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The plasma as a phase conjugate reflector

. Nebenzahl

Racah Institute of Physics, Hebrew University, Jeruselem, Israel

Amiram Ron,® David Tzach, and Norman Rostoker
Physics Department, University of California, Irvine, California 92717

(Received 29 September 1987; accepted 19 April 1988)

Plasma is a nonlinear medium and two waves propagating in it interact electromagnetically
with each other. If the plasma is pumped by two strong counterstreaming waves of equal
frequency, and a third wave enters, the nonlinear interaction generates a fourth wave, phase
conjugate to the third wave. This interaction becomes very significant if the frequency and
wave vector differences between the third wave and one of the pump waves resonate with the
frequency and wave vector of the ion acoustic mode of the plasma. This resonance can be
predicted from a fluidlike description of the plasma, but it is shown that the Vlasov description
can provide more details of behavior near the resonance. Possible applications of the emergent
technology range from improved focusing of radiation in hyperthermia therapy of cancer to
the formation of a microwave laser between a phase conjugate plasma reflector and a mirror,
for improved radar imaging. Another application is cordless, self-guiding, power transmission.

I. INTRODUCTION

There has been much interest recently in nonlinear in-
teraction of electromagnetic (EM) waves with matter,
which lead to the phenomenon of optical phase conjuga-
tion."? In this process a material body, e.g., solid or liquid, is
stimulated by electromagnetic waves in such a way that an-
other EM wave, a “signal” wave, which is incident into the
body, is reflected from the system with its wave vector re-
versed, and its phase conjugate. The phase conjugate “mir-
ror” reflects the signal beam, and causes the wave to retrace
its original path in a time-reversed manner.

In optics there are several methods to produce phase
conjugate reflections (PCR) by using the nonlinear re-
sponse of various materials to electromagnetic radiation.**
In the last ten years many reports were published on both
theoretical and experimental results of PCR in the optical
and infrared regions of frequencies (see Ref. 1, and more
recently Ref. 4). PCR can be obtained by the processes of
stimulated Brillouin and Raman scattering, where a very
strong signal excites an internal mode of the medium, and is
reflected with its phase conjugate. The most promising pro-
cess for PCR is four wave mixing (FWM), where the system
is exposed to two strong pump EM waves, and a weak signal
wave is PC reflected.

Nonlinear optical interactions in plasmas have attracted
attention since the early 1960’s (see Ref. 3, Chap. 28, and
references cited therein). It is relevant to mention here the
following groups of studies: (i) mixing of EM waves in the
optical region,’ (ii) parametric instabilities of EM radiation
in plasmas,® and (iii) laser induced heating.”

The nature of the nonlinear interaction in a plasma is
relatively predictable and calculable from first principles. If
a few EM waves are incident upon a plasma, the charged
particles’ motion is perturbed in a nonlinear way so that
collective modes are excited, and new EM waves are genera-
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ted and emerge out of the system. Most of the works con-
nected with nonlinear interaction of radiation with the plas-
ma were concentrated on the laser heating and parametric
instabilities.® In these cases strong EM waves are incident
upon the plasma, and the interest is in the nonlinear response
of the system, and not so much the outcoming waves. In the
present work our main concern is the relation between the
scattered EM waves and the incident waves.

The main body of studies of scattering of EM waves, due
to nonlinear interaction in plasmas, concentrated on stimu-
lated Brillouin scattering (SBS) and stimulated Raman
scattering (SRS) in laser-irradiated plasmas. In these cases
the threshold conditions for the parametric instabilities were
investigated using nonlinear response theory.® The aspect of
getting a phase conjugate scattered wave from SBS, which
had been discussed by Zeldovich e al,” was later investigated
in plasmas irradiated by strong laser sources. '® The essential
point here is that a very strong incident EM wave stirs up the
plasma, and a scattered wave can be generated with its phase
conjugate to the incident beam. No amplification can occur,
and the reflected PC wave is usually much weaker than the
signal.

