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Introduction: During adulthood, the skin microbiota can be relatively stable if
environmental conditions are also stable, yet physiological changes of the skin
with age may affect the skin microbiome and its function. The microbiome is an
important factor to consider in aging since it constitutesmost of the genes that are
expressed on the human body. However, severity of specific aging signs (one of
the parameters used to measure “apparent” age) and skin surface quality (e.g.,
texture, hydration, pH, sebum, etc.) may not be indicative of chronological age. For
example, older individuals can have young looking skin (young apparent age) and
young individuals can be of older apparent age.

Methods: Here we aim to identify microbial taxa of interest associated to skin
quality/aging signs using a multi-study analysis of 13 microbiome datasets
consisting of 16S rRNA amplicon sequence data and paired skin clinical data
from the face.

Results: We show that there is a negative relationship between microbiome
diversity and transepidermal water loss, and a positive association between
microbiome diversity and age. Aligned with a tight link between age and
wrinkles, we report a global positive association between microbiome diversity
and Crow’s feet wrinkles, but with this relationship varying significantly by sub-
study. Finally, we identify taxa potentially associated with wrinkles, TEWL and
corneometer measures.

Discussion: These findings represent a key step towards understanding the
implication of the skin microbiota in skin aging signs.

KEYWORDS

microbiome, aging, face, multi-study investigation, wrinkles, TEWL (transepidermal
water loss)
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Highlights

• We confirm the positive link between chronological age and
skin microbiome diversity, but we also observed a global
positive association between microbiome diversity and
grade of Crow’s feet wrinkles, one of the key signs of skin
aging, although the relationship varied among the included
sub-studies. We additionally observed a negative link between
microbiome diversity and transepidermal water loss.

• The link between Crow’s feet wrinkles and microbial features
were explored while considering the effect of individual
studies and chronological age as a confounder, identifying
several potential biomarkers.

• Building a multi-study analysis using independent studies is a
valuable method to bolster sample sizes and address questions
not possible by individual studies alone. However, as the sub-
studies are often generated by different principal investigators
and methods, analysis relies on data harmonization and the
use of analytic tools that are able to account for those
differences.

1 Introduction

As the most exposed organ to the external environment, the
human skin harbors a highly diverse and individualized community
of microorganisms that can vary considerably across different body
sites (Costello et al., 2009; Oh et al., 2014) and over one’s lifetime. In
fact, skin microbial composition has been shown to be more
predictive of chronological age in adults than oral or gut
microbial composition (Huang et al., 2020). This is no surprise
given the many physiological changes that skin undergoes with age.
The development of skin microbial colonization after birth, along
with the maturation of the skin’s immune system ultimately
contributes to the establishment of skin homeostasis in childhood
(Capone et al., 2011). During puberty, around 10 years of age,
increased secretion of sebum on the face promotes colonization
of lipophilic bacteria, particularly Cutibacterium acnes, known to
participate to some extent to acne (Dréno et al., 2018; McLaughlin
et al., 2019) Studies have identified the dominance of this species in
teens and young adults aged between 15 and 25 years (Mourelatos
et al., 2007; Barnard et al., 2016). During adulthood, the skin
microbiota can be relatively stable if environmental conditions
are also stable (Oh et al., 2016). However, as people reach older
age (55–60 years), studies have found that their face skin microbial
communities shift with an increase in diversity (Jugé et al., 2018;
Kim et al., 2019; Li et al., 2020; Wu et al., 2020; Ma et al., 2021;
Howard et al., 2022), and a reduction in C. acnes reported to be
associated with several surface parameters changes such as reduced
sebum secretion (Shibagaki et al., 2017; Howard et al., 2022), and
increased skin dryness (McGinley et al., 1975). These patterns
appear to be accentuated among centenarians (Zhou et al.,
2023a). While the number of studies associating skin microbiome
changes with chronological age continues to grow, the microbiome
link with indicators of skin aging and skin quality remains
underexplored. This is an area important for consideration as the
microbiome represents most of the genes that are present on the
human body (estimated to be 100x the number of human genes

(Gilbert et al., 2018), offering both greater genetic diversity and
flexibility for manipulation than the human genome. Just as the
gut microbiome is emerging as an important factor of healthy
aging and even lifespan (Sonowal et al., 2017; Wilmanski
et al., 2021), a more detailed view remains to be investigated
to associate skin microbial signatures with youthful, healthy
skin quality.

