equipped with a DS-Fi2 camera. For image analysis to count 

neurons, NeuN-positive cells (sites of DAB chromogen deposition) were enumerated in each 

of five 400× photomicrographs of the IC from mice exposed to H2S or breathing air, and the 

mean number of NeuN-positive cells were compared between groups. Degenerating and 

dying neurons were identified by Fluoro-Jade C staining. Briefly, deparaffinized, hydrated 

sections were incubated in 0.06% potassium permanganate solution for 10 min, rinsed for 2 

min in distilled water and incubated in a 0.0001% solution of Fluoro-Jade C (Histo-Chem, 
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Inc., Jefferson, AR) for 10 min at room temperature. Dark conditions were maintained after 

application of Fluoro-Jade C to prevent photobleaching. Sections were rinsed three times in 

distilled water, incubated at 4 °C in 6-diamidino-2-phenylindole (DAPI, Sigma, St. Louis, 

MO), rinsed, air-dried and cover slipped using DPX non-fluorescent mounting medium 

(Sigma, St. Louis, MO). Sections were examined using an EVOS FL Cell Imaging System 

(ThermoFisher Scientific).

2.5. Mass spectrometry proteomic analysis

Mice were euthanized by decapitation 2 h after the last exposure to H2S on days 1, 2 and 4 

for proteomics analysis, quantitative gene expression analysis by real-time PCR, and by 

Western blot. Following decapitation, brains were immediately removed from the skull. The 

IC was microdissected on ice and immediately flash-frozen using liquid nitrogen, and stored 

at −80 °C until further use. Samples were processed according to a previously published 

method with some modifications (Meade et al., 2015). Briefly, IC tissues were placed in 100 

μL of urea lysis buffer and homogenized with a handheld pestle homogenizer. Protein 

samples were further reduced and alkylated. Small aliquots of each sample were taken to 

measure protein concentration using the Bradford assay from Bio-Rad (Hercules, CA). The 

remaining samples were diluted and trypsin-digested overnight, followed by desalting using 

a C18 peptide trap from Michrom (Auburn, CA). The desalted samples were vacufuged prior 

to individual sample labeling using TMT-6plex labels according to the manufacturers’ 

instructions (Thermo Fisher Scientific, Waltham, MA). Labeled samples of each exposure 

group were combined with the control for sample comparison (Table 1). Peptides were 

separated on a Waters BEH C18 capillary column prior to online analysis using a 240-min 

linear increasing gradient of acetonitrile with 0.1% formic acid. Following elution from the 

column, ions were generated using 2.6 kV on a taper tip in a New Objective Nanosource and 

entered into an LTQ-OrbitrapVelos mass spectrometer (Thermo Fisher, San Jose, CA). A full 

scan was taken in the LTQ, followed by data-dependent MS/MS analysis of the top 6 peaks. 

MS/MS analysis included collision-induced dissociation (CID) in the LTQ for structural 

information and higher-energy collisional dissociation (HCD) in the Orbitrap for 

quantitation. MS/MS data were aligned and quantitated using MaxQuantl.5.4.1 (Cox and 

Mann, 2008) Analytics Platform with PTXQC (Bielow et al., 2016) quality control data 

management. Peptide alignment was executed with the mouse Uniprot protein database 

UP000000589_10090.fasta; enzyme: trypsin; carboxymethyl (C), and oxidation (M), FDR < 

1% based on peptide q-value under standard settings (see supplemental data). The secondary 

computational analysis was executed using Perseus 1.5.5.3 (Tyanova et al., 2016) for 

statistical rendering, and web-based software Morpheus for heatmap rendering. Prior to 

analysis of experimental samples, small aliquots of individually labeled control samples 

were analyzed to determine individual variations in controls. Due to low variability in the 

controls, a pooled control setting was used. Sample analysis included modification of the 

MaxQuant protein output list by normalization of individual TMT reporter ion intensities by 

division through the median intensity followed by determination of fold TMT expression 

ratios by division of individual experimental TMT values (126,127,128,129,and 130) 

through the TMT value (131) of the pooled control.
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2.6. Perseus statistical analysis

The previously modified Maxquant protein list was entered into the Perseus 1.5.5.3 software 

program followed by annotating Maxquant defined Swissprot protein accession numbers 

with mouse gene identifiers. Statistical analysis included one-sample t-tests of fold 

expression values by considering the deviation of samples from 1 fold expression (no change 

in TMT reporter ion intensities vs. control intensity values) using p < .05 as a criterion for 

significance. Scatter Plots were established by plotting one-sample t-test difference fold 

protein expression vs. –log one-sample t-test p value fold protein expression according to the 

associated Perseus tool set.