If the plasma is exposed to more than one wave, a phase
conjugate wave can be reflected from the system. Plasma
density modulations were observed by mixing laser beams,'!
as predicted in early theoretical studies. The analysis of de-
generate four wave mixing (DFWM) in plasma was report-
ed by Steel and Lam.'? They have calculated the third-order
susceptibility of a plasma, under the influence of three EM
waves with the same frequency. The dynamics of the plasma
in the presence of the three waves was studied in terms of a
two component (ion and electron) fluid description. If this
susceptibility is used for a configuration of two counterpar-
allel strong pump waves, and a small signal wave, a phase
conjugate reflection occurs, with the reflected wave propor-
tional to the third-order susceptibility. They conclude that
the plasma is a highly viable medium, but the DFWM meth-
od is too weak. The effect of collisions on the DFWM in
plasma was reported recently.'
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In the present paper it will be demonstrate that a plasma
can be used as a PCR for radiation in the subcentimeter
region if the FWM is almost degenerate. It is shown that a
plasma of easily attained properties can play the role of both
phase conjugate reflector and amplifier, i.e., the reflected
radiation may be enhanced with respect to the incoming sig-
nal.'* As in the DFWM configuration of PCR two counter-
parallel strong pump waves of the same frequency run into
the plasma continuously. A small signal EM wave is incident
upon the plasma with its frequency very slightly shifted with
respect to the pump frequency, in such a manner that a col-
lective mode of the plasma is excited by the mixing of the
signal and one of the pumps. In this way, the nonlinear re-
sponse of the plasma is enhanced because of the resonance
with the collective excitation. The scattering of the second
pump from the excited plasma generates a wave phase conju-
gate to the signal. This is a process of parametric amplifica-
tion of the reflected wave. While in most optical systems the
response of the nonlinear medium (say, a crystal) is quite
slow, here the response is fast, being determined by the rise
time of the collective excitation. It should also be pointed out
that the natural frequency range of a gaseous plasma is far
below the optical region, and can be as low as microwave
frequencies.

In Sec. II we describe the system and indicate the basic
formalism that we use. The plasma is studied in the Vlasov
description, and then compared to the results of the fluid
description. A general perturbation scheme is outlined for
the solution of the third-order response of the plasma to the
three incoming waves. In Sec. ITI we perform the actual cal-
culations using some simplifying physical assumptions.
After reviewing the linear response, we investigate the elec-
tron density, which is produced by the mixing of two EM
waves in the plasma. The third-order current response is
now generating the new EM wave, which is the phase conju-
gate reflection of the signal. We conclude with a discussion
of the results.

1. DESCRIPTION OF THE SYSTEM

We consider a fully ionized plasma in a volume V. The
average density n, of electrons is equal to that of the singly
ionized ions. The electron temperature is T, and that of the
ions is T,. The plasma is assumed to be homogeneous and no
external magnetic field is present. Three electromagnetic
(EM) waves of similar frequencies are sent into the plasma,
as depicted in Fig. 1. The EM waves are arranged so that two
countermoving pump waves @ and b run in the plasma con-
tinuously, and a third wave, the signal wave s, is incident to
the plasma in a different direction. The angle between the
signal and pumps can be arbitrary. However, if we choose
90°, the reflected signal power is doubled because of the sym-
metry. (At any other angle, two different gratings are gener-
ated in the plasma and two different wave fronts can be re-
flected.) A fourth wave c is generated by the stimulated
plasma in the opposite direction from the signal wave. The
purpose of the present paper is to calculate the strength of
this generated wave.

We shall consider here only the case when the three
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FIG. 1. The geometry of phase conjugation in the plasma. The pump waves
aand bare counterpropagating, and the reflected wave is phase conjugate to
the signal wave §.

incident waves are almost degenerate in their frequencies.
Together with the generated fourth wave we have a system of
so-called four wave mixing (FWM), with the plasma
playing the role of the nonlinear medium. This method of
producing a phase conjugate reflector is termed almost de-
generate FWM.

