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Innovation behaviour at micro level -
selection and identification

Abstract

Using a sequential logit model and a mixed-effects logistic regression ap-
proach this empirical study investigates factors for the adoption of automatic
milking technology (AMS) at the farm level accounting for problems of sequen-
tial sample selection and behaviour identification. The results suggest the im-
portance of the farmer’s risk perception, significant effects of peer-group be-
haviour, and a positive impact of previous innovation experiences.
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Abstract

Using a sequential logit model and a mixed-effects logistic regreggwoach this empirical
study investigates factors for the adoption of automatic milking technologgjAtithe farm

level accounting for problems of sequential sample selection and behaviourdaiot. The

results suggest the importance of the farmer’s risk perception, sign#ifacits of peer-group

behaviour, and a positive impact of previous innovation experiences.

" Corresponding authopphannes.sauer@manchester.acTiiis research has been conducted when the tilsbawas a
visiting scholar in the ARE Department at UC BeekelFunding for this research was provided by thigsB Academy (SG-
48134). The authors are grateful to Jakob Vestdrdisen, Landscentret, Skejby, Denmark for makitggdata available.

Further we are grateful to Prof. Svend Rasmussepehagen, Denmark and Prof. Hartley Furtan, SaskatCanada for
initial discussions.




1. Introduction

The adoption of new technologies in primary agricultural production has been attitecofe
traditional agricultural economic analysis for the last 50 years: Osenstof studies empirically
investigates technology adoption and diffusion taking into account farmers’ perceptions
respect to the risk of future yields (e.g. Yaron et al 1992, Kim and Chavas 2003, Kowtdduri
2006). Others point to the importance of information gathering, learning by aothgesources’
accumulation for the adoption decision (e.g. Sunding and Zilberman 2001, Baerenklau 2005
An increasing number of studies model the adoption decision as a sample selection proble
where the farms have to pass a first threshold to be selected into the sapubdantil

adopters. Depending on the technology to be adopted, the selection threshold refers eithe
size, network access or a certain level of human capital (e.g. McBrid&2604| Moser and
Barrett 2006 or Abdulai et al. 2008). Building on these findings our study aims toanséde
forward by simultaneously modelling the effects of risk, social interagpast innovation
experiences and the sequential structure of adoption decisions. Different etrimorodels are
applied to incorporate these potential factors and structural characteAstinique dataset on
dairy producers in Northern Europe is used to empirically investigate the adopdiotowfatic
milking systems (AMS).

2. Automatic Milking

Rising labor costs in the mid seventies were one of the main reasons for asingcre
automation in the milking sector. Crucial steps were the development dldeeow
identification system which could then be used for automatic concentrate feleeers,
development of automatic cluster removers, sensors to detect udder health praitefimally

the development of automatic teat cup attachment systems (Meijeehg2§02; Kochan,

2004). An entirely automated milking system (AMS) - also called robotkimgikystem

(RMS) - was firstly developed in the Netherlands in the 1980s and the first coianRwS

was placed into production there in 1992. Until the mid of the 1990s about 250 farms worldwide
used AM systems whereas the breakthrough of the AMS technology occurreérad thfethe
1990s. Today AMS is in use on about 5,500 milk farms worldwide (Svennersten-Sjaunja and
Pettersson, 2008). More than 90% of all dairy farms using AMS are located in nogtimnwest
Europe where investments are driven by high labor costs, a continuous incréasavierage
herd-size and a dominance of the family farm structure (Meijeriaty,e2002). Originally,

AMS were targeted for small family farms with up to 150 cows, however, withncmnis



technological progress and increased management skills, AMS is now alBedrmtdarger
farms with more than 500 cows per herd.

In general there are two basic designs of automatic milking systemsrdihe fhe single-stall
system, in which one milking robot serves only one milking stall with approximéetpws.
The second design is a multi-stall system, in which the robot travels aloihbetweeen
different stalls where each stall can service fewer than 60 cows (Hgtle2607). Automatic
milking relies on the cow’s motivation to enter the system voluntarily wherediremotive is
the supply of concentrate.

Previous studies on the economics of different milking systems revealed timatraim herd
size of about 60 cows is needed for an automatic milking system to work morebjedfign
traditional milking systems (see Rotz et al. 2003; Hyde and Engle, 2002; Hyd2G 4
DeKoning et al. 2002). On farm sizes well above this threshold multi-stall @S robot
shared across two to four stalls) show greater potential net return than thewsemofmore
single-stall units (one robot per stall). The herd milk production level was found t@ihiga
small effect on the economic difference between traditional and autamildicg systems with
a greater difference at a higher level of production (Rotz et al. 2003). The aldtentfit of
AMS is improved if a substantial increase in production is maintained throughter gng&ing
frequency. Studies showed that a large increase in the cost of labor can improvedhemef
an automatic milking system over all herd sizes. Finally, farm net reithraw AMS is
significantly reduced if the economic life of the automatic system i<egbio represent a more
rapid depreciation than normally occurs with traditional milking systems @atiz 2003). Two
great advantages with AMS include reducing the workload of milking and milkomg aften
than twice daily without incurring extra labor costs (Dijkhuizen et al. 1997). Qageea 10%
reduction in total labor demand is reported compared with conventional milking sysitttems
twice milkings per day (Sonck 1995, Schick et al. 2000, DeKoning et al. 2003). Fwotberm
milking frequencies of more than twice daily can be reached under autonikingwhich is
desired for high-yielding cows as 3 milkings a day are expected to enhatat®iamilk yield
by 10 to 15% on average (Veysset et al 2001, Billon 2002, Svennersten-Sjaunja et al. 2000,
Speroni et al. 2002; Oesterman and Bertilsson 2003, Wagner-Storch and Palmer 2003).
Others stress the consistency of the milking process with automatic ngkimgology: In a
working AM system, the animals are treated in the same way at eachgatdl the routines
are predictable for the cows which increases milk production (Rasmussen et al. 1990
Samuelson et al. 1993). Different research projects have been conducted to nohtleestéfect
of AMS on milk quality including both compositional and hygienic aspects. A comparison of

conventional and automatic milking showed no differences between the milking sistéats
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and protein contents (Svennersten-Sjaunja et al. 2000). However, others reveabedemed
level of free-fatty acid concentration (FFA) in milk collected fronmfathat had introduced
AMS (Justesen and Rasmussen 2000) or when compared with levels of milk FFA before
automatic milking was introduced (DeKoning et al. 2003). With respect to millkeinggreports
from the Netherlands and Denmark indicated that the total bacterial count ifid€3sed in

the bulk milk after introduction of automatic milking (Klungel et al. 2000, Rasmussen et al
2002). Other studies, however, revealed that after 6 months the TBC stabilizeteathd/afr

the level of TBC was almost the same as on farms with conventional milking (VaocteY

al. 2002). Initial studies concluding in an increased somatic cell count (SCOpafiduction

of AMS (see e.g. Klungel et al. 2000 or Kruip et al. 2002) were followed by studiesighow
that automatic milking does not increase the incidence of udder infections aneé.§CC (
Berglund et al. 2002, Zecconi et al. 2003 or Bennedsgaard et al. 2006, Svennerstera§faunja
Pettersson 2008). Finally, with respect to animal welfare, Hagen et al. (2085abthe cows
kept in an AMS displayed an increased chronic stress (measured as heartatiléyar
compared with cows kept in a loose housing system. On the other side, such stress was not
observed during milking (Hagen et al. 2005) corresponding to the findings by Gyagax et
(2006) who could not confirm differences in milk cortisol between cows milked in an didoma
vs such milked in a conventional system. It is clear from these previous shatidd/S is not
only a new milking system, but rather a completely new management sysagiijsN2004) as
well as Hyde et al. (2007) stress that noneconomic factors such as litgstides including
avoiding labor management are at least as important as economic factbesdecision to

adopt an automatic milking system. Meijering et al (2002) name the followinfa&&ys for a
successful implementation of automatic milking systems: realighectations, consultancy
support before, during and after implementation, effective system controbammaiter skills,

an appropriate barn layout and functioning cow traffic, technical functioning anlreg

maintenance.