2.7. Morpheus Heatmap rendering

The Perseus processed protein list containing mouse gene identifiers, protein names and 

gene ontology (GO) biological process, one-sample t-test, levels of significantly and non-

significantly modulated proteins was entered into the web-based Morpheus heatmap-

rendering tool (https://software.broadinstitute.org/morpheus/). A gradient coloring scheme 

was applied to display upregulated (above 1.2 fold expression (in log2 display above 0.263), 

red color) vs. downregulated (below 0.83 fold expression (in log2 display below −0.263) 

blue color) protein nodes. White color nodes represent changes of non-modulated nodes to 

control levels (between 0.83 and 1.2 fold expression). Normalization of individual TMT 

reporter ion intensities was done by division through the median intensity followed by 

determination of fold TMT expression ratios by division of individual experimental TMT 

values (126,127,128,129,and 130) through the TMT value (131) of the pooled control. The 

cut-off limit of 1.2 fold was chosen because these individual values are already highly 

normalized expression values and the maximum fold values achieved were below 2.5. A 1.2 

fold cut-off value was used as in a previous publication (Meade et al., 2015). The heatmap 

was hierarchically clustered by Euclidean distance using row average linkage and grouping 

of rows by GO biological process. Functional enrichment analysis was performed using 

Webgestalt pathway overrepresentation enrichment analysis with Panther engine (http://

www.webgestalt.org/option.php). Up to ten highest probable pathways for each time point of 

H2S treatment data were presented.

2.8. Western blot assay

Microdissected tissue samples were lysed in modified RIPA lysis buffer (1% Triton X-100, 

ImM EDTA, 100 mM NaCl, ImM EGTA, 1 mM NaF, 20 mM Na4P207, 2mM Na3V04, 

10% glycerol, 0.1% SDS, 0.5% deoxycholate, 50 mM Tris-HCl, and pH 7.4) via sonication, 

followed by centrifugation as described previously (Kim et al., 2016). After protein 

concentration of samples were measured using the Bradford assay, equal amounts of protein 

samples were loaded to a 10–12% SDS-PAGE gel and transferred onto a nitrocellulose 

membrane. The membranes were blocked with 5% bovine serum albumin in TBS 

supplemented with 0.1% Tween-20. Specific primary antibodies were incubated with the 

membrane overnight at 4 °C. After rinsing thoroughly in PBS supplemented with 0.1% 

Tween-20, the membrane was incubated with secondary antibodies. β-Actin antibody was 

used for loading control. Immunoblot imaging was performed with an Odyssey Infrared 
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Imaging system (LI-COR, Lincoln, NE). ImageJ software (National Institutes of Health, 

Bethesda, MD) was used to quantify western blot bands.

2.9. Enzyme-linked immunosorbent assay

Microdissected tissue samples were immediately frozen. Samples were lysed in modified 

RIPA lysis buffer (150 mM NaCl, 20 mM Tris pH 7.5, 1 mM EGTA, 1 mM EDTA, 1% 

NP-40, 0.1% SDS) with protease inhibitors via sonication (Dalgard et al., 2012; Homji et al., 

2012). Lysed samples were centrifuged at 10,000 × g for 10 min at 4 °C. Expression of 

TNFα was measured using Meso Scale Discovery system following manufacturer’s 

protocol.

2.10. Quantitative real-time RT-PCR

Following exposure to H2S, tissues were dissected and immediately stored at −80 °C till 

analysis. Total RNA was extracted from frozen tissues using the RNeasy® Plus Mini kit with 

treatment of DNase I according to the manufacturer’s protocol. Validated primers for Gapdh 

(Qiagen, #PPR57734E) were used as the housekeeping gene controls. The threshold cycle 

(Ct) was calculated from the instrument software, and fold change in gene expression was 

calculated using the ΔΔt method as described earlier (Kim et al., 2016). The following 

primers were used to check the quantitative transcriptional level of Prkab1, Vim, and Ahsal; 

5′-TCCGATGTGTCTGAGCTGTC-3′ and 5′-CCCGTGTCCTTGTTCAAGAT-3′ for 

Prkab1 (Bandow et al., 2015), 5′-TCCACACGCACCTACAGTCT-3′ and 5′-

CCGAGGACCGGGTCACATA-3′ for Vim (Ulmasov et al., 2013), 5′-

CAGAGGGGCACTTTGCCACCA-3′ and 5′-CACGGCCTTCCATGCACAGCT-3′ for 

Ahsal.

2.11. Statistical analysis

Data were analyzed using Prism 4.0 (GraphPad Software, San Diego, CA). Non-paired 

Student’s t-test was used when two groups were being compared. Differences were 

considered statistically significant for p-values < 0.05. Data are represented as the mean ± 

S.E.M. of at least two separate experiments performed at least in triplicate.