A. Equations of motion

Outside the plasma we have three incoming EM waves
and one outgoing EM wave. Inside the system each of the
incoming waves turns into a normal mode of the plasma,
that is, a linearized self-consistent solution of the plasma
equations, which matches the external waves on the bound-
ary. The outgoing wave is generated inside the plasma by
these internal modes.

The plasma is described in terms of the Vlasov equation
for the distribution function f, (r,z;v) of the ath species
(a = efor electrons and a = I forions) in positionr, time ¢,
and velocity v, i.e.,

9 4L, +i"—(E+iv><B) i F el
ot 2 c av
Here g, and m_, are the charge and mass of the ath species, ¢
is the speed of light, and E(r,7) and B(r,?) are, respectively,
the electric and magnetic fields in the plasma. Alternatively
and also for comparison, we may also study the plasma using
a fluid description. With n,, (r,t) the particle density, v, (r,?)
the velocity field, and p, (r,?) the pressure, we write the con-
tinuity equation

a

—n, + Ve (n,v,) =0, (2)
at

and Newton’s equation
iﬂ,: o ) Vpa+q—“(E+lva). (3)
dt m,n, m, c

We will take the pressure to be p, = T,n,, where T, is the
temperature (in energy units) of the a species and assumed
to be constant. The two descriptions are very useful when
studying nonlinear behavior, and are related by
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n,,:J.a”vj;, navazj-d:‘vvf,,. (4)

The electric and magnetic fields are given by Maxwell’s
equations:

VXE= — L+ 2B, VE=dnp,
c at 5)
vxB=L9 g+ 4, vp-o,
c ot c
with the charge and the current densities given by
p = ZQQna! j___ Z qannva s (6)

This set of equations is now to be solved in the presence
of the three external EM waves:

E*(r,t) = Z E*Y cos(k;'r —w;t + ¢,) . (7N
i=abs
Here E * is the amplitude of the ith wave, which is assumed
to be small, i.e.,

& = (e/mc)E ™V /w, <1, (8)

with e and m the electron’s charge and mass. The solution
will be seen to consist of an outgoing wave with amplitude
proportional to the product of E_E E,, and thus of third
order in £ of Eq. (8).

B. Perturbation hierarchy

In principle, since we have a small expansion parameter,
we can attempt to find a solution using a perturbation hierar-
chy of the Vlasov equation along the following lines. We first
introduce Fourier transforms in space and time, i.e., for a
real function F(r,t) we write

1 do ;
F 7 et B rl:-r—m!Fk' : 9
(rt) V;fzﬂe (k,@) (9)

Using condensed notations

1 dw
k= = — _ 10
k,w and Z: V; 5 (10)
we write Eq. (1) as
(@ — k), (sv) +f-q“—§ (E(k — k)
m, T
1 ; d -
+LyxBk—k ))-—f,,(k W) =0, an
c v

and similarly for Maxwell’s equations, which are linear. We
now formally expand fin powers of £ and iterate Eq. (11)
starting from the zeroth-order distribution function /% (v),
and E° B° = 0. The mth-order members of the hierarchy are
obtained by

(0 —kw) fi™ + pae (E""’{k) + iv)(ll“"’(k))
c

T;t?}ff?.(v) =T ky) ; (12)
and
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kXE‘™ (k) = (1/c)wB"(k), kE"™ = —idmp(m),
kXB™ (k) = — (@/c)E" (k) — i(47/c)j'™ (k), (13)
k.B(m]=0_

The inhomogeneous term I'™ is given by the members
of the expansion lower than m, i.e.,

‘qa m—1

Iy = —i— E

ma m =1

(E""— "k —k')

+_l_va{m—— m‘)(k (i k')) __?_ftm‘)(k ’;?) i
c av
(14)

The external EM fields of Eq. (7) are to be matched with the
first-order (m = 1) electric and magnetic fields of the hier-
archy. Although this perturbation procedure can be carried
out up to its m = 3 order, we will study this system using
some simplified physical assumptions. This procedure is
more instructive and takes more advantage of the physical
parameters of the system. We will first solve for the internal
EM waves using the linearized set of equations. We then
argue that to second order in £ only the electron density is of
interest. Finally, we find the equation for the phase conju-
gate reflected EM field.