3. Adoption Literature Review

The economic literature on technology adoption started with the seminal workiblgeSr

(1957) who viewed adoption as a process of imitation. An alternative approach, the threshold
model of adoption, was introduced by David (1975). This approach is based on the assumptions
of explicit micro level behaviour, heterogeneity among individual units and a dynawoispr

of individual learning leading to a gradual diffusion of technology adoption overFfeder et

al (1985) emphasized that the introduction of discrete choice modelling allows thigciaksor



of sources of such heterogeneity affecting the timing and extent of ad@dytmther strang of
early contributions to the literature (xxx) make use of expected utility moglécusing on the
identification of size effects, risk preferences and variations in humamlcappotential factors
for technology adoption choices. Later studies (see the surveys by Fedenaindl993 as
well as Sunding and Zilberman, 2001) emphasized the importance of consideringriget
adoption, investment irreversibility and input quality improvements with respect tdadopt
choices.

Putler and Zilberman (1988) examine computer and application ownership patterns in
Californian agriculture. Their analysis indicates that the size of therfgroperation, education
level, age level, and the ownership of a farm-related nonfarming busine$saiglyi influence
the probability of computer ownership. Foltz and Chang (2002) study the adoption and
profitability of Recombinant bovine somatotropin (rbST) on dairy farms in Connectioeit. T
research shows that larger farms with more productive technologies and wigegauore
educated farmers are more likely to adopt rbST. Barham et al. (2004) inwe#imgatynamics
of rbST adoption on dairy farms and examine the characteristics that didtiaguisig
nonadopters, disadopters, as well as early and late adopters. Their resuits p@vious
findings showing that larger farms with complementary feeding technslaggemore likely to
adopt rbST whereas nonadopters appear quite unlikely to become adopters. Abdulai and
Huffman (2005) try to explain diffusion of crossbred-cow technology for a sashpl@nzanian
farmers and conclude that the adoption of such technology positively depends on theyroximit
of the farm to other users, on his schooling, and on his access to credit as wehsierexte
services. So far, no empirical research has been undertaken which inveigathsption of
automaticmilking technology in favor of conventional milking systems.

The study by Feder et al. (1985) suggested that technology adoption choicets @fre par
packages of different changes including also the introduction of new inputs as thiell as
expansion of the scale of operations. However, not much empirical documentatiofalsavai
which explicitly relates the technology adoption decision to an increase irsizernn order to

be able to take advantage of economies of scale. These are main contributions ofithis pape

3.1 Risk

One stream of studies empirically investigate technology adoption and diffaking into
account farmers’ perceptions with respect to the risk of future yield. Yaain(&092) attempt
to analyze the effect of price uncertainty on the degree of innovation exhibitahiby farms
in Israel. Kim and Chavas (2003) investigate the dynamic effects of techsadlpgpgress on

risk exposure by using the conditional moments of the estimated yield and qrobtih



farmers in Wisconsin. They conclude that technological progress siglficantributes to
reducing the exposure to risk and downside risk over time. Koundouri et al. (2006) built on the
framework suggested by Antle (1983, 1987) and followed by Kim and Chavas (2003) and
develop a theoretical model to describe irrigation technology adoption by fdaoers

production risk and incomplete information about new technology. The adoption decision is
derived under the assumptions of farmers’ risk aversion and uncertainty becaums®of ra
climatic conditions and future profit development. The estimated first four meroéthe

farmers’ profit distribution are incorporated in the technology adoption modepksreng

factors. They found risk to play an essential role in farmers’ decision to &gopwy

technology.

3.2 Learning, Network Externalities and Peer-Group Effects

Sunding and Zilberman (2001) point out that a complete analytical framework for gawesi
adoption decisions should include information gathering, learning by doing and resources’
accumulation. Rosenberg (1982) distinguishes between three different formsioigear
‘learning by doing’, ‘learning by using’, and ‘traditional learning’. Leamby doing relates to
the supply of the technology, hence does not provide an explanation for why a firm would be an
early or late adopter (McWilliams and Zilberman, 1996). Learning by asagribes the effect
of the users of a given technology (i.e. the demand side) increasing theirtpitdoeer time
as they learn how to better use this new technology. Finally, traditional leashthg most
commonly discussed form of learning which involves potential adopters gathdongation
about the performance of a new technology (i.e. its expected profit and variarmos)oFi
farms are uncertain about the value of the new technology and are thus hesitant to theest
technology without having sufficient information on its performance. Such infematay be
obtained by observing and interacting with others adopting and using the techinelogger-
group spillover effects, informational cascades), by talking to technslgoyliers, or by
experimenting with the new technology themselves. McWilliams and Zibloe{t®96) point
out, that potential adopters use the gained information to update their posteeictaéons and
beliefs about the new technology over time in a Bayesian manner (see also Liradn&9£9,
Stoneman 1981, Jensen 1982). In the context of this paper learning by using as well as
traditional learning will be of interest. Baerenklau (2005) points out, tidititnaal learning in
the sense of ‘learning from others’ is more complicated as it may becoamak#&br a forward-
looking agent to postpone adoption (at least partially) until better informatiomlescavailable
regarding the expected benefit of adoption. Such agents would tend to ‘wait andaee’ wh

happens to their neighbors (i.e. free-riding on others’ technology experienaes) thefy



assume the expected private costs of experimenting with a new techri@otpetves (i.e. an
information or network externality). Foster and Rosenzweig (1995) as wedistesyBand Case
(1997) found that dynamic information externalities have only small observahitseifethe
less costly and reversible adoption of new seed varieties. For adoption decisiorespect to
large, capital-intensive and irreversible decisions as examined in thys atman-dynamic type
of behavioural spillover — referred to as neighborhood effect or peer-group effeetjé@a
1992, Baerenklau 2005) — may have greater relevance. Social scientistsdrawreedxsuch
effects in several theoretical contributions (e.g. Coleman et al. 1966, Schélfihgfor a more
recent overview see also Brock and Durlauf 2001). However, with respect to ampiric
modelling confounding identification problems have to be considered (Manski 1993): i)
endogenous (peer-group or neighbourhood) effects refer to the phenomenon that the propensity
of an agent to behave varies with the behaviour of his peer-group; ii) exogenous (cbntextua
time and space related, i.e. fixed) effects describe the cowaribatween the propensity of an
agent to behave and exogenous characteristics of the peer-group; and iii) correlate
(unobservable influences, i.e. random) effects refer to the observation that ageatsame
group tend to behave similarly because of similar individual characteposticstitutional
constraints. Nevertheless, previous research on technology adoption behaviour has
acknowledged the effect of such peer-group effects by noting the importance afknetw
externalities as a function of the total number of technology users or by ftnguke concepts
of an informational cascade, first-movers based on signalling, and pure conforehéyence.
Brock and Durlauf (2001) found that nonlinear modelling can be used to identify these
individual effects (see also An and Kiefer 1995 and Durlauf 2003), however, as Baerenkl
(2005) notes, there remains a lack of empirical research that incorporasgsnteractions into

behavioural models to explain technology adoption.