Skin aging is a natural and intrinsic process that involves shifts
in endogenous processes (e.g., cellular metabolism, immune activity,
hormones) combined with external environmental factors such as
exposure to UV and pollution. Skin aging is characterized by a
change in immune function and a decrease in sweat and sebum
secretions, thus resulting in significant alterations in skin surface
physiology including an increase in pH and alteration of the lipid
composition (Cotterill et al., 1972; Pochi et al., 1979; Wilhelm et al.,
1991; Farage et al., 2008; Howard et al., 2022). These physiological
changes, in turn, may likely affect the skin microbiome. For example,
functional skin microbiome studies have identified differentially
abundant bacterial metabolism pathways between different age
groups with a predominance of amino acid metabolism pathways
in younger groups and amino acid degradation pathways in older
groups (Kim et al., 2019).

External factors such as stress, tobacco use, diet, air pollution,
and UV exposure account for 80% of the skin aging signs over time
(Yaar, 2006; Poljšak et al., 2012; Flament et al., 2013; Marionnet
et al., 2014; Rinnerthaler et al., 2015). Interestingly, these factors
have also been reported to be linked to skin microbial composition
and functional changes which in turn may be one mechanism by
which skin quality is impacted. For example, in the context of air
pollution, a shift in microbiome metabolic function was associated
with signs of premature skin aging and dry skin (Leung et al., 2020).

Interestingly, although there is now evidence that the skin
microbiome changes with chronological age, chronological age
may not directly relate to “apparent age”, which is defined by
parameters of skin aging signs and surface quality (e.g., texture,
hydration, pH, sebum, etc.). For example, older individuals can have
young looking skin (young apparent or perceived age) and young
individuals can have more severe skin aging signs than the average
population, thus presenting an older apparent age (Flament et al.,
2021). Therefore, skin microbial markers of chronological age may
not systematically overlap with those for apparent age.

A better understanding of the relationship between the skin
microbiome and skin quality and aging is a key path to the
development of new microbiome-based solutions to interfere in
the skin aging process to improve skin quality and appearance as the
populations age. Here, we present a framework for the identification
of microbiome signatures associated with skin aging signs using a
multi-study analysis of 13 microbiome and clinical datasets totaling
more than 1000 subjects.

2 Materials and methods

2.1 Data description and study participants

Microbial sequence data and metadata (data about the samples
and subjects) from 13 different observational cohort studies were
aggregated into a multi-study analysis. A summary of the studies is
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provided in Table 1, describing the technical and cohort
characteristics for each study.

The subjects in the studies were all females between the ages of
18–70 years. They were recruited and sampled under similar
protocols (Supplementary Table S1). These non-interventional
studies were approved by the necessary Institutional Review
Board or Research Ethics Committee, depending on the
countries. Each study was conducted according to the principles
expressed in the World Medical Association Declaration of Helsinki
and national and EU regulations. All volunteers provided written
informed consent prior to any study-related procedure. All
participants provided information regarding health status,
medical history, and daily habits. The participants were non-
smokers, did not receive antibiotics or systemic antifungals at
least 1 month prior to sampling, did not have acute cutaneous
disorders, nor had used depigmenting/whitening or exfoliating
products at least 1month prior to sampling. To standardize the
skin condition, the participants were asked to wash their face with a
provided neutral soap without anti-bacterial compounds at least
1 day prior to sampling. Last, shampoo and soap were applied 48 and
24 h respectively before sampling. No other products were allowed
on the face until sampling was performed. More details about the
studies are available in Supplementary Table S1.