I1l. CALCULATION OF THE REFLECTED WAVE
A. Internal fields

The linear response of a plasma to an external transverse
EM field,

E"“(r,t) = E® cos(k,-r a &,e;), k,'E(e] =0,

is treated in many textbooks. However, for later reference
and for completeness we will outline it here.We start from
Eq. (1) for the linear response /', E, and B, i.e.,

1 a
e B(ﬂ),_ (0)=0,
= X ;fa

(15)

supplemented by Maxwell’s equations [Egs. (5) and (6)].
We assume a plane wave solution

2 g0 v (04
ot m,

E"(rt) =E, cos(ker — ot + @), (16)
with ® = 0, k*E, = 0 and thus the B"" field is
BY(r,t) = (¢/w)kXE, cos(ker — ot + ¢) . (17)

The linearized distribution function
SOr5y) =f (v)sin(kr — ot + ¢)

is then

1

1 )3 0
E +— kXE, | — ‘

m—k-v( |+wVX e f?vf“
(18)

If we take £ (v) to be spherically symmetricalin v, e.g.,
a Maxwellian distribution

Fo(v) = ng(m, /27T, )>? exp[ — (m /2T, V],
we find for the density and velocity

fOwy =2

a

(19)
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n =0,

(20)

0
"n‘il)=q—ﬂId30 1 E: af .
m, o — kv av

We consider a nonrelativistic plasma, where the thermal ve-
locity, vy, , of the electrons is v, €c, and thus to zeroth order
in B = vy, /c we find

v\ (r,t) = v." sin(ker — ot + §) ,

v = (¢,/m)E/o .
These results for n{" and v_" are easily obtained from Egs.
(2) and (3) of the fluid description. Notice that, from Eqs.
(17) and (21), we have

VXV (10) = (g, /m c)B(r,0) . (22)

Since the electron to ion mass ratio m/M is very small, we
find that only the electrons contribute to the current in Eq.
(6),

(21)

) = —engv'(r,0), (23)
and thus Eq. (5) for the E, field takes the form
[k? — &?/c* + (0}/*)E, =0], (24)

with the electron plasma frequency w? = 4me’n,/m. This
leads to the plasma EM wave dispersion relation

=k +a?, (25)
with the internal wave vector k equal to

k= (1/¢c)\Jo® — mf . We shall consider only external waves
with @ > @, , so that the EM wave can penetrate the plasma.
If we further take (w,/w)*~0.1, then k~w/c, and E, is
close to the amplitude E'® of the external field. From now
on we will not distinguish between the linearized internal
fields and the external ones, and write the total linearized
field inside the plasma as

E'rt)= Y E cos(kr—ait+¢,), Esk =0,
i=a,b,s (26)

with E; assumed to be given, and o? = k 2c* + w?. We will
shortly assume that because of the nonlinearities, the ampli-
tudes of the internal fields E, , E,, and E, are slowly varying
functions of space on the scale of the appropriate wave-
lengths.

B. The density response

In anticipation of a generated EM wave E, (r,t), which
is driven by the three external EM waves, we expect the
current source j of Eq. (5) to be of third order in &, i.e., to be
proportional to the product of E, E, E,.. From Eq. (6) for the
current we see that since n'!’ = 0, the dominant contribu-
tion to the third-order current is the product of n, to second
order and v,, to first order. We denote now by v. the linear
velocity response to the internal field E‘° and similarly for
v{? and v; we also denote by n'** the second-order density
response to the fields (2) and (s), and so on. Furthermore,
since we are interested only in a wave reflected opposite to
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the signal field E” , we conclude that the driving current in
Maxwell’s equations is

jdrive =j(3](r!t) = - e[n:u}(r!r)vgb}(rrr}

+ 1 (r,Ov (1,0 ], (27)

where the neglected ionic current is smaller than the elec-
tronic current by the factor m/M. This calls for a simple
interpretation of the driving current; namely, that the gener-
ated wave c is due to the scattering of the pump wave b from
the density grating produced by the mixing in the plasma of
the signal s with the pump wave @ and the scattering of a
from the (b,s) grating.