3.3 Sectivity, Sequential Decisions and Path-Dependent Behaviour

An increasing number of studies model the adoption decision as a sample selectian proble
where the adopting farms or firms have to pass a first threshold to be seleztbe isample of
potential adopters. Depending on the technology to be adopted, the selection thresisold refer
either to size, network access or a certain level of human capital. The mostelictigre has

then to correct for such sample selection bias. Asterbro (2003) uses a Heckrssagevo
selection model to study how sunk costs and size affects the probability and depth ohadopti
(see also Smale et al. 1994, McBride et al. 2004, Dridi and Khanna 2005, Moser attd Barre
2006, or Abdulai et al. 2008). Smith et al. (2004) investigate the computer and interpet use

Great Plains farmers by modelling the exposure to the technology as adomsholthr Foltz



and Chang (2002) note that the decision of a farmer to adopt rbST is based on eath farme
self-selection instead of random assignment. Hence, their modelling approasisowinein
index function model (i.e.probit) to endogenize the adoption decision with respect tongield a
profit estimations. Different other contributions aim to tackle the phenomethé&atloption
decision is not only subject to prior threshold criteria, moreover is part of a j@atoential
decision structure. Moreno and Sunding (2005) estimate a nested logit model of fwiotdgg
and crop choices aiming to acccount for unobserved correlation among themmsetlse
results support their modelling choice of a nested structure alternatiwtaiodard multinomial
logit approach. Khanna (2001) applies a double selectivity model based on bivariatgiaéqu
probits to study the sequential decision to adopt two site-specific technolodiésstang and
variable rate technology and the impact on nitrogen productivity. The resutiatenthat the
factors for the two sequential adoption decisions differ significantly anaithagen
productivity gains from adoption depend on the soil quality given. Finally, a number ef mor
business related studies investigate the effect of learning and pethdéat behaviour on the
diffusion of innovations: Mazzoleni (1997) studies different path-dependendi@sovition
behaviour related to different markets and found that different perceptions of the agghnol
influenced the strategies of firms in the industry, the adoption behaviour of the indivsadus)|
and thus the market outcome of the diffusion processes (see also Coombs and Hull 1998,
Canepa and Stoneman 2004).

The experiences with the implementation of automatic milking systems reépottee previous
section suggest that a relevant empirical adoption model should incorporate thentpllowi
aspects: (i) individual risk preferences to account for the tendency ofrfatoneare about profit
developments in the first years after AMS adoption, (ii) sample selectioio @usinimum herd
size threshold, (iii) sequential decisions with respect to an increase inzerahdithe adoption
of automatic milking, (iv) learning by using, peer-group effects and nkterdgernalities based
on the social interaction of the farmers with others who have already adoptechtiw@dgy as
well as the dissemination of individual experiences with AMS, and (v) the potehtizance of
earlier experiences with the successful adoption of other technologjesrmnic dairy

farming practices).

4. Conceptual Framework
We assume that risk averse dairy farmers utilize a vector of irpatgroduce an output q
through a technology described by a well-behaved - continuous and twice diffielenti

production functiorf(-). The individual farmer is assumed to incur production risk as milk yield



and quality might be affected not only by herd health but also by technology underpaderm
or failure. Such risk can be considered by a random vacadid its distributionG(-) which is
exogenously determined. Dairy farmers in our sample are assumed to keakeisan both the
input and output markets as our study area consists of a relatively small and iansoge
geographic area and hence factor price variability is low (Huffmann anddvi@991). Dairy
farmers in Europe further face a minimum guaranteed milk price regbiatibe@ dairy regime
of the Common Agricultural Policy of the EU.

These farms can be assumed to maximize expected discounted net benefite frechnology
applied based on their individual expectations about future price increasestriidedacides
on a potential expansion of the farm’s operations and decides on a potential adoption of the new
technology. Following Dixit and Pyndick (1994) and McWilliams and Zilberman (19€6) th
decision criteria in each period is based on the assumption that the expansion &é thie sca

operations exceeds a certain threshold (i.e. a hurdle), following
(1) E[Us'] — E[Us’]- K > 0

where E[Us"] is the expected utility with adoption, EfJ] is the expected utility without
adoption, and K refers to the scale threshold. Each farmers faces two ctiwagwice of
expanding the scale of production;J[and the choice of adopting the technology)(Blence,

the dairy farmer maximises the expected utility of prefdescribed by (2)

(2) maxp,,p,{E[Uw(D1,D2)] — H[r, 1}

David, your help please! Could you write me a proper model exposition here leading to what

| have written before. I got somehow lost following up what you have proposed.....



As outlined in the previous section labor inpx} (s essential in the dairy farm production
process. The efficiency of labor use critically depends on the utilized gikainology and

can be captured by incorporating a functiga) in the milk production functiom = f[h() X, X]
whereq is a vector of heterogeneous farm and farmer characteristics. Klaeeise dairy
farmer maximises the expected utility of prafidescribed by (1)

(1) ngileLJ @)]= rpng{u [pf .h@) )1 x—rx }dG )

whereU() is the von Neumann-Morgenstern utility function, anhdr as the non-random

output and input prices respectively. The first-order condition for labor input clsayoeen by

af (g, h(@)x,x) U,} T {6f(s,h(a)xl,x)} + cov[U’;0f (&, h(a)x;,x)/0x%]

@ E[rU] = E {pEEe o =g {TEE i

with U '=6U (@) /éw and with the first term on the right-hand side denoting the expected

marginal product of the labor input, and the second term measuring deviations froweutisk
behaviour in the case of assumed risk-aversion (Koundouri et al. 2006).

The decision whether or not to adopt a more labor efficient milking technology can bedodel
as a binary choice, where the farmer chooses to adopt (=1) or not (=0). In thEazhsgtion,
labor use efficiency is increasdwt(e) > h%(«) for 0< a<1. The dairy farmer will adopt the new
and more efficient milking technology if the expected utility with adoptiEjtu¢'] ) is greater
than the expected utility without adoption (&§f)): E[Uw"] - E[Uw"] > 0. Future profit flows
after adopting the new milking technology are not known with certainty due eitlygrarance
of the exact technology performance or to the higher probability of technalibgnefas a
consequence of errors in the use and maintenance of this technology. Furthenasteg in
the new milking technology entails sunk costs because of a fixed cost portion ank lihkets
to a potential resale of the equipment. As Dixit and Pindyck (1994) point out, additional
information on the performance and risks of the new technology might possegitva pakie
for the individual farmer. Linked to such information is the case that somefaairgrs may
prefer to delay the adoption until more information becomes available and conseurently
extra premium may enter the technology adoption decisiong®JUE[Uw"] - E[Uw"] > InfV
where InfV> 0 represents the value of new information for the individual dairy fatmfércan
be described as a function of the initial fixed costs of technology investineheyel of
uncertainty related to the new technology (e.g. access to peer-group rcgegerextension
services), and the farmer’s own characteristics and experienceage.fprming experience,

successful technology innovations in the past).



4.1 Sequential Selection

A second layer of the model is related to the reported threshold for adopting autoitkatig
technology in terms of a required minimum herd size of about 60 cows. This threshold can be
conceptualized along the lines of a double selectivity sequential adoption prdblkeiecision

to increase the scale of milk production by an increase in herdsize @Inas followed by the
decision to invest in the automatic milking technology or B&) (If the farmer decides not to

increase the herdsizB1n) then the AMS adoption decisioBZ) is not relevant (see figure 1).