3. Results

3.1. Acute exposure to H2S induces motor behavioral deficits and seizures in C57 black 
mice

Locomotor activities of mice were assessed on days 2, 4, and 6. Results indicated that the 

horizontal and vertical activities were decreased by > 50% and were statistically different in 

mice exposed to H2S compared to those that received breathing air (Fig. 2A and B). Total 

distance traveled was also decreased by > 50% and was also statistically different in H2S-

exposed mice compared to controls (Fig. 2C). Most importantly, mice exposed to H2S 

exhibited severe seizure activity. On day 1, during the first exposure, seizure activity was 

observed, on average, starting at 15 min of H2S exposure. More than 50% of mice had 

seizures at 40 min of exposure. We also observed that mice that were exposed to H2S on 

subsequent days were more sensitive to H2S than naive mice. For example, mice exposed to 

H2S more than once had seizures after only 5 min of H2S exposure compared to 15 min for 
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naive mice. Also, consistent with increased sensitivity, 40% of the mice exhibited seizures at 

10 min of H2S exposure on day 6 compared to about 40 min in naive mice on day 1. 

Collectively, these results indicate increased susceptibility of mice to H2S after each 

successive H2S exposures, suggesting that the toxic effects of H2S exposure are cumulative 

(Fig. 2D).

3.2. Acute hydrogen sulfide exposure induced brain damage

Motor behavioral deficits induced by exposure to H2S may be a sign of injury to the CNS. 

Therefore, histopathology was performed to identify the effects of H2S exposure in the IC. 

Mice were exposed to H2S as designated in Fig. 1. For this portion of the study, in order to 

assess the progression of neuropathology, mice were sacrificed at multiple time points (2 h, 

days 3 or 7). Microscopic examination of PFA-perfused brains revealed H2S-induced 

neurodegeneration and loss of neurons in the IC (Fig. 3A). By day 7, mice exposed to H2S 

exhibited severe lesions in the IC, with necrosis, vacuolar change, and infiltration by 

neuroglial cells. H2S exposure frequently induced hemorrhage in IC (Fig. 3B). In order to 

further characterize and quantify the loss of neurons, IC tissues were analyzed by 

immunohistochemical staining using the neuron specific marker, NeuN. On day 7, there was 

a marked loss of neurons in the IC of H2S-exposed mice, compared with the breathing air 

group. Enumeration of neurons in the IC revealed approximately a 70% loss of IC neurons 

by day 7 of H2S exposure (Fig. 3C and D) with infiltration by glial cells. However, in H2S 

exposed mice, neurons in the midbrain region adjacent to the IC appeared unaffected 

morphologically and glial cell numbers and activation state were not altered. 

Neurodegeneration was further confirmed using Fluoro-Jade C staining in the IC of H2S-

exposed mice (Fig. 3E). There was an increase in Fluoro-Jade C positive degenerating 

neurons in the IC. A reduction in numbers of NeuN positive cells and an increase in 

population of Fluoro-Jade C stained cells demonstrate H2S-induced selective loss of neurons 

and neurodegeneration in the IC.

3.3. Acute H2S exposure caused changes in the broad spectrum proteome

Proteomic profiles of the IC were determined using TMT peptide labeling coupled with 

LC/MS/MS analysis by comparison of the breathing air negative control group and the H2S 

exposed group is described in the methods section. Mass spectrophotometry analysis was 

able to identify 598, 562, and 546 altered proteins for 2 h, days, 2 and 4 of H2S exposure, 

respectively. Subsequent analyses showed alterations of protein expressions (Fig. 4, 

heatmap) with 36, 12 and 14 proteins being significantly downregulated (below 0.83 fold) 

and 9, 7, and 13 proteins being significantly upregulated (above 1.2 fold) compared to the 

control for 2 h and days 2 and 4 of H2S exposure, respectively. The cut-off limit of 1.2 fold 

was chosen because individual experimental TMT values for each sample were highly 

normalized as described above and has been used in previous publication (Meade et al., 

2015). A single H2S exposure, in which mice were euthanized only 2 h post exposure on day 

1, demonstrated the highest range of fold protein expression changes compared to the 

control with the majority of proteins being in the downregulation cluster. This was followed 

by day 2, in which mice received only 2 acute exposures, with equal distribution of 

upregulated and downregulated proteins, while mice euthanized on day 4 manifested the 

lowest range of fold changes with the least changes in the proteomic profile (Fig. 5A, B, C, 
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D, scatter plots). Several proteins including cytoplasmic FMR1-interacting protein 2 

(Cyfip2), Alb, and hemoglobin subunit proteins were increased on all three time-points, 

while some proteins including activator of HSP90 ATPase activity 1 (Ahsal) were 

consistently downregulated at the three time-points (Fig. 4 and Table 2). Scatter plots to 

show overall distribution of proteomic profile changes in the IC following H2S exposure are 

shown in Fig. 5. Fig. 5 display is a common method to display proteomics data.

3.4. Validation of proteomic changes of genes after H2S exposure

To confirm the observed changes in the IC proteomic profile following acute exposure to 

H2S, several genes were analyzed by Western blot or quantitative RT-PCR analysis. Mice 

were sacrificed on each designated time points to measure cellular response. The rationale 

for selection of proteomic changes for verification was based on a; proteomic changes which 

were consistently up or down regulated; and b) proteomic changes which fit the overall 

hypothesis of H2S-induced neurotoxicity.