2.2 Skin sampling and measurements

Skin sampling was conducted as reported earlier (Leung et al.,
2020). Briefly, microbiota sampling was conducted in a climate-
controlled room at 21 ± 1°C and 60% humidity. The samples for
microbiome analysis were collected by using sterile cotton-tipped
dry swabs pre-moistened with a 0.15 M NaCl with 0.1% Tween
20 solution. Swabs were then rubbed firmly on the cheek for 60 s to

cover a surface area of 2 cm2. After sampling, each cotton swab was
placed into a cryotube and immediately flash-frozen in liquid
nitrogen and stored at −80°C.

Skin quality was determined by three main measurements: grade
of Crow’s feet wrinkles (GCFW), hydration, and transepidermal
water loss (TEWL). GCFW was determined by clinical scoring the
Crow’s feet wrinkles on a standardized 1-6 point scale as described
earlier (Qiu et al., 2011; Flament et al., 2020), hydration of the upper
epidermal layer was measured on the cheeks by a Corneometer®

CM825 (Courage and Khazaka Electronic) which measures the
change in the dielectric constant due to skin surface hydration,
and TEWL was measured on the cheeks with a Tewameter® TM300
(Courage + Khazaka ElectronicGmbH), which measures water
evaporation from the skin (Berardesca et al., 2020)

2.3 16S ribosomal RNA sequencing

Genomic DNAwas extracted from the frozen swabs by using the
PowerSoil DNA Isolation kit (MOBIO Laboratories Inc., Carlsbad,
United States) according to the manufacturer’s instructions (Soares
et al., 2016). For all studies, the variable region 1-3 of the 16S rRNA
gene was amplified using previously described methods (Massiot
et al., 2021). To prepare 16S amplicon libraries, 2.5 μL of DNA was
used for a first PCR amplification step of 25 cycles with primers V1-
27S and V3-535R using the KAPA HiFi HotStart ReadyMix PCR kit
(Roche Diagnostics, Laval, Québec, Canada). After purification with
Agencourt AMPure XP beads (Beckman Coulter, Mississauga,
Ontario, Canada), a second PCR amplification step was
performed to incorporate specific index adaptors for
multiplexing. The quality of final libraries was examined on a
TapeStation 2200 (Agilent Technologies, Santa Clara, CA,
United States) and quantified using the Qubit 3.0 fluorometer

TABLE 1 Summary characteristics of the 13 skin microbiome datasets included in the multi-study analysis.

Study ID Age
range

Country Ethnicity Collection
date

#
volunteers

Grade of wrinkles
range

TEWL
range

Corneometer
range

1 55–69 Mauritius Asian Jun 2018 30 4–6 NA NA

2 55–69 Mauritius Asian Jun 2018 32 4–6 NA NA

3 55–65 Singapore Asian Sept 2018 27 NA 11.10–21.60 NA

4 55–65 France Caucasian Sept 2018 29 3–4 9.63–21.35 NA

5 56–65 Japan Asian Jan 2019 28 NA 7.75–30.49 NA

6 19–43 France Caucasian Nov 2017 26 NA 10.48–25.25 28.58–77.82

7 19–44 France Caucasian Jan 2018 32 NA 9.69–28.38 NA

8 18–45 France Caucasian Mar 2017 40 NA 9.42–31.40 34.40–83.80

9 19–44 France Caucasian Sept 2018 32 NA NA 33.80–75.90

1131 25–45 China Asian Oct 2015 200 1–6 NA 24.80–79.60

12 20–55 United States Not
collected

Nov 2017 103 NA 7.40–24.20 21.26–75.97

13 30–45 United States Not
collected

Dec 2017 52 NA 4.03–25.10 49.36–75.07

14 33–50 France Caucasian Jun 2016 29 0–3 9.90–28.20 37.00–86.00
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and/or the Quant-iT dsDNA Assay (ThermoFisher Scientific,
Canada). Subsequently, 16S libraries were pooled together in
equimolar ratio and sequenced on an Illumina MiSeq system for
300bp paired-end sequencing at the Genomics Center, CHU de
Québec-Université, Laval Research Center, Canada. Study 11 was
sequenced using Illumina MiSeq system for 300bp paired-end
sequencing at the School of Energy and Environment, City
University of Hong Kong, Hong Kong SAR, China as
previously described (Leung et al., 2020) (Table 1;
Supplementary Table S1).