Figure 1 /

D2:ams adoption

/1 dedision \
D2n:1o adoption
D1: herdsize /
decision \

A rational farmer would increase the herdsize if the expected betigfiise greater than zero

where
(5)U;, = U(D1y) —U(D1n) >0

and correspondingly would adopt the new milking technology if the expected bditgfitre

greater than zero with

(6) Up, = U(D2y) — U(D2n) > 0.

The net benefts;; andUs. are latentariables,assumed to be random functions of vectors of
observed exogenous variab&sandZ,

(7)Ubr = Z1y1 + & andUp, = Z,y; + &,

whereg; ande, are random error terms apdandy, are vectors of unknown coefficientshe
observable choices of the dairy farmer are

(8) Dy = Dy, if Upy >0; Dy = Dy, otherwise and

(9) D, = D,y if Up, >0 and Dy = Dyy; D, = Dy, otherwise.

However, the selection equation (9) is defined only over the subsamplevherp,, (since

D1 = D1, and D, = Dy, is not observed). This three-way grouping leads to a bivariate

sequential model with the probabilities of the three outcomes
(10) Prpiypay = Pr(Dl =Dyy; D, = DZy) = ®,(Z1Y1,Z2Y2,P)

(11) Prpiypon = Pr(D1 =Dyy; D, = DZn) = ®(Zyy1,p) — PTpiypay

(12) Prpinpoen = Pr(D; = Dyp) = 1 — ®(Z1y1)



where® and®d, are the cumulative distribution functions of the standard normal distribution

and the standard bivariate normal distribution with correlation coeffipiamspectively.

4.2 Peer-Group/Neighboring Effetcs

A third component refers to the formalisation of effects based on the sueralction of the
farmer with other members of the relevant peer-group (i.e. a non-dynammioftehavioural
spillover effect). Such network externalities and the dissemination of expesibased on
learning by using the automatic milking technology in the "neighbourhood” can be
approximated by a spatial diffusion measure for the new technology @eedrd Durlauf
2001, Baerenklau 2005). Taking a certain time lag into account with respect to thestataife
of such social interaction or peer-group effgiiss defined as a weighted proxy for the

diffusion of the AMS technology in the neighboring region(s):

(13)pgir = (%ns)t_1

wherei, t andc denote farn, timet, and region/countg, respectivelyNe™ as the number of

farms in the county/region having adopted the AMS technologwaras the total number of
farms in the respective county/region.

4.3 ldentification Problem

As outlined above, serious identification problems have to be considered with respect to t
empirical modelling of factors for innovation behaviour based on social interagtidogenous
effects, as e.g. peer-group or neighbourhood based influences have to be distinguished from
exogenous effects, as e.g. time and space related influencesgftbetindividual farmer and
his peer-group in the same way. Finally, unobservable (i.e. random) effect® rikemnotion
that farmers belonging to the same "group” tend to show similar behaviousahgais a
function of similar individual characteristics and/or structural and/or utistital constraints
(e.g. similar past experiences with respect to core farming gga@nd innovation, similar
structural farming conditions, similar exposure to policy/social everteaame point in time
etc.) By applying a modelling approach that allows for the consideration of both fided a
random effects with respect to the AMS adoption decision an effort to empidealiure and
probably identify these effects can be made. Exogenous and endogenous fixed effects ar

distinguished from random effects based on the grouping structure of the observations.

4.4 Previous Innovation Experiences



Previous innovation behaviour and experiences with the adoption of new technologies and
farming practices as e.g. the adoption of organic farming can have agla#att on the
current adoption decision. If the concept of path dependency at the micro-lewelds/b
defined the effects of such historical innovation patterns and experiences haviaken into
account with respect to the explanation of current innovation behaviour. We foltoosBe
(1959) and others who analysed how the growth of a firm's both organically and through
acquisition is strongly influenced by the experience of its managers andtitny oif the firm's
development at any point in time. Hence, by incorporating proxies for the suamgbtion of
organic farming practices as the major technology innovation for dairy frmpreceeding
years, and for potential cross-fertilization with other individual chatiatitss as e.g. experience,
peer-group effects, risk behaviour we aim to account for such path dependemmsiofte

individual innovation behaviour (see also Foltz and Chang 2002, Baerenklau 2005).

5. Data and Econometric Modelling

More than 90% of all dairy farms using AMS are located in northwestern Europe wher
investments are driven by high labor costs, a continuous increase in the aeedagiednand a
dominance of the family farm structure (Meijering et al., 2002). This studyausaique dataset
based on a pooled cross-section for 241 dairy farms in Denmark for the years 2002 tb 2006. |
includes information on farms which had just adopted the new milking technology, i.e.
information on the production situation at the time the decision to adopt/not to adopt was made.
The farms were selected by a stratified random sampling procedudedrages farm accounts
data base collected by the Danish Agricultural Advisory Services, \5Kegmmark. The farms

in the sample are located all over Denmark and the relevant “neighboengfpep region”

were defined based on the Danish communal structure as in place befmmthenal reform

in 2006. The average dairy farm in the sample produced with a herdsize of about 128ctows a
the average farmer had about 15 years of dairy farming experience. Up to 40% of a
“neighboring or peer-group” dairy farms had experience with the adoption of AMS &itrnte

the average farm adopted the new milking technology (see table 1). The défmeametric
modelling steps are based on the conceptual framework outlined above.

[Table 1]

5.1 Risk Proxies



The use of a moment-based approach for the estimation of production risk is based bitea flexi
representation (see Antle 1983). This avoids the problem of potential model nficsfiec

with respect to the probability function of farmers’ praéit), the distribution of risks(-), and
farmers’ risk preferences as described by the utility fundtighin (1). Hence, the sample
moments of the profit distribution are estimated and subsequently used as explarébigs

for the farmers’ adoption decision. As our dataset contains information on theositaiztine

time the adoption decision was made, the estimated profit function has not yetfoekeal dfy

the adoption decision. The estimated moments of the profit distribution can be assimmed t
exogenous to farmers’ decision at the time of adoption. Hence, the firsttesiistap consists

of estimating the profit function and then computing the moments of the profit distniboit

each observation (i.e. farntimet). Following the procedure outlined by Kim and Chavas
(2003) based on Antle (1983) we first regress farm peo(jprofit per cow) on a vector of
variable input prices (labor price, fodder price, concentrates price, veterinary price, cow,price
milk output pricep, a vector of fixed inputs (land, capital), and a vector of extra profit shifters

c (farmer’s age, farmer’s experience, type of breed, yield per céfigraf income,

geographical location, climatic and soil conditions, and time) as well as anoiidesmui

(14) wi = (X, Divs Zies €is B) + Uye-
Assuming profit maximisation and applying a flexible translog functicorahf(14) is estimated
by OLS providing consistent and efficient parameter estimategtihentral moment of profit

conditional on input use is defined as
(15) ;) = E{[w() — i, )}
whereu; denotes the mean of profit. Thus, the estimated errors from the mean effesgioegre

(T = w — @(+)) are estimates of the first moment of the profit distribution. These areeglqua

and regressed on the set of explanatory variables from (14), which gives
(16) ﬁzz = I(Xy, Piv Zits Cie5 6) + &

By using OLS on (16) we obtain consistent and efficient estimates of thacea( moment).
This procedure is followed to estimate also the third (i.e. skewness) and faurklirtosis)
central moments based on the estimated errors raised to the power of thaeg,and f
respectively, used as dependent variables. The estimates obtained for therfents are used
as proxies for the individual farmer’s milk production risk by incorporating theortfiet
subsequent models of AMS technology adoption along with a vector of other explanatory

variables.