H2S exposure consistently induced protein expression of Alb in proteomic analysis at 2 h, 

days 2 and 4. Alb, a major blood protein, is mainly produced in liver (Dodson et al., 2001). 

The Western blot analysis showed increased protein expression of Alb in the IC in H2S-

exposed mice (Fig. 6A). Oxctl is a homodimeric mitochondrial matrix enzyme in the 3-

oxoacid CoA-transferase gene family. Oxctl protein was increased in IC of H2S exposed 

mice (Fig. 6B). Vim encodes intermediate filaments and is part of cytoskeleton (Challa and 

Stefanovic, 2011). It signals neuroinflammation (Liu et al., 2014). To confirm potential H2S 

exposure dependent pro-inflammatory and ischemic effects, mRNA expression of Vim was 

measured. Vim mRNA expression demonstrated a steady increase at 2 h through day 4 (Fig. 

7B). This supports the increased protein expression of Vim at 2h. The increased mRNA 

expression of Vim was consistent with increased Vim protein expression on days 3 and 7 

(Fig. 6C).

Protein kinase AMP-activated non-catalytic subunit beta 1 (Prkab1) is known to correlate 

with calcium fluctuations as a measure of cellular calcium response (Yong et al., 2010). Due 

to unavailability of reliable antibody for the specific Prkab1, Prkab1 mRNA expression was 

analyzed as a means to measure the calcium-dependent cellular response following H2S 

exposure. Prkab1 mRNA expression was upregulated following H2S exposure on 2 h and 

days 2 and 4 which is in line with the mass spectrophotometry analysis observed 

upregulation of protein Kinase cAMP-activated catalytic subunit alpha (Prkca) and calcium 

activated protein kinase C beta (Prkacb) on exposure 2 h.

We observed downregulation of Ahsal at 2 h and on day 2 in proteomic profile analysis. 

Expression of Ahsal was examined by RT-PCR (Fig. 7C). Similar to the protein expression 

of Ahsal in proteomic profile analysis, mRNA expression of Ahsal demonstrated a 

significant 30–40% downregulation on 2 h and day 2, compared to the breathing air control 

group.

3.5. H2S exposure induced signaling pathways in IC

We further analyzed H2S-dependent alterations in the proteome using Webgestalt pathway 

overrepresentation enrichment analysis with Panther engine and displayed the 10 highest 
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probable pathways for each day of treatment, when applicable, by integrating gene cards 

information (www.genecards.org). Using this approach, we found that several molecular 

pathways were involved in H2S-induced neurotoxicity (Table 3). Acute exposure to H2S 

resulted in alteration of metabotropic glutamate receptor group I pathway, endothelin 

signaling pathway, inflammation mediated by chemokine and cytokine signaling pathway, 

and glycolysis at 2 h and on day 2. Fas signaling pathway, gonadotropin-releasing hormone 

receptor pathway, and cytoskeletal regulation by Rho GTPase pathway were altered on day 

4. Remarkably, biological pathways involved at 2h and on day 2 were similar, but patterns of 

altered biological pathways on day 4 were different (Table 3). The metabotropic glutamate 

receptor group 1 pathway, which was shown to be involved during early response of H2S 

exposure at 2h and on day 2, is consistent with our previous findings incriminating 

dysregulation of glutamate in H2S-induced neurotoxicity (Anantharam et al., 2017). These 

results also underscore the role of neuroinflammation and are consistent with our previously 

published data incriminating inflammation in the pathogenesis of H2S-induced neurotoxicity 

(Anantharam et al., 2017). In addition, expression of Fas was measured by Western blot to 

check activation of Fas signaling in H2S-induced neurotoxicity (Fig. 8A). The expression of 

Fas was significantly increased on day 3.

3.6. H2S exposure induced hypoxia, oxidative stress, and inflammatory signaling 
pathways in the IC

Hypoxia is implicated in H2S-induced neurotoxicity, but little or no evidence was presented 

before (Li et al., 2000; Shen et al., 2011). To check if H2S exposure activates hypoxic 

signaling, expression of Hif-1α was measured by Western blot analysis. Expression of 

Hif-1α was increased 2 fold after a one time exposure and 1.5 fold on days 3 and 7 (Fig. 

8B). To examine oxidative stress signaling in H2S-induced neurotoxicity, expression of Nrf2 

was measured by Western blot analysis (Fig. 8C). Protein expression of Nrf2 was 

significantly increased at 2 h and on day 3. Functional enrichment analysis showed 

inflammation response was involved in H2S-induced toxicity (Table 3). TNF-α is a key pro-

inflammatory cytokine. The expression of TNF-α was measured by ELISA and was found 

significantly increased on day 7 (Fig. 8D).