2.4 Data processing

Metadata variable names were standardized for the same
fields that differed among studies (e.g., TEWL_right_face vs.
TEWL_right_cheek), and those that contained values for more
than 40% of samples were retained for further analysis. Sequence
data from the 13 studies were processed consistently through the
web tool Qiita (Gonzalez et al., 2018), which utilizes functions from
the widely used microbiome data analysis tools Qiime (Caporaso
et al., 2010) and Qiime2 (Bolyen et al., 2019). To standardize the
input data for downstream analysis, sequences were trimmed to
250 nucleotides and put through a noise reduction process called
deblurring (Amir et al., 2017). Taxonomy was assigned to each
resulting unique amplicon sequence variant (ASV) using a classifier
that was pre-trained on the Silva database (release 138) (Yilmaz
et al., 2014). The resulting feature tables denoting read counts of
each ASV for each sample, were combined, and reads that classified
as “Mitochondria” and “Chloroplast” were filtered from the dataset
prior to downstream analyses.

2.5 Descriptive analysis

Spearman correlation (confidence level = 0.95, alternative
hypothesis = two sided) and linear mixed effects models were
used to determine whether the metadata fields of interest (age,
GCFW, TEWL, and corneometer) co-vary with one another. All
descriptive analyses of the microbiome data were performed using
Qiime2. Sequences were rarefied to 1000 reads per sample prior to
any downstream analyses and included calculation of alpha diversity
(Shannon), which captures the amount of microbial diversity
present in each sample. Spearman correlation was used to show
the direction and strength of the relationship between Shannon
diversity and the metadata fields of interest in the collective dataset.
A linear mixed effects model was utilized to account for study as a
random variable. These statistical tests were performed using R
version 4.1.2 and plotted using the R package ggplot2 (v.3.3.5).

Preliminary analysis of beta diversity (e.g., Unweighted/Weighted
Unifrac), which captures differences between samples, indicated that
there is a strong study effect, which we sought to reduce by collapsing
ASVs to their assigned species. This resulted in 5,666 species-level
features (down from 131,395 ASVs). We then assessed the amount of
variation explained by factors of interest in the species-collapsed data
using a permutational multivariate analysis of variance
(PERMANOVA) (Anderson, 2001). Downstream analyses were
conducted with the collapsed table of features.

2.6 Differential abundance analysis

In order to identify taxa associated with age and aging signs, we
performed differential abundance analyses using BIRDMAn
(Bayesian Inferential Regression for Differential Microbiome
Analysis) (Rahman et al., 2023). Given the known study effects
and age being highly correlated with GCFW, both study ID and age
were used as covariates in the model. Additionally, feature tables
were filtered to a prevalence of 15 across samples for model
compilation. All models were run with the following parameters
(num_iter = 200, num_warmup = 50, chains = 4).

BIRDMAn outputs two values of interest. First, the Gelman-Rubin
diagnostic (R-hat) is provided as ametric to evaluate reliability of model
differential estimates. R-hat compares the variance of Markov Chain
Monte Carlo chains run in parallel and checks that the chains have
converged on the same distribution. Second, the differentials show the
log-fold change of individual features with respect to the variables
included in the model (i.e., study, age, GCFW, TEWL, and
corneometer), which are used to rank the features. Effectively, the
top ranked features are those that show the highest log fold change with
the changing variable, and thus are the most associated with, for
example, higher GCFW. Diagnosis of the negative binomial models
was completed using built in functions for chain convergence (R-hat),
log pointwise predictive density, and posterior predictive checking.