5.2 Adoption Model I: Robust Sequential Logit

If the adoption of the AMS technology is conceptualized as a sequential selguiitgm it

can be estimated as a sequential logit model based on separate logessioag for each step,
decision or transition (see Khanna 2001, Fu et al 2006, Buis 2007 and 2009). Such a model is
known in the literature as a sequential response model (Maddala 1983) or a selggéntial

model (Tutz 1991j.Figure 2 shows the hypothetical process which is to be quantitatively

described by using a sequential logit model:

Figure 2

P | DY
pl/y D2n, D2y \
D1n, D2n, D2y 1

\ D2n

1-p D1n

Corresponding to the three levéls, D2, Dy the process consists of two transitions. The first
transition refers to a choice between no increase in herd si4d2,,.en the one hand ardb,
andD,y on the other. The second transition consists of a choice between an adoption of AMS,
I.e. Doy, and no adoption of AMS, i.@,,, but only for those that have chodes andDz, in

first transition. The sequential model aims to model the probabilities of passsegrthesitions

by estimating a logistic regression for each transition on the subes#mapis at risk.
Corresponding to equation (10) above, the probabiltiesdp, in figure 2 can be

approximated for farm i at time t as

(e1it)
Pr(y;. € {Dzmt; DZyit}|xit) =P (Bxit)

Lrexp (e1i0)

A7) paie

Pr(y; € {DZyit}lxitﬂ Vit € {D2nit' DZyit}) = SER ) Yzi)

(18)Pae Trexd (€210
wherex;; andz; are vectors of regressds farmi at timet (i.e. [i] farm size proxied by the
amount of milkquota; [ii] farmer characteristics as age and experigifdaym characteristics:
organic or conventional, debt of the farm, off-farm income, private consumption, subsidies
received, hired labor; [iv] herd and production characteristics: type of,brestiper cow,
fodder expenses, veterinary expenses, labor per cow; [v] neighboring/ peerd{fgots) jvi]

yearly effects; [vii] risk proxies: the estimated moments based ongb4s effects between

! Others refer to it as continuation ratio logit ¢agti 2002), nested dichotomies (Fox 1997) or Maoelel (Mare 1980, Shavit and Blossfeld
1993). See Cameron and Heckman (1998) for a ceitiqu



moments and farmers experience as well as moments and neighboring/peer-axp)ip Fire

termle"pﬂ ensures that the predicted probability remains between 0 and 1 by modelling the

Texp (£i0)
effects ofxi andz; as S-shaped curves. The coefficients can be interpreted as log odds ratios
and the likelihood function is given in Maddala (1983) or Buis (2009). The maximum likelihood
estimates are obtained by maximizing the likelihood function with respéut parameters by
numerially approximating the integrals based on maximum simulatethbkel (Train 2003,

Buis 2009). The simulations involved need to be repeated for each observation and by using a
drawing procedure based on a Halton sequence a more regular sequence of nunhleers ca
generated (Drukker and Gates 2008p address the likely problem of heteroscedasticity
because of pooled cross-sectional data we first test for such hetertsitg@asl secondly

estimate the robust covariance matrix using the Huber-White sandwich esfiseat Huber,

1967 and White, 1980). The latter provides consistent estimates of the covariamcémat
parameter estimates even when the fitted parametric model fails to baldsbeof

misspecification or violation of the error related assumptions. Despite kenggmvariable

terms are used in the model, the auxiliary regressions performed showed eceséiverarity

in the explanatory variables. To examine the validity of the final modelfgadicin we test for

a group wise insignificance of the parameters in (17) and/or (18) by alypeetikelihood

ratio testing procedure. A Runs test to test for possible serial camels@pplied (see Greene,
2000). Finally, several alternative pseudorfeasures have been computed to judge on the
overall model quality. The outlined sequential logit model is finally alsmattd in a slightly
modified specification by considering previous innovation experiences as outlities i

previous section. Hence; andz; are modified by incorporating additional explanatory

variables (i.e. [viii] organic farming practices adopted before or not, eftests between

organic technology and farming experience, between organic technology ampiqugeeffects,

and between organic technology and the individual risk proxies).

5.3 Adoption Modél I1: Robust Probit and Mixed-Effects Logistic Regression

The preceeding model is designed to empirically capture the selectfttiepr. However,
these models are not able to capture the influences by random effects basestemt diff
groupings of dairy farms in the sample. To empirically identify such rarefteuts beside
obvious fixed effects we apply a two-stage estimation proceduré: wa®stimate a binary

probit model (i.e. selection model) and use the estimates to form the invelsseahibl to

2 possible endogeneity of the monetary variablest'dethe farm’, off-farm income’, 'subsidies rewed’, and 'private consumption’ is
addressed by using the estimates for those vasisblged on a instrumental variables regressioreguve (IV) as explanatory variables in the
adoption model as outlined by (17) and (18).

3 This procedure is implemented in #eglogit package in Stata which is used here (Buis 2007).



address the sample selection problem. Secondly, we estimate a mixesletjestic regression
incorporating the estimates for the inverse Mills ratio as an additiegidssor to control for

selection bias. Following Maddala (1983) the probit model assumes that
QA9 P(L=1|Z =2) = d(z'y)

whereL is a binary response variableis a vector of regressors a@das the cumulative
distribution function of the standard normal distribution. By using the concept @ lat

variable model, the decision to increase the herdsize is generated as
(20) Lyie = YZit + €2t

with L3;, denotes the latent variablg, is a vector of regressors for farrat timet as outlined
above, and, -~ N(0,1). L as an indicator for whether the latent variable meets the herdsize

thresholdH;;, following

1ifL3 > Hy
0 otherwise

(@1 L = {
and taking the value 1 as the herdsize of the respective fammore than 60 cows, and the
value O if it is below or equal to 60 cows at titn&he log-likelihood function to be maximised
is given in Maddala (1983). Subsequently, the estimates obtained by (20) are geseerate

the inverse Mill’'s ratio as the ratio of the probability density function dwecumulative
distribution function. This ratio is needed to account for possible sample @eleicts in the
second stage of the model (Heckman 1979, Greene 2000). This stage (i.e. outcome model)
consists of a mixed-effects logistic regression to estimate the tegyreddoption decision (see
e.g. Agresti et al 2000, Hartzel et al 2001, Hedecker 2003) by accounting for fixechdowhra
effects. Hence, we are able to predict the discrete outcome variabld eliservations might

be correlated. If.,;;, descibes again the binary dependent variable based on the AMS adoption
decision, realized for farmeat timet and part of a group of farmssl,;j, which takes the
value of either O or 1, far=1,...,M; j = 1,...,n;;. Abstracting from time the stochastic

component is described by a Bernoulli distribution with mean vegtor
(22) Llij~Bern0ulli(11ij|nij) = T[:jlij (1 - T[ij)l_llij

wherer;; = Pr (L,;; = 1). The vector of random effects;, is restricted to be mean zero with a
symmentric positive semi-definite variance covariance matrixHgeeecker 2003). The
systematic component is

1

(23) T[ij = 1+exp (—(xiiﬁ+riibi))



wherex; is the vector of known fixed effects explanatory variables for famgroupj as
outlined abovep as the vector of fixed effects coefficients to be estimaied, the vector of
known random effects explanatory variables bjnals the vector of random effects for farm
based on group(along the following factors as a consequence of [i] neighboring/peer-group
effects, [ii] farm group effects, [iii] time, and [iv] soil/climatconditions). The likelihood
function must marginalize over the random effects and is given in Hedeker (2003¢®r Ba
(2007). It can not be evaluated exactly and thus the maximum-likelihood solution must be
approximated, e.g. based on Laplacian approximatidre outlined two-stage probit and
mixed-effects logistic regression model is also estimated in algligbdified specification by
considering previous innovation experiences as outlined in the previous sectioy. Finall
different diagnosis tests and robust estimation procedures are applied as cutlatpfion

model I.