4. Discussion

Early events involved in acute H2S exposure or those leading to persistent neurological 

sequelae are not well known. Neurological sequelae among human survivors of acute H2S 

poisoning are widely reported (Matsuo et al., 1979; Tvedt et al., 1991a; Tvedt et al., 1991b; 

Kilburn, 1993; Snyder et al., 1995; Woodall et al., 2005). However, the exact cellular and 

molecular mechanisms underlying the pathogenesis of delayed neurological sequelae after 

acute H2S exposure are poorly understood. We have previously identified and herein 

confirmed that the IC in the brainstem region is highly sensitive to H2S-induced 

neurodegeneration (Anantharam et al., 2017).

The relative sensitivity of the IC to H2S-induced injury reflects the unique elements and cell 

populations in this region of the brain. We observed histologic features of neurodegeneration 

including neuronal death, and reactive gliosis in the IC starting on day 3. Massive cell 
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necrosis and glial scarring were noted in the IC on day 7. Immunohistochemistry with 

neuron specific antibody (NeuN) revealed severe neuronal loss in the IC following H2S 

exposure. Whereas neuronal loss was minimal in mice from the breathing air control group, 

there was > 70% loss in neurons in IC of mice exposed to H2S. In contrast, brain stem 

regions adjacent to the IC were shown to be relatively unaffected, indicating unique 

susceptibility of the IC region to H2S toxicity. The function of the IC is to integrate auditory 

and other sensory signals. IC is reportedly a region with high metabolic rate requirements 

(Ridgway et al., 2006; Houser et al., 2010) while it is also the most highly vascularized brain 

region (Gonzalez-Lima et al., 1997). H2S is a systemic metabolic toxicant that reportedly 

interferes with ATP synthesis. It is reasonable to infer that brain regions with high blood 

supply and metabolic rates such as the IC are more vulnerable to H2S-induced toxicity. 

Hearing loss is a frequently reported sequelae of acute H2S poisoning and these results are 

consistent with that observation.

In this study, we used proteomic analysis to define cellular and molecular mechanisms of 

H2S induced neurotoxicity and neurodegeneration during early stages of injury. Exposure to 

H2S induced significant proteomic changes in IC. Proteins commonly and constantly 

upregulated during H2S exposure were Cyfip2, hemoglobin subunit alpha (Hba), 

hemoglobin subunit beta-2 (Hbb-b2), and Alb. In contrast, Ahsal was consistently 

downregulated on 2h and days 2 and 4. The increased expression of Alb was confirmed by 

Western blot. Alb is a major blood protein and its presence in the IC suggests a breach of the 

blood-brain barrier (BBB), leading to protein leakage. Indeed, hemorrhage was observed in 

IC of mice following H2S exposure. Disruption of BBB triggered by a variety of factors has 

been reported to cause neuroinflammation (Erickson et al., 2012). This is a preliminary 

observation and the role of breach of BBB in H2S-induced neurotoxicity should be evaluated 

further in the future. The cause of the BBB breach is beyond the scope of this current study, 

but we also observed changes in other proteins triggered by hypoxic conditions including 

adenosine Kinase, Tropomodulin 2, vimentin, Neurogranin, and Poly(RC) binding protein 2. 

It is possible hypoxia induced the breach in the BBB.

Other key altered molecular biological pathways include metabotropic glutamate receptor 

group I pathway, inflammation mediated by chemokine and cytokine signaling pathway, and 

altered glycolysis. We have previously reported that H2S increases the glutamate:GABA 

ratio (Anantharam et al., 2017), an indication that H2S may activate glutamate receptors. 

These results suggesting a role for metabotropic glutamate I pathway in the pathogenesis of 

H2S-induced neurotoxicity is yet more evidence for glutamate-induced excitotoxicity. 

Glutamate excitotoxicity causes seizures (Jett, 2012).

H2S-induced neurotoxicity has been suggested to resemble brain injury caused by ischemic 

hypoxic conditions (Doujaiji and Al-Tawfiq, 2010; Rumbeiha et al., 2016). We observed 

increased Hif-1α protein expression in IC of H2S exposed mice. These results further 

support the role of hypoxia in H2S-induced neurotoxicity. The trigger for hypoxia is likely 

inhibition of cytochrome c oxidase in mitochondria, but this remains to be elucidated. Also, 

characterizing the downstream cascade of Hif-1α signaling pathway remains to be studied. 

Regardless, this is the first study to directly tie hypoxia to Hif-1α signaling in H2S-induced 

neurotoxicity. Previous studies have suggested neurofilament Nefl, and collapsing Response 
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Mediator Protein 3 (Dpysl4) as biomarkers of hypoxia and cerebral ischemia (Hou et al., 

2006; Lian et al., 2015). Dpysl4 is cleaved by activated calpain reaction in response to 

cerebral ischemia (Hou et al., 2006). Both Nefl and Dpysl4 were downregulated during H2S 

exposure. In addition, mass spectrophotometry analysis detected downregulation of 

phosphoglycerate mutase 2 (Pgam2), an ischemia biomarker, on day 1. This biomarker is 

suggested to correlate with the ischemic conditions (Li et al., 2012). Vimentin (Vim) has 

been shown as another biomarker for ischemia (Li et al., 2008). Mass spectrophotometry 

also detected a steady increase in protein and mRNA expression of the inflammatory and 

ischemia biomarker Vim for the entire duration of the study. These data collectively support 

H2S-dependent ischemia-like conditions during acute H2S exposures, further supporting the 

role of hypoxia as a mechanism of H2S-induced neurotoxicity.