2.7 Identifying microbial taxa of
potential interest

Using the feature ranks output by BIRDMAn (Rahman et al., 2023),
we iteratively selected the top n and bottom n features (taxa) and
calculated the log-ratio of their abundances. We calculated log-ratios
(i.e., n features in the numerator over n features in the denominator),
instead of the log-fold change of individual features, to account for the
compsitional nature of microbiome data (Morton et al., 2019). We then
calculated the Spearman correlation of these log-ratios with the target
variable (i.e., GCFW, TEWL, or corneometer), and determined the
optimal combination of the top n and bottom n ranked taxa that
maximized the correlation.

3 Results

3.1 Metadata harmonization

Standardization of metadata parameters across studies resulted
in sample sizes of n = 988, 402, 551, and 621 for age, GCFW, TEWL,
and corneometer respectively. TEWL and corneometer were
relatively evenly distributed across studies (Supplementary Figure
S1). Host age and GCFW showed uneven distributions, with some
studies covering restricted ranges. However, the studies collectively
covered a wide range of ages (18–70 years old), and GCFW
(Supplementary Figure S1). As several of the studies included
samples from both the right and left cheeks, samples were
filtered to only include one sample per individual (left cheek for
those with both samples) to avoid bias for statistical analyses. Data
harmonization resulted in final sample sizes of n = 653, 314, 305, and
430 for age, GCFW, TEWL, and corneometer respectively.
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3.2 Descriptive analysis of microbiome
diversity and composition with skin
parameters

Despite the localization of value ranges for host age and GCFW by
study, when analyzed both collectively and by study, we found that host
age was expectedly and significantly correlated with GCFW (Spearman
correlationR= 0.58, p= 3.88E-29; linearmixed effectsmodel β= 0.12, p=
1.8E-31). However, such a relationship was not detected between age and
TEWL (Spearman correlation R = −0.09, p = 0.12; linear mixed effects

model β = −0.04, p = 0.22) or corneometer measurements (Spearman
correlation R = −0.03, p = 0.65; linear mixed effects model
β = −0.05, p = 0.54).

Host age and GCFW were both positively correlated with
microbial diversity (Shannon’s index) (R = 0.27, p = 7.4e-13; R =
0.33, p = 3.6e-09; Figures 1A, B) when using the dataset collectively
without accounting for inter-study variation. When the study
variable was included as a random effect, host age remained
significantly and positively related to diversity (β = 0.02, p =
0.021), whereas GCFW did not (β = 0.02, p = 0.84). Of note, we

FIGURE 1
Microbial skin diversity correlations with age, grade of wrinkles, TEWL, and corneometer. Scatterplots show alpha diversity (Shannon’s index) among
the groups with increasing age (A), grade of wrinkles (B), TEWL (C), and corneometer (D). Show in the inset are the Spearman correlation values (R, p) for
the full dataset, along with the statistics for a mixed effects model [Est (β), p] using study as a random effect. Lines show a fitted regression line for each
study, and shaded areas show the 95% CI. Point colors represent study and shapes represent ethnic groups.
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observed a significant negative relationship between microbial
diversity and TEWL (R = −0.19, p = 0.001; β = −0.05, p =
0.0067; Figure 1C). No significant relationship was detected
between microbial diversity and corneometer values (R = −0.05,
p = 0.5; β = 0, p = 0.91; Figure 1D).

Variation in microbiome composition was also significantly and
most strongly affected by the study variable (PERMANOVA R2 = 0.51,
p = 0.001), followed by age (R2 = 0.08, p = 0.001), GCFW (R2 = 0.07, p =
0.001), and TEWL (R2 = 0.06, p = 0.001). Corneometer did not
significantly explain microbiome variability (R2 = 0.01, p = 0.084).