6. Results and Discussion

The overall quality of the four models estimated is largely satisfactbeyliRelihood ratio and
other diagnosis tests indicate no severe misspecification and the diffikeenative R-square

measures show a high predictive power (see table 2 and table 3). The ratielted show a
high consistency with respect to the individual parameter coefficients angdigmeficance

which suggests robust empirical results.

[Table 2]
[Table 3]

With respect to the decision to adopt the AMS technology all models show a positive and
significant influence of the scale of milk production, a negative and sigmifettect of the

farmer’s age but a positive significant effect of farming experiéiatn respect to farm
characteristics the overall debt of the farm and the amount of off-farm incoraa Imegative

effect on the probablity of adopting the new milking technology. On the other hand, the amount
of private consumption showed to have a significantly positive effect on the adoption
probability. With respect to herd characteristics, we found a negative andcsighédifect of

the amount of fodder used but a positive and significant effect of veterinary expensesy.

These results confirm earlier findings with respect to the scale pfroleiction: larger dairy

farms are more likely to adopt new technology. Further our findings confitiraredudies

“ This procedure is implemented by thigelogit command contained in Stata which is used here.



concluding in the importance of the farmer’s age and education: younger anethettzted

dairy farmers are more likely to adopt new technology (see Putler arsrddh 1988, Foltz

and Chang 2002, Barham et al. 2004). However, the finding that farming experience @dluenc
the probability of AMS adoption is somehow contradictory but could be explained by
measurement of the variable as the number of years operating the currefidacs, farmers
tend to aquire a certain level of learning-by-doing with respect to thentumilking technology
before they decide to switch to a new milking technology. A soft budget aoristould

explain the negative effect of the dairy farm’s off-farm income on theapility of adopting

the AMS technology: the farm is able to operate with a less productive technot@glphger
time span. Putler and Zilberman (1988) on the other hand stress the importance of ngnfarmi
business for the adoption of new technology. Due to our findings farms at the negateié a

as positive edge of financial risk management (i.e. high debt or high off-faomeé)are less
likely to adopt new technology. Dairy farms experiencing high veterinarg pestcow might
consider a technology investment as a way to avoid sources of costly diseasesrtiging the
effects of human labor. In a working AM system, the animals are treatedsartteeway at

each milking and the routines are predictable for the cows which incredls@saduction
(Rasmussen et al. 1990, Samuelson et al. 1993). This is consistent with findiagsdimettic
milking does not increase the incidence of udder infections and SCC (Bennedsga&ttQs, al
Svennersten-Sjaunja and Pettersson 2008), findings that cow stress was netlahseng
automatic milking (Hagen et al. 2005), and findings that the milk cortisol vea®hot

increased in an automatic compared to a conventional system (Gygax et al. 200@&xyGo

prior reasoning by more technical studies on automatic milking (see &gniDg et al. 2003),
the level of labor used per cow showed not to be of significance for the adoption dedigon. T
could possibly be explained by the fact that farmers and other labor atneexdying on a
relatively high level of labor productivity are those most interested in a funitrease of their
labor productivity by adopting such labor saving technology.

With respect to the farmers’ risk perceptions our analysis revelead theifgidrhe first

moment — expected profit — effects the technology adoption decision signifipasitive, i.e.

the higher the expected profit the higher the probability of AMS adoption. The secomehin

— profit variablility — showed to have a significant negative influence on the adoption
probability, i.e. the higher the probability of facing extreme profit gainesses the lower the
probability of AMS adoption. For the third moment — skewness of profit — again a sagtlific
negative effect on the adoption decision has been found, i.e. the higher the downsidslprofit ri
the lower the probability of adopting the new milking technology. The fourth moaiantosis

of profit — finally effects the probability of technology adoption also negative aseffieict has
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been found to be significant. A higher kurtosis of the profit distribution meansahtire
variance is due to infrequent extreme deviations from the mean profit, as opposgqdentfre
modestly-sized milk profit deviations. These findings are generalipe with theoretical
reasoning and previous empirical studies: Given the farmers’ geiséralersion and the
uncertainty related to the profit developmeent after adoption Kim and Chavas (2003) and
Koundori et al (2006) both conclude that the farmers’ decision to adopt a new technology is
significantly effected by risk considerations. In addition to these saseltfound that the cross-
effect of these risk proxies with farmers’ experience showed to signify influence the
farmers’ AMS adoption decision. We found that the experience of the farmehwitipération
of the current business helped to adjust extreme profit expectations (first fnohhént
confirms findings by Meijering et al. (2002) on the importance of realistic éafp@ts with
respet to AMS adoption. On the other hand, the farmer’s experience are found sl duee
farmer’s response to changes in the second to forth moment. These findings indi¢h&e tha
more experienced the farmer is in terms of running the current milk busindssstinesponsive
he/she is to milk profit variance and infrequent milk profit deviations. Hence, therfarm
probability of adopting a new milking technology to hedge against profit outliertg
increases (see also Koundori et al. 2006).

Time showed to have mixed but rather positive effects on the milking technology adoption
decision for the farms in the sample. This could reflect the role of inf@matcumulation and
positive learning-by-doing effects in the relevant dairy farmingroanity over time. The proxy
for neighboring/peer-group effects showed to be positive and significantesbat to the
AMS adoption decision. In addition the cross effects with the risk proxis (second to fourt
moment) were found to be also significantly positive, i.e. a decreasingveegtiéict of on
farmer’s response to changes in milk profit variance, skewness and kurtosis, dlgnmesults
reveal that such social interaction effects decrease the individual'aresponsiveness to risk
exposure and consequently increase the probability of new technology adaptansécond
modelling approach random effects were used to model unobservable factodstoesateh
peer-group influences, but also to control for individual farm, time, or soil/climetted
effects. The estimates show a significant positive effect on the probabiitopting automatic
milking technology by the neighboring/peer-group based farm grouping and &sigmnif
positive effect by the time based farm grouping. Hence, we are able tocathpapproximate
such neighboring/peer-group effects based on social interaction and learsdogiyn the
wider peer-group. These findings are in line with, and even enforce, the fitgifggerenklau
(2005) and others: Peer-group based spillover effects as well as “bandwtegots’ generated

by early adopters have an impact on the individual adoption decision. Studies on AMS
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concluded that automatic milking is not only a new milking system, but rather a telynplew
management system, noneconomic factors such as lifestyle choicesast as important as
economic factors for the decision to adopt an automatic milking system @tpile2007).
Neighbourhood/Peer-group effects play an important role with respect to thedgtuesson of
such lifestyle changes which can be considered as “social network aktss’hahd as a
function of the total number of technology users. Such effects can be also due to pure
“conformity preferences” by the dairy farmers producing ancillary fitsrfeom social
acceptance (Baerenklau 2005). Our findings correspond to these conclusions byaddirtg
empirical evidence on the importance of such “soft” factors for the adopticsiateci