It is well known that H2S inhibits cytochrome c oxidase which plays a crucial role in 

mitochondrial ATP synthesis (Nicholls and Kim, 1982; Dorman et al., 2002). Using 

variations of this animal model we have consistently shown inhibition of cytochrome c 
oxidase (Anantharam et al., 2017). In this proteomic study, expression levels of cytochrome 

c oxidase-related proteins were not changed, but mitochondrial cytochrome c oxidase 

subunit 2 (mt-Co2) and cytochrome c oxidase subunit 6C were decreased at 2 h and on day 

4, respectively, supporting the notion of potential impairment of energy production 

following H2S exposure. Several other proteins related to energy production were also 

altered. For instance, ATP synthase subunits Atp5j2 and ATP51 together with cytochrome C 

oxidases 6C were downregulated on days 2, and 4, respectively. In addition, citric acid cycle 

proteins malic enzyme (Mel) and phosphoglycerate mutase (Pgam2) were downregulated on 

2 h post a single dose. Oxctl was upregulated on day 2 and 4. Oxctl was upregulated and 

induced ATP production from ketone bodies when hepatocellular carcinoma were deprived 

of serum (Galluzzi and Kroemer, 2016). Increase of Oxctl during H2S exposure may indicate 

a switch from glucose metabolism to alternative sources of ATP production in IC of mice 

exposed acutely to H2S. Further studies are warranted to check whether Coxy6c, mt-Co2, 

and Oxctl are the bona fide targets of H2S toxicity. Collectively, these results suggest 

hypoxia, resulting in low oxygen tissue delivery, and dysregulation of cytochrome C related 

proteins, likely working in concert leading to energy deprivation and eventual neuronal death 

in the IC.

We have previously implicated neuroinflammation in this mouse model of acute H2S 

intoxication (Anantharam et al., 2017). Inflammation mediated by chemokine and cytokine 

signaling pathway was a key early finding in this study, and strongly upregulated starting 2h 

following a single acute exposure (Table 3). We have previously reported activated 

astrocytes and microglia following acute H2S exposure (Anantharam et al., 2017). Changes 

in immunogenic biomarkers represent one of earliest responses to cytotoxicity, and 

inflammation (Anantharam et al., 2017). Expression of TNF-α was shown to be significantly 

activated and increased in the IC on day 7 of H2S exposure. Moreover, anti-inflammatory 

protein macrophage migration inhibition factor (Mif) was downregulated on 2 h, and 

complement binding protein Clqbp was increased on day 4. Other pro-inflammatory related 

proteomic changes observed in this study include upregulations of Cyfip2 and nuclear 

hormone receptor and transcriptional repressor family (Nr1d2) which were observed 

throughout the course of the study. Also, increased expression of Cyfip2 was previously 
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shown by others to have a p53-response element in its promoter region and to be one of the 

direct targets of p53 (Jackson et al., 2007). In contrast, the anti-apoptotic and immunogenic 

protein Bcl2 associated athanogene (Bag5) was downregulated at 2 h. Endoplasmic 

reticulum stress-induced downregulation of Bag5 has previously reported (Bruchmann et al., 

2013; Gupta et al., 2016). Furthermore, expression of Fas was increased on day 3. Fas was 

previously responsible for initiating apoptotic signaling pathways and inflammation 

response (Cullen and Martin, 2015). The exact roles of these molecules in H2S-induced 

neurotoxicity remain to be studied further. However, collectively, these results are consistent 

with our previous observations that inflammation may play an important role in H2S-

induced neurotoxicity (Anantharam et al., 2017).

In summary, this seminal proteomic study of the IC from mice acutely H2S-intoxicated mice 

has yielded both novel and supporting results of our previous observations. H2S-induced 

neurotoxicity is complex. A summary of our current overarching hypothesis of acute H2S-

induced neurotoxicity is summarized in Fig. 9. We have explained how proteomic changes 

observed in this study fit key nodes of this summary scheme. We have also, to the extent 

possible, validated select proteomic changes using quantitative RT-PCR and Western blot 

analyses. Sufficient concordance was observed for the validated proteomic changes using 

transcript and/or protein expression. A very interesting observation was the close similarity 

in the top 10 proteomic pathways early in the course of H2S-intoxication (2 h and day 2). 