FIGURE 2
Plots showing the log ratios of the top n ranked taxa over the lowest n ranked taxa as identified by Birdman to be associated with (A) grade of
wrinkles, (C) TEWL, and (E) corneometer. The number of taxa used in the log-ratios were those that maximized the correlation with grade of wrinkles (top
22 over the bottom 13 taxa), TEWL (top 1 over bottom 12), or corneometer (top 4 over bottom 14). Log-ratios are graphed as a function of the variables of
interest as well as age for those same taxa (B, D, E). The Spearman correlation values (R, p) are presented in each plot. Each point represents one
sample, with colors indicating study.
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3.3 Differential abundance of bacterial taxa
associated with skin parameters

Differential abundance analysis using BIRDMAn was conducted to
identify taxa associated with age, GCFW score, and measurements of
TEWL and corneometer. Including study ID and age as covariates in the
models resulted in microbial taxa ranked by their association with the
specific variable of interest. The full set of results from the BIRDMAn
analysis can be found in Supplementary Tables S2–S5. First, the list of
taxa was reduced to focus on those of highest potential importance, by
analyzing log-ratios of the taxa most associated with higher values
(highest ranked) against thosemost associated with lower values (lowest
ranked) for each of the skin parameters. For GCFW, we found that a log
ratio of the 22 highest ranked taxa against the 13 lowest ranked taxa
maximized the correlation with GCFW (Figure 2A; R2 = 0.31, p < 0.05).
Plotting the centered-log-ratio for individual taxa allowed us to see their
specific relationship with GCFW more clearly (Supplementary Figures
S3–S6). While many of these taxa were at low prevalence, a few of
the taxa were present in a larger number of samples, thus marking
potential taxa of interest. We found that samples from skin with lower
grades of wrinkles were associated with some commensal taxa such as
the genera Staphylococcus, Kocuria, Peptostreptococcus, and Lysobacter,
(Figure 3A). (Tanno et al., 2021; Lebeer et al., 2022; Zanchetta et al.,
2022) Our results also identified environment-related bacteria including
Brevibacterium and Kaistella that are often associated with skin
alterations and inflammatory conditions such as psoriasis and senile
xerosis (Huang et al., 2021; Li et al., 2021). These taxa were enriched in
the samples from subjects with higher grades of wrinkles (Figure 3A). It
should be noted that a second taxon assigned to Brevibacterium was
identified as being associated with lower GCFW as well, suggesting
effects on skin may be different depending on the strain, as previously
reported for the skin commensal S. epidermidis (Landemaine et al.,
2023).Meanwhile, although age and grade of wrinkles are highly related,
the log-ratio of wrinkle-associated taxa did not show a similar positive
correlation with age, but rather a significant negative relationship
(Figure 2B; R2 = −0.13, p = 0.0232).

A similar analysis, BIRDMAn ranking followed by centered log-
ratio plotting, was performed for the parameters TEWL (Figures 2C, D;
Figure 3B) and corneometer (Figures 2E, F; Figure 3C), leading to
a reduced list of taxa associated with these measures as well. Taxa
most associated with low TEWL included some typical of skin
such as Staphylococcus and Bacillus, but nearly all were of relatively
low prevalence. The taxa associated with high corneometer measures
included four skin typical taxa: Janibacter, Roseomonas, Sphingomonas,
and Lactobacillus. Surprisingly, Cutibacterium, while the most
abundant genus in the dataset (and in the cheek microbiome as
shown in previous studies), showed no significant relationship with
age, only trended negatively with increasing GCFW (R = −0.31, p =
1.3e-08; β = −0.1, p = 0.18) (Supplementary Figure S2), and was not
detected as one of the taxa showing strong association with the skin
aging signs and quality parameters analyzed in thismulti-study analysis.