Finally, previous innovation experiences proxied by the adoption of organic farnaictgcps in
previous years showed to have a significant positive influence on the probakalitgpifng
AMS technology. Further the cross-effects of such previous adoption experiericesevill
milk farming experience as well as with neighboring/peer-group eXxtezaahowed to have a
positive impact on the adoption probability in the sample. Such cross fertilizatioficsigtly
increases the probability of adopting the new milking technology. Such a saghifiositive
effect on the probability of adopting AMS has been finally also found for the cross-té
previous innovation experiences and the different risk proxies in the form of profémgm
Previous experiences with a successful technology adoption lead to an additioraleadjo$
extreme profit expectations (first moment) and, on the other hand, to an additiorakden
responsiveness to milk profit variance and infrequent profit deviations (second to fourt
moment). Hence, the farmer’s probability of adopting a new milking technology ¢e hed
against profit outlier activity increases as he/she has previous expsneitita successful
technology adoption. These results somehow confirm previous studies on otheck\aest
dairy related technologies concluding in a higher adoption probability for faaxsg adopted
complementary technologies before (Barham et al. 2004). Such experiengesdikebute to
realistic expectations with respect to the adoption of AMS named by Meigradg(2002) as a

key factor for a successful implementation of this new milking technology

7. Conclusions

Using different quality response models this empirical study investifgats's for the adoption
of a new milking technology at the farm level accounting for problems of sequsaiéation
and behaviour identification. The results suggest the importance of the farisleperception,
significant effects of peer-group behaviour, and a positive impact of previous tlmmova
experiences. These findings are relevant for policy or technology supptieng &0 efficiently
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set incentives for an effective technology adoption. Neglecting to accouhega effects can
change the estimated subjective beliefs of possible adopters and thus thedrioeadopt the
technology, as well. On the other hand, using relevant peer-groups to spread adopsidn-rela
information can induce a faster technology diffusion. In addition, policy makers slomsidier
the importance of the farmer’s risk perception when designing economimestis to foster
technology adoption in order to adequately reflect risk reducing benefitddpying the
technology. Future research should focus on disentangling such unobservablédaedtsn
social interaction by using large balanced panels to track individual farnaitehbefore and
after technology adoption.
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Tables

Table 1 The Average Sample Farm

Variable (Total Sample n = 1000) Mean Min Max SDev

Yield per Cow (kg milk per year) 7,831.31 3,022.33 | 11,297.41 1,318.17
Labor per Cow (hours per year) 38.66 20.57 113.04 467
Veterinary Expenses per Cow (DKK per year) 693.62 7.68 1,927.88 273.45
Fodder per Cow (DKK per year) 2,613.47 9.37 178@2. | 2,652.17
Concentrates per Cow (DKK per year) 1,752.94 0 8RIP 1,707.57
Capital per Cow (total assests in DKK) 165.49 5.56 1,018.70 69.59

Land (Ha) 129.13 0 366.6 55.09
Cows (n) 123 28 292 41
Milkquota (kg milk) 956,424 100,499 256,900 343,812.5
Milk Price (DKK per kg) 2.49 1.92 3.84 0.33

Labor Price (DKK per hour) 104.45 31.27 147.62 8.94

Cow Price (DKK per 100kg) 778.29 683 901.5 95.30
Profit per Cow (DKK per year) 3,354.97 0 29,286.73| 2,832.06
Age (years) 42.29 23 73 8.02
Experience (years of farming experience) 15.44 2 37 7.99
Organic (1-yes, 0-no) 0.39 0 1 0.49

Debt (DKK) 1.26e+0.7 0 5.29e+07 6,741,843
Off-Farm Income (DKK per year) 117,210.9 0 507,663 | 115,038
Private Consumption (DKK per year) 223,321.7 0 606, 92,441.25
Subsidies (DKK per year) 217,190.9 0 1,163,651 245,533.9
Breed (1-Red Danish, 2-Danish Black&White, 3-JerdeMlixed) | 2.17 1 4 0.68
Peer-Group Effects

(#AMS Adopters/#Total Dairy Farms in Region) 0.04 0 0.37 0.07
Percentage of Hired Labor (%) 0.37 0 0.86 0.21

1: base year 2002, 2: 1 DKK = 0.135 Euro (31.122200

3: producer price index for agricultural materipla. 2003: 106.03, 2004: 109.64, 2005: 108.27, 2006.92;

general inflation % p.a. 2003: 2.1, 2004: 1.2; 2008, 2006: 1.9;

price index for milk and dairy products p.a. 20034.95, 2004: 105.29, 2005: 105.47, 2006: 103.92;
price index for machinery p.a. 2003: 106.03, 20®9.37, 2005: 112.83, 2006: 114.93 (sources: OHEIDmMark Statistic).
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Table 2 Estimates

model 1) sequential logit model 11) probit / mixed-effects logistic regression

(n = 1000) | coefficienf | robust se (n = 1000) coefficiént | robust se
decision to increase herdsize (logit 1) decision to increase herdsize (probit)

farm size farm size

milkquota 0.099** 0.026 milkquota 0.004*** 7.09e-04
milkquota x milkquota -3.350e-05***|  1.210e-05 milkota x milkquota -9.64e-05***|  9.43e-06
farmer characteristics farmer characteristics

age -1.065*** 0.187 age -0.162*** 0.054
experience 1.854*** 0.356 experience 0.104** 0.041
farm characteristics farm characteristics

debt of farm (estimat@) 2.505%** 0.696 debt of farm (estimate) -1.80e-07 1.56e-07
off-farm income (estimate) 0.029 0.016 off-farmante (estimate) -7.58e-06 6.86e-06
private consumption (estimate) -0.327 1.081 pricatesumption (estimate 9.73e-06 5.03e-P6
subsidies received (estimate) -0.025*** 0.004 hilagabr/total labor 3.589** 1.411
hired labor/total labor 31.408*** 8.635

herd characteristics yearly effects

breed 14.054*** 2.912 2003 -0.505 0.474
fodder 0.046*** 0.016 2004 -1.026* -1.93
veterinary expenses per cow -0.008*** 0.001 2005 4368 0.571
neighborhood/peer-group effect 2006 -0.192 0.649
weighted neighborhood adoption proxy | -21.071 | 18.965

yearly effects constant -0.380 0.628
2003 -8.756*** 3.264

2004 -5.430*** 1.669

2005 2.522%** 0.845

2006 -6.321** 2.995

risk effects

1st profit moment (mean) 0.749*** 0.173

X experience 0.022** 0.011

x weighted neighborhood adoption proxy 2511 2.989

2nd profit moment (variance) -0.177*+* 0.024

X experience 0.101*** 0.014

x weighted neighborhood adoption proxy -1.989* .22

3rd profit moment (skewness) -0.222%** 0.078

X experience 0.043*** 0.006

x weighted neighborhood adoption proxy 3.382* 1.758

4th profit moment (kurtosis) -0.031*** 0.009

X experience 0.008*** 0.001

x weighted neighborhood adoption proxy 0.558 2.687

previous innovation experience/organic farming adogon

organic farming (1-yes, 0-no) -2.636*** 0.639

X experience -0.520 0.056

x 1st profit moment -0.295* 0.148

x 2nd profit moment 0.212 0.164

x 3rd profit moment 0.147 0.142

X 4th profit moment 0.006 0.025

constant | 2829 | 5.290

1: * - 10%-, ** - 5%-, *** - 1%-level of significace.
2: due to likley endogeneity the estimates for ¢hemriables based on a instrumental variables ssige procedure (1V) are used.