We turn now to the calculation of the density grating
n{®(r,t) due to the interaction of the pump wave (a) and
the signal wave (s5) with the plasma. These calculations are
similar to those of Ref. 6. Consider the two driving fields to
be [see Eq. (26)]

E“(r,t) =E, cos(k,r —aw,t+¢,), E,<k, =0,
and (28)
E“(r,t) =E,(r)cos(k,r —w,t + ¢,), Ejk, =0.

We have explicitly indicated that the amplitude of the signal
wave varies slowly in space, while we assumed that the possi-
ble change of the pump-wave amplitude is not considered
here. In studying the density response n.** to the pump and
signal waves special attention should be paid to the emer-
gence of resonances at frequencies w = + (v, — ®, ), and
wave vectors k = + (k, — Kk, ). In particular, we consider
only the cases when the resonance frequency is much smaller
than w, (or @, ) but the wave vector k is of the order of k,
(ork, ). Since this is a longitudinal response, only Poisson’s
equation is relevant for the mixing process.

Knowing the first-order solutions for the various quan-
tities, we calculate the second-order distribution function
£ (r,t;v) = f using the perturbation expansion. We write
Eq. (1) as

5 , , th = a 5
— -V —E—=r, 29
3tf.,+v e + 3 avﬁ: e (29)
where
T — QG (a) l (a)
I, = —— [|E'”(r,t) + —vXB“(r,0)
m, c
2 fOnev) + (0«-—'5)] (30)
av

is given in terms of Egs. (16)—(18), and the superscript (1)
is replaced by (a) or (s). In Eq.(29), the self-consistent
electric field E is longitudinal, and obeys Poisson’s equation

VE=4r3 g.i,, (31)

while the magnetic field B is negligible. Remembering that
only the terms with k =k, —k; and @ = o, — o, are of
interest in Eq.(30), we write

La(rgv) =, (v)eier—ior,
We solve Eq. (29) for £, (v) and use
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Ra =fd3vf,,(v) o~
to obtain an equation for the density, i.e.,
o + ot () (BE) = G20, (33)
where
quJ' , | 5
ko) = e “
Xa{ ,(0) mak'z Um—k"?——l'ﬂ avj-o( ) ( )

is the linear susceptibility of the  species, and 7 is positive
infinitesimal. The inhomogeneous term is given by

oy M (LRE
G =—22 | g? E, + —vXB,
“ 2 m2 - T

d 1 ( 1 )
oM E 4 vun
37((0,,—]:,-?) s+ cYX

ad

aﬁ—(a‘_s)].

Notice that the ionic term G, is smaller by the mass ratio
than the electronic G,, and therefore is neglected; however,
s and y, are of the same order and both must be retained.
With Eq. (31),

(35)

kE=4r3 g,h,,

we solve for the electronic density response to find

i, (ko) =G> [1/e(k)][1+ x;(kw)] , (36)
where
e(kw) =1+ y;(kw) + y. (ko) 37)

is the linear dielectric function of the plasma. Equation (36)
is our result for n{*?, withk =k, — k, and 0 = 0, — @,.

Let us make a digression to the fluid description. For
comparison we outline here the calculations of 7, in the fluid
approximation. Instead of Eq. (1) we now study Egs. (2)
and (3) to second order in £. We rewrite Eq. (3) as

T _
LOWEE. LT
at m, g m,
= — (v, V), —2=_y xB, (38)

where the nonlinear terms are placed on the right-hand side.
If we use the identity

V(EwD) = (v V)V + v X (VXVSY)
and Eq. (22), we have for the second-order quantities

S+ —Vi, ——=FE= - V(v¥D), (39)
at m, g m,

and the continuity equation is
i Ay, +n Vv, =0 (40)
al‘ a 0 a .