4 Discussion

Conducting a multi-study analysis can be a powerful approach,
allowing for the investigation of questions not able to be addressed
by individual smaller studies. For microbiome studies, which gather
large and valuable amounts of data, it allows for secondary analysis
while bypassing the need to generate new expensive datasets
(Agostinetto et al., 2022). It can also help to overcome the issue
of low generalizability of results, as many studies tend to focus on
just one population. Here we used a 3-step framework to address the
link between the skin microbiome and three signs of aging: 1)
deposit sequence data from 13 different studies into Qiita, a web-
based platform designed to facilitate microbiome meta-analyses; 2)
curate the corresponding metadata, improving the harmonization of
the data across the studies and 3) use Qiita’s standardized
bioinformatic pipeline for data processing and analysis. The
present report shows that while data harmonization remains a
challenge, it can be tackled in part by appropriate bioinformatic
tools and methods.

FIGURE 3
List of taxa most associated with (A) higher grade of wrinkles (top 22 listed) and lower grade of wrinkles (last 13 listed), (B) higher TEWL (top 1 listed)
and lower TEWL (last 12 listed), and (C) higher corneometer (top 4 listed) and lower corneometer (last 14 listed), plotted with their differentials for the
variable of interest (shown as diamonds) and age (shown in circles). Prevalence (number of samples in which the taxa is present) is shown by the
color gradient.
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Despite large study effects, we were able to assemble a multi-study
analysis to reproduce patterns of skinmicrobiome variation consistent
with previous results while also identifying new microbiome
associations with skin quality and aging parameters. Consistent
with much of the existing literature, our results showed that
microbial diversity on cheek skin was higher in older individuals
than in younger adults, and that Cutibacterium trended lower in older
individuals (Kim et al., 2019; Huang et al., 2020; Larson et al., 2022).
Additionally, we observed that microbial diversity tended to decrease
with decreasing skin barrier function as measured by increasing
TEWL. This result was consistent with an earlier report showing a
similar correlation (Park et al., 2021).

Using models that can account for multiple known variables with
appreciable effect size such as study and age (e.g., Huang et al., 2021), we
were able to identify taxa that appear to bemore related to an aging sign
(GCFW) and skin quality parameters (TEWL, corneometer) than to
chronological age. While previous studies have reported correlations
between the skinmicrobiome and clinical parameters such as UV spots,
dark spots and skin hydration (Kim et al., 2019), it is difficult to
determine whether these patterns are due to the aging process per se,
rather than to the physiological manifestations of aging. Additionally,
prediction models that have been applied to hydration measures
(corneometer) with good performance involved samples from the
leg instead of the face (Carrieri et al., 2021). In the present analysis,
we focused on samples from cheek skin, which is the key body site for
apparent age. More recent studies are shedding additional light on
associations of the skin microbiome, notably particular clades of S.
epidermidis or C. acnes, with biophysical traits of skin aging, such as
collagen quality and quantity (Zhou et al., 2023a; Xia et al., 2023). Our
study adds to this nascent, but growing body of knowledge aiming
to better understand the implications of the microbiome in skin aging,
by identifying the changes associated with signs of skin aging, rather
than chronological aging alone. It sets the path for new studies to
further characterize and validate new microbiome biomarkers of skin
aging signs.

We found that taxa that correlated with high GCFW include mainly
environmental bacteria such asKaistella and other taxa from the phylum
Actinomycetes (Brevibacterium and Microbacterium). While some of
these taxa may be found on healthy skin (Khayyira et al., 2020), a high
abundance on the skin has previously been linked to skin alterations due
to air pollution (Leung et al., 2020) and skin inflammation (Huang et al.,
2021; Li et al., 2021). For example,Microbacteriumwere previously found
on the skin of a population exposed to high levels of polycyclic aromatic
hydrocarbon pollutants (Leung et al., 2020) and in the dermis of patients
with toenail infection (Li et al., 2021). Brevibacterium was reported to be
predominant in skin samples of psoriatic lesions (Stehlikova et al., 2019),
senile pruritis subjects (Huang et al., 2021) and on skin of elderly
bedridden subjects often presenting dry skin with possible localized
infected wounds (Nagase et al., 2020). Overall, several of the bacteria
associated with high GCFW in our study have previously been identified
in the context of skin microbiome dysbiosis associated with several skin
inflammatory conditions.