The study also uncovered novel pathways with a potential role in H2S-induced toxicity 

which we would not have predicted. These include the endothelin signaling pathway, the 

gonadotropin releasing hormone pathway, and the histamine H2 receptor mediated signaling 

pathway, among others summarized in Table 3. These likely play a role in any of the 

pathogenesis of multiple sequelae reported following acute H2S-intoxication, some of which 

are listed in Fig. 9. More research is certainly needed to study the role of these novel 

pathways in acute H2S-induced neurotoxicity.

5. Conclusion

In this study we examined the early effects of acute H2S-induced neurotoxicity in mice. The 

study focused on the IC, the most sensitive brain region to acute H2S poisoning. Results 

show that H2S modulated several proteins and biological pathways in the IC. Specifically, 

results suggest glutamate-induced excitotoxicity, immune mediated inflammatory response, 

pro-apoptosis mechanisms, and hypoxia/ischemia-like signaling to be involved in H2S-

induced neurotoxicity, among others. These results are in concert with our previously 

published observations, including dysregulated glutamate and GABA, mitochondrial injury, 

neuroinflammation and oxidative stress in the pathogenesis of acute H2S-induced 

neurotoxicity. An overall scheme of key events we hypothesize to be involved in the 

pathogenesis of acute H2S induced neurotoxicity is shown in Fig. 9. However, this research 

has also uncovered novel pathways which potentially may not fit the above scheme. This 

suggests that acute H2S-induced neurotoxicity is a complex process. Further research is 

recommended to better understand the singular and/or collective role of these potential 

mechanisms in H2S-induced mortality, neurotoxicity, and evolution of neurological 

sequelae.
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Fig. 1. 
Acute exposure paradigm of hydrogen sulfide in C57 black mice.

Mice were exposed to 765 ppm of H2S in a chamber for 40 min either once only (day 1) and 

for 15 min on the subsequent days up to day 7. Mice were sacrificed 2h post-H2S exposure 

on specified days of the study. Negative control mice were exposed to breathing air from a 

cylinder daily up to day 7. Separate groups of mice were sacrificed on days 1 (2 h post-

exposure), 3, and 7 for immunohistochemistry, Western blot assay, and ELISA analysis. 

Groups of mice for proteomics studies and quantitative RT-PCR analysis were sacrificed on 

days 1 (2 h post-exposure), 2 and 4.
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Fig. 2. 
Acute exposure to hydrogen sulfide induced motor deficits and seizures.

C57 black mice were exposed to H2S as shown in Fig. 1. Locomotor activity was measured 

using an automated VersaMax locomotor activity monitor for 10 min on days 2, 4, and 6. 

Horizontal activity (A), vertical activity (B), and total distance traveled (C) were analyzed 

between groups. For seizures, time to seizure and number of mice seizing were monitored 

(D). Asterisks (*, p < 0.05; **, p < 0.01) indicate statistically significant differences between 

H2S and breathing air negative control groups.
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Fig. 3. 
Neurodegeneration and necrosis in the IC of mice exposed to 650–750 ppm H2S in acute 

short-term repeated inhalation exposures over 7 days. Note the loss of neurons and 

development of clear vacuoles in the neuropil (arrow) on day 7 in mice exposed to H2S and 

the minimal morphologic effects to earlier H2S exposures or breathing air (A). H2S exposure 

induced hemorrhage (thick arrow) in the IC. An insert at higher magnification is included to 

show the hemorrhage. Hemorrhage was not seen in control mice (B). NeuN staining in 

brown color (arrow) of neurons (C). H2S caused marked and selective loss of neurons in the 
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IC (1000× magnification images, C), with retention of neurons in the regions surrounding 

the IC (200× magnification image) (C). Computer aided image analysis of NeuN 

immunostained sections reveals marked loss of neurons (D) in the IC of mice exposed to 

H2S (p < 0.001, t-test). Representative photomicrographs of mice exposed to breathing air or 

H2S, hematoxylin and eosin (A) and NeuN immunohistochemistry (C). Neurons in the IC 

region of the H2S exposed mice on day 7 were enumerated and compared to breathing air 

control (D). Degenerating neurons were visualized with Flouro-Jade C staining (E). Arrow 

indicates degenerative neurons. Neurodegeneration was not seen in the control group. (For 

interpretation of the references to color in this figure legend, the reader is referred to the web 

version of this article.)
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Fig. 4. 
Heatmap of changes in proteomic profile in the IC following acute H2S exposure.

Morpheus rendered Heatmap of determined changes in protein expression at 2 h and on days 

2 and 4. Hierarchical clustering by Euclidean distance, row average linkage and grouping of 

rows by gene ontology for biological process (GOBP). Heatmap displays fold expression 

values of five (2 h and day 2) or four (day 4) IC tissue samples, and average fold expression 

values, mouse gene identifiers (gene names), protein names, and GOBP. Red color indicates 

upregulation of protein expression (above 1.2 fold expression vs. control), whereas blue 
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color indicates downregulation of protein expression (below 0.83 fold expression vs. 

control) Grey color indicates proteins not identified. Protein expression change were 

converted into a log2 data display. (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.)
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Fig. 5. 
Overall distribution of proteomic profile changes in the IC following H2S exposure.