28



Table 2 Estimates (continued)

decision to adopt automatic milking technology (logit 2)

decision to adopt automatic milking technology (me logistic regression)

1

(n = 1000) | coefficiedt | robust se (n = 1000) | coefficienf | robust se

farm size farm size

milkquota 0.012** 0.002 milkquota 4.21e-04** 1.87e-04

milkquota x milkquota -2.53e-06 6.03e-07 milkquetanilkquota -4.44e-08*** 1.58e-08

farmer characteristics farmer characteristics

age -0.129** 0.058 age -0.004*** 8.84e--4

experience 0.132%** 0.045 experience 0.004** 0.002

farm characteristics farm characteristics

debt of farm (estimat®) -0.851%** 0.231 debt of farm (estimafe) -0.024** 0.011

off-farm income (estimate) -0.011** 0.005 off-faimcome (estimate) -4.67e-04** 2.10e-04

private consumption (estimate) 0.611*+* 0.242 ptezaonsumption (estimate) 0.042* 0.016

subsidies received (estimate) 1.89e-04 0.005 sigissidceived (estimate) 9.75e-05 9.41e-(

hired labor/total labor -1.121 1.292

herd characteristics herd characteristics

breed -0.493** 0.217 breed -0.019** 0.008

fodder -0.002*** 8.33e-04 fodder -7.53e-05*** 3.01e-05

veterinary expenses per cow 0.002** 7.81e-04 viedeyi eXpenses per cow 6.77e-05** 3.11e-
yield per cow -1.41e-05 1.01e-05
labor per cow -3.38e-04 0.001

neighborhood/peer-group effect neighborhood/peer-group effect

weighted neighborhood adoption proxy | 7.142%* | 1.394 | weighted neighborhood adoption proxy | 0.413** | 016

yearly effects yearly effects

2003 -17.709*** 1.841 2003 -0.001 0.184

2004 0.148 1.212 2004 0.126%** 0.028

2005 -1.091* 0.624 2005 0.031 0.032

2006 18.289*** 1.401 2006 0.091* 0.037

risk effects risk effects

1st profit moment (mean) 2,447+ 0.702 1st prafibment (mean) 0.034**+* 0.003

X experience -0.173*** 0.044 X experience -0.008*** 0.001

x weighted neighborhood adoption proxy, -3.181 2.485| x weighted neighborhood adoption proxy -0.012 0.04

2nd profit moment (variance) -2.403*** 0.691 2nafir moment (variance) -0.021*** 0.006

X experience 0.123** 0.042 X experience 0.090*** 0.003

X weighted neighborhood adoption proxy 17.329*** 938 x weighted neighborhood adoption proxy 0.009**+* 0.004

3rd profit moment (skewness) -1.136%** 0.301 3rofirmoment (skewness) -0.003** 0.001

X experience 0.053*** 0.013 X experience 1.12e-05*** 7.95e-05

x weighted neighborhood adoption proxy 4,043*+* 345 x weighted neighborhood adoption proxy 0.059*** 0.023

4th profit moment (kurtosis) -0.147*** 0.444 4thgbit moment (kurtosis) -5.90e-05*** 3.10e-06

X experience 0.003*** 8.52e-04 X experience 3.72e-06** 1.62e-06

X weighted neighborhood adoption proxy 1.399*** 263 x weighted neighborhood adoption proxy 0.009**+* 0.003

previous innovation experience/organic farming adogon previous innovation experience/organic farmingadoption

organic farming (1-yes, 0-no) 3.569** 0.896 orgafarming (1-yes, 0-no) 0.064** 0.031

X experience 1.804*** 0.427 X experience 0.003*** 0.001

X 1st profit moment -4.622%** 1.364 X 1st profit ment -0.103*** 0.016

x 2nd profit moment 4.016*** 1.198 X 2nd profit memt 0.004**+* 0.001

x 3rd profit moment 0.429** 0.141 x 3rd profit mant 0.009*** 0.001

x 4th profit moment 0.059** 0.027 X 4th profit monte 0.002*** 2.66e-04
x weighted neighborhood adoption proxy 0.134** 20
soil/climatic cluster effects
cluster 2 -3.34e-04 0.052
cluster 3 0.049 0.046
cluster 4 0.031 0.034
cluster 5 0.006 0.034
cluster 6 0.030 0.042
cluster 7 0.011 0.034
random effects
weighted neighborhood adoption proxy 1 501 %+ 0.466
(28 groups)
farms (241 groups) 1.38e-05 0.566
time (5 groups) 1.835* 0.950
soil/climatic clusters (8 groups) 0.194 0.307
inverse Mill’s ratio (sample selection) 0.034** m2

constant | -68.349* | 19.397 constant 0.088 0.092

1: * - 10%-, ** - 5%-, *** - 1%-level of significace.

2: due to likley endogeneity the estimates for ¢hesriables based on a instrumental variables ssige procedure (1V) are used.
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Table 3 Diagnosis and Model Specification Tests

diagnosistests

model 1) sequential logit

model 11) probit / mixed-effects logistic regression

- Log-Pseudolikelihoogprobit] -34.405
Log-Likelihood ~98.843 Log-Likelihood[me logistic] -125.887

. I Wald chi2(12)probit] 113.19***

*kk
LR chi2(66)[overall specification] 343.97 LR chi2(1)[me logistic] 31 4QFk
successes completely determined 835/ 743 Pseudo R@robi] 0.731
[1st sequence / 2nd sequence]
McKelvey and Zavoina’s R2 0.997/0.661 McKelveylatavoina’s RZprobit / me logistic] 0.987/0.974
McFadden’s Adj. R2 0.910/0.831 McFadden’s Adj.[R8bit / me logistic] 0.629 /0.548
Count R2 0.998/0.952 Count R2obit / me logistic] 0.986 / 0.970
serzlal correlation / Runstest -5.32(not rejected) serzlal correlation / Runstefgirobit / me logistic] -17.40 / -15.88(not rejected in both cases)
H, = residuals follow random order Ho = residuals follow random order
. P 861.097*** . o . . 471.24%% [ 214 AQ*+*
net_e[]oscedastlmf[y / White's test (rejected, Huber-White-Sandwich robust het_eroscedastlcf[y / White’s tejptobit / me logistic] (rejected in both cases, Huber-White-Sandwich roh
o = homoscedastic error . ) Ho = homoscedastic error . h
estimator applied) estimator applied)

specification tests

model 1) sequential logit

model 11 stage 2) mixed-effectslogistic regression

sLR-tests on groupwise insignificance

Ho = first sequence variables have no significareatthi2(30))

Ho = second sequence variables have no significéett¢thi2(28))

Ho = farm size related variables have no signifiedfect (chi2(2))

Ho = farmer related variables have no significane&tffchi2(2))

Ho = time related variables have no significant effelai2(4))

Ho = farm characteristics related variables haveigwificant effect(chi2(5))
Ho = risk related variables have no significant effesi2(12))

Ho = previous innovation related variables have gaificant effect(chi2(6))
H, = climate/soil related variables have no significeffect(chi2(6))

623.02*** (rejected at 1%-level) | ---
48.02** (rejected at 5%-level) -
549.29*** (rejected at 1%-level)
180.75** (rejected at 1%-level)
61.08*** (rejected at 1%-level)
27.08*** (rejected at 1%-level)
55.10*** (rejected at 1%-level)
53.07*** (rejected at 1%-level)

51.40*** (rejected at 1%-level)
6.14** (rejected at 5%-level)
29.57*** (rejected at 1%-level)
15.64*** (rejected at 1%-level)
118.50*** (rejected at 1%-level)
75.60*** (rejected at 1%-level)

49.90*** (rejected at 1%-level)

1: * - 10%-, ** - 5%-, *** - 1%-level of significace.
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