Notice that the driving force of Eq. (39) is again of the form
cos(kr — wt + @) withk =k, — k, andw = 0, — w,,and
that the rhs of Eq. (39) for the ions is negligible. Assume
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that all second-order quantities are of the form
By (B0 =R -0,
we find for the ions, in the small m/M limit,
fi; + (1/4me)¥; (ko) (ik-E) =0,
where the ionic susceptibility in the fluid description is

(41)

(42)

with the ion plasma frequency w? = 4me’n/M. For the elec-
trons we introduce a phenomenological lifetime 7 in the ve-
locity equation and find

Y= —oj/e?,

fi, — (1/4me)¥, (ko) (kE) = G, (43)
where the electron susceptibility is now
Yo (ko) = — 0l/(0® — k0, —io/T) , (44)
and the inhomogeneous term is
= E,-E
G 1 ZaTepom k). (45)
4mm w,0,

Finally, using Poisson’s equation, Eq. (31), we recover Eq.
(36) for the electronic density response, with G, ¢, and y,
replaced by the fluid approximation quantities. This also
agrees in form with the result for the density of Drake et al.®
We now return to the Vlasov description and investigate
the electron density n{** due to the mixing of (@) and (s),
near the ion acoustic resonance of the dielectric function. If
we take the thermal distribution of Eq. (19) and specify

(T/M)'\? <o/k < (T,/m)"?,
Eq. (34) yields y, = — 0?/w? and

x. (ko) = 0?/k%; —il, , (46)
where I', is the imaginary part of the electronic susceptibil-
ity. In the fluid case we can obtain Eq. (46) from Eq. (44) if
we interpret 7 as being caused by Landau damping. Now we
write

€, (ko) =1—w/o* + k2/k* —iT, , (47)
where k2 = w?/v?, is the inverse Debye screening length.
The ion acoustic resonance occurs at @ = ~c,k with
¢, =Jm/Muv, with width \/(7/8)m/M when T, <T,.
Notice that near this resonance the second term, y,, in the
bracket of Eq. (36) is much larger than one. Next, we calcu-
late G {** from the Vlasov description, Eq. (35), and find
that near the acoustic resonance, the leading term in the
B + vy, /cexpansion and to lowest orderinc, /vy, =ym/M
gives

G (as) _ __ i &)i E".E’ :

¢ 87 T, w,w,

which agrees with the fluid case (for negligible I", ). Finally,
we express the density response as

(48)

(k) =—— ———"— (49)

87 M o* T, w,0, ko)

Notice that the density grating due to the mixing of the
pump wave b and the signal s does not, in general, resonate
when the frequencies and wave vectors are so chosen that @
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and s mix strongly. Thus the driving current of Eq. (27) is
dominated by the term with n{** and v{®.

C. Generation of the reflected wave
Now that we have the proper driving current, Eq. (27),
Jarive (1,2) = — en®(r,t)v"(1,1) ,

we return to our basic equations and solve for the reflected
wave E{” (r,?) to third order in £. First, we write more expli-
citly the driving current. From Eq. (49) we read

n&(r,t) = |nL% (K@, ) |€OS (Koo't — @yt + 6,,)
(50)

where k,, =k, —k, and o, = @, — @, are the resonant
wave vector and frequency, respectively, &, =4,
— ¢, + ¥, and 1/e = |1/€|e” . From Eq. (21) we have

v (r,t) = — (e/m)(1/w,)E, sin(k, T — 0.t + ¢,) ,
and thus
Jarive (1,8) = jq cos(k.r— w0 2+ ¢.),
ja = (€2/2mw, ) E, |n{% (ko,0,,) |

with k. =k, -k, +k,, o,=0,—0,+®, and
b.=¢, — ¢, + ¢, + ¥, — /2. The term with the fre-
quency w =w, — @, — @, is discarded here. Since our
phase conjugate configuration is such that the pump waves
are antiparallel k, = k., k, = — ko, and 0, = 0, = 0, we
have k. = —k,;, and o, =@+ @, (@, €w,). From
charge conservation we have

Parive (5:8) = (1/@, ) K Jarive (1:1) . (52)
Notice that the system is driven by a high frequency current
in the direction of the pump field E,. We also choose
k;'E, =0 and thus make also k.°E, =0 and p,;,. =0.
Thus the plasma response (of order £ *) is electromagnetic,
i.e., transverse in nature.