A) Scatter Plot to display overall distribution of one-sample t-test differences in protein 

expression profiles vs. –Log one-sample t-test p values 2 h (red), day 2 (blue), and day 4 

(green) following H2S exposure. Scatter Plots of one-sample t-test fold protein expression 

differences vs. –Log one-sample t-test p values from B) 2 h, C) day 2, and D) day 4 of H2S 

exposure. One-sample t-test of significantly modulated proteins in the H2S exposure group 

vs. the control according to fold expression values are displayed with official mouse gene 

symbols in red. (For interpretation of the references to colour in this figure legend, the reader 

is referred to the web version of this article.)
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Fig. 6. 
Validation of selected protein expression changes in IC following H2S exposure. Protein 

expression was measured by Western blot analysis. Quantitative results are shown in graphs 

next to Western blot images. Samples were normalized to reference gene, β-Actin. Note the 

significant increase in Alb and Oxctl and a trend of increased Vim. Data are presented as the 

mean ± S.E.M. Asterisk (*p < 0.05) indicates a significant difference between H2S group 

and Control group.
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Fig. 7. 
Validation of expression changes of three genes at the mRNA level in IC following H2S 

exposure. The transcriptional level of three genes (A; Prkab1, B; Vim, C; Ahsal) was 

measured by quantitative PCR. Samples were normalized with the reference gene Gapdh. 

Data are presented as the mean ± S.E.M. Note that only a single acute exposure to H2S (2 h) 

was needed to cause upregulation of gene expression of PkAbl and Vim or downregulation 

of Ahsal gene expression. Asterisks (***p < 0.001, **p < 0.01, *p < 0.05) indicate a 

significant difference between H2S group and Control group.
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Fig. 8. 
Exposure to H2S induced hypoxic signaling, Fas signaling and inflammatory response in IC. 

Expression of Fas, Hif-1α, and Nrf2 in IC were analyzed by Western blot assay (A, B and 

C). Target protein expression was normalized to β-Actin. Quantification of Fas, Hif-1α, and 

Nrf2 expressions are shown graphically on the right. Expression of TNF-α was measured by 

ELISA (D). Note that TNF-α was significantly increased in the IC on day 7. Data are 

presented as the mean ± S.E.M. Asterisk (*p < 0.05) indicates a significant difference 

between H2S group and Control group.
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Fig. 9. 
Overarching scheme of H2S induced neurotoxicity in the IC.

This figure is a summary of the overarching hypothesis of acute H2S-induced neurotoxicity. 

H2S activates glutamate excitotoxicity, mitochondrial injury, hypoxia, and a breach of the 

blood brain barrier, and mitochondrial injury trigger neuronal cell death, neuro-inflammation 

and oxidative stress which ultimately leads to neurodegeneration. Key pathways uncovered 

in the present study fit in various nodes in this overarching scheme.
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Table 3

Functional annotation of significantly modulated protein expression in the IC following H2S exposure at 2h, 

days 2, and 4. Table displays dysregulated molecular pathways and total number of proteins associated with 

GO-term definition. Note the similarity in pathways at 2 h and on day 2.

ID Name #Gene FDR

2h

P00041 Metabotropic glutamate receptor group I pathway 2 5.31E-01

P02772 Pyruvate metabolism 1 1.00E + 00

P00019 Endothelin signaling pathway 2 1.00E + 00

P02746 Heme biosynthesis 1 1.00E + 00

P00031 Inflammation mediated by chemokine and cytokine signaling pathway 3 1.00E + 00

P06664 Gonadotropin-releasing hormone receptor pathway 3 1.00E + 00

P00024 Glycolysis 1 1.00E + 00

P04386 Histamine H2 receptor mediated signaling pathway 1 1.00E + 00

P05913 Enkephalin release 1 1.00E + 00

P00017 DNA replication 1 1.00E + 00

Day 2

P00041 Metabotropic glutamate receptor group I pathway 2 5.79E-01

P00017 DNA replication 2 5.79E-01

P02772 Pyruvate metabolism 1 1.00E + 00

P02746 Heme biosynthesis 1 1.00E + 00

P00019 Endothelin signaling pathway 2 1.00E + 00

P00031 Inflammation mediated by chemokine and cytokine signaling pathway 3 1.00E + 00

P06664 Gonadotropin-releasing hormone receptor pathway 3 1.00E + 00

P00024 Glycolysis 1 1.00E + 00

P04386 Histamine H2 receptor mediated signaling pathway 1 1.00E + 00

P05913 Enkephalin release 1 1.00E + 00

Day 4

P00029 Huntington disease 2 1.00E + 00

P00020 FAS signaling pathway 1 1.00E + 00

P06664 Gonadotropin-releasing hormone receptor pathway 2 1.00E + 00

P00016 Cytoskeletal regulation by Rho GTPase 1 1.00E + 00
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