Our findings also revealed key commensal gram-positive bacteria
associated with low GCFW, including taxa from the two major skin
phyla Firmicutes and Actinobacteria. Examples include Staphylococcus
(taxon classified as Staphylococcus equorum) as well as Kocuria,
Peptostreptococcus, and Lysobacter, which have been shown to be
both skin and environment-related taxa. These taxa have been

previously reported as being associated with anti-inflammation and
enhanced skin health and appearance (Lebeer et al., 2022; Zanchetta
et al., 2022). One study investigating the microbiome composition of
hyperpigmented skin reported a possible protective effect of Kocuria
that was predominant in skin with less hyperpigmentation and was
identified as the most discriminant bacteria of dark spots (Zanchetta
et al., 2022). Notably, one taxon classified as Lactobacillus was
associated with higher corneometer measures in our analysis
(Figure 3C). Such lactic acid bacteria have been reported to have
anti-inflammatory benefits and capabilities in enhancing skin health
and appearance when used as probiotics (Im et al., 2016; Lebeer et al.,
2022). For example, the topical application of Lactobacillus strains was
shown to reduce inflammatory lesions related to acne, presumably
through modulating the immune response (Lebeer et al., 2022). These
taxa associated with lower GCFW and higher corneometermeasures in
our study may represent potential biomarker candidates of younger
skin appearance.While we were surprised thatCutibacterium, themost
abundant skin taxon in our dataset, was not among those differentially
associated with the parameters investigated in our study, it might be
because this taxon is associated with other skin aging parameters not
included in our study such as dark spots (Shibagaki et al., 2017; Misra
et al., 2021), sebum level (Shibagaki et al., 2017), collagen (Zhou et al.,
2023a), or other types of face wrinkles.

Altogether, the work presented here provides for the first time
specific microbial features associated with GCFW, skin barrier function
as measured by TEWL, and skin hydration measured by corneometer,
while considering chronological age as a potential confounder. As with
anymulti-study analysis where independent studies designed to answer
specific questions are combined, our study was limited by study effects,
the causes of which may include differences in participant recruitment,
sample collection, storage, reagents, and sequencing protocol. However,
the identification of trends consistent with existing literature despite
study effects suggest that our results may bemore generalizable to other
studies than results reported in single studies alone. Another limitation
was the use of 16S amplicon technology, which while providing an
adequate representation of the skin microbial community, limits our
ability to gain reliable species level resolution or functional insights. In
our study, different members of the same genus (e.g., Brevibacterium,
Staphylococcus, Corynebacterium) were found as associated with
opposing measures, for example, both high and low GCFW,
suggesting differential association at the species or strain levels.
Strain or isolate-dependent effects have been reported in other
studies, such as for Staphylococcus epidermidis and Cutibacterium
acnes in a frailty study in older adults (Larson et al., 2022), or for S.
epidermidis’ effect on the structure of skin cells (Landemaine et al.,
2023). Therefore, further studies using other omics and importantly,
experimental research (in vitro, ex vivo, and in vivo), are needed to
validate our findings. For example, metabolomics could be used to
identify the metabolites associated with aging-related microbial
biomarkers, offering potential product opportunities to rebalance the
skin microbiome for healthier looking skin. Alternatively, meta-
transcriptomics could offer insight into the genes expressed in
aging-related microbes, offering targets for genetic engineering in
other commensal strains. Finally, our analysis focused on studies of
themicrobiome on the skin surface layer as these are themost common
due to ease of non-invasive sampling. However, it may be important for
future studies to consider howmicrobesmay be involved in aging of the
lower skin layers, such as impacts on collagen production by fibroblasts
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of the dermis, especially as previous studies have shown that there are
microbial interactions that occur in the lower layers of the skin either
directly (Nakatsuji et al., 2013) or through metabolites (Yu et al., 2019).
Our study provides the foundation and framework for these types of
future clinical and in vitro research to identify new microbiome
biomarkers of apparent skin age and to develop new skincare
solutions promoting higher skin quality during aging.
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