In order to find the reflected wave we use Egs. (1) and
(4)—(6) and repeat the calculations in the spirit of the sec-
tion on the internal fields. However, the system is driven now
by the current densities of Eq. (51). We assume again a
plane wave solution [compare to Eq. (16) ] for the genera-
ted wave

E“(r,t) =&, E.(r)cos(k. T — o .t + ¢.) , (53)

where €, is the polarization vector and E, (r) is the slowly
varying amplitude. Solving for the self-consistent velocities
and currents [compare to the calculations leading from Eq.
(16) to Eq. (24)] we end up with the wave equation

(31)

2

2
(v2 S )E‘(r,t) =%%jm (£ . (54)

The wave E‘® (r,?) is thus polarized in the direction of the

current j,.. or E, [see Eq. (51)], and its amplitude varies

slowly along its propagating direction k_/k,, which we as-

sume to be along the z axis, i.e.,
k VE.(r)>V?E_(r).

Since k2 = (1/¢) (@? + @?/c*) we find for E, (2),

(55)
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d drow, |
2k, — E,(2) = ——Jurive -
dz ¢ &
Using Egs. (51) and (49), and assuming that all waves have
the same polarization we obtain

d

(56)

—E (2) =kE,(2), (57)
dz
where, up to numerical factors of order unity,
EZ 242 4
x=ry 20 ﬂz(mc_)(“’e) 1 (8)
27 mc*\ T, wo/ €|

Here r, = ¢*/mc* is the classical radius of the electron, and
the zero subscript (0) corresponds to the pump-wave pa-
rameters. As we mentioned before, at resonance, € in Eq.
(47) is equal to I',. If we assume Landau damping and
T,> T, (atleast T,/T,>15) it can be shown that

e=T, = (k3/k?) - (7m/8M)"* . (59)

We have, now, to supplement Eq. (57) with a similar
equation for the signal wave E, (z). This can be achieved by
following the same procedure which led us to Eq. (57), but
replacing (s) by (¢) and exchanging (a) and (b). Starting
with the three waves (a), (b), and (c) in the plasma (in the
above phase conjugate configuration) we calculate first the
density response 7.7 (r,t) due to the pump wave (b) and
the conjugate wave (c). This leads to the same expression for
n'*(kw), where k=k, -k (=k, —k,) and
0 =0, —o,( =0, —a,),le.,tothesame grating in space
(and time reversed). The scattering of pump wave (a) from
this grating, which is represented by

Jarive (1,2) = — enl®9 (r,1)v{? (r,2)

up to third order in £, will drive a wave equation, similar to
Eq. (54), for E* (r,t). The only difference is that now, since
the vector k; is parallel to z, we have, instead of Eq. (57),

4 E (z) = —kE_(2)

T (60)

for the slowly varying amplitudes.

Following the standard treatment of phase conjugation
by four wave mixing, almost degenerate in our case (see Ref.
1), we solve Egs. (57) and (59). Assuming that, at the en-
trance to the plasma z = 0 (see Fig. 2), the incoming signal

Eq(L)
- E.(0)
E.L)=0 i
z=0 z=L -

FIG. 2. Schematic generation of the amplified conjugate wave E, by the
nonlinear interaction of the signal wave E, with the pump waves.

Nahanzahl ef a/ 2149



E_ has amplitude E, (0), and that at the back z = L, no con-
jugated wave is present, i.e., E.(L) =0, we find, for the
generated conjugated wave at the entrance

E.(0)/E,(0) = tan(xL) . (61)

A conjugated wave, with amplitude E, (0), is now reflected
from the surface of the plasma. This wave is generated
“backward,” from z = L toz = 0 by the nonlinear mixing of
the pump waves with the signal wave, at the expense of the
pump energy.

To get a feeling for the order of magnitude of x we give a
numerical estimate of kL in Eq. (60). We consider a hydro-
genic plasma with (m/M)"?=2.4x10"2, density
no~10?/cm?, and temperature T = 2 eV. The power of the
radiation source at A, =1 cm will be 250 W/cm?. With
ro=2.8%10"" cm and e = I', = 10° we find that x~0.1
and for a 10 cm plasma kL ~ 1. Notice that formally when
kL = 7/2 the gain is infinite.

IV. DISCUSSION

In conclusion, we have demonstrated that a plasma with
easily attainable properties can be used as an effective non-
linear medium for a phase conjugate reflector of electromag-
netic waves in the subcentimeter region of wavelengths. We
have exhibited that by tuning the signal frequency to be
slightly shifted with respect to the pump waves, so that a
collective mode of the plasma is excited, the reflected phase
conjugate wave can be significantly enhanced, and amplifi-
cation occurs,

Phase conjugate reflection of microwaves opens up a
new technology with many applications. Since the amplifica-
tion in Eq. (61) can considerably exceed unity, a cavity can
be formed from a phase conjugate reflector and a simple
mirror. Such a cavity is a broadband microwave amplifier,

r (cm) 5 4 3
plane propagation 1 0.37 0.14
spherical convergence 1 0.54 0.31

One sees that a depth of 5 cm, which is very hard to attain
with 2 GHz present-day applicators (even a phased ar-
ray'®), becomes accessible with a phase conjugate reflector
(the heating at r = 5,4, even 3 cm can be carried away by
water cooling'>'¢).

As another possible application, energy can be trans-
ferred from a terrestrial power station energizing a plasma
phase conjugate reflector to an orbiting satellite provided by
a weak microwave transmitter. Similarly, a solar energy sat-
ellite can send energy to a terrestrial station in the form of a
self-guiding, phase conjugate, amplified reflected wave.
More generally, power can be transmitted from point to
point in response to a weak guiding signal.
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and if the amplification exceeds the mirror losses, it is a self-
exciting laser. If the mirror is replaced by a set of two mir-
rors, forming a Fabry-Perrot étalon, a narrow band amplifi-
er results.

Another interesting application of phase conjugate re-
flection from a plasma is in the field of hyperthermia, or
microwave cancer therapy.'*'® This method involves radi-
ation heating of a portion of a patient’s body by external
applicators placed near the patient’s skin and radiating at
0.1-2.45 GHz. The penetration into the human body is,
however, poor, the extinction coefficient being of the order
of 0.1-1.0 cm "', The focusing of the beam on the tumor is
also hard, both because of diffraction because of the finite
size of the applicators, and because of variations of the local
dielectric constant inside the human body.

Use of phase conjugate microwave reflectors can con-
tribute to this in several respects. If a small emitting dipole is
inserted in the tumor—and this can be done'®—then an out-
going signal is produced. If this signal meets, after traversing
the patient’s body, a phase conjugate reflector, then it can be
amplified and retrace its exact path to the tumor. In this way
a strong energy-bearing beam can be directed to its destina-
tion, albeit any temporal or spatial changes in the refractive
index of the patient’s body. Moreover, the beam will be
spherically convergent on the tumor, and so will gain in
strength on its way. A numerical example can demonstrate
this. At a frequency of 2 GHz, the attenuation coefficient a
can become, depending on the composition of the tissue, of
order 1 cm~'. A plane wave will propagate like
I, exp( — ax). A spherically convergent wave will converge
as (R?*/r*)U, exp| — a(R — r)], and including the effect
of a diffraction, the convergence will be of order
[(R2Z4+A%/(r* + A% ]I exp[ — a(R — r)].Heredisthe
wavelength inside the tissue, which for 2 GHz is about 2 cm.
Taking the reflector to be, e.g., at R = 5 cm from the tumor,
the relative intensities are

2 1 0
0.05 0.02 0.007 .
0.18 0.12 0.05
i
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